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Chimera-like states are manifested through the coexistence of synchronous and asynchronous dynamics and
have been observed in various systems. To analyze the role of network topology in giving rise to chimera-like
states we study a heterogeneous network model comprising two group of nodes, of high and low degrees of
connectivity. The architecture facilitates the analysis of the system, which separates into a densely-connected
coherent group of nodes, perturbed by their sparsely-connected drifting neighbors. It describes a synchronous
behavior of the densely-connected group and scaling properties of the induced perturbations.

Nonlinear interactions of coupled oscillators, such

as the Kuramoto model with sinusoidal couplings,

give rise to fascinating collective behaviors1–3, one

of which is the emergence of chimera states in

identical and symmetric networks, namely, the

coexistence of stable synchronous and fluctuat-

ing asynchronous dynamical patterns4. Studies

have shown that the chimera-like states also oc-

cur in complex networks, which exhibit disparate

behaviors for nodes of different connectivities, for

instance higher-degree nodes are more prone to

synchronization than lower-degree nodes in scale

free networks5. However, the rich structure of

complex networks makes it difficult to analyze the

dynamics and gain insight into the collective dy-

namics and its properties. To facilitate the anal-

ysis and better understand the role of network

heterogeneity, we examine a structured heteroge-

neous network model comprising only two inter-

acting groups of nodes, one of which is densely

connected while the other is sparsely connected.

As in other complex networks this model ex-

hibits a chimera state-like behavior whereby high-

degree nodes form a synchronized domain while

low-degree nodes remain unsynchronized. The

main benefit of this topology is that it is amenable

to analysis and provides insight that is difficult

to obtain otherwise; we derive a self-consistent

mean field theory for these networks, which ex-

plains quantitatively their behavior, especially

the synchronized dynamics of the densely con-

nected component under perturbation induced by

the sparsely connected nodes.
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I. INTRODUCTION

The dynamics of coupled oscillators has been widely
studied to understand the synchronization behaviors in
complex systems1–3. Among the fascinating phenomena
observed in these systems the chimera states, which ex-
hibit a coexistence of synchronous and asynchronous do-
mains, have attracted particular interest recently4. It
came as a surprise that the symmetry-breaking chimera
states were observed in symmetric and homogeneous me-
dia6–11. This phenomena is also reminiscent of the co-
existence of equilibrium-like domains in non-equilibrium
systems12.

The analysis of chimera states is generally difficult, due
to the heterogeneous interactions between a large num-
ber of variables, and appropriate approximations are re-
quired. One of the approximations is based on mapping
the system onto a low dimensional manifold9, which fa-
cilitates a simplification that leads to tractable solutions.
Such approaches are either based on the continuous self-
consistent mean field theory or rely on the assumption
of Ott-Antonsen reduction to simplify the problem6,13.
Carefully chosen initial conditions are also necessary to
produce chimera states in these symmetric systems14.
In addition to the theoretical discovery, chimera states
have also been observed and studied in different experi-
ments15–18.

While it is fascinating to understand the emergence of
chimera states as symmetry-broken states in very large
homogeneous symmetric networks, real systems are typ-
ically heterogeneous and of finite size19,20. To explore
synchronization behavior in real systems, one has to take
into account their complex and heterogeneous network
structure3,21. Two recent examples are the modelling
of neural activities in the resting-state functional net-
works22 and the modular neural networks of C. Ele-
gans23, both of which consider irregular network topolo-
gies. Studies of networks comprising non-identical con-
stituents with heterogeneous natural frequencies or cou-
pling strengths, and irregular topologies have shown sim-
ilar phenomena where synchronized and unsynchronized
subpopulations coexist5,24–31. Some of the features ex-
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hibited are different from those of symmetric systems,
e.g., in the case of all-to-all coupled oscillators with scale-
free distributed coupling strengths, the phase locked
subpopulations are the oscillators with small coupling
strength24,26. Another study that does not rely on the
system’s symmetry5 investigated sinusoidally coupled os-
cillators in Erdös-Rényi and scale-free networks, which
exhibit chimera-like state behavior from arbitrary initial
conditions.

