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We studied the binocular organization of motion
opponency and its relationship to contrast gain control.
Luminance contrast thresholds for discriminating
direction of motion were measured for drifting Gabor
patterns (target) presented on counterphase flickering
Gabor patterns (pedestal). There were four presentation
conditions: binocular, monocular, dichoptic, and half-
binocular. For the half-binocular presentation, the target
was presented to one eye while pedestals were
presented to both eyes. In addition, to test for motion
opponency, we studied two increment and decrement
conditions, in which the target increased contrast for one
direction of movement but decreased it for the opposite
moving component of the pedestal. Threshold versus
pedestal contrast functions showed a dipper shape, and
there was a strong interaction between pedestal
contrast and test condition. Binocular thresholds were
lower than monocular thresholds but only at low
pedestal contrasts. Monocular and half-binocular
thresholds were similar at low pedestal contrasts, but
half-binocular thresholds became higher and closer to
dichoptic thresholds as pedestal contrast increased.
Adding the decremental target reduced thresholds by a
factor of two or more—a strong sign of opponency—
when the decrement was in the same eye as the
increment or the opposite eye. We compared several
computational models fitted to the data. Converging
evidence from the present and previous studies (Gorea,
Conway, & Blake, 2001) suggests that motion opponency
is most likely to be monocular, occurring before
direction-specific binocular summation and before
divisive, binocular gain control.

Introduction

In the study of motion perception, there has been an
extended debate over whether the direction-selective
mechanisms of motion sensors are monocular or
binocular. Anstis and Duncan (1983) found that
motion aftereffects can occur separately for the left and
right eyes, suggesting that at least some motion sensors
are monocular. However, Shadlen and Carney (1986)
reported that observers perceived apparent motion
while viewing dichoptic motion stimuli. Their stimulus
consisted of two monocular flickering patterns in which
the phase of one was spatially and temporally shifted
by 908 relative to the other. The sum of these two
flickering patterns would form a moving one, and
because there was no directional component in each
eye, Shadlen and Carney concluded that motion
sensors must be binocular and capable of integrating
dichoptic inputs to encode motion direction. George-
son and Shackleton (1989) also reported the existence
of dichoptic apparent motion but argued that its basis
was the spatiotemporal correspondence of visible
features (‘‘feature tracking’’), not early motion sensors.
This may well be one basis for dichoptic motion
perception. But later evidence has shown that observers
perceived dichoptic motion even when there was no
feature to track in either eye, thus supporting the
existence of binocular motion sensors (Carney, 1997;
Carney & Shadlen, 1993; Derrington & Cox, 1998; Lu
& Sperling, 2001; Hayashi, Nishida, Tolias, & Log-
othetis, 2007). Nevertheless, there is general agreement
in these studies that such dichoptic motion is much
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weaker than the corresponding monocular motion
(with which the same stimulus components are
physically summed within one eye).

Computational models of motion processing have
incorporated motion opponency and divisive gain
control (Adelson & Bergen, 1985; Georgeson & Scott-
Samuel, 1999; Simoncelli & Heeger, 1998), but binoc-
ular processing has received less attention there. Inputs
to these models are binocularly presented stimuli and
not separated for the left and right eyes. Motion
processing models typically include a motion-opponent
mechanism that is sensitive only to the difference in
contrast or energy between opposite directions. Oppo-
nency explains why we cannot perceive two opposite
motions at the same time when they are in the same
location and the same spatial frequency range (Qian &
Andersen, 1994; Qian, Andersen, & Adelson, 1994a,
1994b; Van Doorn & Koenderink, 1982). When two
sine wave gratings drift in opposite directions with the
same luminance contrast, there is no impression of two
opposite, transparent motions, and the grating (Figure
1) typically appears to be counterphase flickering or
oscillating (Kelly, 1966; Kulikowski, 1971). Motion
opponency is also supported by motion aftereffects in
which we perceive motion in the direction opposite to
that of adapting motion stimuli.

Our questions here concern the binocular properties
of motion opponency and divisive gain control. We
address these issues by fitting computational models to
threshold data. The present experiment measured
luminance contrast thresholds for discriminating di-
rection of motion for drifting Gabor patterns (target)
presented on counterphase flickering Gabor patterns
(pedestal, equivalent to the superposition of two
Gabors drifting in opposite directions). There were four
presentation conditions: (a) binocular: all stimuli were
presented to both eyes, (b) monocular: all stimuli were
presented to one eye and not the other, (c) dichoptic:
the target was presented to one eye while the pedestal
was presented to the other eye, and (d) half-binocular:
the target was presented to one eye while pedestals were
presented to both eyes.

In addition, we tested incremental and decremental
targets, with which the target increased contrast for one
direction of movement but decreased it by the same
amount for the opposite moving component of the
pedestal. In a motion-opponent mechanism, decreasing
the signal strength in one direction should be almost
equivalent to increasing it in the other. Hence the
combination of incremental and decremental targets
should create a much stronger opponent response than
the increment alone. In our experiment, the decrement
was either in the same eye as the increment or in the
other eye, and this might test whether the motion
opponency mechanism is capable of binocular inte-
gration. According to Stromeyer, Klein, Kronauer, and

Madsen (1984), observers were significantly more
sensitive to luminance contrast change (contrast
discrimination) when target stimuli consisted of a
contrast increment in one direction and a decrement in
the opposite direction than when luminance contrast of
both motion components was increased (or decreased).
This advantage for the increment/decrement condition
is strong evidence for motion opponency. Gorea,
Conway, and Blake (2001) found that this advantage
disappeared when the two opposite directions of
movement and the associated increment and decrement
were presented separately to the left and right eyes.
They concluded that motion opponency must be a
monocular process before binocular combination.

In the present experiment, we asked observers to
discriminate motion direction instead of discriminating
changes in luminance contrast. Because contrast
discrimination does not necessarily require perception
of motion, especially near threshold, direction dis-
crimination is a more direct way of studying motion
processing. Moreover, we measured thresholds over a
wide range of flickering pedestal contrast (11 levels
between 0% and 40%), and Gorea et al. (2001) tested
only one flickering pedestal contrast (40%). This broad
range of conditions enabled us to distinguish between
several different computational models for the direc-
tion discrimination data. We also applied several
variants of these models to the Gorea et al. data and,
taken together, these analyses point to some fairly firm
conclusions about the binocularity (or otherwise) of
motion opponency and contrast gain control.

Methods

Observers

There were three observers, JB, GM, and PCH. All
had corrected-to-normal visual acuity. GM is one of
authors. All observers provided fully informed consent
to participate in this study, and the study followed
protocols approved by the institutional ethics commit-

Figure 1. A flickering grating is the sum of two gratings drifting

in opposite directions.
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tee that were in accordance with the Declaration of
Helsinki.

Apparatus

Stimuli were generated using a VSG 2/5 (Cambridge
Research System Ltd., Kent, UK), which produces 15-
bit gray level resolution and presented on a CRT video
monitor (Compaq P1210). The display resolution was
set to 10243768 pixels. The refresh rate of the monitor
was set to 120 Hz. The highest luminance of the display
was 60 cd/m2. The image on one half of the screen was
directed to one eye while the image on the other half
was directed to the other eye by means of an eight-
mirror stereoscope. Presentation regions on the mon-
itor subtended a visual angle of 108 high3 8.58 wide for
each eye. The viewing distance was 57 cm.

