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While macroscopic properties of spin glasses have been thoroughly investigated, their manifes-
tation in the corresponding microscopic configurations is much less understood. Cases where both
descriptions have been provided, such as constraint satisfaction problems, are limited to their ground
state properties. To identify the emerging microscopic structures with macroscopic phases at dif-
ferent temperatures, we study the p-spin model with p= 3. We investigate the properties of self-
sustained clusters, defined as variable sets where in-cluster induced fields dominate over the fields
induced by out-cluster spins, giving rise to stable configurations with respect to fluctuations. We
compute the entropy of self-sustained clusters as a function of temperature and their sizes. In-cluster
and out-cluster field properties support the observation of slow-evolving spins in spin models. These
findings are corroborated by numerical studies in finite-size systems at low temperatures.

Spin glass models of disordered systems are character-
ized by a rich structure of the free-energy landscape and
slow dynamics at low temperature. Mean field analy-
ses [1, 2] typically provide a characterization of the state
of the system based on a set of macroscopic order pa-
rameters and have provided many interesting and coun-
terintuitive insights [3, 4]. Symmetry properties of the
resulting order parameters lead to distinct classes of sys-
tems termed One-step Replica Symmetric Breaking (1-
RSB) [5, 6] and Full Replica Symmetry Breaking [3, 7]
models; the symmetries reflect the organization of states
in the free-energy landscape and correspond to an in-
creasingly more complex structure.

Phase transitions in spin-glass systems have been ex-
tensively studied within the macroscopic system repre-
sentation. In particular, models with 1-RSB are common
in physics, for instance in structural glass forming liq-
uids [8–11], as well as in a range of hard-computational
problems in computer science, such as Constraint Sat-
isfaction Problems (CSP) [3, 12, 13]. They typically
undergo a sequence of structural transitions when the
temperature is decreased: while at temperatures above
the dynamical transition T > Td the system is domi-
nated by a paramagnetic (liquid) state; at lower tem-
peratures T < Td an exponential number (in the num-
ber of variables) of TAP (Thouless-Andersson-Palmer)
states emerge [14, 15], leading to a transition beyond
which ergodicity breaks. This dynamical glass transition
is characterized by a non-decaying spin-spin correlation
function in disagreement with the static equilibrium zero
value [16–20]. As the temperature decreases further the
number of such states, whose logarithm is called com-
plexity, decreases. Eventually, the complexity vanishes
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at TK , termed the Kauzmann transition in the physics
of glass forming liquids and signals a true second-order
phase-transition.

While the different temperature regimes are well un-
derstood in terms of the (free-) energy landscape, it is
much more difficult to describe the manifestation of such
changes in microscopic configurations. Interesting cases
where this connection is clearer are CSP, whose solu-
tions are organized in disconnected groups which contain
frozen variables in intermediate regimes before the sat-
isfiability transition [21–26]. Frozen variables take the
same value in all the solutions of individual groups.

Since CSP are often studied in the context of hard op-
timization problems at T = 0, the main external param-
eter considered is the ratio of constraints to variables α
rather than temperature [22]. In general, frozen variables
appear for higher α>αd values [23] with the exception of
particular cases such as k−XORSAT, k > 2, where they
appear at the dynamical transition αd [23, 25]. Neverthe-
less, this understanding is limited to optimal solutions,
i.e. ground states of CSP, where as their manifestation
at non-zero temperatures remains unclear.

In this work we investigate the existence of frozen-
like variables in finite-temperature systems. More pre-
cisely, we look for clusters of spin variables that exhibit
slow dynamics; the mere existence of such clusters is not
guaranteed a priori. Somewhat similar problems have
been studied in the context of spin glasses on random
graphs [27, 28] and in finite dimensional lattices [29, 30]
showing that it is possible to interpret non-equilibrium
dynamical properties in terms of structural properties of
the ground states of these systems. These works rely on
the notion of rigidity lattice [31] and the corresponding
analyses can be usually done in small systems. Our ap-
proach, while aiming at similar goals, relies on a different
concept and can be used to analyze spin models via mean
field methods. The central objects of our approach are
Self-Sustained Clusters (SSC), introduced in the study
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of the SK model [32]. Pictorially, SSC can be considered
as stable components of the system that make relaxation
prohibitively slow at low temperature.

Our analysis is carried out within the framework of
fully connected Ising p−spin model [33] with p=3, whose
T = 0 limit coincides with the k−XORSAT problems
with k= 3. To be precise, k−XORSAT is usually stud-
ied on sparse topologies but nevertheless the qualitative
behaviour of the model does not change in densely con-
nected systems. While this model belongs to the 1-RSB
class, it can be studied in a non-trivial phase by using a
simple ansatz for the order parameters, which neverthe-
less exhibits interesting and non-trivial dynamical prop-
erties. We compute the entropy of these clusters as a
function of their size, and characterize their properties
for different temperatures. Additionally, we study their
stability by computing the distribution of the local field
in typical SSC and show that SSC found at low tem-
peratures can be considered as clusters of slow-evolving
spins.

Model: The Hamiltonian of the fully connected 3-spin
model [16, 17, 21, 33] with Ising variables is given by

H = −
N∑

i<j<k=1

Jijk sisjsk , (1)

where Jijk are i.i.d. Gaussian random variables, with
mean 0 and variance p!/(2Np−1), where N is the number
of spins. A brief description of the phase transitions of
the model is provided in the Supplemental Material (SM)
as well as in [13, 34, 35]. Be s an arbitrary spin config-
uration and let us use σ variables to define the cluster
membership per spin. Given a configuration s and clus-
ter C, we assign σ= +1 for in-cluster spins and σ=−1
for out-cluster spins. To define the notion of a SSC, we
write the local field hi acting on spin si in a 3-spin model
as the sum of three contributions,

hi =
1

2

∑
j,k

Jijksjsk =
1

2
(ui + vi + wi) , (2)

where, ui =
∑

j∈C,k∈C
Jijksjsk , vi =

∑
j /∈C,k/∈C

Jijksjsk

and wi/2 =
∑

j∈C,k/∈C
Jijksjsk .

Similar definitions of the fields for general p-spin model
are found in the SM. These three field contributions cor-
respond to fields induced from within the cluster (in-in
contribution, ui), from outside the cluster (out-out con-
tribution, vi) and by both in- and out-cluster spins (in-
out contribution, wi). A SSC is a group of spins such
that, for each spin, the in-in contribution dominates the
field hi with respect to all other contributions, and the
following condition is satisfied

u2i > (vi + wi)
2 + ε ∀ i ∈ C, (3)

where the positive external parameter ε can be arbitrar-
ily adjusted to probe the SSC of specific strength. Self-
sustained clusters are of interest since for i ∈ C, local
fluctuations, giving O(1/N) contributions, do not change
the relative importance of u2i and (vi+wi)

2 and, thus, do
not change the direction of the corresponding local fields.
These clusters are therefore more stable compared to ran-
dom groups of spins and offer a different perspective on
the dynamical slowing down observed at low tempera-
tures.

To count the number of SSC of size rN in a given
configuration s we define the entropic function of r

S(r|s, {Jijk}) = N−1 log
∑
σ

Iσ(s)δ

(
rN −

N∑
i=1

1 + σi
2

)
,

(4)
at a given quenched disorder {Jijk} and configuration s.
We introduced the indicator function

Iσ(s) =
N∏
i=1

{
1− σi

2
+

1 + σi
2

θ
[
u2i − (vi + wi)

2 − ε
]}

,

(5)
returning one if and only if σ defines a SSC in the config-
uration s. The θ(x) in Eq. (5) is the Heaviside function,
returning one for x>0 and zero otherwise: its role is to
select only those realizations σ for which the condition
given by Eq. (3) holds. Finally, the Dirac delta function
in Eq. (4) enforces the size of the clusters to be rN .

Equation (4) gives the logarithm of the number of SSC
(entropy of the clusters) per spin in a given configuration
s. As we are interested in the number of SSC in a typical
configuration, and assuming that S(r |s, {Jijk}) is self-
averaging with respect to s and the quenched disorder
{Jijk}, we define

Sβ(r) = EJEs [ S(r |s, {Jijk})] , (6)

where EJ denotes the average over the quenched disor-
der and Es is the average over the Boltzmann weight

Z−1e−βH(s). This is the central object of our compu-
tation, because the number of SSC Nβ(r) of size r in a
typical configuration at temperature β−1 is given by

Nβ(r) = exp [N Sβ(r)] . (7)

The number of large clusters is expected to grow as T
decreases, signalling the slowing down of the dynamics.

To investigate the stability of SSC, we compute the
distribution of the local fields acting on the internal spins.
If we consider the SSC of size rN , the quantity of interest
is the local fields acting on the in-cluster spins,

Pr(h = λ) = EJEsE
r
σ

[
1

rN

∑
i

1 + σi
2

δ(hi − λ)

]
, (8)

where Erσ is the average over SSC of size r,

Erσ [O (σ, s, {Jijk})] =

∑
σ I

r
σ(s)O (σ, s, {Jijk})∑

σ I
r
σ(s)

, (9)
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and the auxiliary function Irσ(s) is given by

Irσ(s) = Iσ(s)δ

(
rN −

N∑
i=1

1 + σi
2

)
. (10)

An SSC where many spins experience a strong field can
be regarded as a cluster of slow-evolving spins, because
the probability of spin flips decreases as the absolute
value of the local field increases. The field Pr(h) is sup-
ported primarily for small fields at high temperatures and
large fields at low temperatures. As shown in the SM this
distribution can be obtained from Eq. (6).
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FIG. 1. Entropy of the SSC as a function of r, where rN is the
size of the self sustained cluster, for different temperatures.
As the temperature decreases, we observe an increase in the
number of large clusters (here, for ε= 0). Inset - We observe
SSC for cluster size up to r0N which increases as T decreases,
approaching 1 for temperatures in the region between Td ∼
0.681 and TTAP ∼ 0.764.

