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Commodity prices depend on supply and demand. With an uneven
distribution of resources, prices are high at locations starved of com-
modity and low where it is abundant. We introduce an agent-based
model in which agents set their prices to maximize profit. At steady
state, the market self-organizes into three groups: excess produc-
ers, consumers, and balanced agents. When resources are scarce,
prices rise sharply at a turning point due to the disappearance of
excess producers. Market data of commodities provide evidence of
turning points for essential commodities, as well as a yield point for
non-essential ones.
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Introduction

The oil price crisis of 1973 rattled the world and left persis-
tent effects on the world economy and politics [1]. Peak peri-
ods in food price index during 2008 and 2011 coincided with
incidents of food riots and instabilities across the world [2].
Clearly, prices of commodities affect our lives in many ways;
they determine the economic well-being of individuals, com-
panies, societies and the stability of governments. Besides
the immediate effects on the livelihood of the average citizen,
farmers need to know the prices of crops for planning their
land use, manufacturers need to know when to import their
raw materials, policy-makers need to decide on their agricul-
tural stabilization schemes, and speculators would like to make
a fortune in the futures market. The basic factors affecting
commodity prices include supply, demand, stocks, prediction
of future prices, bargaining power of the market participants,
and government policies [3].

This complexity poses challenges to economists, economo-
metricians, forecasters and researchers from other disciplines.
For example, with the recent application of social network
theory to economics [4], the bargaining power of the agents
was found to depend on the topology of the corresponding
trading networks, which determines the competition relation
between suppliers and consumers [5], giving rise to price varia-
tions at equilibrium [6]. An important message conveyed from
these studies is the importance of interactions between agents
in the pricing process. The interactions may be achieved
through auctions, bargains, assessment of marketing informa-
tion, or price adjustment after repeated transactions. Further-
more, such interactions can lead to Nash equilibrium states
that maximize the utility of agents through the allocation of
goods [7]. This process of attaining a global stationary state
through local responses to neighboring interactions can be con-
sidered a graphical game [8]. It belongs to a class of problems
that reaches stationary states by passing messages between
neighbors, widely applicable in areas such as statistical infer-
ence and network optimization [9].

To understand pricing behavior in the market, one should
further consider the effects of uneven distribution of resources.
Microscopically, the bargaining power of the agents depends
not only on the connectivities with their trading partners,
but also on the supply and demand. In a sufficiently well-
connected market, sellers with more abundant supply may set
a lower price so as to capture a larger market share, and buy-
ers with a strong demand may accommodate a higher price
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so as to secure commodity provision. Macroscopically, the
marketwide supply and demand determines the overall price
level. The balance between supply and demand is reflected
by the stock level. Indeed, the correlation between stock level
and prices was recognized long time ago [10], and illustrated
by the 2008 hike in grain price due to the diversion of corn
to biofuel production [11]. When stocks are high, prices are
insensitive to fluctuations in supply and demand, but when
stocks decline to dangerous levels, prices become highly sen-
sitive to small perturbations. A natural question is whether
this change in sensitivity is gradual or abrupt. Empirically,
this change in price volatility is often assumed to be grad-
ual [12]. Alternatively, a sharp change may be envisaged sim-
ilar to the one found in the famous Lewis Model describing
the labor market in developing economies, in which wages rise
when low-cost labor runs into shortage [13], as has been ex-
perienced in China recently [14]. If the change is sharp, it
will have substantial impact on the dynamics of the economy
and our preparedness for the changes to come. Furthermore,
it is interesting to see whether it resembles phase transitions
in many-body systems with interacting components [15] and
whether existing analytical tools can elucidate this behavior.