Stimuli

Targets were drifting Gaussian-windowed sinusoidal
gratings (Gabor patterns). The gratings had a spatial
frequency of 1 c/8 and were oriented at 908 (horizontal
stripes). The standard deviation of the Gaussian
window function was 0.68 of visual angle. The gratings
drifted upward or downward at a speed of 7.58 of visual
angle per second (7.5 Hz) within the stationary
Gaussian window.

Pedestals were counterphase flickering Gabor pat-
terns. Their spatial frequency, orientation, and Gauss-
ian window were identical to those of the targets. The
flicker rate was 7.5 Hz. As shown in Figure 1, a
flickering Gabor pattern is equivalent to the superpo-
sition of two Gabor patterns drifting in opposite
directions. That is, pedestals can be divided into
upward and downward drifting targets whose lumi-
nance contrast is half that of the flickering pedestal
contrast.

Targets were presented on flickering pedestals. There
were two types of targets: incremental targets and
incremental and decremental targets. Incremental
targets increased luminance contrast for one direction
of movement (Figure 2A, left). On the other hand,
incremental and decremental targets increased contrast
for one direction of movement but decreased it by the
same amount for the opposite moving component of
the pedestal (Figure 2A, right).

The mean luminance of the stimuli was 30 cd/m2.
Their luminance contrast was defined as Michelson
contrast and was expressed in dB re 1%, where 1 dB is
1/20 of a log unit of contrast. That is, 0 dB and 40 dB
correspond to 1% and 100% of luminance contrast,
respectively. Targets and pedestals were simultaneously
presented for 267 ms (two temporal cycles) at the center

of the presentation region. We used brief presentations
to minimize binocular rivalry.

Procedure

The present experiment measured luminance con-
trast thresholds for discriminating motion direction of
targets presented on pedestals. There were 11 levels of
pedestal contrast (�‘,�4, 0, 4, 8, 12, 16, 20, 24, 28, and
32 dB) for each presentation condition described below.

For the incremental targets, there were four presen-
tation conditions: the binocular, monocular, dichoptic,
and half-binocular presentations (Figure 2B). All

Figure 2. (A) Increment and decrement in moving components

of a flickering pedestal. Incremental targets increased lumi-

nance contrast of one moving component. Incremental and

decremental targets increased one component but also

decreased luminance contrast of the opposite moving compo-

nent. CU and CD: luminance contrast of the upward and

downward moving component, respectively. (B) Graphical

representation of the six test conditions. Gray bars represent

contrast of the pedestal components, moving up or down. Red

tab indicates a contrast increment, blue tab a contrast

decrement. Black symbol is the difference in contrast between

the two moving components (CU� CD). It can be thought of as

the net amount of motion in the stimulus for a given eye.
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stimuli were presented to both eyes under the binocular
presentation condition whereas they were presented to
the same single eye under the monocular presentation
condition. For the dichoptic presentation, the target
was presented to one eye while the pedestal was
presented to the other eye. For the half-binocular
presentation, the target was presented to one eye while
pedestals were presented to both eyes.

For the incremental and decremental targets, there
were two presentation conditions: the ipsilateral and
contralateral target presentations (Figure 2B). For the
ipsilateral targets, the decrement was presented to the
same eye as the increment whereas for the contralateral
targets the decrement was presented to the other eye.
These presentation conditions share a similarity with
the half-binocular presentation in that pedestals were
presented to both eyes while the increment was applied
to only one eye.

The protocol in this experiment was a single-interval,
direction discrimination task. In each trial, the incre-
mental target (Figure 2A, B) drifted upward or
downward. Observers judged the direction of motion.
Feedback was given after each incorrect response. A
one-up/three-down staircase was used to adjust the
target contrast, increasing it after one error or
decreasing it after three correct responses. The step size
of the staircase was initially set at 4 dB and moved to 2
dB after the second reversal. The staircase terminated
after seven reversals. Observers completed four stair-
cases for each condition. Target contrast thresholds (at
75% correct) and standard errors were determined by
fitting a logistic psychometric function to the response
data (the number of correct and incorrect responses)
using the Palamedes toolbox (Kingdom & Prins, 2010;
Prins & Kingdom, 2009). Another four staircases were
conducted for the condition in which the standard error
exceeded 4 dB. In such a case, thresholds were based on
eight staircases in total.

Results

Figure 3 shows mean target contrast thresholds for
direction discrimination as a function of the flickering
pedestal contrast (TvC function). Individual results are
shown in Figure 4. In some conditions, observers were
not able to discriminate the direction even at the
highest possible target contrast. Those data points are
missing in Figure 4. We averaged thresholds and
plotted them in Figure 3 when thresholds were
obtained for all three observers. It should be noted that
averaging might make the dips shallower because of
individual differences in sensitivity.

The direction discrimination thresholds were lower
under binocular viewing (red circles) than under
monocular viewing (blue squares) at least for low-
flickering pedestal contrasts. We calculated binocular
summation ratios in the absence of a pedestal by
dividing the monocular contrast threshold (not in dB)
by the binocular threshold at zero pedestal contrast.
These binocular summation ratios were 1.71, 1.80, and
1.82 for JB, GM, and PCH, respectively. Previous
research has found binocular summation ratios typi-
cally between 1.4 and 2 (Arditi, Anderson, & Movshon,
1981; Legge, 1984a; Maehara & Goryo, 2005; Meese,
Georgeson, & Baker, 2006; Rose, 1978).

The TvC functions had a typical dipper shape when
thresholds decreased and then increased with pedestal
contrast under binocular and monocular viewing (red
circles and blue squares in Figures 3 and 4). The
amount of dip was much smaller for the dichoptic
presentation (light blue diamond) than for the binoc-
ular and monocular presentations. Unlike the low-
contrast conditions, there was little or no binocular
advantage across a wide range of suprathreshold
pedestal contrasts. Thresholds for the half-binocular
presentation (orange stars in Figure 3 and 4) were close
to those for the monocular presentation (blue square)

Figure 3. Contrast thresholds for direction discrimination (mean of three observers). Left panel: thresholds for the incremental target.

Right panel: thresholds for the incremental and decremental targets (upright and inverted triangles for ipsilateral and contralateral

target presentations, respectively).
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at low pedestal contrasts. But at intermediate-to-high
pedestal contrasts, thresholds were higher for the half-
binocular presentation than for the monocular one.

Slopes of the present TvC functions were close to
one or slightly higher than one at high pedestal
contrasts (Figures 3 and 4) whereas they were
consistently lower than one (about 0.5 to 0.7) for
contrast discrimination of stationary stimuli (Legge,
1984a; Maehara & Goryo, 2005; Meese et al., 2006).

It can be seen from Figures 3 and 4 (right-hand
panels) that thresholds were about 6–8 dB lower for the
combination of monocular incremental and decremen-
tal targets (green triangles and purple inverted trian-
gles) than for incremental targets alone (orange stars,
half-binocular). This opponency advantage is consis-
tent with the results of the previous studies (Gorea et
al., 2001; Stromeyer et al., 1984). Observers could not
discriminate the direction at low pedestal contrasts
(missing data points at �4 dB for all observers; 0 dB

and 4 dB for PCH’s contralateral target presentation).
At these low pedestal contrasts, the decremental target
is not always well defined: If the decremental target
contrast exceeds the pedestal contrast, then spatial
phase reverses, and the net target plus pedestal contrast
increases instead of continuing to decrease.

