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Thesis Summary 
 
The incidence of obesity and type 2 diabetes (T2D) are increasing in the UK and there is evidence 
that these disorders influence the ageing process. The mechanisms by which obesity/diabetes 
might regulate ageing are poorly understood. This study aimed to investigate the links between 
body composition, metabolic disease and ageing, as well as the role of cellular senescence on 
nutrient homeostasis. Study participants had biochemical and anthropometric measurements 
taken. DNA analysis was used to measure telomere length (TL) using real-time PCR and plasma 
was used to quantify circulating factors using ELISA. Human dermal fibroblasts were made 
senescent and conditioned media was collected and used to treat AML-12, C2C12 and 3T3-L1 
cell lines. Following treatment glucose content of cell media was measured.  
 
 
TL exhibited a significant negative association amongst individuals retaining excess visceral fat 
(p <0.001) and plasma irisin levels positively correlate and predict TL (p = 0.01) in the control 
cohort. There was no significant association between irisin and TL in the T2D cohort (p = 0.333), 
and a 3-fold higher concentration of irisin was observed in individuals with T2D in comparison 
to controls (p < 0.0001). Irisin was a statistically significant predictor of soluble E-selectin (p = 
0.003) in type 2 diabetics. 40% Conditioned media from senescent HDF reduced the ability of 
C2C12 to utilise glucose after 24 and 48 hours and AML-12 hepatocytes after 48 hours (p 
<0.0001, p <0.01) quantification of circulating glycerol in 3T3-L1 adipocytes following treatment 
with 20% and 40% conditioned media suggests lipotoxic tendencies (p <0.05 and p <0.001).  
 
In conclusion this study highlights the importance of maintaining adequate body fat in preserving 
TL, provides novel data regarding the role of irisin in healthy and obese/type 2 diabetic 
individuals and insights into the relation between ageing and insulin resistance. 
 
 
Key words: Type 2 diabetes, Obesity, Telomere length, Irisin, E-selectin, Cellular 
senescence. 
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1.1. The modern obesity epidemic.  
 

The term obesity describes a metabolic disorder manifested from irregular energy homeostasis 

[1]. Obesity is always associated with the situation where energy consumption increases beyond 

energy expenditure, characterised by the accumulation of excessive adipose tissue and the 

phenotypic state of being grossly overweight [2]. The prevalence of obesity has substantially 

increased in almost all societies since the mid-20th century, and due in part to the association of 

obesity with disability and death, obesity is regarded the fifth leading risk for global deaths [3]. 

The mortality associated with obesity surpasses the number of deaths due to being underweight 

and this has led to the identification of obesity as the largest preventable cause of premature 

morbidity and mortality in modern times [3, 4]. The universally applied standard for diagnosing 

obesity is currently the Body Mass Index (BMI), a metric calculated by dividing an individual’s 

bodyweight (in kilograms) by the square of their height (in metres) and is widely implemented 

across clinical and public health applications, due to its practicality under clinical settings and in 

epidemiological studies [5, 6].  

 

The wide use of BMI has helped to identify individuals at various stages of risk of developing 

obesity. In the UK more than 1 in 4 adults are now classified as obese (BMI > 30kg/m2), and it is 

projected that by 2050, 60% of males, 50% of females and 25% of children will be obese [7-9]. 

The increased number of obese individuals in society in coming years will account for £9.7 billion 

in NHS costs, attributable to health implications associated with obesity [10, 11]. Based upon 

such alarming statistics it is clearly evident that despite the overt recognition of the taxing effects 

of obesity on both medical and social programs, Westernised societies are still succumbing to this 

global epidemic. Although scientific and technical advances made over the last decade have 

yielded many tools to extensively explore the dysregulated biochemistry underlying the obese 

phenotype, it has also demonstrated that interactions between genetic makeup and environment 

are essential for the regulation of adipose tissue mass and function [12, 13]. 
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1.2. Obesity: genetic predisposition 
 

1.2.1. Monogenic obesity. 
 

Genetic associations with obesity have been unequivocally documented through genetic studies 

in recent years [14]. Principal studies have successfully identified Mendelian inheritance as a 

vehicle for an individual developing obesity, supported by findings which demonstrate increased 

expression of the obese phenotype amongst monozygotic twins in comparison to dizygotic twins 

irrespective of environmental conditions [15]. Single mutations in genes encoding proteins 

modulating physiological regulation of energy homeostasis and/or appetite are responsible for 

the development of monogenic obesity [16]. Initial knowledge concerning monogenic diseases 

was derived from large-scale linkage analyses in mice that had naturally occurring mutations that 

led to extreme adiposity attributed to recessive mutations in genes encoding leptin and/or the 

leptin receptor [17]. The role of leptin was first documented following experimental studies in 

obese ob/ob mice, which possessed mutations in the ob gene resulting in an inability to produce 

leptin [17, 18].  

 

Leptin is produced by adipocytes and interacts with the leptin receptor located on neurons of the 

arcuate nucleus of the hypothalamus [19]. Neurons present in the arcuate nucleus can briefly be 

divided into two; those which promote food ingestion and decrease energy expenditure, agouti-

related protein (AGRP) and neuropeptide Y (NPY) and their antagonistic counterparts [20] Pro-

opiomelanocortin (POMC) and cocaine- and amphetamine-related transcript (CART) [21, 22]. 

Leptin functions by inhibiting the AGRP and NPY neurones whilst activating POMC and CART, 

elucidating itself as a means of controlling dietary intake and thus energy consumption [17, 23].  

The first-order neuronal targets of leptin in the arcuate nucleus include POMC and CART, 

combined their synergistic interactions modulate downstream effects regulating satiety and 

energy homeostasis [19]. Complete POMC deficiency manifests with life threatening 

complications from birth including, hypoglycaemia, neonatal jaundice often sustaining till later 
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life, increased susceptibility to infections and in extremely rare cases neonatal death [23]. 

Underlining previously mentioned health implications is an apparent retention of adipose tissue 

and hyperphagia evident in both murine and human studies. Gut-brain interrelationships and 

regulation of feeding behaviours are governed by interactions between leptin and melanocortin 

receptors (Fig 1.1) [24]. The melancortin 4 receptor (MC4R) is highly expressed in the 

paraventricular nucleus (PVN) of the hypothalamus, where it has a key role in the control of 

appetite [25]. Mutations affecting leptin-melanocortin signalling can briefly be divided into two 

classes, class 1 mutations correspond to intracellular retention of mutated proteins, completely 

abolishing MC4R signalling [26]. Class 2 mutations result in decreased constitutive activity, or 

exhibit an inability to respond to agonist, or both [26]. The net result manifests in destabilising 

the MC4R signalling axis and decreased anorexigenic activity of the receptor, responsible for the 

most common monogenic contributor to non-syndromic human obesity identified so far [27]. 

MC4R deficiency has been observed in 1-6% of obese individuals from various ethnic groups, 

and correlates positively with severity and age of onset [26, 28]. Studies analysing phenotypic 

features of patients suffering from MC4R mutations reveal a characteristic increase in fat free 

mass, bone density, enhanced linear growth throughout childhood and severe hyperinsulinaemia 

and obesity [28].  
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Figure 1.1 The leptin-melanocortin pathway 

The central nervous system plays a primary part in regulating food intake through the brain–gut 
axis, with the hypothalamus acting as the central regulator, receiving both long- and short-term 
food intake and energy expenditure feedback from the periphery. Leptin released from adipose 
tissue binds to leptin receptors (LEPR) on agouti-related protein (AGRP)-producing neurons and 
pro-opionomelanocortin (POMC)-producing neurons in the arcuate nucleus (ARC) of the 
hypothalamus. Leptin binding inhibits AGRP production and stimulates the production of 
POMC, which undergoes post-translational modification to generate a range of peptides, 
including α-, β- and γ-melanocyte-stimulating hormone (MSH). AGRP and α-MSH compete for 
MC4R — AGRP binding suppresses MC4R activity and α-MSH binding stimulates MC4R 
activity. Decreased receptor activity generates an orexigenic signal, whereas increased receptor 
activity generates an anorexigenic signal [29].  
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1.2.2. Syndromic obesity. 
 

Syndromic obesity stems from discrete genetic defects and chromosomal aberrations that can 

either be sex linked or autosomal [30]. More than 25 syndromic forms of obesity have been 

identified, each presenting with unique clinical features including mental retardation, dysmorphic 

features and even organ-specific developmental abnormalities [31]. However due to increased 

genetic heterogeneity amongst syndromes of obesity, clinical characterisation rarely defines a 

specific syndrome, with multiple genes deregulated in the same molecular pathway, yet 

producing identical phenotypes.  Presented below are a few frequently observed syndromic forms 

of obesity, presenting with severe hyperphagia along with symptoms of hypothalamic disarray in 

common.  

 

Prader Willi Syndrome (PWS) is an autosomal dominant disorder and amongst the most common 

forms of syndromic obesity with an incidence of approximately one in 15,000-25,000 live births 

[32]. Affected individuals present with diminished neonatal activity, muscular hypotonia and are 

often short of stature in later years of life [32]. More severe health implications associated with 

PWS include mental retardation and hypogonadotropic hypogonadism, with underlining obesity 

[33]. PWS exhibits various etiologies but is almost always associated with reduced or complete 

absence of expression of paternally transmitted genes on 15q11-13 [34]. Bardet-Biedl syndrome 

(BBS) occurrence is considerably rarer relative to PWS, with a prevalence less than 1/100,000 

live births [35]. Typical symptoms associated with BBS include rod-cone dystrophy recognised 

as the most commonly observed phenotype, polydactyly, developmental delay, hypogonadism in 

males, renal abnormalities and marked obesity [36, 37]. BBS inheritance is autosomal recessive 

in nature and initial investigations utilising positional cloning efforts had identified BBS2 and 

BBS6 as two potential candidate marker genes [38, 39]. Wilms tumour, aniridia, genitourinary 

anomalies, and mental retardation (WAGR), is heterozygotic in inheritance and manifests due to 

deletion of 11p13 [40].  
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Alongside previously mentioned symptoms, marked hyperphagia and obesity are observed [41]. 

Certain individuals suffering from WAGR exhibit normal body weight and eating habits, however 

molecular techniques employed to compare the extent and overlap of the 11p13 deletion revealed 

obese patients present with decreased expression of brain-derived neurotrophic factor (BDNF) 

[42]. Murine studies have also reported data in unison with data establishing BDNF to possess a 

vital role in eating behaviours. Rios et al., reported mice lacking functional BDNF developed 

hyperphagia and obesity [43]. Furthermore mutations in the BDNF receptor Tropomyosin 

receptor kinase B (TRKB) also result in obesity, an observation reported in both mouse and 

human models [44]. Patients suffering from TRKB deficiency suffer from learning difficulties, 

memory loss and loss of nociception, along with typical obesity [45]. TRKB is recognised as a 

separate syndromic form of obesity and evidently portrays the role of BDNF in food intake, as a 

fundamental one [46].  

 

1.2.3. Polygenic obesity. 
 

The genetics governing polygenic syndromes, arise from the presence of multiple DNA variations 

in numerous genes [47]. By definition, a group of alleles at specific gene loci that cumulatively 

regulate the inheritance of a quantitative phenotype or alter the expression of a qualitative 

character are termed polygenic variants [47]. Existing research has identified many polygenic 

variants known to potentiate body weight; therefore individuals possessing many such polygenic 

variants are susceptible to developing obesity [48]. Unlike disorders of syndromic obesity, which 

arise predominantly from genetic defects either promoting hunger and/or enhanced adipose 

accumulation, the development of polygenic obesity is considerably dependent upon 

environmental influences [49]. Therefore disorders of polygenic obesity are potentially more 

aggressive in Westernised societies owing to an environment consisting of processed calorific 

foods and automated advances reducing energy expenditure, thus promoting adipose mass 

accumulation [50]. Genome-wide linkage studies, although useful for identifying genetic 

mutations underlying monogenic forms of obesity, have now been superseded by genome-wide 
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association studies, offering greater power and ability to detect genes of modest or small effect 

masked by underlying complex disorders involved in the development of obesity. The 

development of single nucleotide polymorphism (SNP) chip technology has facilitated the 

identification of numerous confirmed genes involved in obesity [47].     

 

1.2.4. Fat mass and obesity associated (FTO) gene. 
 

Genome-wide association studies conducted to identify genes predisposing an individual to T2D, 

were amongst the first to discover the FTO gene [47]. Following statistical adjustments it was 

then revealed that the FTO gene was in fact an indicator of increased BMI and not specifically an 

indicator of increased risk of developing T2D [51]. Large scale follow up studies followed to 

confirm these findings, integrated studies collectively analysed 13 cohorts consisting of 38,759 

participants and reported the SNP’s located in intron 1 of the FTO gene translated to enhanced 

susceptibility to the development of obesity by 31% [52]. Adults homozygous for the risk allele 

weigh on average 3kg more than those heterozygous for the risk allele, and had a 1.67-fold 

increased odds for developing obesity when compared to individuals not inheriting the risk allele 

[53].  

 

The contribution of SNPs in FTO related obesity in children is equally relevant to that observed 

in adults [54]. Frayling et al., was the first to document the persistence of SNPs in the FTO gene, 

found in obese children as young as 7 [55]. Studies examining the effects of the FTO gene in 

children have yielded interesting results regarding eating behaviours and identified children 

heterozygous for the risk allele exhibit hyperphagic tendencies and display selective behaviours 

towards calorific foods in comparison to children homozygous for the non-risk allele [56]. Links 

between SNPs in the FTO gene and reduced physical activity have also been established, and 

describe physical inactivity to accentuate the effect of the FTO gene in promoting adipose mass 

accumulation, further highlighting the prominent influence of the Westernised way of life on 

polygenic obesity [57, 58]. Despite a wealth of literature reporting associations between the FTO 
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gene and obesity, the precise mechanism contributing to weight gain remains elusive. Although 

results from animal studies have shown FTO knockout mice exhibit increased energy expenditure 

in comparison to wild type mice, express elevated oxygen utilisation, carbon dioxide and heat 

production, furthermore FTO deficient mice readily metabolise triglycerides and fatty acids [59, 

60]. Therefore the animal model studies suggest that FTO gene is functionally involved in energy 

homeostasis. Humans predisposed to obesity conferred by SNP’s in the FTO gene display 

reduced insulin effect on Beta cell activity, which implicates a lower cerebrocortical response to 

insulin [61]. Furthermore a separate study has suggested the presence of the FTO gene is vital in 

regulating lipolysis; increased intake of calorific foods and an uncontrolled appetite have also 

been reported [62].   

 

1.3. Obesity, genetic or environmental? 
 

Views regarding the recent increased incidence of obesity are surrounded by controversy. There 

exists a dichotomy in scientific opinion with respect to the increased incidence of obesity, with 

some opinion suggesting that the development of obesity is primarily genetic, whilst other 

viewpoints consider the impact of environmental influences, more specifically the increasing 

consumption of energy dense, calorific foods and lack of exercise as the driving force behind the 

obesity epidemic [63-65]. Although there exists considerable evidence in favour of both 

arguments, a more realistic view might suggest that human lifestyle has experienced a greater 

degree of evolution than human genetics has in the past 30 years. Recent sequencing of the 

Neanderthal genome, regarded as the closest evolutionary relatives of present-day humans, 

understood to have suffered extinction 40,000 years ago puts this idea into perspective. The work 

of Burbano et al., sequenced ~14,000 protein-coding positions inferred to have changed in the 

human lineage since the last common ancestor shared with chimpanzees [66]. The authors 

conclude a disparity of 88 amino acids exists between Neanderthals and modern day humans, and 

suspect them to be functionally irrelevant [66].  
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Studies comparing the Neanderthal genome to the genomes of five present-day humans from 

different parts of the world identified that Neanderthals shared genetic variants with present-day 

humans residing in Eurasia, while DNA methylation patterns varied by 0.12% between the two 

species [67]. Considering the Neanderthal species were largely free of metabolic disorder, 

although genetic variants predisposing humans to Crohn’s disease, lupus and biliary cirrhosis 

have been implicated to be inherited via Homo sapiens interbreeding with the Neanderthal 

species, the documentation of obese Neanderthals is unheard of [68, 69]. Thus genes responsible 

for obesity have not been inherited from ancestral species; an alternative concept connecting 

genetics to obesity would then suggest large proportions of the global population in the last 20 

years will have undergone spontaneous mutations in genes regulating energy homeostasis to 

account for the rapid spread of obesity. Considering the frequency of different genes across a 

population remains fairly stable for many generations a more plausible theory recognises the 

drastic change in dietary habits and inadequate energy expenditure.  

 

1.3.1. The thrifty genotype.  
 

Obesity is essentially a multifactorial condition and develops due to a combination of both genetic 

influence and environmental risk factors where the latter plays a constitutively larger role. A 

theory which urbanely amalgamates these two concepts was proposed by geneticist James V. 

Neel in 1962 and explicates the contribution of gene-environmental interactions responsible for 

metabolic disease risk in humans [70]. Moreover, Neel’s work elucidated the vital contribution 

of dietary habits in the development of chronic obesity. Neel argued that a genotype that would 

promote retention of energy for future use coincided with the evolutionary mechanism of natural 

selection, whereby organisms capable of storing excess calories as fat would better survive times 

of food scarcity [70]. The thrifty genotype would thus be advantageous for hunter-gatherer 

populations; however in modern societies with a constant abundance of food and introduction of 

processed, energy dense food types, this genotype efficiently prepares individuals for a non-
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existent famine.  The result of this disparity between the environment in which we evolved and 

the environment of today is a facilitated accumulation of excess adipose tissue. An additional 

theory recognises the cryoprotective effects of elevated circulating glucose and glycerol on 

organs, protecting ancestral species from extreme temperatures [71]. The authors suggested 

factors that predispose to elevated levels of sugar derivatives may have been selected for as 

adaptive measures in exceedingly cold climates [71]. Conclusively, it should be noted that in 

most cases of obesity the largest contribution to positive energy balance is excess caloric intake 

and suggests that a significant portion of intervention and prevention strategies should be focused 

on controlling food intake and increasing energy expenditure.  

1.4. The influence of diet and sedentary behaviour on obesity. 
 

1.4.1 Nutritional transition. 
 

Analysing change in human dietary habits over the course of history clearly identifies a vital 

contribution of food availability, processing and choice in the role of obesity. For example, 

hunter-gatherer species alive during the Paleolithic era and prior to the advent of agriculture and 

domestication of animals evolved nutritional needs specific to the foods available at that time, 

which may have been key to their resistance to metabolic disorder [72]. The Paleolithic diet 

required hunter gatherers to attain the majority of their calories from lean proteins; hunting wild 

animals and fishing would thus be an obvious source of food, and a requisite source of protein 

and animal/omega fats [72, 73]. The remaining calories would have been obtained from the 

consumption of carbohydrates in the form of non-starchy fruits, berries and vegetables [74]. Food 

groups excluded from the Paleolithic diet include dairy, whole grains, processed oils, refined 

sugars and alcohol, and are now considered to be at the root of the obesity crisis [75]. The 

consumption of such foods became evident post the Neolithic agricultural revolution which gave 

rise to wide-scale food-crop cultivation and domestication of animals, as a consequence of 

expanding populations [76].  
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Interestingly, artistic figurines of women recovered from the Neolithic period displayed 

characteristics of the obese phenotype, and such depictions may be a reflection of the first cases 

of human obesity in a civilised society [76, 77]. The unambiguous appearance of obesity was 

even more apparent during the Greek and Roman era, a time in which food as a homeostatic 

energy source grew into a hedonic source of pleasure, high in fats, sugars and alcohol [78]. Social 

pressures in accordance with wealth and opulence catalysed over-indulgence in such foods and 

paved the way for modern day eating behaviours.  Medical manuscripts from these periods readily 

described clinical features reminiscent of the obese phenotype. The work of Papavramidou and 

Christopoulou-Aletra summarises the views of numerous physicians documented between 25BC 

to 9th century AD [79]. Fascinatingly, despite the lack of advanced clinical diagnostic tools, a 

mutual understanding amongst physicians of the time recognised excessive food consumption 

was the underlining cause of the obese phenotype and treatment involved, dieting, taking hot 

baths, vomiting, purgation and lifestyle changes [79]. These ancient ideas contributed to the 

elementary understanding of obesity in current times.  

 

1.4.2. The modern day nutritional milieu 
 

The human diet has considerably changed over the course of time. Ancestral species ate primarily 

to sustain physiological wellbeing and that to without substantial culinary modifications [80]. For 

modern day humans, behaviours governing the consumption/purchasing of foods is considerably 

more complex and largely influenced by preference for taste, convenience, cost and marketing 

ploys. Such influences on diet have vastly spread across the globe and converged to form what is 

known as the “Western diet”, loosely defined by increased intake of processed foods, refined 

carbohydrates, added sugars, increased salt content, fats, and animal-source foods [81, 82]. 

Statistics derived from the NHS information centre documented food purchasing and 

consumption habits in the UK and support this statement. Key findings published in this report 

outline mean consumption of saturated fat, non-milk extrinsic sugars and alcohol significantly 

exceeded the recommended amounts. The consumption of lean proteins, in particular oily fish is 
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significantly below the recommended daily amount and appears in conjunction with decreased 

consumption of fruit and vegetables [83]. Only a quarter of adults consume the recommended 5 

portions a day of fruit and vegetables. Furthermore a decrease of 1% in household fruit purchases 

was reported in 2010, and is now 11.6% lower than 2007 [83, 84]. Purchases of vegetables 

increased by 0.4% but are 2.9% lower than in 2007. Unsurprisingly the majority of household 

expenditure was attributed to increased consumption of butter/oil, sugary beverages and 

processed packaged meals [85, 86]. Such consumption/purchasing trends are representative of 

both developed and developing nations and currently considered to be at the heart of the global 

obesity epidemic.  

 

1.4.3. Edible oil, butter and fat. 
 

During the later 19th century, technological advances facilitated the cost effective production of 

oil from oilseeds, in line with breeding techniques the ability to increase oil content from seeds 

accompanied the large scale availability of cheap vegetable oils. Between 1985 and 2010 

individual intake of vegetable oils increased three-fold to six-fold, depending on the 

subpopulation studied [87]. In China, which has moderate but not high vegetable oil intake, 

persons age two and older now consume on average almost 300 calories and more than 30 grams 

of vegetable oil daily [87]. 

 

1.4.4. The sweetening of the world’s diet. 
 

Data collected from surveys undertaken around the world have indicated that over the past 20 

years, concomitant with the rising rates of obesity, consumption of carbohydrates largely in the 

form of added sugars has significantly increased [87]. In the USA up to 75% of foods and 

beverages are reported to contain added caloric sweeteners [88]. In the UK soft drink 

consumption has risen by 30% in the past 10 years and is considered to be vital in the progression 

of obesity [88]. China, India, Vietnam, Thailand, and other Southeast Asian countries are 

currently major growth markets for the soft drink industry [88]. Consumption of high-sugar 
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desserts and snacks is also increasing in urban centres in both developed and developing countries 

[89, 90]. Malik et al., conducted a systematic review which analysed publications between 1966 

and 2005 in a bid to better understand the association between sugar-sweetened beverages and 

weight gain. Findings from large cross-sectional studies, in conjunction with those from well-

powered prospective cohort studies with long periods of follow-up, show a positive association 

between greater intakes of sugar-sweetened beverages and obesity in both children and adults 

[88]. Likewise reducing soft-drink consumption in schoolchildren led to a significant reduction 

in the prevalence of obesity [88].  Increasing evidence suggests the utilisation of high-fructose 

corn syrup (HFCS) by food manufacturers is contributing to the obesity epidemic [89]. Western 

countries have particularly fallen victim to the negative effects of HFCS with the USA have 

increased HFCS consumption by 1000% between 1970 and 1990 [89]. HFCS now accounts for 

40% of sweeteners added to foods and is the sole caloric sweetener in soft drinks, moreover 

mirrors the incidence in obesity. Murine studies have been successful in identifying the 

differential digestion, absorption and metabolism of fructose relative to glucose and have 

correlated the consumption of HFCS to increased adipogenesis [90]. The mechanism proposed 

by the authors recognises the inability of fructose to stimulate insulin and leptin production, 

sequestering glucose uptake and pathways regulating food intake, but sustaining ghrelin levels. 

The net effect leads to enhanced lipogenesis [91, 92].  

 

1.4.5. Processed foods. 
 

Numerous reports have been published in recent years outlining the considerable impact of the 

increased processing of foods, on the obesity pandemic [93]. Reasons behind the preference of 

processed foods are multi-factorial however can be summarised by the need for low-cost, easily 

prepared and tasteful foods, at the expense of low quality and obesogenic ingredients [93, 94]. 

Monteiro et al., describes how the classification of processed foods can be sub-divided into 3 

groups. Foods listed under group 1 are either unprocessed or minimally processed foods, such as 

fresh meat and milk, grains, pulses, fruits and vegetables [95]. Group 2 foods include oils, fats, 
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flours, pastas and sugars; processed physically and chemically to produce culinary and/or food 

industry ingredients [95]. Finally group 3 foods are the most readily consumed globally and 

typically undergo industrial processes to increase shelf-life and palatability, regarded as habit-

forming foods. Foods within group 3 include biscuits, ice creams, chocolates, crisps and soft 

drinks all of which are low nutrient density, dietary fibre and high in saturated fats, sodium, and 

trans-fatty acids [95]. Key to their increased consumption is the increased branding, international 

distribution and marketing [96]. Growth in their production and consumption has been enormous 

in the last decades in both higher- and lower-income countries and is a significant contributor to 

obesity [96].  

 

 
1.4.6. Eating behaviors. 
 

Westernised eating behaviours are considered central to the increased incidence of obesity seen 

across the globe [97]. Additionally, increased eating frequency, binge eating and the consumption 

of foods from restaurants are common practices in modern societies [97, 98]. Evidence suggests 

both higher- and lower-income societies residing in the USA and UK exhibit increased snacking 

tendencies [99]. Energy dense snacks account for 20-25% of total energy intake in these 

countries; snacking has been reported to transition into subconscious behaviour [99]. Binge eating 

has been recognised by the diagnostic and statistical manual of mental disorders as of 2013 and 

identifies causes which readily affect westernised populations; including depression, anxiety, 

stress and loneliness [100]. Binge eating disorders and night eating disorders are commonly 

associated to obesity according to cross-sectional studies [101-103].  Studies examining the 

effects of eating food prepared outside the home are plentiful and the majority have been 

conducted in the USA. In the last 40 years US citizens have increased the amount of money spent 

on eating out from 26% to 56%, increases which coincide with obesity rates [104]. 

  

Studies examining British cohorts are limited however the fast food market is as influential in the 

UK as in the US, and of major concern is the increased availability of fast foods to children and 
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young adults [105]. Findings from a recent study carried out on 3600 adolescents in UK suggested 

that those adolescents who ate at fast food outlets tend to consume more unhealthy foods high in 

total fat, saturated fat, cholesterol and sodium and were likely to have higher BMI than those 

adolescents who did not consume fast food frequently [98]. Comparatively increased frequency 

of participation in the family dinner was associated with higher consumption of fruits and 

vegetables, fibre, folate, calcium, iron and vitamins B-6, B-12, C and E, lower consumption of 

saturated and trans-fatty acids and a decreased glycaemic load [106]. Patterson et al., summarise 

the impact of “eating out” on obesity and attribute the increasing portion sizes and the availability 

of calorie dense foods creates an obesogenic environment predisposing children and young adults 

to obesity [98].  

 
1.4.7. Sedentary behavior 
 

Much like the drastic transformation of the human diet, factors governing physical activity levels 

and energy expending behaviours, have too altered in favour of promoting obesity [107]. 

Preceding species were considerably more active employing manual efforts to complete home-

based chores, hunt for food and transport [73]. Contrarily modern day humans residing in 

metropolitan cities are exceedingly reliant on time saving technologies, in conjunction with the 

rapid increase in the availability and implementation of a wide range of screen-based devices for 

work or leisure purposes, make it significantly difficult to expend energy, thus creating an 

obesogenic environment [108, 109]. Various authors have denoted the vital contribution of 

sedentary behaviour in propagating the obesity epidemic. Obvious examples of such behaviours 

include TV viewing, playing computer games, online shopping, social media applications, car 

travel as well as long periods spent sitting at school, home or work (Fig. 1.2.) [110]. Such changes 

reflect low levels of habitual physical activity and are associated with ‘hypokinetic diseases' 

[111].  
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Evidence suggests that physical activity levels are low within the UK and exhibit an age 

associated decline, with only 40% of men and 28% of women meeting the minimum 

recommendations for physical activity and only 17% of men and 13% of women aged 65-74 

engaging in physical activity at all [108].  Hu et al., examined 3757 non-obese women, over a 

period of 6 years who became obese, with hours spent watching TV exhibiting a causal 

association. The authors reported 2 hour daily increments in watching TV were associated with 

a 23% increase in obesity and 2 hour daily increments in sitting at work were associated with a 

5% increase in obesity [112]. Moderate exercise at home or work positively correlated with a 9% 

reduction in obesity, while 1 hour of brisk walking reduced obesity risk by 24%, demonstrating 

the drastic benefits of engaging in moderate exercise [112]. The role of sedentary behaviour in 

propagating the obese phenotype has been verified by numerous studies correlating sedentary 

behaviours with increased metabolic risk. Hours spent utilising computers and/or watching TV 

have been positively associated with increased fasting insulin, BMI, Homeostatic model 

assessment-insulin resistance (HOMA-IR) and metabolic syndrome [112-114].  
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Figure 1.2. Changes in activity levels over time with changes in technology. 

The development of time saving (cars and internet) and time wasting technologies (gaming 
consoles) has resulted in a significant reduction in daily energy expenditure. A common view 
regards the increased automation of previously manual processes responsible for the increased 
incidence of metabolic disorders [78]. 
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1.5. The epidemiology of obesity 
 

Considering the aetiology of obesity, researchers have previously believed health implications 

arising from the atypical retention of adipose tissue was a cause of concern for Westernised 

civilisations only. However globalisation of calorific processed foods and time saving/wasting 

technologies has propelled obesity to epidemic proportions. Key to the identification of the 

increased prevalence rate of obesity is the standardised approach in measuring obesity. The World 

Health Organization in 1995 accepted the BMI, a simple index of weight–height relationship as 

the appropriate method for crudely assessing degrees of body fat sufficient to classify obesity 

[115] . The National Institutes of Health have defined overweight as an individual having a BMI 

between 25.0 and 29.9 kg/m2; and obesity as having a BMI greater than 30.0 kg/m2 [116, 117]. 

For a given BMI, adiposity varies with sex, age and ethnicity; however, BMI correlates 

reasonably well with body fat mass and the risk of obesity-related diseases [116]. The use of BMI 

is preferred over densitometry, computed tomography (CT), magnetic resonance imaging, and 

dual energy X-ray absorptiometry, due to its low cost and accessibility. Recent research has 

emphasised the effectiveness and practicality of waist to hip ratio measurements as a predictor of 

adiposity and metabolic risk [118, 119].           

 

1.5.1 Global trends in obesity 
  
Research has revealed that almost all countries are facing increasing obesity rates [120]. Initial 

statistics released by the WHO considered obesity as cause of concern for the Western 

hemisphere only. More recent figures reveal developing countries are also at risk [120]. The 

WHO reports approximately 115 million people suffer from obesity and/or related problems in 

developing countries [121]. Generally East and South-Eastern countries such as China and India 

have low levels of obesity, estimated to be 1 % or less, however the prevalence of obesity in 

countries forming the Pacific Islands can reach up to 80 % (Samoa, Fiji). Even in low-prevalence 

countries stark variations exist between urban and rural areas [122].  Recently, application of 

lower cut off of body BMI (Asian criteria of overweight: 23–25 kg/m2 and obesity: >25 kg/m2) 
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has led to a marked increase in prevalence figures in several Asian countries [123]. Data derived 

from the China Health and Nutrition Survey indicates a BMI increase of 1.2 in adults between 

1993 and 2009 with an increase of 67.0 % in the prevalence of overweight, from 9.4 % to 15.7 

%, and an increase of 168.0 % in the prevalence of obesity, from 4.0 % to 10.7 % [124]. While 

the overall prevalence of overweight and obesity remains low in India, a recent national urban 

survey of the six metropolitan cities in India reported the prevalence of overweight and obesity 

for adults aged ≥ 20 years old to be approximately 30% [125]. Similar estimates from Vietnam 

suggest that nearly one-fifth of adults in Vietnam’s biggest city are overweight [126]. This 

indicates that India and Vietnam, along with many other countries in the region, face the dual 

challenge of under- and over-nutrition.  

 

Of a greater concern is the increasing incidence of childhood obesity. For example in the USA 

the National Health and Nutritional Examination Survey (NHANES) revealed in 2003–2006, 

31.9% of children 2–19 years old had a BMI at or above the 85th percentile of the 2000 Centers 

for Disease Control and Prevention BMI-for-age growth charts, and 16.3% were at or above the 

95th percentile of BMI for age [127]. Since 1986 various surveys have been conducted 

investigating obesity amongst preschool children, and report countries comprising Latin America, 

the Caribbean, the Middle East and North Africa exhibit rates of obesity comparable to USA 

[128, 129]. Similar trends have also been observed in India, Mexico, Nigeria, and Tunisia over 

the past 2 decades [130-132]. The prevalence of obesity among 5 to 12 year old children in 

Thailand increased from 12.2 to 15.6% over a period of 2 years [133]. Increases in the prevalence 

of overweight among older children and adolescents have been seen also; from 4.1 to 13.9% 

between 1975 and 1997 in Brazil [134]. The prevalence of obesity is generally high in developed 

countries, with statistics showing that in 2007–2008, approximately 68% of US citizens were 

overweight or obese, and approximately 34% were obese [135]. In England, the prevalence of 

obesity among adults rose from 14.9% to 24.9% between 1993 and 2013 [136]. The rapid increase 

in the prevalence of overweight and obesity has meant that the proportion of adults in England 
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with a healthy BMI decreased between 1993 and 2013 from 41.0% to 31.2% among men, and 

49.5% to 40.8% among women [137]. In England, currently 24.9% of adults are obese [138]. 

Contrastingly Asia has the lowest rates of obesity and the Pacific islands have the highest rates 

[139]. The rates of obesity in Africa and Middle Eastern countries are considerably variable. 

Conclusively, obesity incidence is increasing globally. The WHO established a global BMI 

database as of 2004; the WHO estimates that in 2005 approximately 1.6 billion people worldwide 

were overweight and that at least 400 million adults were obese [140]. They further project that, 

by 2016, approximately 2.3 billion adults will be overweight and that at least 700 million will be 

obese [141].    

 

1.5.2 Gender disparities in obesity 
  
Epidemiological studies have identified females are at greater risk of developing obesity than 

males [142]. According to reports published by the WHO, in 138 of 194 countries more than 50% 

of women were likely to be obese. Although the precise mechanisms responsible for this 

phenomenon are unknown, various theories have been proposed. Interestingly gestational 

nutritional deprivation affects males and females differently, while males respond by exhibiting 

decreased ability to gain weight and deposit fat, females respond oppositely [143]. Interestingly 

exposure to the Dutch famine (1944-1945) during early gestation was associated with higher 

weight, BMI and waist circumference amongst 50-year-old women but not 50-year-old men 

[144]. Similar results were obtained from a study examining men and women born during the 

Great Famine (1959-1962) in China [145]. Case and Deaton reported that South African women 

suffer from depression, more so than South African males, furthermore the work of Onyike et al., 

positively correlated greater degrees of depression with obesity, either a negative association or 

no association was observed in men [146].  

 

Depression has been related to eating patterns and particularly hyperphagia and may lead to 

differential weight gain between men and women [147]. There exists evidence to suggest that 
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males and females do exhibit differing eating patterns, and that one’s sociocultural environment 

likely influences these preferences. Kanter and Caballero report that women are more interested 

in purchasing and consuming healthier foods, however in actuality consume a larger amount of 

energy dense processed foods such as cookies, ice cream and chocolate, relative to men [142]. 

While men obtain a larger amount of their daily calorie intake from lean proteins, likely due to 

their greater preference for and thus consumption of meat-based products than women. The work 

of E. Blaak recognises that males and females metabolise lipids differently and report the 

oxidation of basal lipids is considerably lower in females as compared to males, thereby 

contributing to a higher fat storage in women [148]. Finally, postprandial fat storage may be 

higher in subcutaneous adipose tissue in women than in men, whereas storage in visceral adipose 

tissue has been hypothesised to be augmented in men. The role of sex hormones, particularly 

oestrogen may be largely responsible for the sexual dimorphism in both body composition and 

body fat distribution amongst males and females [149]. Studies have previously reported that 

oestrogens stimulate preadipocyte proliferation and that this effect is depot-specific and more 

pronounced in preadipocytes from women compared with preadipocytes from men [150]. In 

developing countries sociocultural beliefs/influences largely account for gender disparities in 

obesity. For instance in certain parts of South and East Asia, along with North and Sub-Saharan 

African physical inactivity and the obese phenotype is associated with high social status, fertility 

good health and prosperity. Contrastingly slimmer and smaller women are perceived as infertile 

and ill.  

 

1.5.3. Relationship between age and the prevalence of obesity. 
 

Advancing age is associated with an increase in adipose tissue in humans and has been recognised 

as a primary causative agent behind age-related metabolic disorders [151]. The age associated 

increase in adipose tissue may be responsible for the increased incidence of obesity with 

advancing age [152]. It has been reported that obesity increases with age and reaches its peak at 

around 55- 64 years and decreases afterwards [152]. Increasing adiposity is also accompanied by 
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the development of age related decrease in muscle mass, also known as sarcopenia [153]. Basal 

metabolic rate is determined chiefly by fat-free mass which progressively deteriorates with age 

[153]. Increasing age is also accompanied with a reduction in physical activity, further 

contributing to a decrease in muscle mass and energy expenditure; however diet is often 

maintained, inducing a positive energy balance promoting storage of calories in the form of fat 

[152]. Alongside the increase in total adipose tissue mass ageing is also associated with an altered 

pattern of adiposity distribution. A review by Kuk., et al highlights the inability of certain 

individuals to develop sufficient subcutaneous adipose tissue mass specifically in the lower body, 

thus exhibit a reduced ability to store circulating lipids and non-esterified fatty acids (NEFA) 

[154]. As a compensatory mechanism the increased fat content is stored in non-subcutaneous 

regions, giving rise to increased lipid accumulation in the visceral region [154]. Concurrently 

both cross sectional and longitudinal studies have confirmed an age associated increase in waist 

circumference largely recognised as both a risk factor and diagnostic marker of obesity and 

related co-morbidities [155].   

 

1.5.4. Obesity and ethnicity. 
 

Strong evidence exists to affirm certain ethnic minorities are at an increased risk of developing 

obesity in comparison to Caucasian populations. Statistics describing the incidence of obesity 

amongst children in the UK validate such evidence [156]. In 2010, the prevalence of obesity 

among 10–11-year-olds in England was 20–29% among Bangladeshi, Pakistani and black ethnic 

groups compared with 16–19% in Caucasian British children; among 4–5-year-olds these figures 

were 11–18% and 9–11%, respectively [156]. Kumar et al., assessed differences in obesity 

amongst 3019 immigrants from developing countries, residing in Oslo, Norway. Generalised 

obesity was most frequent among the Turks [157]. However, central obesity was most frequent 

among the Pakistanis and Sri Lankans. For any given value of BMI, the waist to hip ratio (WHR) 

was considerably higher among Sri Lankans and Pakistanis compared to Norwegian residents 

[157]. Statistics derived from studies undertaken in the USA reveal a larger proportion of African 
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American adults and children suffer from obesity in comparison to Caucasian adults and children 

[158]. Exact figures from the Center for Disease Control and Prevention reveal Non-Hispanic 

blacks have the highest age-adjusted rates of obesity (47.8%) followed by Hispanics (42.5%), 

non-Hispanic whites (32.6%), and non-Hispanic Asians (10.8%) in the USA [159].  Among all 

Asians in the United States, South Asians have the highest rates of overweight/obesity (25% 

among men and 37% among women) [160]. The variance in obesity amongst different ethnicities 

can be explained due to notable differences in lifestyle factors, for example children from ethnic 

minority groups in the UK engage in lower levels of physical activity than their Caucasian peers, 

while South Asian children report higher consumption of dietary fat and children from black 

ethnic groups are more likely to skip breakfast [156]. One possible explanation for the ethnic 

patterning of obesity-related behaviours is the effect of cultural values and norms; it has been 

proposed that, in order to reduce health inequalities, culturally specific efforts are required to 

address the issue of healthy lifestyle among high-risk ethnic groups [161].  

 

1.5.5. Financial burden of obesity 
  
The obese phenotype is more than a cosmetic concern; instead increased adipose mass retention 

predisposes an individual to numerous health risks which significantly reduce the quality and 

longevity of life, including cardiovascular disease, T2D and even cancer [162]. Such health 

implications constrain financial budgets particularly of developing countries. For instance, 

mortality stemming from obesity related non-communicable diseases is predicted to account for 

43.3 % of all deaths in India and are estimated to cost the Indian economy $200 billion from 

2005-2015 [163, 164]. In 2000, in Latin America and the Caribbean, the direct and indirect costs 

of diabetes (as result from obesity) were about $65.2 billion according to WHO estimation [165]. 

In the Pacific Islands, about $1.95 million is a cost of obesity induced diabetes in Tonga while 

$13.6 million in Fiji, taking about 60 % and 39 % of health budgets, respectively [163, 164]. In 

2003, mainland China expended $50 billion in medical costs associated with obesity, counting 

nearly 25.5 % of the total costs of medical care of chronic diseases and nearly 3.7 % of national 
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total medical costs and expected to rise to about $112 billion by 2025 [164]. Studies examining 

the financial burden of obesity in Westernised countries are plentiful and more detailed and 

rightfully so considering the magnitude of the problem [163]. The USA leads the world in rates 

of overweight and obese individuals per capita, evidently reflected by the significant expenditure 

on obesity related healthcare. Health care costs for obese individuals are 37% higher than for 

people of normal weight, adding an extra $732 to the health care bill of each and every American, 

such expenditures are comparable to healthcare expenses associated with smoking [166].  

 

The work of R. Strum reports health conditions associated with obesity are analogous to health 

implications associated with 20 years of ageing and correspond to 36 % increase in inpatient and 

outpatient spending while, increase medication costs by 77 % [167]. In the workplace, employers 

of the overweight and obese face costs of absenteeism, reduced productivity, and other obesity 

related complications including heart disease, osteoarthritis, gallbladder disease, hypertension, 

and Type 2 diabetes, resulting in $62.7 billion in doctor’s visits and $39.3 billion in lost workdays 

each year [168]. The UK exhibits similar trends, estimates of the direct costs to the NHS for 

treating overweight and obesity, and related morbidity in England, have ranged from £479.3 

million in 1998 to £4.2 billion in 2007 [169]. Estimates of those costs arising from the impact of 

obesity on the wider economy such as loss of productivity over the same time period ranged 

between £2.6 billion and £15.8 billion [168, 170]. In 2006/07, obesity and obesity-related illness 

was estimated to have cost £148 million in inpatient stays in England [170]. Modelled projections 

suggest that indirect costs could be as much as £27 billion in 2015 [171].  

1.6. The pathophysiology of obesity 
 

The accretion of excess adipose tissue, characteristic of the obese phenotype is chiefly determined 

by the balance between lipogenesis and lipolysis/fatty acid oxidation [172]. Energy expenditure 

in the form of exercise or fasting diminishes lipogenic responses in adipose tissue and upregulates 
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lipolysis and the consequential net loss of triglycerides from fat cells, offering protection against 

obesity [173]. Conversely the consumption of a diet high in carbohydrates stimulates lipogenesis 

in both liver and adipocyte tissues and is key in the manifestation of obesity [174]. Postprandial 

spikes in glucose levels feed directly into lipogenesis via several mechanisms; primarily, by 

inducing insulin secretion which actively inhibits glucagon production from the pancreas and 

stimulates the activity of Pyruvate dehydrogenase, and Acetyl-CoA carboxylase, which facilitate 

the glycolytic conversion of glucose into malonyl-CoA [175].  

