
Sig-SR: SimRank Search over Singular Graphs

Weiren Yu†, Julie A. McCann†

†Department of Computing, Imperial College London, UK

{weiren.yu, jamm}@imperial.ac.uk

ABSTRACT
SimRank is an attractive structural-context measure of sim-
ilarity between two objects in a graph. It recursively follows
the intuition that “two objects are similar if they are ref-
erenced by similar objects”. The best known matrix-based
method [1] for calculating SimRank, however, implies an
assumption that the graph is non-singular, i.e., its adjacency
matrix is invertible. In reality, non-singular graphs are very
rare; such an assumption in [1] is too restrictive in practice.
In this paper, we provide a treatment of [1], by supporting
similarity assessment on non-invertible adjacency matrices.
Assume that a singular graph G has n nodes, with r (< n)
being the rank of its adjacency matrix. (1) We show that
SimRank matrix S on G has an elegant structure: S can be
represented as a rank r matrix plus a scaled identity matrix.
(2) By virtue of this, an efficient algorithm over singular
graphs, Sig-SR, is proposed for calculating all-pairs SimRank
in O(r(n2 + Kr2)) time for K iterations. In contrast, the
only known matrix-based algorithm that supports singular
graphs [2] needs O(r4n2) time. The experimental results on
real and synthetic datasets demonstrate the superiority of
Sig-SR on singular graphs against its baselines.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Storage and Retrieval

1. INTRODUCTION
Modern means of similarity assessment between objects

based on hyperlink structure have played a giant role in web
information retrieval. One well-publicized link-based simi-
larity measure is SimRank [3], invented by Jeh and Widom,
due to its successful applications in e.g., similarity join [4],
k-nearest neighbor search [1], and citation analysis [2, 5].
Analogous to the famous PageRank algorithm [6] assigning
a relevance score to each object (node), SimRank assigns a
similarity score to each pair of nodes in a graph. The central
idea behind SimRank is that “two nodes are similar if they
are referenced by similar nodes”, together with the base case
that “nodes are maximally similar to themselves”, which can

.

be formulated in the matrix notation [1,2] as follows:

S = C ·WT · S ·W + (1− C) · I, (1)

where C ∈ (0, 1) is a damping factor, W is an n×n column

normalized adjacency matrix, (⋆)T is the matrix transpose,
S is the similarity matrix, whose entry [S]i,j is the SimRank
score between nodes i and j, and I is the identity matrix.
The recursive nature of SimRank not only allows its simi-
larity scores to capture the global link structure of a graph,
but also inspires research on efficient SimRank calculation
since the naive way [3] of solving S needs O(Kn2d2) time on
a graph of n nodes and d average in-degree for K iterations.
With the massive size of the Internet, recent years have
witnessed an increasing attention in SimRank optimization
(see [1,2,5,7,8] and the references therein).

Among those existing matrix-based SimRank algorithms,
SimMat [1] is the state-of-the-art one, yielding O(αn2) time
for estimating SimRank, where α is the target rank of the
adjacency matrix. However, the optimization method of
SimMat is based on the following formula (i.e., Eq.(3) in [1]):

1
C
(WT)

−1
S− SW = 1−C

C
(WT)

−1
, (2)

which is derived by left-multiplying both sides of Eq.(1) by
1
C
(WT)

−1
. Unfortunately, this process rests on an under-

lying assumption that (WT)
−1

must exist (or equivalently,
the adjacency matrix must be invertible), but this does not

always hold in reality. Indeed, when (WT)
−1

does not exist,
SimMat fails to work properly, as depicted in Example 1.

Example 1. Consider two web graphs G1 and G2 in Fig.1,
where nodes are web pages, and edges are hyperlinks. We
want to calculate SimRank scores of all-pairs on G1 and G2,
respectively. However, we observe that SimMat [1] fails on
both graphs as their adjacency matrices are not invertible: 1

rank(Adj(G1)) = 3 < 6, rank(Adj(G2)) = 3 < 5. Thus,

there does not exist (WT)
−1

for G1 and G2 such that Eq.(2)
holds, not to mention using the subsequent Eq.(2)-based op-
timization method in [1] for SimRank calculation.