To assess any difference in threshold between the
ipsilateral and contralateral targets (green triangles and
purple inverted triangles in Figures 3 and 4), we
subjected the data at intermediate and high pedestal
contrasts to two-way ANOVA with factors of Target
(ipsilateral or contralateral) and Pedestal Contrast (8,
12, 16, 20, 24, 28, or 32 dB). Although average
thresholds were slightly lower (2.2 dB) for the
ipsilateral targets than for the contralateral targets, the
main effect of Target was not significant, F(1, 2)¼ 13.9,
p¼ 0.0651. The interaction with Pedestal Contrast was
also not significant, F(6, 12) ¼ 1.02, p ¼ 0.457.

Figure 4. Contrast thresholds for direction discrimination for three observers. Left panels: thresholds for the incremental target. Right

panels: thresholds for the incremental and decremental targets (upright and inverted triangles for ipsilateral and contralateral target

presentations, respectively). Error bars shows standard errors estimated by maximum likelihood fitting.
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One might argue that, if binocular rivalry takes
place, dichoptic thresholds should be measured sepa-
rately for the suppressed eye and the dominant eye.
However, in our dichoptic presentations, the pedestal
was flickering in one eye while the test was drifting in
the other. Thus the test component can sum binocu-
larly with the same direction component of the pedestal
in the other eye. According to Blake and Boothroyd
(1985) summation takes precedence over rivalry, and so
it seems unlikely that rivalry will be invoked under
these conditions, especially for our brief presentations.
Moreover, Gorea et al. (2001) found that dichoptic
thresholds were not significantly different between the
suppressed and the dominant eyes when they used
drifting and flickering gratings as stimuli. Therefore, it
seems reasonable to pool the data over all trials for the
dichoptic presentation in the present experiment.

Modeling

The aim of the present study is to construct
binocular versions of motion processing models and to
explain the threshold data using them. For this
purpose, we incorporate binocular processing into the
motion contrast model (Georgeson & Scott-Samuel,
1999) on the basis of binocular processing models of
luminance contrast (Maehara & Goryo, 2005; Meese et
al., 2006).

Performance on various visual tasks is known to be
better with two eyes than with one eye (binocular
summation; Blake & Fox, 1973; Blake, Sloane, & Fox,
1981). Research on luminance contrast perception has
addressed binocular processing. Legge (1984b) pro-
posed quadratic summation as a rule that describes
binocular summation in luminance contrast detection
of static patterns. Quadratic summation means that
monocular signals are squared and added to form a
binocular signal. Maehara and Goryo (2005) revised
Foley’s (1994) divisive gain control model of lumi-
nance contrast processing to account for detection and
discrimination thresholds of luminance contrast under
binocular, monocular, and dichoptic viewing. The
revised model, called the twin summation model,
receives inputs from the left and right eyes separately.
There is a similarity between quadratic summation
and the twin summation model in that monocular
signals are accelerated exponentially before their
summation for generating binocular signals. This
summation is followed by divisive inhibition among
processing units tuned to different orientations and
spatial frequencies. Meese et al. (2006) proposed a
related model with two stages of divisive gain control.
The two monocular processing pathways have a
suppressive interaction at the first stage, and this is

followed by the divisive gain control at the second,
binocular stage. Research on binocular rivalry has
also suggested that there are two stages of inhibition
for monocular and binocular processing (Blake, 1989;
Lehky, 1988; Wilson, 2003).

Spatiotemporal filters

The first processing stage of the present models is
spatial and temporal filters, which were originally
proposed by Adelson and Bergen’s (1985) motion
energy model. The models convolve the image sequence
with two spatial filters, which differ in position, and
two temporal filters, one of which is delayed relative to
the other. Outputs from the filtering process are
summed or subtracted to create direction-selective
responses. The responses are then squared and
summed, giving phase-invariant, direction-specific sig-
nals called motion energy.

Although our models, in principle, also apply these
filters to the image sequence, the process can be
simplified here. We just assume that there are
spatiotemporal filters that yield a motion signal
proportional to luminance contrast of motion compo-
nents at the monocular processing stage. That is, the
monocular excitatory signal Eij for the target motion
direction i in eye j is

Eij ¼ CtjSE þ CpjSE=2;

where Ctj and Cpj are target and pedestal luminance
contrast, respectively, expressed as Michelson contrast,
and SE is the excitatory sensitivity. Because a flickering
pedestal is the sum of two opposite motion compo-
nents, we divide the pedestal contrast by two to get the
contrast of its moving components. The target lumi-
nance contrast, Ctj, equals the increment or decrement
in motion components (Figure 2). When no target is
presented, Ctj¼ 0.

We assume another output, inhibitory signals, from
the spatiotemporal filters for the denominator of the
divisive gain control. The monocular inhibitory signal
Iij for the target motion direction is

Iij ¼ CtjSI þ CpjSI=2;

where SI is the inhibitory sensitivity. Ctj¼ 0 when no
target is presented as for the calculation of excitatory
signals.

The twin summation model of motion
processing (TS1)

As mentioned earlier, we consider two contrast
processing models that describe how monocular signals
are combined to yield binocular signals: the twin

Journal of Vision (2017) 17(1):7, 1–21 Maehara, Hess, & Georgeson 6



summation model (Maehara & Goryo, 2005) and the
two-stage divisive gain control model (Meese et al.,
2006). Our goal here was to develop plausible
extensions of both these models to handle motion
signals. First, we describe an opponent-motion model
based on the twin summation model because this model
has the simpler structure.

Figure 5A shows a schematic illustration of the twin
summation model with monocular opponency, which
we shall call TS1. Spatiotemporal filters produce four
types of monocular excitatory signals—EUL, EUR, EDL,
and EDR—and four types of monocular inhibitory
signals—IUL, IUR, IDL, and IDR—for combinations of
two motion directions (upward or downward, U or D)
and two eyes (left or right, L or R). Monocular

excitatory signals for the left and right eyes are raised to

power m (nonlinear transducer) and subjected to

motion opponency followed by half-wave rectification.
The rectified opponent signals are summed between

two eyes and raised again to power p before the divisive

inhibition. In a similar way, inhibitory signals are
raised to power n, summed, and raised again to power

q. However, we assume no opponency for the

inhibitory signals because for flickering pedestals the
contrast gain control effect would be nullified through

cancellation. Then, the divisive inhibition is applied to

yield a binocular motion response Mi. These calcula-
tions are conducted for a specific direction i and

expressed as

Figure 5. Schematic illustrations of binocular versions of motion processing models. (A) The twin summation model. (B) The two-stage

gain control model. These diagrams show motion opponency within the monocular pathways. In the text, we also consider motion

opponency at a late stage after binocular combination.
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MU ¼
ðhwr Em

UL � Em
DL

� �
þ hwr Em

UR � Em
DR

� �
Þp

ðInUL þ InURÞ
q þ z

ð1aÞ

MD ¼
ðhwr Em

DL � Em
UL

� �
þ hwr Em

DR � Em
UR

� �
Þp

ðInDL þ InDRÞ
q þ z

;

ð1bÞ
where z is a constant, and direction i ¼ U or D. The
function hwr{x} is half-wave rectification, i.e.,
max(x,0), serving to prevent negative responses. Note
that we have two directional channels, each with
opponent input from the other direction in the same
eye, followed by direction-specific binocular summa-
tion. The constant z in the denominator is required to
prevent division by 0 at zero contrast. More generally it
(a) controls response gain at low contrasts with higher z
giving lower responses, and (b) it controls the pedestal
contrast level at which a low-threshold (or facilitation)
regime gives way to the rising (masking) branch of the
TvC function: higher z shifts that transition to higher
contrasts. This description holds true for both a
drifting grating, with which the response to the pedestal
increases with contrast, and a flickering grating with
which the opponent-mechanism response to such a
pedestal is always zero (see Figure A4B).