 

Malonyl-CoA provides the two-carbon building blocks that are used to create larger fatty acids 

[175]. It has been hypothesised that the storage of fatty acid as triacylglycerol (TG) within 

adipocytes protects against fatty acid toxicity; otherwise, free fatty acids would circulate freely 

in the vasculature and produce oxidative stress by disseminating throughout the body [176]. 

However the dysregulation of normal physiological nutrient homeostasis manifesting from 

chronic overconsumption and the enhanced sympathetic state existing in obesity eventually 

saturates adipocyte storage capabilities. The “spillover” effect (Fig 1.2) describes the release of 

excessive free fatty acids (FFA) from adipocytes, this redirects fatty acids to the liver promoting 

dyslipidemia, characterized by elevated plasma FFA, TGs, and small dense low density 

lipoprotein (LDL), and the reduction of high-density lipoproteins (HDL) which then incite 

lipotoxicity, as lipids and their metabolites create reactive oxygen species (ROS) within the 

endoplasmic reticulum and mitochondria [176].  Circulating free fatty acids have been commonly 

associated with the development of insulin resistance, although the precise mechanisms that 

establish insulin resistance are unknown. Existing research identifies the ability of FFA, via 

various mechanisms, to promote tyrosine phosphorylation of the insulin receptor substrate, 

potentially due to increased ROS production [177]. Additionally FFA function as substrates for 

gluconeogenesis, further influencing hyperglycemia, in the absence of sufficient insulin secretion 

[177]. Key to the pathogenicity of storing atypical amounts of fat is the relatively recently 

described endocrine nature of adipose tissue [178]. The specific secretions of adipose tissue will 
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be considered in a later section however the altered expression and/or secretion patterns of pro-

inflammatory cytokines such as tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and 

interleukin-8 (IL-8) from obese adipocytes have been reported to impede lipolysis and insulin 

sensitivity [179]. The secretion of pro-inflammatory cytokines from adipose sites has been 

attributed to the increased infiltration of M1 pro-inflammatory macrophages [180]. Subsequent 

studies have demonstrated that M1 macrophage infiltration into adipose tissue is increased in 

obesity due to hypertrophic expansion, while M2 anti-inflammatory macrophages are redundant 

and are found in reduced numbers compared to leaner individuals [180].   

 

Existing research has implicated fatty acid flux as a crucial contributor to macrophage recruitment 

to adipose tissue, a process mediated by interactions between macrophage toll like receptors 

(TLR) and dietary circulating saturated fatty acids, resulting in augmented cytokine production 

[181]. TLR deficient mice exhibit reduced macrophage infiltration of adipose tissues and 

inflammation [182]. In support of the role of macrophage mediated inflammation are studies 

which have utilised murine models and report the increased expression of intracellular adhesion 

molecule (ICAM-1) in response to 3 weeks of high-fat feeding [183]. Following 6 months of high 

fat feeding soluble ICAM-1 levels correlated with adipose mass and provide a mechanism 

whereby immune cells are able to adhere to capillary endothelial cells and via extravasation 

invade neighbouring adipocytes [183]. A prominent hypothesis recognises increased macrophage 

recruitment to phagocytose dead or dying adipocytes, forming crown like structures which stain 

positive for pro-inflammatory markers [184]. Whereas adipocyte death is rare in lean humans, it 

is a common hallmark of obesity and is positively correlated with adipocyte hypertrophy [185].  

The inflammation accompanying obesity is critical in the manifestation of life threatening co-

morbidities associated with obesity. Co-morbidities of obesity can be divided into two categories; 

those determined by an excess number of fat cells and therefore inflammatory in nature and 

responsible for the development of health implications associated with a reduced lifespan i.e. 
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atherosclerosis, T2D and cancer and those presenting due to an accumulation of fat mass i.e. a 

state of lethargy, breathlessness and psychological stress [186]. 

 

1.6.1. Atherosclerosis. 
 

The condition atherosclerosis can be defined as a thickening of the arterial walls due to the 

accumulation of fatty materials, a common complication amongst the morbidly obese [187]. 

Existing research has correlated BMI, arterial thickness and gross atherosclerotic plaques with 

obesity [188]. Symptoms of atherosclerosis manifest due to the rupture of foam cells, (low density 

lipoprotein containing macrophages) and surrounding extracellular matrix, liberating tissue 

factors and platelets leading to thrombosis [188]. Stenosis of coronary arteries can prove to be 

fatal and result in myocardial infarction, while obstruction of blood flow can deprive target organs 

of both oxygen and essential nutrients [189]. Atherosclerosis is associated with potentially fatal 

conditions including hypertension, coronary heart disease, stroke and peripheral arterial disease 

[189]. 

 

1.6.2. Hypertension. 
 

Links between hypertension and obesity have been well documented; waist circumference 

measurements have been reported to significantly correlate with systolic and diastolic blood 

pressure [190]. Obese individuals often present with rigid, constricted arteries due to ectopic fat 

accumulation, which impede blood flow [191]. The detection of reduced flow of blood by 

baroreceptors is met with a compensatory increase in heart rate to restore blood pressure. In 

support of this model are studies which have successfully quantified larger amounts of 

angiotensin II and aldosterone in the blood of obese patients [191]. Moreover CT has been utilised 

to identify renal sinus fatty deposits along with conformational alterations within kidneys, 

coupled with increased abdominal pressure secondary to central obesity which may impair 

nephron function and promote hypertension [192]. Moreover, the hyperfiltration observed in 
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obesity sets the stage for progressive glomerular loss and loss of renal function and associated 

increases in arterial pressure [190]. The previously mentioned pathology is further aggravated by 

the consumption of processed foods high in sodium, further deregulating blood pressure 

homeostasis by the active reabsorption of fluids in the kidney [190].  

 

1.6.3. Cancer. 
 

Research has provided significant evidence of increased risk for colon, postmenopausal breast, 

endometrial, kidney, esophageal, liver, and pancreatic cancer as well as non- Hodgkin’s 

lymphoma and myeloma in obese individuals [193]. Completely establishing links between 

cancer and obesity are studies reporting that obese individual’s exhibit resistance to 

chemotherapeutic treatment, while other studies have concluded reduced cancer risk post bariatric 

surgery [194]. A large number of mechanisms are currently being investigated to explain the 

association between obesity and cancer and are common to obesity mediated insulin resistance; 

including, hypoxia, pro-inflamamtory cytokine secretion, oxidative stress, hyperinsulinemia, 

hyperleptinaemia and the contribution of sex hormones [195]. The complex aetiology of both 

conditions, in conjunction with the effects of leading a sedentary lifestyle and consuming a variety 

of compounds in modern diets makes it increasingly difficult to determine precise pathways 

relating obesity to cancer [196]. 
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Figure 1.3. A flow chart depicting the consequences of retaining excess adipose tissue. 

A flow diagram by which excess adiposity is associated with increased cardiometabolic risk. 
Under this model, excess adiposity results in the accumulation, excessive amounts of visceral 
adipose tissue and the accumulation of ectopic fat depots, in areas such as the liver, pancreas etc. 
which go on to facilitate the development of inflammation/insulin resistance and eventually lead 
to CVD [197]. 
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1.7. The significance of body composition in obesity and 
related co-morbidities. 
 

It has been well documented and recognised that total adipose tissue is crucial in the propagation 

of symptomatic health implications giving rise to metabolic syndrome. However emerging 

evidence identifies specific adipose tissue depots are more closely associated with risk factors for 

disease than others and therefore can regulate lifespan differentially [198]. The main adipose 

depots of interest are located in the abdomen and can be divided into subcutaneous adipose tissue 

(SAT) and visceral adipose tissue (VAT); VAT can be further sub-divided into omental and 

mesenteric fat depots [199].  

 

1.7.1 Subcutaneous adipose tissue.   
 

SAT has been described as being less metabolically active in comparison to VAT, however it is 

more efficient in both short and long term energy storage. The main areas for subcutaneous fat 

deposition are the femerogluteal regions, back and anterior abdominal wall [200]. About 80% of 

all body fat is in the subcutaneous area and functions to store triglycerides during times of energy 

surplus whilst supplying energy during starvation [201]. SAT also functions as a buffer for FFA 

and protects against lipotoxic effects [202]. Enlarged adipocytes are typically observed in patients 

with metabolic disorder and are an indication of adipogenic potential in subcutaneous tissue and 

can be the trigger for increased macrophage infiltration and inflammatory process activation 

[202]. Apovian et al., reports individuals bearing larger amounts of subcutaneous adipose tissue, 

as in obesity are associated with systemic hyperinsulinemia, impaired endothelium-dependent 

flow-mediated vasodilatation, and elevated plasma C-reactive protein (CRP) levels, a marker of 

systemic inflammation [203].  Gealekman et al. reported that the angiogenic capacity of 

subcutaneous abdominal adipose tissue decreased with increasing BMI but that this did not 

change in visceral adipose tissue [204]. In addition, a decrease in angiogenic capacity correlated 

with insulin resistance which suggests that impairment in subcutaneous adipose tissue 
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angiogenesis may contribute to metabolic complications of obesity [204]. However unlike VAT, 

SAT has also been associated with health benefits; larger subcutaneous thigh fat mass has been 

reported to exhibit protective effects. The Health, Aging, and Body Composition Study reported 

that large subcutaneous thigh fat was independently correlated with improved glucose 

homeostasis in males and favourable lipid profile in both males and females. A separate study 

conducted in Australia examined associations between waist and hip circumferences to 

components of metabolic syndrome. After adjustment for age, BMI and waist circumference, a 

larger hip circumference was associated with a lower prevalence of diabetes and dyslipidaemia. 

A review by Gunawardana discussed how healthy adipose tissue offers resistance against insulin 

resistance, as adipokine secretions may be able to compensate for the lack of functional insulin 

in diabetes. Studies strongly suggest that adiponectin plays a protective role against insulin 

resistance and cardiovascular disease. Adiponectin, an abundant adipokine with reported 

beneficial properties, decreases insulin resistance by decreasing triglyceride content in muscle 

and liver in obese mice via fatty-acid combustion and energy dissipation in muscle. Also, 

adiponectin increased the ability of insulin to stimulate glucose uptake, through increased glucose 

transporter 4 (GLUT4) gene expression. 

 

1.7.2. Visceral adipose tissue 
 

CT measures of both SAT and VAT have been shown to be correlated with multiple metabolic 

risk factors, although risk factor correlations with VAT are significantly stronger than those for 

SAT [205]. VAT, has also been documented to provide information above and beyond simple 

clinical anthropometrics, including BMI and waist circumference and accounts for differences in 

risk factor stratification among individuals who are obese [205]. Visceral fat depots, including 

omental and mesenteric adipose tissue, represent a risk factor for the development of CVD and 

type 2 diabetes (T2D) [206].  This was found in particular in obese diabetic individuals, where it 

was linked to a significant up regulation of leptin and down regulation of adiponectin gene 

expression in VAT compared to SAT [206]. SAT and VAT also differ in metabolic activity, 
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which can largely be accounted for by the increased mitochondrial density in VAT, an 

observation made in both human and murine studies [207]. Despite being smaller than SAT cells, 

VAT is bio-energetically more active and responsive to substrates of the electron transport chain 

and may contribute to the production of larger amounts of ROS [207]. Visceral adipose tissue 

mass correlates significantly with development of insulin resistance, while total or subcutaneous 

tissue mass does not [208]. It has been thoroughly confirmed that the adipocytes of visceral fat 

tissue are more lipolytically active than subcutaneous adipocytes and thus contribute more to the 

plasma free fatty acid levels [209]. As a result, excess visceral fat will enhance the level of free 

fatty acid delivered to the liver, thus increasing hepatic glucose and very low density lipoprotein 

particles (VLDLs) output, and impair the hepatic insulin response [210]. Various studies have 

documented an age-associated increase in VAT which is known to contribute to metabolic 

syndrome irrespective of sex and ethnicity [211]. The detrimental effects of VAT as opposed to 

subcutaneous fat are attributable to its increased potential to secrete pro-inflammatory cytokines 

also referred to as adipokines [211]. These adipokines, also include TNF- α, IL-6, and vascular 

endothelial growth factor (VEGF) amongst many others, all of which combined or independently 

aid the development of metabolic disease, via inflammation, increased cell proliferation and 

insulin resistance [212].   

 

A review by Bremer et al., highlights IL-6, IL-1, TNF-α and CRP as key mediators in the 

development of metabolic syndrome. IL-6, induced by increased IL-1 and TNF-α concentrations 

has been shown to hinder insulin signalling by directly interacting with insulin receptor substrate 

1 (IRS-1) and inhibiting glycogenesis in the liver [213]. While neutralisation of TNF-α 

significantly increases insulin sensitivity, IL-6 has also been linked to the production of C-

reactive protein and fibrinogen, further propagating inflammation [213]. In conclusion increased 

visceral fat promotes the development of metabolic abnormalities i.e. diabetes, hypertension, 

cardiovascular disease, all of which are well known to reduce lifespan. Surgical removal of 

visceral fat ameliorates the negative impact of pro-inflammatory cytokines and protects against 

previously discussed health implications. Removal of SAT exhibits no such effect [214].  
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1.7.3. Brown adipose tissue. 
 

Brown adipose tissue (BAT) is a specialised tissue believed to have developed as an essential 

thermoregulatory effector, a role it fulfils by dissipating stored energy via the production of heat 

during the challenge of low environmental temperatures [215]. This is in comparison to its 

antagonistic adipose counterpart, white adipose tissue (WAT) which is predominantly 

responsible for storing excess energy as triglycerides [215]. Differences in both structural and 

physiological characteristics are sufficient to distinguish between BAT and WAT. White 

adipocytes are considerably less complex, spherical cells and consist of a single lipid droplet, 

accounting for the majority of the cell volume [216]. Comparatively, BAT has increased vascular 

density compared with WAT and contains brown adipocytes, which are more complex polygonal 

cells with a characteristically increased mitochondrial content, responsible for the brown colour 

[216]. The thermogenic potential of mammals is limited to BAT and skeletal muscle, with skeletal 

muscle being shown to burn roughly 50 times as much glucose during cold exposure as BAT 

[216].  

 

Skeletal muscles augment shivering thermogenesis by converting chemical energy to kinetic 

energy [217]. The thermogenic ability of BAT is attributable to the high mitochondrial content 

mediating proton transfer across mitochondrial membranes to produce adenosine triphosphate 

(ATP), in the absence of ATP production excess energy stored in the proton gradient is leaked 

via uncoupling protein 1 (UCP-1) and released as heat, inducing “non-shivering” thermogenesis 

[218]. Consequently BAT is found increasingly in small hibernating mammals and newborns, 

both of which have a large surface area to body mass ratio, thus are less capable of maintaining 

core body temperature due to insufficient skeletal muscle and inadequate basal metabolic rate to 

produce heat [217]. Until recently it was thought that BAT was only present in neonates, isolated 

in axillary, cervical, perirenal, and periadrenal regions, with minuscule amounts found in adults 

exhibiting little to no physiological relevance.  
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1.7.4. Brown fat in adults  
 

Recent studies utilising both positron emission tomography (PET) and CT have been successful 

in identifying BAT deposits in adults, using radioactively labelled fluorodeoxyglucose (FDG) as 

a means of identifying metabolically active tissue [219]. Quellet et al., designed a sophisticated 

protocol to determine the thermogenic role of BAT in 6 male adults under cold conditions 

specifically designed to minimise shivering [220]. Using PET-CT the authors reported increased 

glucose and non-esterified fatty acid utilisation, as an energy source to fuel BAT thermogenesis 

under cold conditions, in accordance with enhanced 11C-acetate uptake, a marker of oxidative 

metabolism [220]. Interestingly the authors reported a 1.8 fold increase in total body energy 

expenditure mediated by BAT activity, undoubtedly highlighting the thermogenic role of brown 

fat in adults [220]. A recent study examined BAT distribution/activity in relation to body 

composition and energy metabolism in 24 healthy men, under thermoneutral conditions and mild 

cold exposure, using indirect calorimetry to measure energy expenditure and dual energy x-ray 

absorptiometry to evaluate body composition [221].  

 

BAT activity declined as BMI increased and expressed a significant negative relation with 

percentage body fat, while resting metabolic rate and BAT were significantly positively 

correlated, highlighting the beneficial effects of BAT on resting energy expenditure and the lack 

of in overweight/obese subjects [221]. Thus the accumulation and/or retention of BAT can be 

assumed to have favourable metabolic consequences due to its role in the dissipation of excess 

energy as heat. Following the discovery of active BAT in human adults, there exists a potential 

avenue which could be therapeutically exploited to elevate from the symptoms of obesity and 

protect against metabolic syndrome (Fig 1.4). To confirm the identity of BAT studies have 

conducted immunohistochemical staining for UCP1 on tissue samples extracted from the 

cervical-supraclavicular region and were successful in identifying immunopositive, multilocular 

adipocytes [222].  
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Figure 1.4.The main locations of brown and white adipose tissues and areas most 
commonly associated with disease risk. 

A) VAT surrounds organs and can be divided in omental (b), mesenteric (c), retroperitoneal ((d): 
surrounding the kidney), gonadal ((e): attached to the uterus and ovaries in females and 
epididymis and testis in men), and pericardial (f). The omental depot starts near the stomach and 
spleen and can expand into the abdomen, while the deeper mesenteric depot is attached to the 
intestine. The gluteofemoral adipose tissue (g) is the SAT located to the lower-body parts and is 
measured by hip, thigh, and leg circumference. WAT can also be found intramuscularly (h). 
Brown adipose tissue is found above the clavicle ((i): supraclavicular) and in the subscapular 
region (j). Although the mentioned subcutaneous and visceral adipose tissues are found in 
humans, depots (d) and (e) are mostly studied in rodents. (B) The adipose tissue depots that have 
been linked to risk of developing obesity-related diseases are indicated in red.  
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1.7.5. Skeletal muscle 
 

The benefits of retaining muscle mass throughout life have long been recognised; as well as 

facilitating mobility and mechanical strength, skeletal muscle functions as a metabolic furnace 

increasing its rate of energy consumption in situations where explosive contractions are required 

[223]. Furthermore, abundant evidence points to a key role of altered muscle metabolism in the 

genesis, and therefore prevention, of many common pathologic conditions and chronic diseases 

[224]. Because the amount of energy consumed by muscle tissue can vary considerably due to 

exercise stimulated hypertrophy, increased muscle mass protects against the development of 

obesity and associated co-morbidities, by altering energy homeostasis in favour of energy 

expenditure [224].  

 

The age-associated loss of muscle, termed sarcopenia is usually accompanied with an increase in 

adipose tissue mass, as metabolic rate drops and the ability to engage in physical exercise 

diminishes and perfectly demonstrates the vital role of skeletal muscle in contributing to energy 

expenditure and safeguarding against the development of obesity [225, 226]. In support of this 

notion is a study conducted by Berit Heitmann who associated thigh circumference, as an indirect 

measure of lower body muscularity with an increased risk of cardiovascular disease and coronary 

heart disease; in a study comprising of 1436 men and 1380 women [227]. A more recent study 

published in 2015 by Hamasaki et al., investigated correlations between lower extremity muscle 

mass to body weight ratio (L/W) and the ratio of lower extremity muscle mass to upper extremity 

muscle mass (L/U) with metabolic parameters related to obesity [228]. The authors conclude, 

both high L/W and L/U ratio were indicative of improved metabolic parameters related to obesity 

including systolic blood pressure, triglyceride, high-density lipoprotein cholesterol, insulin 

resistance, and waist circumference [228]. Muscular strength quantified by one-repetition 

maximal measures for leg and bench presses, inversely associated with metabolic syndrome 

incidence, independent of common confounding factors such as age and body size, in a follow up 

study recruiting 3233 men between the age of 20-80 [229].  



59 
 

The molecular mechanisms responsible for fat free mass mediated protection from obesity are 

complex and involve cell signalling pathways governing oxidative stress resistance, anti-

inflammatory cytokine production and enhanced GLUT4 mediated glucose uptake and glycogen 

storage, all of which have been associated with the development if not the progression of obesity 

and associated health implications [229]. 

1.8. The role of Adipokines and myokines in obesity. 
 

Adipokines are factors produced and secreted by adipocytes and mykoines are factors produced 

and secreted by myocytes [230]. These factors can be peptide or non-peptide in structure [230]. 

Several studies have shown that the secretion of adipokines and myokines can influence the 

development and progression of disorders stemming from obesity including T2D and CVD [178]. 

To date, more than 300 adipokines have been identified, a list far too extensive to consider in 

detail and therefore those adipokines most influential in obesity will be discussed [178]. 

Considerably fewer myokines have been identified and the current global hypothesis is that 

myokines play a role in protection against the diseasome of physical inactivity [230].  

 

1.8.1. Adipokines 
  
 

1.8.1.1. Leptin. 
 

Leptin is the product of the ob gene and is predominantly produced by adipose tissue, playing a 

role in satiety and body mass regulation as discussed previously [231, 232]. Through interactions 

with its receptor in the hypothalamus (via Janus kinase (JAK)-signal transducers and activators 

of transcription (STAT)), leptin offers protection against the negative health implications 

associated with increased adiposity i.e. insulin resistance [232]. Leptin activates, 5’-activated 

protein kinase (AMPK) protein kinase, an intracellular signalling molecule capable of inhibiting 

acetyl-CoA carboxylase, thus reducing malonyl-CoA concentrations and decreasing lipogenesis 
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[233]. However the observed protective role of leptin is rendered defective in obese humans due 

to leptin desensitisation [233]. Leptin plasma concentration and mRNA expression in adipose 

tissue are directly related to obesity severity [234]. Reviews by Rabe et al., discuss similar 

observations in obese rodents which demonstrated insulin resistance, as a result of attenuation of 

leptin sensitivity in the brain, leading to excess triglyceride accumulation in muscle, liver and the 

pancreas [235]. Leptin has also been associated with inhibiting insulin’s interactions with insulin 

receptors on adipocytes. A potential mechanism behind this observation may be due to at the 

genetic level, the leptin receptor and insulin response loci appear to be closely co-localised on 

chromosome 1 [236].  

 

With high leptin levels down-regulating the receptor gene and diminishing the acute insulin 

response, this may in turn have implications for insulin sensitivity [236]. Hyperleptinaemia has 

been associated with pro-inflammatory responses in obese adipose tissue, the proposed 

mechanism recognises leptin’s ability to regulate TNF-α production and macrophage recruitment 

[237]. Leptin has also been reported to trigger monocyte chemoattractant protein (MCP)-1 

expression, and endothelial cell proliferation and migration [238]. In conclusion hyperleptinemia 

exhibits deleterious effects in obese individuals and facilitates the pathophysiology of obesity 

[237]. 

 

1.8.1.2. Adiponectin 
 

Adiponectin is the most abundant adipokine secreted by adipose tissue. Interestingly, adiponectin 

is found in lower concentrations in the circulation of obese individuals yet is found excessively 

in lean, fit individuals [239]. Adiponectin has been identified as having anti-diabetic properties, 

promoting insulin sensitivity among other beneficial effects [240]. Adiponectin’s role in glucose 

metabolism is mediated by adiponectin receptors, adipoR1 expressed ubiquitously and adipoR2 

predominantly found in the liver [241]. Interactions between adiponectin and adipoR2 in the liver, 

results in a cascade of molecular interactions beginning with the activation of AMPK resulting in 



61 
 

down-regulation of genes encoding gluconeogenic and lipogenic enzymes and molecules [241]. 

AdipoR2 expression has been noted to increase glucose uptake in the liver by up-regulating 

glucokinase [241]. Essentially adiponectin decreases insulin resistance by decreasing hepatic 

triglyceride content and glucose production, while in muscle contributes to fatty-acid combustion 

and energy dissipation [242]. Fu et al., further support adiponectin’s role in insulin sensitivity, 

by reporting adiponectin’s ability to stimulate glucose uptake, through increased glucose 

transporter 4 (GLUT4) gene expression and increased GLUT4 recruitment to the plasma 

membrane [243]. In addition to the insulin sensitising effects adiponectin is also vascular-

protective and inhibits the development of atherogenic processes by down regulating the 

expression of cellular adhesion molecules and by exhibiting anti-TNF-α effects [243]. However 

adiponectin circulates in plasma as a low-molecular weight trimer, a middle-molecular weight 

hexamer, and high-molecular weight 12- to 18-mer, and these forms were postulated to differ in 

biological activity [244].   

 

1.8.1.3. Other adipokines with metabolic influences 
 

The increased secretion of TNF-α from adipocytes is a reflection of the increased infiltration of 

macrophages and lymphocytes, rather than an enhanced rate of production [245]. Nevertheless 

TNF-α is pivotal in the manifestation of insulin resistance; by atypical phosphorylation of IRS-1 

[246]. Evidence supporting such claims stems from studies which have deleted TNF-α and/or 

TNF-α receptors and reported vast improvements in insulin sensitivity in both high fat fed mice 

and leptin deficient ob/ob mice [247]. Furthermore studies conducted in humans conclude adipose 

tissue TNF-α expression correlated with BMI, percentage of body fat, and hyperinsulinemia, 

whereas weight loss decreased TNF-α levels [235]. Increased IL-6 concentrations have been 

reported to reduce insulin-dependent hepatic glycogen synthesis and glucose uptake in adipocytes 

[235]. More recent evidence has outlined the role of IL-6 in cancer progression, IL-6 was seen to 

have roles in tumour microenvironment regulation and production of breast cancer stem cell-like 

cells and may be the link between obesity and tumour progression [248].  Mice administered the 
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recombinant adipokine resistin exhibit deregulated glucose homeostasis in hepatocellular and 

myocellular tissues and neutralisation of resistin resulted in increased insulin sensitivity [249]. In 

vitro studies conducted in adipocytes reveal resistin reduces glucose uptake in response to insulin, 

anti-resistin antibodies produced an opposing effect [249]. Resistin knockout mice fed a high fat 

diet develop obesity and insulin resistance, however exhibit reduced fasting glucose in 

comparison to matched-weight controls [250, 251]. Visfatin is an adipokine secreted 

predominantly from visceral fat stores and correlates significantly with obesity and insulin 

resistance [252]. Surprisingly visfatin mimics the actions of insulin and can induce glucose uptake 

by both adipocytes and myocytes and can inhibit gluconeogenesis in the liver and highlights the 

potential benefits of visceral adipose tissue, although literature often present contrasting views 

[253]. Like insulin visfatin regulates glucose uptake via the insulin transduction pathway and 

even binds to insulin receptors with the same affinity but at a differing site [253]. Increased 

visfatin production from visceral fat may function as a compensatory mechanism to declined 

beta-cell function and that obese individuals experience visfatin resistance [254].  

1.8.2. Myokines.  
  

1.8.2.1. Irisin 
 

Bostrom et al recently identified Peroxisome proliferator-activated receptor gamma coactivator 

1-alpha (PGC1-α) induced overexpression of the Fibronectin domain-containing protein 5 

(FNDC5) gene following aerobic exercise in mice [255]. The FNDC5 gene encodes a type 1 

membrane protein that is proteolytically cleaved and secreted into the circulation, and can bind 

undetermined receptors on white adipocytes [256]. Irisin is thought to be a myokine, and is 

referred to as such in current literature, however there is a paucity of evidence demonstrating its 

release [257]. Irisin has been reported to manifest an anti-obesity effect by imposing a BAT 

phenotype upon WAT leading to increased energy expenditure via thermogenesis [258]. This 

potential manipulation of cellular energy balance therefore has the potential to induce a calorie 
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restriction (CR) like state via modulation of WAT function, as excess energy would be dissipated 

as heat upon exposure to irisin [259]. Irisin has also been reported to reduce fasting glucose 

concentrations and improve insulin sensitivity in both murine and human models, potentially 

mitigating the detrimental effects of obesity and T2D [260]. Although the precise mechanisms 

behind this observation are not completely understood, the ability of irisin to increase expression 

of UCP1 and thus cause a ‘browning’ shift in WAT may be likened to caloric restriction. Irisin 

may therefore impact the ageing process, by releasing stored energy through non-shivering 

thermogenesis and thus mimicking CR mechanisms, which have been proven to promote 

longevity [261]. Irisin administration has therefore been proposed to be a potential future 

therapeutic target that may function to protect against age associated metabolic disorders. By 

creating a calorie deficit it could be speculated that irisin may also promote longevity by the same 

mechanism [16]. However there remains a significant amount of confusion regarding firstly the 

source of irisin secretion and secondly the role of irisin in individuals suffering from metabolic 

complications. In addition to production by muscle, irisin release has been observed from adipose 

tissue, suggesting that irisin is an adipokine as well as a myokine [262, 263].  

 

Evidence of a positive correlation between irisin and BMI has been reported [264] whilst others 

have found either no association [265] or a negative association [266]. As in muscle, irisin release 

from WAT may be stimulated by exercise training and is reduced in fasted animals (12). The role 

of irisin in diabetes is controversial, with initial reports suggesting that circulating irisin levels in 

T2D may be lower than in healthy individuals [267, 268]. However, studies performed in obese 

individuals, some of whom had T2D, have reported elevated levels. Most recently, published data 

have suggested that irisin may also have a role in atherosclerotic cardiovascular disease [269] and 

could predict cardiovascular disease risk [270]. This finding is of importance as individuals with 

T2D are at an increased risk of death by cardiovascular disease [271].  As irisin is a potential 

target for the treatment of obesity, further appreciation of the role of irisin in obesity and diabetes 

is required. 
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1.8.2.2. Other myokines with metabolic influences  
 

The neurotrophin BDNF and its receptor, the Tyrosine receptor kinase B (TrkB) are most widely 

expressed in the brain [46]. Increasing evidence suggests that BDNF may be influential in 

regulating central metabolic pathways but as a regulator of skeletal muscle [272]. Interestingly 

low levels of circulating BDNF are also found in obese and T2D individuals [273]. Farooqi 

highlights BDNF is a key modulator of hypothalamic pathways governing body composition and 

energy homeostasis and more specifically report BDNF levels enhance glucose utilisation in 

skeletal muscle [274]. Such results may explain molecular mechanisms behind the benefits of 

exercise which are still largely unknown. Exercise stimulated IL-15 release offers great resistance 

against the development of obesity/T2D and is even implemented in therapeutic approaches 

against metabolic disorders [275]. IL-15 exhibits its effects, by modulating both skeletal muscle 

structure and function (Fig. 1.5) [276].  

 

Furthermore IL-15 has been reported to regulate glucose homeostasis by upregulating GLUT4 

transporters and increasing glucose uptake in C2C12 muscle cells [277]. Both resistance training 

and aerobic exercise have been correlated to increased IL-15 concentrations, in mice and human 

studies and have been associated with a reduction in visceral adipose tissue [276, 278]. While IL-

6 secretion from adipocytes is deleterious in nature, IL-6 secretion from myocytes exhibits 

beneficial effects including anti-inflammatory effects [279]. Generally exercise stimulates the 

production and secretion of anti-inflammatory cytokines, an effect which can be evoked with 

recombinant IL-6 treatment in vitro [280]. IL-6 can reduce levels of TNF-α and up regulate 

production of anti-inflammatory cytokines IL-1ra and IL-10 [281]. Mechanistic studies reveal 

IL-6 facilitates glucose uptake via GLUT4 translocation and fat oxidation via increased activation 

of AMPK and/or phosphatidylinositol 3-kinase (PI3-kinase) [282] 
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Figure 1.5. The various roles of exercise induced myokines and their metabolic 
consequences. 

IL-4, IL-6, IL-7, IL-15 and LIF promote muscle hypertrophy. Myostatin inhibits muscle 
hypertrophy and exercise leads to liver secretion of the myostatin inhibitor follistatin. BDNF and 
IL-6 are involved in AMPK-mediated fat oxidation, IL-6 stimulates lipolysis and IL-15 stimulates 
lipolysis of visceral fat. IL-6 also enhances insulin-stimulated glucose uptake and stimulates 
glucose output from the liver, but only during exercise. IL-6 also increases insulin secretion by 
inducing the expression of GLP-1. IL-6 has anti-inflammatory effects as it inhibits TNF 
production. IGF-1, FGF-2 are involved in bone formation, and follistatin-related protein 1 (FSTL-
1) improves endothelial function and revascularisation of ischaemic blood vessels. Irisin has a 
role in 'browning' of white adipose tissue [283].  
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1.9. Type 2 diabetes (T2D) 

The prevalence of T2D, a co-morbidity of obesity, is increasing worldwide. T2D is a preventable 

but incurable disease that affects approximately 2.9 million people within the UK, and has been 

associated with significantly reduced lifespan [284]. T2D is a chronic metabolic disorder 

traditionally associated with older adults, although younger individuals are being diagnosed with 

increasing frequency [285]. T2D can be defined at its simplest as a condition that leads to the 

presence of elevated blood glucose levels [285]. This increase in blood glucose is usually caused 

by a combination of insulin resistance, altered endogenous glucose output and failure of the 

endocrine portion of the pancreas to compensate for this change in insulin sensitivity [286].  Like 

obesity, T2D often develops due to a combination of environmental risk factors and genetic 

predisposition [287]. There is sufficient evidence to declare obesity and the sedentary lifestyle 

and calorific diet that often accompany it, as the principle risk factor for developing T2D [285, 

286]. The close association between obesity and T2D has led to use of the term, “diabesity”, as 

more than half of T2D patients are diagnosed with obesity prior to diagnosis of T2D itself, 

therefore adipose tissue should play a crucial role in the onset of T2D.  

1.10. Aetiology of T2D. 
 

The aetiology of T2D involves a series of complex interactions between a number of factors, 

including arguably the most influential to the progression of T2D, leading a diabetogenic lifestyle. 

This lifestyle comprises reduced physical activity and excessive calorie consumption.   

 

1.10.1. Genetics of T2D.  
  
 Genome wide association studies (GWAS) analysing SNP between cohorts of T2D volunteers 

and healthy volunteers have been successful in identifying 36 genes associated with an increased 

risk of developing T2D, a list far too extensive for the purpose of this study. The strongest 
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associations are currently found for gene variants in the loci of transcription factor-7– like 2 

(TCF7L2), initially identified in an Icelandic population, and potassium channel, voltage gated 

KQT-like subfamily Q, member 1 (KCNQ1), first described in Asian populations with 

subsequent replications in many other cohorts [288, 289]. TCF7L2 gene was identified in 2006 

by Grant et al., and is recognised as the strongest genetic contributor to T2D across all racial 

groups [290]. Carriers of one risk allele of the SNPs rs7903146 have an approximately 40% 

higher T2D risk than homozygous carriers of the protective allele [290]. The precise genetic 

defect that causes the association of TCF7L2 with T2D remains unclear, although silencing 

TCF7L2 expression by siRNA correlates with reduced insulin output whereas overexpression 

stimulated insulin secretion in both human and mice islets [291]. It is therefore clear that the 

effect of the TCF7L2 risk allele is closely related to a reduction in insulin secretion. Tong et al., 

conducted a meta-analysis, studying the data from 25 publications involving 35,843 cases of T2D 

and 39,123 controls, compromising of Caucasians, North Europeans, East Asians, Indians, and 

Africans [292].  

 

The results from their study revealed four variants of TCF7L2 gene which are all associated with 

T2D, and indicates a multiplicative genetic model for all the four polymorphisms, as well as 

suggests the TCF7L2 gene is involved in near 1/5 of all T2MD [292]. The KCNQ1 gene codes 

for the pore-forming alpha subunit of a voltage gated potassium channel that is expressed in a 

number of tissues, notably, the heart, pancreas, kidneys and intestine [289]. Yasuda et al., 

conducted a multistage GWAS study in 1,612 Japanese individuals with T2D and 1,424 normally 

healthy controls, analysing a total 100,000 SNPs [293]. The authors report the most significant 

association was obtained with SNPs in KCNQ1, and dense mapping within the gene revealed that 

rs2237892 in intron 15 showed the most significance [293]. Interestingly the authors found 

significant correlations with the KCNQ1 risk allele and impaired lipid metabolism with decreased 

HDL and increased LDL along with higher levels of total cholesterol [293]. Ohshige et al., have 
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reported positive correlations between diabetic neuropathy and KCNQ1, however this 

observation requires further validation [294].  

 

1.10.2. Obesity. 
 

Existing research has identified obesity as a potent risk factor for the development of T2D and it 

has been estimated that obesity accounts for 85 percent of the overall risk of developing T2D 

[295]. Therefore factors facilitating the development of the obese phenotype, including a 

sedentary lifestyle and the excessive consumption of calorific foods are central to the 

manifestation of T2D [296]. Studies have reported individuals homozygous for the FTO gene, 

characteristic of individuals genetically predisposed to obesity often present with impaired 

glucose homeostasis and aggressive insulin resistance [296]. Reasons behind the increased 

incidence have been discussed previously in great deal. In summary, the recent adoption of the 

Western diet globally consisting of increased consumption of processed foods, high in 

trans/saturated-fats, salt and sugar in conjunction with the implementation and utilisation of time 

saving/wasting technologies has resulted in energy imbalance in favour of energy retention as 

opposed to expenditure [295, 297].  The net effect leads to increased adipose tissue, leading to β-

cell damage and impairment of insulin receptor signalling [298].  

1.11. The pathophysiology of T2D. 
 

The reduced ability to produce insulin and a reduction in insulin sensitivity is routinely diagnosed 

in patients suffering from T2D [299]. An area of much controversy is which is more influential 

and which manifests first. Understandably a difficult predicament considering both defects are 

invariably present in individuals diagnosed with T2D. Initial studies trying to identify the root of 

T2D sought to investigate a group of indigenous Americans, also known as Pima Indians; 

recognised for being highly susceptible to developing T2D [300, 301]. The conclusions drawn 

from such studies identified a marked increase in insulin resistance with little or no significant 
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change in insulin output. At which point insulin resistance was recognised as the primary defect 

in T2D [301, 302]. However succeeding work implemented advanced research tools and 

conducted studies highlighting a falling insulin secretory response following an oral glucose test 

and up to 60% decreased postprandial insulin output [303, 304]. It is understandable that beta-

cell dysfunction plays an imperative role in the manifestation of T2D, considering the precise 

mechanisms regulating normoglycemia [305]. To summarise, the current concept is both beta-

cell dysfunction and insulin resistance occur very early in the course of T2D long before blood 

glucose values reach a level that is defined as prediabetes.  

 

1.11.1. T2D:  β-cell dysfunction 
 

The pancreas is an organ with dual function and consists of two types of parenchymal tissue 

[306]. The islet of Langerhans exhibit endocrine function and produce various hormones, while 

the acinar cells display exocrine function and secret digestive enzymes [307]. Islets contain five 

different endocrine cell types, (alpha, beta, delta, pp and epsilon cells) which modulate changes 

in plasma nutrient levels with the release of a carefully balanced mixture of islet hormones into 

the portal vein [308, 309]. The pancreatic β-cells make up the majority of the islet of langerhans 

and are responsible for producing insulin, the major hormone responsible for carbohydrate, fat 

and protein metabolism [310]. Pancreatic β-cell dysfunction, thus insulin deficiency has been an 

area of research interest for many years, since it has been recognised as an imperative risk factor 

for the development of T2D [311]. The United Kingdom prospective diabetes study highlighted 

the significance of β-cell impairment in the development of T2D, by reporting β-cell dysfunction 

at least 10 years before the onset of hyperglycaemia, confirming its role in the pathophysiology 

of T2D [312]. Blood glucose levels rise post-prandially and glucose enters the β-cell across the 

plasma membrane via its respective transporter (GLUT-2) and is then a substrate for the rate 

limiting step in glucose induced insulin secretion, glucokinase [313]. This means that glucose 

metabolism is mainly aerobic allowing glycolytically produced pyruvate to enter the 

mitochondria to fuel ATP production via oxidative phosphorylation [314].  
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The ATP produced via this pathway increases the ATP/ADP ratio within the cytosol which leads 

to closure of ATP-sensitive K+-channels in the plasma membrane [314]. Closure of K+ channels 

depolarises the plasma membrane and activates cyclic adenosine monophosphate (cAMP) along 

with specific catalytic subunits of protein kinase A (PKA) facilitating the opening of the 

mitochondrial permeability transition pore, a multi-protein complex, which functions as a 

mitochondrial Ca2+ release channel thus aids exocytosis of insulin containing vesicles [314-316]. 

This process has been recognised defective in individuals with T2D (Fig.1.6). 

 

1.11.2. Contributors to T2D β-cell dysfunction. 
 

The cellular mechanisms contributing to β-cell dysfunction have mostly been investigated in vitro 

due to the increased difficulty to obtain primary cells from humans. However despite 

experimental drawbacks several theories have been proposed to be potentially influential in the 

manifestation of β-cell dysfunction.  
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Figure 1.6. A simplified representation of the mechanism behind glucose mediated insulin 
secretion, from pancreatic-β cells. 

A molecule of glucose is rendered into pyruvate via glycolysis and is shuttled in the mitochondria, 
directly into the Krebs cycle, yielding ATP molecules which facilitate the closure of ATP 
sensitive K+ channels. The net effect leads to the depolarisation of the plasma membrane 
activating cAMP along with specific catalytic subunits of PKA facilitating the opening of the 
mitochondrial permeability transition pore, a multi-protein complex, which functions as a 
mitochondrial Ca2+ release channel thus aids exocytosis of insulin containing vesicles [317] 
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1.11.3. Glucotoxicity  
 

Glucotoxicity in the context of T2D is recognised as the deleterious nature of chronic 

hyperglycaemia on β-cell function and insulin action [318]. In vitro studies investigating the 

effects of chronically elevated glucose levels often report an associated increase in ROS and a 

subsequent increase in cytoplasmic DNA fragmentation, increased expression of pro-apoptotic 

proteins (Bax) relative to anti-apoptotic proteins (Bcl-2) and significant alterations in 

mitochondria morphology and volume [319]. Several glucose related pathways have been 

identified which result in the increased production of ROS including enhanced autoxidation, 

oxidative phosphorylation, glycosylation, and the glucosamine pathways [318]. Separately 

hyperglycaemia-induced mitochondrial superoxide activates UCP2-mediated proton leak, thus 

lowering ATP levels and impairing the closure of K+ channels and preventing depolarisation of 

plasma membranes, thus inhibiting glucose-stimulated insulin secretion [320]. The addition of 

antioxidant molecules abrogates the apoptotic effects of excess glucose and restore insulin 

secretion from β-cells [320].    

 

Existing research has elucidated individuals suffering from T2D exhibit a metabolic shift towards 

dysregulated nutrient homeostasis and a compensatory increased flux through the hexose 

biosynthetic pathway, resulting in increased levels of intra and extracellular glucosamine [321]. 

Glucosamine levels have been correlated with impaired activation of the insulin receptor and the 

net result leads to impaired phosphorylation of IRS proteins [318]. The endoplasmic reticulum 

(ER) is responsible for completing fundamental processes governing the production of the mature 

form of insulin, following endopeptidase mediated excision of the C peptide domain on molecules 

of proinsulin [320]. Glucotoxicity induces ER stress, identified by the increased quantification of 

x-box protein 1 and heat shock protein 5 in islets from T2D patients; potentially decreasing insulin 

production and Golgi apparatus mediated exocytosis [318]. Data from the Weir laboratory shows 

profound effects of hyperglycemia to change the transcriptional pattern of a multitude of beta-



73 
 

cell genes termed beta-cell dedifferentiation, the effects of which remain to be fully understood 

[322].  

 

1.11.4. Lipotoxicity. 
 

The lipotoxicity associated with excess adiposity has been discussed previously and is 

fundamental in the pathogenesis of obesity, likewise lipotoxicity plays an integral role in the 

pathogenesis of T2D; β-cell function and is just one mechanism connecting obesity to T2D. 

Chronic exposure of pancreatic β-cells to FFA, as a result of poor dietary regulation of fat intake 

and the consequent fatty acid spill over effect elicits multiple mechanisms of toxicity, including 

accumulation of malonyl–CoA and long-chain fatty-acyl-CoA in β-cells and increased fatty acid 

oxidation resulting in an increased generation of ROS [318]. Murine islets subjected to high FFA 

treatment exhibit decreased expression of mRNA coding for fatty acid oxidation promoters, 

including peroxisome proliferator–activated receptors, carnitine palmitoyl transferase 1 and acyl 

CoA oxidase whilst mRNA expression of peroxisome proliferator-activated receptor gamma 

(PPAR-γ), acetyl CoA carboxylase and fatty acid synthase, the transcription factors for lipogenic 

enzymes are upregulated [320, 323]. Mouse models of T2D also exhibit increased expression of 

pro-apoptotic genes and caspase activity in a similar fashion to hyperglycaemia induced cell death 

[319].  

