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Life is a series of collisions with the future; it is not the sum of what we have been, but what we 
yearn to be. Jose Ortega y Gasset 

 

A leader summons her team for a meeting – substantial changes within the organization are on 

the agenda, and what Ortega y Gasset colorfully terms ‘collisions with the future’ are beginning 

to unfold. Despite all preparations, up to and including taking into account insights from state-of-

the art organizational research, the leader is likely to face a complex mélange of non-negotiable 

facts, fluid social networks, and internal environments, creating unpredictability and tension that 

the leader is required to negotiate to be successful (Hannah, Schaubroeck & Peng, 2015). The 

team members will collide too. Long held plans may or may not bear out, or avenues for 

improvement previously considered closed may become newly-open during negotiations. Who 

can predict the precise outcome? Will the team members accept the propositions or consider 

them unacceptable and fight back as strong as legally possible?  

Many aspects of this perhaps not-so-hypothetical scenario above are amenable to 

investigation using traditional neuroscience methodology, employing well-controlled 

experimental protocols and stimuli, where individual factors such as mood state or vigilance may 

be used as regression variables for analysis. Such stimulus- or event-based approaches are 

dominant in neuroscience, including functional neuroimaging, where the brain is seen as an 

essentially reactive system. Accordingly, some sensory input causes some neural activity, which 

in turn results in some important response such as for example a motor activity, or some 

hypothesized higher-level cognitive or affective process (Bechtel & Abrahamsen, 2010a; Raichle 

& Snyder, 2007). This approach has its roots in Sherrington’s (1906) early work, and has 

underpinned most existing neuroscience work, leading to enormous advances in our 

understanding of the brain’s structure, operation, and functional organization. In this view, the 
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brain is primarily driven by the demands of the environment, and brain activity that is not in 

response to some input is regarded as noise. It is not overstating the case to suggest that this 

reactive approach is the foundation for cognitive science in general. 

The reactive view, however, has limitations. It has been demonstrated over and over that 

the behavioral response can be highly variable given a constant set of stimulus parameters, and 

controlling for factors such as trial history and fatigue. For example even basic response times to 

salient stimulation can exhibit a 4- to 5-fold intra-subject variability. Commonly, variability is 

considered ‘noise’, explained to some extent by theories of stochastic neuronal networks, and 

taken out of consideration through averaging or other statistical manipulation of data. This is 

approach is unfortunate for two reasons. First, there is reason to assume that response variability 

is important to free a being from stereotypic and predictable behavioral patterns in order to 

adaptively respond to changes in the environment. This, for example, is reflected in certain 

models of sensori-motor processes explicitly linking variability in reaction time to variability in 

choice or decision outcome (see, e.g., Bompas, Sumner, Muthumumaraswamy, Singh & 

Gilchrist, 2015). Second, it ignores the possibility that the apparent fluctuations in behavior are 

related to, and to some extent are predicted by, the endogenous brain activity present at all times. 

The latter possibility could be termed the intrinsic view, and is essentially based on Hebbian 

reasoning, expressed magisterially many decades ago: “ … It is therefore impossible that the 

consequence of a sensory event should often be uninfluenced by the existing activity …” (Hebb, 

1949 cited in Sporns, 2011 p. 149). Regrettably though, it appears the quick progress of 

knowledge from experimental event-related methods, which imply a reactive view, has led to a 

general ignorance of the intrinsic (endogenous) view. 
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Unsurprisingly, given the dominance of the reactive view of brain function in 

neuroscience and psychology in general, the recent growth of neuroscience-based research in the 

organizational sciences has been entirely based on the reactive view. In this paper, we wish to 

make a case for an increased consideration of the intrinsic view of brain activity, and explain the 

basic conceptual and methodological principles behind the study of endogenous brain activity 

(EBA) and its influence on responses relevant to organizational research. Importantly, we will 

show that EBA is not merely of interest to basic neuroscience, but has major implications for the 

theory and practice of organizational research in many different ways. Indeed, we hope to 

convince readers that without considering EBA, organizational researchers can never provide 

more than a partial picture of human behavior in organizational contexts. 