An interesting observation from studies in scale free
networks is that nodes of high degrees are more likely
to synchronize than nodes of low degrees5. This is an
example where heterogeneity in network topology results
in disparate behaviors across the system32–34. Also in
models with chaotic oscillators, it was shown that hubs
synchronize while low-degree nodes do not32,35. It is pro-
posed in a theoretical study of neural culture that neu-
rons with more inputs, i.e., with high in-degrees, are
the leaders of the burst activities36. In general, the
strong interactions that the highly-connected oscillators
have with their neighbors distinguish them from the non-
synchronizing low-degree nodes5. However, the complex
structure of heterogeneous networks, such as scale free
or small world networks is not amenable to analysis due
to the combined complexity of the network topology and
intractability of the large scale-dynamical model. In this
work, we investigate a simple heterogeneous network ar-
chitecture which supports an easy-to-reach chimera-like
state but is amenable to analysis. It exposes the synchro-
nized equilibrium-like behavior of the densely-connected
components and facilitate the derivation of perturbation
originated by the sparsely-connected components; finite-
size scaling of these perturbation and the corresponding
order parameter is also be derived, shedding light on the
interplay between the two types of nodes.

II. THE MODEL

We consider a heterogeneous network with degree dis-
tribution of two peaks, i.e., the network comprises two
classes of nodes, one of which has extensive connectivity
scaled with system sizeN while the nodes in the other has
finite connectivity. Denote the two classes as the dense
group D and the sparse group S respectively. By assign-
ing a large number of intra-group connections between
constituents of the dense group D, each node inside D can
receive large number of coordinated signals from within
the group, dominating the fluctuations of other neigh-
boring nodes, potentially leading to coherent intra-group
dynamics. Conversely, the nodes in the sparse group can
be easily perturbed by fluctuation induced by any of its
neighbors due to their limited connectivity.

Specifically, to simplify the construction, each node
i ∈ D is connected to dD(∝ N) other nodes randomly
chosen from the same class D, and each node j ∈ S is con-
nected to dS(∼ O(1)) other nodes randomly chosen from
the whole system. Let nD and nS denote the number of

Figure 1. An instance of the heterogeneous network composed
of a densely connected (black nodes) and sparsely connected
groups (white nodes), where N = 40, dS = 4.

nodes in the dense and sparse groups, respectively. For
simplicity, we consider the special case where node i ∈ D
is connected to all the rest members of D so that the
dense group forms a complete subgraph, and both groups
include the same number of nodes, i.e., dD = nD − 1 and
nD = nS = N/2. Fig. 1 is an instance of the proposed
network structure with N = 40 and dS = 4. We would
like to remark that the chimera-like state discussed below
is not restricted to the special case of the dense group be-
ing a complete subgraph and nD = nS , but is a more gen-
eral phenomena in the networks of a similar construction
to that described above. Nevertheless, the simplification
makes the analysis easier.

The governing dynamics we consider is the Kuramoto
model with phase lag in the chimera state studies6,7,9

θ̇i = ω +
K

nD

∑

j∈∂i

sin(θj − θi − α)

= ω +
K

nD

∑

j∈∂i∩D

sin(θj − θi − α)

+
K

nD

∑

j∈∂i∩S

sin(θj − θi − α), (1)

where θi is the phase of node i, ω,K and α are the nat-
ural frequency, coupling strength and the phase lag re-
spectively, and ∂i stands for the set of nodes adjacent
to node i where we have isolated the contribution from
the dense and sparse members. Any node i ∈ D experi-
ences the global mean field induced by the whole dense
group rDe

iψD := 1/nD

∑

j∈D e
iθj and the local field of

its sparse neighbors ρie
iϕi :=

∑

j∈∂i∩S e
iθj , both terms

are of order 1,

θ̇i = ω +
K

nD

sinα+KrD sin(ψD sin(ψD − θi − α)