Analysis: To average over the Boltzmann weights and
the disorder and compute Sβ(r) we will invoke the replica
trick twice, once to replace the logarithm in Eq. (4) and
once to account for the partition function in Eq. (6). The
mathematical identities that we are going to use are:

log
∑
σ

Irσ(s) = lim
m→0

∂m
∑

σ(1)...σ(m)

m∏
α=1

Irσ(α)

(
s(1)
)
, (11)

where ∂m is the derivative with respect to m, s(1) =s and

Z−1 = lim
n→0

∑
s(2)...s(n)

exp

[
−β

n∑
a=2

H
(
s(a)
)]

. (12)

Expressions are calculated for integers n and m values
and then analytically continued to zero [3]. Greek and

Latin indices denote replicas of the σ and s variables, re-
spectively. The details of the computation are discussed
in the SM. In this work we employed a Replica Symmet-
ric (RS) ansatz. In principle, averaging over configura-
tions s, one should invoke a more complex hierarchical
ansatz [3] but the RS ansatz is valid for all tempera-
tures higher than TK , even in the dynamical region be-
tween TK ∼ 0.652 and Td ∼ 0.681 for reasons that can
be traced back to the work of Franz and Parisi [36]. In
fact, in this regime, the paramagnetic state is replaced by
an exponential number of metastable states whose over-
lap is zero [37–39], from which a trivial Parisi function
P (q) = δ(q) is obtained. We also employ an RS ansatz for
the σ-related order parameters. This is just an approxi-
mation that is not always justified as explained below.
Results: We computed the entropy of SSC for different

temperatures and values of ε. While we do not observe
abrupt changes in the entropy of the SSC, the number
of large SSC increases and non-zero entropies appear for
larger clusters when T decreases, as shown in Fig. 1. A
numerical analysis performed on small fully connected
systems by sampling configurations from Monte-Carlo,
confirm this description, as can be seen in Fig. 2. De-
tails on the procedure employed for obtaining numerical
results on small systems are provided in Section D of the
SM.
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FIG. 2. The entropy of self-sustained clusters in small 3-
spin systems. The systems are first initialized with random
coupling Jijk and are equilibrated for 5×104 Monte Carlo steps
at temperature T before sampling takes place for 1×103 steps.
The number of SSC is then computed by exhaustive search
over all σ in systems with N = 22, and by a random sample
of 4×106 of all σ configurations in systems with N=25; each
sampled spin configuration is weighed by the number of times
it is sampled. The results are then averaged over 5 realizations
of coupling disorders.
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FIG. 3. Entropy of the SSC as a function of r, where rN is
the size of the self sustained cluster, for different temperatures
and different ε values. The inset shows the effect of taking the
same small ε at two different temperatures: it can be clearly
seen that at T = 10 it decimates the number of clusters but
has relatively little effect at T =1.

This behavior has a simple interpretation in terms
of the effect of random fluctuations on in-cluster spins.
Each spin’s internal field ui is aligned with the total field
hi and, since fluctuations involving a finite number of
spins do not result in macroscopic contributions to the
difference between in- and out-cluster induced fields, the
alignment between in-cluster and total fields is largely
insensitive to fluctuations. In other words, in-cluster
spins provide a reinforcement mechanism to one another
through the in-cluster dominated field that compensates
for random fluctuations, which is absent for out-cluster
spins. When several SSC overlap, a competition between
the influence of different SSC forming islands of con-
strained spins, emerges. SSC appear in sizes up to r0N
depending on temperature as shown in the inset of Fig. 1,
with r0 approaching 1 as T decreases. Because of numer-
ical instabilities in solving saddle point equations, it is
impossible to evaluate precisely the temperature at which
r0 approaches 1. This temperature is supposed to be in
the range [Td, TTAP ], where in this model TTAP ∼ 0.764,
as obtained in the SM.

We also notice that there are regions where the SSC
entropy is negative. In replica calculations this effect
can be interpreted a manifestation of RS-breaking; no-
tice that, as discussed above, this could only happen in
the σ-related order parameters. This effect is not trivial
and may be due to the complicated structure of the SSC
solutions in a given configuration. This point requires a
careful analysis which is beyond the scope of the current
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FIG. 4. Expected flip probability for spins in an SSC of size
r∗N , where r∗ is the cluster-size value at which the entropy
is maximum. Inset: Pr(h) for three different temperatures.

analysis since here we focus on dominant peak values of
the SSC entropy that are found to be positive. Therefore,
in the following, we will concentrate only on regimes of
positive SSC entropies.

The existence of SSC at high temperatures suggests
that their existence does not trivially relate to slow-
evolving spins, which do not exist in this regime. Re-
sults obtained for different resilience parameter values ε
(see Eq. (3)), shown in Fig. 3, exhibit a strong presence of
low-field SSC at high temperatures. Firstly, we note that
the absolute value of the local field experienced by inter-
nal spins is an increasing function of ε. A slow-evolving
spin is characterized by a strong field such that β|hi| is
large. Thus, SSC can be associated with slow-evolving
spins only if they exist for a sufficiently high ε and this
argument suggests that ε should be an increasing func-
tion of T . For instance, the scaling |h| ∼ √ε leads to
ε ∼ T 2. Fig. 3 shows that as we increase ε, fewer and
fewer SSC exist with a much stronger effect exhibited at
high temperatures, as demonstrated in the inset. Even a
very small value of ε (e.g. ε = 0.1) decimates the number
of SSC at high temperature (e.g. T = 10) while strong
clusters are unaffected at lower temperatures (e.g. T =1).

To verify the analytical picture obtained, we compute
the entropy of SSC by exhaustive search or sampling in
small 3-spin systems. As shown in Fig. 2, SSC exist at
high temperature and the entropy of large SSC increases
when the temperature T decreases in small systems, in
agreement with the analytical results shown in Fig. 1. On
the other hand, SSC with small r values may be absent
in small system sizes due to finite-size effects as shown in
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Fig. 2, compared to the thermodynamic limit in Fig. 1.
Despite the slightly different definition of SSC entropy
employed in the numerical analysis of small systems (see
Section D of SM for details), their behaviors match qual-
itatively with the analytical results as shown in Fig. 2
and its inset.

To gain a quantitative measure of how slow the in-
cluster spins are, we computed the corresponding dis-
tribution of local fields Pr(h) using Eqs. (8)-(10). We
employed this distribution to compute the expected flip
probability spins in an SSC of size r∗N

πE(T ) =

∫
dhPr∗(h)

e−β|h|

2 cosh(βh)
, (13)

where r∗ is the the value at which Sβ(r) is maximum.
The expected probability πE(T ) rapidly decreases to zero
as T decreases, as shown in Fig. 4. The inset shows P ∗r (h)
for different temperatures. The relation between SSC
and slow-evolving spins in sparsely connected topologies
will be further explored in a separate work.

The above results show that when the temperature
decreases, SSC in the 3-spin model increase in num-
ber, become more extensive in size, and are more sta-
ble against thermal fluctuations. Since these clusters
are self-sustained, their stable existence slows down the
system’s dynamics towards equilibrium. In optimization

problems, the presence of SSC would induce computa-
tional hardness since local algorithms will not escape
states with SSC on the search for optimal solutions.
Summary: We proposed a theoretical framework to

address the issue of slow-evolving variables in spin sys-
tems at the microscopic level based on the concept of
SSC, which can be viewed as regions of interdepen-
dent mutually-stabilizing spins. As the temperature de-
creases, strong SSC emerge and encompass increasingly
larger fraction of the system with inevitable conflicts be-
tween competing clusters. We provide new microscopic
perspective on the dynamical slowing down observed in
spin systems at low temperatures, complementing exist-
ing macroscopic understanding with the potential of pro-
viding new algorithmic optimization tools for hard com-
putational problems through the destabilization of SSC
in problems that can be mapped onto spin systems.
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M. Mézard and J. Dalibard. Elsevier, Les Houches,
France, 2007.

[5] F. Zamponi. arxiv.org/abs/1008.4844.
[6] T. Castellani and A. Cavagna. Journal of Statistical Me-

chanics: Theory and Experiment, 2005(05):P05012, 2005.
[7] K. Binder and A. P. Young. Reviews of Modern physics,

58(4):801, 1986.
[8] T.R. Kirkpatrick and D. Thirumalai. Physical Review B,

36(10):5388, 1987.
[9] J.-P. Bouchaud, L.F. Cugliandolo, J. Kurchan, and

M. Mezard. Spin glasses and random fields, pages 161–
223, 1998.

[10] L. Leuzzi and T. M. Nieuwenhuizen. Thermodynamics of
the glassy state. Taylor and Francis, 2007.

[11] W. Götze. Complex dynamics of glass-forming liquids: A
mode-coupling theory, volume 143. OUP Oxford, 2008.

[12] R. Monasson. Complex systems. edited by J.-P.
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merjian, and L. Zdeborová. Proceedings of the National
Academy of Sciences, 104(25):10318–10323, 2007.

[23] A. Montanari, F. Ricci-Tersenghi, and G. Semerjian.
Journal of Statistical Mechanics: Theory and Experi-
ment, 2008(04):P04004, 2008.

[24] D. Achlioptas and F. Ricci-Tersenghi. SIAM Journal on
Computing, 39(1):260–280, 2009.

[25] G. Semerjian. Journal of Statistical Physics, 130(2):251–
293, 2008.

[26] A. Braunstein, L. Dall’Asta, G. Semerjian, and L. Zde-
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I. SUPPLEMENTARY INFORMATION

In this section we first describe some aspects of the Ising p-spin model, and then we illus-

trate the computation of the entropy of SSC. The phenomenology of the p-spin is discussed

presenting the Franz-Parisi potential and the computation of the complexity of the system.

While the first method is very interesting by its own right, it is also very instructive for

our purposes because it allows to discuss some more technical issues that will be useful in

the computation of the entropy of SSC. The second method gives a di↵erent perspective on

the emergence of TAP states in this model, and provides an estimation of the temperature,

TTAP , at which such states appear. The two approaches are independent and complemen-

tary. More aspects of the rich phenomenology of the model can be found in [33, 34]. Here

we describe only the case p = 3.

A. Franz-Parisi potential

The Franz-Parisi potential [35] can be defined by introducing the free energy per spin of

a system that is constrained to have overlap q with a reference configuration s

�N�Fs,{Jijk}(q) = log
X

�

e��H(�)�

 

Nq �
X

i

�isi

!

. (14)

This quantity depends on s and {Jijk} and in order to get rid of these dependancies we

assume self-averaging properties on both. In other words, we compute

V (q) = EJEs

⇥

Fs,{Jijk}(q)� F
⇤

(15)

where, as in the Main Text, EJ denotes the average over disorder and Es the average over

the Boltzmann weight. The Hamiltonian of the model is defined in eq. 1 and the quenched

disorder is such that Jijk are i.i.d. Gaussian random variables, with mean 0 and variance

p!/(2Np�1), where N is the number of spins. This quantity is the large deviation function of

the probability to observe an overlap equal to q between two configurations extracted from

the equilibrium (Boltzmann) distribution, i.e. the Parisi function P (q), and one of the main

reasons to study V (q) is that it contains information about the dynamical transition Td that

is actually missing in both P (q) and F . In order to compute V (q) we need to use the replica

trick twice. This can be done invoking eq. (12) to deal with the Boltzmann weight, and the

13



identity

�N�Fs,{Jijk}(q) = lim
m!0

@m
X

{�}

e��
Pm

↵=1 H[�(↵)]
m
Y

↵=1

�

 

Nq �
X

i

�(↵)
i s(1)i

!