 

Direct mechanisms relating elevated FFA to β-cell death involve the increased hydrolysis of 

sphingomyelin and de novo production of ceramide, two conditions which arise in times of 

triglyceride excess [324]. Ceramide can induce apoptosis by activating NFκB, which upregulates 

the expression of nitric oxide synthase [324]. The increased formation of nitric oxide forms 

peroxynitrite, capable of disrupting mitochondrial depolarisation and actively upregulating 

apoptotic and necrotic pathways. Furthermore studies have demonstrated both ceramide and 

peroxynitrite are capable of inducing cellular senescence, another potential mechanism behind β-

cell dysfunction [325]. The work of S. Del Prato recognises an equal contribution of both 
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glucotoxicity and lipotoxicity. However a high glucose level must be present for production of 

malonyl-CoA, which is required in sufficiently large amounts to promote adipogenesis and inhibit 

fatty acid oxidation. Otherwise, the excess fatty acids would be oxidized, and thus detoxified 

[319]. 

 

1.11.5. β-cell exhaustion. 
 

Chronic insults leading to β-cell dysfunction/loss are met with a decrease in insulin secretion and 

hyperglycaemia [326]. Following significant β-cell damage, β-cells are able to compensate by 

enhancing cell replication, neogenesis, hyperplasia and hypertrophy with the aid of external 

stimuli including hormones, growth factors and glucose levels [326]. T2D mice often display an 

enlarged pancreas, specifically β-cell mass, verifying the role of excessive β-cell proliferation in 

T2D [327]. However β-cell compensation eventually leads to β-cell exhaustion; defined as 

gradual decline with the progression of diabetogenic effects [319]. This decline can be 

categorised into specific phases, beginning with stable adaptation which is characterised a 

decrease in glucose stimulated insulin secretion as well as morphological alterations [319]. 

Furthermore stable adaption is met with a reduction in key enzymes for glucose metabolism and 

an increase in enzymes governing gluconeogenesis and lactate production, along with increased 

expression of pro-apoptotic genes and transcription factors modulating inflammatory responses 

[319].  

 

The next phase of β-cell exhaustion, unstable early decompensation, is met with a further decrease 

in β-cell mass/function and is met with a consequential increase in glucose and in a feedback loop 

further facilitates β-cell deterioration and reduced insulin output [328, 329]. As insulin mRNA 

falls with increasing hyperglycaemia, there is evidence that insulin biosynthesis becomes rate 

limiting for secretion [328]. However regular exercise and calorie control can reduce the extent 

of β-cell damage and patients are able to return to stable adaption [329]. Weir & Bonner state that 
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decompensation is the final stage of β-cell exhaustion and presents with hypotrophy and 

hypoplasia resulting in minimal insulin secretion. Murine studies reveal considerable β-cell 

dedifferentiation in correlation with hyperglycaemia. Morphometric studies on post-mortem 

pancreases of patients with T2D provide convincing evidence that β-cell mass is reduced to less 

than 50% of that of control subjects due to a combination of  increased apoptosis, decreased 

neogenesis and proliferation [329].  

 

1.11.6. T2D:  Insulin resistance. 
 

The binding of insulin to the insulin receptor induces autophosphorylation at several tyrosine 

residues located inside the cell, resulting in the activation and mobilisation of  PI 3-kinase to the 

plasma membrane bringing it in the vicinity of its physiological substrate phosphatidylinositol 

(4,5) bisphosphate (PtdIns(4,5)P2) which it phosphorylates to generate PtdIns(3,4,5)P3 [330]. 

The chain of events then leads to the activation of protein kinase B (PKB) and the subsequent 

phosphorylation of PKB at Thr308 and Ser473, mediated by by the protein kinase 3- 

phosphoinositide-dependent protein kinase-1 (PDK1) [331, 332]. PKB is a vital regulator of 

glycogen synthesis, and does so by phosphorylating glycogen synthase kinase-3 (GSK3), which 

is inactivated following its phosphorylation by PKB [333]. Inactivation of GSK3 by PKB results 

in dephosphorylation of glycogen synthase through the action of protein phosphatases and hence 

the activation of glycogen synthesis. GSK3 also phosphorylates and inhibits a guanine nucleotide 

exchange factor, eIF2B that controls the initiation stage of protein translation [333, 334]. Insulin 

induces the dephosphorylation of eIF2B at the site phosphorylated by GSK3, thereby stimulating 

the synthesis of protein from amino acids [335]. Thus insulin-dependent inactivation of GSK3 

underlies the insulin induced synthesis of glycogen and protein [335]. Relevant to the role of 

glycose uptake is the PKB mediated activation of PI 3-kinase which stimulates the recruitment 

of GLUT4 to the cell [336]. This process is rendered defective in T2D giving rise to insulin 

resistance, below are the main contributors identified by current research.  
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The first study to suggest a primary role for elevated FFA in the development of insulin resistance 

was conducted in 1963 by Randle et al [337]. Randle’s hypothesis was supported by different 

studies, it manifested that insulin resistance can be induced within hours through lipid infusion 

or weeks through a high fat feeding regimen. Increased intake of dietary fat results in increase 

FFA oxidation resulting in increased ratio of mitochondrial acetyl-CoA to pyruvyl-CoA [337]. 

The net effect is an increase in citrate concentration and the accumulation of glucose 6-phosphate 

that results in inhibition of hexokinase the rate limiting enzyme regulating glycogen synthesis 

and the glycolytic pathway [337]. FFA induce NFκB activation, highlighting the involvement of 

inflammatory cytokines in propagating insulin resistance [337, 338]. Inflammation and oxidative 

stress present as by-products of glucolipotoxicity, makers of both are increasingly found in obese 

individuals suffering from T2D [339]. Mitochondrial production of hydrogen peroxide (H2O2) is 

a considerable source of oxidative stress in T2D individuals as is increased NADPH-derived 

superoxide production [340]. The inflamed phenotype is more closely related to the retention of 

exceeding amounts of adipose tissue [339, 340]. Various authors have reported that inflammatory 

cytokines impede insulin signalling by facilitating phosphorylation of serine residues on IRS-1 

[341, 342]. Likewise oxidative stress hinders insulin response in a similar manner, however at 

smaller doses for short periods of time H2O2 has been reported to augment glucose uptake in vitro 

[341, 342].  

 

Studies implementing NMR technology have verified a significant loss of functional 

mitochondria amongst patients suffering from T2D and a causative factor behind ectopic fat 

accumulation in muscle and liver; potentially due to the inability to oxidise metabolic substrates 

and produce ATP [343]. The reason for this defect may be genetic as T2D individuals exhibit 

decreased expression of peroxisome PPAR-γ and Peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha (PGC-1α) [343]. Microarray studies have supported such claims and 

report reduced expression of PGC-1-responsive genes in obese Caucasians with impaired glucose 

tolerance and T2D [344]. These data support the idea that insulin resistance in humans might 

arise from defects in mitochondrial function, which in turn lead to increases in intracellular FA 
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metabolites (fatty acyl-CoA and diacylglyerol) that disrupt insulin signaling in the muscle as well 

as the liver as discussed previously [344]. 

1.12. The epidemiology of T2D. 
 

Much like initial concerns regarding rising obesity levels, T2D was once considered a metabolic 

disorder rising in Western civilisations only. Understandably with increasing incidence of obesity 

globally, a consequential increase in T2D has also been observed. Unlike obesity, health 

implications associated with T2D are a larger cause of concern. Generally, the injurious effects 

of hyperglycemia are separated into macrovascular complications (coronary artery disease, 

peripheral arterial disease, and stroke) and microvascular complications (diabetic nephropathy, 

neuropathy, and retinopathy) [345]. Therefore it is of great necessity that T2D is diagnosed before 

the onset of disorders affecting both health and lifespan. Currently an effective diagnostic 

framework exists which is also responsible for the increased incidence rate [346].  

 

Follow up tests usually involve a fasting glucose test, during which a blood sample is drawn pre 

and post a glucose drink [347]. Non-diabetics will generally have less than 6 mmol/l before the 

test and less than 7.8 mmol/l two hours after the test, while diabetic will have more than 7 

mmol/l before the test and more than 11 mmol/l two hours after the test [347]. Tests analysing 

levels of glycated haemoglobin (HbA1c) are more accurate and provide an insight into glucose 

homeostasis over the course of 2-3 months [348]. An HbA1c level of 6.5% (48mmol/mol) or 

above indicates T2D an HbA1c level of 6-6.4% (42-47 mmol/mol) would indicate that a person 

has a high risk of developing diabetes [347, 349].  
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1.12.1. Global trends in T2D.  
 

Statistics describing the incidence of T2D, derived from the International Diabetes Federation 

(IDF) estimate T2D incidence for adults between the ages of 20 and 79 worldwide for 2013 was 

382 million and it is expected to affect 592 million people by 2035 [350]. According to the WHO 

90 percent of all diabetes cases in the world are attributed to T2D and 175 million people are 

thought to have undiagnosed T2D [350]. The IDF report that India, China, the United States, 

Indonesia, Japan, Pakistan, Russia, Brazil, Italy and Bangladesh all harbour in excess of 10 

million people suffering from T2D and are at the forefront of the T2D epidemic [350]. With the 

increasing adoption of the Western lifestyle many emerging economies are now exhibiting 

increased prevalence of T2D [351, 352]. The ten countries with the highest prevalence rates of 

T2D, relative to population size include Tokelau, Micronesia, Marshall Islands, Kiribati, Cook 

Islands, Vanuatu, Saudi Arabia, Nauru, Kuwait and Qatar [351-353].  

 

The greatest percentage increase in rates of diabetes will occur in Africa over the next 20 years. 

Unfortunately, at least 80% of people in Africa with diabetes are undiagnosed. In general, global 

trends display an increased rate of T2D in urban areas (64%) in comparison to rural areas (36%) 

and may be reflection of lifestyle factors in such areas [353, 354].  Since 2013 more than 3.2 

million people have been diagnosed with T2D in the UK, roughly equating to 1 in 17 people, 

while 850,000 people remain undiagnosed [353]. A longitudinal study conducted by Holden et 

al., monitored T2D incidence over the course of 20 years in the UK and reveals in 1991 there 

existed 169 people with T2D per 100,000 persons per year and since then has increased to a little 

more than 3-fold to 515 people per 100,000 a year [355]. It has been predicted that by 2025 5 

million people will be suffering from T2D in the UK [355].   
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1.12.2. Age-related increased susceptibility to T2D.  
 

Advancing age presents as a considerable risk factor in the development of T2D and therefore 

T2D is recognised as an age-related metabolic disorder [356]. Taking the demographics from the 

USA as an example in 2011 63% of the adult incident cases of diabetes were diagnosed between 

the ages of 40 and 64 years [357, 358]. About 16% were diagnosed at age 18–39 years, and about 

21% were diagnosed at age 65–79 years [357, 358]. Guidelines delivered by the NHS outline 

individuals over the age of 40 are at increased risk for developing T2D and attribute this risk to 

the decrease in physical activity, reduction in muscle mass and poorly maintained nutrient 

homeostasis in conjunction with rising obesity rates, often presenting with advancing age [359]. 

However, the incidence of T2D is increasing more rapidly in adolescents and young adults than 

in other age groups [360]. The disease is being recognised increasingly in younger persons, 

particularly in highly susceptible racial and ethnic groups and the obese. In some areas, T2D is 

more prevalent amongst pre-pubertal children, teenagers, and young adults, in comparison to type 

1 diabetes (T1D) [360]. 

 

1.12.3. Ethnicity and T2D. 
 

The prevalence of T2D varies substantially within ethnic groups and is not restricted by 

geographical isolation, instead exhibiting a strong trend worldwide. To understand the role of 

ethnicity in T2D, populations residing in the USA and UK provide a valid model due to enormous 

ethnic diversity. A recent study conducted by Cox et al., collected data from 335 general practices 

in England and Wales and report a fivefold variation in risk of T2D existed between different 

ethnic groups compared with the white reference group [361]. More specifically the results 

identified Bangladeshi, Pakistani, Indian and African males were at an increased risk of T2D in 

comparison to the white reference group [361]. Recent statistics from the Centre for Disease 

Control (CDC) describe T2D as being more prevalent amongst Native Americans, African 

Americans, Hispanics, and Asian Americans than among Caucasians in the USA [362]. Asian 
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Americans have a nine percent higher risk of diabetes [363]. Hispanics have a 12.8 percent higher 

risk, and non-Hispanic blacks have a 13.2 percent higher risk of diabetes than non-Hispanic white 

adults in the USA [364]. These data mirror the strong links between ethnicity and obesity, and in 

fact may be a reflection of increased incidence of T2D in the same ethnic groups, the precise 

reasons predisposing certain ethnic groups to T2D remain elusive. The influence of genetics, 

cultural differences and lifestyle factors such as diet are all potential contributors to disease risk.  

 

1.12.4. Gender disparities in T2D. 
 

Initial research suggested females are at a larger risk of developing T2D in comparison to males. 

However as research progressed it became evident that more males are diagnosed with T2D [365]. 

For example, whilst the prevalence of diabetes was over 19% in men over 50 years of age by 

2005 in a population-based study in Ontario, Canada, the corresponding prevalence for women 

was just under 16% [366]. A recent Korean study reporting data from 2005 showed T2D 

prevalence in above 30 year olds to be around 7.9% in women but 10.2% in men with the biggest 

differences in the 40–59 year olds, where, remarkably, male T2D prevalence was around double 

that in females [367]. Statistics collected in 2009 show that 2.4 per cent (around 92,960) of men 

in England aged 35-44 have diabetes compared to 1.2 per cent (around 47,000) of women of the 

same age [368-370]. It was found for a given BMI males retain more visceral adipose tissue 

relative to subcutaneous adipose (insulin sensitive) tissue in comparison to women [371]. It has 

also been documented that males, generally are more insulin resistance and exhibit elevated 

fasting blood glucose levels [371]. The role of sex hormones in this phenomenon may be a 

potential mechanism behind the observation as, increased testosterone has been associated with 

increased retention of central adipose tissue; on the contrary oestrogen has been reported to aid 

adipose re-distribution in favour of subcutaneous adipose storage and protecting against visceral 

fat accumulation [149].   
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1.12.5. Mortality in T2D. 
 

T2D presents with a variety of disorder which can significantly reduce quality of life but also 

reduce lifespan. Individuals suffering from T2D in England and Wales are 37.5 percent more 

likely to die early relative to individuals free of disease [372]. The biggest contributor to increased 

mortality in T2D is CVD accounting for 52–80 percent of deaths, followed by renal disease 10–

20 percent of mortality, and cerebrovascular disease 15 percent, which is approximately twice 

that seen in the population without T2D [373]. Nwaneri et al., conducted a meta-analysis of 

recently published reviews assessing mortality in T2D patients residing across Europe, USA, 

Canada and New Zealand, as well as Japan, Fuji, Argentina and Israel [374]. The authors report 

a two-fold increase in the mortality risks in type 2 diabetes when compared with the general 

population. Specific statistics from the UK reveal T2D contributed to 23,300 additional deaths in 

2010-11 in England [374].  In 2010, diabetes was mentioned as a cause of death in a total of 

234,051 death certificates. Statistics from the international diabetes federation declare 1 million 

deaths due to T2D in India during 2011-2012 [375]. In 2012 diabetes was the direct cause of 1.5 

million deaths. Total deaths from diabetes are projected to rise by more than 50% in the next 10 

years [376]. 

 

1.12.6. Financial burden of T2D. 
 

T2D is associated with acute and chronic complications; combined contribute to an enormous 

financial burden, not only affecting patients and their families but entire financial budgets and 

healthcare systems. Taking the UK as an example, the total spending associated with diabetes 

equates to £9.8 billion, costs associated with T2D alone account for £8.8 billion, while the rest is 

attributed to type 1 diabetes. Approximately 80 percent of this amount is spent on dealing with 

co-morbidities and associated complications, (£7.7 billion) while the remainder is spent on 

treatment regimens (£2.1 billion) [377, 378]. The indirect costs, defined as loss of working hours 

and/or productivity due to ill health, associated with T2D in the UK is estimated to be £9 billion 
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[379, 380]. With vastly growing rates of obesity and therefore T2D total health care costs 

associated with T2D are projected to increase from £8.8 billion to £16.9 billion in 2035 [379, 

380].   

 

Statistics from the USA exhibit a similar trend; for the approximately 16.5 million people with 

T2D, the annual national cost is $159.5 billion attributed to healthcare related expenditures and 

$65 billion in reduced productivity [381]. Cost estimates for individuals diagnosed with T2D 

equate to $9,677, in America this diabetes burden represents a hidden tax in the form of higher 

health insurance premiums and reduced disposable income [381]. In India, a recent study showed 

that total annual expenditure by patients on diabetes care was, on average, Indian Rupee (INR) 

10,000 (£100) in urban areas and INR 6,260 (£62) in rural areas [382]. An increase of 113% was 

observed in the total expenditure between 1998 and 2005 in the urban population [382]. A review 

by J. Singh reports the average expenditure on T2D care in India equates to 180,000 million INR. 

With little to no subsidies the majority of healthcare bills are paid from household incomes [383].  

 

The incidence rate of metabolic disorders are generally lower in East Asia, in 2013 China spent 

$38 billion on T2D, 6 times less than USA, however prevalence is gradually increasing.  In 

support of this statement is data reporting in 1993 the direct medical costs associated with T2D 

were $0.25 billion, accounting for 0.07% of the GDP [384, 385]. In 2008 the direct costs amassed 

to $8.65 billion accounting for 0.21% of the GDP. Hospitalisation stay for diabetes patients is 

two times longer than non-diabetics and is largely responsible for the increased cost [386]. It is 

apparent that there exists a substantial financial burden associated with T2D, sapping funds from 

healthcare departments worldwide and of a larger concern is the fact that such expenses can be 

avoided by cost effective preventative methods such as diet and exercise [387-389].     
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1.13. Ageing 
 

1.13.1. The ageing crisis. 
 

Most living organisms experience the inevitable biological process of ageing and in humans this 

can be defined as a multi-factorial progression into a physiologically inferior state, in comparison 

to their younger counterparts [390]. As muscle mass, bone density and the capability to withstand 

physiological stresses decline an inability to fight off infection rises as does vulnerability to 

various degenerative disorders [391]. Over the last decade most research in the field of ageing 

has focused on prolonging lifespan in lower organisms and preventing the onset of diseases that 

disproportionately affect an individual’s age in human subjects [392-394]. National Statistics 

reveal that there has been a steady incline in the number of individuals reaching age 65 and 

beyond in the last 25 years within the UK. The percentage of the population aged 65 and over 

increased from 15 % in 1984 to 16 % in 2009, an increase of 1.7 million people. Statistical 

projections suggest a further surge in the number of elderly by 5½ million in the coming 20 years 

[395-398].  

 

There are two integral contributors to population ageing; increased social/government pressure 

to have smaller families paralleled by increased longevity thus falls in mortality [399, 400]. 

Population ageing is a global phenomenon and is not limited to developed countries as the number 

of ageing individuals is growing in virtually all nations, supported by statistics derived from The 

US Census Bureau report, which stated the older population grew by an average of 870,000 

people each month in 2008 worldwide [401, 402]. With decreasing birth rates and an ageing 

community the UK’s independent population has significantly reduced, while the dependent 

population is increasing, accounting for increased expenditure on pensions, care homes and the 

most integral contributor the health services [398, 403]. The UK can expect to spend 

approximately £50 billion each year to provide services for its ageing population, (Office for 

National statistics, elder people 2011, and statistical bulletin). A report by Anderson and Hussey 
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estimates that the average cost of providing hospital and community health services for a person 

aged 85 years or more is approximately three times greater than for a person aged 65 to 74 years 

[404]. While enhancements in nutrition and drug development, disease screening, along with 

increasing scientific evidence and positive research outcomes, have achieved the goal of 

prolonging lifespan to a certain extent, it remains to be understood why certain individuals 

experience healthy ageing whereas others endure rapid physiological deterioration. Studies have 

outlined various factors, responsible for the onset of premature ageing amongst individuals, 

including physiological stress, genetics and environmental factors with no one aspect receiving 

unanimous support and in actuality may comprise of a particular factor which develops due to a 

combination of all 3.  

 

1.13.2. Theories of ageing. 
 

Research into the fundamental concept of ageing has identified several potential theories as to 

why we age. However, to date a unified consensus remains to be agreed upon, instead scientific 

opinion regarding theories of ageing have been divided into two main categories, the programmed 

theory and the damage or error theory, although numerous other sub-theories exist such as 

antagonistic pleiotropy [405]. 

 

1.13.2.1. Antagonistic pleiotropy.   
 

George Williams' antagonistic pleiotropy theory of aging proposes that cellular damage and 

organismal aging are caused by pleiotropic genes, or genes with multiple phenotypic effects 

[406]. According to the antagonistic pleiotropy theory of ageing, natural selection has favoured 

genes conferring increased odds of successful reproduction early in life to the organism at the 

cost of deterioration in later life. Examples of antagonistic pleiotropy include individuals 

suffering from Huntington's disease, a rare neurodegenerative disorder characterized by a high 
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number of CAG repeats within the Huntingtin gene [407]. The onset of Huntington’s is usually 

observed post-reproductive age and generally involves involuntary muscle spasms, cognitive 

difficulties and psychiatric problems. Incidentally, the high number of CAG repeats is associated 

with increased activity of p53, a tumor suppressing protein that participates in apoptosis. It has 

been hypothesized that this explains the lower rates of cancer among Huntington’s patients [406]. 

 

1.13.2.2. The programmed theory.  
   
The programmed theory can be defined as a set course of biological deterioration following 

adolescent development, governed by alterations in gene expression and protein function vital in 

biological pathways regulating maintenance, repair and cellular defence responses [405]. 

Furthermore the programmed theory can be further subdivided into three other theories which 

will be briefly discussed. 

 

1.13.2.3. Programmed longevity. 
 

The programmed longevity theory recognises ageing, not as a gradual loss of body function, but 

instead as a scripted series of events, genetically programmed to potentiate evolution [405]. The 

effect of these events is ageing and death due to recombination and mutations leading to the 

existence of some individuals better adapted to environmental conditions and thus further evolved 

[405]. The programmed longevity theory is supported by little experimental evidence, and is 

instead supported by observations. For example, a wide range of plant species die shortly after 

flowering and some animal species exist, among them insects, worms and fish, in which death 

occurs immediately after procreation [405]. Other examples include organisms exhibiting 

increased lifespan, such as mutated Drosophila which are able to produce long-lived progeny and 

the opposing extreme are human patients suffering from progeria like syndromes [408, 409]. 

These examples represent ageing and death as a programmed event, much like cellular apoptosis; 

fundamental to normal development and growth. A review by Roland Prinzinger states the 
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dramatic increase in lifespan in recent times, is not necessarily due to an increase potential 

lifespan, but due to a reduction in mortality by diseases, accidents, starvation and succumbing to 

predators [410].  Davidovic et al., hypothesises that two subgroups exist in the general population: 

the first with a “normal” genetic make-up and aging pattern, and the other with delayed aging, 

“the privileged group”,  who exhibit genetic stability and are protected against DNA mutations, 

methylation, oxidant mediated damage and telomere attrition [411]. Thereby protecting genes 

responsible for metabolic, cell survival/signalling, and endocrine processes [411].   

 

1.13.2.4. Endocrine theory. 
 

The endocrine theory proposes that the biological clock governing lifespan is largely modulated 

by the secretion and actions of hormones [405]. Considering the endocrine nature of adipose and 

skeletal muscle tissues and their influence on the manifestation and development of metabolic 

disorders, the endocrine theory may have value. Unlike the programmed longevity theory the 

endocrine theory has more scientific evidence in its support. In rodents, mutations in genes 

involved in hormone-signalling pathways can substantially increase lifespan and also show 

reductions in age-related conditions such as diabetes, memory loss and cancer [402]. Mice with 

mutations that disrupt the development of the pituitary gland, which produces growth hormone, 

show increased longevity, as do mice that lack the receptor for growth hormone [412]. Studies 

surgically removing the pituitary gland in mice reveal increased longevity and upregulation of 

pathways reminiscent of calorie restriction [412]. The work of Diana van Heemst outlines the 

significance of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway plays a 

major role in the control of longevity [413]. Mutations diminishing the insulin/IGF-1 signalling 

pathway in Caenorhabditis elegans significantly enhances lifespan an effect also reported in 

Drosophila melanogaster fruit fly [413].   
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1.13.2.5. Immunological theory 
 

The immunological theory of ageing suggests that age-associated health implications arise as a 

direct result of a deterioration of the immune system [405]. It is well documented that the 

effectiveness of the immune system peaks at puberty and gradually declines thereafter with 

advance in age, with the eventual loss of immune function termed immunosenescence [414]. The 

innate immune response of inflammation has been recognised as a contributing risk factor in the 

progression of various age associated diseases including osteoporosis, sarcopenia, T2D, 

Alzheimer's disease and atherosclerosis [415]. A view proposed by the immunological theory of 

ageing suggests inflammation exhibits hormetic functions while at lower levels and is largely 

responsible for offering protection against invading pathogens, whilst enhanced lifespan results 

in chronic activation of inflammation and the overproduction of inflammatory molecules which 

can also cause immune-related inflammatory diseases and eventually death later [392, 414]. In 

1969 Roy Wolford discussed the importance of immunosenescence in age-associated disease 

susceptibility and progression, the effects of which are very much relevant today  [416]. The 

immunological theory of ageing describes senescence of clonotypic immunity as being 

responsible for the inability to mount an effective immune response in advancing age [416]. 

Chronic antigen loads throughout the course of life have been postulated to be a possible driving 

force of immunosenescence, which in conjunction with age-associated atrophy of the thymus 

(thymic involution) would consequently result in reduced naïve T cells and the increased 

circulation of expanded clones of memory and effector, antigen-experienced T cells [417]. 

Furthermore, ageing is met with a reduction in hematopoietic stem cells, phagocytes and number 

and function of natural killer cells [418]. Therefore the repertoire of cells available to respond to 

antigenic challenge from previously un-encountered pathogens is reduced giving rise to more 

infections in later life and poor health leading to a reduction of lifespan [418, 419].   
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1.13.2.6. The damage or error theory of ageing. 
 
The theories which comprise the damage or error theory suggest that the gradual deterioration of 

human physiology is due to environmental damage which accumulates over time and contributes 

to ageing; these theories include the wear and tear theory, cross-linking theory and the theory of 

free radicals [405].  

 

1.13.2.6.1. The wear and tear theory. 
 

The wear and tear theory was proposed by Dr. August Weismann in 1882 and suggests that ageing 

is a result of overuse and abuse of the body, an effect which is possibly fuelled by the consumption 

of energy dense foods, alcohol, pollution in the atmosphere, ultra-violet rays and numerous other 

psychological stresses [420]. However, individuals refraining from such damage are not exempt 

from ageing instead endure a reduced rate of damage in comparison to individuals leading an 

unhealthy lifestyle [405]. The analogy often given to explain the wear and tear theory compares 

the human body to an automobile which over the course of time and excessive use will suffer 

from corrosion and mechanical wear. Even with normal moderate use the automobile will still 

experience wear and tear only at a slower rate. Evidence in support of the wear and tear theory is 

sparse and not without its downfalls and fails to address the ability of the human body to repair 

itself along with the wide interspecies variation in longevity [405, 411]. Also certain organisms 

apparently do not age or age very slowly while others have an inbuilt programmed self-

termination programme following reproduction.  

 

1.13.2.6.2. The cross linking theory. 
 

The cross linking theory was proposed in 1942 by Johan Bjorksten and certain aspects of it may 

still be of relevance in gerontology research conducted today [421]. The cross linking theory is 

applicable to both external and internal biology. With increasing age, tendons, skin, and even 
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blood vessels lose elasticity [421]. This is due to the formation of cross-links between or within 

the molecules of collagen that give elasticity to these tissues and may contribute to the appearance 

of tough, leathery and yellow skin with advancing age [421]. Cross linking may also be 

responsible for cardiac enlargement and the hardening of collagen, which may then lead to the 

increased susceptibility of a cardiac arrest [422]. The glycosylation theory which may potentially 

be recognised as a separate but related theory describes the cross linking of glucose molecules 

with proteins, significantly dampening the activity and function of proteins [422]. These 

interactions result in the production of advanced glycation end products (AGEs), commonly 

found in large amounts amongst individuals suffering from vascular complications, 

cardiovascular disease, obesity, T2D and Alzheimer’s disease [422].  

 

1.13.2.6.3. The free radical theory 
 

Oxidative stress was first described as a contributor to ageing by Denham Harman who postulated 

the free-radical theory of ageing [423]. A theory which states, continuous production of ROS, by-

products of general metabolism would eventually overwhelm antioxidant molecules [423]. This 

disruption in balance generates a state of oxidative stress, resulting in DNA damage to the extent 

of cell death and a common contributor to ageing [423]. The interaction between oxidative stress, 

DNA damage and telomere shortening has been exhibited by Zglinicki and Schewe, who reported 

increased oxidative stress accelerated telomere shortening in fibroblasts in vitro [424]. Excessive 

exposure to oxidative stress is known to hinder telomerase function, on the contrary, antioxidants 

significantly prolong telomerase activity whilst simultaneously reduce telomere shortening in 

vitro [424]. The free radical theory is more widely accepted, largely due to a wealth of literature 

documenting its involvement in various age related disorders [425]. Overactive mitochondria 

mediated increase in ROS has been implicated in both obesity and T2D. Miyazawa found 

mitochondrial superoxide anion production can lead to organ atrophy and dysfunction via 

mitochondrial- mediated apoptosis [426]. ROS also play a significant role in the pathogenesis of 

atherosclerosis and other disorders which present with an inflammatory nature [426].  
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1.14. Cellular ageing: the telomere theory  
 

While multiple theories of aging have been proposed, currently there is no consensus on this 

issue. Many of the proposed theories interact with each other in a complex way and arguably the 

most effective marker of ageing is chronological age [427]. However the use of chronological 

age, as an approach to predict morbidity and/or mortality can be erroneous [428]. Although years 

lived correlate considerably with risk of developing health implications which disproportionately 

affect an individual’s life span, chronological age fails to explain inter-individual inconsistencies 

in longevity [427]. Furthermore, human lifespan is determined by a multitude of factors, to 

assume years lived is the sole determinant of lifespan is seemingly unscientific. For instance 

genetic variability, psychological wellbeing and nutritional background are all vital contributing 

factors in determining lifespan, all of which are unaccounted for when using chronological age 

alone to predict longevity. Research into an alternative, more prognostic marker of longevity, that 

can be quantified on an interval scale and can fluctuate in association with life style factors, has 

led numerous studies to investigate telomere length (TL) [429].  

 

1.14.1. The telomere complex.  
 

Telomeres form vital components of eukaryotic chromosomes, distinctively found on the ends 

and consisting of non-coding hexanucleotide repeats TTAGGG that are extended 9-15kb in 

humans and end in a 50-300 nucleotide 3’ single guanine strand overhang [430]. The overhanging 

segment of the telomere complex is able to fold back onto itself and lodge itself in between the 

telomere helix to form a ‘T-loop’; and is also responsible for the end-capping structure of 

telomeres [430, 431]. Supporting the T-loop structure are evenly distributed shelterin complexes 

which consist of the telomeric repeat binding factor 1 (TRF1) and TRF2 which bind to double 

stranded segment of telomeric DNA [432, 433]. Other components of the shelterin complex 

include protein protection of telomeres (POT1) which binds directly to the single-stranded 

telomeric DNA and interacts with tripeptidyl peptidase (TPP1) [430]. Repressor activator protein 
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1 (Rap1) binds TRF2, and TRF1- interacting nuclear factor 2 (TIN-2) is a central component of 

the complex interacting with TRF1, TRF2 and TPP1 [430]. Combined, the shelterin complexes 

in conjunction with the T-loop structure form a telomere protective cap, which allows DNA repair 

proteins to distinguish between chromosome ends and DNA damage, therefore insuring genomic 

stability and protecting against recombination, exonuclease degradation and end-to end fusion 

[430]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Simplified diagram depicting the structure of the telomere and its location on 
the chromosome along with the terminal end of the telomere concealing the terminal 
single-stranded segments with help of the shelterin complex [430]  
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1.14.2. End replication problem  
 

TL has been extensively proposed as a biomarker of cellular ageing, since telomeres shorten with 

each round of cellular division due to what is known as the “end replication problem” [432]. The 

end replication problem can be summarised as follows. Prior to DNA replication, double stranded 

DNA is unwound by helicase enzymes and separated into two individual strands, which are 

antiparallel to one another, the backbone of one strand runs from 5'-3' while the complimentary 

strand runs 3'-5'. Unfortunately, DNA polymerase, the enzyme responsible for replicating DNA, 

can only elongate from a 3’ hydroxyl group and therefore make DNA in a 5'-3' direction, also 

known as the leading strand [434, 435]. Furthermore DNA polymerase requires RNA primers 

upstream from the site to be replicated to provide a 3’ hydroxyl group and initiate replication. 

However this is problematic when replicating the antiparallel strand, also known as the lagging 

strand since the DNA polymerase cannot replicate DNA 3’-5’[430, 434]. 

 

During DNA replication this is solved by synthesizing small pieces of DNA also known as 

Okazaki fragments ahead of the replication fork on the lagging strand [436]. RNA primers 

provide 3’ hydroxyl groups at regular intervals and using a “back-stitching” mechanism the 

lagging strand is replicated. The leading strand is replicated continuously 5’-3’ completely to the 

end of the template[436]. However the extreme end of the lagging strand DNA cannot be copied 

because this segment is occupied by the RNA primer required to provide a 3’ hydroxyl group, 

which is subsequently removed and remaining 3’ hydroxyl groups of Okazaki fragments are 

joined to complete a copy of the template DNA [437]. Therefore at the end of the chromosomes 

there is no 3’ hydroxyl available to prime DNA synthesis. Because of this inability to completely 

replicate the end of the lagging strand, chromosomes progressively shorten with each round of 

cellular division accounting for the loss of approximately 50-150bp [438]. This is "the end 

replication problem" and it is solved by putting a DNA cap on the ends of DNA called a telomere 
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which does not code for any protein, thus when this information is lost it does not have severe 

consequences for the cell [438, 439].  

 

1.14.3. Telomere attrition and ageing. 
 

Over the course of time and many cellular divisions, the telomere cap is completely eroded and 

vital genetic information required for cell viability/function is lost [440, 441]. Cells harbouring 

chromosomes with shortened telomeres reach replicative senescence also known as the Hayflick 

limit, described as an inability to proliferate despite the presence of mitogenic substrates [441]. 

The induction of cellular arrest is mediated by the activation of DNA repair mechanisms i.e. 

tumour suppressor checkpoints. At the first checkpoint of the cell cycle, cells are rendered 

senescent via activated p53, which binds DNA and simultaneously up-regulates transcription of 

genes WAF1/CIP1 encoding p21 [442, 443]. p53 and p21 combine to inhibit cellular proliferation 

by holding cells in the G1 phase of the cell cycle, p21 conjugates to both G1- S phase cyclin 

dependent kinases (CDK) and S phase CDK’s and inhibits their activation [442, 443]. G1 –S 

phase cyclins are vital for progression from G1 to S phase of the cell cycle, supported by a study 

conducted by Noda et al., which reported increased levels of both p53 and p21 in senescent cells, 

cells successfully bypassing checkpoint 1 reach second mortality stage and are cleared via 

apoptosis, thus limiting the replicative capacity of somatic cells [444-446].    

 

Telomere dynamics facilitate genomic integrity during DNA replication, in the absence of 

telomeres, genomic DNA is at risk of degradation due to the end replication problem [447]. 

Therefore telomeres function as buffering zones not only protecting genomic DNA but form the 

balance between cellular senescence and immortalisation, while cellular senescence is largely 

responsible for ageing and limiting replicative lifespan of somatic cells and is one extreme, the 

other extreme is uncontrolled proliferation of cells and the concept of immortalisation which is 
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associated with increased telomerase expression and the development of cancer [447-449]. The 

process of telomere restoration was introduced in 1984 by Olovnikov and described as a natural 

process mediated by a ribonucleoprotein enzyme known as telomerase, responsible for restoring 

telomere length in a variety of tissues, utilising internal RNA (TERC) as a template for reverse 

transcription mediated by a reverse transcriptase catalytic subunit (TERT) (Fig.1.9.) [450]. 

Telomerase was reported to synthesise nucleotide sequences complimentary to chromosome 

ends, whilst exhibiting healing properties by inserting telomere sequences into damaged DNA 

[450]. Therefore it seems telomerase could prove to be a vital contributor in reversing the effects 

of ageing, supported by research suggesting anti-telomerase therapy administered to cancer 

patients deemed beneficial results and prevented relapse [451]. In vivo telomerase activity peaks 

during embryogenesis conversely is significantly suppressed postnatally to the extent where it is 

insufficient to overcome telomere attrition however remains functional in stem cell pools 

facilitating the generation of specific cell sub-sets as per the physiological needs of the body. 

Thereby elucidating TL as an ample means of investigating cellular ageing in obese/diabetic 

individuals [452].  

 

 

 

Figure 1.8. A diagrammatical representation of the telomerase complex and it’s elongation 
[430]. 

 
 

 
 



95 
 

1.14.4. Evidence of telomere length regulating cellular ageing.  
 

Telomere attrition has been shown to progressively lead to a form of cellular senescence, a 

permanent cell cycle arrest, resulting in a loss of replicative and proliferative capacity [453]. 

Existing literature has successfully identified shorter telomeres amongst individuals suffering 

from; progeria and/or progeria like disorders which abnormally accelerate ageing such as 

Hutchinson-Gilford syndrome, Werner syndrome and ataxia telangiectasia [454]. Malnutrition, 

psychological instability, low socio-economic status and even organ failure have been positively 

associated with increased telomere reduction [455-457]. Furthermore TL amongst cells derived 

from grafts donated from older donors exhibit reduced TL in comparison to younger donors [458]. 

TL thus has the potential to function as both, a prognostic marker of longevity and physiological 

deterioration. A wealth of literature is emerging which recognises factors such as diet, social 

economic status and psychological stress as considerable determinants of TL, and is therefore not 

solely regulated by age [456, 457]. Somatic cancer cells, which lack normal DNA damage 

response mechanisms, continue to divide despite critically short telomeres by upregulating of 

telomerase or utilising the alternative lengthening of telomeres mechanism [459]. Studies have 

found shortened telomeres in many cancers, including pancreatic, bone, prostate, bladder, lung 

and kidney, compensated by increased telomerase expression [460-462]. Telomere dynamics 

would be better suited as diagnostic tool and predictor of age-related diseases if the differing rate 

of telomere attrition amongst individuals was considered along with causative mediators and 

therefore be indicative of biological health and could help identify individuals at risk of age 

related disease and mortality.  

 

1.15. Cellular senescence. 
 

Cellular senescence was first described by Leonard Hayflick approximately 40 years ago in a 

pioneering study that presented two prescient ideas [446]. Firstly, cells void of limited cellular 

division exhibit escape from senescent like changes and can only be achieved by somatic cells 
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which have developed cancer properties [463]. Secondly the cessation of cell growth in vitro may 

be reminiscent of cellular senescence in vivo[441]. There now exists strong evidence to affirm 

the role of cellular senescence in chronic inflammation and both tumour progression and 

suppression, highlighting the relevance and complexity of cellular senescence in organismal 

ageing [464]. Furthermore recent evidence derived from murine studies has declared the specific 

removal of senescent cells (SC) can reverse the ageing phenotype and delay the onset of multiple 

age-related pathologies [465].  Age-related cellular senescence is chiefly governed by the attrition 

of TL and more specifically the end replication problem, discussed previously [466, 467]. 

However telomere attrition/dysfunction is not the sole determinant of cellular senescence, instead 

senescence can be induced by a variety of conditions. The arrest of cellular division prior to the 

erosion of the telomere complex is known as premature senescence and with respect to modern 

lifestyles and the increased incidence of age related disorders is a more tangible contributor to 

health pathologies of advancing age [467-469]. The three most influential types will be discussed 

below. 

 

1.15.1. Stress induced premature senescence (SIPS) 
 

SIPS is a rather broad concept encompassing numerous stresses which cause sub-lethal cell 

damage and prevent cellular replication [470]. Although the precise mechanisms leading to cell 

cycle arrest are equivocal, in vitro studies have proven valuable in demonstrating the various 

contributors to SIPS [471]. For instance explanted cells have to adapt to an artificial environment 

in culture, characterised by abnormal concentrations of nutrients, growth factors, oxygen 

concentration, fluctuations in temperature, in conjunction with the absence of surrounding cell 

types and extracellular matrix components [472, 473]. All of the previously mentioned factors 

can result in the manifestation of SIPS, independent of TL. Toussaint et al. recognised that certain 

proliferative cell lines including human melanocytes and human retinal pigment epithelial cells 

undergo SIPS during culture when exposed to hydrogen peroxide, ethanol and homocysteine 

[472-474]. In vivo development of SIPS has largely been attributed to oxidative damage, however 
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the involvement of radiation, heat, toxins and chemotherapeutic agents has been implied without 

mechanistic insights [471]. It is believed such stressors induce DNA damage: via the ATM/ATR 

pathway a known regulator of the cell cycle, increased activation of the p53 tumour suppressor, 

the p16INK4A pathway and recent research has declared the involvement of p38 MAP kinase [475]. 

The final effectors involved include the increased phosphorylation of cyclin-dependent kinase 

inhibitors, retinoblastoma (Rb) and altered gene expression in favour of cell cycle arrest. A 

similar state has been observed in cancer patients receiving chemotherapy, proven by the 

induction of p16INK4A [476]. 

 

1.15.2. Oncogene-induced senescence (OIS).  
 

Oncogenes derive from mutations incurred in normal genes, which then have the potential to 

transform cells with additional mutations [477]. The physiological response of normal cells is to 

undergo senescence under the influence of oncogenes [478]. This was first observed when cells 

overexpressing oncogenic forms of cytoplasmic mitogenic signal transducers and pro-

proliferative nuclear proteins underwent senescence [479]. Therefore OIS manifests as a 

protective mechanism which induces a state of cellular arrest before atypical stimulation of cell 

growth occurs [480]. The mechanisms regulating OIS in humans do not seem to be universal 

across cell types and genetic contexts, although the involvement of p53 and p16Ink4A DNA damage 

pathways is imperative [481].  However unlike replicative senescence, OIS cannot be bypassed 

by expression of hTERT, confirming its independence from telomere attrition [482]. The majority 

of evidence supporting OIS stems from in vitro experiments however recent in vivo studies have 

further contributed to the role of OIS. Mice exhibiting enhanced proliferative signals in 

association with the loss of tumour suppressor protein Phosphatase and tensin homolog (PTEN), 

develop benign lesions consisting of senescent cells [483]. Studies conducted in humans also 

support the role of OIS as a tumour suppressor as benign naevi in human skin contain cells that 

express oncogenic B-Raf proto-oncogene, serine/threonine kinase (BRAF) and are senescent 
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[484]. OIS has also been reported to counteract the induced conversion of primary cells into 

pluripotent stem cells, therefore limiting the generation of cancer stem cells. 

1.16. Characteristics of Senescent cells. 
 

1.16.1. Growth arrest. 
 

The primary characteristic of senescent cells is the inability to progress through the cell cycle and 

is an indispensable marker for the identification of cellular senescence both In vitro and vivo[485]. 