In this paper we introduce a model of trading networks with
a heterogeneous distribution of supply and demand, and study
its effects on the bargaining power and pricing strategies of
agents on the network. The model is analytically solvable
in a fully connected network. We will consider how prices
change when the availability of commodity varies, and discuss
how a turning point in price emerges from the model, with its
sharpness rounded by the presence of inventory. We will also

Significance

We investigate the relation between supply, demand, inventory,
and the price of commodities within a systematic framework
based on selfish profit-optimization. The analysis identifies a
sharp turning point in commodity prices when resource availabil-
ity changes. Derived for the first time from a rigorous agent-
based model, the turning point is manifested in a sharply in-
creasing anti-correlation between price and resource availability,
reminiscent of phase transitions in statistical mechanics. We
show that real commodity prices exhibit a similar behavior to
our prediction. We identify both turning points where prices
rapidly increase, and yield points indicating that commodities
are no longer essential. This work brings new understanding of
observed tipping points in commodity prices, and provides useful
insight and tools for their prediction.
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discuss the correspondence between results predicted by the
model and trading data from various sources.

Here inventory carries a different meaning from stocks.
Stocks refer to the excess amount of commodities left behind
in the hands of the agents when their production plus inflow
exceeds outflow. On the other hand, low levels of inventory
are necessary for all agents to maintain a smooth operation of
the system [16]. For example, industrialists need to keep an
inventory of raw materials so as to streamline their manufac-
turing process. Dealers need to keep an inventory to facilitate
sales and deliveries to anticipate sporadic transactions, and
occasionally they are forced to carry inventories when faced
with low seasons of sale. While inventory levels are low, they
act as buffers to smoothen sharp changes in supply and de-
mand, and represent the level of commodity agents keep to
avoid running out of stock when purchasing orders arrive.

Model

We consider a network of N nodes. Each node 7 is connected
to a set of trading partners denoted as 0i. Unless stated oth-
erwise, we will consider fully connected networks in this work
where 0i consists of all nodes except i. Each node is either
a producer or a consumer of a commodity, with an initial ca-
pacity A; randomly drawn from a distribution p(A;) for node
1 =1,...,N. Positive A; represents the amount of commodity
produced per unit time by node i, whereas negative A; rep-
resents the amount of commodity consumed per unit time by
node i. The commodity is essential to all consumers, so that
each consumer has to purchase a sufficient amount of com-
modity to satisfy their needs, and each producer cannot sell
more commodity than its capacity. This is possible globally if
the average (A) of the distribution p(A) is positive. Let y;; be
the flow of commodity from node j to i. We adopt the conven-
tion that negative y;; means a flow of magnitude |y;;| in the
opposite direction. Hence the inequality Zjeai yij+A: >0 ap-
plies to each node i. The flows y;; associated with a producer
(consumer) 7 with a largely positive (negative) capacity are all
outgoing (incoming), while the flows associated with a node
with intermediate capacity may be partly outgoing and partly
incoming, corresponding to their role as middle-men besides
providing or consuming their own resources.

The net demand of node i is the outflow minus the ca-
pacity if the difference is positive and 0 otherwise, given by

max (Z]’eai yji—Ai,O). When the argument Zjeai yii — Ns
changes sign, the demand has a discontinuous slope. In prac-
tice, trading nodes need to keep a provisional level of com-
modity so that they do not run out of stock when purchasing
order arrives. Hence we propose a smoother demand ¢&;

G=FD wi—Ni, [1]

jEdi

where f(z) is a function with a continuous slope, and asymp-
totically approaches 0 and x, respectively, in the limits z —
Foo. For convenience, we use f(z)=wvlIn[l+exp (z/v)], where
v is referred to as the inventory level, but other functions may
also be considered. The original demand function with a dis-
continuous slope at zero demand is recovered in the limit v — 0.
On the other hand, for finite values of v, f(z) starts to devi-
ate smoothly from 0 when «x is of the same order as v. The
inventory has the same effect as a fluctuating capacity A; + zi,
where z; is drawn from the distribution P(z;)= ﬁsech2 (Z—;)