Example 1 suggests that SimMat only works when (WT)
−1

exists. However, as demonstrated by our statistical exper-
iments on SNAP2, there are over 95% real graphs whose
adjacency matrices are non-invertible, i.e., rank(W) < n
(known as singular graphs). Thus, it is imperative to provide

1According to linear algebra, for any n×nmatrixX, the following
statements are equivalent: rank(X) = n ⇐⇒ X−1 exists.
2Stanford Large Network Platform (SNAP) collects many real
datasets available at http://snap.stanford.edu/data/index.html.

a

b
c

d
e

fG1

a

bc

e
d

G2

(a) (b)

Figure 1: SimMat fails on Singular Graphs

a treatment for SimMat, by devising an efficient algorithm
that supports SimRank computations on singular graphs.
To this end, we study the following problem in this paper:

Problem (SimRank over Singular Graphs)
Given a singular graph G, and a damping factor C ∈ (0, 1).
Compute all-pairs of SimRank scores on G.

It is worth mentioning that there is a special subclass
of singular graphs, in which there are many isolated nodes
(e.g., G2 in Fig.1(b)). Singular graphs of this subclass are
not the direct focus of our consideration, since they could be
further simplified by removing trivial zero rows and columns
(associated with isolated nodes) in the adjacency matrices.
For example in G2, once isolated nodes d and e are removed,
its adjacency matrix Adj(G2) can be reduced to Adj(G′

2):

Adj(G2) =








a b c d e

a 0 1 1 0 0
b 0 0 1 0 0
c 1 0 0 0 0
d 0 0 0 0 0
e 0 0 0 0 0








=⇒ Adj(G′
2) =





a b c

a 0 1 1
b 0 0 1
c 1 0 0



.

Since Adj(G′
2) becomes invertible, SimMat is still applicable

to the reducedG′
2 (though not applicable to the original G2).

Hence, in this scenario, we call G2 a “false” singular graph, a
graph whose original non-invertible adjacency matrix can be
converted to an invertible one if isolated nodes are removed.
In this paper, our attention will be devoted to“true”singular
graphs without isolated nodes (e.g., G1 in Fig.1(a)).

Contributions. Our main contributions are listed below.
• We prove that, on a singular graph with its adjacency

matrix rank r, SimRank matrix can be represented as
a rank r matrix plus an identity matrix. (Section 3.1)

• We devise an efficient algorithm on a singular graph,
Sig-SR, entailing O(r(n2 +Kr2)) time to calculate all-
pairs SimRank for K iterations. (Section 3.2)

• We empirically show that Sig-SR enables SimMat [1] to
support SimRank assessment on singular graphs, and
runs significantly faster than NI Sim [2]. (Section 4)

2. RELATED WORK
SimRank is arguably one of the most successful link-based

similarity measures in recent years. It was initially proposed
by Jeh andWidom [3], who adopted an iterative paradigm to
compute SimRank scores of all-pairs in O(Kn2d2) time. S-
ince then, there has been a surge of papers looking at various
problems in efficient SimRank computing as the naive algo-
rithm [3] has high time complexity. Recent results include
matrix-based methods [1, 2], iterative optimization [7–9],
random walk sampling [10, 11], incremental updating [12],
parallel computing [13], and semantic improvement [14].