Both these channels will be silent when the upward
and downward inputs are balanced (no net motion in
either eye), and so it is reasonable to suppose that
direction will be discriminable when a response to the
target direction is reliably nonzero. Thus, if the target
direction is upward, that direction will be just
detectable if MU ¼ 1.

The two-stage gain control model of motion
processing

Figure 5B shows a schematic illustration of the two-
stage gain control model. The characteristic of this
model is that monocular processing pathways for the
left and right eyes mutually suppress each other (Meese
et al., 2006). The inclusion of interocular suppression is
an advantage of this model because research on eye
rivalry has suggested similar processing (Blake, 1989;
Lehky, 1988; Wilson, 2003).

The processing starts with spatiotemporal filtering
that is similar to the twin summation model. There are
four monocular motion signals—EUL, EUR, EDL, and
EDR—as output. The two-stage model uses them for
both the numerator and denominator of the divisive
inhibition.

The first stage of the divisive gain control imple-
ments interocular suppression. Specifically, the mon-
ocular motion signals are raised to power m and

divided by the sum of the two monocular motion
signals and a constant s, yielding the first-stage outputs
Fij for motion direction i in eye j:

Fij ¼ Em
ij =ðEiL þ EiR þ sÞ: ð2Þ

The first-stage outputs are subjected to motion
opponency, half-wave rectified, summed between two
eyes, and then subjected to the second-stage divisive
gain control, yielding the binocular motion response
Mi. This calculation is expressed as

MU ¼
ðhwr FUL � FDLf g þ hwr FUR � FDRf gÞp

ðFUL þ FURÞq þ z

ð3aÞ

MD ¼
ðhwr FDL � FULf g þ hwr FDR � FURf gÞp

ðFDL þ FDRÞq þ z
;

ð3bÞ
where p and q are exponents of the nonlinearity for the
numerator and denominator, respectively, and z is a
constant.

Target contrast will be at threshold when a response
to the target direction equals a constant value d. This
constant, representing internal noise, is a free param-
eter in the two-stage model. It was fixed to be one in the
twin summation model, in which internal noise is
effectively bundled into the sensitivity terms, SE, SI.
The two models are not formally identical, but they
have many similarities.

Fitting the models to the data

The fitting procedure was as follows. Parameter
values that gave a rough fit to data were found by trial
and error as a starting point for least-squares fitting.
Then the Matlab ‘fminsearch’ function (the Simplex
algorithm) was used to fit the models. We computed 30
fits. Each fit started with a different set of parameter
values randomly sampled from a normal distribution.
Mean values of the normal distributions were set to be
the rough fit values with a SD of 30%. The reported fits
are those that achieved the lowest squared errors
between model and data in dB. Numbers of data points
to be fitted were 53, 60, 60, and 53 for mean data, JB,
GM, and PCH, respectively.

The smooth curves in Figures 6 and 7 correspond to
the best fits of the twin summation model to mean and
individual data. Even though motion opponency is
assumed to be before binocular summation, the TS1
model predicts that there is no difference in thresholds
between the ipsilateral and contralateral targets. The
green and purple curves overlap completely in Figures 6
and 7. Errors and estimated parameters are given in

Journal of Vision (2017) 17(1):7, 1–21 Maehara, Hess, & Georgeson 8



Figure 6. Fitting the twin summation model (TS1) to mean data of the three observers. Smooth curves correspond to the best fit. Two

curves overlap for the ipsilateral and contralateral targets (green and purple lines).

Figure 7. Fitting the twin summation model to individual data. Smooth curves correspond to the best fit. Two curves overlap for the

ipsilateral and contralateral targets (green and purple lines).
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Table 1A. SI, m, n, p, q, and z were free parameters; SE

was fixed to be 100 for compatibility with previous
publications (Foley, 1994; Maehara & Goryo, 2005).
The root mean squared errors (RMSEs) were 1.36 dB
for group mean data, 1.55 dB for JB, 1.50 dB for GM,
3.12 dB for PCH. The fits were reasonably good and
captured the major trends and many of the more subtle
interactions in the data.

Table 1B shows errors and estimated parameters for
fitting the two-stage model. The RMSEs were 1.28 dB
for mean data, 1.54 dB for JB, 1.57 dB for GM, and 3.17
dB for PCH. The fits were as good as those with the twin
summation model, and the fitted curves were almost
identical (Figure S1 in the Supplementary Materials).

Discussion

The present experiment measured luminance contrast
thresholds for direction discrimination of drifting
targets presented on flickering pedestals. The stimuli
were presented under binocular, monocular, or dichop-
tic viewing. First, we found that thresholds were lower
for the binocular presentation than for the monocular
presentation at the low pedestal contrast range, consis-
tent with binocular summation in motion detection
(Arditi et al., 1981; Rose, 1978). Second, thresholds were
lowered and then elevated as pedestal contrast increased.
This threshold reduction was much smaller for the
dichoptic presentation than for other presentation
conditions. Third, we found that when a contrast
increment in the target direction was combined with a
contrast decrement in the opposite direction, the
contrast threshold for detecting the target direction
improved by a factor of 2 to 2.5 (6–8 dB) compared with
the increment alone. This form of synergy or coopera-
tion between opposite directions strongly implies motion

opponency. Put simply, if the upward (U) and down-
ward (D) contrasts are cþ dc and c – dc, respectively,
then (ignoring any nonlinearities) their opponent
combination is U� D¼ 2dc, a factor of two gain.

Importantly, the added decremental targets reduced
thresholds in both cases: when the decrement was in the
same eye as the increment (ipsilateral) and when it was
in the opposite eye (contralateral). This can be
explained by two factors: (a) the presence of bidirec-
tional (flickering) pedestals in both eyes and (b) the idea
that binocular summation follows monocular oppo-
nency. Again, put simply, an upward increment in the
left eye creates an opponent signal (U�D)¼ (cþ dc)�
c¼dc for the left eye, and a downward decrement in the
right eye creates an opponent signal (U� D)¼ c� (c�
dc) ¼ dc for the right eye. Binocular summation then
renders a combined signal 2dc, as before, even though
the opponency itself precedes binocular summation.
We examine this more formally below.

Binocular summation in motion

Our models assumed that motion detection and
direction discrimination depend on responses from
binocular processing. This supports the notion that the
later stages of motion sensing are binocular. If there
were separate monocular motion sensors for each eye
without binocular summation, then the binocular
advantage should not exceed what we expect from
probability summation. However, the binocular sum-
mation ratios for motion detection without a pedestal
(1.71, 1.80, and 1.82 for JB, GM, and PCH) were much
higher than the values typically expected from proba-
bility summation (about 1.2). Rose (1978) found that
binocular contrast sensitivity was twice as high as
monocular sensitivity when gratings were flickering at
3.5 Hz. Arditi et al. (1981) examined the effects of

(A) Twin summation

model (TS1) SE SI m n p q z m.p n.q m.p � n.q SSE RMSE

Mean 100 48.2 1.66 1.97 2.57 2.42 3.89 4.27 4.77 �0.50 97.5 1.36

JB 100 36.2 1.62 1.58 1.33 1.47 1.14 2.15 2.32 �0.17 144 1.55

GM 100 42.3 1.68 1.71 2.81 3.10 16.0 4.72 5.30 �0.58 134 1.50

PCH 100 54.3 1.55 1.98 3.57 3.19 3.33 5.53 6.32 �0.78 528 3.12

(B) Two-stage gain

control model SE m s p q z d SSE RMSE

Mean 100 1.79 0.129 3.12 3.30 3.25e-7 0.0490 86.6 1.28

JB 100 1.65 1.07 1.43 1.49 1.30e-4 0.157 143 1.54

GM 100 1.64 0.595 3.28 3.48 4.88e-8 0.0391 149 1.57

PCH 100 1.79 0.141 3.59 4.07 1.97e-9 0.173 534 3.17

Table 1A, B. Estimated free parameters and fitting errors. Notes: SE was a fixed parameter. Numbers of data points were 53, 60, 60,
and 53 for mean data, JB, GM, and PCH, respectively. SSE ¼ sum of squared errors.
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spatial frequency on binocular and monocular detec-
tion of motion. The binocular summation ratios were
nearly two for 0.6 c/8 but about 1.6 for 9.6 c/8. Because
the spatial frequency of our stimuli (1 c/8) was between
these two, the present results are consistent with
previous findings.