, (16)

where {�} = {�(1) . . . s(m)}, to deal with logarithm inside the averages. It is useful to

introduce the order parameters

Qab
ss = 1

N

P

i s
(a)
i s(b)i (17)

Q↵�
�� = 1

N

P

i �
(↵)
i �(�)

i (18)

Qa↵
s� = 1

N

P

i s
(a)
i �(↵)

i , (19)

and the corresponding conjugate ones (order parameters with hats) by using the integral

representation of the Dirac delta function, here illustrated for Qss:

1 =
Y

a<b

Z

dQab
��

dQ̂ab
��

2⇡
e
�iQ̂ab

��

⇣
NQab

���
PN

i=1 s
(a)
i s

(b)
i

⌘

. (20)

In the following we adopt an RS ansatz, that is supposed to hold 8 T > TK [35]. The order

parameters Qss and Q�� are the o↵ diagonal terms of the matrices defined in eq. (17) and

(18). The delta function in eq. (14) sets Q1↵
s� = q, 8↵, and thus, since the first row of this

matrix is ↵ independent, we also set Qa↵
s� = P a, a 6= 1, 8↵ and in the RS ansatz we set

P a = P, a 6= 1. Similarly, we set Q̂1↵
s� = q̂, 8↵ and Q̂a↵

s� = P̂ , a 6= 1, 8↵. These manipulations

lead to

��V (q) = �2

✓

1

4
� 1

4
Q3

�� +
1

2
q3 � 1

2
P 3

◆

+
1

2
(Q�� � 1)Q̂�� � q̂q + P̂P + I , (21)

where the integral I is equal to I =
R

Dz h(z1, z2, q̂, P̂ ) and

h(z1, z2, q̂, P̂ ) =
log 2 cosh

⇣

z2 + (q̂ � P̂ )
⌘

ez1 + log 2 cosh
⇣

z2 � (q̂ � P̂ )
⌘

e�z1

2 cosh z1
(22)

and the Gaussian measure Dz is

Dz =

s

det (U)�1

(2⇡)2

2
Y

k=1

dzk exp

⇢

�1

2
zTU�1z

�

, U =

0

@

Q̂ss P̂

P̂ Q̂��

1

A . (23)
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The saddle point sets the other order parameters to

Q̂ss = 3
2Q

2
ss�

2 , (24)

Q̂�� = 3
2Q

2
���

2 , (25)

P̂ = 3
2P

2�2 , (26)

while the original order parameters are set to

1

2
Qss �

1

2
+

Z

Dz



1

2
z21Q̂

�2
ss � 1

2
Q̂�1

ss

�

log 2 cosh z1 = 0 , (27)
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3

5h(z1, z2, q̂, P̂ ) = 0 , (28)

P +

Z

Dz

"

X

lp

[U�1]1l[U
�1]2pzlzp �

⇥

U�1
⇤

12

#

h(z1, z2, q̂, P̂ ) = 0 , (29)

q =

Z

Dz
h

tanh
⇣

z2 + (q̂ � P̂ )
⌘

ez1 � tanh
⇣

z2 � (q̂ � P̂ )
⌘

e�z1
i

[2 cosh z1]
�1 . (30)

Eq. (27) is independent of P , Q�� and their conjugate order parameters because the s system

is una↵ected by the computation of the constrained free energy in eq. (14). Moreover, eq.

(30) gives the value of the overlap q, on which we did not have to optimize, as a function of

all the others, on which we had to. Before solving these equations, we notice that as long

as T > TK , Qss = Q̂ss = 0 and this condition lead to P = P̂ = 0. Thus, rather than solving

a system of equations, we end up with solving a single equation,

Q̂�� =
1

2

Z

Dt



tanh2

✓

q̂ �
q

Q̂��t

◆

+ tanh2

✓

q̂ +

q

Q̂��t

◆�

(31)

and, at the end, we only need to compute the corresponding value for q, given by

q =
1

2

Z

Dt



tanh

✓

q̂ �
q

Q̂��t

◆

+ tanh

✓

q̂ +

q

Q̂��t

◆�

(32)

where Q̂�� is still given by eq. (25) and Dt = N (0, 1) is a Normal Gaussian distribution

with mean 0 and variance 1. Moreover, thanks to this simplification, eq. (21) becomes

��V (q) = �2

✓

1

4
� 1

4
Q3

�� +
1

2
q3
◆

+
1

2
(Q�� � 1)Q̂�� � q̂q + I 0 (33)

where

I 0 =
1

2

Z

Dt



log 2 cosh

✓

q̂ +

q

Q̂��t

◆

+ log 2 cosh

✓

q̂ �
q

Q̂��t

◆�

. (34)
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We can solve eq. (31) for each {�, q̂} by iteration. Finally, plugging the solution in eq.

(33) and eq. (32) we obtain a value for V (q). The results can be seen in Fig. (5). The

dynamical temperature Td is defined as the temperature at which the potential develops a

local minimum at q = q⇤ while the Kauzmann temperature TK as the temperature at which

the local minimum becomes a global one. We see that Td ⇠ 0.681 and TK ⇠ 0.652.
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FIG. 5. Franz-Parisi potential of the Ising 3� spin. The potential has only one minimum at q = 0

in the high temperature phase but as T ! Td ⇠ 0.681 a metastable minimum appear at q⇤ > 0.

This second minimum becomes the global one for T < TK ⇠ 0.652.

B. Complexity

The computation of the complexity of the model o↵ers a di↵erent perspective. The

name complexity denotes the entropy of the number of metastable states that dominate

the Boltzmann weight in the dynamical phase. It can be computed by solving the TAP

equations [13] of the model, as done in [33], or by counting the number of pure states (or

TAP states) of the system. A detailed description of pure states can be found in [5]. They
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can be defined as measures on the configuration space with vanishing connected correlation

functions between far degrees of freedom. This notion is intuitively related to equilibrium

states, where the response function, at long distance, vanishes. Since in mean field model

there is no notion of distance, pure states have to be such that

P !(s1, . . . , sN) =
N
Y

i=1

p!(si) , p!(si) =
1 + sim!

i

2
(35)

where ! identifies one of such states. In other words, in mean field models, pure states

are such that all the connected correlation functions vanish. At high temperatures, only

one such state exist, the paramagnetic state, where mi = 0, 8i. As T decreases, new states

emerge. In this situation, the partition function can be decomposed in the following way

Z =
X

s

e��H(s) =
X

!

e��Nf! , (36)

where f! denotes the internal free energy of the state !. In models without quenched

disorder, when several pure states exist, they can be selected by introducing an external

vanishing field. Unfortunately, spin glasses do not allow for a similar procedure because it

is an unfeasible task to slightly perturb, locally, each spin in the correct direction. In order

to solve this issue, Monasson [14] introduced the method of coupled replicas: replicas act

as teachers for each other, and they all end up in the same pure state. Thus the partition

function of m coupled replicas (m-system from now on) can be written as

Zm =
X

!

e��mNf! =

Z fth

fm

df
X

!

�(f � f!)e
��mNf =

Z fth

fm

df eN [��mf+⌃(f)] (37)

where fm and fth define the limits where pure states can be found and ⌃(f(m,T )) is, by

definition, the complexity of the m�system. Eventually, we will be interested in the limit

m ! 1. This integral can be computed with a saddle point method and gives

�(m,T ) = � T

N
EJ logZm = mf ⇤(m,T )� T⌃(f ⇤(m,T )) . (38)

f ⇤(m,T ) is the free energy of the pure states of the m-system that dominates the Boltzmann

weight at temperature T . Both f ⇤(m,T ) and ⌃(f ⇤(m,T )) can be found by di↵erentiating

�(m,T ):

⌃(f ⇤(m,T )) = m2@ [m
�1��(m,T )]

@m
(39)

f ⇤(m,T ) =
@�(m,T )

@m
(40)
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and thus m can be used as a dummy variable to compute numerically ⌃(f), which is the

entropy of the pure states with free energy equal to f . This is a general protocol that can

be carried out in every model. All we need to do is computing �(m,T ) for which we need

to use replicas:

�(m,T ) = � T

N
EJ logZm = � T

N
lim
n!0

@nEJ(Zm)
n (41)

Introducing the integral representation illustrated in (20), we end up dealing with order

parameters Qab and Q̂ab that now live in a m⇥n dimensional space. These matrices contain

n groups of m-coupled replicas: it is thus natural to employ a 1�RSB ansatz where the

o↵-diagonal elements indexed by {a, b} are zero for a, b not in the same block, and take a

positive value for {a, b} in the same block. These manipulation lead to

�(m, Q̂ss, Qss, T ) = �Tm



�(m� 1)

2
Q̂ssQss +

�2

4

⇥

(m� 1)Q3
ss + 1

⇤

+m�1�� 1

2
Q̂ss

�

(42)

where

� = log

Z

Dt
h

2 cosh(
p

Qsst)
im

(43)

and Q̂ss and Qss are fixed from the saddle point equations

Qss =
2

m� 1

8

>

>

<

>

>

:

�1

2
+

q

Q̂�1
ss

2

Z

Dt t



2 cosh

q

Q̂sst

�m

tanh

✓

q

Q̂sst

◆

Z

Dt



2 cosh

q

Q̂sst

�m

9

>

>

=

>

>

;

(44)

with Q̂ss given by eq. (24). Eq. (44) has three solutions but we are interested only in the

largest one. This is because, at a given m > 1 and T , �(m, Q̂ss = 3�2Q2
ss/2, Qss, T ) has

three stationary points as a function of Qss, the smallest one (Qss = 0) and the largest one

(Qss = q⇤) being minima and the intermediate one being a maximum. These two values

correspond to the overlap of di↵erent replicas in the m-system. As m ! 1+ the two minima

are degenerate but, because of the coupling among replicas, q⇤ has to be preferred. Using

eq. (42) in eq. (39) and eq. (40) we finally obtain

⌃(f ⇤(m,T )) = m2

"

Q̂ssQss

2
� �2

4
Q3

ss +m�2��m�1@m�

#

(45)

f ⇤(m,T ) = (�T )



�m� 1

2
Q̂ssQss +

�2

4

⇥

(m� 1)Q3
ss + 1

⇤

+m�1�� 1

2
Q̂ss

�

+
T

m
⌃(f ⇤(m,T ))

(46)
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that can be used to compute ⌃(f) at di↵erent temperatures by using m as a parameter. This

approach provides a phase diagram in the m�T plane shown in Fig. 6, where three lines can

be identified. m⇤(T ) is the line below which eq. (44) has no solution with q⇤ > 0. Below this

line, the system in the paramagnetic state and the intersection between this line and the line

m = 1 identifies the dynamical transition. ms(T ) is defined as the line where the complexity

vanishes. Its intersection with the line m = 1 identifies TK . The intermediate line, named

mth(T ) defines a non-physical region in this plane, contained between mth(T ) and m⇤(T ).

This region is called non-physical because the e↵ect of increasing m in the ratio m/T is the

same as that of decreasing T . When T decreases, the free energy decreases as well, and

thus regions where the free energy is an increasing function of m are non-physical. mth(T )

crosses and merge with md(T ) for T > Td. Pictorially, this behaviour can be described by

observing that a large m has the same e↵ect of a small T . Thus, at a given T , the region

where f(m,T ) and ⌃(f(m,T )) grow with m is un-physical (since they are both expected to

decrease as we decrease T ). This argument also suggests that m can be e↵ectively used as

parameter that is able to probe non-equilibrium TAP-states. In fact, by definition, in the

region between mth(T ) and ms(T ) the complexity is positive and we see that this region

extends for T > Td, where the original system (that can be recovered for m ! 1) is in the

paramagnetic phase. By the way it shrinks to zero as T grows and the temperature at which

ms(T ) and mth(T ) merge is called TTAP . This is the temperature at which TAP states forms

as non-equilibrium states and its value in this model is TTAP ⇠ 0.764.