In comparison to the work on iterative optimization (re-
sp. random walk sampling) that will produce deterministic
(resp. probabilistic) errors, the work on matrix-based meth-
ods [1,2] may accurately calculate SimRank without loss of
exactness. The pioneering work of Li et al. [2] proposed a
very elegant closed-form for SimRank:

vec(S) = (1− C)(I− C · (WT ⊗W
T))

−1
vec(I), (3)

where ⊗ is tensor product, and vec(⋆) matrix vectorization.
Based on Eq.(3), [2] utilized rank r (resp. low-rank α (< r))
singular value decomposition to compute all-pairs SimRank
in O(r4n2) time (resp. O(α4n2) with a little accuracy loss).
In contrast, our work uses a trick to avoid directly applying
matrix factorization to the high-dimensional tensor product,
just entailing O(rn2) time for singular graphs.

Most recently, Fujiwara et al. [1] proposed SimMat to fur-
ther speed up the computation of n-pairs of SimRank w.r.t. a
given query node to O(rn) time, thus needing O(rn2) time
for all-pairs SimRank. However, their optimization method
is based on Eq.(2), implying an underlying assumption that

(WT)
−1

must exist, which does not always hold in general.
In comparison, our work provides a treatment for SimMat,
aiming to support SimRank computation on singular graphs,

whose (WT)
−1

does not exist. Note that the matrix inver-

sion in Eq.(3), different to (WT)
−1

in Eq.(2), always exists
as (I−C · (WT ⊗WT)) is a diagonally dominant matrix.3

3. OUR SOLUTION

3.1 Characterizing SimRank on Singular Graph-
s

Unlike SimMat [1] that left-multiplies both sides of Eq.(1)

by 1
C
(WT)

−1
, we first provide the following lemma.

Lemma 1 ([12]). Given any three n×n matrices A,B,C,
if λmax(A)·λmax(B) < 1,4 then there exists a unique solution
X =

∑∞

i=0 A
i ·C ·Bi to the following matrix equation

X = A ·X ·B+C. (4)

Main Idea. Based on Lemma 1, we show our main idea.

Let A := C ·WT , B := W, C := (1−C) · I in Lemma 1.
Then, the SimRank solution S to Eq.(1) takes the form: 5

S = (1−C) ·
∑∞

i=0
C

i · (WT)
i
·Wi

. (5)

As G is a rank r (< n) singular graph, we now apply Gram–
Schmidt method [15, pp.316] to decompose W ∈ R

n×n as
W = Vr ·Hr

T , where Vr and Hr are both n× r matrices,
and Vr is a column orthonormal matrix, i.e., Vr

TVr = Ir.
6

Hence, Wi can be efficiently computed as

W
i = (Vr ·Hr

T)
i
= Vr · P̄r ·Hr

T ∈ R
n×n

, (6)

with P̄r := Pr
i−1 and Pr := Hr

T ·Vr ∈ R
r×r

.

It is important to note that the second equality in E-
q.(6) plays a critical role in speeding up the computation of
Wi. The original method for computingWi requires O(in3)
time, including multiplying i times two n × n matrices. In
contrast, the right-hand side of Eq.(6) tells that, once W is
decomposed into two n×r matrices, the computation of Wi

can be improved to O(r2n+(i−1)r3+rn2) time with r < n,
involving (i) O(r2n) time to compute Hr

T ·Vr, whose result
is an r× r matrix, memoized as Pr ∈ R

r×r, (ii) O((i−1)r3)

3X is diagonally dominant if |xi,j | ≥
∑

j 6=i
|xi,j |, ∀i.

4λmax(X) is the eigenvalue of the matrix X with the largest
absolute value, i.e., the spectral radius of X.
5One can readily verify that λmax(C ·WT) · λmax(W) < 1,
by using the matrix norm property λmax(⋆) ≤ ‖ ⋆ ‖ and the
fact that W is column-normalized (‖W‖1 = ‖WT ‖∞ ≤ 1).
6Ir is an r × r identity matrix, as opposed to I ∈ R

n×n.

time to compute the power (i− 1) of Pr, memoized as P̄r,
and (iii) O(rn2) time to compute Vr · P̄r ·Hr