Relationship to divisive gain control and motion
contrast

The TvC functions had a dipper shape for all
conditions except the dichoptic presentation. The
divisive inhibition is required to account for such a
dipper function. If the divisive gain control is removed
from the present models, the fits deviate enormously
from the threshold data. As an example of this kind of
alternative model, motion response, Mi, can be
calculated as

MU ¼ ðhwr Em
UL � Em

DL

� �
þ hwr Em

UR � Em
DR

� �
Þp

ð4aÞ

MD ¼ ðhwr Em
DL � Em

UL

� �
þ hwr Em

DR � Em
UR

� �
Þp:
ð4bÞ

This alternative twin summation model failed to fit
the data (RMSE was 6.19 dB for mean; Figure 8), and
its failure supports the notion that the encoding of
visual motion includes the divisive gain control.

Georgeson and Scott-Samuel (1999) found that
motion contrast (EU � ED)/(EU þ ED) was a better
predictor of direction discrimination than opponent
energy (EU � ED) proposed by Adelson and Bergen
(1985). Because motion contrast incorporates both
motion opponency and divisive gain control, our
models do not contradict the concept of motion
contrast. Actually, the present model (TS1) is similar to
motion contrast except that we introduce half-wave

rectification of the opponent signals followed by
summation across the two eyes.

Model TS2: Opponency could be binocular?

One could argue that motion opponency might be
binocular rather than purely monocular. To test this
possibility, we fitted an alternative version of the twin-
summation model (dubbed TS2) in which motion
opponency takes place after binocular summation. The
motion response of the twin-summation model (Equa-
tion 1) was re-expressed as

Mi ¼
ðEm

iL þ Em
iRÞ

p

ðIniL þ IniRÞ
q þ z

; ð5Þ

where direction i is U or D. We assume that the
binocular motion responses are subjected to motion
opponency. The mechanism response R is given by

R ¼MU �MD:

Direction will be reliably discriminated when the
mechanism response R is higher or lower than zero by a
constant value. Here, R equals 1 or�1 at the threshold.

This model with late binocular opponency (TS2) was
fitted to the groupmean data of Figure 3, and the RMSE
(1.37 dB) was almost identical to that for the early,
monocular opponency model (1.36 dB; see Table A1).
The present experiment alone therefore does not reveal
whether motion opponency occurs before or after the
binocular integration of monocular signals. We aim to
resolve this ambiguity below (seeMonocular opponency).

Is opponency a sensory process or a decision
strategy?

Because the late opponency model fits our data
well, we must consider another interpretation of that

Figure 8. Fitting an alternative model in which the divisive gain control was removed from the twin summation model. The fits to

mean data are shown here. There are substantial deviations between experimental thresholds (symbols) and model fits (curves).
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idea: that motion opponency operates at a decision
stage rather than as a sensory process. Suppose that
observers had separate upward and downward
signals (MU, MD) available without sensory oppo-
nency. Both mechanisms are active in a given trial,
driven by the counterphase flickering pedestal, and so
to make a decision about motion direction, the
observer must compare the upward and downward
motion signals and choose the larger. Such a
comparison at the decision stage yields a model that
is functionally identical to late, binocular opponency
(Equation 7). Nevertheless, there are other arguments
in favor of the sensory opponent mechanism. With
both directional channels active and no opponency,
we should expect the counterphase grating to look
like two opposite transparent motions, and the lack
of such transparency has long been argued as
evidence for opponency. According to Qian et al.
(1994a), observers perceived transparent motion only
when stimuli contain locally unbalanced motion
signals, suggesting that motion opponency is a
spatially localized operator. It is also well known
that, after viewing a motion stimulus, a stationary
stimulus appears drifting in the opposite direction
(motion aftereffect). Taking these findings together, it
seems reasonable to conclude that motion opponency
is a sensory process.

Monocular opponency

We saw previously that our results strongly
implicate opponency but are consistent with either
monocular or binocular opponency. To resolve this
ambiguity, we applied our models to results obtained
by Gorea et al. (2001). They tested the case in which
pedestals had opposite directions in the two eyes, and
this revealed a lack of dichoptic opponency. Their key
finding was that performance (d 0) in detecting a
contrast increment in one direction combined with a
contrast decrement in the opposite direction (‘‘inc/
dec’’) was two to three times better than detecting the
increment alone. But this strong signature of oppo-
nency disappeared when the two motion directions
were seen by opposite eyes; inc/dec performance was
then similar to that for the increment alone. Gorea et
al. argued in favor of monocular opponency followed
by direction-specific binocular summation but did not
support their verbal argument with quantitative
modeling. We therefore applied our models (TS1,
TS2) to their results (as described in Appendix 1).
Five out of six parameters were fixed from the fits to
our data, and with just one free parameter, we found
that monocular opponency (TS1) was strongly
supported (i.e., it predicted both the advantage of
opponency and its failure in dichoptic viewing). But

the model fit was much less good when binocular
opponency (TS2) was assumed instead (see Appendix
1 for details). We therefore conclude that the balance
of evidence favors early, monocular opponency
followed by direction-selective binocular summation
(Gorea et al., 2001).

An extended model for motion and flicker

To account for other findings of Gorea et al.,
(2001) we devised two optional extensions to the TS1
model to incorporate the possibility of (a) nondirec-
tional flicker channels and (b) monocular channels.
The inclusion of nondirectional flicker channels was
also proposed by Wilson (1985) and Gorea et al.
(2001). These extensions did not increase the number
of model parameters, and five out of six parameters
were again fixed in advance by fitting to our own
data (Figure 3). We show in Appendix 1 that
including flicker channels as well as motion-opponent
channels gave an excellent quantitative account of
the Gorea et al. data. The flicker channels played a
key role in detecting contrast change in a drift-
balanced condition in which there was no net
motion. The monocular channels played little part
for this data set but may play a larger role when a
larger range of conditions is considered (Georgeson,
Wallis, Meese, & Baker, 2016). We recognize that the
data supporting this extended model are as yet very
limited, but now that the theoretical structure is
developed, a way forward to future experimental
tests is clear.

Noise sources

Solomon, Chubb, John, and Morgan (2005) re-
ported that psychophysical characteristics for direc-
tion discrimination at very low contrasts are
inconsistent with a late-noise Reichardt model, in
which noise is added only at the very end of
processing. Based on this finding, Solomon et al.
suggested that the early noise added to the output
from spatial filters is also required to account for the
psychometric functions. Although there must be many
sources of noise in visual processing, those noises are
simplified as the late noise in the present models, and
this was sufficient to explain the threshold data.
However, as pointed out by Solomon et al., we need to
consider the nature of noise in more detail to account
for how accuracy changes as a function of stimulus
intensity. Indeed, we were surprised to find that the
TS1 model parameters derived from our flickering
pedestal data produced implausible predictions for the
contrast discrimination of drifting gratings. We
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describe this anomaly in Appendix 2 and show that it
can be fully resolved by supposing that an extra noise
source (flicker-induced ‘‘motion noise’’) affects direc-
tion discrimination but not contrast discrimination.
Further experimental work is needed to test the
motion noise hypothesis.