C. Entropy of Self-Sustained Clusters

In this section we describe the computation of the entropy of SSC. Similarly to the

computation of the Franz-Parisi potential described above, replicas are introduced to deal

with the the logarithm in eq. (4) and with the Boltzmann weigh in eq. (6). Moreover, in

order to be consistent with the notation used in the Main Text and in the computation of

the Franz-Parisi potential, we denote by � the “internal” variables used to define clusters,

and by s the “external” variables referring to the spin of the configuration s extracted from

the Boltzmann weight. In order to deal with the SSC membership condition, stated in eq.

(3), let us repeat the definition of the local field, already given in eq. (2), and introduce the
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FIG. 6. Phase diagram of the Ising 3�spin in the m� T plane discussed in the text. TK ⇠ 0.652

is defined by the intersection between m = 1 and ms(T ). Td ⇠ 0.681 is defined by the intersection

between m = 1 and m⇤(T ). mth(T ) and m⇤(T ) merge for T > Td. TTAP ⇠ 0.764 is defined from

the intersection between ms(T ) and mth(T ).

two following replicated fields

hi =
1

2

X

j,k

Jijksjsk , (47)

⌘(↵)i =
1

2

X

j,k

Jijk s
(1)
j s(1)k �(↵)

j �(↵)
k , (48)

µ(↵)
i =

X

j,k

Jijk s
(1)
j s(1)k �(↵)

j . (49)

For the sake of convenience, we report here the definition of entropy of SSC that we are

going to compute in the following. S�(r) is defined by

S�(r) = EJEs [ S(r |s, {Jijk})] , (50)
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where S(r |s, {Jijk}) denotes the entropy of SSC in a given configuration s and at a given

quenched disorder realisation {Jijk},

S(r |s, {Jijk}) = N�1 log
X

�

I�(s) �

 

rN �
N
X

i=1

1 + �i

2

!

. (51)

Thanks to the integral representation of the delta function, used to enforce the definitions

of eq. (2), (48) and (49), eq. (50) can be written as

NS�(r) = lim
n!0

lim
m!0

EJ [@mNnm] (52)

where the replicated quantity Nnm is given by

Nnm=
X

{s}

X

{�}

Z

DBB̂ exp

(

�i
X

i

ĥihi � i
X

↵,i

⌘̂(↵)i ⌘(↵)i � i
X

↵,i

µ̂(↵)
i µ(↵)

i

)

⇥ exp

(

+
X

↵

X

ijk

i⌘̂(↵)i

2
Jijks

(1)
j s(1)k �(↵)

j �(↵)
k +

X

↵

X

ijk

iµ̂(↵)
i Jijks

(1)
j s(1)k �(↵)

j

)

⇥ exp

(

X

ijk

iĥi

2
Jijks

(1)
j s(1)k

)

exp

"

��
n
X

a=1

H
�

s(a)
�

#

m
Y

↵=1

Ir�(↵)

�

s(1)
�

, (53)

Ir�(↵)(s
(1)) =

N
Y

i=1

(

1� �(↵)
i

2
+

1 + �(↵)
i

2
✓
h⇣

µ(↵)
i + ⌘(↵)i � hi

⌘

hi � ✏
i

)

�

 

rN �
N
X

i=1

1 + �(↵)
i

2

!

,

(54)

and we introduced the notation

DBB̂ =
Y

i

dĥidhi

2⇡

Y

i,↵

d⌘̂(↵)i d⌘(↵)i

2⇡

Y

i,↵

dµ̂(↵)
i dµ(↵)

i

2⇡
, (55)

and the short-hand notation {s} for {s(1) . . . s(n)}, {�} for {�(1) . . . s(m)}. The term hi

contained in the argument of the Heaviside function in Eq. (54) does not have any replica

index because it only depends on the configuration s = s(1). The e↵ective fields hi, ⌘
(↵)
i and

µ(↵)
i are used to make the argument of the Heaviside function disorder independent, so that

the quenched average can be performed more easily. This average leads to the definition of

several order parameters that we list in Table I. We also need to use the order parameters

defined in eq. (17) and eq. (18). The last order parameter Q1a↵
ss� is equal to m� for a = 1, so

we need to define it only for a 6= 1. Similarly to what has been done in eq. (20), introducing
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TABLE I. Order parameters introduced in the computation of the entropy of SSC. We will also

make use of the order parameters defined in eq. (17) and eq. (18).

Q↵�
⌘̂⌘̂ = � 1

N

P

i ⌘̂
(↵)
i ⌘̂(�)i Q↵�

µ̂µ̂ = � 1
N

P

i µ̂
(↵)
i µ̂(�)

i Q↵�
⌘̂µ̂ = � 1

N

P

i ⌘̂
(↵)
i µ̂(�)

i

C11↵
ĥs�

= i
N

P

i ĥis
(1)
i �(↵)

i Q↵1�
⌘̂s� = i

N

P

i ⌘̂
(↵)
i s(1)i �(�)

i Q↵1�
µ̂s� = i

N

P

i µ̂
(↵)
i s(1)i �(�)

i

Q1a
ĥs

= i
N

P

i ĥis
(a)
i Q↵a

⌘̂s = i
N

P

i ⌘̂
(↵)
i s(a)i Q↵a

µ̂s = i
N

P

i µ̂
(↵)
i s(a)i

Cĥĥ = � 1
N

P

i ĥiĥi C1↵
ĥ⌘̂

= � 1
N

P

i ĥi⌘̂
(↵)
i C1↵

ĥµ̂
= � 1

N

P

i ĥiµ̂
(↵)
i

m� = 1
N

P

i �
(↵)
i Q1a↵

ss� = 1
N

P

i sis
a
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↵
i

the conjugate order parameters we get

EJ [Nnm] =

Z

DBB̂ exp

(

i
X

i

ĥihi + i
X

↵,i
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X
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)

Y
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⌘̂⌘̂ dQ
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µ̂s�dQ

↵1�
µ̂s�
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Y

a<b

dQ̂ab
ssdQ

ab
ss

2⇡

Y

↵

dm̂↵
�dm

↵
�

2⇡

Y

a 6=1↵

dQ̂1a↵
ss� dQ

1a↵
ss�

2⇡

dĈĥĥdCĥĥ

2⇡

Y

↵

dĈ1↵
ĥ⌘̂
dC1↵

ĥ⌘̂

2⇡

Y

↵

dĈ1↵
ĥµ̂
dC1↵

ĥµ̂

2⇡

exp
h

N(� ({Q, Q̂}) + ⌦({Q}))
i

X

{s}

X

{�}

m
Y

↵=1

Ir�(↵)

�

s(1)
�

Y

i

exp
h

N�{si},{�i}

⇣

B̂, {Q̂}
⌘i

(56)

where the auxiliary function  ({Q, Q̂}), ⌦({Q})) and �{si},{�i}

⇣

B̂, {Q̂}
⌘

are defined by:

�i ({Q, Q̂}) =
"

X

↵�

Q̂↵�
⌘̂⌘̂Q

↵�
⌘̂⌘̂ +

X

↵�

Q̂↵�
µ̂µ̂Q

↵�
µ̂µ̂ +

X

↵�

Q̂↵�
⌘̂µ̂Q

↵�
⌘̂µ̂ +

X

↵<�

Q̂↵�
��Q

↵�
��+

+
X

a<b

Q̂ab
ssQ

ab
ss +

X

↵

Ĉ1↵
ĥ⌘̂
C1↵

ĥ⌘̂
+
X

↵

Ĉ1↵
ĥµ̂
C1↵

ĥµ̂
+
X

↵

m̂↵
�m

↵
� +

+
X

↵

Ĉ11↵
ĥs�

C11↵
ĥs�

+
X

↵�

Q̂↵1�
⌘̂s�Q

↵1�
⌘̂s� +

X

↵�

Q̂↵1�
µ̂s�Q

↵1�
µ̂s� + ĈĥĥCĥĥ +

+
X

a

Q̂1a
ĥs
Q1a

ĥs
+
X

a↵

Q̂↵a
⌘̂sQ

↵a
⌘̂s +

X

a↵

Q̂↵a
µ̂sQ

↵a
µ̂s +

X

a 6=1↵

Q̂1a↵
ss�Q

1a↵
ss�

#

, (57)
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⌦({Q}) =3Cĥĥ + 6(Q11
ĥs
)2 +

X

↵�

⇣

3Q↵�
⌘̂⌘̂

�

Q↵�
��

�2
+ 6(Q↵1�

⌘̂s� )
2Q↵�

��

⌘

+

+
X

↵�

⇣

3Q↵�
µ̂µ̂

�

2Q↵�
�� + 2m↵

�m
�
�

�

+ 6(Q↵1�
µ̂s� )

2 + 12Q↵1
µ̂sQ

�1↵
µ̂s�m

�
� + 6Q↵1

µ̂sQ
�1
µ̂sQ

↵�
��

⌘

+

+
X

↵

⇣

6C1↵
ĥ⌘̂
(m↵

�)
2 + 12C11↵

ĥs�
Q↵1

⌘̂sm
↵
� + 12C1↵

ĥµ̂
m↵

� + 12C11↵
ĥs�

Q↵1
µ̂s + 12Q11

ĥs
Q↵1

µ̂sm
↵
�

⌘

+

+
X

↵�

⇣

12Q↵�
⌘̂µ̂Q

↵�
��m

↵
� + 12Q↵1�

⌘̂s�Q
↵1�
µ̂s�m

↵
� + 12Q↵1

⌘̂sQ
↵1�
µ̂s�Q

↵�
��

⌘

+

+
1

4

 

X

ab

(Qab
ss)

3�2 + 2�

 

3Q11
ŝs + 3

X

a 6=1

Q1a
ĥs
(Qab

ss)
2 + 3

X

↵

Q↵1
⌘̂s (m

↵
�)

2+

+3
X

↵

X

a 6=1

Q↵a
⌘̂s (Q

1a↵
ss� )

2 + 6
X

↵

Q↵1
µ̂sm

↵
� + 6

X

↵

X

a 6=1

Q↵a
µ̂sQ

1a↵
ss�Q

1a
ss

!!

, (58)

i�{si},{�i}

⇣

B̂, {Q̂}
⌘

=

"

X

↵�

Q̂↵�
⌘̂⌘̂ ⌘̂

(↵)
i ⌘̂(�)i +

X

↵�

Q̂↵�
µ̂µ̂µ̂

(↵)
i µ̂(�)

i +
X

↵�

Q̂↵�
⌘̂µ̂ ⌘̂

(↵)
i µ̂(�)

i

�
X

↵<�

Q̂↵�
���

(↵)
i �(�)

i �
X

a<b

Q̂ab
sss

(a)
i s(b)i +

X

↵

Ĉ1↵
ĥ⌘̂
ĥi⌘̂

(↵)
i +

X

↵

Ĉ1↵
ĥµ̂
ĥiµ̂

(↵)
i

�
X

↵

m̂↵
��

(↵)
i � i

X

a

Q̂1a
ĥs
ĥis

(a)
i � i

X

a↵

Q̂↵a
⌘̂s ⌘̂

(↵)
i s(a)i � i

X

a↵

Q̂↵a
µ̂s µ̂

(↵)
i s(a)i

�
X

a 6=1↵

Q̂1a↵
ss� s

(1)
i s(a)i �(↵)

i + Ĉĥĥĥiĥi � i
X

↵�

Q̂↵1�
⌘̂s� ⌘̂

(↵)
i s(1)i �(�)

i

� i
X

↵�

Q̂↵1�
µ̂s� µ̂

(↵)
i s(1)i �(�)

i � i
X

↵

Ĉ11↵
ĥs�

ĥis
(1)
i �(↵)

i

#

. (59)

At this point we adopt the RS ansatz illustrated in Table II and Table III. As mentioned

in the Main Text, one should invoke a more complex hierarchical ansatz [3] when averaging

over configurations s but the RS ansatz is valid for all temperatures higher than TK [35]. In

fact, in this regime, the paramagnetic state is replaced by an exponential number of states

whose overlap is zero [36–38], from which a trivial Parisi function P (q) = �(q) is obtained.