Further, we will show how consideration of EBA helps to respond to recent challenges to 

organizational cognitive neuroscience regarding theories and methodologies (see Senior, Lee, & 

Butler, 2011), as well as to recent skepticism about the feasibility and usefulness of neuroscience 

based approaches to organizational research (see Lindebaum, 2016). We will argue that 

incorporating an understanding of the role of EBA in social and organizational behavior helps to 

move beyond the restrictions of a reactive approach and associated subtractive methodology (i.e. 

the binary mapping of firing / dormant neurons in a specific brain region in response to some 

isolated stimulus). Taking account of EBA considers the brain in its entirety, as a continuously 

operating cognitive unit that processes the complexity of our social interactions and responds 

appropriately, thereby revolutionizing our understanding of the brain in organizational research. 

 

AN INTRODUCTION TO ENDOGENOUS BRAIN ACTIVITY 
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The brain is never inactive. Obviously, one might think. As with all organs in the human body 

the brain’s cells are constantly engaged in the highly complex biochemical processing necessary 

to maintain the homeostasis needed to stay alive. However, there is more to the high levels of 

intrinsically generated neuronal activity occurring continuously than basic homeostasis. Such 

spontaneous activity, also called resting or ongoing activity, is not limited to subcortical, life-

maintaining structures and can be detected throughout the brain’s cortical regions, reflecting 

neuronal communication not attributable to specific inputs or outputs (Fox & Raichle, 2007). 

Already known to exist in the late 19th century, the nature of the brain’s spontaneous activity has 

only recently been clarified through advances in neuroscience. It is now generally accepted that 

the brain’s resting activity is not simply neuronal noise but rather exhibits specific patterns of 

coherence of neuronal processes reflecting to some degree the underlying global and local 

neuroanatomy (Fox, Snyder, Vincent, Corbetta, Van Essen & Raichle, 2005; Damoiseaux, 

Rombouts, Barkhof, Scheltens, Stam, Smith et al, 2006 and see Biswal, 2012). 

Such patterns are observable across different behavioral states, including different resting 

conditions, sleep, and even anesthesia (Scholvincka, Maiera, Yec, Duynd & Leopold, 2010). The 

mechanisms underlying spontaneous firing are complex, where, at one end of the spectrum, 

genetic factors (Wang, Belgard, Mao, Chen, Berto, Preuss et. al., 2015) are likely to play a role 

and, at the other end, environmental factors and learning can impact the patterns of activity 

(Lewis, Baldassarre, Committeri, Romani & Corbetta, 2009). It is generally agreed, however, 

that the coherence patterns observed in spontaneous activity are not simply due to unconstrained 

tasks or conscious mentation. In other words, the brain’s resting activity goes beyond processes 

related to mental tasks, spontaneously occurring in situations without explicit task demands (Fox 

& Raichle, 2007). 
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For example, a well-documented coherence pattern is the default mode network that has 

been implicated in, amongst others, social cognition and emotional self-awareness (Schilbach, 

Eickhoff, Rotarska-Jagiela, Fink, & Vogeley, 2008; aspects of the default mode network relevant 

to organizational research are discussed in Boyatzis, Rochford & Jack, 2014). Evidence obtained 

mainly from metabolism based (i.e., fMRI) studies suggests that brain areas that are similarly 

modulated by various task paradigms tend also to be correlated in their spontaneous activity 

measured at rest (Fox & Raichle, 2007). Over and above rest versus task comparisons, so-called 

pre-stimulus designs are of utmost importance here. Such studies directly investigate the 

relationship between the omnipresent spontaneous activity and event-related activity elicited by 

tightly controlled stimuli.  

Two general and interrelated observations are relevant at this point. First, the event-

related increase in neuronal metabolism is generally minute compared to the vast amount of 

energy needed to maintain resting activity (about 20% of the body’s basal metabolic rate), even 

under demanding task conditions (Raichle & Mintun, 2006). This implies that stimulus and/or 

task driven neuronal processing is not simply matter of enhanced mental efforts draining more of 

the available energy but rather matter of temporarily redistributing energy across brain regions 

and reorganizing the dynamic makeup of neuronal networks without necessarily altering overall 

energy expenditure.  

Second, there is consensus that spontaneous activity accounts to some extent for the inter-

trial variability of event-related neuronal response observed within subjects under otherwise 

identical task conditions (Mennes, Kelly, Zuo, Di Martino, Biswal & Castellanos, 2010). This 

interaction between spontaneous and event-related is increasingly being recognized as a 

complex, non-linear process featuring distinct and reproducible patterns (Huang, Zhang, Longtin, 
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Dumont, Duncan, Pokorny et. al., 2015). Here, non-linearity is key, suggesting that event-related 

activity interacts dynamically with the spontaneous activity, rather than simply being added to it. 