Conclusion

This paper has addressed how motion sensing
unfolds over monocular and binocular stages of
processing. We constructed and compared compu-
tational models to explain direction discrimination
thresholds under binocular, monocular, and di-
choptic viewing. Converging evidence from two
studies (ours and that of Gorea et al., 2001) suggests
that motion opponency is most likely to be
monocular, occurring before direction-specific bin-
ocular summation and before divisive, binocular
gain control. Luminance-based motion perception
depends on a chain of events in monocular and
binocular pathways, and the ordering and functional
description of those events is slowly becoming
clearer.

Keywords: motion perception, motion opponency,
binocular interactions, gain control, direction discrimi-
nation, computational models
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Appendix 1

Detecting contrast change: Modeling the results
of Gorea et al. (2001)

Gorea et al. (2001) measured detectability (d0) for a
variety of dichoptic and binocular contrast increments
and decrements for moving sine wave gratings. Figure
A1 represents the nine tested conditions that we consider
here. For clarity and brevity, we shall refer to these test
conditions as t1 through t9. These conditions and the
detection task were different from our experiment, and
so we hope to converge on models that are consistent
with both data sets, and reject those that are not.

Gorea et al. (2001) stimuli and methods

Pedestal components were moving sinusoidal
gratings of 1 c/8 at a 20-Hz drift rate, each with 40%
contrast in a 98 3 98 field. Increment/decrement
contrast was also fixed for each of two subjects (at
4%, 5%), and performance was measured as detect-
ability d 0. An unusual feature of the procedure was
that Gorea et al. (2001) followed Stromeyer et al.
(1984) in having the pedestal grating present contin-
uously. A trial was then defined as a 200-ms period
in which the contrast change either did or did not
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occur. The task was thus a single-interval, yes/no
detection task with 50% signal trials and 50%
nonsignal trials (no contrast change) from which d 0

was derived from at least 800 trial responses in the
standard way [as z(Hits) � z(False alarms)] for each
condition t1 through t9.

Experimental results

Two key findings can be seen in Figure A2. With a
binocular, bidirectional pedestal (such as ours), d0 values
for a combined binocular increment and decrement
(condition t3) were two to three times higher than for the
increment alone (t1), analogous to our results. But when
the pedestal components were separated between the

eyes (t4, t6), there was little difference between the
detectability of the increment/decrement (t6) and the
increment alone (t4). This pair of results seems more
consistent with monocular opponency, and we now test
that idea in a model extended to cope with the
conditions tested by Gorea et al. (2001).

The twin summation model: TS1

The model TS1 has monocular opponency, followed

by direction-specific binocular summation and binoc-

ular, direction-specific suppression (Equations 1a, b).

The binocular channel responses (now indexed by B)

are repeated here:

Figure A1. Like Figure 2B but representing nine of the stimulus conditions used by Gorea et al. (2001) in their study of contrast change

detection for a variety of binocular and dichoptic moving gratings. Gray bars are components of the background (pedestal) grating,

moving up or down. Red tabs: test contrast increment; blue tabs: test contrast decrement. Pedestal 1 (top row) had two binocular

components: two equal-contrast, horizontal, binocular gratings (indicated here by light and dark gray), drifting up and down,

respectively. Pedestal 2 (second row) had two monocular components, drifting in opposite directions in the two eyes. Pedestal 5

(third row) had two monocular components drifting in the same direction in the two eyes. (Pedestal conditions 3 and 4, not shown,

were not relevant to the present paper.) Column 1 shows the ‘‘Single’’ condition, in which just one pedestal component (light gray)

was incremented in contrast (red) or decremented (not shown). Column 2 shows the ‘‘Same sign’’ condition, in which both pedestal

components were incremented (red) or both decremented (not shown). Column 3 shows the ‘‘Opposite sign’’ condition, in which one

pedestal component (light gray) was incremented (red), and the other component (dark gray) was decremented (blue). Note that in

Gorea et al.’s (2001) terminology, ‘‘opposite sign’’ refers to the direction of contrast changes, not to directions of motion.
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MUB ¼
ðhwr Em

UL � Em
DL

� �
þ hwr Em

UR � Em
DR

� �
Þp

ðInUL þ InURÞ
q þ z

ðA1aÞ

MDB ¼
ðhwr Em

DL � Em
UL

� �
þ hwr Em

DR � Em
UR

� �
Þp

ðInDL þ InDRÞ
q þ z

;

ðA1bÞ
where hwr{x} is half-wave rectification, i.e., max(x,0).

Optional ‘‘flicker’’ channel: A nonopponent,
nondirectional binocular channel

Not surprisingly, observers are sensitive to contrast
change even when there is no net motion (t2). This is
important because opponent channels are silent in
response to drift-balanced flicker, and this implies that
any general model should include either nonopponent
or nondirectional mechanisms to account for this
sensitivity. We therefore include the option of a
binocular ‘‘flicker’’ channel (indexed by F) that has the
same parameters as the motion channels but lacks
opponency and responds to both directions in both
eyes:

MFB ¼
ðEm

UL þ Em
UR þ Em

DL þ Em
DRÞ

p

ðInUL þ InUR þ InDL þ InDRÞ
q þ z

: ðA2Þ

To keep track of the different model variants, we
denote the first model with binocular motion channels
(Equation A1) as TS1(B), and when flicker channels are
included, it becomes TS1(B þ F).

Optional monocular channels

For completeness, we also explored a possible
contribution from monocular channels. These are the
same as the binocular ones above except that all input
from the other eye is deleted. Hence, from Equations A1
and A2, we get monocular opponent motion channels
and a monocular flicker channel for the left eye:

MUL ¼
ðhwr Em

UL � Em
DL

� �
Þp

ðInULÞ
q þ z

ðA3aÞ

MDL ¼
ðhwr Em

DL � Em
UL

� �
Þp

ðInDLÞ
q þ z

ðA3bÞ

MFL ¼
ðEm

UL þ Em
DLÞ

p

ðInUL þ InDLÞ
q þ z

ðA4Þ

and similarly for right-eye channels MUR, MDR, and
MFR.

The max(L,B,R) operator

In the experiment of Gorea et al. (2001), the test
signal was a brief, abrupt change in the ongoing
pedestal. It is reasonable to suppose that each channel
senses that temporal change, expressed as

Figure A2. Detectability (d0) for contrast change in the nine

conditions of Gorea et al. (2001) (see Figure A1). Gray bars

show the d0 values for their two observers (AG, TC). Colored

horizontal lines (short, medium, and long) mark the d0 values

that form three variants of the TS1 model: green, short:

binocular motion channels only; purple, medium: binocular

motion and flicker channels; orange, long: binocular and

monocular motion channels and nondirectional flicker channels.