To satisfy the demand &;, node i purchases commodity from
other nodes. Let r;; be the fraction purchased from node j
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by node ¢, so that the amount of commodity shipped from j
to i is yi; = &irij. The fractions are determined by the prices
set by neighboring nodes k € 9i on a competitive basis. We
consider fractions of the form

v F(9))
Y ZkeaiF(¢k)’

where ¢; is the price set by node j, and F(¢) is a non-negative
decreasing function of ¢. For convenience, we use the exponen-
tial form F(¢) = exp(—B¢), where § is a parameter playing
the role of inverse temperature in the statistical physics lit-
erature, but other forms are also possible. When S — oo, ry;
becomes a winner-take-all function, such that the node with
the lowest price becomes the sole provider of node i. In re-
ality, agents diversify their purchases due to many factors.
For example, they may have considerations other than prices
such as quality and service, they may not like to be monop-
olized, or the cheapest choice may not be available at their
moment of need. We note that 37! is the scale of the price.
This means that when the prices set by two suppliers differ by
less than S, the buyer would purchase from both suppliers
with roughly equal weight. However, when the price difference
becomes much greater the purchasing amount will differ sig-
nificantly. Hence 87! can be considered as the intrinsic value
of a unit of commodity. For convenience, we will take =1,
so that prices are scaled in units of the intrinsic value.

Each node i calculates its price ¢; by minimizing its net
cost F;, which is the purchasing cost minus the sales revenue,
assuming that the price of other nodes are not changed. Hence

Ei= yid;— > ysdi= Y &rigds — > &riici 3]

jeoi jedi jedi jedi

[2]

The clearing and price adjustment process of this trading
model with and without inventory can be simulated in the
way described in the Supporting Information (SI).

Results

To minimize F;, node (trader) i needs to assess the effects of
changing its price by d¢;. Obviously, the sales revenue changes
since the price of every unit of sold commodity changes. In
addition, node ¢ needs to know how its trading partners re-
spond to the price change, specifically the flow change dy;;
in response to d¢;. It may obtain this knowledge through an
active bargaining process, or through the passive observation
of how the sales volume changes with price. Node ¢ will then
consider such messages from all neighbors before establishing
its new price. In this respect, this trading network model
belongs to the class of network problems solvable by passing
messages [9]. The message sent from node j to ¢ through the
bargaining process is

Oyji 9,
- 63:;1- =&rii(1—1j) — Tjigﬁi' [4]

Aij =

Since the export of node ¢ changes, the demand &; in the pur-
chasing cost also changes. Using Eq. (1), we have

—Ai Zaij, [5]

jEOi

o6 o
D =—f ];&537"31

For the term 0¢;/0¢; in Eq. (4), we need to consider how
a price change d¢; at node i induces changes in demands of
all nodes, assuming that prices at other nodes are unchanged.
However, the demand changes are inter-dependent. 6&¢; in-
duces changes in the neighbors of j, which induces changes
back in 6&;, commonly referred to as Onsager reactions in
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many-body physics. As shown in the SI for fully connected
networks using Green’s function techniques, §¢; is of the order
N1 of §¢; for nodes j neighboring node i. Hence the second
term in Eq. (4) can be neglected in the large N limit. After
collecting messages from all neighbors, the price becomes

2 jeoi &iTii +F O &= M) > ridy. [6]

Zjeai §iryi(1 — jeai jeai

When the network is fully connected, the price behavior de-
pends on two parameters: ¢, = (pe~?)/(e~?) being the aver-
age purchasing price, and y = (£)/{e”®) termed the demand
coefficient, playing a role in determining the demand itself.
Averages denoted by the angled brackets are taken over all
nodes. The price ¢ of a node becomes a unique function of its
capacity A, bounded between the maximum price 1+ ¢, and
minimum price 1. ¢(A) is the inverse function of

A=ye ®+ v (1_;¢+1_¢) [7]

We first consider the limit of zero inventory. When v— 0 the
price at node ¢ depends on its capacity A; as

i =

7ji)

T4 ¢p, A <ye 179,
$i=< In (Ai) , oye T <A < ye [8]
1, y(f1 < A;.