Although the use of cell cycle arrest may not be used solely to determine a senescent population 

as terminal differentiation similarly results in cell cycle arrest. However, unique to cellular 

senescence is the ability to remain metabolically active despite a long term exit from the cell 

cycle [486]. Contrary to initial understanding which declared cellular senescence as irreversible 

arrest and therefore completely opposite to quiescence, a state in which cells may revert back to 

proliferating in the presence of mitotic stimuli, more recent studies declare potential mechanisms 

for reversing growth arrest [486, 487]. Typically features of senescence growth vary between 

species and genetic backgrounds, however in general cells exhibiting increased expression of 

tumour suppressor proteins (p53, p21, p16Ink4A) are found increasingly in SC [487]. SC also 

repress genes that encode proteins that stimulate or facilitate cell cycle progression for example, 

replication dependent histones, cyclin A, cyclin b and proliferating cell nuclear antigen [473].  

 

1.16.2. Apoptosis resistance. 
 

Apoptosis can be defined as the process of programmed cell death and is vital to both organismal 

development, as well as integral to apoptotic clearance of auto-reactive immune cells and virus 

infected or transformed cells [488]. Much like senescence, apoptosis is a programmed response 

to cellular stress, however it functions as an antagonistic counterpart involved in cell clearing 

[488]. The increased number of SC commonly found in ageing organisms implies that SC have 
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acquired resistance to apoptotic clearance [489]. For instance human fibroblasts often used to 

investigate cellular senescence exhibit resistance to ceramide, oxidative stress, and deprivation 

of nutrient and growth factors however epithelial cells do not and are killed under such 

circumstances [489].  

 

Hampel attributes the resistance to apoptosis exhibited by SC to the inability to internalise IGF-

binding proteins, which has been quantified to greater extents in cell media obtained from SC and 

has been reported to enhance apoptotic cell death in tumour cells via internalisation and activation 

of intracellular regulators of apoptosis [490]. The works of Marcotte et al., and Ryu et al., 

attribute the increased apoptosis resistance to maintenance of Bcl2 protein levels and reduced 

expression of caspase 3 [491, 492]. The senescent associated secretory phenotype (SASP) which 

will be discussed later may also regulate SC survival. 

 

1.16.3. Altered morphology.  
 

Cells undergoing cellular senescence exhibit a vastly altered morphology, which will vary 

between cell-subsets but certain morphological changes are characteristic [493]. For example SC 

can become large, flat, and multinucleated. Cho et al., investigated the structural determinants of 

SC and reported that the expression of integrin β1 and focal adhesion kinase (FAK) were increased 

and that the phosphorylations of FAK and paxillin, hallmarks of focal adhesion formation, were 

also increased in senescent human fibroblasts [493]. The authors go on to recognise a fundamental 

role of caveolin-1 in propagating the senescent phenotype. Caveolin-1 is a scaffolding protein 

and one of the main components of the plasma membrane. Utilising RNA silencer specifically 

knocking out caveolin-1 returned cells to a younger more healthy morphology [493, 494].  

The authors conclude caveolin-1 regulates focal adhesion kinase activity and actin stress fibre 

formation in senescent cells [493, 494].  
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1.16.4. Senescent associated beta-galactosidase (SA-βgal) and Senescence-
associated heterochromatic foci (SAHF).  
 

The commonly thought of ‘gold standard’ for characterising senescent cells is the upregulation 

of SA-βgal a hydrolase enzyme that catalyzes the hydrolysis of β-galactosides into 

monosaccharides only in senescent cells [495]. This marker is detectable using histochemical 

staining and was first described by Dimri et al., following the observation that at pH 6.0 a blue-

dyed precipitate results in the presence of its chromogenic substrate X-Gal [496]. However 

existing research has identified SC to possess atypical chromatin structure. SC can inhibit the 

expression of genes encoding proteins which stimulate cellular replication in an E2F dependent 

manner. E2F is a transcription factor vital for the progression of cell cycle, SC exhibit repression 

of E2F target genes due to increased phosphorylation of Rb, leading to reorganisation of 

chromatin into discrete foci termed senescence-associated heterochromatic foci (SAHF) [497]. 

SAHF can be readily identified in vitro using the DNA dye 4′,6-diamidino-2-phenylindole [497]. 

 

1.16.5. Senescent associated secretory phenotype (SASP).  
 

The most distinctive feature of SC is the profound alterations in their secretome [498]. 

Irrespective of  causative factors all SC upregulate the production of numerous cytokines and 

chemokines, including TNF-α, IL-6, MMPs, MCP-1 and IGFBPs, which have been quantified to 

greater extents in late passage human fibroblasts or fibroblasts from patients suffering from 

progeria-like syndromes [498].  However the secretory nature of SC is an area of senescence 

biology requiring much work, considering the full range of functions ascribed to members of the 

SASP varies considerably, arguably between cell sub-sets but also within same cell type and 

therefore the physiological effects of SASP are complex [499]. A review by Tchkonia et al., 

defines the divergent implications of SASP using two concepts, the first is antagonistic pleiotropy 

defined previously [500]. The second concept is SASP can coordinate both positive and negative 

effects on organismal physiology, depending on context [500].    Existing literature has described 
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SASP to induce both autocrine and paracrine signalling, to exhibit pro-tumorigenic and tumour-

suppressive effects as well as pro-and anti-inflammatory signalling [500]. Evidence in support of 

this statement reveals the proliferative rate, migration, and invasion of premalignant cells are 

enhanced when they are co-cultured with, or grown in medium conditioned by, senescent 

fibroblasts [499, 501]. On the contrary as discussed previously the initiation of cellular 

senescence in response to DNA damage or in a bid to suppress oncogene expression, manifests 

as a cancer suppression mechanism, an effect which could be reinforced by the SASP in an 

autocrine feedback loop [486]. The paracrine activities of SC are responsible for both senescence 

reinforcement in non-senescent cells via IL-1β and can also promote tumorigenesis via increased 

secretion of cytokines IL6 and IL8, VEGF, and the metalloprotease MMP3 [486]. The SASP can 

induce systemic inflammation, and disrupt tissue architecture particularly in aged and obese 

individuals [502].  

 

On the contrary, in younger individuals SASP has proven to be instrumental in repairing tissue 

damage, promotion of dead cell clearance and inhibition of fibrosis following hepatic insults 

[502]. Furthermore elevated IL-6 and IL-8 promote cellular senescence and protect against the 

development of cancer [502]. The secretome of senescent cells includes MCP-1 and stimulates 

the immune system specifically macrophages to clear dead or dying cells [503]. However chronic 

exposure to IL-6, also a SASP secretion, inhibits macrophage function [503]. It is therefore 

evident that cellular senescence exhibits both positive and negative effects on organismal health 

in a complex network of interactions. Studies are required to delineate upstream mechanisms 

causing the SASP, explore differences in the SASP among cell types and more importantly 

investigate the role of cellular senescence in relation to glucose homeostasis and contribution to 

disorders of advancing age, including obesity and T2D. The effects of SASP on insulin resistance 

are poorly studied, with existing literature identifying the SASP as a significant source of 

inflammatory cytokines and deregulators of immune function, the role of the SASP in metabolic 

disorders is potentially of grave importance.    
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1.17. Links between ageing and metabolism. 
 

1.17.1. Changes in body composition and ageing. 
 

Disruptions in metabolic pathways can significantly contribute to and regulate the ageing process 

[504]. Advancing age is almost unanimously associated with an increase in adipose tissue in 

humans and has been recognised as a primary causative agent behind age related metabolic 

disorders [505]. Increasing adiposity is also accompanied by the development of age-related 

decrease in muscle mass, also known as sarcopenia [505]. Basal metabolic rate is determined 

chiefly by fat-free mass which progressively deteriorates with age [506]. Increasing age is also 

accompanied with a reduction in physical activity, further contributing to a decrease in muscle 

mass and energy expenditure; however diet is often maintained, inducing a positive energy 

balance promoting storage of calories in the form of fat [507, 508].  

 

Alongside the increase in total adipose tissue mass ageing is also associated with an altered 

pattern of adiposity distribution [509]. A review by Kuk et al., highlights the inability of certain 

individuals to develop sufficient subcutaneous adipose tissue mass specifically in the lower body, 

thus exhibit a reduced ability to store circulating lipids and NEFA [154]. As a compensatory 

mechanism the increased fat content is stored in non-subcutaneous regions, giving rise to 

increased lipid accumulation in the visceral region [154].  Concurrently both cross sectional and 

longitudinal studies have confirmed an age associated increase in waist circumference and  

existing research  identifies there are clear differences in the fat storage patterns between different 

ethnic groups [154, 508, 510]. The empirical data provided by Hairston et al., 2009  supports this 

theory. White, black and Hispanic women over 60 years of age exhibited an increase in waist 

circumference by 4cm, 5cm and 3.1cm over the course of 5 years. Waist circumference is an 

imperative predictor of disease susceptibility, men who have a waist circumference of 40 inches 

and women, of 35 inches are at increased risk of developing metabolic disease [511].   
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The relationship between health risk and waist circumference, to certain extents is governed by a 

subsequent increase in visceral adiposity [512]. Various studies have documented an age-

associated increase in visceral fat mass, which is known to contribute to metabolic syndrome 

irrespective of sex and ethnicity [512-514]. The detrimental effects of visceral fat as opposed to 

subcutaneous fat are attributable to its increased potential to secret pro-inflammatory cytokines, 

adipokines [515]. These adipokines, two of which have been discussed previously, leptin and 

adiponectin, also include TNF- α, IL-6, and vascular endothelial growth factor (VEGF) amongst 

many others, all of which combined or independently aid the development of metabolic disease, 

via inflammation, increased cell proliferation and insulin resistance [515, 516].  A paper by 

Bremer et al., highlights IL-6, IL-1, TNF-α and C-reactive protein as key mediators in the 

development of metabolic syndrome [517]. IL-6, induced by increased IL-1 and TNF-α 

concentrations has been shown to hinder insulin signalling by directly interacting with IRS-1 and 

inhibiting glycogenesis in the liver [517]. While neutralisation of TNF-α significantly increases 

insulin sensitivity, IL-6 has also been linked to the production of C-reactive protein and 

fibrinogen, further propagating inflammation [518].  

 

1.17.2. Ageing and energy balance: nutrient restriction.  
 

One prominent theory behind healthy ageing is that of calorie restriction [519]. Calorie restriction 

mediated longevity has recently received considerable attention. Principle findings declared, 

restricting calories delayed sexual maturation significantly and impacted longevity in rats [520]. 

Subsequent work has shown that consuming a calorie restricted diet can prolong lifespan in 

almost all lower organisms including yeast, worms and flies [521, 522]. More recent analysis of 

the mechanism by which this occurs has identified, up-regulation of the sirtuin family of genes, 

responsible for encoding a series of histone deacetylases [523]. The SIR2 mammalian ortholog 

SIRT1 has been in investigation ever since and the activation of SIRT1 NAD+ deacetylase has 

been reported to increase cellular resiliency to oxidative stress, a process mediated by cellular 

interactions with members of the Fork head transcription factors [524, 525]. More specifically, 
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deacetylation of FOXO3 has been shown to provide protection from cell cycle arrest by 

upregulating DNA repair factors and enhancing resistance to oxidative stress [523, 526]. Cohen 

et al., reported a substantial elevation in SIRT1 expression in calorie restricted rats, and 

recognised SIRT1 as an inhibitor of stress-induced apoptosis, thereby protecting against the loss 

of irreplaceable somatic cells and promoting organismal longevity [527]. To further advocate the 

role of negative energy balance in healthy ageing are studies investigating the role of BAT and 

ageing. BAT functions to expel excess energy as heat rather than store it, as does WAT [528].  

 

Animal studies have associated the age related deterioration of thermoregulatory control to BAT 

atrophy as well as reduced UCP1 activity [216]. Furthermore it has been demonstrated a lack of 

BAT and UCP1 increased susceptibility to the development of obesity and insulin resistance in 

laboratory mice [216]. Human studies provide similar findings, BAT exhibits an inverse 

relationship with both age and BMI, suggesting a protective role against the development of 

obesity and thus T2D, two metabolic disorders commonly associated with advancing age [219].  

Feige et al., chemically enhanced SIRT1 expression in mice and documented a marked up-

regulation in BAT lipid oxidation, deeming advantageous against obesity and insulin resistance 

[529]. A more specific sirtuin to BAT, SIRT3 may play a larger role in energy balance and ageing 

[530]. SIRT3 expression is enhanced under both cold exposure and calorie restriction, whilst 

simultaneously elevating UCP1 activity [530]. SIRT3 regulates thermogenesis in BAT by 

reducing ROS production and increasing cellular respiration. SIRT3 negative adipocytes exhibit 

no such effect [530]. Supporting the beneficial effects of enhanced UCP1 activity is a study 

conducted by Molina et al., who in 2012 reported, mice carrying additional copies of PTEN a 

tumour suppressor gene, have hyperactive BAT and high levels of UCP1, orchestrated by the 

PI3K/AKt/Foxo pathway and activation of UCP1 transcriptional promoter PGC1α [531]. This 

increase in energy expenditure protected the mice from onset of metabolic pathologies like 

obesity and T2D, and subsequently prolonged life span. Energy homeostasis is therefore an 

integral component of ageing, whereby positive energy balance can disrupt normal metabolism 



105 
 

and facilitate metabolic disease, thus ageing. Contrastingly negative energy balance has been 

recently documented to influence healthy ageing, exempt from metabolic syndrome but also to 

increase life-span.   

 

1.17.3. Ageing and energy balance: nutrient excess.  
 

Nutrient excess predisposes an individual to a variety of metabolic disorders which 

disproportionately reduce longevity, for example in nutrient excess, insulin resistance is often 

seen, forming the basis for the age-related increase in risk for metabolic disease and T2D. The 

mechanistic target of rapamycin (mTOR) pathway plays a pivotal role in nutrient sensing, energy 

metabolism and glucose homeostasis [532]. Aberrant activation of mTOR signalling has been 

linked to several age related diseases including T2D, cancer, Alzheimer’s disease, Parkinson’s 

disease and CVD, leading to studies on the role of this pathway in metabolism, aging, and life 

span [533, 534]. Increasing evidence suggests that the mTOR signalling pathway is activated by 

nutrient excess and drives biogenesis mediated by the mTORC1 effector, S6K1 [535]. 

Interestingly, S6K1 -/- mice exhibit similar gene expression profiles to those of calorie restricted 

mice, with females showing extended longevity and reduced age-related diseases [536, 537]. 

Inhibition of the mTOR signalling pathway by genetic or pharmacological intervention extends 

life span in invertebrates, including yeast, nematodes, and fruit flies. Reduction of mTORC1 

activity using genetic mouse models or with rapamycin treatment is associated with a reduction 

in age-related cancers and improved glucose homeostasis and protection against the development 

of obesity [537]. Further studies are required to achieve such effects in humans, nevertheless these 

data provide further links between absence of an enzyme which regulates response to nutrient 

excess, and successful ageing cross sectional studies have been successful in identifying 

significant correlations between markers of advancing age and metabolic disorders independent 

of chronological age. Increasingly, scientific investigations have examined TL a biomarker of 

cellular ageing and associated telomere attrition with vascular ageing, arterial stiffening, 
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atherosclerosis, and cardiovascular mortality [538, 539]. Obesity has been implicated as a 

considerable risk factor for developing the previously mentioned health implications and 

therefore is recognised as a determining factor of accelerated ageing [540]. Peters et al., reports 

forty year old females lost 7.1 years and 40 year old males lost 5.8 years due to obesity [541].  

 

There is a growing body of evidence that obesity/T2D can influence the ageing process at the 

cellular level itself [542]. Lee et al.,  published convincing data, documenting rises in fasting 

blood glucose; fasting serum lipids and lipoprotein were inversely correlated with TL [542]. 

Fitzpatrick et al., report decreased mean terminal restriction fragment length amongst patients 

suffering from cardiovascular disease in comparison to healthy controls, furthermore an 

increasing number of senescent cells have been quantified amongst individuals suffering from 

cardiovascular complications in comparison to age matched controls [538].  There is evidence 

that replicative senescence pathways involving p53, p16 and p21 play a central role in disease 

progression and graft outcome, independent of chronological age in patients suffering from renal 

disease and kidney dysfunction [543]. Kuhlow et al report young adult mice which are deficient 

for the TERC subunit of telomerase exhibit impaired glucose tolerance and impaired glucose-

stimulated insulin secretion due to increased cellular apoptosis [544]. Elmadhun and collegues 

report metabolic syndrome is associated with increased apoptosis signalling, decreased survival 

signalling, and increased cell death, molecular mechanisms most commonly associated with 

advancing age [545].  

 

It is therefore clearly evident metabolic disorders can influence organismal ageing by giving rise 

to health implications which can severely shorten lifespan and reduce the quality of life. It will 

be of interest to examine the effects of metabolic disorders on organismal ageing to help identify 

early predictors of ageing and also clarify, whether the metabolic disorders develop as a result of 

ageing or do the metabolic disorders influence ageing themselves. 
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1.18. Aims of the study 
 

The broad aim of this study was to investigate the metabolic regulation of cellular ageing in 

healthy and obese/type 2 diabetic volunteers and alternatively to investigate how cellular 

senescence can affect nutrient homeostasis in metabolic cell lines. In the former the primary aim 

was to identify anthropometric and biochemical measures which could be used to predict TL. In 

an attempt to identify a biomarker of ageing which could provide more valuable information in 

comparison to chronological age in a cohort consisting of both obese/type 2 diabetic and non-

diabetic participants. More specifically to elucidate the role of the recently discovered myokine 

irisin and its potential effects on TL in healthy and obese/type 2 diabetic participants. In the latter 

of the study the primary aim was to investigate whether conditioned media collected from SC 

could influence glucose utilisation in the AML-12, C2C12 cell lines, as well as effect lipolysis 

and glucose utilisation in the 3T3-L1 cell line.   

 

The outcomes from this study will help clarify the role of body composition and associated 

adipo/myokines and markers of endothelial dysfunction in cellular ageing. The study will go on 

further to improve the understanding of the role of irisin in cellular ageing, while elucidating the 

relationship between cellular senescence in regulating glucose homeostasis with the expectation 

of providing knowledge which may assist in future research aiming to perturb the affects of 

cellular senescence and develop novel treatments. 
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2.1. Study participants 
 

Eighty one healthy participants (44 males and 37 females, age 18-83 years) with a mean body 

mass index (BMI) of between 20 and 30 kg/m2 were recruited from the local community in 

Birmingham, England.  None of the participants in the present study were obese (BMI>30), 

pregnant, T2D, previously diagnosed with cancer, suffered from immune disorder, were recently 

hospitalised or treated with oral corticosteroids. Eighty four type 2 diabetic participants (45 males 

and 39 females, age 25-76 years) with a mean BMI of 31.5 kg/m2 were recruited from the Heart 

of England NHS trust, Birmingham, England. To control for physical activity all participants 

refrained from exercise for at least 12 hours prior to recruitment this ensured that physical activity 

was not a confounding factor. The study was approved by both Aston University and 

Staffordshire NHS Research Ethics Committees and written informed consent was given by all 

participants according to the principles of the Declaration of Helsinki. Subjects were asked to fast 

for a minimum of 8 hours prior to recruitment to the study. Each participant is provided a unique 

subject identifier, and volunteer specific data is recorded on a subject information sheet. 

 

2.2. Anthropometric measures 
 

Bioelectrical impedance analysis (BIA), using a segmental multiple frequency analyser (BC-601 

Bioimpedenace Analyser Tanita®), was performed on all subjects to measure segmental fat mass 

(FM), fat free mass (FFM) and visceral fat score (calculated by the manufacturer’s software as 1-

59; a score of 1-12 is considered healthy, 13- 59 considered as being an indication of excess 

visceral fat). Abdominal fat and muscle readings are subtracted from other segmental readings 

and therefore represent the body trunk. Height and weight was measured in order to determine 

(Body Mass Index) BMI.  

 
2.3 Blood collection 
 

Venous blood was collected from all volunteers by venepuncture into K+-EDTA coated blood 

collection tubes (sterile 9mL, Vacutainer, Becton Dickinson, UK). Plasma was separated by 
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centrifugation within 30 minutes of blood withdrawal (1300 x RCF for 10 minutes), aliquoted 

into 0.5mL aliquots and stored at -80°C until required.  

 

2.4 Blood Glucose analysis 
 

Fasting whole blood glucose was measured using an Accucheck Advantage blood glucose meter. 

Healthy participants with a fasting blood glucose of >6.1mmol/l glucose were excluded from the 

study, ensuring no recruitment of diabetic individuals.  

 

2.5 DNA isolation 
 

Aliquots of whole blood were used for peripheral blood mononuclear cell (PBMC) genomic DNA 

extraction using the QIAamp® DNA blood mini kit (Qiagen®, # 51104,) according to 

manufacturer’s instructions. Briefly, blood samples were treated with proteinase K and buffer AL 

to remove protein and polysaccharides, briefly vortexed and incubated at 56°C for 10 minutes. 

DNA was precipitated by ethanol, applied to a column provided in the kit followed by washes 

with buffers AW1 and AW2, and then dissolved in 200µL of elution buffer (10 mM Tris•Cl; 0.5 

mM EDTA; pH 9.0). Isolated DNA was quantified using the NanoDrop-1000 (NanoDrop 

Technologies, USA) and diluted in pure water to a concentration of 5ng/µl and stored at -80°C.  

 

2.6 Telomere length (TL) Assay 
 
 
Relative TL was measured using real-time polymerase chain reaction (RT-PCR). PCR reactions 

were set up using previously published primer pair telg and telc (Appendix 7.2; final 

concentrations 900nM each), combined with the single copy gene (SCG) albumin primer pair 

albu and albd (final concentrations 900nM each), in a 25µl PCR reaction, consisting of 1X 

Precision qPCR Mastermix (0.025 U/µl Taq Polymerase, 5 mM MgCl2, dNTP Mix 200µM each 

dNTP) and 5ng of template DNA on the Stratagene MX 3000P sequence Real-Time PCR 

Fluorescent Detection System. SYBR® Green (492nm-516nm). Samples for both the telomere 

and single-copy gene amplifications were performed in duplicate, with duplicates of a non-
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template control included in each run. Dissociation curve analysis was performed on each sample 

at the end of each run to verify specificity of the PCR. The ratio of telomere to the normalising 

genomic control sequence (T/S ratio) was calculated as described by Cawthon [546] to provide 

an indication of relative telomere length.  

 

The thermal cycling profile was Stage 1: 4 minutes at 95°C; Stage 2: 2 cycles of 15 s at 94°C, 15 

s at 49°C; and Stage 3: 32 cycles of 15 s at 94°C, 10 s at 62°C, 15 s at 74°C with signal acquisition. 

The 74°C reads provided the cycle threshold value (Ct) values for the amplification of the 

telomere template. The thermal profile is then modified for signal acquisition of the SCG. 10 s at 

84°C, 15 s at 88°C with signal acquisition. The 88°C reads provided the Ct values for the 

amplification of the SCG template, this method is a modification of duplex PCR. After thermal 

cycling, raw data was exposted from the thermal cycler to a Microsoft Excel spreadsheet. The 

T/S ratio for an experimental DNA sample is T, the average of the cycle threshold value for the 

telomere product, divided by S, the average of the cycle threshold value for the single copy gene 

product. The Ct value is defined as the number of cycles required for the fluorescent signal to 

cross the threshold, i.e. exceeds background level. As each experimental sample was assayed in 

duplicate, two T/S results were obtained for each sample. Average T/S is expected to be 

proportional to the average telomere length per cell.  

 

2.7 Enzyme-linked immunosorbent assay (ELISA)  
 

Plasma levels of adipokines and markers of endothelial dysfunction were measured using 

commercially available ELISA kits for the quantification of leptin, adiponectin, soluble 

thrombomodulin, C-Reactive protein (CRP) and soluble E-Selectin (ES) (Duoset; R&D Systems, 

Wiesbaden-Nordenstadt, Germany) according to the manufacturer’s protocol. In short, ninety-

six–well microtiter plates were coated overnight at room temperature with the working 

concentration of the appropriate capture antibody and then blocked with reagent diluent (1% BSA 

in sterile PBS) for one hour. A standard curve was prepared and plasma samples were diluted 
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with reagent diluent according to plasma reference ranges and standards provided by distributors. 

100µl of both standards and diluted samples were added to the wells. After a 2 hour incubation 

period the microtiter plates were washed 3 times using wash buffer (0.05% Tween® 20 in PBS) 

and re-incubated with 100µl biotinylated detection antibody for 2 hours. Plates were washed 

again and 100µl streptavidin conjugated to horseradish-peroxidase was added for 20 minutes. 

Colour formation was achieved by the addition of equal parts of Reagent A (H2O2) and Reagent 

B (Tetramethylbenzidine (TMB)) and was stopped by adding 1M sulphuric acid stop solution 

(Sigma®, # 339741). Optical density values were measured at 450 nanometer on an optical plate 

reader. Plasma irisin (Phoenix Peptides, # EK-067-29, Germany) and insulin (Mercodia, # 10-

1247-01, Sweden) concentrations were also assessed by ELISA following protocols provided by 

the manufacturers. 

 

2.8 Homeostatic model assessment (HOMA) 
 

HOMA is computer based model, developed from Turner and Holaman’s physiological data 

which was used to devise a mathematical feedback model capable of estimating the degree of 

insulin resistance (HOMA-IR) insulin sensitivity (HOMA-S) and beta cell function (HOMA-β) 

from plasma glucose and insulin levels observed in an individual. The HOMA computer model 

allows users to compute the previously mentioned parameters by inserting the plasma glucose 

concentration in mmol/l and plasma insulin concentration in pmol/l into the following equation. 

 

                       Glucose x insulin 

HOMA – IR =            22.5 

 

                          20 x Insulin 

HOMA – β =     Glucose – 3.5     % 
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2.9. Cell Culture  
 

2.9.1 Early passage Human Umbilical Vein Endothelial Cells (HUVEC) – pooled 
 

One cryo-vial containing 5 x 105 HUVEC was obtained from Cellworks (Cellworks # ZHC-2301) 

and stored in liquid nitrogen upon arrival. HUVEC were grown in human large vessel endothelial 

cell basal medium (Cellworks # KC1015), supplemented with human large vessel endothelial cell 

growth supplement (Cellworks # KC1016) and antibiotic supplement consisting of 1X 

Amphotericin B/Gentamycin (Cellworks # KC1019). Prior to thawing the cryo-vial, a T-25 flask 

was prepared with 6ml of growth media and left to pre-equilibrate at 37°C in a 5% CO2 

humidified incubator. After 15-20 minutes one cryo-vial was thawed and the contents were 

transferred into the T-25 flask and fed with growth media every 48 hours.  

 

2.9.2 Human Dermal Fibroblasts 
 

Human dermal fibroblasts (HDF) isolated on the 3/4/2011 from the foreskin of a healthy male 

newborn were purchased from Zenbio at passage 2 (Cat # DF-N-F, Lot #, DFMF0217118 ) and 

stored under liquid nitrogen. The contents of the vial (500,000 cells) were cultured at 37ºC, 5% 

CO2 in a T-25 flask using Dulbecco’s Modified Eagle Medium (DMEM), high glucose (4.5g/l) 

(PAA Laboratories GmbH, # E00912-2761) supplemented with 10% fetal bovine serum (Biosera 

#, S08460S1810)  1x L-Glutamine 200mM (PAA Laboratories GmbH, # M00410-2744, 100x) 

and 1x Penicillin-Streptomycin (PAA Laboratories GmbH, #P01010-3161, 100x) growth media. 

Upon becoming confluent cells were transferred into a T-75 flask and the media was refreshed 

every three days.  
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2.9.3 AML12 hepatocytes. 
 

One cryo-vial containing 2.5 x 106 AML12 (alpha mouse liver 12) hepatocyte cells was obtained 

from American Type Culture Collection (ATCC # CRL-2254) The contents of the vial were 

cultured at 37ºC, 5% CO2 in a T-25 flask. AML12 cells are cultured in DMEM/Ham’s Nutrient 

Mixture F-12, 1:1 with 2.5mM L-glutamine (PAA Laboratories GmbH, # M00410-2744, 100x), 

supplemented with 10% fetal bovine serum (Biosera #, S08460S1810), 40ng/ml dexamethasone 

(Sigma® # D8893) and 1X Insulin-Transferrin-Selenium (ITS) cocktail (Gibco, life technologies 

# 41400-045) at final concentrations of 5µg/ml insulin, 5µg/ml transferrin, 5ng/ml selenium. The 

cells were started as per manufacturer’s instructions under aseptic conditions and growth media 

was refreshed every two days.     

 

2.9.4. C2C12 Myoblasts 
 

C2C12 myoblasts, derived from mouse muscle tissue were obtained from American Type Culture 

Collection (ATCC® # CRL-1772™) The contents of the vial were cultured at 37ºC, 5% CO2 in a 

T-25 flask and started up in a T-25 flask, using DMEM, high glucose (4.5g/l) (PAA Laboratories 

GmbH, # E00912-2761) supplemented with 10% fetal bovine serum (Biosera #, S08460S1810)  

1x L-Glutamine 200mM (PAA Laboratories GmbH, # M00410-2744, 100x) and 1x Penicillin-

Streptomycin (PAA Laboratories GmbH, #P01010-3161, 100x) growth media. Cultures were 

grown to approximately 70-80% confluence and then split into a T-75 flask. The C2C12 cell line 

differentiates rapidly, forming contractile myotubes and producing characteristic muscle proteins. 

In order to induce differentiation, the cells are grown in regular growth medium containing 2% 

horse serum as opposed to 10% FBS. 
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2.9.5. 3T3-L1 pre-adipocytes 
 

3T3-L1 pre-adipocytes (Zen bio # SP-L1-F) at passage 8 were obtained from Zen bio and stored 

immediately under liquid nitrogen. One cryo-vial containing 5 x 105 cells was cultured at 37ºC, 

5% CO2 in a T-25 flask using preadipocyte medium consisting of the following components. 

DMEM, high glucose (4.5g/l) (PAA Laboratories GmbH, # E00912-2761) supplemented with 

1% bovine calf serum (1x l-glutamine 200mM (PAA Laboratories GmbH, # M00410-2744, 100x) 

and 1x penicillin-streptomycin (PAA Laboratories GmbH, #P01010-3161, 100x) growth media. 

Once the cells became approximately 60-70% confluent the cells were transferred into a T-75 

flask and the media was refreshed every other day as per manufacturer’s instructions.  

 

2.9.6 Differentiation protocol 
 

For differentiation experiments, 3T3-L1 cells at passage 11 were seeded into 24 well plates. Cell 

density was undetermined; as cells were required to become 100% confluent in order to induce 

growth arrest, through contact inhibition prior to clonal expansion and terminal differentiation. 2 

days  post confluence, designated day 0, cells were induced to differentiate with DMEM/Hams’ 

F-12 (1:1, v/v), supplemented with 10% fetal bovine serum (Biosera #, S08460S1810), 1x 

penicillin-streptomycin (PAA Laboratories GmbH, #P01010-3161, 100x), biotin (3.3µM) 

(Sigma® # B4639), pantothenic acid (0.17 µM) (Sigma® # P5155), human insulin (1µg/ml) 

(Sigma® # I0516) dexamethasone (0.25µM) (Sigma® # D8893), isobutylmethylxanthine (IBMX)  

(0.5mM) (Sigma® # I7018), and rosiglitazone (2µM) (Santa Cruz # sc-202795). Differentiation 

media was replaced after 3 days with adipocyte media, DMEM/Hams’ F-12 (1:1, v/v) 

supplemented with previously mentioned components at the same concentrations, except IBMX 

and rosiglitazone which were not included in the media. Adipocyte media was refreshed every 2 

days, while the 3T3-L1 cells were photographed at 3 day intervals using a light microscope at 

high magnification (400x), up until day 15 when cells were fully differentiated into mature 

adipocytes. The growth and differentiation feeding schedule is illustrated below. 
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Pre-adipocyte media             Differentiation media               Adipocyte media 
DMEM, high glucose              DMEM/Ham’s F-12                   DMEM/ Ham’s F-12 
10% BCS                                 10% FBS                                    10% FBS 
1x Penicillin/Streptomycin      Biotin                                          Biotin 
                                                 Pantothenate                               Pantothenate 
                                     Human Insulin                           Human Insulin 
                                     Dexamehasone                           Dexamethasone 
                                     1x Penicillin/Streptomycin        1x Penicillin/Streptomycin  
                                     IBMX 
                                                 Rosiglitazone 
 

Figure 2.1. Differentiation protocol for 3T3-L1 pre-adipocytes. 

3T3-L1 cells were grown in pre-adipocyte media till they were 100% confluent; cells were left 
for 48 hours post 100% confluence and then treated with differentiation media for a period of 
three days. Cells were then grown in adipocyte media which replaced every 2 days.  
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2.10 Cell culture treatment  
 

 
2.10.1 HUVEC Irisin treatment  
 

Human recombinant irisin was purchased from Cayman chemical (Cayman chemical # 11451), 

supplied in 50mM Tris (pH 8), containing 150mM sodium chloride and 20% glycerol at 

0.2mg/ml. To avoid protein degradation irisin was aliquoted and stored at -80°C. Upon reaching 

70-80% confluence HUVEC were seeded into 6-well plates and treated with low (20ng/ml) and 

high (200ng/ml) concentrations of recombinant irisin for 4 and 24 hours. Following the respective 

time period, media was taken off the cells and stored, whilst the cells were trypsinised and 

incubated for 5 minutes at 37°C in a 5% CO2 humidified incubator. Upon cell detachment, the 

trypsin was neutralized with cell growth media and this solution was transferred to 1.5ml 

Eppendorf and spun at 500xg for 5 minutes. The cell supernatant was removed and stored as were 

the cell pellets at -80°C. 

 

2.10.2 Fibroblast hydrogen peroxide treatment (H2O2) 
 

Existing literature has referenced H2O2 as a proficient chemical inducer of cellular senescence in 

various cell lines including HDF. There exists, however, a fine line between inducing cellular 

senescence and cytotoxic cell death, therefore in a preliminary experiment, a range of 

concentrations were tested to determine the optimal concentration capable of inducing 

senescence. In summary, HDF at passage 5 were seeded into a 24 well plate in growth media, 

cell number was not determined, instead HDF were grown to confluence to avoid variability of 

H2O2 toxicity (H2O2 toxicity is inversely related to cell density until cells reach confluence). Cell 

media was replaced with media treated with H2O2 (Sigma® # H1009) at final concentrations of 

0µM, 50µM, 60µM, 70µM, 80µM, 90µM, 100µM and 110µM in triplicate. Treatment media was 

removed following one hour incubation, each well washed with PBS three times and replaced 
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with DMEM. HDF were incubated for four days and then split in a 1:2 ratio and further incubated 

for 24 hours before measurement of senescence associated beta galactosidase activity.  

 

2.10.3 Fibroblast doxorubicin hydrochloride treatment. 
 

Doxorubicin hydrocholoride (Tocris # 2252) was dissolved in water to form a stock concentration 

of 1mM. As previously mentioned a 24 well plate was set up with HDF and left to grow till 

confluence. Then growth media was replaced with treatment media containing doxorubicin at the 

following concentrations 0µM, 0.25µM, 0.5µM, 0.75µM, 1µM, 1.25µM, 1.5µM and 1.75µM in 

triplicate. Treatment media was removed following 45 minute incubation and replaced with 

DMEM. HDF were incubated further for 24 hours to measure senescence associated beta 

galactosidase activity.   

 

2.10.4 Fibroblast etoposide treatment. 
 

Etoposide (Tocris # 1226) was dissolved in Dimethyl Sulfoxide (DMSO) to form a stock 

concentration of 1mM. As previously mentioned a 24 well plate was set up with HDF and left to 

grow till confluence. Then growth media was replaced with treatment media containing Etoposide 

at the following concentrations 0µM, 1µM, 5µM, 10µM, 15µM, 20µM, 25µM and 30µM in 

triplicate. Treatment media was removed following 45 minute incubation and replaced with 

DMEM. HDF were incubated further for 24 hours to measure senescence associated beta 

galactosidase activity.   

 

2.10.5 AML-12, C2C12 and 3T3-L1 SASP treatment. 
 

AML12 cells were seeded in 24 well plates and allowed to grow till 100% confluence. Cells were 

treated with normal DMEM high glucose media as a control, 20% (80% regular growth media) 
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of the media collected from non-senescent fibroblasts after 24 hours, 20% of the media collected 

from non-senescent fibroblasts after 48 hours, 20% of senescence media obtained from senescent 

fibroblasts after 24 hours and 20% of senescence media obtained from senescent fibroblasts after 

a period of 48 hours. This plate setup was repeated to produce two identical plates one of which 

was incubated for 24 hours and the other for 48 hours. Two other plates were set up in the same 

fashion, except for the cells were treated with 40% conditioned media (60% regular growth 

media) and incubated for 24 and 48 hours. Following incubation the cell media was collected and 

stored at -80°C and the cells were trypsinised, pooled into a 1.5ml Eppendorf and centrifuged at 

500 x g for 5 minutes. The resulting supernatant was removed and the remaining cell pellet was 

stored at -80°C.  

 

2.10.6 Collection of senescence associated secretory phenotype containing media. 
 

24-well plates were seeded with HDF in DMEM high glucose media and allowed to reach 

confluence. At this point the cells were either treated with 1.5µM doxorubicin or regular growth 

media as a control and incubated in a 37ºC, 5% CO2 humidified incubator for 45 minutes. 

Following incubation, both the treatment and control media were removed and the cells were 

washed three times with sterile PBS, the cells were then incubated in regular DMEM high glucose 

media for a period of 24 and 48 hours. Following the respective time periods the cell media was 

collected into 50ml tube and centrifuged at 500 x g for 5 minutes, in order to pellet any cell and/or 

cell debris. The media was then filter sterilised using a 20ml syringe and 0.2µm filter, to ensure 

that there was no crossover of cellular material.  The media was then aliquoted into 1.5ml 

Eppendorfs and stored at -80°C.    

 

2.11 Aged and young mice tissues 
 

C57BL/6N mice tissues were bought from ShARM (source, Taconic), specifically skeletal 

muscle tissue (ShARM # 020600036), liver tissue (ShARM # 021300036) and white adipose 
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tissue (ShARM # 021500036) were purchased for both  young (4 months) and old (19 months) 

male mice. Mouse tissues were received with a material transfer agreement in place and were 

stored at -20°C upon arrival.  

 

2.12 RNA isolation from cell pellets. 
 

RNA extraction and purification from cell pellets was conducted using the E.Z.N.A. ™ Total RNA 

kit (Omega # R6834-01) according to manufacturer’s instructions. In summary, pelleted cells 

were lysed with the addition of 350µl of TRK lysis buffer and vortexed for complete dissociation 

of the cell pellet. An equal volume (350µl) of 70% ethanol was added to the lysate and triturated 

repeatedly to ensure complete mixture of ethanol.  The sample was then added to a HiBind RNA 

column inserted into a 2ml collection tube and centrifuged at 10,000 x g for 60 seconds at room 

temperature and the flow through was discarded.  Following centrifugation 500µl of RNA wash 

buffer 1 was added directly to the HiBind RNA column and centrifuged at 10,000 x g for 60 

seconds. After disposing the flow through, 500µl of RNA wash buffer 2 was added onto the 

HiBind RNA column and spun at 10,000 x g for 60 seconds. This step was then repeated before 

the HiBind RNA column was centrifuged at maximum speed for 2 minutes, to completely dry the 

HiBind matix. The column was then transferred into a clean RNase free 1.5ml Eppendorf and the 

RNA was eluted by the addition of 50µl of diethylpyrocarbonate (DEPC) treated water, followed 

by centrifugation for 1 minute at 14,000 x g. Isolated RNA was quantified using the NanoDrop-

1000 (NanoDrop Technologies, USA). 

 

2.13 RNA isolation from tissues. 
 

RNA isolation using TRIzol reagent was completed according to a well-established method 

published by LifeTechnologies. The tissues were cut using sterile scissors, into small sections 

weighing 50mg. The samples were transferred into sterile 50ml tubes and 1ml of TRIzol was 

added prior to homogenisation using a power homogeniser. For RNA extraction of muscle tissue 
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an additional isolation step was conducted before phase separation. Following tissue 

homogenisation the samples were centrifuged at 12,000 x g for 10 minutes at 4°C, the upper fatty 

layer was discarded and the supernatant was transferred to a new tube. This additional step 

removes insoluble materials from the sample. Next the homogenised samples were left to 

incubate at room temperature for 5 minutes before the addition of 200µl of chloroform; each 

sample was then shaken by hand for 15 seconds and incubated at room temperature for 3 minutes. 

The samples were then centrifuged at 12,000 x g for 10 minutes at 4°C, separating the sample 

into three phases; the aqueous phase containing RNA was removed. Subsequently 500µl of 100% 

isopropanol was added to the aqueous phase and the sample was incubated at room temperature 

for 10 minutes, followed by another centrifugation step at 12,000 x g for 10 minutes at 4°C. The 

supernatant formed in the previous step was removed leaving a RNA pellet which was washed 

with 1ml of 75% ethanol, the sample was then briefly vortexed and centrifuged at 7500 x g for 5 

minutes at 4°C.  The supernatant was removed and the RNA pellet was air dried for 10 minutes. 

The remaining RNA pellet was re-suspended in 40µl of RNase-free water and incubated at 60°C 

for 15 minutes.  Isolated RNA was quantified using the NanoDrop-1000 (NanoDrop 

Technologies, USA). 

 

2.14 RNA reverse transcription 
 

To reverse transcribe RNA into cDNA, the precision nanoscript reverse transcription kit was 

used (PrimerDesign # RT-nanoScript). For each RNA sample the following reagents were 

added to a 0.2ml thin walled PCR tube, see table 2.1 below.  

Component 1 Reaction 
RNA template (500ng/µl) X µl 

Reverse transcription primer 1.0 µl 
RNAse/DNAse free water X µl 

Final volume 10 µl 
 

Table 2.1. Reverse transcription reaction mixture. 
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The samples were then heated at 65°C for 5 minutes using a thermostatically controlled heat 

block, and promptly returned to dry ice. In order to initiate the extension step the following 

mastermix was prepared (Table 2.2). 

Component 1 reaction  

nanoScript 10X Buffer 2.0µl 
dNTP mix 10mM 1.0µl 

DTT 100mM 2.0µl 
RNAse/DNAse free 

water 
4.0µl 

nanoScript enzyme 1.0µl 
Final volume 10µl 

 
Table 2.2 Extensions step reaction mixture. 

 

10µl of this mixture was added to each sample on ice, briefly vortexed, followed by a pulse spin 

to ensure the reaction mixture was at the bottom of the tube and incubated at 55°C for 20 minutes, 

followed by a heat inactivation step at 75°C for 15 minutes in the PCR thermocycler.  

 

2.15 Reverse transcription PCR. 
 

cDNA was produced following reverse transcription, as described in section 2.14 and was diluted 

1 in 10 with RNase free water and stored at -80ºC until needed for amplification. PCR was 

completed using the components outlined in section 2.6. A full list of primers can be found in  

Appendix 7.2. Samples were analysed on a Stratagene MX3000P thermal cycler. The thermal 

profile was set as follows. 10 minutes at 95ºC, 15 seconds at 95ºC and 1 minute at 60ºC for 40 

cycles, 30 seconds at 95ºC, 30 seconds at 55ºC and 30 seconds at 95ºC. Data analysis was 

conducted using REST 2009 software available from QIAGEN.   

 

 

 



123 
 

2.16 Cell culture assays. 
 

2.16.1 Senescence associated β-galactosidase (SA-β-Gal) assay. 
 

SA-β-Gal staining was performed using β-Gal staining kit (invitrogen # K1465-01) according to 

manufacturer’s instructions. Briefly, growth media was removed from the cells and washed with 

PBS, then the cells were fixed in 1X fixative solution (2% formaldehyde and 0.2% 

glutaraldehyde, diluted in PBS) and incubated for 10 minutes at room temperature. The cells were 

rinsed twice with PBS to ensure the removal of fixative solution and incubated for 24 hours at 

37ºC, 5% CO2 with staining solution containing, 400mM potassium ferricyanide, 200mM 

magnesium chloride and 20mg/mL X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) 

dissolved in N,N’-dimethylformamide (DMF) final concentration of 1mg/ml. Cells were then 

examined for the development of senescent morphology and blue colour. For long-term storage, 

staining solution was removed and the wells were overlaid with 70% glycerol and stored at 4ºC. 