T .
Then, to efficiently compute S, we plug Eq.(6) into Eq.(5):

1
1−C

S− I =
∑∞

i=1
C

i ·
(

Hr(Pr
T)

i−1
Vr

T
)

·
(

VrPr
i−1

Hr
T
)

= Hr

(
∑∞

i=1
C

i · (Pr
T)

i−1
· (Vr

T
Vr) ·Pr

i−1

)

Hr
T

= C ·Hr · Sr ·Hr
T
, (7)

with Sr :=
∑∞

i=0
C

i · (Pr
T)

i
·Pr

i
. (8)

Eq.(7) depicts an important feature of matrix (1
1−C

S−I),
based on the following theorem.

Theorem 1. For a singular graph G with the adjacency
rank r (< n), its SimRank matrix S can be characterized as
a rank r matrix plus a scaled identity matrix.

Proof. As Sr in Eq.(8) is an r × r matrix, Eq.(7) says
that the matrix (1

1−C
S− I) can be decomposed as the prod-

uct of (Hr · Sr) ∈ R
n×r and (HT

r) ∈ R
r×n, meaning that

(1
1−C

S− I) is a rank r matrix. Thus, S on rank r singular

graph can be expressed as the rank r matrix (Hr · Sr ·H
T
r)

plus the scaled identity matrix (1− C) · I.

3.2 An Efficient Algorithm on Singular Graph-
s

Characterizing the structure of S in Theorem 1 is intended
to speed up the computation of SimRank on singular graphs.

Specifically, by virtue of Eq.(7), solving S ∈ R
n×n boils

down to computing Sr ∈ R
r×r from Eq.(8). Due to its small

dimension, Sr is relatively easier to solve and can thus sig-
nificantly improve the complexity for computing SimRank.
Moreover, we observe that Eq.(8) takes an Eq.(5)-like form.
Applying Lemma 1 to Eq.(8), we have the following theorem.

Theorem 2. SimRank matrix S over a rank r singular
graph can be represented as

S = (1−C) · (I+ C ·Hr · Sr ·Hr
T),

with Sr = C ·Pr
T · Sr ·Pr + Ir. (9)

Proof. The correctness of Theorem 2 follows immediate-
ly from the combination of Eqs.(7) and (8) and Lemma 1.

One caveat is that the existence of Sr in Eq.(9) is guar-
anteed by the condition that C · λmax(Pr

T) · λmax(Pr) < 1,
or equivalently, λmax(Pr) ≤ 1. This is always true because
W = Vr ·Hr

T implies that

Vr
T ·W ·Vr = Vr

T · (Vr ·Hr
T) ·Vr

= (Vr
T ·Vr) · (Hr

T ·Vr) = Ir ·Pr = Pr.

This suggests that Pr is a compression of W via orthogonal
projection Vr onto a small r×r subspace. Thus, by Cauchy
interlacing theorem, it is follows that λmax(Pr) ≤ λmax(W).
Combining this with the spectral property that λmax(W) ≤
‖W‖1 ≤ 1 yields λmax(Pr) ≤ 1.

Theorem 2 provides an efficient way of computing Sim-
Rank on rank r (< n) singular graphs. As depicted in Fig.2,
the conventional method computes S on an n×n dimensional
space via Eq.(1), whereas our approach solves S by resorting
to the computation of Sr on a small r× r dimensional space
via Eq.(9). Below is the complexity analysis of our solution.

Theorem 3. All-pairs SimRank on a rank r singular graph
can be computed in O(rn2 +Kr3) time for K iterations.