Hence there are three types of nodes. (1) Consumers
(A; < ye '7?) with positive demands. (2) Balanced nodes
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Figure 1. (a) The dependence of price on the node capacity. The red curve is
given by Eq. (7) for average capacity (A) = 0.2 and inventory v = 0.01. The
black curve is the zero inventory limit of Eq. (8), using the same values of ¥ and
¢p. (b) The dependence of purchasing price on average capacity in the regime of
no excess producers (solid blue line). Pink dashed line: price in the regime with ex-
cess producers. Brown symbol: Disappearance of excess producers. Turquoise dot:
Disappearance of quasi producers. Brown dotted line: asymptotic limit of vanishing
capacity. Inset: The dependence of the capacity elasticity of price on the average
capacity in the v=0 limit.
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Figure 2. (a)The price distribution for different node capacities after 10,000 time
steps, in markets with v =0, N =100 and 1,000 samples. Each time step consists
of 200 updating cycles. The average capacity is (A) = 0.01. Other parameters:
e = 1 and 7 =0.01. (b)The cost distribution for different node capacities with
the same set of parameters as in (a). The dashed curves represent the theoretical
predictions given by Eq. (8). Both distributions are in natural log scale.
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(ye_l_"’l’ < A; <ye ') with zero demands and no access re-
sources. (3) Excess producers (A; >ye™ ') with zero demands
and excess resources.

With the inventory effect, price becomes a continuously
changing function, as shown in Fig. 1(a). The three groups
of nodes can still be identified, although the boundaries be-
come fuzzy. Due to the presence of inventory, the out-flows of
the balanced nodes differ from their capacities by an amount of
order v. For balanced nodes with ye 17%? < A; < y6717¢P/2,
the out-flow is greater than the capacity by an amount of order
v, whereas for balanced nodes with ye 17%»/2 < A; < ye™ !,
the out-flow is less than the capacity by an amount of the or-
der v. These two groups will be referred to as quasi consumers
and quasi producers respectively.

Solutions of the self-consistent equations for ¢, and y de-
pend on the resource distribution p(A). Considering the
bounded resource production and consumption in real data
we adopt distributions with upper and lower bounds. The ex-
pressions of ¢, and y in the limit of small v are derived in the
SI for the rectangular distribution of mean (A) and width 1.

For the rectangular capacity distribution with v = 0, the
dependence of price and cost on capacity is verified by simula-
tions shown in Figs. 2(a) and (b) respectively. In both figures,
the theoretical results (dashed lines) are in excellent agree-
ment with those obtained by solving the Nash equilibrium
equations (8). As expected, the cost increases with decreasing
capacity. It is interesting to note that through trading at an
optimal price, even the consumers with A; close to 0 can gain
profit (negative cost).

When resources become increasingly tight, the purchasing
price increases, as shown in Fig. S2 of SI. For the rectangular
capacity distribution, ¢, approaches the finite value of 1.83
with an infinite slope when (A) approaches 0. When (A) falls
below 0, the price diverges discontinuously. Note that excess
producers exist in the range (1/1/2—+/(A))? < A < 1/24+(A),
showing that the fraction of excess producers approaches 0
when (A) approaches 0. However, for finite values of (A), ex-
cess producers always exist in the case of zero inventory v = 0.