The cells were photographed at low magnification (200x) with the use of a light microscope.  

 

2.16.2 Glucose assay 
 

Glucose utilisation post treatment with senescent and non-senescent media was investigated using 

the glucose (GO) assay kit (Sigma® # GAGO-20), in AML-12, C2C12 and 3T3-L1. The assay 

was completed as per manufacturer’s instructions with slight modifications. Briefly, the glucose 

oxidase/peroxidase reagent (Sigma® # G 3660) was reconstituted in 39.2ml of deionised water.  

The o-dianisidine reagent (Sigma® # D 2679) was reconstituted with 1ml of deionised water and 

0.8ml of o-dianisidine was added to the oxidase/peroxidase reagent and inverted to mix. Using 

the glucose standard solution (Sigma® # D 3285) a 4 point standard curve was set up at the 

following concentrations 40µg/ml, 30µg/ml, 20µg/ml, 10µg/ml and a blank. Media from cells 

was diluted 1/200 in deionised water and 50µl of standards and diluted samples were added to 

separate wells in duplicate, followed by the addition of 100µl of glucose oxidase peroxidase 

solution. The plate was incubated at 37ºC, 5% CO2 in a humidified incubator for 30 minutes.  
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Next the reaction was stopped using 100µl of 12N sulfuric acid, eliciting a color change from 

brown to pink which was read at 540 nm using an optical plate reader.    

  

2.16.3 Glycogen assay  
 

The ability of each cell line used in this study, to store glucose as glycogen post treatment with 

or without senescent media was analysed using the glycogen assay kit (Enzychrom # E2GN-100). 

The assay was completed as per manufacturer’s instructions. In summary cells treated with or 

without senescent media were pelleted and stored on ice. Cell pellets were homogenised using 

2.5g/L sodium fluoride, 25mM citrate, pH 4.2 on ice, the cell suspension was then centrifuged at 

14,000g for 5 minutes to remove cell debris and 10µl of the supernatant was used for the assay.  

A glycogen standard curve was prepared at the following concentrations 200µg/ml, 150µg/ml, 

100µg/ml, 50µg/ml and 0µg/ml diluted in dH2O. Samples were diluted in dH2O 1/10. 10µl of 

both diluted samples and standards were pipetted into a 96well plate and mixed with 90µl of 

working reagent, consisting of 90µl Assay Buffer, 1µl Enzyme A, 1µl Enzyme B and 1µl Dye 

Reagent. The plate was then incubated at 30 minutes at room temperature and read on an optical 

plate reader at 570nm.    

 

2.16.4 PrestoBlue cell viability assay   
 

PrestoBlue cell viability reagent (Life Technologies # V4) was used to determine if the media 

derived from NF (non-senescent fibroblasts) and SF (senescent fibroblasts) could reduce cell 

viability in the AML-12, C2C12 and 3T3-L1 cell lines. Cells were seeded into two 96 well plates 

and induced to differentiate, as outlined previously. Cells were treated with either normal media 

as a control, media derived from non-senescent fibroblasts after 24 and 48 hours, and media 

derived from senescent fibroblasts after 24 and 48 hours. 200µM etoposide was used as positive 

control to induce cell death. The cell viability assay was completed as per manufacturers 
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instructions. Cell treatments were removed and then 10x PrestoBlue dye was diluted down to 1x 

and added directly to cells. Cells were left to incubate for 2 hours and then the optical density 

was read at two frequencies 570nm and 600nm on a microplate reader.  

 

2.16.5 MitoSOX™ Red mitochondrial superoxide indicator. 
 

MitoSOX red mitochondrial superoxide indicator (Life Technologies # 1575871) was used to 

determine if senescent media could manipulate cellular respiration, more specifically if senescent 

media was able to influence reactive oxygen species production. C2C12 cells were grown to 

confluence and differentiated. Six treatments were established, differentiated cells were treated 

with either normal media as a control, media derived from non-senescent fibroblasts after 24 and 

48 hours, and media derived from senescent fibroblasts after 24 and 48 hours. 5 µM doxorubicin 

was used as positive inducer of reactive oxygen species.  To begin with a 5mM stock solution of 

mitochondrial superoxide indicator was prepared in dimethylsulfoxide (DMSO). This stock 

solution was further diluted to 5µM in PBS. Upon completion of the respective treatment 

incubation periods, cells were overlaid with the working concentration of mitochondrial 

superoxide indicator and left to incubate at 37ºC, 5% CO2 in a humidified incubator for 20 

minutes. Following staining cells were then washed three times using warm PBS and then 

photographed using a fluorescent microscope. ImageJ software was used to quantify 

fluorescence.    

 
2.16.6 Mitotracker mitochondrial probe. 
 

MitoTracker red CMXRos (life technologies # 1453322) was used to stain mitochondria in live 

differentiated C2C12 cells. 5 cell treatments were administered, cells were treated with either 

normal media as a control, media derived from non-senescent fibroblasts after 24 and 48 hours, 

and media derived from senescent fibroblasts after 24 and 48 hours. The experiment was 

conducted as per manufacturer’s instructions, briefly a stock solution of Mitotracker Red 
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CMXRos was prepared using DMSO at a concentration of 1mM. A working concentration was 

prepared at a concentration of 100nM in serum free media and heated to 37ºC. Cells were then 

incubated at 37ºC, 5% CO2 in a humidified incubator for 45 minutes, following the 45 minute 

incubation treatment media was removed and the cells were washed with warm PBS and replaced 

with pre-warmed media. Cells were then photographed using a fluorescent microscope at 100x 

magnification, exciation wavelength 579 (nm) emission wavelength 599 (nm). ImageJ software 

was used to quantify fluorescence.    

 

2.16.7 Glycerol assay 
 

To test whether SASP can induce lipolysis in 3T3-L1 adipocytes, media was removed from 

mature adipocytes cultured under 20% and 40% SASP for 24 and 48 hours. Circulating glycerol 

a prominent marker of adipocytes undergoing lipolysis was measured using free glycerol reagent 

(Sigma # F6428). The protocol was adjusted to accommodate the experiment in a 96 well plate. 

In summary, a 7 point standard curve was prepared ranging from 0.26mg/ml to 0mg/ml. 

Standards, samples and blank were pipetted into a 96 well plate, followed by 200µl of free 

glycerol reagent. The plate was then incubated at 37ºC, 5% CO2 for 10 minutes, and the 

absorbance read at 540nm.  

 

2.16.8 Nile Red staining 
  
Nile red (Sigma® # 72485) was used to stain 3T3-L1 cells to qualitatively assess differences in 

lipid droplet size following treatment with senescent media. Briefly 3T3-L1 cells were seeded 

into 24 well plates and differentiated according to the differentiation protocol outlined previously. 

Post day 15 of differentiation the cells were treated with 40% senescent media for a period of 24 

and 48 hours as discussed previously. Following the treatment cell media was removed and the 

cells were washed with PBS, prior to the addition of 4% paraformaldehyde in PBS on ice. The 

3T3-L1 cells were fixed for 15 minutes and the cells were washed three times with PBS. A Nile 
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red stock solution was prepared at 1mg/ml in methanol, a working solution was prepared using 

PBS at a final concentration of 1µg/ml. 400µl of Nile red was added to each well and incubated 

for 30 minutes at 37ºC, 5% CO2 and photographed on a confocal microscope. ImageJ software 

was used to quantify fluorescence.    

 

2.16.9 Statistical tests. 
 

All data generated during the clinical study was primarily analysed using Pearson’s bivariate 

correlations to determine significant associations and put into a stepwise backward linear 

regression to determine the most significant predictor of the independent variable. Data was 

analysed using IBM SPSS version 6 and diagrammatical representations were generated using 

GraphPad prism. PCR data was analysed using Qiagen software REST 2009. Statistical analysis 

was performed using a two tailed, unpaired student’s t-test when comparing the difference 

between two group means. When comparing column and row means from more than two samples 

the two way analysis of variance followed by Tukeys Multiple Comparisons test was used. A 

P<0.05 was considered statistically significant. A 95% confidence interval was sued for the 

difference between all selected pairs of means in the t-test and the ANOVA/Tukey’s post test.  
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3.1 Introduction  
 

Energy homeostasis has long been recognised as a fundamental modulator of longevity and 

morbidity [547]. Whilst calorie restriction extends lifespan in a variety of lower organisms 

including some mammals, caloric excess is thought to be able to have an opposing effect [548-

550]. The consequences of aberrant calorie consumption in humans translate directly into changes 

in body composition [551]. For example, in environments of increased energy intake a 

consequential increase in adipose mass is observed, whilst a calorific deficit created through 

reduced calorie intake and/or increases in physical activity can shift the balance towards a 

reduction in fat tissue and increased muscle mass [552-554]. The significance of body 

composition, in propagating the development of metabolic disorders which disproportionately 

affect an individual’s lifespan is becoming increasingly apparent.  

 

Adipose tissue, is now recognised to be at the nexus of mechanisms regulating oxidative stress, 

inflammation, metabolic disease and therefore health span [503, 555, 556]. Accumulating excess 

adipose tissue can accelerate the onset of multiple age related disorders, including obesity, T2D, 

cardiovascular disease and cancer [557-559]. The endocrine nature of adipose tissue may also 

contribute towards either improved health and longevity or facilitating physiological deterioration 

and metabolic disease. For example leptin and adiponectin, two protein hormones thought to 

function as opposing forces and substantially influence the propagation of metabolic dysfunction 

[243, 560]. Hyperleptinemia has been strongly associated with glucose intolerance, insulin 

resistance and cardiovascular complications [561]. Hyperadiponectinemia on the contrary has 

been implicated to have cardioprotective effects, induce insulin sensitivity, improve glucose 

homeostasis and generally protect against the development of metabolic syndrome [243, 562]. A 

common observation amongst individuals with elevated adipose mass is a marked increase in 

visceral adipose tissue, previously described as a considerable source of pro-inflammatory 

cytokines and a significant causative agent in the manifestation of metabolic dysfunction [563-
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565]. Research has provided evidence for reduced TL, an established genetic marker of cellular 

ageing, amongst individuals suffering from metabolic syndrome [566]. Increased telomere 

attrition has previously been correlated with vascular ageing, arterial stiffening, atherosclerosis, 

and cardiovascular risk [453, 566-568]. More specifically elevated fasting blood glucose, 

increased serum lipids and hyperinsulinemia, all parameters of metabolic disease have been 

inversely correlated with TL [453, 569]. Increased adipose mass has been implicated as a 

considerable risk factor for developing the previously mentioned health implications and 

therefore is recognised as a determining factor of accelerated ageing [570]. These data highlight 

the strong influence dysregulated metabolism can have on healthy ageing. Interventions which 

attenuate the accumulation of excess adipose tissue and visceral fat, such as engaging in exercise 

or consuming a calorie restricted diet protect against the development of metabolic disease, thus 

may promote longevity or increased healthspan [571-573]. Murine models have been used to 

demonstrate that surgical removal of visceral fat alleviates the symptoms of T2D, upregulates 

insulin sensitisation and improves glucose homeostasis, an outcome which has been reproduced 

in calorie restricted mice [574, 575].  

 

The biological benefits of following a calorie restricted diet are apparent, however, due to the 

lack of adherence to such a strictly regimented diet, recent research is increasingly aimed towards 

determining the feasibility and efficacy of natural and/or pharmacological calorie restriction 

mimetic molecules [523]. Resveratrol, 2-deoxyglucose and metformin have all been reported to 

mimic the effects of calorie restriction, however due to increased inter-individual and intra-

individual variances and a lack of longitudinal studies, the beneficial effects of calorie restriction 

mimetics on longevity warrant further investigation [576]. One potential mechanism, yet to be 

investigated is the facilitation of energy dissipation through the thermogenic activity of BAT. 

BAT has developed as an essential thermoregulatory effector, by dissipating stored energy 

through the production of heat during the challenge of low environmental temperatures, in 

comparison to its antagonistic adipose counterpart, WAT which is predominantly responsible for 
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storing excess energy as triglycerides [577]. The thermogenic ability of BAT is attributable to 

increased mitochondrial density facilitating proton transfer across mitochondrial membranes to 

produce ATP [578]. Once ATP production reaches a point of saturation excess energy stored in 

the protons is leaked via UCP-1 and released as heat, inducing “non-shivering” thermogenesis 

[220].  Human BAT activity was recognised to peak at two years of age, at which point its 

metabolic function progressively declines with advancing age, until being limited in adolescents 

and being completely non-functional in adults [216].  Recent studies utilising PET and CT have 

been successful in discovering BAT in adults, using radioactively labelled fluorodeoxyglucose 

(FDG) as a means of identifying metabolically active brown fat [222]. Using PET-CT the authors 

reported increased glucose and nonesterfied fatty acid utilisation, as an energy source to fuel BAT 

thermogenesis under cold conditions, in accordance with enhanced 11C-acetate uptake, a marker 

of oxidative metabolism [579] 

 

Bostrom et al recently identified, PGC1-α induced overexpression of the FNDC5 gene following 

aerobic exercise in mice [580]. The FNDC5 gene encodes a type 1 membrane protein that is 

proteolytically cleaved and secreted into the circulation, termed irisin [580, 581]. Similarly to 

adipose tissue, skeletal muscle has been identified as an endocrine organ, with the ability to 

release myokines [581]. Irisin is thought to be a myokine, and is referred to as such in current 

literature, however there is a paucity of evidence demonstrating its release. Irisin has been 

reported to manifest an anti-obesity effect by imposing a BAT phenotype, by binding WAT via 

undetermined receptors and up regulating energy expenditure via increased thermogenesis [582]. 

It has been demonstrated a lack of BAT and UCP1 increased susceptibility to the development of 

obesity and insulin resistance in laboratory mice [583]. Human studies provide similar findings, 

BAT exhibits an inverse relationship with both age and BMI, suggesting a protective role against 

the development of obesity and thus T2D, two metabolic disorders commonly associated with 

advancing age [579] .  
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Irisin may be able to rejuvenate the age associated decrease of metabolically active BAT, 

resulting in an increment in net energy expenditure, accompanied by a decrease in WAT 

accumulation, a considerable risk factor for the development of obesity and associated co-

morbidities.  
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3.2 Aims and Hypothesis 
 

Previous research has revealed that obesity significantly reduces lifespan, and that excess fat 

stored within the abdomen, particularly visceral fat increase the risk of serious and chronic 

condition such as T2D, cardiovascular disease and cancer. However the exact relationship 

between adipocyte mass distribution and its association with ageing is poorly understood. 

Furthermore, it is not clear whether subcutaneous or visceral fat has a larger influence on lifespan 

dynamics. The primary aim of this chapter was to investigate the potential role of body 

composition in the ageing process in a healthy, non-obese cohort. By measuring the distribution 

of fat and muscle using segmental bio-impedance, and TL in a cohort of healthy volunteers, in a 

bid to clarify the relationship between body composition and ageing at the cellular level. More 

specifically the role of circulating leptin, adiponectin, and irisin, along with parameters of glucose 

homeostasis were investigated to understand their role in ageing at the cellular level.   

 

Additionally the relationship between markers associated with endothelial dysfunction and 

inflammation with telomere length were examined, in a bid to probe associations between body 

composition and markers of disease risk. Understanding the association between these markers 

of cell dysfunction and ageing is important for early identification of individuals at risk of 

enduring premature ageing or an advanced rate of cellular ageing. This chapter will investigate 

the relationship between body composition and ageing and provide new insights into the 

mechanisms by which metabolic factors affect the ageing process. 

The hypotheses for this study are therefore: 

1) Markers of adiposity will negatively correlate with TL 

 

2) Visceral fat score will negatively correlate with TL 

 

3) Circulating irisin will positively correlate with global muscle mass and TL. 
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3.3. Methods  
 

For complete details of experimental methodology please refer to chapter 2 section 2.1 to 2.8. 
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3.4. Results 
 
 
3.4.1 Comparative analysis of anthropometric measurements and biochemical 
analysis, between healthy male and female volunteers. 
 
 
Gender differences in anthropometric and biochemical characteristics are exhibited in Table 1. 

Both males and females were of similar age (44 ± 15.9 and 43 ± 15.4). The males recruited in 

this study were significantly taller (177 ± 6.9cm, p = <0.01), weighed more (80.9 ± 10.4kg, p = 

<0.01) and therefore had a higher BMI (25.4 ± 2.5, p = <0.01) in comparison to female volunteers 

recruited (166 ± 7.8cm, 64 ± 9.2kg and 23 ± 2.8) respectively. As expected females exhibited 

higher global fat percentages (30 ± 5.9%, p = <0.01) and abdominal fat percentages (26.7 ± 7.4%, 

P = <0.01), in conjunction with elevated concentrations of the adipokine leptin (11.6 ± 7.33ng/ml, 

p = <0.01) relative to males (20.6 ± 9.1%, 20.8 ± 7.0% and 5.89 ± 5.81ng/ml). Plasma adiponectin 

concentrations reveal a sexual dimorphism, with female volunteers having higher levels than 

males (4.3 ± 2, 2.8 ± 1.4), differences in leptin to adiponectin ratio remained non-significant. 

Male subjects displayed an expected higher global muscle mass (61.6 ± 7.4kg, p = <0.01) 

abdominal muscle (33.7 ± 4.0kg, p = <0.01) and a higher visceral fat score (7.6 ± 4.2, p = <0.01) 

relative to females, in line with existing literature. Interestingly, despite significant differences in 

both muscle mass and body fat percentage, circulating irisin concentrations were similar between 

males and females, (46.7 ± 28ng/ml and 46.7 ± 36.3, p = 1). 

 

There were no significant differences in fasting blood glucose, fasting insulin concentration and 

percentage pancreatic beta cell function between males and females, however males were 

significantly more insulin resistant (3.5 ± 1.7, p = <0.01) and less insulin sensitive (124.7 ± 68.7, 

p = <0.01) than recruited female subjects (0.7 ± 0.4 and 161.4 ± 73).  With respect to markers of 

endothelial dysfunction and inflammation measured both males and females had similar 

concentrations of soluble thrombomodulin, E-selectin and C-reactive protein, all of which were 

within the normal reference range for healthy individuals.  
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Table 3.1 Clinical characteristics and metabolic profiles of male and female subjects 
studied. 
 
Data is presented as mean ± S.D. for normal continuous variables. A t-test was conducted to test 
for significant differences between individual variables. Significant differences are highlighted 
by * and, correspond to a P value of < 0.05. ** Corresponds to a p value < than 0.01 and *** 
corresponds to a P value < 0.0001. 
 

 
 
 
 
 
 
 
 

Healthy Volunteers Males Females Significance 

Cohort Size (n) 43 38  
Age (years) 44 ± 15.9 43 ± 15.4 P  0.7 

Height (cm)*** 177 ± 6.9 166 ± 7.8 P = <0.001 
Weight (Kg)*** 80.9 ± 10.4 64 ± 9.2 P  <0.001 

Body Mass Index (kg/m2)*** 25.4 ± 2.5 23 ± 2.8 P  <0.001 
Total Fat (%)*** 20.6 ± 9.1 30 ± 5.9 P  <0.001 

Total Muscle (kg)*** 61.6 ± 7.4 41.9 ± 4.5 P  <0.001 
Abdominal (Trunk) Fat (%)*** 20.8 ± 7.0 26.7 ± 7.4 P  <0.001 

Abdominal (Trunk) Muscle 
(kg)*** 

33.7 ± 4.0 23.4 ± 3.7 P  <0.001 

Visceral Fat Score (0-60)*** 7.6 ± 4.2 4.7 ± 2.4 P  <0.001 
Fasting Blood Glucose (mmol/l) 4.6 ± 0.6 4.4 ± 0.8 P = 0.2 

Fasting Insulin (mU/L) 8.6 ± 3.9 6.9 ± 3.8 P = 0.051 
HOMA β (%) 115 ± 55.4 103.9 ± 49.2 P = 0.3 
HOMA IR*** 3.5 ± 1.7 0.7 ± 0.4 P  <0.001 

HOMA S* 124.7 ± 68.7 161.4 ± 73 P = 0.02 
Telomere Length (T/S ratio)* 2.2 ± 0.5 2 ± 0.3 P = 0.03 

Irisin (ng/ml) 46.7 ± 28 46.7 ± 36.3 P = 1 
Leptin (ng/ml)*** 5.89 ± 5.81 11.6 ± 7.33 P  <0.001 

Adiponectin (µg/ml) 2.8 ± 1.4 4.3 ± 2 P  <0.001 
Leptin/Adiponectin ratio 0.0052 ± 0.0068 0.0054 ± 0.0048 P=0.7 
Thrombomodulin (ng/ml) 6.2 ± 2.8 5.6 ± 3.3 P = 0.3 

E-selectin (ng/ml) 36.5 ± 31.5 37.9 ± 35.9 P = 0.8 
C-reactive protein (µg/ml) 1.15 ± 0.9 0.94 ± 0.75 P = 0.2 
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3.4.2 Anthropometric and biochemical cohort characteristics 
 

Cohort characteristics are displayed in Table 2. The 81 healthy volunteers recruited for this study, 

mean age of 43 years and mean BMI of 24.3 kg/m2, exhibited bioimpedance-derived values 

typical of normal body composition, notably normal proportions of total muscle mass and adipose 

distribution. Visceral fat scores were within the acceptable range for healthy individuals (1-12), 

as per determined by the BC-601 Bioimpedanace Analyser Tanita®. Equally fasting blood 

glucose levels were below 7 mmol/l the widely accepted threshold for diagnosing diabetes. Mean 

T/S ratio values (2.14 ± 0.47) showed a tight distribution while plasma concentrations of irisin 

(46.7 ± 32.4 ng/ml), leptin (8.5 ± 7.2 ng/ml), soluble thrombomodulin (5.9 ± 3ng/ml) and E-

selectin (36.9 ± 33.2 ng/ml) showed a wider interindividual variation.  
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Table 3.2. Clinical characteristics and metabolic profiles of healthy subjects studied. 
 
Anthropometric and biochemical analytes measured in this study. Data is presented as mean ± 
S.D. for normal continuous variables. 

 

 

 

 

  

 Healthy 
Volunteers 

Cohort Size (n) 81 
Men (n) 43 

Women (n) 38 
Age (years) 43 ± 15.8 
Height (cm) 172 ± 9.5 
Weight (Kg) 73 ± 13.1 

Body Mass Index (kg/m2) 24.3 ± 2.9 
Total Fat (%) 25.1 ± 9.2 

Total Muscle (kg) 52.3 ± 11.7 
Abdominal (Trunk) Fat (%) 23.6 ± 7.9 

Abdominal (Trunk) Muscle (kg) 28.9 ± 6.5 
Visceral Fat Score (0-60) 6.2 ± 3.8 

Fasting Blood Glucose (m/mmol) 4.5 ± 0.7 
Fasting Insulin (mU/L) 7.9 ± 4 

HOMA β (%) 110.6 ± 52.8 
HOMA IR 2.2 ± 12.3 
HOMA S 141.9 ± 73.7 

Telomere Length (T/S ratio) 2.14 ± 0.47 
Irisin (ng/ml) 46.7 ± 32.4 
Leptin (ng/ml) 8.6 ± 7.2 

Adiponectin (µg/ml) 3.44 ± 1.87 
Leptin/Adiponectin ratio  0.005 ± 0.005 
Thrombomodulin (ng/ml) 5.9 ± 3 

E-selectin (ng/ml) 36.9 ± 33.2 
C-reactive protein (µg/ml) 1.03 ± 0.8 
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3.4.3 Associations with T/S ratio 
 

Pearson’s bivariate correlations between T/S ratio, age, anthropometric measures and 

biochemical analytes are displayed in Table 3.3. Significant associations are expressed as X,Y 

scatterplots (Figures 3.1-3.21) and significant association are given  in table 3.4 Age (p  <0.001), 

height (p = 0.036), total body fat (p = 0.023), total muscle (p = 0.043), abdominal fat (p = 0.036) 

visceral fat (p = <0.0001), leptin (p = 0.024) irisin (p = 0.01), thrombomodulin (p = 0.012) and 

E-selectin (p = 0.021) displayed significant correlation with T/S ratio. Significant associations 

between thrombomodulin, E-selectin and T/S ratio were most likely due to type-1-error, as a few 

data points are largely influencing the linear correlations. Significance with 95% confidence was 

designated at p ≤0.05. 
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Table 3.3. Pearson’s Bivariate correlation matrix 

Two-tailed pearsons bivariate correlations between T/S ratio, age, anthropometric measures and biochemical analytes. Negative associations are 
denoted by -. Significance was set at p = ≤0.05, N = 81.  
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Figure 3.1. Correlation of age with telomere length.  

Pearson’s bivariate correlation represented as a linear regression X, Y scatterplot. In the healthy 
cohort it was observed a significant negative correlation between chronological age and 
telomere length (p = 0.0001, R2 = 0.3, n =81).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Correlation of height in cm with telomere length.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. Height in cm 
exhibited a significant positive correlation with T/S ratio in the healthy volunteer cohort (p = 
0.03, R2 = 0.05, n =81). 
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Figure 3.3. Correlation of weight in kg with telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. Weight in kg did 
not exhibit any association with T/S ratio in the healthy volunteer cohort (p = 0.3, R2 = 0.01, n 
=81).  

 

 

 

 

 

 

 

 

 

 

 

Figure   3.4. Correlation of BMI with telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. BMI failed to 
exhibit any association with T/S ratio in the healthy volunteer cohort (p = 0.5, R2 = 0.004, n 
=81). 
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Figure 3.5. Correlation of global Fat % with telomere length.  

Pearson bivariate correlations represented as linear regression X, Y scatterplot. Global fat % 
exhibited a significant negative correlation with T/S ratio in the healthy volunteer cohort (p = 
0.02, R2 = 0.06, n =81).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Correlation of global muscle (kg) with telomere length.  

Pearson bivariate correlations represented as linear regression X, Y scatterplot. Global muscle 
mass exhibited a significant positive correlation with T/S ratio in the healthy volunteer cohort (p 
= 0.04, R2 = 0.05, n =81).  
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Figure 3.7. Correlation of abdominal fat percentage with telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. Abdominal fat % 
exhibited a significant negative correlation with T/S ratio in the healthy volunteer cohort (p = 
0.03, R2 = 0.05, n = 81).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Correlation of abdominal muscle (kg) with telomere length. 

Pearson bivariate correlation represented as linear regression X, Y scatterplot. Abdominal 
muscle in kg did not exhibit a significant association with T/S ratio in the healthy volunteer 
cohort, (p = 0.08, R2 = 0.03, n =81).  

 

 

T
/S

 R
a
ti

o



145 
 

 

 

 

 

 

 

 

 

Figure 3.9. Correlation of visceral fat score with telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. Visceral fat score 
exhibited a significant negative correlation with T/S ratio in the healthy volunteer cohort (p = 
0.0003, R2 = 0.1, n =81). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Correlation of circulating leptin with telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. Circulating leptin 
exhibited a significant negative association with T/S ratio in the healthy volunteer cohort (p = 
0.02, R2 = 0.06, n =81). 
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Figure 3.11. Correlation between circulating adiponectin and telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. Circulating 
adiponectin levels did not exhibit any association with T/S ratio in the healthy volunteer cohort 
(p = 0.1, R2 = 0.02, n= 81). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Correlation between leptin:adiponectin  molar ratio and telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. The 
leptin:adiponectin ratio did not exhibit any association with T/S ratio in the healthy volunteer 
cohort (p = 0.11, R2 = 0.03, n= 81). 
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Figure 3.13. Correlation between fasting blood glucose and telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. Fasting blood 
glucose did not exhibit a significant association with T/S ratio in the healthy volunteer cohort (p 
= 0.1, R2 = 0.02, n =81). 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Correlation between fasting insulin and telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. Fasting insulin 
(mU/L)   did not exhibit a significant association with T/S ratio in the healthy volunteer cohort 
(p = 0.1, R2 = 0.02, n = 81). 
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Figure 3.15. Correlation between HOMA-β and telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. HOMA-β did not 
exhibit a significant association with T/S ratio in the healthy volunteer cohort (p = 0.08, R2 = 
0.03, n= 81). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. Correlation between HOMA-IR and telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. HOMA-IR did 
not exhibit a significant association with T/S ratio in the healthy volunteer cohort (p = 0.3, R2 = 
0.01, n= 81). 
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Figure 3.17. Correlation between HOMA-S and telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. HOMA-S failed 
to exhibit a significant association with T/S ratio in the healthy volunteer cohort (p = 0.5, R2 = 
0.005, n= 81). 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. Correlation between circulating Irisin and telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. Circulating irisin 
exhibited a significant positive correlation with T/S ratio in the healthy volunteer cohort, this 
association is novel and has not been reported previously (p = 0.01, R2 = 0.08, n=81).  
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Figure 3.19. Correlation between circulating thrombomodulin (ng/ml) and telomere 
length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. Circulating 
thrombomodulin (ng/ml) exhibited a significant positive correlation with T/S ratio in the 
healthy volunteer cohort (p = 0.01, R2 = 0.07, n= 81). 

 

 

 

 

 

 

 

 

 

 

Figure 3.20. Correlation between soluble E-selectin (ng/ml) and telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. Soluble E-
selectin (ng/ml) exhibited a significant positive correlation with T/S ratio in the healthy 
volunteer cohort (p = 0.02, R2 = 0.06, n= 81). 
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Figure 3.21. Correlation between circulating C-reactive protein and telomere length.  

Pearson bivariate correlation represented as linear regression X, Y scatterplot. Circulating C-
reactive protein (µg/ml) did not exhibit a significant correlation with T/S ratio in the healthy 
volunteer cohort (p = 0.5, R2 = 0.003, n =81). 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4. Summary of all significant Pearson’s bivariate correlations observed in this 
study. 

 

All statistically significant associations between anthropoimetric/biochemical analyst measured 
in this investigation and TL are summarised herein. Positive correlation coefficients imply an 
increase with increase TL and negative correlation coefficients suggests a decrease in the 
respective variable with a decrease in TL. Significance was set at p ≤ 0.05.   
 

Measurement  Association 
with T/S ratio 

Significance 

Age (years) -0.560 <0.001 
Height (cm) 0.233 0.036 
Total Fat (%) -0.253 0.02 

Total Muscle (kg) 0.225 0.04 
Abdominal (Trunk) Fat (%) -0.234 0.03 
Visceral Fat Score (0-60) -0.393 <0.001 

Leptin (ng/ml) -0.250 0.02 
Irisin (ng/ml) 0.285 0.01 

Thrombomodulin (ng/ml) 0.279 0.012 
E-selectin (ng/ml) 0.256 0.021 



152 
 

3.4.4. Correlation of multiple factors with telomere length - stepwise backward 
multiple linear regression 
 
Using statistical package IBM SPSS version 20 stepwise backward multiple linear regression 

analysis was conducted. Using this method the dependent variable was identified as T/S ratio and 

statistically significant correlations determined using Pearson’s bivariate correlations were 

entered as the independent variables (Table 4) into the regression model. The stepwise backward 

function enters all variables into the model and then subsequently eliminates each variable based 

upon the effect of the variable on the significance of the model. This method eliminates all 

variables which are poor at predicting T/S ratio.  The model summary highlights that 38% of the 

variability in T/S ratio can be predicted by the final variables selected by the model.  The analysis 

of variance indicates the final combination of variables selected that are most efficient in 

predicting T/S ratio, have been incorporated into a statistically significant model with a P value 

of <0.0001.  

 

 
 
 
 
 
 
Table 3.5. Model summary for healthy, non-obese volunteers.  
 
The final combination of variables selected that are best able to predict T/S ratio, account for 38% of the 
variability in the T/S ratio’s.  
 
   
 

 
ANOVA 

Model Sum of 
Squares 

df Mean Square Significance 

Regression 6.799 3 2.266 < 0.000 
Residual 11.077 77 0.144  

Total 17.876 80   

 
Table 3.6. The analysis of variance table for both male and female models.  
 
ANOVA analysis shows that for non-diabetic volunteers, the variables (see Table 5) selected are significant 
predictors of T/S ratio. This confirms the significance of the model.   

 

Model Summary 

Model R R Square Adjusted R Square Std Error of the Estimate 

6 0.617 0.380 0.356 0.37929 
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Significant correlations determined using the Pearson’s bivariate correlation test, age, height, 

total fat, total muscle, abdominal fat, visceral fat, leptin and irisin (Table 3.4) were analysed using 

the backward   multivariable linear regression, to test which of these significant association could 

predict T/S ratio. The backward multivariable linear regression identified age and circulating 

irisin as the only significant predictors of T/S ratio in the model, p  <0.0001 and p = 0.04 

respectively. Interestingly age exhibited a negative beta coefficient of -0.506, whilst irisin 

exhibited a positive beta coefficient of 0.191 with regards to T/S ratio. The positive beta value 

associated with irisin denotes the dependent variable (T/S ratio) has increased in response to an 

increase in the independent variable (irisin), this is novel association and suggests irisin has a role 

in modulating telomere length and therefore influencing healthy ageing. A negative beta value, 

as associated with the independent variable chronological age suggests the dependent variable 

has decreased in response to an increase in the independent variable, which is an association 

which would be expected and has been previously reported. Circulating leptin was included in 

the final model however was a not a  significant predictor of T/S ratio, with a p value of 0.064; 

however with a negative beta coefficient the data suggests that leptin too would express a similar 

trend to the association between age and T/S ratio. Biologically a higher leptin concentration 

would coincide with increased adipose mass, a well-recognised contributor to telomere attrition 

and decreased lifespan. All other variables were excluded from the analysis. 

 

Coefficients 

Variable  Beta Standard Error Significance 95% confidence interval 

Age -0.506 0.003 <0.0001 -0.021 - -0.01 

Leptin -0.170 0.006 0.064 -0.023 – 0.001 

Irisin  0.191 0.001 0.04 0.000136 – 0.005 
 
Table 3.7. Stepwise backward linear regression analysis using T/S ratio as a dependent variable and 
significant correlations as independent variables. 
  
The backward stepwise multivariable regression eradicated all variables which were unable to 
predict T/S ratio and selected Age (p =<0.0001) and irisin (p = <0.04) as the two most significant 
variables that were able to predict T/S ratio.  
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3.5 Discussion  
 
 

This study was undertaken in an attempt to better understand any associations between ageing (as 

measured by telomere length), anthropometric measurements, and circulating molecules 

associated with metabolism, in healthy volunteers in order to examine how body composition and 

associated circulating factors may be able to regulate ageing at the cellular level and whether 

circulating irisin, a newly discovered myokine can influence cellular ageing. The primary 

findings of this section of the study can be summarised as the following; the reduction in TL with 

chronological age is well recognised and, as expected, was confirmed by the inverse relationship 

between age and TL in this cohort (Fig.3.1, p  <0.0001), confirming that the technique used 

provides expected data. TL also exhibited a significant negative association amongst individuals 

retaining excess body fat (Fig.3.5. p = 0.02), to a lesser extent abdominal fat (Fig.3.7 p = 0.03) 

and the strongest association was observed with visceral fat (Fig.3.9 p  <0.001).  

 

Lean body mass, in the form of muscle was conversely positively correlated with TL (Fig.3.6 p 

= 0.04) and to the authors knowledge this is a novel observation. In spite of these associations, 

none of the anthropometric measurements obtained were significant predictors of TL and it is 

therefore difficult to assign great significance to them in a cohort of this size. They suggest a 

pattern, adipose tissue and muscle having opposing relationships with TL, but no directionality 

of that relationship. A significant inverse correlation was also observed between TL and 

circulating leptin (Fig.3.10 p = 0.02), although again leptin could not mathematically predict TL. 

This study is the first to investigate potential associations between plasma irisin and TL. A novel 

finding of this study is that plasma irisin levels positively correlate with TL (Fig. 3.18 p = 0.01) 

and furthermore can predict TL in a mathematical model adjusted for chronological age. 
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The precise mechanisms responsible for the reduced TL amongst individuals retaining large 

amounts of subcutaneous and visceral adipose tissue observed herein remains unclear; however 

oxidative stress and inflammation have been implicated by previous research [430, 542]. Adipose 

tissue of late has been recognised as a metabolically active endocrine organ. Amongst the many 

bio-peptides and hormones it is able to release, adipose tissue also serves as a reservoir of 

inflammatory cyto/chemokines, particularly visceral adipose tissue [555, 584]. Events leading to 

adipose tissue inflammation have been investigated extensively in murine models. Rodents 

consuming a calorific diet upregulate the production of inflammatory cyto/chemokine and 

extracellular matrix modifying protein within days. Subsequently initiating the augmentation of 

CD8+ effector T lymphocytes, along with a concomitant increase in pro-inflammatory cytokines 

[585]. Fontana et al reported visceral fat is a considerable source of IL-6 and TNF-α secretion, 

moreover IL-6 concentrations correlated with circulating CRP. Combined or individually these 

inflammatory cytokines have been associated with dysregulated glucose homeostasis, insulin 

resistance and cardiovascular complications, facilitating the development of age related disorders 

as well as directly contributing to premature ageing [586].   

 

An integral source of inflammatory cytokine generation from adipose tissues stems from the 

increased infiltration of classically activated M1 macrophages, into adipose tissue [587, 588]. A 

review by Zeyda & Stulnig documents the role of various chemotactic proteins and receptors in 

facilitating macrophage migration to adipose tissue, of which the chemotactic chemokines, Mcp-

1,2,3, RANTES and MIP-1α have been quantified to greater extents in individuals with increased 

central adiposity in comparison to leaner participants [570, 587]. Upon activation, macrophages 

initiate a positive feed-back loop, secreting more inflammatory cytokines that lead to further 

production of MCP-1 and other chemokines, inducing further macrophage, recruitment, 

infiltration and inflammation, in a cascade effect [589].  
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The adipokine leptin, reported here to be negatively correlated with TL, further facilitates this 

situation and has been reported to encourage inflammation. Circulating leptin can be best 

described as an adipokine with hormetic functions, while at lower doses leptin regulates dietary 

intake and has been documented to have beneficial effects on both the innate and adaptive 

immune system [590, 591]. At higher concentrations leptin has been associated with increased 

production of proinflammatory cytokines TNF-α, IL-1 and IL-6, and in a positive feedback loop 

these cytokines increase the expression of leptin mRNA which subsequently sustains leptin 

production [590, 592, 593]. Leptin is evidently a positive regulator of acute inflammation 

however has also been associated with chronic inflammation. Increasing concentrations of leptin 

are found in patients suffering from inflammatory disorders including multiple sclerosis, Crohn’s 

disease and osteoarthritis[591].  

 

It may be speculated participants recruited in this study that were recorded as carrying larger 

adipose stores secrete larger amounts of leptin, and are therefore potentially subjected to a chronic 

low grade inflammation. Excess visceral fat may further exacerbate this effect and in reality may 

be a vital contributor to systemic inflammation. Excessive cell turnover is a hallmark of 

inflammatory episodes, it is possible the increased metabolic needs of a larger individual elicit 

angiogenesis, in combination with the plethora of pro inflammatory cytokines secreted 

marginally by subcutaneous and predominantly by visceral adipose tissue promote WBC 

proliferation. Firstly to maintain the larger circulatory blood pool of an individual with a greater 

surface area, and secondly as a direct result of the increased circulation of pro-inflammatory 

cytokines. The combined effect leads to the increase in total number of circulating WBCs and the 

resulting cell turnover are responsible for the increase in telomere erosion. Furthermore 

accumulated exposure to inflammation is marked by heightened oxidative stress, a phenomenon 

that individually presents as a parameter of advancing age [594].  
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Oxidative stress, and more specifically reactive oxygen species (ROS) display a strong 

biochemical interplay with inflammation. As visceral fat mass expands, the larger number of 

adipocytes secreting increasing levels of ROS have been positively correlated with inflammatory 

adipokines [595]. However ROS are far more prominent modulators of telomere dynamics, 

because telomeric sequences consist largely of guanine residues thus are susceptible to oxidative 

attack due to the low electron potential of guanine, contributing substantially to cellular 

senescence [596, 597]. Senescent cells harbour up to 30% more oxidative modified guanine in 

their DNA and four times as many free 8-oxo-deoxyguanosine bases [598]. Furthermore, cells 

harbouring telomeric DNA subjected to chronic ROS exposure have been reported to become 

deficient in DNA repair capabilities [599]. Excessive exposure to oxidative stress is also known 

to hinder telomerase function, on the contrary, antioxidants significantly prolong telomerase 

activity [600, 601]. in vitro studies have identified the beneficial effects of antioxidant vitamins 

on TL maintenance, and report ascorbic acid derivatives promote replicative life span in vascular 

endothelial cells [602].   
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Fig 3.22. Hypothetical model of the events leading to adipose tissue inflammation and their effects 
on telomere biology.   
 
The cellular stress encountered during increased adiposity, including replicative stress, glucose toxicity and 
the production of metabolites influences the secretion of chemokines which trigger an immune response. 
The augmentation of CD8+ lymphocytes propels an increase in pro-inflammatory cytokines eliciting an 
immune reaction lead by the classically activated predominantly pro-inflammatory M1 macrophages which 
engulf the adipose tissue and upregulate the expression of macrophage chemotactic proteins MCP-1 etc. 
The net result is an overall increase in inflammation and a consequential increase in oxidative stress, 
resulting in telomere dysfunction the impairment of stem cell regeneration and a loss of cell proliferation 
and repair. The combined effect leads to systemic inflammation along with enhanced oxidative stress 
facilitating the development of metabolic disorder along with accelerated cellular ageing.  
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Enhanced muscle mass can be obtained as a direct result of regular physical exercise, activity that 

normally  results in a concomitant decrease in adipose tissue and therefore an overall reduced 

load of inflammatory cytokines and ROS [603]. It would not be unrealistic to assume individuals 

engaging in regular exercise avoid the accelerated rate of telomere erosion triggered by oxidative 

stress and inflammatory episodes. At the time of writing this study is the first to report a positive 

association between skeletal muscle mass and TL in healthy volunteers and provides evidence 

that the benefits of fat free mass translate onto TL. Rosa et al recently conducted a mouse study 

to evaluate the effect of exercise on mRNA and protein expression of IL-10, TNF-α and IL-6 in 

different types of skeletal muscle. The authors reported, moderately intense bouts of exercise 

significantly down regulate the expression of inflammatory cytokine mRNA and protein 

expression in exercised mice, particularly in type 2 muscle fibres. A separate investigation 

reproduced these results in humans and reported reduced concentration of serum TNF-α, IL-1β, 

IL-6 and iNOS in the skeletal muscles of exercised participants [604]. The authors concluded the 

anti-inflammatory effect of exercise attenuates the catabolic wasting associated with chronic heart 

failure. IGF-1 mediated suppression of toll-like receptor mediated inflammation cascades may in 

part be responsible for the anti-inflammatory effects of exercise [413]. IGF-1 itself has been 

reported to be positively associated with TL [605].  

 

Energy consumed during bouts of exhaustive exercise is replenished by increased oxygen 

consumption by mitochondria to facilitate cellular respiration, resulting in a consequential 

increase in free radical formation [606]. However there now exists considerable evidence to 

suggest low grade ROS generated during exercise function to increase the tolerance of ROS 

themselves and help to induce adaptation (Fig 21). This is largely due to the activation of MAPKs 

(p38 and ERK1/ERK2), resulting in the activation of NF-κB and increase in endogenous 

antioxidant enzymes including, superoxide dismutase, glutathione and peroxidase [607, 608]. 

Valle et al suggests PGC-1α, could be involved in the transcriptional regulation of the 

mitochondrial antioxidant defence system, following exercise [609]. 
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Figure 3.23. The benefits of moderate ROS exposure, induced by exercise. 
 
Low dose exposure to ROS activates signaling mechanisms which confer adaption to ROS by 
upregulating antioxidant molecules i.e. glutathione peroxidase and superoxide dismutase. Low 
levels of ROS induce upregulation of IGF-1, which induces muscle growth, differentiation, 
contributes to the oxidant-resistant phenotype as well as down regulating inflammatory cytokines. 
ROS can also enhance expression of transcriptional coactivator PGC1-α which regulates genes 
involved in energy metabolism preventing oxidative damage and chronic diseases. Mild ROS 
exposure can activate AMPK and GLUT4 translocation to the surface of the plasma membrane, 
facilitating increased glucose uptake by skeletal muscle. ROS also facilitates calcium release and 
contributes to increased muscle contraction and strength.  
 