S = C ·W
T
· S ·W + (1− C) · ISr = C ·P

T
r · Sr ·Pr + Ir

(in r × r dim)

S

n

n

Sr

r

r

=
V

T
r·

Vr

r n

n

r
(1− C)· C·

· + I

n

n

(r × r) dim → (n× n) dim

H
T
r·

Vr=

r n

nW

n

n

r

Pr

r

r:=H
T
r

n

r
· Vr

r

n

① decomposeW

②

③ computeS

solveSr
(in n× n dim)

Figure 2: Compute S in n× n space by resorting to

solving Sr in small r × r subspace

Algorithm 1: Sig-SR (G,C,K)

Input : singular graph G, damping factor C, iterations K.
Output: SimRank matrix S.

1 Initialize the column normalized adjacency matrix W.

2 Decompose W: [Vr,HT
r]← Gram-Schmidt(W).

3 Compute Pr ← Hr
T ·Vr .

4 Initialize Sr
(0) ← Ir .

5 for k ← 0, 1, · · · ,K − 1 do

6 Sr
(k+1) ← C ·Pr

T · Sr
(k) ·Pr + Ir .

7 return S← (1− C) · (C ·Hr · Sr
(K) ·Hr

T + I).

To prove Theorem 3, we next provide an algorithm, denot-
ed as Sig-SR, for SimRank assessment on a singular graph.

Algorithm. The algorithm Sig-SR works in three phases:
1) For the preprocessing (lines 1–3), it first applies Gram–

Schmidt method [15, pp.316] to factorize W as Vr and Hr
T ,

such that the column vectors in Vr form an orthonormal ba-
sis of W (line 2). Then, utilizing Vr and Hr

T , it calculates
auxiliary Pr ∈ R

r×r (line 3) for subsequent iterations.
2) In the computation of Sr ∈ R

r×r (lines 4–6), it adopts

a fixed point iteration in r×r dimension to get Sr in Eq.(9).
It is worth noting that, as Pr is full-rank (invertible) matrix,
other prior optimization methods for computing SimRank
(e.g., [1, 7,13]) can be applied to computing Sr as well.

3) For calculating S ∈ R
n×n (line 7), it uses Vr and the

resulting S
(K)
r , and returns S as the final result.

Correctness & Complexity. The correctness of S re-
turned from Sig-SR can be readily verified by Theorem 2.

The total time of Sig-SR is bounded by O(rn2 + Kr3),
which consists of (i) O(rn2+r2n) time for the preprocessing
(lines 1–3), including O(rn2) time to decompose W and
O(r2n) time to compute Pr, (ii) O(Kr3) time for computing

S
(K)
r for K iterations (lines 4–6), and (iii) O(rn2) time for

computing S (line 7).

Example 2. Recall the singular graph G1 in Fig.1(a).
We illustrate how Sig-SR computes all-pairs SimRank in G1.
As previously used in [2, 8], we set C = 0.8 and K = 10.

Firstly, by applying the Gram–Schmidt process, W ∈ R
6×6

can be decomposed as W = V3 ·H3
T (line 2):










0 0 0 0 1
2

0
0 0 1

3
0 0 0

0 0 0 0 1
2

0
0 0 1

3
0 0 0

0 1 0 1 0 1
0 0 1

3
0 0 0










︸ ︷︷ ︸

W

=










0 0.707 0
0 0 −0.577
0 0.707 0
0 0 −0.577

−1 0 0
0 0 −0.577










︸ ︷︷ ︸

V3

·





0 −1 0 −1 0 −1
0 0 0 0 0.707 0
0 0 −0.577 0 0 0





︸ ︷︷ ︸

H3
T

.

Then, using V3 and H3
T , we obtain P3 ∈ R

3×3 (line 3)

and S3
(10) ∈ R

3×3 (lines 4–6) as follows:

P3 =





0 0 1.732
−0.707 0 0

0 −0.408 0



 , S3
(10) =





1.666 0 0
0 1.666 0
0 0 5



.

Finally, S ∈ R
6×6 is derived from S3

(10) ∈ R
3×3 (line 7):

S =










0.2 0 0 0 0 0
0 0.467 0 0.267 0 0.267
0 0 0.467 0 0 0
0 0.267 0 0.467 0 0.267
0 0 0 0 0.333 0
0 0.267 0 0.267 0 0.467










.