When v has a small non-zero value, the price discontinuity
for v =0 is replaced by a more refined picture in the range
(A) ~ v as shown in Fig. 1(b). First, we find that when (A) is
in the range 0.622v < (A) < 1, the average price remains effec-
tively at 1.83. When (A) falls below 0.622v, excess producers
disappear, and the price rises above 1.83. This shows that the
excess producers stabilize the price by acting as a reservoir
of resources. However, although resource production is still
above consumption for (A) > 0, the holding up of resources
in inventories causes the excess resources of the excess pro-
ducers to dry up. The price thus experiences a sharp turning
point. This turning point resembles a phase transition in many
physical systems. Hence when (A)/v falls below the turning
point, the purchasing price turns from flat to rapidly rising.
However, the turning point is sharp only in the limit of van-
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Figure 3. (a) The analytical result of the capacity dependence of the prices at
different inventory levels at v = 0.01. (b) The corresponding simulation results.
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ishing v. For finite values of v, the change is smoother. The
inset of Fig. 1(b) shows that the capacity elasticity of price,
—vd¢p/d(A), has a discontinuous slope at (A)/v=0.622.

When (A) falls further below 0.171v, and the price rises to
3.67, even the quasi producers disappear. However, since the
excess resources held by the quasi producers are of the order
v, the effect on the price behavior is much less pronounced.
In this regime, the price rises with decreasing (A) asymptot-
ically as 0.496v/(A), and diverges when (A)/v approaches 0.
Figure 3(a) shows the analytical result of the capacity depen-
dence of the prices at different inventory levels. The prices
rise rapidly when (A)/v falls below 0.622. Simulation results
in Fig. 3(b) confirm the trend. The results also have an ex-
cellent agreement with those obtained by solving the Nash
equilibrium equations (8).

In summary, the trading model predicts that when resources
are plenty, prices are insensitive to changes in supply and de-
mand. However, when resources become increasingly tight,
prices start to become highly sensitive to these changes. This
happens when excess resources are exhausted, and the mar-
ket loses the buffering provided by excess producers. This
mechanism is reminiscent of the Lewisian turning point, which
describes the rise in wages of unskilled labor in developing
economies when the labor market starts to run out of un-
skilled labor [13]. When the average resource is of the same
order as the inventory level v, this results in a turning point
in the resource dependence, where the response of the price to
resource availability has a discontinuous slope. The disconti-
nuity is smoother for finite values of v.

Comparison with Commodities Data

A common parameter to measure resource availability in com-
modity markets is the stocks-to-use ratio (SUR) defined as
the amount of carryover stock of a commodity at the end of
a period (usually a year) divided by the consumption dur-
ing the same period. While conventionally SUR is expressed
as a percentage, it has the dimension of time, representing
the duration in which stocks will be consumed by the market
(assuming that no other resources are available). SUR is an
important predictive tool of commodity prices. For example,
there is a strong negative correlation between cotton prices
and SUR [17]. Similar trends were also observed in wheat and
corn prices [12].

However, the prediction of the current trading model is more
than merely the anti-correlation between the price and the
SUR. It further predicts a sharp turning point from a regime
of weak anti-correlation for a sufficiently large SUR to one of
rapidly increasing anti-correlation with decreasing SUR. For
grains, price spikes took place in recent years and were at-
tributed to unusually low SUR [11]. A more detailed analysis
is required to verify this prediction.

In general, a plot of the price of a commodity as a func-
tion of the SUR appears as a collection of scattered points,
although a rough trend is often visible. One factor is that
the data is gathered over many years or even decades, such
that the data is interfered by many other factors, for instance
changes in market needs. Here, we propose that the quality of
data can be improved by defining the SUR elasticity of price,

change in price

Ep = change in SUR’

[9]

In practice, we calculate the yearly elasticity of the commodi-
ties, and sort the corresponding SUR in order. Approximately
10 data points with consecutive SUR values are clustered for
regression, and the slope of the cluster is plotted as a function
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Rescaled Elasticity

of the average SUR of the cluster. Remarkably, a much clearer
picture often emerges from this analysis. Furthermore, it pro-
vides insights on where and why there are deviations from the
prediction. In the following subsections we will illustrate this
effect by considering several commodities.