For all three models, opponency in the motion channels was at

the monocular level (Equation A1). Note how the B-only model

worked well for all conditions except t2, and Bþ F and BþMþ F

did well in all cases. Monocular opponency was a key feature in

accounting for these results. Nondirectional flicker (F) channels

were needed to capture information that was invisible to the

binocular motion channels (B) alone.
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M
0

UB ¼MUBðtestþ pedestalÞ �MUBðpedestalonlyÞ
ðA5Þ

and similarly for all nine combinations of directions
U,D,F with ocularities L,B,R. Georgeson et al. (2016)
introduced a scheme—very successful in the context of
binocular and dichoptic contrast discriminations—that
we followed here. We reduce the multiplicity of signals
by taking the max over the monocular and binocular
channels (although this feature plays no part when
monocular channels are excluded). Thus,

RU ¼ max M
0

UL;M
0

UB;M
0

UR

n o
ðA6Þ

and the corresponding sensitivity (d0) for this channel
will be

d
0

U ¼ RU=r; ðA7Þ

where r is the standard deviation of RU, and similarly
for d

0

D, d
0

F In the present model r ¼ 1.

Decision-level processes

For a given stimulus configuration, the sensitivity
(d0) to contrast change will in general be different for
the three responses RU, RD, RF. But if the observer is
able to use these three cues independently and
efficiently, then the observed sensitivity d

0
OBS may be

predicted from the ideal observer, whose performance
is given by the quadratic sum of the discriminabilities
for each signal (Green & Swets, 1966):

d0OBS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d02U þ d02D þ d02F

q
: ðA8Þ

These modifications introduce a more complex
architecture to the TS1 model, but the number of free
parameters is unchanged. We think the more complex
structure is plausible and successful so far on this
limited data set.

Modeling the data

We can define a variety of models within this scheme
(Equations A1 through A8) simply by including or
excluding some of the channels. For example, the
simplest version, TS1(B), has only the binocular
channels (with motion opponency at the monocular
input level; Equation A1). The monocular and flicker
channel responses (A2, A3, A4) were set to zero. For
the TS1(B þ F) model, both the motion and flicker
channels (Equations A1 and A2) were switched on, and
for the TS1(BþMþF) model, the monocular channels
(Equations A3 and A4) were enabled as well.

These models were fitted to the data of Gorea et al.
(2001) in two stages. First, we fitted the ‘‘B only’’ model
to our present data (group mean, Figure 3 in the main
text). This allowed us to hold fixed five of the six
parameters via this independent dataset (Table A1).
Then we derived predictions for the Gorea et al. data
from the B, BþF, and BþMþFmodels and found that
a relatively small adjustment of just one parameter (q; via
Matlab’s fminsearch as usual) was sufficient. The value of
parameter q decreased from 2.4 (Table A1) to about 2.06
(Table A2). The surprisingly strong implications of this
small parameter change are discussed in Appendix 2.

Model: TS1 TS2 TS3

Opponency Early, monoc Late, binoc Early, monoc

Noise Late, fixed Late, fixed Late, varies with contrast

Equation Equation A1 Equations 6 and 7 Equations A1 and A9

SE (fixed) 100 100 100

SI 48.215 43.799 48.215

m 1.664 1.580 1.664

n 1.969 1.575 1.969

p 2.567 1.386 2.567

q 2.418 1.237 2.060

z 3.886 1.976 3.886

k - - 0.341

t - - 0.476

m.p � n.q �0.50 0.24 0.21

SSE 97.49 99.96 101.5

RMSE, dB 1.356 1.373 1.384

Table A1. Parameters obtained from fitting two ‘‘binocular channel only’’ models to our direction discrimination data (group mean;
main text, Figure 3), using either early, monocular opponency (TS1, Equation A1) or late binocular opponency (TS2, Equations 6 and 7
of the main text). Notes: Model TS3 is an elaboration of TS1, discussed in Appendix 2.
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Condition

Model variant

Experiment d0B only B þ M B þ F B þ M þ F

t1 0.63 0.64 1.03 0.98 1.23

t2 0.00 0.00 1.93 1.82 1.91

t3 3.41 3.44 3.17 3.06 3.23

t4 1.17 1.20 1.13 1.28 0.87

t5 1.65 1.69 1.92 1.81 1.92

t6 1.73 1.20 1.48 1.28 1.17

t7 0.75 1.20 0.85 1.28 0.99

t8 1.67 1.71 1.93 1.81 2.06

t9 0.44 1.20 0.58 1.28 1.06

5.130 4.398 0.485 0.493 SSE

9 9 9 9 N

-0.116 0.043 0.894 0.893 R2

2.048 2.047 2.062 2.066 q, fitted

Table A2. Summary of twin summation (TS1) model, showing d0 values from model fits to the experimental data of Gorea et al. (2001)
(d0 values, mean of 2 Ss). Notes: Last four rows are goodness of fit statistics and the fitted value of parameter q. The other five
parameters were fixed from Table A1, Equation A1.

Figure A3. TS1 model with binocular motion and flicker channels, TS1(B þ F), showing how responses from different mechanisms

contribute to performance. Curves show the response to contrast change (DC) in conditions t1 to t9 (panels A to I; cf. Figure A1) for

the upward channel (RU, red), the downward channel (RD, blue), and the flicker channel (RF, orange) along with the d0 values (green

curve) predicted by efficient use of all three cues (Equation A8). Symbols show data from two observers (Gorea et al., 2001) close to

the predicted curve (green). In t2, the response is carried entirely by the flicker channel (orange, but hidden behind green).
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Results

Let us first consider the model TS1(B) that has
binocular motion channels only. Figure A2 shows the d0

values for two observers (gray bars) along with the
predictions of the ‘‘B only’’ model (green lines). The fit
for eight of the nine conditions was good or fairly good;
in particular, this model with monocular opponency
explains why performance was much higher for condi-
tion t3 than t6. In both cases, gratings drifting in
opposite directions are incremented and decremented
respectively (Figure A1). The difference in outcome
arises because, with monocular opponency, ‘‘Up’’
increments and ‘‘Down’’ decrements reinforce each other
to increase the opponent response MUB when they are in
the same eye (t3) but not when they are in opposite eyes
(t6). Both results are well predicted by the TS1(B)
model. But, as expected, this model incorrectly predicts
no sensitivity at all for condition t2 because monocular
(or binocular) opponency yields no response to the drift-
balanced motion components (Figure A3).

The next step was therefore to add the flicker channels
and refit the model, adjusting only q. Figure A2 (‘‘BþF’’
model; purple lines) shows that the fit for t2 was now
excellent, and the fit for all other conditions remained as
good or better than before. Overall goodness-of-fit was
high (R2¼ 0.894, RMSE¼ 0.232 d0 units).

The final step was to add the monocular channels
(‘‘BþMþF’’). Figure A2 (orange lines) shows that all
nine conditions again fit well but with no improvement
in the fit (R2 ¼ 0.893, RMSE¼ 0.234 d0 units).

We also tested, in a similar way, the viability of late
opponency, located after binocular summation
(Equations 1 and 2, incorporated into Equations A1
through A8). We’ll call this the TS2 model. Five of the
six parameters were fixed from the fit to our own data
(Table A1, center column), and q was again adjusted
for a least-squares fit. Unlike the TS1 model, we
found no version of this late opponency model (TS2)
that fit well. For the four variants (B, BþM, BþF, B
þM þ F), the R2 values were unimpressive: �1.312,
�0.293, 0.278, and 0.365, respectively. We also tried
the same approach, but using the same fixed
parameters as TS1. The R2 values were �0.971,
�0.131, 0.682, and 0.713, somewhat improved for the
last two (BþF, BþMþF) but markedly poorer than
for TS1. In short, even though it fit our own data
(Figure 6), we were unable to find a good fit of the late
opponency model (TS2) to the Gorea et al. (2001)
data set without resorting to a larger number of free
parameters with which, with only nine data points, the
danger of overfitting was severe. By contrast, the fit of
TS1 to both data sets was excellent but with one
change in parameter value whose implications are
discussed in Appendix 2.