4. EXPERIMENTAL EVALUATION
We present an empirical study on real and synthetic data,

to show that our algorithm Sig-SR (1) provides an effective
treatment for supporting SimMat [1] on singular graphs, and
(2) is much faster than other competitors on singular graphs.
Experimental Setting. We used three real datasets.
(1) (ca)-HepTh, a citation graph from the e-print arXiv,
where nodes are papers, and edges are citations.
(2) (soc)-Slashdot, a Slashdot Zoo social network, which
contains friend links between the users of Slashdot.
(3) (email)-EuAll, an email dataset from a EU research
institution, where an edge from an email address i to j is a
message sent from i to j. We removed all the isolated nodes.

The sizes of these datasets are summarized below.

Dataset m = |E| n = |V | r d = |E|/|V |

ca 51,971 9,877 9,109 5.3
soc 948,464 82,168 65,431 11.5

email 348,912 225,409 19,423 1.5

We designed a generator to produce synthetic data with 2
parameters: the number of nodes, and the number of edges.
We generated graphs following the densification power law.

We implemented the following algorithms in Visual C++.
1) Sig-SR. 2) SimMat [1], the best known matrix-based Sim-
Rank algorithm. 3) Iter [7], the iterative algorithm comput-
ing SimRank via fine-grained memoization. 4) NI Sim [2],
the only known matrix-based SimRank that supports singu-
lar graphs via SVD method. All the algorithms are run on
Windows 7 with an Intel Core 3.1G CPU and 8G RAM.

As previously used in [2,8], we set damping factor C = 0.8,
and total iteration number K = 10 as default values.
Experimental Results. We next present our findings.
(1) Effectiveness. Fig.3(a) shows the high time efficiency of
Sig-SR on real and synthetic datasets. Note that, on real
data, y-axis is in log scale; on synthetic data, n is varied
from 20K to 100K as shown in x-axis. We see that 1) on
singular graphs, Sig-SR works fairly well, whereas SimMat
always fails due to the non-invertible adjacency matrices.
This tells that Sig-SR, as a treatment for SimMat, enables
SimRank assessment on singular graphs. 2) On each dataset,
Sig-SR consistently outperforms all other algorithms, e.g., on
real ca, Sig-SR (65s) runs 300x faster than NI Sim (19786s),
and 6.7x faster than Iter (436s). When n > 40K, NI Sim
explodes due to huge costs for tensor products; in contrast,
Sig-SR uses Theorem 1 that avoids tensor products. These
verify that our method of computing S (in n×n) by resorting
to the computation of Sr (in small r × r) is effective.
(2) Phase Duration. Fig.3(b) depicts the time percentage of
Sig-SR for three phases (i.e., (I) decompose W, (II) solve Sr,
(III) compute S) on real datasets. We can see that Phase
(II) is most time-consuming on ca (58%) and soc (47%),
whereas on email, the time for Phase (II) is negligibly small
(2%). The reason is that on email, r is 11.6x smaller than
n, in contrast with ca and soc (1.25x) where r is only 1.08x
and 1.25x smaller, respectively. Thus, when r ≈ n, the time
for Phase (II) is comparable to that for (I) and (III). This
confirms our complexity analysis of Sig-SR in Section 3.2.