Crude Oil. Using the OPEC spare production capacity and
WTI crude oil prices data [18], we plot the price in the inset
of Fig. 4(a). It shows the general trend of increasing price on
decreasing capacity, which is obscured by fluctuations. Hence
we plot E, in Fig. 4(a) (we used the OPEC spare produc-
tion capacity as the abscissa, since SUR data is unavailable).
Both abscissa and ordinate are rescaled to facilitate compar-
ison with the prediction of the pricing model. The turning
point at 2.3 million barrels per day is visible. Beyond the turn-
ing point, the price is effectively independent of the spare ca-
pacity, whereas near the turning point, the price rises sharply.

Agricultural Products. SUR and price data in the U.S. market
was obtained from the U.S. Department of Agriculture [19].
Figures 5(a)-(c) show the SUR dependence of the elasticity
for long-grain rice, short-grain rice, cotton, and soybeans.
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Figure 4. (a) The rescaled elasticity versus the rescaled capacity of crude oil from

1st quarter of 2001 to 4th quarter of 2014. To enable comparison with the pricing
model (solid curve with a turning point at 0.622), the spare capacity is rescaled by
3.74 million barrels per day (mbpd) and elasticity by 7.79 USD/barrel/mbpd. Each
plotted point represents a regression of 11 data points. Inset: WTI crude oil prices
in US$@2010 per barrel versus OPEC spare production capacity in million barrels per
day during the same period. (b) The price of carbon permits in Euros versus SUR
from 2009 to 2012.

14 (a 14

2

S 10} 10 |

1%}

o

Y46 6

=}

K

S 2t 2+

&) | |
20 08 0 0.8
%@ S * Long-grain

;-T 12| 10 - Short-grain

-2 A Cotton

E 8 6L ® Soybeans

Qo

S at 2+ <

[0 1 I - |

= ‘ ‘ . _,0 02 04 06 08

0 0.2 0.4 0.6 0.8 Rescaled SUR

Rescaled SUR

Figure 5. The rescaled elasticity versus the rescaled SUR for (a) long-grain rice
and short-grain rice from 1983 to 2011, (b) cotton from 1965 to 2010, (c) soybeans
from 1980 to 2012. To enable comparison with the pricing model (the solid curve with
a turning point at 0.622), the elasticities and the SURs are respectively rescaled by (a)
4.72 $@1998/cwt/y and 0.385 y for long-grain rice, and 1.86 $@1998/cwt/y and 0.830
y for short-grain rice, (b) 14.7 cents@1998/Ib/y and 0.906 y, (c) 2.18 $@1998/bu/y
and 0.474 y. Each plotted point comes from a regression of 13 data points. (d) The
composite plot of the four agricultural products.
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These commodities have the common feature that the elastic-
ity shows an increasing trend with decreasing SUR. Compared
with the crude oil data, these agricultural products lie in the
regime of tight resources with positive elasticity.

We have also considered the data of other agricultural prod-
ucts. However, commodities such as honey and peanuts do
not exhibit the behavior predicted by the trading model. This
may be an indication that they are not essential and market
demand would shrink if prices are too high.

Figure 5(d) is the composite plot of the four agricultural
products illustrating their universal behavior. The plot is con-
sistent with the prediction of our model showing that the elas-
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Figure 6. The rescaled elasticity versus the rescaled SUR for (a) cadmium from
1940 to 2010, (b) zinc 1915-2012, (c) aluminum 1949-2012, (d) beryllium 1941-
2012, (e) copper 1900-2012, (f) gallium 1971-2012, (g) silicon 1964-2012. To enable
comparison with the trading model (the solid curve with a turning point at 0.622),
the elasticities and the SURs are respectively rescaled by (a) 4,440 $@1998/t/y and
0.499 y, (b) 802 $01998/t and 0.590 y, (c) 945 $01998/t/y and 1.38 y, (d) 143,000
$0@1998/t/y and 2.06 y, (e) 962 $@1998/t/y and 0.625 y, (f) 996 $@1998/t/y and
0.144 y, (g) 2,280 $@1998/t/y and 0.203 y. Each plotted point comes from a regres-
sion of 13 data points. (h) The composite plot of the seven metals after excluding
data below the yield points.