 

 

 

-α 
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Bostrom et al identified the integral role of PGC-1α in the series of events which lead to the 

eventual secretion of irisin, from what currently is thought to be from skeletal muscle. At the time 

of writing this study was the first to examine the association between plasma irisin and TL. 

Plasma irisin levels in our cohort were shown to be only correlated with TL, and no association 

was observed with any other factor measured. Since plasma irisin correlates with TL (p = 0.01) 

and can also predict TL (p = 0.04), irisin may serve as a hormone which can prevent stress induced 

cellular senescence. Although the precise mechanisms through which irisin can modulate TL in 

PBMCs is as yet unknown. Existing data has shown that irisin activates signalling pathways 

associated with the regulation of cellular proliferation including p38 MAPK which has previously 

been shown to regulate expression of human telomerase reverse transcriptase [610, 611]. It is also 

possible that the association reported here is due to indirect effects involving WAT. Because irisin 

secretion is believed to be modulated by PGC-1α following exercise and is secreted from skeletal 

muscle, although no such association was observed in this study, the benefits of increased serum 

irisin concentration on TL may in part be due to the antioxidant and anti-inflammatory effects 

instigated by exercise discussed previously. Whether irisin can elicit an anti-inflammatory or 

antioxidant effect warrants further investigation.   

 

Other studies have reported increased circulating irisin reduces fasting glucose concentrations 

and improves insulin sensitivity in both mice and humans; potentially mitigating the detrimental 

effects of obesity and T2D, two metabolic disorders associated with decreased TL [580, 612, 

613]. Although the precise mechanisms behind this observation are not completely understood, 

the ability of irisin to increase expression of UCP1 and thus cause a ‘browning’ shift in WAT 

may be likened to caloric restriction. This manipulation of cellular energy balance has the 

potential to induce a CR-like state via modulation of WAT function, as excess energy would be 

dissipated as heat upon exposure to irisin.  Irisin may therefore impact the ageing process, by 

releasing stored energy through non-shivering thermogenesis and thus mimicking CR 

mechanisms, which have been proven to promote longevity [523, 614]. Supporting this concept 

is a study which reported an inverse association between calorie intake and leukocyte TL; this 
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recognised the abrogating effect of oxidative stress and inflammation [615].Furthermore, CR has 

been shown to delay telomere shortening in rodents, whilst simultaneously upregulating the 

TERT responsible for elongating the telomere sequence [615, 616]. If the benefits of irisin are to 

be mediated via mechanisms similar to or of calorie restriction, the effect of increased irisin 

concentration on SIRT1 expression requires investigation. The SIR2 mammalian ortholog SIRT1 

functions as a NAD+ deacetylase increasing resiliency to oxidative stress, a process mediated by 

cellular interactions with members of the Fork head transcription factors [617, 618]. More 

specifically deacetylation of FOXO3 is known to provide protection from cell cycle arrest by 

upregulating DNA repair efficiency and enhancing resistance to oxidative stress [619]. SIRT1 

has been reported to improve TL maintenance in vivo and aid genome preservation by 

augmenting homologous recombination at telomeres, centromeres and chromosome arms [620].  

 

Within this study several anthropometric and biochemical parameters failed to exhibit 

correlations with TL, that otherwise might have been expected to. The data from this study did 

not find a significant correlation between BMI and TL. BMI has long been utilised as a clinical 

diagnostic tool and its credibility warrants re-evaluation. The results herein clearly demonstrate 

that body composition, is not only a more detailed account of an individual’s biological make up 

but also serves as much more accurate measure of physiological state. The conventional method 

of measuring height and weight to deduce BMI does not take into account, how much muscle; fat 

and more important visceral fat are contributing to the weight measurement. Previous studies 

have also failed to find correlations between BMI and TL.  

 

Given the anti-inflammatory, anti-oxidant and cardioprotective effects of adiponectin a positive 

association with TL might have been expected but was not observed. There seems to be 

controversy surrounding the beneficial effects of adiponectin.  Adiponectin circulates in the 

system in multimeric isoforms, at high, middle and low molecular weights, with different studies 

reporting different isoforms as clinically significant [621-623]. The low molecular weight 

isoform was analysed in this study and although has been reported to be biologically relevant, the 
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high molecular weight isoform is generally regarded to have insulin sensitising and cardio 

protective effects [624]. It may be possible no correlation between TL and adiponectin was 

observed due to the incorrect isoform being investigated. On the contrary various studies have 

reported increasing concentrations of the high molecular weight isoform in the elderly, implying 

ageing is associated with increased adiponectin. Thus adiponectin secretion may be a 

compensatory mechanism in individuals suffering inflammatory and oxidative attack and 

therefore its role in longevity is of more prominence in patients suffering metabolic dysfunction. 

Broer et al, collated data from seven independent studies examining 11,448 healthy participants, 

examining associations between adiponectin and TL. Adiponectin initially displayed a borderline 

correlation with TL, a relationship which was lost upon the removal of one outlier study [625]. 

 

Five parameters of glucose homeostasis were assessed in this study, none of which correlated 

with TL. Because the participants recruited in this study were healthy and free of metabolic 

disorder, factors secondary to retaining excess adipose and visceral mass, and associated with 

accelerated ageing such as hyperglycaemia, hyperinsulinemia, increased insulin resistance and 

decreased beta cell function were not observed in this study. This suggests that adipose mass is 

the primary modulator of TL and only at higher levels of body fat do the previously mentioned 

indicators of glucose homeostasis influence TL. However it is expected that individuals suffering 

from complications like obesity and T2D are at increased risk of accelerated ageing and insulin 

sensitivity, beta cell function, glucose/insulin concentrations are likely to be vital contributors to 

TL. CRP, soluble thrombomodulin and E-selectin were analysed in an attempt to identify if 

markers of inflammation and/or endothelial dysfunction, two phenomena strongly associated 

with advancing age could predict TL. All three, according to current literature should exhibit 

negative associations with TL, however none actually did correlate with TL. The role of 

circulating E-selectin in adipose mass associated inflammation may not be significant or E-

selectin shedding and endothelial activation may occur only at higher levels of body fat that would 

not be acceptable in the healthy control population. In which case E-selectin may be a pivotal 

determinant of TL in an obese/diabetic cohort.  
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Likewise circulating levels of CRP detected in the healthy cohort may have been considerably 

below the threshold required to induce changes in TL. CRP release from hepatocytes is a non-

specific acute response to inflammation, CRP rises within two hours of the onset of inflammation, 

up to a 100 to 1000-fold, and peaks at 48 hours [626]. Its half-life of 48 hours is constant, and 

therefore its level is determined by the rate of production and hence the severity of the 

precipitating cause. The CRP concentrations observed in this investigation were narrowly 

distributed with the majority of volunteers displaying CRP concentrations within the healthy 

reference range.  It may be likely chronic exposure to CRP at higher concentrations is required to 

manifest enhanced telomere erosion, such as in individuals suffering from metabolic dysfunction.  

 

3.6 Conclusion  
 

The data presented here demonstrates stark anthropometric variability amongst individuals of 

good health, and successfully identifies adipose tissue and skeletal muscle mass as two opposing 

facrors, each associated with TL. Whilst increased adipose tissue was associated with decreased 

TL and enhanced cellular ageing, the latter has been reported to safeguard against accelerated 

ageing here and promote longevity. Furthermore the significance of adipose tissue distribution 

came to light as, central adiposity, in particularly visceral fat displayed the most significant 

negative correlation with TL. At this current stage it can be merely assumed that adipocyte 

mediated oxidative stress and inflammation are the predominant contributors to telomere erosion. 

Therefore it is of both interest and necessity to analyse more markers of both oxidative stress and 

inflammation in order to confirm the association between adipose related oxidative stress and 

inflammation and TL. The benefits of exercise on general physiological wellbeing have long been 

understood. The positive association and ability of irisin to predict TL provides a novel 

mechanism by which exercise may inhibit age-related decline.  
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Exogenous irisin administration has potential as a future therapeutic treatment that may function 

to protect against age associated metabolic disorders, in particular obesity and T2D by creating a 

calorie deficit and promote longevity. 
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4.1 Introduction  
 

There has been a substantial rise in the incidence of metabolic disorders, particularly obesity and 

T2D in recent years, with current reports forecasting further increases in the future [627]. Obesity 

often develops as a result of a dysregulation in energy balance, whereby energy consumption is 

in excess of energy expenditure, leading to increased adipose tissue mass [628]. This excess 

adipose tissue provides a considerable source of reactive oxygen species and inflammatory 

peptides, two vital contributors in the development of T2D [629]. Obesity and T2D are often 

closely related and, coupled with their association with increased morbidity and mortality, are a 

cause for great concern. Existing research has already demonstrated that individuals diagnosed 

with obesity and/or T2D experience a reduction in lifespan, primarily due to health implications 

associated with these disorders, such as cardiovascular disease, endocrine/reproductive 

complications and psychiatric and neurological disorders [630, 631]. There also now exists 

growing evidence that obesity/T2D may be able to accelerate the ageing process itself [632, 633]. 

Results from chapter 3 highlight body fat percentage and visceral fat score, inversely correlated 

with TL, a genetic marker of cellular ageing. On the contrary fat free mass conversely correlated 

with TL, in a cohort of 81 healthy volunteers.  

 

Various studies have reported reduced TL amongst patients suffering from obesity/T2D, however 

there are also numerous studies which report opposite findings and therefore, published literature 

is currently divided regarding TL and obesity/T2D [634, 635]. Both obesity and T2D are 

associated with numerous health implications which are known to reduce lifespan such as 

Alzheimer’s disease, cancer and cardiovascular complications [636-638]. Almen et al., conducted 

GWAS to investigate whether DNA methylation patterns vary with both age and obesity. The 

authors conclude obesity influences age driven epigenetic changes, thus providing molecular 

links between ageing and obesity. Interestingly the author’s document diverse methylation 

patterns in the telomerase catalytic sub-unit amongst obese and lean individuals [639].  
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If individuals suffering from such metabolic disorders are experiencing an accelerated rate of 

ageing due to the pathophysiology of obesity/T2D, interventions reducing the severity of these 

disorders would prove beneficial in restoring an adequate rate of ageing and prevent rapid 

deterioration.  Dietary and exercise interventions reduce the risk of developing obesity and T2D, 

the recent discovery of the peptide hormone irisin, stimulated by PGC1-α expression in myocytes 

following exercise, may be able to provide a mechanistic insight on this effect [640]. Irisin has 

been reported to bind to undetermined receptors on WAT and induce “browning”, by enhancing 

UCP1 expression, consequently increasing uncoupled respiration. These changes promote energy 

expenditure via thermogenesis [640]. Results from chapter 3 discovered plasma irisin levels can 

predict TL in healthy non-obese individuals, suggesting that irisin can both positively influence 

ageing and regulate energy balance [641].  

 

On the contrary many studies are surfacing which completely oppose this theory. Recently 

published research has identified WAT as an additional source of irisin secretion [263, 642]. The 

authors report both subcutaneous and visceral adipose tissues were able to secrete irisin post 

exercise, and the ability to do so was significantly reduced in fasting animals [263]. The general 

perception regarding irisin in research is one of confusion; however media coverage has hailed 

irisin as a wonder treatment capable of eradicating metabolic disease, particularly useful in 

treatment of obesity and T2D owing to its ability to induce browning of WAT. With contrasting 

views regularly published regarding irisin’s therapeutic capabilities and recent data highlighting 

the detrimental effects of irisin on cardiovascular health, the pharmacological implementation of 

irisin as a treatment for obesity and T2D may prove to be more hazardous to health than useful, 

or may be of no use at all [263, 640, 643]. Therefore it is of great necessity that the role of irisin 

in individuals suffering from obesity and T2D be clarified.  
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4.2 Aims and Hypothesis  
 

The aim of this part of the study was to investigate the relationship between metabolic disease 

and ageing, and to compare findings in a cohort of obese/T2D to the healthy cohort described in 

Chapter 3. More importantly the main aim of this chapter is to elucidate the role of TL in 

obese/T2D volunteers, by examining associations between body composition, leptin, adiponectin, 

irisin and markers of endothelial dysfunction including soluble thrombomodulin, C-reactive 

protein and E-selectin, along with homeostatic model assessment with TL. With the purpose of 

clarifying whether circulating TL correlate with measures of adipose mass or skeletal muscle. 

Probing associations between adipokines, markers of inflammation and endothelial dysfunction, 

will help clarify whether obese/T2D patients experience enhanced cellular ageing relative to 

healthy controls and whether obese/T2D volunteers can reap the anti-ageing effects of irisin. 

Finally, using HUVEC the effect of increased irisin concentration on the gene expression of four 

endothelial adhesion proteins, ICAM-1, PECAM-1, P-selectin and E-selectin was assessed. The 

purpose of this investigation was to bridge the gap in knowledge currently correlating increased 

circulating irisin concentration with the development of cardiovascular complications. The results 

from this study may reveal elevated irisin concentration as an intermediary step leading to 

systemic inflammation.  

The hypotheses for this study were; 

1) T2D volunteers will exhibit shorter relative TL in comparison to non-diabetic volunteers. 

 

2) Circulating irisin concentrations will be lower in T2D volunteers and correlate with 

muscle mass. 

 

3) HUVEC treated with a high concentration of irisin will exhibit increased expression of 

endothelial adhesion proteins. 
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4.3 Methods  
 

For complete details of experimental methodology please refer to chapter 2, section 2.1-2.8, 2.9, 

2.10.1, 2.12, 2.14-2.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



171 
 

4.4 Results 
 

4.4.1 Comparison of biochemical and anthropometric measurements in healthy 
individuals and individuals with type 2 diabetes. 
 

Clinical cohort characteristics can be found in Table 4.1. Seventy nine T2D volunteers (42 males 

and 37 females) were recruited in this study and compared to the eighty one previously described 

healthy volunteers.  The type 2 diabetic cohort was significantly older with a mean age of 56± 

12, as opposed to 43± 15.8 years for the healthy volunteer cohort. The Type 2 diabetic cohort 

were shorter in height and weighed more (165 ± 10cm, 87 ± 20.5kg), in comparison to non-

diabetic volunteers (172 ± 9.5cm, 73 ± 13.1kg).  The type 2 diabetic volunteers recruited in this 

study had an average BMI of 31.5 ± 5.4, whereas the non-diabetic volunteers had a significantly 

lower average BMI of 24.3 ± 2.9. A BMI score above 30 is a well-established indicator of the 

obese phenotype and therefore the majority of type 2 diabetics involved in this study were also 

obese.  

 

Global body fat percentages were significantly higher in the type 2 diabetic cohort (34.9 ± 9.3) 

in comparison to the non-diabetic cohort (25.1 ± 9.2). Individuals from both cohorts were shown 

to have similar amounts of both total muscle and abdominal muscle. The healthy volunteers had 

an average total muscle mass of 52.3 ± 11.7kg and the type 2 diabetic volunteers had an average 

total muscle mass of 53 ± 11.8kg, with no significant difference between the two (p = 0.7). 

Healthy volunteers had on average 28.9 ± 6.5kg of abdominal muscle in comparison to 29 ± 5.7kg 

in the diabetic cohort, again exhibiting no statistically significant difference (p = 1). The 

comparable amounts of total and abdominal muscle between the two study cohorts suggests, 

differences in BMI are irrespective of muscle tissue and the greater adipose mass found in the 

type 2 diabetic participants is predominantly accountable for the higher BMI score. Non-diabetic 

participants had visceral fat scores within the healthy range 6.2 ± 3.8, whereas the type 2 diabetic 

volunteers, on average were above this range 13.2 ±5.5 respectively.  
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Individuals within the T2D volunteers cohort demonstrated typical biochemical characteristics of 

type 2 diabetic patients, including higher fasting blood glucose and fasting insulin concentrations, 

decreased percentage β cell function, increased insulin resistance and decreased insulin sensitivity 

in comparison to non-diabetic volunteers (Table 4.1). Additionally T2D volunteers exhibited 

higher concentrations of circulating leptin (1490 ± 1327ng/ml) in comparison to non-diabetic 

volunteers (8.5 ± 7.2ng/ml) and significantly lower concentrations of circulating adiponectin 

(0.788± 0.399µg/ml) as opposed to non-diabetic volunteers (3.44 ± 1.87µg/ml) and therefore T2D 

volunteers also had a higher mean leptin to adiponectin ratio (5.1± 6.5). Markers of endothelial 

dysfunction and inflammation were also found in significantly higher concentrations in the type 

2 diabetic volunteers, with the exception of soluble thrombomodulin (5.9 ± 3ng/ml) in 

comparison to (6.6 ± 6.3ng/ml) in T2D volunteers.  
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Anthropometric and Biochemical Analysis  

 Healthy 
Volunteers 

Type 2 Diabetic 
Volunteers 

Significance 

Cohort Size 81 79  
Men 43 42  

Women 38 37  
Age (years) *** 43 ± 15.8 56 ± 12 P  <0.0001 
Height (cm) *** 172 ± 9.5 165 ± 10 P  <0.0001 
Weight (Kg) *** 73 ± 13.1 87 ± 20.5 P  <0.0001 

Body Mass Index (kg/m2) *** 24.3 ± 2.9 31.5 ± 5.4 P  <0.0001 
Total Fat (%)*** 25.1 ± 9.2 34.9 ± 9.3 P  <0.0001 
Total Muscle (kg) 52.3 ± 11.7 53 ± 11.8 P = 0.7 

Abdominal (Trunk) Fat (%)*** 23.6 ± 7.9 34.1 ± 9.4 P  <0.0001 
Abdominal (Trunk) Muscle (kg) *** 28.9 ± 6.5 29 ± 5.7 P = 1 

Visceral Fat Score (0-60) *** 6.2 ± 3.8 13.2 ±5.5 P  <0.0001 
Fasting Blood Glucose (m/mmol) 4.5 ± 0.7 9.9 ± 3.8 P  <0.0001 

HbA1c (mmol/mol) N/A 70.5 ± 17.6 N/A 
Fasting Insulin (mU/L) *** 7.9 ± 4 29.1 ± 42.6 P  <0.0001 

HOMA β (%)*** 110.6 ± 52.8 67.2 ± 67.9 P  <0.0001 
HOMA IR 2.2 ± 12.3 5.7 ± 21.9 P = 0.4 

HOMA S (%)*** 141.9 ± 73.7 74 ± 71 P  <0.0001 
Telomere Length (T/S ratio) *** 2.14 ± 0.47 1.6 ± 0.2 P  <0.0001 

Irisin (ng/ml) *** 46.7 ± 32.4 175.4 ± 131 P  <0.0001 
Leptin (ng/ml) *** 8.5 ± 7.2 1490 ± 1327 P  <0.0001 

Adiponectin (µg/ml) *** 3.44 ± 1.87 0.788 ± 0.399 P  <0.0001 
Leptin/Adiponectin ratio*** 0.005 ±0.005 5.1 ± 6.5 P  <0.0001 
Thrombomodulin (ng/ml) 5.9 ± 3 6.6 ± 6.3 P = 0.2 

E-selectin (ng/ml) *** 36.9 ± 33.2 50.9 ± 21.4 P  <0.0001 
C-reactive protein (µg/ml) *** 1.03 ± 0.8 4.5 ± 3.99 P  <0.0001 

 
Table 4.1. Clinical characteristics and metabolic profiles of Non-diabetic control and Type 
2 diabetic subjects studied. 
 
Data is presented as mean ± S.D. for normal continuous variables. Significant differences are 
denoted as * p value of < 0.05 . ** p value < than 0.01 and *** p value < 0.0001. 
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Figure 4.1. Comparison between average age in years in healthy and type 2 diabetic 
volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p <0.0001).  
Significance was set at p <0.05                

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Comparison between average height in cm in healthy and type 2 diabetic 
volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.0001). 
Significance was set at p <0.05                
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Figure 4.3. Comparison between average weight in kg in healthy and type 2 diabetic 
volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.0001). 
Significance was set at p <0.05.                

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Comparison between average BMI in healthy and type 2 diabetic volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.0001). 
Significance was set at p <0.05. 

 

****

Healthy volunteers Type 2 diabetic 
volunteers

0

50

100

150
****



176 
 

 

Figure 4.5. Comparison between average global fat % in healthy and type 2 diabetic 
volunteers 

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.0001). 
Significance was set at p <0.05 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Comparison between average global muscle (Kg) in healthy and type 2 diabetic 
volunteers 

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p = 0.6027). 
Significance was set at p <0.05. 
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Figure 4.7. Comparison between average abdominal fat % in healthy and type 2 diabetic 
volunteers. 

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.0001). 
Significance was set at p <0.05 

                             

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Comparison between average abdominal muscle (Kg) in healthy and type 2 
diabetic volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p = 0.8716). 
Significance was set at p <0.05. 
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Figure 4.9.Comparison between average visceral fat score in healthy and type 2 diabetic 
volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.0001). 
Significance was set at p <0.05. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Comparison between average fasting blood glucose (mmol/l) in healthy and 
type 2 diabetic volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.0001). 
Significance was set at p <0.05. 
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Figure 4.11.Comparison between average fasting blood insulin (mU/L) in healthy and type 
2 diabetic volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.0001). 
Significance was set at p <0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Comparison between average percentage β-cell function in healthy and type 2 
diabetic volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.0001). 
Significance was set at p <0.05.  
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Figure 4.13. Comparison between average insulin resistance score in healthy and type 2 
diabetic volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p = 0.1082). 
Significance was set at p <0.05.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. Comparison between average percentage insulin sensitivity in healthy and type 
2 diabetic volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.0001). 
Significance was set at p <0.05.  
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Figure 4.15. Comparison between average T/S ratio in healthy and type 2 diabetic 
volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.0001). 
Significance was set at p <0.05.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. Comparison between average irisin concentration (ng/ml) in healthy and type 
2 diabetic volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.0001). 
Significance was set at p <0.05.  
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Figure 4.17. Comparison between average leptin concentration (ng/ml) in healthy and 
type 2 diabetic volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.0001). 
Significance was set at p <0.05.  

 

 

 

 

 

 

 

 

 

 

Figure 4.18. Comparison between average plasma adiponectin concentration (µg/ml) in 
healthy and type 2 diabetic volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p = 0.0001). 
Significance was set at p <0.05.  
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Figure 4.19. Comparison between average leptin/adiponectin ratio in healthy and type 2 
diabetic volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.0001). 
Significance was set at p <0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20. Comparison between average thrombomodulin concentration (ng/ml) in 
healthy and type 2 diabetic volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p = 0.3590).  
Significance was set at p <0.05. 
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Figure 4.21. Comparison between average soluble E-selectin concentration (ng/ml) in 
healthy and type 2 diabetic volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p = 0.0022). 
Significance was set at p <0.05.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22. Comparison between plasma CRP (µg/ml) in healthy and type 2 diabetic 
volunteers  

Healthy volunteers n = 81, T2D volunteers n = 79, bar represent mean ± SD (p < 0.001). 
Significance was set at p <0.05.  
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4.4.2. Associations of plasma irisin with biochemical and anthropometric factors in 
type 2 diabetic volunteers. 
 
 
To ascertain whether the same mathematical relationship between irisin and TL that was shown 

in Chapter 3 existed in this cohort of individuals with diabetes, a Pearson’s bivariate correlations 

test was conducted to assess significant associations between plasma irisin and anthropometric, 

biochemical measures and T/S ratio in this cohort of T2D volunteers (Table 4.3). Circulating 

irisin concentration was log10 transformed in order to decrease heteroscedasticity, thereby 

following a more even distribution. Unlike in the healthy cohort recruited for this study, there 

was no significant co-linearity between T/S ratio and chronological age.  Additionally log irisin 

and T/S ratio did not express any significant correlation within the T2D cohort (Fig. 4.24).  

Anthropometric and biochemical measures which exhibited significant positive associations with 

natural log transformed circulating irisin concentration include; BMI (p = 0.04), total fat 

percentage (p = 0.033), HbA1c (p = 0.032) and E-selectin (p < 0.0001). Visceral fat score (p = 

0.006) displayed a significant negative association with plasma irisin levels, as did age (p = 0.001) 

and leptin (p = 0.02). No other factors measured in this study displayed any significant association 

with plasma irisin.  
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Table 4.2. Pearson’s Bivariate correlation matrix 

Two-tailed pearsons bivariate correlations between T/S ratio, age, anthropometric measures and biochemical analytes. Negative associations are 
denoted by -. ** Correlation is significant at the 0.01 level.* Correlation is significant at the 0.05 level 
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Figure 4.23. Correlation of age in years with telomere length.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.229, R2 = 
0.01878). T2D volunteers n = 79. Significance was set at p <0.05.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24. Correlation between log irisin with telomere length.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.333, R2 = 
0.01147). T2D volunteers n = 79. Significance was set at p <0.05. 
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Figure 4.25. Correlation between log irisin and age.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.001, R2 = 
0.1326). T2D volunteers n = 79. Significance was set at p <0.05. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26. Correlation between log irisin and height in cm.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.133, R2 = 
0.02947). T2D volunteers n = 79. Significance was set at p <0.05. 
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Figure 4.27. Correlation between log irisin and weight in kg.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.437, R2 = 
0.007842). T2D volunteers n = 79. Significance was set at p <0.05. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28. Correlation between log irisin and BMI.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. In our type (p = 
0.048, R2 = 0.05228). T2D volunteers n = 79. Significance was set at p <0.05. 
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Figure 4.29. Correlation between log irisin and global fat percentage.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.033, R2 = 

0.05794). T2D volunteers n = 79. Significance was set at p <0.05. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30. Correlation between log irisin and global muscle in kg. 

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.238, R2 = 

0.01803). T2D volunteers n = 79. Significance was set at p <0.05. 
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Figure 4.31. Correlation between log irisin and abdominal fat percentage.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.59, R2 = 

0.003893). T2D volunteers n = 79. Significance was set at p <0.05. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32. Correlation between log irisin and abdominal muscle.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.132, R2 
=0.02976). T2D volunteers n = 79. Significance was set at p <0.05. 
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Figure 4.33. Correlation between log irisin and visceral fat score 

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.006, R2 = 

0.09408). T2D volunteers n = 79. Significance was set at p <0.05. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34. Correlation between log irisin and leptin  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.026, R2 = 

0.06) T2D volunteers n = 79. Significance was set at p <0.05. 

 

 



193 
 

 

 

 

 

 

 

 

 

 

Figure 4.35. Correlation between log irisin and adiponectin 

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.2, R2 = 

0.02). T2D volunteers n = 79. Significance was set at p <0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.36. Correlation between log irisin and the leptin/adiponectin ratio 

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.7, R2 = 

0.001). T2D volunteers n = 79. Significance was set at p <0.05. 
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Figure 4.37. Correlation between log irisin and fasting blood glucose.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.791, R2 
=0.0009). T2D volunteers n = 79. Significance was set at p <0.05. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.38. Correlation between log irisin and HbA1c.   

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.032, R2 
= 0.08068). T2D volunteers n = 79. Significance was set at p <0.05. 
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Figure 4.39. Correlation between log irisin and fasting insulin.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.67, R2 
=0.007821). T2D volunteers n = 79. Significance was set at p <0.05. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.40. Correlation between log irisin and HOMA-β.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.953, R2 
=0.0001171). T2D volunteers n = 79. Significance was set at p <0.05. 
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Figure 4.41. Correlation between log irisin and HOMA IR.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.086, R2 
=0.04485). T2D volunteers n = 79. Significance was set at p <0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.42. Correlation between log irisin and HOMA S.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot (p = 0.858, R2 
=0.002720). T2D volunteers n = 79. Significance was set at p <0.05. 
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Figure 4.43. Correlation between log irisin and thrombomodulin.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = 0.156, R2 
=0.02513). T2D volunteers n = 79. Significance was set at p <0.05. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.44. Correlation between log irisin and soluble E-selectin.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = < 0.0001, 
R2 = 0.1887). T2D volunteers n = 79. Significance was set at p <0.05. 
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Figure 4.45. Correlation between log irisin and C-reactive protein.  

Pearson bivariate correlation represented as a linear regression X, Y scatterplot. (p = < 0.626, R2 
= 0.002881). T2D volunteers n = 79. Significance was set at p <0.05. 

 

 

 

Measurement  Association with Log 
irisin  

Significance 

Age -0.364 0.001 
BMI 0.223 0.04 

Global fat % 0.241 0.03 
Visceral fat score -0.3 0.006 

HbA1c (mmol/mol) 0.28 0.03 

Leptin (µg/ml) -0.24 0.02 
E-selectin (ng/ml) 0.43 <0.001 

 
 
Table 4.3 Results of Pearson’s bivariate correlations analysis  
 
Pearson’s bivariate correlations between anthropometric/biochemical parameters and log plasma 
irisin concentration. Data are represented as positive or negative correlation coefficients with p 
values displaying statistical significance.  
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4.4.3 Correlation of multiple factors with soluble E-selectin - stepwise backward 
multiple linear regression. 
 

Results from the Pearson’s bivariate correlations (Table 4.4) reveal that soluble E-selectin 

exhibited a negative association with log transformed plasma irisin. The statistical methodology 

was adapted from chapter 3. The dependent variable selected was soluble E-selectin 

concentration, in an attempt to investigate whether the novel association between soluble E-

selectin and log irisin   and the independent variables were significant associations determined 

using the Pearson’s bivariate correlations test, the backward function was chosen which would 

remove the least significant variable until only the most significant predictors of soluble E-

selectin remained. 

 

 

 
Table 4.4. Model summary for non-diabetic volunteers.  
 
The final combination of variables selected that are best able to predict T/S ratio, account for 38% 
of the variability in the T/S ratios.  
 

 

ANOVA 
2Model Sum of 

Squares 
df Mean Square Significance 

Regression 6.799 3 2.266 < 0.000 
Residual 11.077 77 0.144  

Total 17.876 80   
 
Table 4.5. The analysis of variance table for both male and female models.  
 
ANOVA analysis shows that for non-diabetic volunteers, the variables selected are significant 
predictors of T/S ratio. This confirms the significance of the model.   

 

Model Summary 

Model R R Square Adjusted R 
Square 

Std Error of the 
Estimate 

6 0.493 0.243 0.214 19.74 
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4.4.4 Significant predictors of soluble E-selectin. 
 

The stepwise backward linear regression analysis revealed that the sole significant predictor of 

soluble E-selectin was circulating irisin (p = 0.003), despite correcting for age, BMI, visceral fat, 

HbA1c and leptin. Log irisin concentration had a positive beta value of 0.382, a positive beta 

value suggest an increase in circulating irisin concentration would also lead to an increase in 

soluble E-selectin, an increase which could be statistically predicted using circulating irisin 

concentration. The only other variable included in the most significant model was global fat %, 

which also had positive beta coefficient and that retaining increased adipose tissue could be used 

as a predictor of soluble E-selectin. However this association was non-significant with p = 0.071.  

 

Coefficients 
Variable  Beta Standard Error Significance 95% confidence interval 

Global Fat % 0.228 0.328 0.071 -0.053 – 1.262 
 Log Irisin 0.382 11.904 0.003 12.837 – 60.590 

 
Table 4.6. Stepwise backward linear regression analysis using E-selectin concentration as 
the dependent variable and significant correlations as independent variables.  
 
The backward stepwise multivariable regression eradicated all variables which were unable to 
predict E-selectin and only selected log irisin (p =<0.003) as the most significant variable which 
was able to predict E-selectin ratio.  
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4.4.5 High but not low irisin concentraton induces E-selectin mRNA expression in 
primary endothelial cells. 
 

HUVECs treated with 20ng/ml irisin, representative of circulating irisin in a healthy individual, 

for a period of 4 hours failed to alter gene expression of any of the cell adhesion markers. 

Comparatively, HUVECs treated with 200ng/ml irisin, a concentration within the range of 

circulating concentrations observed in the T2D cohort, significantly upregulated gene expression 

of E-selectin after 4 hours (p = 0.034) but not other cell adhesion markers. At 24 hours incubation 

E-selectin levels had returned to baseline.  
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A) 

 

B)  

 

Figure 4.46. Exposure to 200ng/ml irisin for 4 hours induces E-selectin gene expression. 

Real-time PCR analysis of irisin treated HUVEC ICAM1, PECAM1, P-selectin and E-selectin 
mRNA expression levels. (A) Exposure to 20ng/ml irisin for 4 hours, (B) Exposure to 200ng/ml 
irisin for 4 expression compared to control (p=0.034). Values normalised to actin and Tyrosine 
3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein, Zeta (YWHAZ). Boxplots 
represent mean ± SD. N=4. Significance was set at p <0.05.   



203 
 

 

A) 

 

B) 

Figure 4.47. Exposure to 200ng/ml irisin for 24 hours did not alter cell adhesion gene 
expression. 

Real-time PCR analysis of irisin treated HUVEC ICAM1, PECAM1, P-selectin and E-selectin 
mRNA expression levels. (A) Exposure to 20ng/ml irisin for 24 hours, (B) Exposure to 200ng/ml 
irisin for 24 expression compared to control (p=0.034). Values normalised to actin and Tyrosine 
3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein, Zeta (YWHAZ). Boxplots 
represent mean ± SD. N=4. Significance was set at p <0.05.   
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4.5 Discussion  
 

The results from this study provide new insight into the role of irisin in obesity and T2D. Data 

presented here shows a greater than 3-fold higher concentration of circulating irisin was observed 

in individuals with T2D in comparison to healthy controls (Fig. 4.16) (p  < 0.0001). Interestingly, 

there was no significant association between irisin and TL in the T2D cohort (Fig. 4.24) (p = 

0.333), although a significant association was observed in non-diabetic controls. Pearson’s 

bivariate correlations revealed irisin to exhibit statistically significant positive associations with 

HbA1c (Fig. 4.38) (p = 0.03), BMI (Fig. 4.28) (p = 0.04) and global fat % (Fig. 4.29) (p = 0.03) 

and negative associations with visceral fat score (Fig. 4.33) (p = 0.006). The most significant 

association was observed with marker of endothelial dysfunction/inflammation, soluble E-

selectin (Fig. 4.44) (p <0.001). Furthermore irisin was a statistically significant predictor of 

soluble E-selectin (p = 0.003). This study is the first study to report this novel association and 

sheds light on a potential mechanism between excess adipose tissue, elevated circulatingn irisin 

concentration and cardiovascular risk.  

 

This association was further validated using real-time PCR analysis to assess the effect of irisin 

on endothelial cells. Irisin treated HUVECs exposed to 200ng/ml irisin for 4 hours displayed a 4-

fold increase in E-selectin mRNA expression in comparison to control (p = 0.034). E-selectin 

expression levels had returned to baseline after 24 hours (Fig.4.46). Low irisin (20ng/ml) did not 

induce any change in E-selectin expression levels. Previous research has shown that E-selectin 

expression after exposure to pro-inflammatory stimuli follows a similar pattern of a peak within 

4-6 hours and a return to baseline after 24 hours, suggesting that irisin is acting like a pro-

inflammatory cytokine in these cells. The primary findings of this study identified T2D volunteers 

exhibited reduced TL relative to healthy volunteers. Although the mean age of the T2D cohort 

was higher; significant negative correlations between TL and age reported previously in healthy 

volunteers were lost in T2D volunteers [641]. The implications of this result suggest mechanisms 
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beyond age related cellular divisions are responsible for the reduced TL found in T2D. Obesity 

and T2D are disorders which carry a significant inflammatory burden and oxidative stress, two 

factors which have been well established to excel telomere attrition [644, 645]. Although TL did 

not correlate with markers of endothelial dysfunction/ inflammation in this study, other markers 

of inflammation have previously been correlated to reduced TL.  Salpea et al., measured TL in 

242 T2D patients and conclude shorter TL is associated with the presence of T2D and this could 

be partially attributed to the high oxidative stress in these patients. They further report an 

association with the expression of the UCP2 functional promoter variant with the TL implying a 

link between mitochondrial production of reactive oxygen species and shorter TL in T2D [646].  

 

Testa et al report patients with T2D had significantly shorter TL than both patients without 

diabetes complications and healthy control subjects. Moreover, among patients with diabetes 

complications, TL became significantly and gradually shorter with the increasing number of 

diabetes complications [647]. Studies offering mechanistic insights into reasons behind reduced 

TL amongst obese/T2D patients are rare and require further investigation. Comparing the two 

cohorts it is clearly evident there are stark differences in both anthropometric measurements and 

biochemical analytes between healthy participants and obese, glucose intolerant participants. 

Measures of visceral and subcutaneous adipose mass, BMI and consequently the 

leptin/adiponectin ratio were clearly elevated amongst T2D participants, along with insulin 

resistance, markers of endothelial dysfunction and inflammation. These observations were 

expected and validate the fact that an accurate representation of a T2D cohort was in fact recruited 

for this study. Interestingly, despite similar muscle mass readings plasma irisin levels were more 

than 3-fold higher amongst subjects with T2D relative to non-diabetic volunteers.  

 

The relationship between irisin and markers of energy metabolism have been explored earlier by 

other investigators [582, 648, 649]. The results reported herein oppose findings reported by Liu 
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et al and Choi et al., who suggested T2D patients have reduced concentrations of irisin [650, 

651]. The lack of anthropometric measurements taken in both of these studies prohibited the 

authors to comment on the influence of skeletal muscle or adipose tissue on irisin secretion. It is 

noteworthy that both of the studies recruited non-obese T2D participants, the reported BMI in 

both studies combined averages to be 26, generally recognised as borderline overweight [652]. 

The mean BMI reported in this study is 31.5. The differences between observations reported here 

may be in part relate to these phenotypic differences. Significant positive associations reported 

within this study between plasma irisin levels and measures of obesity, including BMI and total 

body fat percentage support this claim.  

 

These observations suggest circulating irisin levels are primarily determined by degree of 

adiposity in individuals suffering from obesity/T2D, the significant negative association with 

visceral adipose tissue implies that irisin secretion is predominantly subcutaneous in nature. 

These findings are consistent with previous reports. Roca-Rivada et al were amongst the first 

authors to present irisin as an adipokine and reported increased irisin secretion in adipocytes 

derived from diet induced or genetically obese mice, moreover this group found subcutaneous 

adipose tissue to secrete 40% more irisin in comparison to visceral fat [263, 642, 653] .  

Nevertheless the precise mechanisms regarding irisin secretion from adipose tissue remain to be 

elucidated and are difficult to conceive considering the strong evidence previously associating 

irisin secretion with skeletal muscle tissue. The increased irisin concentrations reported herein 

may be a result of a compensatory mechanism to account for innate defects in metabolism or 

decreased energy expenditure in obese/T2D patients. More specifically the larger amounts of 

adipose mass associated with obese/T2D individuals may be directly influencing circulating irisin 

concentrations, considering the strong associations with parameters of adiposity reported here. 

Based upon these results and the work of Bostrom et al., it seems the muscle/adipose irisin 

secretion ratio is largely dependent upon the physiological situation.  
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Thus, with exercise training, muscle tissue would strongly affect irisin levels as in non-obese 

healthy individuals, whereas in atypical BMI cases such as obesity/T2D, adipose tissue may 

actively secrete irisin. In conjunction with this concept are the findings of Stengel et al., who 

conducted a rather simplistic study but with great effect. The authors report plasma irisin levels 

fluctuate considerably with varying BMI, with anorexic individuals secreting the least irisin and 

obese individuals producing significantly higher amounts [264]. Furthermore irisin over secretion 

was reported amongst obese animals [263]. In support of this study is a separate investigation 

analysing irisin levels amongst 107 participants without metabolic syndrome (MetS) and 44 

participants with MetS. The authors report significantly higher baseline irisin levels amongst 

subjects with MetS than in healthy control volunteers. Irisin was associated negatively with 

adiponectin and positively with parameters of ill health for instance; BMI, blood pressure, fasting 

glucose, triglycerides and homeostasis model assessment for insulin resistance [654]. These data 

convolute the current understanding of irisin.   

 

Crujeiras et al., designed a sophisticated protocol whereby anthropometric measurements along 

with plasma irisin levels were measured before and after a hypocaloric dietary intervention in a 

cohort of obese men and women. Primary findings showed positive associations between plasma 

irisin, weight, BMI, waist circumference, and fat mass. More importantly irisin levels coincided 

with body weight reduction after the dietary treatment and again returned to baseline levels in 

those patients regaining the lost weight as fat mass [655]. Iglesia et al., support these findings and 

report plasma irisin depletion under energy restriction is associated with improvements in lipid 

profile in MetS patients, an effect which can also be achieved by bariatric surgery [656]. However 

the seeming lack of correlations between irisin and other well characterised adipokines, e.g., 

leptin and adiponectin in this study, highlights the potential influence of unknown obesity/T2D 

related factors also involved in irisin secretion. In either case it appears abnormal irisin secretion 

is only contributing to underlining metabolic defects seeing as increased irisin concentrations 

would be expected to dissipate stored energy via non-shivering thermogenesis and protect against 

metabolic disorder. In line with this theory is the fact that circulating irisin levels have previously 
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been demonstrated to be an independent and strong positive predictor of the metabolic syndrome 

(MetS), with individuals in the highest irisin tertile having up to 9.5 times higher chances to 

develop MetS [657]. Given the beneficial effects of irisin on glucose/fatty acid metabolism, 

insulin secretion/sensitivity in animal models, it has been proposed that the elevated irisin levels 

in obesity and the MetS might represent a state of “irisin resistance”, similar to the well-

established insulin resistance in T2DM and leptin resistance in obesity [263, 642]. The lack of 

association between irisin and TL in this T2D cohort aids this concept and implies that the 

beneficial effects of irisin in delaying cellular senescence are lost amongst individuals with an 

atypical metabolism, potentially due to irisin resistance. In the present study, a strong positive 

correlation was noted between HbA1c and plasma irisin levels. Plasma irisin levels have 

previously been correlated with increased fasting insulin and glucose concentrations, furthermore 

a separate study was able to predict insulin resistance, as assessed by HOMA-IR using plasma 

irisin concentrations [658]. Although both glucose and insulin were measured in this study no 

such association was observed here. While it is highly unlikely that circulating irisin is directly 

facilitating haemoglobin glycosylation and it is possible increased irisin secretion is a 

compensatory mechanism to counteract elevated glucose concentrations and associated metabolic 

disturbances in obese/T2D individuals but is rendered ineffective due to irisin resistance. Sesti et 

al, has associated increased irisin concentrations with carotid intima-media thickness, an 

indicator of vascular atherosclerosis in a cohort of 192 adults. Individuals diagnosed with T2D 

are at increased risk of developing cardiovascular disease (CVD), according to the work of Sesti, 

increased irisin concentrations facilitate the development of CVD [659]. However there is much 

need for the validation of these results.  

 

Although other studies have reported increased levels of circulating irisin amongst individuals 

suffering from cardiovascular complications, more specifically myocardial infarction, the precise 

molecular mechanisms yet remain unknown. Other authors have likewise claimed that the 

increase in irisin under obesity conditions may indicate a physiological adaptation to improve 
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glucose tolerance, which is often impaired in obese subjects, whether irisin can modulate, 

appetite, insulin sensitivity or glucose uptake remains to be seen [660, 661]. Although Polonsky 

reports converse associations between irisin and insulin and inverse correlations between irisin 

and ghrelin, described as the “hunger hormone” and antagonistic counterpart of leptin. Advance 

glycation end products are routinely found in the blood of diabetic patients, these glycated 

proteins are rendered ineffective and have been linked to the development of T2D, Alzheimer’s 

disease and accelerated cellular ageing [662, 663].  It is worth assessing whether circulating irisin 

may also become glycosylated in the blood stream and its biological function impaired, as a result 

excessive secretion ensues to compensate for an increasing amount of biologically non-functional 

irisin. It is well established that insulin resistance presents as a pathophysiological feature in the 

obese phenotype and manifests as the primary contributing factor in the development of T2D 

[664-666].  