Our results are thus valid as long as T > TK . We also employ an RS ansatz for the �-related

order parameters; since � variables are just labels used to define clusters, there is no obvious

reason why a more complicated scheme should be invoked. Let us notice that, by definition,

Qaa
ss = Q↵↵

�� = 1 and thus thus we do not have the conjugate order parameters Q̂aa
ss and Q̂↵↵

�� .

Similarly, since Q11↵
ss� = m↵

� we do not have to define nor Q11↵
ss� nor Q̂11↵

ss� . Moreover, we can
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TABLE II.

8↵

m̂↵
� = m̂� m↵

� = m�

Ĉ1↵
ĥ⌘̂

= Ĉĥ⌘̂ C1↵
ĥ⌘̂

= Cĥ⌘̂

Ĉ1↵
ĥµ̂

= Ĉĥµ̂ C1↵
ĥµ̂

= Cĥµ̂

Ĉ11↵
ĥs�

= Ĉĥs� C11↵
ĥs�

= Cĥs�

TABLE III.

↵ 6= � ↵ = �

Q̂↵�
⌘̂⌘̂ = Q̂⌘̂⌘̂ Q↵�

⌘̂⌘̂ = Q⌘̂⌘̂ Q̂↵�
⌘̂⌘̂ = Ĉ⌘̂⌘̂ Q↵�

⌘̂⌘̂ = C⌘̂⌘̂

Q̂↵�
µ̂µ̂ = Q̂µ̂µ̂ Q↵�

µ̂µ̂ = Qµ̂µ̂ Q̂↵�
µ̂µ̂ = Ĉµ̂µ̂ Q↵�

µ̂µ̂ = Cµ̂µ̂

Q̂↵�
⌘̂µ̂ = Q̂⌘̂µ̂ Q↵�

⌘̂µ̂ = Q⌘̂µ̂ Q̂↵�
⌘̂µ̂ = Ĉ⌘̂µ̂ Q↵�

⌘̂µ̂ = C⌘̂µ̂

Q̂↵�
�� = Q̂�� Q↵�

�� = Q��

Q̂↵1�
⌘̂s� = Q̂⌘̂s� Q↵1�

⌘̂s� = Q⌘̂s� Q̂↵1�
⌘̂s� = Ĉ⌘̂s� Q↵1�

⌘̂s� = C⌘̂s�

Q̂↵1�
µ̂s� = Q̂µ̂s� Q↵1�

µ̂s� = Qµ̂s� Q̂↵1�
µ̂s� = Ĉµ̂s� Q↵1�

µ̂s� = Cµ̂s�

a 6= 1 a = 1

Q̂1a
ĥs

= Q̂ĥs Q1a
ĥs

= Qĥs Q̂1a
ĥs

= Ĉĥs Q1a
ĥs

= Cĥs

Q̂↵a
⌘̂s = Q̂⌘̂s Q↵a

⌘̂s = Q⌘̂s Q̂↵a
⌘̂s = Ĉ⌘̂s Q↵a

⌘̂s = C⌘̂s

Q̂↵a
µ̂s = Q̂µ̂s Q↵a

µ̂s = Qµ̂s Q̂↵a
µ̂s = Ĉµ̂s Q↵a

µ̂s = Cµ̂s

Q̂1a↵
ss� = Q̂ss� Q1a↵

ss� = Qss�

a 6= b

Q̂ab
ss = Q̂ss Qab

ss = Qss

perform the integration over m�, which fixes m� to be equal to 2r � 1, thanks to the delta

functions contained in the Eq. (54). Thanks to the RS ansatz, we can easily linearize the

quadratic terms in eq. (59) in order to compute the sums over {�}, {�} and the integrals

over ĥ, {⌘̂} and {µ̂}. The linearization can be done thanks to the Hubbard-Stratonovich

transformation, which introduces the integration variables z and x, as can be seen in eq. (69)
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and eq. (71). These integrals result in three delta functions, which lead to the expressions

hi = z1 + s(1)i �ĥs , (60)

⌘(↵)i = z2 + x1 + s(1)i �⌘̂s + s(1)i �(↵)
i �⌘̂s� , (61)

µ(↵)
i = z3 + x2 + s(1)i �µ̂s + s(1)i �(↵)

i �µ̂s� , (62)

for the three fields contained in the Heaviside function in eq. (54). According to the value

of the spin s(1)i on which we have to sum over, we define the quantity

✓±x,z({�}) = ✓
h

(z1 ±�ĥs)
⇣

z2 + x1 ±�⌘̂s ±�⌘̂s� + z3 + x2 ±�µ̂s ±�µ̂s� � z1 ⌥�ĥs

⌘i

,

(63)

where we defined

{�} =

8

>

>

>

<

>

>

>

:

�ĥs = Ĉĥs � Q̂ĥs

�⌘̂s = Ĉ⌘̂s � Q̂⌘̂s

�µ̂s = Ĉµ̂s � Q̂µ̂s

. (64)

The RS expression of the quantity given in eq. (53) is thus

EJ [Nnm] =

Z

DQQ̂ exp
h

N
⇣

� ({Q, Q̂}) + ⌦({Q})
⌘

+ �({Q̂})
i

; (65)

where the integration measure DQQ̂ contains all the order parameters defined in Table II

and in Table III, except m�. The three function in the exponent come, respectively, from

the integral representation of the order parameters, from the average over disorder and from

the sum over the spins. Their expressions are

 ({Q, Q̂}) =m(m� 1)

2
Q̂⌘̂⌘̂Q⌘̂⌘̂ +mĈ⌘̂⌘̂C⌘̂⌘̂ +

m(m� 1)

2
Q̂µ̂µ̂Qµ̂µ̂ +mĈµ̂µ̂Cµ̂µ̂ +

+m(m� 1)Q̂⌘̂µ̂Q⌘̂µ̂ +mĈ⌘̂µ̂C⌘̂µ̂ +
m(m� 1)

2
Q̂��Q�� +

n(n� 1)

2
Q̂ssQss +

+mĈĥ⌘̂Cĥ⌘̂ +mĈĥµ̂Cĥµ̂ +mm̂�m� +mĈĥs�Cĥs� + ĈĥĥCĥĥ +

+m(m� 1)Q̂⌘̂s�Q⌘̂s� +mĈ⌘̂s�C⌘̂s� +m(m� 1)Q̂µ̂s�Qµ̂s� +mĈµ̂s�Cµ̂s� +

+ĈĥsCĥs + (n� 1)Q̂ĥsQĥs +mĈ⌘̂sC⌘̂s +m(n� 1)Q̂⌘̂sQ⌘̂s +

+mĈµ̂sCµ̂s +m(n� 1)Q̂µ̂sQµ̂s +m(n� 1)Q̂ss�Qss� +

+
n

2
Q̂ss +

m

2
Q̂�� +mQ̂ss�m� , (66)
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⌦({Q}) =3Cĥĥ + 6C2
ĥs
+ 3m(m� 1)

⇥

Q⌘̂⌘̂Q
2
�� + 2Q2

⌘̂s�Q��

⇤

+ 3m
⇥

C⌘̂⌘̂ + 2C2
⌘̂s�

⇤

+

+6m(m� 1)
⇥

Qµ̂µ̂Q�� +Qµ̂µ̂m
2
�

⇤

+ 6m
⇥

Cµ̂µ̂ + Cµ̂µ̂m
2
�

⇤

+ 6m(m� 1)Q2
µ̂s� +

+6mC2
µ̂s� + 12m(m� 1)Cµ̂sQµ̂s�m� + 12mCµ̂sCµ̂s�m� + 6m(m� 1)C2

µ̂sQ�� +

+6mC2
µ̂s + 6mCĥ⌘̂m

2
� + 12mCĥs�C⌘̂sm� + 12mCĥµ̂m� + 12mCĥs�Cµ̂s +

+12mCĥsCµ̂sm� + 12m(m� 1)Q⌘̂⌘̂Q��m� + 12mC⌘̂µ̂m� + 12mC⌘̂s�Cµ̂s�m� +

+12m(m� 1)Q⌘̂s�Qµ̂s�m� + 12m(m� 1)C⌘̂sQµ̂s�Q�� + 12mC⌘̂sCµ̂s� +

+
1

4

h

n(n� 1)�2Q3
ss + �2n+ 2�

�

3Cĥs + 3(n� 1)QĥsQ
2
ss + 3mC⌘̂sm

2
�+

+3m(n� 1)Q⌘̂sQ
2
ss� + 6mCµ̂sm� + 6m(n� 1)Qµ̂sQss�Qss

�

i

, (67)

�({Q̂}) = log



Z

Dz+ez5�(z4+m̂�)m
⇣

1 +mg+(m̂�, {�})
⌘

(2 cosh z5)
n�1+

+

Z

Dz�e�z5�(z4+m̂�)m
⇣

1 +mg�(m̂�, {�})
⌘

(2 cosh z5)
n�1

�

, (68)

and in the last expression, similarly to what has been done in eq. (23), we defined the

measure

Dz± =

s

det (U±)�1

(2⇡)5

5
Y

k=1

dzk exp

⇢

�1

2
zT
�

U±��1
z

�

,

U± =

0

B

B

B

B

B

B

B

B

@

2Ĉĥĥ Ĉĥ⌘̂ Ĉĥµ̂ ±Ĉĥs� Q̂ĥs

Ĉĥ⌘̂ Q̂⌘̂⌘̂ Q̂⌘̂µ̂ ±Q̂⌘̂s� Q̂⌘̂s

Ĉĥµ̂ Q̂⌘̂µ̂ Q̂µ̂µ̂ ±Q̂µ̂s� Q̂µ̂s

±Ĉĥs� ±Q̂⌘̂s� ±Q̂µ̂s� Q̂�� ±Q̂ss�

Q̂ĥs Q̂⌘̂s Q̂µ̂s ±Q̂ss� Q̂ss

1

C

C

C

C

C

C

C

C

A

, (69)

and the function

g±(m̂�, {�}) = log



1 + e2(z4+m̂�)

Z

Dx✓±x,z({�})
�

, (70)

with the corresponding measure

Dx =

s

detV �1

(2⇡)2

2
Y

k=1

dxk exp

⇢

�1

2
xTV �1x

�

, V =

0

@

�⌘̂⌘̂ �⌘̂µ̂

�⌘̂µ̂ �µ̂µ̂

1

A , (71)

where the entries of the matrix V are given by

�⌘̂⌘̂ = 2Ĉ⌘̂⌘̂ � Q̂⌘̂⌘̂

�µ̂µ̂ = 2Ĉµ̂µ̂ � Q̂µ̂µ̂

�⌘̂µ̂ = Ĉ⌘̂µ̂ � Q̂⌘̂µ̂

, (72)
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and the function ✓±x,z({�}) has been defined in eq. (63). The integral over the inner measure

in eq. (70) can be done analytically using a result that we will mention later, see equations