+
K

nD

ρi sin(ϕi − θi − α). (2)

By construction, the dense group itself forms a dD regular
subgraph, which can reach perfect phase synchronization
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Figure 2. (Color online) (a) Dynamical process of 5 densely
(top) and 5 sparsely connected variables (bottom) in a net-
work of size N = 200, where the sparse degree is dS = 6,
coefficient K = 10, and phase α = π

2
− 0.2. In this case,

Ω = −K(nD−1)/nD sin(α) ≈ 9.7. (b) Evolution of the global
order parameters for the densely (top) and sparsely connected
variables (bottom). Inset: Power spectrum of rD(t), which
has its main peak at ω = 2Ω.

if the contribution from the sparse neighbors are negligi-
ble37, i.e., θi = Ωt+const, Ω = ω−K(nD−1)/nD sin(α),
for all i ∈ D. This will hold true in the thermodynamic
limit nD → ∞; in which case the densely-connected
group D on its own exhibits an equilibrium-like behav-
ior within the global non-equilibrium system12. In finite
systems, the effect of sparse neighbors can be regarded as
a finite size perturbation with strength of order 1/nD on
the coherent dynamics of the densely-connected members
θi(t) = Ωt+ εi(t).

The argument cannot be applied to the sparse group.
Firstly, we notice that for node j ∈ S, |θ̇j | ≤ ω +
KdS/nD ≪ Ω, thus it does not follow the coherent dy-
namics of the densely-connected group and global syn-
chronization of the whole system is not attainable. Sec-
ondly, the irregularity of the sparse subgraph and pres-
ence of phase lag interfere with phase synchronization.
Finally, sparse variables are easily disturbed by noisy sig-
nals from their neighbors due to their finite connectivity.
We define the global order parameter of the sparse group
rS :=

∣

∣1/nS

∑

i∈S e
iθi
∣

∣ measuring their incoherence.

III. ANALYSIS AND RESULTS

Without loss of generality, let ω = 0 in the follow-
ing discussion. In Fig. 2, we demonstrate the dynamics
of a network with N = 200 and dS = 6 governed by
Eq. (1). The dense variables dynamics is coherent with
a high phase velocity exhibiting minor deviations from
each other, revealed by the small deviation of rD(t) from
1, shown in Fig. 2(b). On the other hand, the sparse
variables are drifting slowly and incoherently. The ob-
served partial synchronization phenomenon constitutes a
chimera-like state. Interestingly, the chimera-like state
is easily obtained in the proposed topology by starting
with arbitrary initial conditions, as shown in Fig. 3. This
is similar to what has been observed previously5. We
remark that the chimera-like states observed here are
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Figure 3. (Color online) Evolution of the global order parame-
ters for the dense (top) and sparse (bottom) groups, starting
from different initial conditions. Blue: the initial phases of
all variables are drawn from the uniform distribution ranging
from 0 to π. Green: the initial phases of all variables are
drawn from the uniform distribution ranging from 0 to 2π.
Red: the initial phases of all dense variables are drawn from
the uniform distribution ranging from 0 to 2π, while that of
sparse variables share the same phase value.

different from the classical symmetry-breaking chimera
states6? –10 due to the lack of symmetry between the
dense and sparse groups.

In the following, we analyse the deviation of the
densely-connected variables from perfect synchroniza-
tion due to the interaction with the sparsely-connected
group. The method used is similar to the self-consistent
mean field theory commonly used in the analysis of the
Kuramoto model with inhomogeneous natural frequen-
cies1,38, in which the system is divided into two subpop-
ulations to be determined, a phase-locked group and a
drifting group, depending on the natural frequency with
reference to the mean field order parameter. Assuming
the system is in the stationary state, the two subpopula-
tions are described by certain probability densities to be
solved self-consistently to obtain the order parameter. A
similar method with a space-dependent order parameter
was used to analyze chimera states in finite dimensional
spaces6,7.