Commodity SUR at SUR at Relative
turning yield point yield

point (year) (year) elasticity
Cadmiun 0.311 0.163 0.153
Zinc 0.367 0.184 0.438
Aluminum 0.860 0.613 0.448
Beryllium 1.28 0.995 0.289
Copper 0.390 0.168 0.266
Silicon 0.126 0.0719 0.619

Table 1. SUR at the turning and yield points and the relative
yield elasticity for seven metals.
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and 0.563 y. Each plotted point comes from a regression of 7 data points.

ticity increases with decreasing SUR. One remaining point is
whether the evidence is strong enough to support the exis-
tence of a turning point, since data can probably be fitted
with curves that continuously decrease with increasing SUR,
such as in [12]. To provide a perspective on this point, it may
be argued that the world economy has adjusted itself to the
state of a low level of SUR, such that spare capacity is con-
verted to other more efficient and profitable use of resources,
rendering the turning point unobservable. In this respect, we
may consider such analyses of the agricultural products are
complementary to our analysis of the crude oil data.

Metals. SUR and price data can be obtained from the web-
site of U.S. Geological Survey [20]. Figures 6(a)-(g) show the
elasticity-SUR plots for cadmium, zinc, aluminum, beryllium,
copper, gallium, and silicon. The curves agree only partially
with our trading model. Consider the example of cadmium in
Fig. 6(a). The elasticity increases only up to a certain point
as SUR decreases. Below that point the elasticity decreases
with decreasing SUR and even negative elasticity is observed.
A plausible explanation is that this commodity is only consid-
ered essential when the price is not high or the stock is suffi-
cient. When the price becomes too high or the SUR too low,
the market will no longer consider the commodity essential,
and may switch to alternative commodities or at least refrain
from purchasing. Note that this behavior is not present in
other more essential commodities such as crude oil or wheat.
Hence the maximum point of the curve reveals the maximum
price that the market is willing to pay for the commodities,
or the minimum SUR that the market is willing to accept.
Below, we will term this point the yield point.

Fitting the curves of these metals with the trading model
prediction, the turning points can be obtained, although in
a few cases, the elasticity beyond the fitted turning point
still has considerable magnitudes. All these metals also ex-
hibit yield points. Figure 6(h) is the composite plot of the
seven metals illustrating their universal behavior after exclud-
ing data points below the yield point.

We have also considered the data of other metals such as
lead and nickel. They do not admit the behavior predicted by
the pricing model, indicating that their prices may be affected
by factors other than supply and demand.

Referring to Table , it is interesting to note that despite the
wide range of commodities, the SURs of a few commodities
at the turning points typically lie in the range 0.1 to 0.4 y,
and their SURs at the yield points typically lie in the range
0.05 to 0.2 y. This may be an indication that real markets
require a finite duration to complete transactions. To under-
stand the typical value of the yield elasticity, we introduce the
relative yield elasticity, defined as the elasticity at the yield
point divided by the typical price of the commodity and mul-
tiplied by the SUR at the yield point. The typical price of the
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commodity is calculated to be the average price in the elastic
regime (between the turning and yield points). We find that
the relative yield elasticity is in the range 0.1 to 0.5. It is
plausible that the market mechanism determining the price of
these commodities is rather universal.

Cereal. Cereal data are available from the UN FAQO yearly food
outlooks [21]. These reports provided global annual average
prices and major exporters’ SUR for different commodities,
such as wheat, coarse grains and rice. Although data from
1992 to 2012 are available, the data show a discontinuity in
the SUR from 1995 to 1996. According to the report from
February 2001, the discontinuity was due to significant data
changes when the cereal stocks estimates in China (Mainland)
were revised [21]. Hence we focus on wheat and coarse grains
data from 1991 to 2010 excluding 1995 for the elasticity versus
SUR plot. As shown in Figs. 7(a)-(b), both wheat and coarse
grains data follow the trend predicted by our model in the
elastic regime.