(145)-(146), and it is equal to

L± =

Z

Dx✓±x,z({�}) = 1� 1

2
erfc

"

c±
p

2Da2±

#

, (73)

where erfc(x) is the complementary error function,

erfc(x) = 1� 2p
⇡

Z x

0

e�t2dt , (74)

and the parameters appearing in its argument are defined by

D = V11 + V22 + 2V12 , (75)

a± = z1 ±�ĥs , (76)

c± =
h

(z2 ±�⌘̂s ±�⌘̂s�) + (z3 ±�µ̂s ±�µ̂s�)� (z1 ±�ĥs)
i

(z1 ±�ĥs) . (77)

Having introduced all these definitions, we can evaluate the integral in eq. (65) with

the steepest descent method, after �i{Q̂} = {Q̂}, where {Q} is the set of all the order

parameters involved. The saddle point equations obtained optimizing with respect to the

original order parameters read

n(n� 1)

2
Q̂ss =

3

4
�2(n� 1)mQ2

ss +
1

4

⇣

6�(n� 1)QĥsQss + 12�m(n� 1)Qµ̂sQss�

⌘

, (78)

Q̂ss� =
3

2
[2�Q⌘̂sQss� +Qµ̂sQss] , (79)

Q̂�� =3
⇥

Q⌘̂⌘̂Q�� +Q2
⌘̂s� +Qµ̂µ̂ + C2

µ̂s + 2Q⌘̂µ̂m� + 2C⌘̂sQµ̂s�

⇤

, (80)

Ĉĥs =
1

4
(6� + 12Cĥs + 12mCµ̂sm�) , (81)

Ĉ⌘̂s =
3

2

⇣

�m2
� + 2Cĥs�m� + 2(m� 1)Qµ̂s�Q�� + 2Cµ̂s�

⌘

, (82)

Ĉµ̂s =
3

2

⇣

�m� + 2(m� 1)Qµ̂s�m� + 2Cµ̂s�m� + 2(m� 1)Cµ̂sQ��+

+2Cµ̂s + 2Cĥs� + 2Cĥsm�

⌘

, (83)

Q̂ĥs =
3

2
�Q2

ss , (84)

Q̂⌘̂s =
3

2
�Q2

ss� , (85)

Q̂µ̂s =3�Qss�Qss , (86)
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Ĉĥĥ =
3

4
, (87)

Ĉ⌘̂⌘̂ =
3

4
, (88)

Ĉµ̂µ̂ =
3

2
(1 +m2

�) , (89)

Ĉ⌘̂µ̂ =3m� , (90)

Ĉĥ⌘̂ =
3

2
m2

� , (91)

Ĉĥµ̂ =3m� , (92)

Q̂⌘̂⌘̂ =
3

2
Q2

�� , (93)

Q̂µ̂µ̂ =3(Q�� +m2
�) , (94)

Q̂⌘̂µ̂ =3Q��m� , (95)

Ĉĥs� =3 [C⌘̂sm� + Cµ̂s] , (96)

Ĉ⌘̂s� =3 [C⌘̂s� + Cµ̂s�m�] , (97)

Ĉµ̂s� =3 [Cµ̂s� + Cµ̂sm� + C⌘̂s�m� + C⌘̂s] , (98)

Q̂⌘̂s� =3 [Q⌘̂s�Q�� +Qµ̂s�m�] , (99)

Q̂µ̂s� =3 [Qµ̂s� + Cµ̂sm� +Q⌘̂s�m� + C⌘̂sQ��] . (100)

In order to simplify the expressions of next saddle point equations we introduce the notation

Dij =
@�

@U+
ij

, Fij =
@�

@Vij

. (101)

At zero order in m and n, it’s easy to see that D0
ij = F 0

ij = 0. Let us also denote by

D1,m
ij ⌘ lim

n!0
lim
m!0

@mDij , (102)

D1,n
ij ⌘ lim

n!0
lim
m!0

@nDij , (103)

F 1,m
ij ⌘ lim

n!0
lim
m!0

@mFij (104)

their O(m) and O(n) contributions. Moreover, it is also useful to introduce

G1,m ⌘ lim
n!0

lim
m!0

@

@Ĉ•
@m� , (105)

where we indicate by Ĉ• any of {Ĉ⌘̂s, Ĉµ̂s, Ĉ⌘̂s�, Ĉµ̂s�}, and

M1,m ⌘ lim
n!0

lim
m!0

@

@m̂�

@m� . (106)
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The saddle point equations obtained optimizing with respect to the conjugate order param-

eters thus read

Qss =1� 2D1,n
55 , (107)

Qss� =m� �D1,m
54 , (108)

Q�� =1� 2D1,m
44 , (109)

Cĥs =O(m) , (110)

C⌘̂s =G1,m , (111)

Cµ̂s =G1,m , (112)

Qĥs =O(m) , (113)

Q⌘̂s =�D1,m
52 , (114)

Qµ̂s =�D1,m
53 , (115)

Cĥĥ =O(m) , (116)

C⌘̂⌘̂ =2F 1,m
11 , (117)

Cµ̂µ̂ =2F 1,m
22 , (118)

C⌘̂µ̂ =2F 1,m
12 , (119)

Cĥ⌘̂ =�D1,m
21 , (120)

Cĥµ̂ =�D1,m
31 , (121)

Q⌘̂⌘̂ =�2D1,m
22 , (122)

Qµ̂µ̂ =�2D1,m
33 , (123)

Q⌘̂µ̂ =�2D1,m
23 , (124)

Cĥs� =�D1,m
41 , (125)

C⌘̂s� =G1,m , (126)

Cµ̂s� =G1,m , (127)

Q⌘̂s� =�D1,m
42 , (128)

Qµ̂s� =�D1,m
43 , (129)
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m� = M1,m . (130)

The reason why we have one equation more with respect to eq. (78)-(100) is that before we

did not have to optimize over m�, while we still have to optimize over m̂�. If we introduce

the term

x± ⌘ c±
p

2Da2±
, (131)

and the functions

f±(z5) =
e±z5

2 cosh(z5)
, (132)

the expressions for the matrices introduced above are

(i, j) = {(2, 2), (3, 3), (2, 3)} :

D1,m
ij =

Z

Dz+T+
ij (z)

⇣

� z4 + g+(m̂�, {�})
⌘

f+(z5)+
Z

Dz�T�
ij (z)

⇣

� z4 + g�(m̂�, {�})
⌘

f�(z5)+

Z

Dz+f+(z5)
e2(z4+m̂�)

eg+
e�x2

+

p
⇡

x+

2D
↵ +

Z

Dz�f�(z5)
e2(z4+m̂�)

eg�
e�x2

�
p
⇡

x�

2D
↵ ,

where ↵ =

8

<

:

1 (i, j) = {(2, 2), (3, 3)}

2 (i, j) = {(2, 3)}
, (133)

(i, j) = {(4, 2), (4, 3), (5, 2), (5, 3)} :

D1,m
ij =

Z

Dz+T+
ij (z)

⇣

� z4 + g+(m̂�, {�})
⌘

f+(z5)+

↵

Z

Dz�T�
ij (z)

⇣

� z4 + g�(m̂�, {�})
⌘

f�(z5)+

�
Z

Dz+f+(z5)
e2(z4+m̂�)

eg+
e�x2

+

p
⇡

sgn(a+)p
2D

+

Z

Dz�f�(z5)
e2(z4+m̂�)

eg�
e�x2

�
p
⇡

sgn(a�)p
2D

,

where ↵ =

8

<

:

1 (i, j) = {(5, 2), (5, 3)}

�1 (i, j) = {(4, 2), (4, 3)}
, (134)

(i, j) = {(2, 1), (3, 1), (4, 4)} :

D1,m
ij =

Z

Dz+T+
ij (z)

⇣

� z4 + g+(m̂�, {�})
⌘

f+(z5)+
Z

Dz�T�
ij (z)

⇣

� z4 + g�(m̂�, {�})
⌘

f�(z5) , (135)
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(i, j) = {(4, 1), (5, 4)} :

D1,m
ij =

Z

Dz+T+
ij (z)

⇣

� z4 + g+(m̂�, {�})
⌘

f+(z5)+

�
Z

Dz�T�
ij (z)

⇣

� z4 + g�(m̂�, {�})
⌘

f�(z5) , (136)

where the terms T±
ij (z) are given by

T±
ij (z) =

8

>

>

>

<

>

>

>

:

P

lp[U
±]�1

li [U±]�1
pj zlzp � [U±]�1

ij i 6= j

1
2

P

lp[U
±]�1

li [U±]�1
pi zlzp � 1

2 [U
±]�1

ii i = j

, z = {z1, z2, z3, z4, z5} , (137)

and the matrix U± has been defined in eq. (69). Above we have the expressions of 12 terms,

but the matrix Dij, defined in eq. (101) should contain 15 independent entries. One of the

missing terms is D55 that we will describe shortly, while the other two are D11 and D51

which account for the O(m) contributions in eq. (113) and eq. (116), that will be discussed

later. D55 appears in eq. (107) but we are interested in its O(n) contribution rather than

its O(m) one:

D1,n
55 =

1

2
� 1

2

Z

Dt tanh2

✓

t

q

Q̂ss

◆

. (138)

We notice that with this expression, eq. (78) and eq. (107) correctly describe the reference

system in the RS phase only under the hypothesisQĥs = 0, Qµ̂sQss� = 0. In fact the reference

system should not be a↵ected by the order parameters related to the computation of the

entropy of clusters, following the considerations made in the computation of the Franz-Parisi

potential. Our approach to deal with this problem will be to assume Qĥs = 0, Qss� = 0

and check that these conditions hold self-consistently. Before discussing this problem, we

give the expressions for the other matrix terms appearing in the equations above. The three

terms F 1.m
ij appearing in equations (117)-(119) are given by

F 1,m
ij =

Z

Dz+ f+(z5)
@g+

@Vij

+

Z

Dz� f�(z5)
@g�

@Vij

, (139)

@g±

@Vij

=
n

eg
±
o�1



e2(z4+m̂�)

Z

Dx tij(x)✓
±
x,z({�})

�

; (140)

(141)
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where

tij(x) =

8

>

>

>

<

>

>

>

:

P

lp[V ]�1
li [V ]�1

pj xlxp � [V ]�1
ij i 6= j

1
2

P

lp[V ]�1
li [V ]�1

pi xlxp � 1
2 [V ]�1

ii i = j

; x = {x1, x2} . (142)

We introduced the term G1,m because di↵erentiating �({Q̂}) with respect to Ĉ⌘̂s, Ĉµ̂s, Ĉ⌘̂s�,

Ĉµ̂s� results in the same expression, as can be seen in eq. (63). This quantity is given by

G1,m =

Z

Dz+f+(z5)i+(z)
e2(m̂�+z4)

eg+
(z1 +�ĥs) +

�
Z

Dz�f�(z5)i�(z)
e2(m̂�+z4)

eg�
(z1 ��ĥs) , (143)

(144)

and it appears in eqs. (111), (112), (126) and (127). The integrals i±(z), introduced above,

can be defined by replacing the Heaviside function in eq. (73) by a Dirac delta,

i±(z) =

Z

Dx�±z,x({�}) , (145)

and are given by

i±(z) =
1p

2⇡D|a±|
exp

"

�1

2
D�1

✓

c±
a±

◆2
#

(146)

and the parameters a±, c± have been defined in eqs. (76)-(77). Finally the term M1,m,

appearing in eq. (130), is given by

M1,m = �1 +

Z

Dz+ f+(z5)
@g+

@m̂�

+

Z

Dz� f�(z5)
@g�

@m̂�

. (147)

where the internal derivative will be discussed later.