 

Insulin insensitivity has causally been linked to CVD predisposition; however the mechanisms 

unifying the diverse effects of insulin resistance are not well defined [667-669]. Existing research 

has elucidated the strong influence of subclinical inflammation on the development of both T2D 

and CVD [670, 671]. A specific mechanism whereby inflammation may be able to instigate the 

progression of these metabolic disorders is via endothelial dysfunction [672, 673]. The data 

reported here highlights positive associations between circulating irisin and soluble E-selectin, a 

prominent marker of endothelial dysfunction. Moreover, stepwise backward multi-variable linear 

regression analysis revealed soluble E-selectin as the only significant predictor of circulating 

irisin.  These findings have crucial implications on the current understanding of irisin and reveal 

a prospective link between elevated irisin concentrations and cardiovascular complications, via 

E-selectin mediated endothelial dysfunction.  Increased adipose mass, typically found in 

abundance amongst T2D patients is a significant contributor to the level of blood inflammatory 

cytokines, consequently upregulating the expression of cellular adhesion molecules along the 

vascular endothelium [674]. Furthermore plasma levels of E-selectin, ICAM-1 and vascular cell 
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adhesion molecule 1 (VCAM-1) have been quantified to greater extents in cross-sectional studies 

recruiting patients suffering from T2D [675-677]. Separately Dosi et al support these findings, 

by using ultrasound assessment of endothelial dependent flow mediated dilation of the brachial 

artery; the authors conclude endothelial dysfunction was considerably higher amongst T2D 

volunteers in comparison to non-diabetic controls. Positive correlations were also observed with 

BMI and waist to hip ratios.  E-selectin cell surface expression has previously been denoted to 

correlate strongly with soluble levels in times of endothelial distress and inflammation [678, 679]. 

In support of this statement is data reported in this study. Using HUVEC cells as a model of the 

endothelium, irisin concentrations comparable to concentrations observed in the T2D cohort were 

able to upregulate E-selectin gene expression, 4-fold following 4 hours of exposure relative to 

control (p = 0.034).  

 

Furthermore flow cytometric analysis conducted in this study revealed a 15.57% increase in E-

selectin cell surface expression following 4 hour incubation with 200ng/ml irisin, in comparison 

to control. The increased irisin concentrations observed amongst the T2D cohort within this study 

are a reflection of enhanced adipose mass and may directly be influencing circulating E-selectin 

levels by upregulating inflammatory pathways. The role of E-selectin in influencing 

cardiovascular complications is currently limited to the already well established role of E-selectin 

in mediating an inflammatory response [680, 681]. Unlike other cell adhesion molecules, E-

selectin is generally absent and exclusively found in the activated endothelium during times of 

inflammation [682]. The author postulates high irisin concentrations evoke E-selectin expression 

as expressed by the HUVEC model, and facilitate leukocyte rolling, adhesion, and transmigration 

into the sub-endothelial space, progressively leading to the formation of atherosclerotic plaques 

(Fig 4.49). A study supporting the author’s hypothesis examined ICAM-1, VCAM-1 and E-

selectin concentrations in patients who had been diagnosed with unstable angina reports increased 

concentrations of E-selectin on the day of admission and further increases at a follow up test ten 

days later in comparison to healthy controls [683].  
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The detrimental effects of increased irisin are not however limited to enhanced susceptibility to 

cardiovascular disease; recent experimental evidence has been successful in correlating 

endothelial dysfunction with increased blood pressure and insulin resistance [684, 685]. 

Supporting this claim are studies documenting reduced risk of endothelial dysfunction and more 

specifically a reduction in circulating soluble E-selectin levels following treatment with statins, 

angiotensin-converting enzyme inhibitors and metformin, commonly prescribed drugs to control 

glucose homeostasis.  It is possible therefore that elevated concentrations of irisin not only pose 

a considerable risk in developing CVD but also stem the progression of T2D in a positive 

feedback loop. 
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Fig 4.49. Hypothetical model of the events leading to increased inflammation and potential 
cardiovascular complications, as a result of enhanced circulating irisin concentration 
amongst T2D patients.  

 
Increased irisin secretion from irisin resistant adipocytes, upregulates the expression of cell 
adhesion molecule E-selectin across the endothelium surface. Although the precise mechanisms 
responsible for this are unknown, enhanced irisin secretion from adipocytes may be to 
compensate for innate metabolic defects or enhanced caloric intake, as commonly observed in 
obese/T2D individuals. Irisin may be exhibiting hormetic functions and exhibit beneficial effects 
on glucose homeostasis and insulin sensitivity at lower concentrations, while at higher 
concentrations propagate an inflammatory immune response. Obese/T2D individuals are often at 
an increased risk of atherosclerosis, the rise in irisin mediated E-selectin gene expression and 
soluble E-selectin may be aiding the development of atherosclerotic plaques, via facilitating 
leukocyte adhesion, binding, and migration into the endothelium.  
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4.6. Conclusion  
 

The work of other researchers discussed previously provides sufficient evidence to suggest T2D 

participants are at an increased risk of developing cardiovascular complications. A potential 

mechanism or a facilitator of this risk, may be increased irisin secretions which promote E-

selectin mediated endothelial dysfunction and inflammation. The novel association reported in 

this study is the first to highlight a potential role for irisin to instigate an inflammatory response; 

these findings undoubtedly raise concerns regarding the implementation of recombinant irisin as 

a therapeutic intervention to help obese T2D patients lose weight. Instead future research should 

look into measures of reducing circulating irisin concentrations and eradicating irisin resistance 

experienced by T2D patients. Furthermore the role of irisin mediated oxidative stress and 

inflammation should be considered.  
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Chapter 5: Results 
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Associated Secretory 
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5.1 Introduction 
 

Cellular senescence is defined as irreversible proliferative arrest, despite the presence of 

mitogenic stimulants [686]. Cellular senescence serves as in vivo tumor suppression mechanism 

by restricting aberrant proliferation and consequently is a significant modulator of organismal 

ageing [686, 687]. Senescent cells (SC) differ considerably from quiescent somatic cells. A 

distinct marker of SC is a radically altered, flattened and enlarged morphology along with 

increased expression of β-galactosidase, referred to as senescence associated β-galactosidase 

(SA- β gal) [688, 689]. Existing research has identified numerous molecular phenotypes 

associated with SC including altered gene expression, chromatin reorganisation and deregulated 

protein processing [690]. Although we develop senescent cells throughout the lifespan, advancing 

age is associated with an accumulation of senescent cells potentially due to a failing of ageing 

immune cells to clear senescent cells from the body [487]. The presence of senescence-associated 

markers at sites of age related pathologies has been reported previously, confirming the 

importance of this potentially mechanism of ageing.  Evidence for the presence of SC overlying 

atherosclerotic plaques, engulfing chrondrocyte clusters and replacing mitotic satellite cells 

provides further links between cellular senescence and age related disorders, atherosclerosis, 

arthritis and sarcopenia [473, 691-693]. Furthermore, senescent cells can influence the growth 

and angiogenic ability of premalignant cells, inducing carcinogenesis in ageing tissues and exhibit 

a decreased ability to migrate, which enhances susceptibility to impaired wound healing a 

common complication of advancing age [694, 695]. 

 

Currently it is unclear precisely how accumulating SC may influence the development of age 

related disorders. However, their ability to persist in circulation despite losing biological function 

may be a vital contributing factor. There are at present no published data regarding the survival 

time of senescent cells in vivo, although various studies have attributed their enhanced survival 

in circulation to increased resistance to apoptotic clearance [696, 697]. 
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Although existing research has identified characteristics common to all SC, it is noteworthy that 

the genetic variability, influence of growth and transcription factors gives rise to a multitude of 

somatic cells and may also govern cell-type specific effects of entering into cellular senescence. 

For example senescent vascular endothelial cells exhibit diminished nitric oxide synthase activity, 

a vital regulator of vascular function, a decline in its production predisposes an individual to 

cardiovascular complications [698]. Likewise the increased accumulation of senescent stem cells 

significantly hampers the proliferative capacity of a specific cell subset, depletion of 

cardiomyocyte cell pools would be expected to have debilitating effects on cardiac function and 

induce age associated cardiovascular complications [699]. The biological impact of the senescent 

phenotype is likely to be largely dependent upon the non-autonomous effects of SC [700]. The 

ability of senescent cells to release into the circulation a plethora of growth factors and 

extracellular matrix (ECM)-degrading proteins, has been reported to significantly impact 

neighboring cells, more specifically the release of matrix metalloproteinases degrade collagen 

and elastin, vital components of the ECM [701, 702].  

 

Some of the most significant detrimental effects of SC are attributed to the ability of SC to secrete 

a complex mix of pro-inflammatory cytokines, commonly referred to in the scientific literature 

as the senescent associated secretory phenotype (SASP) [703]. It is likely the secreted cytokines 

not only impact tissues in close proximity but extend the range of targets SC can impact by 

enforcing widespread tissue dysfunction and by inducing senescence in non-senescent cells [501]. 

The work by Gallin recognises the self-regulatory role of the SASP, mediating gene transcription 

in favor of increased pro-inflammatory cytokine production, initiating a positive feedback loop 

encouraging SC to secret more pro-inflammatory cytokines [704]. Therefore SC sustain a chronic 

low grade inflammatory phenotype often observed and vital in the propagation of disorders 

affecting aged individuals.  Demonstrating this point are cause and effect studies correlating 

drastic increases in inflammatory cytokine production from SC with atherosclerosis, osteoporosis 

and hepatic fibrosis [705, 706].  
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It seems that the link between cellular senescence and disease development/progression is an 

SASP mediated inflammatory response. Numerous age associated disorders present with an 

inflammatory background. Commonly associated with advancing age is a marked increase in 

insulin resistance, this reduced ability to regulate glucose homeostasis progresses to manifest as 

T2D, reported to be inflammatory in nature correlating inflammation with disorders of ageing 

[670, 707]. Considerable data, reported in the late 1950’s and 60’s highlighted the role of 

inflammation in T2D development. Experiments showing that adipose tissue–derived pro-

inflammatory cytokines such as TNF-α could cause insulin resistance in experimental models 

provided the necessary impetus to initiate research linking inflammation to diabetic pathogenesis 

[344, 708]. This initial study paved the way for future research, which has consolidated the role 

of pro-inflammatory cytokines in interfering with insulin receptor signalling.  

 

Furthermore existing research has identified T2D patients are at an increased risk of accumulating 

senescent cells relative to non-diabetic individuals [709]. Yuan et al report T2D patients 

experience an accelerated onset of senescence of endothelial progenitor cells, a vital contributor 

to cardiovascular complications commonly experienced by patients suffering with T2D [710]. 

Further evidence associating cellular senescence with T2D recognises a reduced proliferative 

ability of the pancreatic beta cell with advancing age, thus reduced net output of insulin in 

response to elevated glucose concentrations [711]. However SASP mediated proliferative arrest 

amongst non-senescent insulin target tissues and their effect on T2D progression has not been 

investigated. Is it possible that increased number of SC induce widespread cellular senescence 

and by doing so increase the proportion of insulin non-sensitive cells to sensitive cells, reducing 

their ability to utilise glucose, particularly primary targets of insulin i.e. hepatocytes, adipocytes 

and skeletal muscle cell. The concluding effect, not only facilitates increased insulin resistance 

but predisposes the affected individual to glucotoxcity related health implications, a common 

occurrence in ageing.     
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5.2 Aims and Hypothesis  
 

Increasing numbers of senescent cells have been linked to age related health implications, 

impaired tissue function and predisposition to tissue disease development. Integral to the 

manifestation of age related pathologies is the ability of senescent cells to avoid immune detection 

and, of more interest is the senescence-associated secretory phenotype (SASP) involving the 

production of pro-inflammatory cytokines which may induce senescence arrest in neighbouring 

non-senescent tissue environments. Dysregulated glucose homeostasis is a hallmark of T2D and 

is commonly associated with advancing age. The aim of this section of the present study is to 

elucidate the role of the SASP in metabolic dysfunction and its role in propagating senescence in 

non-senescent cells, and whether the SASP can alter glucose metabolism. The authors sought to 

determine the effect of SASP on glucose homeostasis in mouse hepatic, adipose and skeletal 

muscle cell lines, furthermore the effect of chronological age on metabolic and senescent related 

gene expression will be assessed in mouse, hepatic, adipose and skeletal muscle tissue.  

 

The hypotheses for this study were: 

 

1. The SASP is able to alter glucose homeostasis in C2C12, AML-12 and 3T3-L1 cell lines.  

 

2. The expression of metabolic genes required for normal physiological function in tissues 

are down regulated in aged mice, while genes translating to the senescent phenotype 

would be increased and the converse is expected in younger mice tissue.   
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5.3 Methods 
  

For complete details of experimental methodology please refer to chapter 2, section 2.9.2-2.9.6, 

2.10.2-2.11, 2.13-2.15, 2.16-2.16.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



220 
 

5.4 Results  
 

5.4.1 Induction of senescence in human dermal fibroblasts (HDF) using hydrogen 
peroxide, etoposide and doxorubicin hydrochloride. 
 

Existing literature has identified hydrogen peroxide (H2O2) as a proficient chemical inducer of 

cellular senescence in various cell lines including HDF. As H2O2 is a potent DNA damaging agent 

a concentration curve was tested in HDF to determine a suitable dose of H2O2 that would be 

induce senescence but not cell death. Following 45 minutes of treatment, cells were stained with 

β-galactosidase, the gold standard for identifying senescent cells, a non-treatment control was 

setup which contained no hydrogen peroxide (Fig 1a). 50, 60 and 70µM treatments were 

ineffective in inducing cellular senescence, as a large proportion of cells did not express β-

galactosidase activity (Fig 1b, Fig 2a and b). 80µM treatment was better at inducing SA- β gal 

staining while 90µM treatment exhibited an even spread of senescent cells. 100 and 110µM were 

more cytotoxic and caused widespread cell death (Fig 4a and b). In general the use of H2O2 was 

not wholly successful, and as cells must be passaged following H2O2 treatment in order to induce 

senescence, this prolongs the time taken to induce senescence and therefore other DNA damaging 

agents were investigated.  

 

Etoposide is a cytotoxic anti-cancer drug that binds to topoisomerase II, preventing DNA re-

ligation and causing DNA strands to break. Again, a concentration curve was established to 

determine the optimum concentration capable of inducing cellular senescence without inducing 

widespread cell damage. 1, 5 and 10µM treatments induced very little cellular senescence and 

large empty areas suggested increased cell death (Fig.5b, and 6c and d). 15 and 20µM 

significantly altered cell morphology (Fig.7e and f), whilst higher concentrations induced large 

scale cell death (Fig 8g and h). The use of etoposide was therefore found to be problematic and 

an alternative chemical was required.      
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Doxorubicin hydrochloride is also a chemotherapeutic agent which inhibits DNA replication and 

was clearly the better of the three treatments used in this study to induce senescence. While 1.5 

and 1.75µM induced cellular senescence a significant amount of cell death was also observed. 

Alternatively, other treatment concentrations used including 0.25, 0.5, 0.75, 1, 1.25 µM all 

upregulated the number of senescent cells as determined by SA β-gal activity. 1.25µM proved to 

be the optimum concentration to induce cellular senescence (Fig 11f.) with even distribution of 

β-galactosidase expression and minimal cell death. Another advantage of using doxorubicin over 

previously tested DNA damaging agents is the enhanced rate of senescence induction. A 45 

minute incubation with doxorubicin is sufficient for upregulating features characteristic of SC, 

without the need to further passage the cells following treatment.  
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Figure 5.1. SA-β-Gal expression in HDF treated with hydrogen peroxide.  

HDF were treated with hydrogen peroxide prior to β-Gal staining and then photographed at 100x 
magnification. A) negative control. B) 50µM hydrogen peroxide treatment. 

 

 

Figure 5.2. SA-β-Gal expression in HDF treated with hydrogen peroxide.  

HDF were treated with hydrogen peroxide prior to β-Gal staining and then photographed at 
100x magnification. C) 60µM hydrogen peroxide treatment. D) 70µM hydrogen peroxide 
treatment. 
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Figure 5.3. SA-β-Gal expression in HDF treated with hydrogen peroxide.  

HDF were treated with hydrogen peroxide prior to β-Gal staining and then photographed at 100x 
magnification. E) 80µM hydrogen peroxide treatment. F) 90µM hydrogen peroxide treatment. 

 

 

Figure 5.4. SA-β-Gal expression in HDF treated with hydrogen peroxide.  

HDF were treated with hydrogen peroxide prior to β-Gal staining and then photographed at 100x 
magnification. G) 100µM hydrogen peroxide treatment H) 110 µM hydrogen peroxide treatment.  
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Figure 5.5. SA-β-Gal expression in HDF treated with etoposide. 

HDF were treated for 45 minutes with etoposide prior to β-Gal staining and then photographed 
at 100x magnification. A) Etoposide negative control. B) 1µM etoposide treatment. 

 

 

 

Figure 5.6. SA-β-Gal expression in HDF treated with etoposide. 

HDF were treated for 45 minutes with etoposide prior to β-Gal staining and then photographed 
at 100x magnification. C) 5µM Etoposide, D) 10µM etoposide treatment.   
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Figure 5.7. SA-β-Gal expression in HDF treated with etoposide. 

HDF were treated with etoposide prior to β-Gal staining and then photographed at 100x 
magnification. E) 15µM etoposide treatment, F) 20µM etoposide treatment. 

 

 

 

 

Figure 5.8. SA-β-Gal expression in HDF treated with etoposide. 

HDF were treated with etoposide prior to β-Gal staining and then photographed at 100x 
magnification. G) 25µM etoposide treatment, H) 30µM etoposide treatment.  
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Figure 5.9. SA-β-Gal expression in HDF treated with doxorubicin hydrochloride. 

Cells were treated with Doxorubicin hydrochloride prior to β-Gal staining and then photographed 
at 100x magnification. A) Doxorubicin hydrochloride negative control. B) 0.25µM doxorubicin 
hydrochloride treatment.  

 

 

 

Figure 5.10. SA-β-Gal expression in HDF treated with doxorubicin hydrochloride. 

Cells were treated with hydrogen peroxide prior to β-Gal staining and then photographed at 100x 
magnification. C) 0.5µM doxorubicin hydrochloride. D) 0.75µM doxorubicin hydrochloride 
treatment.  
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Figure 5.11. SA-β-Gal expression in HDF treated with doxorubicin hydrochloride. 

Cells were treated with hydrogen peroxide prior to β-Gal staining and then photographed at 100x 
magnification. E) 1µM doxorubicin hydrochloride. F) 1.25µM doxorubicin hydrochloride 
treatment. 

 

 

 

Figure 5.12. SA-β-Gal expression in HDF treated with doxorubicin hydrochloride. 

Cells were treated with hydrogen peroxide prior to β-Gal staining and then photographed at 100x 
magnification. E) 1.5µM doxorubicin hydrochloride. F) 1.75µM doxorubicin hydrochloride 
treatment. 
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5.4.2. AML-12 hepatocytes treated with 20% and 40% SASP from senescent 
fibroblasts for 24 and 48 hours. 
 

AML-12 hepatocytes treated with 20% conditioned media taken from SC collected over 24 or 48 

hours, did not demonstrate any alteration in glucose content of media after 24 or 48 hour treatment 

in comparison to cells treated with media taken from confluent non-senescent fibroblasts (Fig 

5.13). Treatment with 40% conditioned media taken from senescent fibroblasts after 24 hours did 

not affect glucose uptake following 24 and 48 hour incubations either, however AML-12 

hepatocytes incubated with 40% conditioned media collected from senescent cells over 48 hours 

exhibited a significantly increased glucose content in the media after 48 hours (p <0.05), 

suggesting a reduction in glucose uptake in comparison to hepatocytes treated with control, non-

senescent media (Fig 5.14).  

 

5.4.2.1.40% SASP treatment did not affect cell viability in AML-12 hepatocytes 
following 24 and 48 hour incubations.  
 

AML-12 hepatocyte cell viability remained unchanged following treatment with 40% 

conditioned media from senescent cells for 24 and 48 hours (Fig. 5.15 and 5.16). AML-12 cells 

treated with conditioned media from non-senescent fibroblasts were equally as viable as AML-

12 cells treated with conditioned media from senescent fibroblasts. Significant cell death was 

observed in cells treated with 200µM etoposide used as a positive control to induce cell death (p 

= <0.001). As there was no change in cell viability the reduced ability of AML-12 hepatocytes to 

uptake glucose is not a reflection upon a reduced number of cells, instead another mechanism is 

responsible for the reduced ability to utilise glucose. 
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5.4.2.2 Glucose utilisation was restored in AML-12 hepatocytes following co-
incubation of 40% SASP and p38 inhibitor.  
 

AML-12 hepatocytes incubated with 40% conditioned media from SC for 48 hours in the 

presence of 100nM p38 inhibitor restored the glucose content of media to levels observed in cells 

exposed to conditioned media taken from non-senescent fibroblasts (p = < 0.01).  
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Figure 5.13. Glucose utilisation by mouse AML-12 hepatocytes following treatment with 
20% conditioned media from senescent fibroblasts (SF) and non-senescent normal 
fibroblast (NF) control media over 48 hours. 

AML-12 hepatocytes treated with 20% SF retrieved after 24 and 48 hours and incubated for 24 
and 48 hours. Following respective incubations glucose content of cell media was quantified and 
compared to control cells treated with NF control. Two-way ANOVA and Tukey’s multiple 
comparisons test was conducted to test for significance, data are presented as SD. Significance 
was set at p = <0.05, N = 4. 

 

 

 

 

 

 

 

 

 

Figure 5.14. Glucose utilisation by mouse AML-12 hepatocytes following treatment with 
40% conditioned media from senescent fibroblasts (SF) and non-senescent normal 
fibroblast (NF) control media over 48 hours. 

AML-12 hepatocytes treated with 40% SF retrieved after 24 and 48 hours and incubated for 24 
and 48 hours. Following respective incubations glucose content of cell media was quantified and 
compared to control cells treated with NF control p = <0.05. Two-way ANOVA and Tukey’s 
multiple comparisons test was conducted to test for significance, data are presented as SD. 
Significance was set at p = <0.05, N = 4.  
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Figure 5.15. AML-12 cell viability following treatment with 40% conditioned media from 
senescent fibroblasts (SF) and non-senescent normal fibroblast (NF) control media over 24 
hours. 

AML-12 cell viability was determined following treatment with 40% NF and SF for 24 hours. 
Cells treated with 200µM Etoposide exhibited a positive control (p = 0.0001).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. AML-12 cell viability following treatment with 40% conditioned media from 
senescent fibroblasts (SF) and non-senescent normal fibroblast (NF) control media over 48 
hours.  

AML-12 cell viability was determined following treatment with 40% NF and SF for 48 hours. 
Cells treated with 200µM Etoposide was used as a positive control (p = 0.0001). 
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Figure 5.17. Glucose utilisation by mouse AML-12 hepatocytes following treatment with 
40% conditioned media from senescent fibroblasts (SF) with p38 inhibitor and non-
senescent normal fibroblast (NF) control media over 48 hours. 

Differences in glucose utilisation were compared between AML-12 hepatocytes treated with 40% 
SF retrieved after 24 and 48 hours and incubated for 48 hours in the presence of 100nM p38 
inhibitor and AML-12 cells treated with 40% SF alone. Two-way ANOVA and Tukey’s multiple 
comparisons test was conducted to test for significance, data are presented as SEM. Significance 
was set at p = <0.05, N = 4. 
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5.4.3. 40% SASP, retrieved from senescent fibroblasts after 24 and 48 hours 
reduced glucose uptake in C2C12 mouse skeletal muscle cells following 24 and 48 
hour incubations.  
 

C2C12 mouse myoblasts were induced to differentiate over a period of 4 days (Fig. 5.18). Upon 

extensive myotube formation, C2C12 cells were treated with 20% conditioned media taken from 

SC after 24 or 48 hours for a period of 24 and 48 hours and glucose content of cell media 

measured. 20% conditioned media failed to alter glucose uptake in C2C12 cells following 24 and 

48 hour incubations in comparison to conditioned media taken from non-senescent fibroblasts 

(Fig. 5.19). 40% conditioned media retrieved from SC after 24 and 48 hours failed to alter glucose 

utilisation following the 24 hour incubation, instead glucose concentration displayed a time 

dependent decrease as would be expected. SASP collection after 48 hours and used at 40% 

however significantly reduced the uptake of glucose  by these mature skeletal muscle cells  

following 24 and 48 hour incubations (p = <0.001) as larger amounts of glucose were found 

within cell media following respective incubation periods, in comparison to skeletal muscle cells 

treated with media from non-senescent cells (Fig. 5.20).   

 
5.4.3.1. 40% SASP treatment did not affect cell viability in C2C12 skeletal muscle 
cells following 24 and 48 hour incubations.  
 

Having observed a reduced ability of C2C12 muscle cells to utilise glucose following treatment 

with 40% conditioned media from SC, to test whether the decrease in glucose uptake may be 

influenced by a reduced number of cells, cell viability following treatment with 40% conditioned 

media from SC was assessed. There was no statistically significant difference in cell viability 

between mature C2C12 muscle cells treated with control, no treatment media and muscle cells 

treated with 40% conditioned media from SC for 24 and 48 hour incubations (fig 5.21 and 5.22). 

200µM etoposide was used as a positive control and was the only treatment to significantly reduce 

cell viability (p = < 0.001). The potential cytotoxic effects of the conditioned media can be 

discarded with regards to its influence on reducing the ability of C2C12 muscle cells to uptake 
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glucose and these results highlight a mechanism independent of cell death, responsible for 

altering glucose homeostasis.  

 

5.4.3.2. Glucose utilisation was restored in C2C12 myocytes following co-
incubation of 40% SASP and p38 inhibitor.  
 

C2C12 myocytes incubated with 40% SASP for 48 hours in the presence of 100nM p38 inhibitor 

exhibited glucose utilisation comparable to C2C12 myocytes treated with non-senescent control 

media. There was a significant reduction in glucose concentration in media retrieved from C2C12 

myotubes treated with SF media/p38 inhibitor in comparison to 40% SF alone (Fig. 5.23).  
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Figure 5.18. C2C12 mouse myoblasts differentiation. 

C2C12 myoblasts were grown using DMEM high glucose (4.5g/l) supplemented with 10% fetal 
bovine serum, L-Glutamine 200mM and 1x Penicillium-Steptomycin until they reached 100% 
confluence. C2C12 differentiation was initiated by replacing 10% fetal bovine serum with 2% 
horse serum, growth media was replaced every 24 hours and the cells were incubated for a period 
of 4 days. A) Day 0, cells are 90-100% confluence, B) Day 2, cell differentiation is evident and 
the formation of contractile myotubes is apparent and C) Day 4, widespread mature myotube 
formation can be seen. 
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Figure 5.19. Glucose utilisation by C2C12 mouse myoblasts following treatment with 20% 
conditioned media from senescent fibroblasts (SF) and non-senescent normal fibroblast 
(NF) control media over 48 hours.  

C2C12 myotubes treated with 20% SF retrieved after 24 and 48 hours and incubated for 24 and 
48 hours. Following respective incubations glucose content of cell media was quantified and 
compared to control cells treated with NF control. Two-way ANOVA and Tukey’s multiple 
comparisons test was conducted to test for significance, data are presented as SEM. Significance 
was set at p = <0.05, N = 4.   

 

 

 

 

 

 

 

 

Figure 5.20. Glucose utilisation by C2C12 mouse myocytes following treatment with 40% 
conditioned media from senescent fibroblasts (SF) and non-senescent normal fibroblast 
(NF) control media over 48 hours. 

C2C12 myotubes treated with 40% SF retrieved after 24 and 48 hours and incubated for 24 and 
48 hours. Following respective incubations glucose content of cell media was quantified and 
compared to control cells treated with NF control (p = <0.001). Two-way ANOVA and Tukey’s 
multiple comparisons test was conducted to test for significance, data are presented as SEM. 
Significance was set at p = <0.05, N = 4.   
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Figure 5.21. C2C12 cell viability following treatment with 40% conditioned media from 
senescent fibroblasts (SF) and non-senescent normal fibroblast (NF) control media over 24 
hours. 

C2C12 cell viability was determined following treatment with 40% NF and SF for 24 hours. Cells 
treated with 200µM Etoposide was used as a positive control (p < 0.0001).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22. C2C12 cell viability following treat with 40% conditioned media from 
senescent fibroblasts (SF) and non-senescent normal fibroblast (NF) control media over 48 
hours. 

C2C12 cell viability was determined following treatment with 40% NF and SF for 48 hours. Cells 
treated with 200µM Etoposide was used as a positive control (p < 0.0001).  
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Figure 5.23. Glucose utilisation by mouse C2C12 myocytes following treatment with 40% 
conditioned media from senescent fibroblasts (SF) with p38 inhibitor and non-senescent 
normal fibroblast (NF) control media over 48 hours. 

Differences in glucose utilisation between C2C12 myocytes treated with 40% SF retrieved after 
24 and 48 hours and incubated for 48 hours in the presence of 100nM p38 inhibitor and C2C12 
myocytes treated with 40% SF alone. Two-way ANOVA and Tukey’s multiple comparisons test 
was conducted to test for significance, data are presented as SEM. Significance was set at p <0.05, 
N = 4 
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5.4.3.3. Exposure to SASP induces reactive oxygen species (ROS) in C2C12 cells. 
 

Mature C2C12 skeletal muscle cells were treated with conditioned media from non-senescent 

fibroblasts and 40% conditioned media from SC for 24 and 48 hours and then stained for 

superoxide formation using MitoSOX red indicator. A non-treatment control was established by 

treating C2C12 cells with normal media, and superoxide staining was absent (Fig. 5.24a and Fig. 

5.25a). C2C12 cells treated with control media, derived from non-senescent fibroblasts after 24 

and 48 hours exhibited very little superoxide staining, possibly a by-product of general 

metabolism (Fig. 5.24/5.25 b and c). C2C12 cells treated with conditioned media from SC 

recovered after 24 and 48 hours and used at 40%, substantially upregulated superoxide formation 

evident from the widespread red staining (Fig. 5.24/5.25 d and e). 5µM doxorubicin was used as 

a positive control, a known inducer of reactive oxygen species (Fig. 5.24 and 5.25f) and produced 

large scale MitoSOX absorption comparable to the absorption observed with 40% conditioned 

media from SC treatment. Control media, along with media taken from non-senescent cells failed 

to evoke ROS production as was expected (Fig. 5.24/5.25 a, b and c). 40% conditioned media 

from SC treatment resulted in increased superoxide production, evident from the increased uptake 

in the red dye (Fig. 5.25 d and e). 5µM doxorubicin was used for a positive control.         

 

5.4.3.4. 40% SASP treatment failed to increase mitochondrial biogenesis.  
 

To assess whether conditioned media from SC could alter mitochondrial biogenesis/function 

C2C12 cells treated with 40% conditioned media from SC were also stained with mitotracker red, 

a fluorescent dye that specifically stains active mitochondria, thus an indicator of membrane 

potential. 40% conditioned media from SC treatment for 24 and 48 hours did not significantly 

upregulate membrane activity/potential relative to control (Fig. 5.26 and 5.27). Quantification of 

total cell fluorescence using ImageJ revealed no significant difference in mitochondrial 

membrane potential between cells treated with 40% conditioned media from normal cells and 

cells treated with 40% conditioned media from senescent cells, following both 24 and 48 hour 
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incubations (Fig 5.28 and 5.29).  C2C12 cells were also differentiated under 40% conditioned 

media from SC and treated with conditioned media 48 hours following differentiation to assess 

whether the conditioned media could alter mitochondrial number pre/during or post 

differentiation. In either case conditioned media treatment was unable to significantly upregulate 

mitochondrial biogenesis (Fig. 5.30 and 5.31) relative to C2C12 cells treated with conditioned 

media from non-senescent cells. Quantification of total cell fluorescence using ImageJ image 

analysis software revealed no significant difference in mitochondrial potential between cells 

treated with conditioned media from senescent cells in comparison to cells treated with 

conditioned media from non-senescent cells (Fig. 5.32 and 5.33).  
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Figure 5.24. Differentiated C2C12 mouse muscle cells stained with MitoSOX red 
mitochondrial superoxide indicator dye following treatment with 40% SF for 24 hours. 

C2C12 mouse myoblasts were grown to 100% confluence, designated as day 0 and then induced 
to differentiate by the addition of differentiation media. A) control media, B) Non-senescent 
media collected after 24 hours from fibroblasts, C) Non-senescent media collected after 48 hours 
from fibroblasts, D) media collected after 24 hours from senescent fibroblasts (40%), E) media 
collected after 48 hours from senescent fibroblasts (40%) and F) 5µM doxorubicin as a positive 
control. Cells were incubated for 24 hours prior to the addition of MitoSOX red and left to 
incubate for 20 minutes. Pictures were taken on a fluorescence microscope at 100x magnification.  
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Figure 5.25. Differentiated C2C12 mouse muscle cells stained with MitoSOX red 
mitochondrial superoxide indicator dye following treatment with 40% SF for 48 hours. 

C2C12 mouse myoblasts were grown to 100% confluence, designated as day 0 and then induced 
to differentiate by the addition of differentiation media. A) control media, B) Non-senescent 
media collected after 24 hours from fibroblasts, C) Non-senescent media collected after 48 hours 
from fibroblasts, D) media collected after 24 hours from senescent fibroblasts (40%), E) media 
collected after 48 hours from senescent fibroblasts (40%) and F) 5µM doxorubicin as a positive 
control. Cells were incubated for 24 hours prior to the addition of MitoSOX red and left to 
incubate for 20 minutes. Pictures were taken on a fluorescence microscope at 100x magnification 
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Figure 5.26. Differentiated C2C12 mouse muscle cells stained with Mitotracker red 
mitochondrial  indicator following treatment with 4 0% SF for 24 hours. 

C2C12 mouse myoblasts were grown to 100% confluence, designated as day 0 and then induced 
to differentiate by the addition of differentiation media. A) control media, B) Non-senescent 
media collected after 24 hours from fibroblasts, C) media collected after 24 hours from senescent 
fibroblasts (40%), D) Non-senescent media collected after 48 hours from fibroblasts and E) media 
collected after 48 hours from senescent fibroblasts (40%). Cells were treated for 24 hours prior 
to the addition of Mitotracker red and left to incubate for 45 minutes. Pictures were taken on a 
fluorescence microscope at 100x magnification.  
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Figure 5.27. Differentiated  C2C12 mouse muscle cells stained with Mitotracker red 
mitochondrial  indicator following treatment with 4 0% SF for 48 hours. 

C2C12 mouse myoblasts were grown to 100% confluence, designated as day 0 and then induced 
to differentiate by the addition of differentiation media. A total of 5 treatments were administered 
A) control media, B) Non-senescent media collected after 24 hours from fibroblasts, C) media 
collected after 24 hours from senescent fibroblasts (40%) D) Non-senescent media collected after 
48 hours from fibroblasts and E) media collected after 48 hours from senescent fibroblasts (40%). 
Cells were treated for 48 hours prior to the addition of Mitotracker red and left to incubate for 45 
minutes. Pictures were taken on a fluorescence microscope at 100x magnification.  
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Figure 5.28. Corrected total cell fluorescence of differentiated C2C12 mouse muscle cells 
stained with Mitotracker red mitochondrial  indicat or following treatment with 40% SF 
for 24 hours. 

Mitochondrial potential was assessed in differentiated C2C12 myotubes treated with 40% SF 
retrieved after 24 and 48 hours and incubated for 24 hours. One-way ANOVA and Tukey’s 
multiple comparisons test was conducted to test for significance, data are presented as SEM. 
Fluorescence quantified using ImageJ software. Significance was set at p <0.05, N = 4 

 

 

 

 

 

 

 

 

 

Figure 5.29. Corrected total cell fluorescence of differentiated C2C12 mouse muscle cells 
stained with Mitotracker red mitochondrial indicato r following treatment with 40% SF 
for 48 hours. 

Mitochondrial potential was assessed in differentiated C2C12 myotubes treated with 40% SF 
retrieved after 24 and 48 hours and incubated for 24 hours. One-way ANOVA and Tukey’s 
multiple comparisons test was conducted to test for significance, data are presented as SEM. 
Fluorescence quantified using ImageJ software. Significance was set at p <0.05, N = 4 
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Figure 5.30. Differentiated C2C12 mouse muscle cells stained with Mitotracker red 
mitochondrial  indicator following treatment with 4 0% SF for 48 hours post 
differentiation. 

C2C12 mouse myoblasts were grown to 100% confluence, designated as day 0 and then induced 
to differentiate by the addition of differentiation media. A) control media, B) Non-senescent 
media collected after 24 hours from fibroblasts, C) media collected after 24 hours from senescent 
fibroblasts (40%), D) Non-senescent media collected after 48 hours from fibroblasts and E) media 
collected after 48 hours from senescent fibroblasts (40%). Cells were treated for 48 hours post 
differentiation, followed by the addition of Mitotracker red and left to incubate for 45 minutes. 
Pictures were taken on a fluorescence microscope at 100x magnification.  
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Figure 5.31. C2C12 mouse muscle cells differentiated under 40% SF and then stained with 
Mitotracker red mitochondrial  indicator. 

C2C12 mouse myoblasts were grown to 100% confluence, designated as day 0 and then induced 
to differentiate by the addition of differentiation media. A) control media, B) Non-senescent 
media collected after 24 hours from fibroblasts, C) media collected after 24 hours from senescent 
fibroblasts (40%) D) Non-senescent media collected after 48 hours from fibroblasts and E) media 
collected after 48 hours from senescent fibroblasts (40%). Cells were treated for 48 hours post 
differentiation, followed by the addition of Mitotracker red and left to incubate for 45 minutes. 
Pictures were taken on a fluorescence microscope at 100x magnification.  
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Figure 5.32. Corrected total cell fluorescence of differentiated C2C12 mouse muscle cells 
stained with Mitotracker red mitochondrial  indicat or following treatment with 40% SF 
for 48 hours post differentiation. 

Mitochondrial potential was assessed in differentiated C2C12 myotubes treated with 40% SF 
retrieved after 24 and 48 hours and incubated 48 hours post differentiation. One-way ANOVA 
and Tukey’s multiple comparisons test was conducted to test for significance, data are presented 
as SEM. Fluorescence quantified using ImageJ software. Significance was set at p <0.05, N = 4 

 

 

 

 

 

 

 

 

 

Figure 5.33. Corrected total cell fluorescence of C2C12 myoblasts differentiated under 
40% SF stained with Mitotracker red mitochondrial indicator. 

Mitochondrial potential was assessed in C2C12 myoblasts during differentiation treated with 
40% SF retrieved after 24 and 48 hours. One-way ANOVA and Tukey’s multiple comparisons 
test was conducted to test for significance, data are presented as SEM. Fluorescence quantified 
using ImageJ software. Significance was set at p <0.05, N = 4 
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5.4.4. 3T3-L1 adipocytes treated with 20% and 40% conditioned media from 
senescent fibroblasts for 24 and 48 hours, did not exhibit any change in ability to 
utilise glucose. 
    
3T3-L1 mouse pre-adipocytes were differentiated over the course of 15 days (Fig. 5.34), mature 

adipocytes were identified by microscopy. Glucose uptake following treatment with 20 and 40% 

conditioned media from SC for 24 and 48 hours remained unchanged relative to glucose uptake 

in 3T3-L1 cells treated with non-senescent control media (Fig 5.35 and 5.36).    

 

 
5.4.4.1 3T3-L1 adipocytes stained with Nile red following 20% and 40% 
conditioned media treatment from senescent fibroblasts, expressed significant 
difference in lipid content after 48 hours of incubation only.  
 

Mature 3T3-L1 adipocytes were treated with 40% conditioned media from SC and stained with 

Nile red to investigate whether the SASP could influence lipolysis. Nile red is a fluorescent stain 

which specifically stains intracellular lipids for quantitative analysis. 3T3-L1 cells treated with 

normal cell culture media, and media collected from non-senescent fibroblasts stained profusely 

with Nile red and a large distribution of lipid laden adipocytes were observed (Fig. 5.37a, b and 

c). Conditioned media retrieved after 24 hours and used at 40% did not alter adipocyte lipid 

content or morphology (Fig. 5.37d), on the contrary conditioned media collected at 48 hours of 

inducing senescence and used at 40% significantly reduced the number of adipocytes staining 

with Nile red, evident from the large areas of unstaining observed (p = < 0.05) (Fig. 5.37e). 3T3-

L1 cells treated with 40% conditioned media for 48 hours exhibited a similar trend, as control 

and non-senescent media did not affect adipocyte lipid content or morphology (Fig. 38a, b and 

c). A significant reduction in fluorescent staining was observed following treatment with 

conditioned media collected from senescent cells after 48 hours in comparison to cells treated 

with media from non-senescent cells (Fig. 38d and e). ImageJ software analysis reveals a 

significant reduction in lipid droplets amongst 3T3-L1 cells treated with 40% conditioned media 

for 24 and 48 hours (Fig. 5.39 and 5.40).  
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Figure 5.34. 3T3-L1 mouse pre-adipocyte differentiation. 

3T3-L1 mouse pre-adipocytes were grown to 100% confluence, designated as day 0 and then 
induced to differentiate by the addition of differentiation media. The 3T3-L1 cells were 
differentiated for a total of 15 days and pictures were taken on a confocal microscope, at 100x 
magnification for day 0 and 3, then 400x at 3 day intervals till day 15. At day 9, increases in cell 
size are apparent, day 12 lipid formation and day 15 considerable lipid storage and change in cell 
size and morphology. The complete 3T3-L1 feeding schedule has been detailed in chapter 2. 
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Figure 5.35. Glucose utilisation by 3T3-L1 adipocytes following treatment with 20% 
conditioned media from senescent fibroblasts (SF) and non-senescent normal fibroblast 
(NF) control media over 48 hours. 

3T3-L1 treated with 20% SF retrieved after 24 and 48 hours and incubated for 24 and 48 hours. 
Following respective incubations glucose content of cell media was quantified and compared to 
control cells treated with NF control. Two-way ANOVA and Tukey’s multiple comparisons test 
was conducted to test for significance, data are presented as SEM. Significance was set at p <0.05, 
N = 4. 

 

 

 

 

 

 

 

 

Figure 5.36. Glucose utilisation by 3T3-L1 adipocytes following treatment with 40% 
conditioned media from senescent fibroblasts (SF) and non-senescent normal fibroblast 
(NF) control media over 48 hours. 

3T3-L1 treated with 40% SF retrieved after 24 and 48 hours and incubated for 24 and 48 hours. 
Following respective incubations glucose content of cell media was quantified and compared to 
control cells treated with NF control. Two-way ANOVA and Tukey’s multiple comparisons test 
was conducted to test for significance, data are presented as SEM. Significance was set at p <0.05, 
N = 4. 
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Figure 5.37. Mature 3T3-L1 mouse adipocytes stained with Nile Red following treatment 
with 40% SF for 24 hours. 

3T3-L1 mouse pre-adipocytes were grown to 100% confluence, designated as day 0 and then 
induced to differentiate by the addition of differentiation media. 3T3-L1 cells were differentiated 
for 15 days and subsequently treated with 40% senescent media for 24 hours, followed by Nile 
red staining. Pictures were taken on a confocal microscope at 100x magnification. A) control 
media, B) Non-senescent media collected after 24 hours from fibroblasts, C) senescent media 
collected after 24 hours from fibroblasts, D) media collected after 48 hours from non-senescent 
fibroblasts and E) media collected after 48 hours from senescent fibroblasts.  
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Figure 5.38. Mature 3T3-L1 mouse adipocytes stained with Nile Red following treatment 
with 40% SF for 48 hours. 

3T3-L1 mouse pre-adipocytes were grown to 100% confluence, designated as day 0 and then 
induced to differentiate by the addition of differentiation media. The 3T3-L1 cells were 
differentiated for a total of 15 days and then treated with 40% senescent media for 48 hours, 
followed by Nile red staining. Pictures were taken on a confocal microscope at 100x 
magnification. A) control media, B) Non-senescent media collected after 24 hours from 
fibroblasts, C) senescent media collected after 24 hours from fibroblasts, D) media collected after 
48 hours from non-senescent fibroblasts and E) media collected after 48 hours from senescent 
fibroblasts.  
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Figure 5.39. Corrected total cell fluorescence of differentiated 3T3-L1 cells stained with 
Nile red following treatment with 40% SF for 24 hours post differentiation. 