In the current study, the system has homogeneous
natural frequencies but highly inhomogeneous network
topologies, and the phase-locked group and drifting group
can be identified by the network connectivities. Instead
of solving the invariant density for the whole system, we
utilize the property of time scale separation in the sys-
tem and isolate the synchronized group for considera-
tion. One advantage of the chosen network topology is
that the node in the dense group receives overwhelmingly
more inputs from the same group than from the sparse
group, allowing one to expand the deviation from per-
fect synchronization in orders of 1/nD. We then express
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the dynamics of the dense group as small deviations from
perfect synchronization and solve for the small deviation
self-consistently.

Expanding the phase of a dense group variable i with
respect to small perturbation εi such that θi(t) = Ωt +
εi(t), and defining g(ε) = 1 − rD(t), f(ε) = ψD(t) − Ωt
one obtains

rDe
iψD = eiΩt

1

nD

∑

i∈D

eiεi

= eiΩt

[

1 +
i

nD

∑

i∈D

εi −
1

2nD

∑

i∈D

ε2i +O(ε3)

]

,(3)

and from results in leading order in ε2 (See Appendix A),

g(ε) ≈ 1

2nD

∑

i∈D

ε2i −
1

2n2
D

(

∑

i∈D

εi

)2

, (4)

f(ε) ≈ 1

nD

∑

i∈D

εi. (5)

Assuming εi, and subsequently g(ε) and f(ε) are small,
then Eq. (2) can be expressed as

ε̇i = K sinα+K (1− g(ε)) sin (f(ε)− εi − α)

+
K

nD

ρi sin(ϕi − Ωt− εi − α)

≈ (K cosα) [f(ε)− εi]−
[

K ∂εig(ε)|εi=0 sinα
]

εi

+
K

nD

ρi sin(ϕi − Ωt− α)

− K

nD

ρi cos(ϕi − Ωt− α)εi, (6)

where only first order terms in εi are retained. Fur-
thermore, in the large size limit 1/nD is considered to
be small and the last term of Eq. (6) can be ignored
since it contains the product of two small quantities, εi
and 1/nD. Assuming the fluctuations εi are uncorrelated
across sites, f(ε) = 1/nD

∑

i∈D εi smooths out the fluc-
tuations of individual variables and becomes smaller com-
pared to any single fluctuations εi; it is therefore omitted
in the following. Additionally, to leading order we have
∂εig(ε)|εi=0 = −1/n2

D

∑

j 6=i εj, which vanishes for large

nD, such that the corresponding term in Eq. (6) can be
omitted for fixed α < π/2, leading to

ε̇i = −(K cosα)εi +
K

nD

ρi sin(ϕi − Ωt− α). (7)

By definition of the local mean field of ρi and ϕi, the
last term of Eq. (7) can be expressed as

K

nD

ρi sin(ϕi − Ωt− α) =
K

nD

∑

j∈∂i∩S

sin(θj − Ωt− α).

Since the phase velocity |θ̇j |(≤ KdS/nD) of the sparsely-
connected variables j is much smaller than the oscillation
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Figure 4. (Color online) Evolution of rD for different phase
lags α and a network with N = 200 variables, sparse degree
dS = 6 and coefficient K = 10.

of Ωt, as shown in Fig. 2(a), the two time scales within
the sin function can be separated, allowing one to view ρi
and ϕi as quench variables within a time frame of a few
periods. As Ω = −K(nD−1)/nD sin(α) ≈ −K sin(α) for
large nD, Eq. (7) can be integrated to provide

εi(t) = c1e
−(K cosα)t +

1

nD

ρi sin(ϕi − Ωt− 2α). (8)

This solution Eq. (8) has a decay term of rate K cos(α)
and a stationary oscillatory term of frequency Ω =
−K sin(α). The stationary part of εi scales as 1/nD,
which is consistent with the derivation that treats both
εi and 1/nD as small quantities at the same time. We can
therefore deduce that the dense group converges faster to
the steady solution for smaller α values, where α = π/2
signals the onset of instability of the chimera-like state,
as shown in Fig 4.