At this point let us notice that we have 24 saddle point equations arising from the

optimisation with respect to the conjugate order parameters, see equations (107)-(130), but

above we provided 13 expressions for Dij, 3 expressions for Fij, the expression for G1,m,

appearing in 4 equations, and the expression for M1,m, describing in total 21 of those saddle

point equations. In other words we still need to describe the three equations, namely eq.

(110), eq. (113) and eq. (116) and we are going to do it in the following lines, discussing the

ansatz mentioned above. First of all, as long as T > TK , we can safely set Q̂ss = Qss = 0.

Moreover, we assume Qĥs = Qss� = 0, so that equations (79), (84), (85) and (86) lead to
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Q̂ss� = 0 and Q̂ĥs = Q̂⌘̂s = Q̂µ̂s = 0. These simplifications allow to write the matrix U±,

defined in eq. (69), in the following way

U± = lim
Q̂ss!0

0

B

B

B

@

0
0
0

U±
4

0
0 0 0 0 Q̂ss

1

C

C

C

A

, U±
4 =

0

B

B

B

@

2Ĉĥĥ Ĉĥ⌘̂ Ĉĥµ̂ ±Ĉĥs�

Ĉĥ⌘̂ Q̂⌘̂⌘̂ Q̂⌘̂µ̂ ±Q̂⌘̂s�

Ĉĥµ̂ Q̂⌘̂µ̂ Q̂µ̂µ̂ ±Q̂µ̂s�

±Ĉĥs� ±Q̂⌘̂s� ±Q̂µ̂s� Q̂��

1

C

C

C

A

. (148)

While checking the self consistency of Qss = Q̂ss = 0 is very easy, it is slightly more involved

to prove that Qss� = Qĥs = 0 is a self-consistent solutions as well. Let us first consider the

condition Qss� = 0 and notice that all we need to do is to show the equality D1,m
54 = M1,m,

as follows from eq. (108) and (130). M1,m, given in eq. (147), contains an inner derivative

that we did not discuss before. In fact, given the symmetric role of m̂� and z4 in g±, see eq.

(70), we have
@g±(m̂�, {�})

@m̂�

=
@g±(m̂�, {�})

@z4
. (149)

Integrating by parts and di↵erentiating the Gaussian measure, we get

M1,m = �1+

Z

Dz+
"

X

k

[U+]�1
4k zk

#

f+(z5)g
+(m̂�, {�}) + (150)

Z

Dz�
"

X

k

[U�]�1
4k zk

#

f�(z5)g
�(m̂�, {�}) . (151)

Thanks to eq. (148) we can isolate the measure on z5 in Dz±,

Dz± ⌘ Dz±4 Dz5 , Dz5 =

s

Q̂�1
ss

2⇡
exp



�1

2
z25Q̂

�1
ss

�

dz5 (152)

and, given the definition in eq. (132), it is easy to prove that

lim
Q̂ss!0

Z

Dz5f
±(z5) =

1

2
. (153)

Using this equality in eq. (151) we obtain

M1,m = �1+
1

2

Z

Dz+4

"

X

k

[U+]�1
4k zk

#

g+(m̂�, {�}) +

1

2

Z

Dz�4

"

X

k

[U�]�1
4k zk

#

g�(m̂�, {�}) (154)

and now we need to show that D1,m
54 has the very same expression under the ansatz that we

are considering. This can be done by noticing that the inverse of the matrix U± is block
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diagonal as well

[U±]�1 = lim
Q̂ss!0

0

B

B

B

@

0
0
0

[U±
4 ]

�1

0
0 0 0 0 Q̂�1

ss

1

C

C

C

A

(155)

and thus, since [U±]�1
54 = 0, eq. (137) leads to

T±
54(z) = lim

Q̂ss!0

X

p

[U±]�1
4p zpQ̂

�1
ss z5 . (156)

D1,m
54 is given by eq. (136) and, decoupling Dz5 and Dz±4 as in eq. (152), we can write its

two contributions as

Z

Dz±T±
54(z)g

±(m̂�, {�})f±(z5) =

Z

Dz±4 Dz5
X

p

[U±]�1
4p zpQ̂

�1
ss z5g

±(m̂�, {�})f±(z5) ,

(157)
Z

Dz±T±
54(z)z4f

±(z5) =

Z

Dz±4 Dz5
X

p

[U±]�1
4p zpQ̂

�1
ss z5z4f

±(z5) . (158)

We can integrate over z5 in both the right hand sides of the equations

lim
Q̂ss!0

Z

Dz5Q̂
�1
ss z5f

±(z5) = ±1

2
, (159)

because g±(m̂�, {�}) does not depend on z5 and thus we obtain

D1,m
54 =�1

2

Z

Dz+4
X

p

[U+]�1
4p zpz4 �

1

2

Z

Dz�4
X

p

[U�]�1
4p zpz4 +

+
1

2

Z

Dz+4
X

p

[U+]�1
4p zpg

+(m̂�, {�}) + 1

2

Z

Dz�4
X

p

[U�]�1
4p zpg

�(m̂�, {�})(160)

Finally, integrating over the four dimensional measure the product zpz4, we obtain

D1,m
54 = �1+

1

2

Z

Dz+4

"

X

k

[U+]�1
4k zk

#

g+(m̂�, {�}) +

1

2

Z

Dz�4

"

X

k

[U�]�1
4k zk

#

g�(m̂�, {�}) (161)

and so we recognise that D1,m
54 = M1,m, see eq. (154). This strategy can be used also to

prove that the zero order terms in the equations leading to Cĥs, Qĥs and Cĥĥ is zero, i.e.

to prove equations (110), (113) and (116), where the second one is needed to check the

self-consistency of the considered ansatz.
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The manipulations discussed above lead to a simplified system, that contains only 9

equations, to be compared with the 23 + 24 = 47 equations we had before, that we will

describe below. In fact, plugging equations (66), (67) and (68) in eq. (65), and using this

equation in eq. (52), we end up with an expression of S�(r) that can be written in terms

of the original order parameters (i.e. without the conjugate ones) thanks to the equations

(78)-(100). In the present ansatz this expression is

S�(r) =
3

2
Q2

µ̂s� �
3

2
Q2

⌘̂s� + 6Qµ̂s�Q��G
1,m + 3[G1,m]2(Q�� � 1) +

3

2
Q��Qµ̂µ̂ +

+
3

2
Q⌘̂⌘̂Q

2
�� + 4Q⌘̂µ̂Q��m� �

3

2
Q⌘̂⌘̂Q�� �

3

2
Qµ̂µ̂ � 3Q⌘̂µ̂m� � 3G1,mQµ̂s� +

+3Q2
⌘̂s�Q�� + 3G1,mm�Qµ̂s� + 3Q⌘̂s�Qµ̂s�m� � 6[G1,m]2(1 +m�) +

�3[G1,m]m�Cĥs� � 3G1,mCĥs� � m̂�m� + @m� , (162)

where the last term is given by

@m� = �m̂� +
1

2

Z

Dz+4 g
+(m̂�, {�}) + 1

2

Z

Dz�4 g
�(m̂�, {�}) . (163)

As mentioned above, m� is fixed to be 2r � 1, so that it gives the size of the SSC. The

four dimensional measure Dz±4 can also be partially expressed in terms of the original order

parameters and reads

U±
4 =

0

B

B

B

B

B

@

3
2

3
2m

2
� 3m� ±Ĉĥs�

3
2m

2
�

3
2Q

2
�� 3Q��m� ±Q̂⌘̂s�

3m� 3Q��m� 3(Q�� +m2
�) ±Q̂µ̂s�

±Ĉĥs� ±Q̂⌘̂s� ±Q̂µ̂s� Q̂��

1

C

C

C

C

C

A

. (164)

The list of 9 order parameters that we need to determine in order to compute the entropy

of SSC at size r is

m�, Q��, G1,m, Cĥs�, Q⌘̂s�, Qµ̂s�, Q⌘̂⌘̂, Qµ̂µ̂, Q⌘̂µ̂ , (165)

as can be seen in eq. (162). Now we are going to show how to compute these order parameters

self-consistently. First of all, let us notice that once this list is known, using equations (80),

(96), (99) and (100), we obtain

Q̂�� =3(Q⌘̂⌘̂Q�� +Q2
⌘̂s� +Qµ̂µ̂ + [G1,m]2) + 6(Q⌘̂µ̂m� +G1,mQµ̂s�) , (166)

Ĉĥs� =3G1,m(1 +m�) , (167)

Q̂⌘̂s� =3(Q⌘̂s�Q�� +Qµ̂s�m�) , (168)

Q̂µ̂s� =3(Qµ̂s� +Q⌘̂s�m� +G1,m(m� +Q��)) , (169)
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and so the matrix U±
4 in eq. (164) is fully specified. Moreover, m� and Q�� completely

specify V as well. In fact, using eq. (71) and eq. (72), thanks to the equations (88), (89),

(90), (93), (94) and (95), we obtain

V =

0

@

3
2(1�Q2

��) 3m�(1�Q��)

3m�(1�Q��) 3(1�Q��)

1

A (170)

so that D is well defined as well, see eq. (75). Using eq. (81), (82), (83), (97) and (98), the

9 parameters above determine also the following order parameters

Ĉĥs =
3

2
� (171)

Ĉ⌘̂s =
3

2
�m2

� + 3Cĥs�m� � 3Qµ̂s�Q�� + 3G1,m , (172)

Ĉµ̂s =
3

2
�m� � 3Qµ̂s�m� + 3G1,mm� � 3G1,mQ�� + 3G1,m + Cĥs� , (173)

Ĉ⌘̂s� =3G1,m(1 +m�) , (174)

Ĉµ̂s� =6G1,m(1 +m�) . (175)

Remembering that Q̂ĥs = Q̂⌘̂s = Q̂µ̂s = 0, we can compute c±, see eq. (77), and x±,

see eq. (131). L± can be defined as well and so we have everything we need to compute

g±(m̂�, {�}). All we need to do at this point is to solve self-consistently the equations

for the 9 order parameters specified above. For the sake of readability, we report all these

equations below:

m� =�1 +
1

2

Z

Dz+4

"

X

k

[U+]�1
4k zk

#

g+(m̂�, {�}) +

1

2

Z

Dz�4

"

X

k

[U�]�1
4k zk

#

g�(m̂�, {�}) , (176)

Q�� =1� 1

2

Z

Dz+4 T
4,+
4,4 (z)g+(m̂�, {�})�

Z

Dz�4 T
4,�
4,4 (z)g�(m̂�, {�}) , (177)