Adipocyte lipid content was measured in differentiated 3T3-L1 cells treated with 40% SF 
retrieved after 24 and 48 hours and incubated 24 hours. One-way ANOVA and Tukey’s multiple 
comparisons test was conducted to test for significance, data are presented as SEM. Fluorescence 
quantified using ImageJ software. Significance was set at p <0.05, N = 4 

 

 

 

 

 

 

 

 

 

 

Figure 5.40. Corrected total cell fluorescence of differentiated 3T3-L1 cells stained with 
Nile red following treatment with 40% SF for 48 hours post differentiation 

Adipocyte lipid content was measured in differentiated 3T3-L1 cells treated with 40% SF 
retrieved after 24 and 48 hours and incubated 48 hours. One-way ANOVA and Tukey’s multiple 
comparisons test was conducted to test for significance, data are presented as SEM. Fluorescence 
quantified using ImageJ software. Significance was set at p <0.05, N = 4 
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5.4.4.2. 20% and 40% SASP induces lipolysis in 3T3-L1 adipocytes following 48 
hour incubation. 
 

Free glycerol was measured in the media of 3T3-L1 adipocytes following treatment with 20 and 

40% conditioned media collected from senescent fibroblasts after 24 and 48 hours. 20% and 40% 

conditioned media collected from senescent fibroblasts after 24 hours did not induce lipolysis in 

3T3-L1 adipocytes (Fig. 5.41 and 5.42). However treatment with 20% and 40% conditioned 

media collected after 48 hours and incubated with cells for 48 hours significantly induced 

lipolysis, reflected by increased glycerol content in the media (Fig. 5.41 and 5.42). Adipocytes 

treated with 20% conditioned media for 48 hours underwent lipolysis to a lesser extent in 

comparison to adipocytes treated with 40% conditioned media. Media from 3T3-L1 cells treated 

with 20% conditioned media from SC for 48 hours exhibited 310% more glycerol in comparison 

to media from 3T3-L1 cells treated with 20% conditioned media (p < 0.01), Media from 3T3-L1 

treated with 40% conditioned media from SC for 48 hours exhibited 705% more glycerol in 

comparison to media from 3T3-L1 cells treated with 40% conditioned media from non-senescent 

cells (p < 0.001). The moderate variances observed in lipid staining between 3T3-L1 adipocytes 

treated with 40% conditioned media from SC and control non-senescent media indicated lipolysis 

but due to the qualitative nature of the test remained inconclusive. Increased glycerol 

quantification following conditioned media treatment validates the role of SASP in inducing 

lipolysis, that too in a dose and time dependent manner.   
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Figure 5.41. Glycerol release by 3T3-L1 cells following treatment with 20% conditioned 
media from senescent fibroblasts (SF) and non-senescent normal fibroblast (NF) control 
media over 48 hours. 

Media glycerol content was measured in differentiated 3T3-L1 cells treated with 20% SF 
retrieved after 24 and 48 hours and incubated 48 hours. One-way ANOVA and Tukey’s multiple 
comparisons test was conducted to test for significance, data are presented as SEM. Fluorescence 
quantified using ImageJ software. Significance was set at p <0.05, N = 4 

 

  

 

 

 

 

 

 

 

Figure 5.42. Glycerol release by 3T3-L1 cells following treatment with 40% conditioned 
media from senescent fibroblasts (SF) and non-senescent normal fibroblast (NF) control 
media over 48 hours. 

Media glycerol content was measured in differentiated 3T3-L1 cells treated with 40% SF 
retrieved after 24 and 48 hours and incubated 48 hours. One-way ANOVA and Tukey’s multiple 
comparisons test was conducted to test for significance, data are presented as SEM. Fluorescence 
quantified using ImageJ software. Significance was set at p <0.05, N = 4 
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5.4.5. Aged mouse hepatocellular tissue exhibits decreased expression of the insulin 
receptor gene and Phosphoenolpyruvate carboxykinase 1 gene. 
 

The expression of 5 metabolic genes was assessed in young and old mice hepatocyte tissue, in a 

bid to discover age related changes in metabolic function. While no significant difference in gene 

expression was observed in genes coding for; the long-chain-fatty-acid-CoA ligase 1 enzyme 

(ASCL1), fatty acid synthase (FASN) and carnitine palmitoyltransferase 1A (CPT1a) with 

respect to chronological age (Fig.5.43 a). The gene encoding the insulin receptor was significantly 

downregulated (p  < 0.05) in the liver tissues of older mice (19 months old) relative to younger 

mice (4 months old), while phosphoenolpyruvate carboxykinase 1 (PCK1) gene expression was 

down-regulated in aged mice tissue (p  <0.01). These data highlight advancing age is met with a 

reduction in insulin receptor expression in the liver, as per consequence a reduced ability to store 

glucose as glycogen would also be expected. Likewise reduced carboxykinase 1 expression would 

only further deregulate glucose homeostasis.      

 

5.4.5.1. Aged mice skeletal muscle tissue muscle displays a reduced gene expression 
of insulin receptor gene and GLUT4 gene. Young mice exhibits increased 
expression of the peroxisome proliferator-activated receptor gamma coactivator 1-
alpha gene (PGC1-α), while aged. 
 

Having assessed metabolic gene expression in young and aged hepatocellular tissue, the 

experiment was repeated in another insulin target tissue (Fig.5.44 a). The results reveal an 

increased gene expression of muscle PGC-1α amongst younger mice (p = 0.05) which potentially 

reduces with advancing age and then stabilises. Significant reductions in glut4 and insulin 

receptor gene expression were observed in aged skeletal muscle mice tissue, (p = 0.05, p < 0.001). 

These data imply advancing age is met with a reduced ability to take up glucose in skeletal muscle 

due to reduced glucose transportation, in concert with reduced insulin receptor expression. It can 

therefore be deduced that age associated insulin resistance and dysregulated glucose homeostasis 

is largely influenced by reduced gene expression for proteins vital in insulin sensitivity and 
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glucose uptake. Reductions in hexokinase gene expression with age were almost significant at p 

= 0.06 and highlight a potential inability to utilise glucose.       

 
5.4.5.2. Aged adipose tissue exhibits reduced peroxisome proliferator-activated 
receptor gamma gene expression (PPARg) only. 
 

Aged adipose tissue expressed reduced gene expression of the PPARg gene only (p = 0.05), while 

the expression of the sterol regulatory element binding transcription factor 1, fatty acid binding 

protein, fatty acid synthase, lipoprotein lipase and CCAAT/enhancer-binding protein alpha genes 

remains unchanged with between young and old mice. PPARg is a gene vital for regulating fatty 

acid synthesis and storage by adipocytes and a decreased expression over time may manifest with 

lipotoxic effects.   
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A) 

B) 

 

 

Fig 5.43. Relative gene expression of metabolic and senescent genes analysed in young and 
old, mice hepatocellular tissue.    

A graphic representation of gene expression data obtained by relative expression software tool 
(REST) analysis. The figure shows boxplots of gene expression where the top and bottom walls 
of each box indicate the 75th and 25th percentiles, whereas the dotted line represents the median. 
Whiskers above and below the box extend to the 90th and 10th percentiles. Metabolic genes 
studied include, long-chain-fatty-acid-CoA ligase 1 enzyme (ASCL1), fatty acid synthase 
(FASN), carnitine palmitoyltransferase 1A (CPT1a) phosphoenolpyruvate carboxykinase 1 
(PCK1) and Insulin receptor (IR).  
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A) 

 

B)  

 

 

Fig 5.44. Relative gene expression of metabolic and senescent related genes analysed in 
young and old, mice skeletal muscle tissue.    

A graphic representation of gene expression data obtained by relative expression software tool 
(REST) analysis. The figure shows boxplots of gene expression where the top and bottom walls 
of each box indicate the 75th and 25th percentiles, whereas the dotted line represents the median. 
Whiskers above and below the box extend to the 90th and 10th percentiles. Metabolic genes 
studied include Insulin receptor (IR), Glucose transporter (GLUT4) Pyruvate Dehydrogenase 
Kinase (PDK4), Hexokinase, Peroxisome proliferator-activated receptor gamma coactivator 1-
alpha (PGC1-α).  
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A) 

B) 

 

 

Fig 5.45. Relative gene expression of metabolic and senescent genes analysed in young and 
old, mice adipose tissue.    

A graphic representation of gene expression data obtained by relative expression software tool 
(REST) analysis. The figure shows boxplots of gene expression where the top and bottom walls 
of each box indicate the 75th and 25th percentiles, whereas the dotted line represents the median. 
Whiskers above and below the box extend to the 90th and 10th percentiles. Sterol regulatory 
element-binding transcription factor 1 (SREBF1), fatty acid binding protein (FABP4), Fatty acid 
synthase (FASN), Lipoprotein Lipase (LPL), CCAAT/enhancer-binding protein alpha and 
Peroxisome proliferator-activated receptor gamma (PPARg).    
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5.5. Discussion  
 

Existing research has established the significant impact of cellular senescence throughout various 

stages of organismal ageing. Evidence based research highlights the integral contribution of the 

cell autonomous effects of senescence in various age related health implications including; oocyte 

depletion mediated female reproductive senescence and senescent microglial mediated 

Alzheimer’s disease. However the non-autonomous effects of SC have been less extensively 

investigated and are potentially more detrimental in propagating the senescent phenotype across 

non-senescent tissues, and therefore of more interest. The data reported in this study identifies an 

important role for the SASP in altering glucose homeostasis in insulin sensitive tissues. Cell 

media obtained from C2C12 myocytes exposed to 40% conditioned media from SC for 24 and 

48 hours (Fig. 5.20) and AML-12 hepatocytes after 48 hours (Fig. 5.14) exhibited significantly 

higher concentrations of glucose in comparison to control media (p <0.0001, p <0.01) 

independent of a change in cell viability (Fig 5.16-17 and 5.20-21), suggesting a reduced ability 

to utilise glucose, p38 inhibitors restored glucose utilisation similar to control treatment (Fig 5.17, 

5.23). 

 

Further investigations using C2C12 myocytes revealed SASP to be a considerable source of 

reactive superoxides (Fig. 5.24-25) independent of enhanced mitochondrial activity (Fig. 5.26-

33). Glucose utilisation remained unchanged in 3T3-L1 adipocytes cells treated with 20% or 40% 

conditioned media (Fig. 5.35-36), however fluorescent lipid staining (Fig. 5.37-40) and more 

importantly quantification of circulating glycerol following 20% and 40% conditioned media 

(Fig. 5.41-42) suggests lipotoxic tendencies (p <0.05 and p <0.001).  

 

Separately metabolic genes vital for tissue function were assessed in young (4 months) and old 

(19 months) liver, muscle and fat tissues from mice. Phosphoenolpyruvate carboxykinase 1 

(PCK1) was the only gene down-regulated in aged mice liver tissue (Fig. 5.43) (p <0.01). PGC1α 

expression was significantly upregulated in young skeletal muscle tissue (p = 0.05), while both 
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Glut4 (p = 0.05) and insulin receptor gene expression (p = <0.01) decreased in aged skeletal 

muscle tissue (Fig.5.44). Finally aged adipose tissue expressed reduced gene expression of the 

PPARg gene only (Fig.5.45) (p = 0.05). Changes in genes associated with cellular senescence 

remained non-significant between mice of young and old age. The data here recognises advancing 

age is met with reduced expression of genes required for the normal physiological function of 

liver, muscle and fat tissue.  

 

The primary outcome from this investigation presents the SASP as a potential mediator between 

ageing and the increase in age related insulin resistance, predominantly via the reduced ability of 

skeletal muscle cells and to a lesser extent hepatocytes, to utilise free glucose. Although β-cell 

failure is critical in the manifestation of T2D, it remains secondary to skeletal muscle insulin 

resistance which is believed to be the primary defect in the development of T2D and clinically 

evident before β-cell failure and overt hyperglycemia ensue [711, 712]. Evidence supporting 

these claims report, glucose tolerant offspring of parents with T2D exhibit moderate to severe 

skeletal muscle insulin resistance along with reduced glycogen synthesis capabilities, while 

hepatic and adipocyte insulin sensitivity remain unchanged [712, 713]. Current understanding of 

the SASP recognises it as a considerable source of inflammatory and growth remodelling factors 

which are able to alter tissue architecture [714]. Circulating proteins commonly associated with 

SASP include, TNF-α, IL-6, IL-8, MMP, MCP-1 and IGF binding proteins to name a few [703, 

715]. Recent work has identified several signal transduction pathways activated by pro-

inflammatory cytokines associated with the obese phenotype, but are common to the SASP and 

can impede on insulin receptor signalling in skeletal muscle, liver, and adipose cells [701, 716]. 

A majority of these complex and interrelated pathways appear to converge at the level of insulin 

receptor substrate-1. For example TNF- α, commonly found in SASP is known to activate serine 

kinases such as JNK, p70 26 kinase and p38 mitogen-activated protein kinase, which go on to 

phosphorylate serine residues of IRS-1, negatively regulating normal signalling through the 

insulin receptor/IRS-1 axis in skeletal muscle tissues [717-719].  
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The net result impairs phosphorylation of protein kinase B (Akt), an integral step required for the 

translocation of GLUT4 transporter and concomitant glucose uptake [720]. Similarly, 

inflammatory stimuli mediated enhanced activity of JNK1 leads to serine phosphorylation of IRS-

1 impairing insulin sensitivity in hepatocytes [721]. Furthermore pro-inflammatory stimuli can 

initiate insulin resistance via enhanced NFκB and IKKβ signalling in hepatocellular tissues; on 

the contrary inhibition of IKKβ by high dose aspirin treatment restores insulin sensitivity [722]. 

The author assumes SASP inhibits glucose utilisation in otherwise insulin sensitive tissues via 

pro-inflammatory cytokines and the signalling pathways they activate. Interestingly co-

incubation of SASP with p38 inhibitor restored glucose utilisation in both C2C12 myocytes and 

AML-12 hepatocytes. Glucose uptake was comparable to C2C12 and AML-12 treated with non-

senescent media and indicates inhibiting p38 signalling pathways either reverse cellular 

senescence, upregulate mechanisms facilitating glucose uptake and/or inhibit the production of 

pro-inflammatory cytokines.  

 

While data affirming the reversal of cellular senescence due to p38 is unheard of, a more plausible 

theory, backed by scientific evidence recognises inhibiting p38 signalling pathways are able to 

diminish the inflammatory response and facilitate glucose uptake [723]. The work of C.J. Carison 

and C.M. Rondinone report pharmacological inhibition of p38 in insulin resistant 3T3-

L1increased basal glucose uptake as well as glucose uptake in response to a subsequent insulin 

stimulation, an effect which manifests due to increased GLUT 1 and 4 expression [723]. A review 

by Yong et al., documents the involvement and contribution of p38 MAPK in asthma, rheumatoid 

arthritis, systemic inflammation, inflammatory bowel disease, brain inflammation and stroke 

[724]. The p38 MAPK pathway plays a central role in the expression and activity of pro-

inflammatory cytokines such as TNF-a, IL-1, IL-2, IL-6, IL-7, and IL-8, inhibiting p38 signalling 

will undoubtedly reduce the inflammatory burden and therefore supress IR signalling [725, 726].   

The data reported in this study identifies the SASP as a considerable source of ROS more 

specifically superoxide formation, and a prospective mechanism behind senescence induced 

insulin resistance. Interestingly ROS present as positive inducers of the senescent phenotype via 
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p53-depedent pathways and considerable evidence exists verifying the role of ROS in 

propagating insulin resistance [727]. Current evidence of ROS promoting insulin resistance in 

vivo stems from studies examining the effects of obesity on insulin resistance.  

 

The work of Houstis et al., treated ob/ob mice with manganese (III) tetrakis porphyrin an 

antioxidant, and noticed improved insulin sensitivity independent of alterations in adipose mass 

[728]. Hoehn et al., have reported transgenic mice overexpressing superoxide dismutase in liver 

and skeletal muscle tissue were protected against the insulin desensitising effects of ROS 

produced from consuming a high fat diet [729]. Mitotracker data collected during this study failed 

to demonstrate any SASP related changes in mitochondrial activity or number, implying ROS 

production is independent of hyperactive mitochondria. A plausible theory suggests a 

chemoattractant effect of pro-inflammatory cytokines on circulating neutrophils, facilitating 

migration to senescent sites and upregulating ROS production.  Physiologically, neutrophils are 

short lived however, IL-6 and IL-8 constitutively produced by SC and commonly found in SASP, 

have been associated with prolonging neutrophil survival significantly [730]. The influence of 

oxidative stress on insulin signalling is complex and involves numerous transcription factors and 

stress-sensitive signalling pathways including, NF-κB, JNK/IKKβ, and p38 MAPK, all of which 

intersect the insulin pathway at the level of IRS-1 [344]. The proposed mechanism whereby SASP 

influences insulin signalling, like the effect of pro-inflammatory cytokines involves 

phosphorylation of specific serine/threonine residues on IRS-1 which promote IRS-1 degradation 

[731]. Downstream effects involve the suppression of phosphatidylinositol 3-kinase, which has 

been reported to be a significant inducer of insulin resistance when not activated, in addition to 

suppressing Akt activation [732]. The net result is reduced GLUT4 expression and decreased 

glucose uptake following a superoxide insult (Fig.38). In concert with gene expression data 

acquired during this study, it is evident advancing age is met with reduced gene expression of the 

insulin receptor gene and GLUT4 in mice skeletal muscle tissue, further exasperating SASP 

mediated insulin resistance.  
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Fig 5.46. Simplified schematic outlining the associations between cellular senescence and 
pathways leading to insulin resistance and diabetes.  
 
SASP mediated insulin resistance is not limited to pro-inflammatory cytokine secretion, instead 
ROS also contribute significantly to insulin resistance by promoting serine phosphorylation of 
the insulin receptor, thus mediating heterologous inhibition of insulin receptor substrate-1 
signaling, which in turn counter regulates the insulin response. Excessive oxidative stress, 
commonly associated with advancing age also promotes p53 dependent cellular senescence which 
provides an alternative mechanism to SASP mediated insulin resistance.  
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An additional mechanism recognised in this study, contributing to age related insulin resistance 

and lipotoxicity, includes the lipolytic effects of the SASP on mature adipocytes. The pro-

inflammatory and oxidative nature of the SASP has already been elucidated and serves as a 

prominent candidate behind SASP mediated lipoytic effects [733]. Grisouard et al., support this 

theory, the team treated mature adipocytes with lipopolysaccharides to induce an inflammatory 

response and reported a dose dependent increase in circulating glycerol [734]. Interestingly 

inhibitors of IKKβ or NF-κB inhibited LPS-induced glycerol release as did inhibitors of protein 

kinase A (PKA) and the hormone-sensitive lipase (HSL) [734]. Furthermore lipolytic agents were 

reported to enhance LPS-induced mRNA expression of pro-inflammatory cytokines [734]. In 

summary the molecular pathways orchestrating SASP facilitated inflammatory responses are 

common to lipolysis and in a positive feedback loop reinforce the expression of pro-inflammatory 

cytokines, further upregulating lipolysis.  

 

The role of PKA and HSL also tie in with ROS mediated lipolysis. Krawczyk et al., identify the 

vital role of ROS in regulating lipolysis, more specifically antioxidants employed to neutralise 

ROS, decreased lipolysis in adipocytes [735]. The team also established PKA mediated 

phosphorylation of HSL facilitated it’s translocation from the cytosol to lipid droplets where 

lipolysis is to occur, an effect which was abrogated by scavenging ROS [735]. A review by Poglio 

et al., supports these observations and acknowledges adipocytes are particularly sensitive to ROS, 

which may account for the cytotoxic effects observed, relative to the non-significant change in 

cell viability observed in hepatocytes and myocytes [736]. A decreased ability to supress lipolysis 

leads to increased local fatty acid concentrations, enhancing β-oxidation and the amount of ROS 

[737]. The net result establishes a vicious cycle where ROS positively regulate lipolysis which 

leads to a further increase in ROS. It is also noteworthy advancing age is met with reduced 

antioxidant capabilities and therefore only amplifies the lipolytic effects of SASP [738].  
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Excessive lipolysis is a considerable risk factor for developing age related metabolic disorder 

[739]. Enhanced lipolysis leads to considerable release of free fatty acids that are transported to 

the liver and responsible for hepatocellular insulin resistance, alongside fatty liver disease [740]. 

Free fatty acids not only sequester the inhibitory effects of insulin on gluconeogenesis, but can 

enter the circulation and enforce insulin resistance in skeletal muscle tissue, as well as 

propagating hypertension and ultimately atherosclerosis [741, 742]. Gene expression data 

reported in this study recognises expression of the PPARG gene was significantly down regulated 

with advancing age. The PPARG gene is vital for fatty acid storage and glucose metabolism, 

more specifically is vital for lipid uptake and lipogenesis [743]. Evidently PPARG knockout mice 

fail to generate adipose tissue when fed a high-fat diet and are at an increased risk of developing 

previously mentioned health implications [744].  

 

The detrimental effects of reduced PPARG expression can somewhat be explained by a 

controversial view considering low grade obesity to offer protection against the development of 

T2D, and represents this relationship with a J-shaped curve [745]. This suggests individuals with 

extremely low or high levels of adipose tissue are at an increased risk of developing metabolic 

disorders, while slightly overweight individuals are at no such risk. The proposed mechanism 

behind the theory recognises individuals with slightly larger amounts of adipose tissue are better 

able to neutralise elevated circulating glucose levels and protect against the ectopic accumulation 

of free fatty acids in liver and skeletal muscle [745]. Conclusively SASP mediated degradation 

of adipocytes in combination with reduced PPARG gene expression with advancing age, lead to 

lipotoxic disorders and significantly enhance the risk of developing insulin resistance.  
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5.6. Conclusion  
 

The data reported in this study evidences a potentially important role for senescent cells and more 

specifically their secretome in altering nutrient homeostasis in insulin sensitive cells. The 

proposed mechanism behind the dysregulated glucose utilisation in hepatocytes and myocytes 

includes the insulin desensitising effects of pro-inflammatory cytokines, documented in existing 

literature and increased ROS production reported in this study itself, in a dose and time dependent 

manner. The effect of SASP on adipocytes exhibited cytotoxic tendencies and demonstrate links 

between advancing age and lipotoxicity related health implications. Gene expression data 

collected in this study analysing variations amongst young and aged mouse, hepatocyte, myocyte 

and adipocyte tissues, reveals advancing age is met with reduced expression of several metabolic 

genes relevant for regular glucose homeostasis. In combination, the results from this study 

identify the SASP as a mediator between ageing and the increase in age related insulin resistance, 

amplifying the deleterious effect of ageing on vital genes required for effective glucose 

homeostasis.  
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Chapter 6: 

Conclusions and Future work. 
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Advancing age is unanimously associated with the increased incidence of a wide range of 

morbidities [746]. The development of medical interventions, eradication of diseases previously 

thought to be fatal and the increased manufacture and implementation of automated technologies, 

in conjunction with a better understanding of nutrition has resulted in a significant increase in 

human lifespan [747]. It is clear however that to some extent  such increases in longevity are 

accompanied by an increasing prevalence of metabolic disorders and their associated 

comorbidities, giving rise to an increasingly dependent population suffering from ill health and 

contributing significantly to healthcare expenditures and expenditures related to the rehabilitation 

of the elderly [109, 110].   

 

As a result of these parallel trends a rational postulation suggests causative relations between 

advancing age and the increased incidence of metabolic disorders and possibly vice versa.  It is 

therefore imperative to identify individuals experiencing an accelerated rate of ageing and/or at 

an increased risk of developing metabolic disorder, with the expectation that medical intervention 

may be able to delay the onset of disease and deterioration. However due to the seeming lack of 

conclusive results stemming from studies investigating the associations between markers of 

ageing amongst individuals suffering from metabolic disorders, in conjunction with the 

documentation of conflicting views, relations between metabolic disorders and their effect on 

ageing remain poorly understood. This study adds novel and interesting data to the emerging field 

of ageing research. Firstly this study agrees with existing data demonstrating TL as a candidate 

biomarker of cellular ageing in ‘healthy’ individuals, and thus advocates future implementation 

in similar areas of research. Furthermore the data presented here, also highlights the significance 

of body composition in comparison to the more widely utilised BMI, not only as a more 

informative measure of physiological health but as a determinant of TL and therefore ageing. 

Studies like this are of paramount importance, currently international and domestic healthcare 

practices utilise BMI as an imperative diagnostic tool to identify individuals at the risk of 

developing obesity.  
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As stated previously obesity has been recognised as a fundamental risk factor in the manifestation 

of numerous life threating health implications, including; T2D, CVD and cancer. Therefore 

accurate identification of individuals likely to develop obesity is vital, allowing for early medical 

intervention and can significantly reduce the financial burden of obesity related co-morbidities. 

However it is becoming increasing apparent that the use of BMI can be erroneous. The BMI 

reading takes into account weight (kg) and height (m2) only and therefore completely disregards 

the contribution of muscle mass to weight. Individuals of a more athletic built are often presented 

with a falsely high BMI, while slender individuals who carry excess body fat around their waists 

will be presented with a falsely low BMI. Furthermore BMI readings cannot distinguish between 

SAT and VAT, the latter documented to be considerably more detrimental to health. BMI also 

fails to take into account body fat distribution as existing research has elucidated retaining excess 

central adipose tissue is unfavourable, although waist to hip readings may provide an indication 

of excess central adiposity, waist to hip readings are seldom taken in clinical practices.  

 

Body composition readings taken using bio-impedance, as done in this study can overcome all 

previously stated shortcomings and that too at an affordable price. More studies utilising bio-

impedance to take body composition measurements are required in order to induce the widespread 

utilisation of such body composition analysers. The body composition analyser used during this 

study is small and cost effective, and requires very little training to use, thereby is perfect for 

healthcare practices, particularly general practitioners. The use of body composition analysis will 

be able to give patients a more detailed account of their health, the efficiency of a training or diet 

regime, thus help identify patients at an increased risk of developing metabolic complications. 

The data presented here showing TL in the obese/T2D cohort clearly highlights increased 

telomere attrition in comparison to healthy participants, implying an accelerated rate of ageing 

amongst the former. Significant negative associations between adipose tissue and TL, and 

positive associations between skeletal muscle mass and TL amongst non-diabetic individuals 

indicates the potential benefits to longevity and increased healthspan of maintaining a healthy 
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body composition, potentially through diet and exercise. The lack of significant correlations 

between TL and anthropometric measurements, markers of endothelial dysfunction and 

circulating adipo/myokines within the obese/T2D cohort suggests factors governing TL in 

healthy individuals differ to those regulating TL in obese/T2D individuals. Although the current 

study is unable to comment on the specific contributors to reduced TL, existing literature 

advocates the contribution of a multitude of factors are responsible for the accelerated rate of 

cellular ageing experienced by individuals with metabolic disorders, most likely due to factors 

stemming from the pathology of the disorder [671, 748]. Obesity and T2D are two disorders 

inflammatory in nature with a high oxidative burden and may be influential in determining TL 

amongst patients [749]. These findings highlight issues which are of grave importance in today’s 

society. Statistics derived from government sources and research institutes recognise the 

increasing prevalence of metabolic disorders particularly T2D, in conjunction with an ageing 

population the number of people living with T2D will only increase [750].  

 

Future predictions point towards large proportions of the population in both developing and 

developed nations suffering from T2D and associated co-morbidities and therefore significantly 

consuming healthcare financial budget as well as resources aimed towards pensions, care homes 

etc. Data reported in this study will be useful in identifying individuals at risk of accelerated 

ageing and may be able to predict mortality in a longitudinal study. Future studies should aim to 

use TL as a biomarker of ageing and disease and design longitudinal studies, whereby TL 

measurements could be taken at pre-set intervals over the course of time to identify differing rates 

of telomere attrition between individuals suffering from obesity/T2D. Maybe then, on the back 

of sufficient evidence diagnostic approaches within clinical settings may consider TL analysis, 

with the potential for point of care testing. Other key findings produced by this study provide 

novel insights into the role of irisin in both normal and abnormal metabolic states. The strong 

positive correlation and the ability of irisin to predict TL in the control cohort suggests irisin 

potentially exhibits anti-ageing properties. Currently the source of irisin secretion is an area of 
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debate with existing literature providing views in favour of both adipose tissue and skeletal 

muscle. Because irisin did not correlate with any anthropometric measurements, the source of 

secretion remains inconclusive. Future studies will need to identify and reach a general consensus 

regarding whether irisin is in fact produced from exercised skeletal muscles or not and if so is a 

particular exercise regime preferable to optimise irisin secretion. Also irisin sensitivity is worth 

investigation if in fact irisin secretion originates from adipose tissues, then in the context of this 

study healthy volunteers are clearly sensitive to irisin however individuals suffering from 

metabolic disorders are less sensitive. Why that may be the case requires investigation. Till then, 

the correlation between irisin and TL is considered an indirect measure of exercise mediated 

longevity. Due to the observational nature of the work the mechanism behind this association 

remains unknown; however existing literature denotes oxidative stress and inflammation as 

considerable contributors to telomere attrition, whether irisin can mitigate the ill effects of both 

is an area of research yet to be ventured.  

 

Measurements of BAT and biomarkers of BAT in conjunction with questionnaires conducted 

aimed at collating qualitative data regarding, self-assessed health, quality of diet and exercise 

may have aided to further clarify the role of irisin in ageing. Fibroblast growth factor 21 (FGF21) 

has been reported to regulate PGC-1α and browning of WAT [648]. Moreover FGF21 has been 

noted to stimulate glucose uptake and an increase in circulation has been reported post exercise 

in humans[648]. Wisse and Schwartz highlight BDNF is a key modulator of hypothalamic 

pathways governing body composition and energy homeostasis and more specially report BDNF 

levels enhance glucose utilisation in skeletal muscles [751]. Plasma quantification of FGF21 and 

BDNF may have proven useful to correlate with circulating irisin levels, as well as with TL and 

will have allowed the author to provide strong evidence in support of the benefits of BAT and 

calorie restriction like mechanisms involved in longevity. Qualitative data compiled from 

questionnaires will have allowed the author to obtain a better understanding of research 

volunteers and help establish links between diet, exercise and clinical history with TL with the 
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potential of identifying certain foods or exercises which result in elongated or shorter telomeres. 

Furthermore future studies investigating the role of irisin in SIRT1 activation and/or the 

restriction of insulin/IGF-1 signaling pathways, recognised to promote longevity may help 

elucidate the precise mechanisms responsible for elevated irisin mediated increases in TL. The 

work of Qiang et al recognises brown remodelling of white adipose tissue by sirt1-dependent 

deacetylation of PPARγ and according to the authors knowledge is the only paper to have 

conducted research in this area and provides potential links between irisin and SIRT1 [752]. It is 

also of paramount importance to probe associations between irisin concentrations and telomerase 

expression/activity. The source of irisin secretion in non-diabetic volunteers cannot be confirmed 

from the data in this study. However the data generated from the obese/T2D individuals highlights 

irisin circulates at 3-fold higher concentrations relative to healthy subjects and its levels correlate 

well with subcutaneous adipose depots and correlates positively with HbA1c, two prognostic 

measures consistent with the obese/T2D phenotype. Although no such conclusion can be drawn 

from the data generated in this study, a plausible explanation behind the increased irisin 

concentrations reported amongst obese/T2D volunteers is volunteers suffering from metabolic 

disorders are irisin resistant.  

 

Other authors who have reported data in concert with data reported in this study have also 

suggested irisin resistance amongst individuals suffering from metabolic disorders, and claim the 

increased concentration of irisn is due to a compensatory response, to expel excess energy in the 

form of enhanced thermogenic activity from BAT, and much like leptin, irisin has lost 

physiological sensitivity amongst obese/T2D patients [269, 753]. However no concrete evidence 

yet exists affirming the existence of irisin resistance, future studies should aim to provide 

empirical data supporting irisin resistance. The culture of adipose explants from diabetic patients, 

or adipocyte cell lines grown under hyperglycaemic conditions could be treated with recombinant 

irisin to assess the expression of genes actively involved in browning of WAT, such as PGC-1α, 

UCP-1 etc. Also following exogenous irisin administration to obese/T2D patients, weight loss 
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and CT mediated scanning of BAT could be conducted to confirm irisin resistance. The postulated 

irisin resistance with respect to this particular study may explain the non-significant association 

between irisin and TL. It therefore seems obese/T2D individuals, not only experience an 

accelerated rate of ageing but are resistant to the protective effects of circulating irisin.  Another 

novel observation reported in this study recognises the increase in circulating irisin levels 

amongst obese/T2D may negatively impact health and upregulate inflammatory processes. Such 

conclusions are based upon the strong correlation between irisin levels and soluble E-selectin, an 

inflammatory marker and a considerable risk factor for developing atherosclerosis. HUVEC cells 

treated with high concentrations of irisin exhibit 4-fold increased expression of E-selectin. Further 

studies are required to completely elucidate the role of irisin in obese/T2D patients.  

 

Experimental methodology which may prove useful in investigating the role of irisin in 

cardiovascular complications, includes using apolipoprotein or lipoprotein deficient mice, which 

naturally develop CVD, such mice could be injected with irisin to compare the extent of 

cardiovascular disease to mice not treated with irisin. Such experiments could also be done in 

irisin knockout mice, likewise following irisin over expression biomarkers of CVD and 

inflammation could be quantified. Koenig and Khuseyinova outline various biomarkers to look 

out for at specific stages of atherosclerosis, the data reported in this study reports a stark 

upregulation in E-selectin following high Irisn treatment and would be associated with 

inflammatory cyto/chemokines upregulating the recruitment of monocytes [754]. The 

quantification of IL-1, MCP-1, TNF-α in conjunction with cellular adhesion molecules sICAM 

and selectins may help identify the effects of irisin on CVD. During this study flow cytometry 

was conducted to assess the cell surface expression of E-selectin (CD62E) on HUVEC cells 

following incubation with high concentration of irisin. These experiments need to be repeated to 

produce an n of three and therefore provide a statistical answer, as to whether increased irisin 

concentrations can upregulate cell surface expression of E-selectin and will further compliment 

the gene expression data reported in this study.  



277 
 

Using western blotting to assess protein expression of E-selectin following irisin treatment of 

HUVEC would also help identify relations between irisin and inflammation. The ability of irisin 

to upregulate soluble E-selectin could be further analysed to investigate the role of elevated irisin 

concentrations on monocyte/neutrophil recruitment in a trans-well microenvironment, to assess 

whether irisin expresses chemotactic properties to facilitate extravasation in vitro.  

 

The effects of such studies could then be modulated by transgenic over-expression and silencing 

of irisin, to confirm the role, if any of irisin on propelling an inflammatory response. The data 

presented here suggests that general energy/nutrient homeostasis can dictate cellular ageing. The 

later aspects of this study set out to investigate how cellular senescence can influence nutrient 

metabolism. According to the authors knowledge the data reported in this study is novel and 

identifies that the SASP differentially affects different cell types. Glucose uptake was 

significantly down regulated in hepatocellular and skeletal muscular tissues when treated with 

SASP, an effect which was abrogated in the presence of p38 inhibitors. Adipocytes are 

considerably more sensitive to SASP and underwent lipolysis, cell viability remained unchanged 

in hepatocellular and skeletal muscle tissues. SASP treatment did not affect cell viability but was 

identified as a considerable source of superoxide species, although the source of ROS was not 

identified, in line with the data reported in this study and pre-existing knowledge regarding the 

SASP, may be responsible for dysregulating glucose homeostasis and inducing lipolytic effects.  

 

Statistics from governing bodies are increasingly reporting the increase in the number of 

individuals reaching 65 and beyond, contrastingly met with a reduction in birth rate. The net result 

is an increase in the proportion of elderly individuals relative to the younger generation. The 

number of senescent cells increases with age and therefore in an ageing population, individuals 

are amassing a large number of senescent cells. The data reported here highlights senescent cells 

may potentially be driving dysregulated nutrient homeostasis, by inducing insulin resistance in 
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insulin sensitive tissues. Numerous research papers have documented an age associated insulin 

resistance, without elucidating the specific mechanisms. Future research should continue to 

investigate the role of cellular senescence in dysregulating nutrient homeostasis as the precautions 

of an elderly insulin resistant population has the potential to be catastrophic. Insulin resistance 

has been associated not only with T2D but Alzheimer’s disease, liver disorders and even cancer. 

By identifying a relation between cellular senescence and insulin resistance, along with 

identifying a potential mechanism which could be targeted by pharmacological interventions, the 

results from this study are of grave importance. The results from this study warrant further 

investigations which can further explain the role of cellular senescence in metabolic disorders. 

Experiments which could not be completed due to time/financial constraints form the basis of 

future studies which could help further establish the role of cellular senescence in metabolic 

dysfunction. Firstly it is essential to characterise the SASP and identify the specific secretions of 

senescent fibroblasts. There is currently a general appreciation of the constituents of SASP but 

studies investigating cell type specific secretions along with differences in secretion between, 

replicative senescence and DNA damage induced senescence are required.  

 

In the context of this study, experiments investigating whether p38 could inhibit SASP mediated 

lipolysis could not be completed but are essential to fortify the significance of the p38 pathway 

in cellular senescence. More sophisticated techniques need to be employed to measure ROS 

production from SC and studies investigating mitochondrial function in SC would provide 

additional information with regards to the source of ROS production. Additionally the role of the 

SASP in monocyte recruitment may also shed light on this matter. To further investigate the role 

of SASP in insulin resistance and glucose homeostasis, PCR analysis of genes encoding proteins 

fundamental for glucose uptake (IR, GLUT4, Glucokinase) should be conducted, using cell 

pellets from cells treated with SASP.  
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Glycogen content also quantifiable from cell pellets would complement experiments 

investigating glucose uptake conducted in this study, because a potential limitation of this work 

is the inability to account for glucose produced by the cells, particularly the AML-12 cell line. In 

general, studies delaying the accumulation of SC and thus reducing the release of SASP offer 

potential strategies for mitigating the deleterious effects of advancing age. The role of calorie 

restriction in cellular senescence needs further investigation, considering recent research has 

proposed calorie restriction could exert part of its beneficial effect on health span by delaying 

cellular senescence. Studies aiming to completely eradicate the development of SC may prevent 

the onset of numerous age related pathologies however compromise protection against the 

development of cancer. Therefore future studies should aim to neutralise existing SC and 

therefore indirectly reduce the SASP burden. Genetic inactivation of p16Ink4a in BubR1 

progeroid mice has proven to delay the onset of aging, due to a decreased number of p16Ink4a-

positive senescent cells [755]. The authors provide further evidence of the involvement of cellular 

senescence in age associated pathologies by producing a transgene called INK-ATTAC designed 

to increase susceptibility to drug induced apoptosis in senescent cells expressing the p16Ink4a 

gene. Lifelong removal of p16Ink4a-positive senescent cells delayed the onset of fat loss, skeletal 

muscle deterioration, and cataract formation in BubR1 progeroid mice.  

 

In conclusion the data reported in this study establishes the significance of body composition in 

cellular ageing, a measure which should be considered over the utilisation of BMI. Furthermore 

irisin exhibits hormetic function, exhibiting anti-ageing properties in healthy individuals but at 

considerably higher concentrations as in obese/T2D propagating the basis of an inflammatory 

response.  Further work is required to confirm whether recombinant irisin could be used as a 

therapeutic intervention to prevent age related pathologies and whether irisin functions as an 

potential target for drug delivery in obese/T2D to reduce inflammation. The SASP positively 

contributes to the development of irregular glucose homeostasis and lipotoxicity and therefore 

may be integral in the age associated increase in insulin resistance.   
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7.0 Appendices  
 

7.1. Flow cytometry  
 

Flow cytometric analysis was conducted to assess if 200ng/ml irisin could induce cell surface 

expression of E-selectin. Three cell treatments were administered to HUVEC, including a non- 

treatment control, TNF-α positive control well documented to upregulate E-selectin expression 

and finally 200ng/ml irisin. Cells were treated for 4 hours. Staining with a isotype control 

exhibited very little staining on all three cell treatments as expected, while anti-CD31 a cell 

surface marker known to be present on HUVEC exhibited considerably higher percentage of cell 

staining on all three cell treatments ( 0 = 99.72%, TNF-α = 99.87% and irisin = 99.89%). Cells 

exhibiting cell surface E-selectin was assessed using an anti-CD62E antibody, 9.71% of non-

treated cells exhibited E-selectin expression. The positive control TNF-α induced cell surface 

expression of E-selectin on 96.47% of cells. HUVEC treated with 200ng/ml irisin induced E-

selectin expression on 17.29% of cells following a 4 hour incubation. Irisin increased cell surface 

expression of E-selectin by 15.57% following 4 hours, these results suggest either the beginning 

of E-selectin surface expression or declining E-selectin expression following a transient rise.  
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Fig 7.1 The effect of 200ng irisin treatment on CD62E cell surface expression. 

HUVEC cells treated with TNF-α (10ng/ml) and 200ng/ml irisin to assess cell surface 
expression of CD62E. No treatment and an isotype control were used as negative controls and 
cells were stained with anti-CD31 as a positive control.  
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7.2 List of primers used 
 

Purpose Primer 
 

Telomere 
forward and 
reverse primers 

F: ACACTAAGGTTTGGGTTTGGGTTTGGGTTTGGGTTAGTGT 
 
R:, TGTTAGGTATCCCTATCCCTATCCCTATCCCTATCCCTAACA 
 

Albumin 
forward and 
reverse primers 

F: CGGCGGCGGGCGGCGCGGGCTGGGCG 
 
R: GCCCGGCCCGCCGCGCCCGTCCCGCCG 

P16 forward and 
reverse primers 

F: CAACGCACCGAATAGTTACG 
 
R: CAGCTCCTCAGCCAGGTC 

CYcD1E 
forward and 
reverse primers 

F: CACACGGACTACAGGGGAGT 
 
R: CACAGGAGCTGGTGTTCCAT 

p21 forward and 
reverse primers 

F: CGAGAACGGTGGAACTTTGAC 
 
R:CAGGGCTCAGGTAGACCTTGC 

Hexokinase 
forward and 
reverse primers 

F: GACCCGAGGCATCTTCGA 
 
R: AGCAGCGCTAATCGGTCACT 

Pdk4 forward 
and reverse 
primers 

F: GATTGACATCCTGCCTGACC 
 
R: CATGGAACTCCACCAAATCC 

Glut 4 forward 
and reverse 
primers 

F: ACATACCTGACAGGGCAAGG 
 
R: CGCCCTTAGTTGGTCAGAAG 

IR forward and 
reverse primers 

F: AATGGCAACATCACACACTACC 
 
R: CAGCCCTTTGAGACAATAATCC 

PGC-1α forward 
and reverse 
primers 

F: GAGTCTGAAAGGGCCAAGC 
 
R: GTAAATCACACGGCGCTCTT 

IR forward and 
reverse primers  

F: AATGGCAACATCACACACTACC 
 
R: CAGCCCTTTGAGACAATAATCC 

ACSL forward 
and reverse 
primers  

F: CAGAACATGTGGGTGTCCAG 
 
R: GTTACCAACATGGGCTGCTT 

CPT1a forward 
and reverse 
primers 

F: ACGGAGTCCTGCAACTTTGT 
 
R: GTACAGGTGCTGGTGCTTTTC 

PCK1 forward 
and reverse 
primers 
 

F: ATCATCTTTGGTGGCCGTAG 
 
R: TGATGATCTTGCCCTTGTGT 
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E-selectin 
forward and 
reverse primers 

 
F: AGAGGTTCCTTCCTGCCAAG 
 
R: CAGAGCCATTGAGGGTCCAT 

P-selectin 
forward and 
reverse primers 

F: CGCCTGCCTCCAGACCATCTTC 
 
R: CTATTCACATTCCAGAAACTCACCACAGC 

ICAM-1 
forward and 
reverse primers 

F: GACTCCAATGTGCCAGGCTT 
 
R: TAGGTGCCCTCAAGATCTCG 

PECAM1 
forward and 
reverse primers 

F: ATTGCAGTGGTTATCATCGGAGTG 
 
R: CTCGTTGTTGGAGTTCAGAAGTGG 

 

 

 