The deviation εi(t) has an oscillatory behavior of fre-
quency Ω. From Eq. (4), we expect that rD(t) = 1−g(ε)
oscillates primarily at a frequency 2Ω, which is verified
by the power spectrum of rD(t) from the numerical ex-
periment in the inset of Fig. 2(b).

In the steady state, substituting the solution of εi(t) =
ρi/nD sin(ϕi − Ωt − 2α) into Eq. (4), one obtains an
expression for g(ε), and consequently for rD. It is ob-
served that the distribution of sparsely-connected vari-
ables phases is close to uniform, as illustrated in Fig. 5.
Thus we compute the time average rD by averaging over
the phase angles of the sparse variables, where phases are
assumed to be independently and uniformly distributed
in [0, 2π), i.e., P (θj) = 1/2π, ∀j ∈ S. It is sufficient to
consider a single instance of εi(t)

ǫi =
ρi
nD

sin(ϕi) =
1

nD

∑

j∈∂i∩S

sin(θj).

Since E[sin(θj)] = 0, E[sin2(θj)] = 1/2, E[sin4(θj)] = 3/8,
it is straightforward to obtain the mean and variance of
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Figure 5. (Color online) (a) Top: Kullback–Leibler (KL) di-
vergence between the phase distribution P (θj) of the sparse
variables and the uniform distribution Q(θj) = const, defined
as D(P ||Q) :=

∑
x
P (x) ln(P (x)/Q(x)). The parameters of

the network are N = 1000, dS = 6, α = π/2 − 0.2. P (θj)
is approximated by a histogram with 10 bins, in which case
the upper bound for the KL divergence is maxP D(P ||Q) =
ln 10 ≈ 2.30. The observed small KL divergence D(P ||Q)
implies that the phase distribution is close to uniform. Bot-
tom: The global order parameter rS for the sparse group
exhibits small values; rS = 0 when the phases are uniformly
distributed. (b) The distribution P (θj) at the points with
the lowest (upper panel) and highest (lower panel) KL diver-
gence in the observed time window, as marked by the two
blue circles in the upper panel of (a).

rD,

E[rD] = E [1− g(ǫ)]

= 1− 1

2nD

E

[

∑

i∈D

ǫ2i

]

+
1

2n2
D

E





(

∑

i∈D

ǫi

)2


 (9)

= 1− dS
8n2

D

+
d2S

16n3
D

, (10)

E[r2D ]− E[rD ]
2 = E

[

(1− g(ǫ))
2
]

− E[1 − g(ǫ)]2

=
1

32n5
D

(

d2S − 3

2
dS

)

+O

(

1

n6
D

)

.(11)

Therefore, to leading order, the mean of 1−E[rD] scales
as dS/n

2
D, while the standard deviation σ(rD) scales as

dS/n
2.5
D . The finite size scaling behavior is confirmed,

in full agreement, by numerical simulations as shown in
Fig. 6.

The obtained solution of rD in Eq. (10) is indepen-
dent of α. Nevertheless, we remark that the derivation
breaks down when α is close to π/2, in particular for
α ∼ tan−1(n2

D), where the term
[

K ∂εig(ε)|εi=0 sinα
]

εi
starts to dominate (K cosα)εi in Eq. (6). We can see this
effect in Fig. 7 where for a wide range of α values away
from π/2, the deviation to perfect synchronization in the
stationary state is independent of α. When α gets closer
to π/2, the deviation starts to increase; the onset of this
deviation occurs later for larger systems, as expected.
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Figure 6. (a) Mean and variance of rD for an observed time
window as a function of nD with fixed dS = 6. The data
follows the scaling of the form (1− 〈rD〉t) ∼ nγm