G1,m =
1

2

Z

Dz+4
e2(m̂�+z4)

eg+
i+(z)(z1 + Ĉĥs)�

1

2

Z

Dz�4
e2(m̂�+z4)

eg�
i�(z)(z1 � Ĉĥs) , (178)
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Cĥs� =
1

2

Z

Dz+4 T
4,+
4,1 (z)g+(m̂�, {�})� 1

2

Z

Dz�4 T
4,�
4,1 (z)g�(m̂�, {�}) , (179)

Q⌘̂s� =�1

2

Z

Dz+4 T
4,+
4,2 (z)g+(m̂�, {�}) + 1

2

Z

Dz�4 T
4,�
4,2 (z)g�(m̂�, {�})

+
1

2

Z

Dz+4
e2(z4+m̂�)

eg+
e�x2

+

p
⇡

sgn(a+)p
2D

� 1

2

Z

Dz�4
e2(z4+m̂�)

eg�
e�x2

�
p
⇡

sgn(a�)p
2D

, (180)

Qµ̂s� =�1

2

Z

Dz+4 T
4,+
4,3 (z)g+(m̂�, {�}) + 1

2

Z

Dz�4 T
4,�
4,3 (z)g�(m̂�, {�})

+
1

2

Z

Dz+4
e2(z4+m̂�)

eg+
e�x2

+

p
⇡

sgn(a+)p
2D

� 1

2

Z

Dz�4
e2(z4+m̂�)

eg�
e�x2

�
p
⇡

sgn(a�)p
2D

, (181)

Q⌘̂⌘̂ =�
Z

Dz+4 T
4,+
22 (z)g+(m̂�, {�})�

Z

Dz�4 T
4,�
22 (z)g�(m̂�, {�}) +

�
Z

Dz+4
e2(z4+m̂�)

eg+
e�x2

+

p
⇡

x+

2D
�
Z

Dz�4
e2(z4+m̂�)

eg�
e�x2

+

p
⇡

x�

2D
, (182)

Qµ̂µ̂ =�
Z

Dz+4 T
4,+
33 (z)g+(m̂�, {�})�

Z

Dz�4 T
4,�
33 (z)g�(m̂�, {�}) +

�
Z

Dz+4
e2(z4+m̂�)

eg+
e�x2

+

p
⇡

x+

2D
�
Z

Dz�4
e2(z4+m̂�)

eg�
e�x2

+

p
⇡

x�

2D
, (183)

Q⌘̂µ̂ =�1

2

Z

Dz+4 T
4,+
23 (z)g+(m̂�, {�})� 1

2

Z

Dz�4 T
4,�
23 (z)g�(m̂�, {�}) +

�
Z

Dz+4
e2(z4+m̂�)

eg+
e�x2

+

p
⇡

x+

2D
�
Z

Dz�4
e2(z4+m̂�)

eg�
e�x2

+

p
⇡

x�

2D
, (184)

where, consistently with the notation adopted in eq. (137), we defined

T 4,±
ij (z) =

8

>

>

>

<

>

>

>

:

P

lp[U
±
4 ]

�1
li [U±

4 ]
�1
pj zlzp � [U±

4 ]
�1
ij i 6= j

1
2

P

lp[U
±
4 ]

�1
li [U±

4 ]
�1
pi zlzp � 1

2 [U
±
4 ]

�1
ii i = j

, z = {z1, z2, z3, z4} . (185)

This is a complicated system of equations that can be solved numerically by iteration. For

each given value of m̂� and �, we start with some trial values of the order parameters

listed in eq. (165). We compute all the quantities discussed above in order to perform

the integrals in equations (176)-(184) and we end up with a new list of order parameters.

Integrals over the Gaussian measures are computed using a MonteCarlo sampling method.

The number of random 4-dimensional vectors that we need to sample in order to get reliable

results is O(108). We iterate this process until convergence by computing the di↵erence
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between the old and the new order parameters starting from di↵erent initial conditions.

The first equation provides the r which corresponds to the initial choice of m̂� and �. The

corresponding entropy is then provided from eq. (162). Usually, O(200) iteration steps are

required to get a good solution. We never find multiple solutions starting from di↵erent

initial conditions but the quality of the solution is found to depend on r. In particular,

when r is very close to 1, the error on the final result is larger because it becomes more and

more di�cult to invert the matrices U and V . By the way, as the result presented in Fig.

(1) of the Main Text show, this is not a practical problems, since as long as solutions can

be found the profile of the entropy S�(r) is very smooth.

Finally, we would like to discuss how to compute the distribution of local fields in SSC

recycling all the e↵ort made up to now. To this aim, let us introduce

NS�
�(r) = EJEs log

X

�

I��(s) �

 

rN �
N
X

i=1

1 + �i

2

!

(186)

where I��(s), given eq. (5), is defined by

I��(s) =
N
Y

i=1

⇢

1� �i

2
+

1 + �i

2
✓
⇥

u2
i � (vi + wi)

2 � ✏
⇤

e��(hi��)

�

. (187)

This quantity has two important properties. The trivial one is that lim�!0 S
�
�(r) = S�(r).

The less trivial one is that the derivative of this function leads to eq. (8). In fact, let us

compute

N lim
�!0

@�S
�
�(r) = EJEs

"

X

�

Ir�(s)

#�1
X

�,i

I(i),r� (s)

✓

1 + �i

2

◆

✓
⇥

u2
i � (vi + wi)

2 � ✏
⇤

�(hi � �)

(188)

where Ir�(s) has been defined in eq. (10) and I
(i),r
� (s) is given by

I(i),r� (s) = I(i)� (s)�

 

rN �
N
X

i=1

1 + �i

2

!

, (189)

where

I(i)� (s) =
Y

j 6=i



1� �j

2
+

1 + �j

2
✓
⇥

u2
j � (vj + wj)

2 � ✏
⇤

�

. (190)

In order to recognize that the right hand side of eq. (188) is strictly related to eq. (8), we

only need to show that

I(i),r� (s)

✓

1 + �i

2

◆

✓
⇥

u2
i � (vi + wi)

2 � ✏
⇤

= Ir�(s)

✓

1 + �i

2

◆

. (191)
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This equality can be verified by the following considerations. First of all let us notice that

if �1 = �1, eq. (191) is trivially satisfied. Moreover, the indicator function in Ir�(s), given

in eq. (5), is one if and only if the cluster specified by � (i.e. those spins where �i = 1)

is self-sustained and the same condition holds for I(i)� (s) that, as seen in the definition in

eq. (189), is one if and only if the cluster specified by �\�i is self-sustained. Thus, even

when �1 = 1, we see that I(i)� (s) in the left hand side lacks a condition on the spin si that is

explicitly enforced by the Heaviside function. Thus, eq. (188) leads to

r�1 lim
�!0

@�S
�
�(r) = Pr(h = �) . (192)

Numerically, we worked with a small value of � = 0.1 and we solved the two sets of saddle

point equations with � = 0 and � 6= 0. In the second case, all we need to do is replacing eq.

(5) with eq. (187) and repeat the derivation illustrated above. The only di↵erence arises

when computing the integrals over Dx in eq. (73):

L± =

Z

Dx✓±x,z({�}) 7�! L�
± =

Z

Dx✓±x,z({�})e��(hi��) (193)

where hi is actually independent of x, and it is given by eq. (60). Since we are only interested

in the limit � ⇠ 0, we can replace

e��(hi��) ⇠ 1 + ��(hi � �) = 1 + ��(z1 ±�ĥs � �) , (194)

and, in the numerical iteration process, we approximated the delta function by a Gaussian

function with a small variance. Subtracting S�=0
� (r) from S�=0.1

� (r), we computed the points

in the inset of Fig. (4). Continuous lines are then obtained by fitting Gaussians to these

points.

D. Exhaustive Calculation of SSC Entropy in Small Systems

To verify our analytical results, we calculate the empirical entropy of SSC in small p-spin

systems. As we have discussed in the main paper, the entropy S�(r) of SSC is given by Eqs.

(4) - (6)

S�(r) = J s [S(r |s, {Jijk})] .

where

S(r|s, {Jijk}) =
1

N
log
X

�

�(s)�

 

rN �
N
X

i=1

1 + �i

2

!

,
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which leads to

S�(r) = J s

"

1

N
log
X

�

�(s)�

 

rN �
N
X

i=1

1 + �i

2

!#

. (195)

However, in small systems, SSC of specific size may be absent in some spin configurations

due to finite-size e↵ect. This implies that for these particular spin configurations, �(s) = 0

for some r such that the logarithm and hence S(r|s, {Jijk}) become negative infinity for some

r. In order to compute the entropy of SSC, one has to average S(r|s, {Jijk}) over all spin

configurations subject to Boltzmann weights. If there exists at least one spin configuration

where SSC of size r are absent, and if the same happen for all r, then s [S(r |s, {Jijk})] = 0

for all r. In other words, the entropy of SSC becomes undefined even there are SSC for a

majority of spin configurations.

To cope with this problem in the exhaustive calculation on small systems, we modify the

definition of the entropy of SSC as follows:

S�(r) = J

(

1

N
log s

"

X

�

�(s)�

 

rN �
N
X

i=1

1 + �i

2

!#)

. (196)

In this case, for a particular set of quenched disorders J , the number of SSC is averaged

over spin configurations before the logarithm is taken for the computation of entropy. This

expression is di↵erent from Eq. (195), where the entropy of SSC is computed for individual

spin configuration and the average over spin configurations is taken afterwards. As a result,

the empirical results obtained by Eq. (196) are in principle di↵erent from the analytical

results obtained by Eq. (195), but the comparison between the two would still serve as a

good mean of verification for the analytical results.

Regarding the computational complexity of the calculation, the exact computation of

SSC entropy on a system of size N involves an average over all spin configurations and the

summation over all �, resulting in 22N computations which are computationally infeasible

even for N ⇡ 20. We thus sample spin configurations according to Boltzmann weights at

temperature T instead of averaging over all spin configurations. For each of the sampled

spin configuration, we compute the number of SSC with size r by exhaustive search over all

�. By averaging the number of SSC with size r and taking the logarithm, we obtain the

SSC entropy of small systems given by Eq. (196). The results are shown in Fig. 2 of the

main paper, which matches qualitatively with the analytical results.
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E. The decomposition of the field in a general p-spin model

According to Eq. (2) of the main text, one can split the contributions to the local field

hi of a spin i in a 3-spin model into the internal field ui, the external field vi or mixed field

wi. For a spin i in a general p-spin model, the corresponding fields are defined similarly as

hi =
1

(p� 1)!

X

j1,...,jp

Jij1,...,jpsj1 , . . . , sjp =
1

(p� 1)!
(ui + ti) , (197)

where

ui =
X

j1,...,jp2C

Jij1,...,jpsj1 , . . . , sjp , (198)

ti =
X

{j1,...,jp|j1[j2[···[jp /2C}

Jij1,...,jpsj1 , . . . , sjp . . (199)

In the second term, at least one of the spins we are summing over does not belong to cluster

C. In the 3-spin case, ti corresponds to the sum of vi and wi defined in Eq. (2) of the main

text.
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