SimMat Sig-SR Iter Ni Sim

ca soc email101

102

103

104

105

E
la
p
se
d
T
im

e
(s
ec
)

Real Data

20K 40K 60K 80K100K
0

20K

40K

60K

80K

100K

E
la
p
se
d
T
im

e
(s
ec
)

Synthetic Data

(a) Efficiency of Sig-SR on Real and Synthetic Graphs

ca soc email
0

0.2

0.4

0.6

0.8

1

P
h
a
se

D
u
ra
ti
o
n
(%

)

decompose W

solve Sr ∈ R
r×r

compute S ∈ R
n×n

(b) % Time in Each Phase

(0
,0
.2
)

[0
.2
,0
.4
)

[0
.4
,0
.6
)

[0
.6
,0
.8
)

[0
.8
,1
) 1

0.1

0.3

0.5

Ratio r/n (%)

F
re
q
u
en
cy

(%
)

Real Datasets

(c) Histogram on Rank r

Figure 3: Experimental Evaluations

(3) Singular Graph Statistics. To verify that singular graph-
s are commonly existent, Fig.3(c) statistically depicts the
frequencies of r

n
occurring in certain ranges of ratios (as

depicted in x-axis) over 100 real datasets. We see that 1)
there are only 2% real graphs whose r

n
= 1, i.e., non-singular

graphs are very rare in reality. Thus, Sig-SR is typically
useful in many cases. 2) Almost 32% (resp.21%) real graphs
have a small rank r ∈ [0.2n, 0.4n) (resp.r ∈ [0.4n, 0.6n)).
The smaller r is, the faster Sig-SR runs. This explains why,
in general, the better speedup of Sig-SR is guaranteed.

5. CONCLUSIONS
We provide a treatment of SimMat [1], by supporting

SimRank assessment on singular graphs. First, we show
that SimRank matrix on rank r graph can be represented
as a rank r matrix plus a scaled identity matrix. Then,
in light of this, an efficient algorithm Sig-SR is proposed.
Our empirical evaluations verify the effectiveness of Sig-SR
against its competitors over real and synthetic datasets.

6. REFERENCES
[1] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka, “Efficient search

algorithm for SimRank,” inICDE, pp. 589–600, 2013.
[2] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu, “Fast computation of

SimRank for static and dynamic information networks,” inEDBT, 2010.
[3] G. Jeh and J. Widom, “SimRank: A measure of structural-context similarity,” in

KDD, pp. 538–543, 2002.
[4] W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao, “Efficient SimRank-based

similarity join over large graphs,”PVLDB, vol. 6, no. 7, pp. 493–504, 2013.
[5] G. He, H. Feng, C. Li, and H. Chen, “Parallel SimRank computation on large

graphs with iterative aggregation,” inKDD, pp. 543–552, 2010.
[6] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation

ranking: Bringing order to the web,” tech. rep., Stanford InfoLab, 1999.
[7] W. Yu, X. Lin, and W. Zhang, “Towards efficient SimRank computation on

large networks,” inICDE, pp. 601–612, 2013.
[8] D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov, “Accuracy estimate

and optimization techniques for SimRank computation,”VLDB J., vol. 19,
no. 1, pp. 45–66, 2010.

[9] W. Yu, W. Zhang, X. Lin, Q. Zhang, and J. Le, “A space and time efficient
algorithm for SimRank computation,”World Wide Web, vol. 15, 2012.

[10] D. Fogaras and B. Rácz, “Scaling link-based similaritysearch,” inWWW, 2005.
[11] P. Lee, L. V. S. Lakshmanan, and J. X. Yu, “On top-k structural similarity

search,” inICDE, 2012.
[12] W. Yu, X. Lin, and W. Zhang, “Fast incremental SimRank onlink-evolving

graphs,” inICDE, 2014.
[13] G. He, C. Li, H. Chen, X. Du, and H. Feng, “Using graphics processors for high

performance SimRank computation,”IEEE Trans. Knowl. Data Eng., vol. 24,
no. 9, pp. 1711–1725, 2012.

[14] W. Yu, X. Lin, W. Zhang, L. Chang, and J. Pei, “More is simpler: Effectively
and efficiently assessing node-pair similarities based on hyperlinks,”PVLDB,
vol. 7, no. 1, pp. 13–24, 2013.

[15] C. Meyer,Matrix Analysis and Applied Linear Algebra. SIAM, Feb. 2001.