Carbon Trading. We further studied carbon trading in the Eu-
ropean Union Emission Trading System [22]. A feature of this
commodity is that licenses for carbon emissions have to be sur-
rendered annually, so that surplus permits cannot be carried
over to future years. In this sense, the mode of trading agrees
with the assumptions of our model. EU-wide carbon permit
prices can be obtained from the French stock exchange [23].
Daily prices are averaged annually. The SUR of carbon trading
is defined as the EU-wide carbon emission allocation minus the
actual release, divided by the actual release. In contrast with
other physical commodities, negative SURs are allowed for
carbon trading, but penalty was imposed on non-compliance.
In practice, a negative SUR was only found for the years 2008
and 2013 when carbon trading entered phases 2 and 3 re-
spectively. Figure 4(b) shows that the price decreases with
increasing SUR. Since data points are too few, we have not
attempted the elasticity plot.

Summary. Analyzing the price history of crude oil, agricul-
tural commodities, metals, cereals, and carbon trading we
found that: (1) Elasticity versus SUR plots are much more
interpretable than price versus SUR. This is probably because
elasticity is based on short-term price changes, whereas a good
plot of price versus SUR requires the long-term independence
of the environment. (2) The elasticity versus SUR plot re-
veals two critical points: turning point and yield point. Three
regimes are identified on decreasing SUR: inelastic, elastic and
yielded. (3) Different data types have different characteristics.
Only non-essential commodities have yield points. Crude oil
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covers both the inelastic and elastic regimes due to the produc-
ers’ ability to control spare capacity. Most agricultural com-
modities, cereals and carbon trading cover the elastic regime
only. Yielded regimes are present in most metals. (4) The
data support the insight gained from our trading model.

Conclusion

We propose an agent-based model in which resources available
to each agent are inhomogeneous and agents set their prices
to maximize profits or minimize costs. At steady state, the
market self-organizes into three types of agents depending on
their capacities. Excess producers have excess resources and
set their prices at the intrinsic value of the commodity. They
act as a buffer for price stability. Consumers have high de-
mands of the commodity and set their prices at the highest
value, since their priority is to acquire resources. Balanced
agents act as mediators. Since transactions can be set up be-
tween any two agents, the market behavior, including the dis-
tributions of prices, final resources, and costs, depend on only
two mean-field parameters: the purchasing price ¢, and the
demand coefficient y. An important prediction of the model is
that prices are relatively inelastic when resources are plenty,
but become elastic when the available resources are below a
turning point, which is triggered by the disappearance of the
excess producers, analogous to the Lewisian turning point in
the labor market [13]. Comparing this behavior with mar-
ket data, we found supporting evidence for turning point in
essential commodities, and discovered that the behavior may
be modified by a yield point for non-essential commodities.
However, not all commodities obey this behavior, indicating
that they may be influenced by additional factors other than
supply and demand. In spite of this, SURs have been iden-
tified to be useful indicators for price hikes in global cereal
markets [24] and are used in trading strategies; SUR values
have been suggested as rules of thumbs for forecasting price
hikes commodities such as wheat, corn, and soybeans [25].

The price trends and the existence of the turning point are
insensitive to the details of the model. Purchasing fractions
other than the exponential function in (2), such as a power law
of the prices, exhibit similar behaviors. Capacity distributions,
other than the rectangular one, also exhibit similar behaviors
as long as they have an upper bound. Similar predictions are
also applicable to networks whose nodes have high but finite
connectivities. It will be interesting to extend the agent-based
approach to networks other than fully connected ones, such as
those with low connectivities where Onsager reactions become
significant, geographical networks where distances are impor-
tant, or scale-free networks that are relevant to realistic social
and technological networks [26].
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