Summary

Applying model TS1 to the data set of Gorea et al.
(2001), we found that the binocular channels with
monocular opponency gave a good account of all the
conditions in which a motion signal was present and
that the inclusion of a nondirectional flicker channel
with no extra free parameters added the necessary
sensitivity to contrast change in a condition in which
motion energy was balanced. Monocular channels were
not necessary to explain performance for this experi-
mental data set.

Appendix 2

Resolution of an anomaly

The twin summation model (TS1) fitted our data
well (Figures 6 and 7), but further exploration of its
properties revealed an inconsistency that we now
describe, then attempt to resolve.

Model TS1 creates an apparent paradox

To understand the shape of a TvC curve, we need to
understand how responses to the pedestal and to the
added target are related to contrast. In Figure A4B, red
filled symbols represent model responses to pedestal
contrasts for a drifting grating, but because of
opponency, the response to counterphase flickering
pedestals (green symbols) is zero. Thick curve segments
projecting from each pedestal point are responses to
increasing contrast increments for a drifting target
component. The upper tip of each curve segment
represents the just-detectable contrast increment. Cor-
responding TvC curves are shown in panel A.

Responses to simple contrast increments (dc) of a
drifting pedestal grating are especially diagnostic. When
the effective exponent of excitation (m.p) is greater than
that of the suppressive term (n.q), then the response
increases monotonically with contrast in a compressive
fashion if m.p exceeds n.q by less than one (solid red
curve in B; m.p � n.q¼ 0.21). The corresponding TvC
function shows a characteristic dipper shape (red curve,
A). However, if m.p � n.q¼ 0, the contrast response
saturates, and if m.p� n.q , 0, the response declines
markedly at higher contrasts (two dashed red curves, B;
for the lower curve m.p � n.q ¼�0.5, from Table A1,
TS1). In such cases, contrast discrimination would be
impossible in the saturated region and implausibly
reversed in the declining region (a contrast increment
produces response decrement). Experiments on con-
trast discrimination for drifting gratings have revealed
no such catastrophes and instead showed conventional
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dipper-shaped TvC curves (Meier & Carandini, 2002),
such as those well known for stationary gratings. Hence
we can be sure that to account for contrast discrimi-
nation of simple drifting gratings, the TS1 model
should have m.p� n.q . 0. Indeed, our fitting of TS1 to
the Gorea et al. (2001) data set (Appendix 1, Table A2)
gave q ¼ 2.06, yielding m.p � n.q ¼ 0.21. But to fit the
rather steep masking curves seen in our own experiment
with slopes �1, consistently required m.p � n.q , 0
(Table 1) with an average m.p� n.q¼�0.5. And, as we
have just seen, this leads to thoroughly implausible
predictions about contrast discrimination. Some other
factor may therefore be at work to make the masking
curves with flickering pedestals steeper than they
otherwise would be. One interesting possibility is that
the limiting noise in our task (direction discrimination)
might increase with contrast, leading the masking
curves to be steeper as described next. If this factor is
ignored, then q has to rise instead, and m.p� n.q goes
negative, leading to the inconsistency just described.

Model TS3: ‘‘Motion noise’’ induced by flicker is added to
TS1

Flickering gratings in the spatiotemporal frequency
range that we used can appear to jitter, move, or
oscillate (Kelly, 1966, his figure 5; Kulikowski, 1971,
his figure 3a) in a way that might affect direction
discrimination but not contrast discrimination. We

therefore propose that the motion task may be
compromised by some form of motion noise induced by
the flickering pedestal and that this noise increases with
contrast. We note that the product of the upward and
downward contrasts (or excitatory signals, E, in a given
eye) represents the degree to which the pedestal is
flickering rather than drifting. The product is zero for a
drifting grating (because contrast in the other direction
is zero), rising to E2 for the flickering grating (because
both signals have the same value E). This product
therefore reflects both the ‘‘flickeriness’’ of the grating
and its contrast and may be a useful index of the
proposed motion noise. Computing this product for
each eye, then summing them, we define the standard
deviation rm of the motion noise to be a power function
of that sum:

rm ¼ kðEULEDL þ EUREDRÞt ðA9Þ
with two free parameters k and t. Assuming statistical
independence, we can sum the variances of the unit
variance internal noise and the flicker-induced motion
noise to get the standard deviation rc of the combined
noise:

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

m

q
: ðA10Þ

Note that at zero contrast, rc¼ 1, as in model TS1.
We assume for consistency with TS1 that the threshold
for direction discrimination is reached when d0 ¼ 1 for

Figure A4. How the detectability of contrast increments (A) is related to the underlying responses (B) of two versions of the twin-

summation model (TS1, TS3). TS3 is the same as TS1 but with the assumption of contrast-dependent, flicker-induced ‘‘motion

noise’’ that compromises motion direction discrimination but not contrast discrimination (see Appendix 2). Dashed curve (in panel A)

plots the standard deviation of the proposed motion noise as a function of contrast. Filled symbols (in panel B) represent responses

to pedestal contrasts. Because of opponency, the response to counterphase flickering pedestals is zero. Thick curve segments

projecting from each pedestal point are responses to increasing contrast increments for a drifting target component. The upper tip of

each curve segment represents the just-detectable contrast increment. Dashed blue curve illustrates the growth of noise with

contrast in model TS3, compared with constant noise in TS1 (green dashed curve).
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the target channel (e.g., upward):

MU=rc ¼ 1: ðA11Þ
In short, model TS3 is a simple extension of TS1 in

which constant noise is replaced by contrast-dependent
noise rc, which includes the motion noise rm. The
motion noise falls to zero for a drifting grating, and
Equation A9 allows it to be calculated automatically in
all cases. For a monocular counterphase grating with
component contrasts c, Equation A9 simplifies to rm¼
k(SEc)2t. We call it motion noise because we assume at
present that it does not affect contrast discrimination.
This kept our analysis of Gorea et al. (2001) (Appendix
1) unchanged and fixed six of the eight parameters in
TS3 (italicized in Table A1). TS3 was then fitted to the
data of Figure 3 by adjusting only the new parameters
k, t. Thick curves in Figure A5 show that TS3 fits the

group mean data just as well as TS1 did (RMSE¼ 1.38
dB for TS3, 1.36 dB for TS1). But it has the clear
advantage that with no change in parameter values it
also predicts a plausible dipper function for contrast
discrimination (red curve in Figure A4A).

Because the exponent t emerged as close to 0.5
(Table A1), hence 2t close to 1, this implies that motion
noise in our experiment rose almost in directional
proportion to contrast (blue dashed line in Figure
A4B). Model TS3 offers an interpretation of TS1 and
resolves the apparent paradox that TS1 otherwise
creates (above). In this view, the rise in motion masking
with flickering pedestal contrast is partly due to divisive
suppression, which reduces contrast gain as it does for
a contrast discrimination task. But motion masking
rises more steeply because it also includes a rise in noise
that is specific to motion discrimination.

Figure A5. Like Figure 7 except that the thin curves show predictions of the TS1 model with the parameter values used to fit the

Gorea et al. (2001) data (Figure A2); in particular, q¼ 2.06 and other parameters as in Figure 7. Note the relatively shallow masking

curves as expected from this choice of q. Thick curves show model TS3: These steeper, well-fitting curves were obtained when the

contrast-dependent ‘‘motion noise’’ was added to the model (to convert TS1 into TS3).
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