D
, σ(rD) ∼

nγs
D

, with coefficients γm = −2.01, γs = −2.55. Each data
point is averaged over 10 realizations. (b) The values 1−〈rD〉t
and σ(rD) as a function of the sparse degree connectivity dS
with fixed nD = 200; both increase linearly with dS . Each
data point is average over 10 realizations. In the lower panel,
the straight line is fitted to the first five data points, while the
measurement of the last two points are rather imprecise and
one expects the linear dependence to gradually break down
as the ratio dS/dD increases.
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Figure 7. Expected first order corrections 1 − 〈rD〉t vs α for
different system sizes, measured at the stationary states.

IV. DISCUSSION AND CONCLUSION

We study a simple heterogeneous network architecture
that supports easy-to-reach chimera-like states and is
amenable to analysis. The network comprises two inter-
connected components of densely connected and sparsely
connected variables. The heterogeneity separates the
time scales of the dynamics of the two components, lead-
ing to disparate behaviors of the two groups. We showed
that the densely connected group maintains a synchro-
nized and coherent dynamics, while the dynamics of
sparse group variables is incoherent. Furthermore, we
derived a self-consistent mean field theory for these net-
works, by viewing the contribution of the sparse variables
as 1/nD-scale perturbations to the dense group’s dynam-
ics. Using this framework we obtained expressions for the
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dense group order parameter that exhibits phase synchro-
nization, and subsequently its dependence on phase lag
parameter, network size and network connectivity. The
model facilitates the analysis of large systems comprising
interacting oscillatory variables to provide new insight
and understanding of their complex dynamical behav-
iors.

In general, the densely connected nodes in the complex
network may not form a regular subgraph. One possi-
ble generalization of our model is to consider randomly
removal of connections in the dense group27, and study
the resulting erosion of synchronization in the framework
developed in related works37,39. In more complex hetero-
geneous network topologies such as scale free networks,
although our analysis is not directly applicable, we sug-
gest that similar mechanism accounts for the disparate
synchronization behaviors for the high-degree nodes and
other nodes, i.e., the high-degree nodes interact with each
other strongly and in a combinatorial sense they have
higher chance to arrange themselves to a synchronized
cluster, while the incoherent perturbations from the low-
degree nodes are less significant, as preliminarily illus-
trated in numerical simulations5. We envisage that our
model and similar variants could be employed to explore
the properties of other heterogeneous network architec-
tures.
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Appendix A: The Expressions of g(ε) and f(ε)

In this section we derive the expressions of g(ε) and
f(ε) up to leading order of ε2. From Eq. (3), we see that
rD = 1 − g(ε) is the magnitude of the complex vector
1
nD

∑

i∈D e
iεi ≈ 1− 1

2nD

∑

i∈D ε
2
i +

i
nD

∑

i∈D εi, then

rD ≈

√

√

√

√

(

1− 1

2nD

∑

i∈D

ε2i

)2

+

(

1

nD

∑

i∈D

εi

)2

≈

√

√

√

√1− 1

nD

∑

i∈D

ε2i +

(

1

nD

∑

i∈D

εi

)2

≈ 1− 1

2nD

∑

i∈D

ε2i +
1

2n2
D

(

∑

i∈D

εi

)2

,

where we have used the approximation
√
1 + x ≈ 1+x/2

for small x. Therefore, we obtain the expression

g(ε) =
1

2nD

∑

i∈D

ε2i −
1

2n2
D

(

∑

i∈D

εi

)2

.

Notice that f(ε) is the phase of the complex vector
1
nD

∑

i∈D e
iεi ; after some manipulation we find that

f(ε) = tan−1
1
nD

∑

i∈D εi

1− 1
2nD

∑

i∈D ε
2
i

≈ 1

nD

∑

i∈D

εi +
1

2n2
D

∑

i∈D

εi
∑

i∈D

ε2i .
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