From a system neuroscience perspective (e.g. Uddin & Menon, 2010), the precise nature of 

interaction between the two types of activities is yet unresolved. The evidence accumulated from 

mainly electrophysiological studies, however, points to a variety of possibly interrelated 

mechanisms. Amongst others, the spontaneous activity may reflect periodic variations in cortical 

excitability serving as a form of gain control for incoming neuronal responses (Chaumon & 

Busch, 2014). Alternatively, stimulation may enhance spontaneously formed and pre-existing (at 

the moment of stimulus arrival) causal interaction between brain regions (Lou, Joensson, 

Biermann-Ruben, Schnitzler, Østergaard, Troels et.al., 2011). 

Most important, the effect that pre-stimulus brain activity has on event-related neuronal 

processing extends to behavior, reinforcing the notion that the ongoing activity constitutes more 

than just inconsequential baseline variations (Kondakor, Lehmann, Michel, Brandeis, Kochi & 

Koenig, 1997). Before proceeding, it is worthwhile to look in more detail at some of the 

evidence obtained from a variety of pre-stimulus studies. Unless stated otherwise, the studies 

selected here have utilized EEG, quantifying pre-stimulus activity according to spectral power 

and/or (phase) coherence measures in the theta [4-7Hz], alpha [8-12Hz] and beta [13-30Hz] 

bands. Power and coherence measures may reflect different neurophysiological processes, where 

both types of measures provide information about brain dynamics beyond the understanding that 

can be extracted from the traditional evoked response, which is broadband in nature (i.e. includes 

all frequencies). In particular, synchrony of oscillations at higher frequency (> 20Hz) is thought 

to be fundamental property of neural systems, facilitating the coordinated interactions of large 

neuronal populations distributed within and across distinct regions of the brain; an interaction 
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deemed necessary for most cognitive processes (Tallon-Baudry, 2009). Thus, in the following, 

the different measures should not be regarded as interchangeable, but rather as neuronal 

manifestations that might converge on the same cognitive processes underlying endogenous 

brain states. 

The most basic approaches to investigate pre-stimulus effects are near threshold study 

designs, where identical stimuli are weak, briefly presented, or adjusted otherwise such that 

target events are, on average, not detected, perceived or discriminated in a substantial proportion 

of trials (typically, 30 - 50%). Studies employing visual stimuli tend to concentrate on alpha 

activity, suggesting that strong pre-stimulus activity in that frequency band can reduce target 

detection rates for both optical stimuli (Chaumon & Busch, 2014) and phosphenes (illusory light 

flash) induced by transcranial magnetic stimulation (Romei, Brodbeck, Michel, Amedi, Pascual-

Leone & Thut, 2008). There also evidence that the phase of the alpha wave present at stimulus 

onset can affect perceptual performance (Mathewson, Gratton, Fabiani, Beck & Ro, 2009), 

however, direct comparisons of phase effects across studies are difficult due to differences in 

methodologies. Also, there is evidence that pre-stimulus theta-phase can affect perceptual 

performance (Hanslmayr, Volberg, Wimber, Dalal & Greenlee, 2013). 

An effect of both pre-stimulus alpha phase and power has also been reported for near 

threshold tactile perception. Notably, an inverted U-shaped relationship between pre-stimulus 

alpha power and detection rate has been reported, arguing against the assumption that 

performance is related monotonously to alpha power (Ai & Ro, 2014). Importantly, studies 

employing non-visual stimuli have also pointed to a role for beta oscillation. Judgments of 

simultaneity of tactile stimuli appear the more accurate the lower that pre-stimulus beta activity 

is (Lange, Halacz, van Dijk, Kahlbrock & Schnitzler, 2012), whereas order judgments of tones 
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played with a temporal offset appear to be more accurate the higher that pre-stimulus beta 

activity is (Bernasconi, Manuel, Murray & Spierer, 2011). Also, high pre-stimulus beta power 

can lead to higher accuracy of perceptual integration in missing element tasks (Geerligs & 

Akyürek, 2012). 

The effects of pre-stimulus activity on behavior also extend to above-threshold situations. 

It has been suggested that pre-stimulus alpha power can make a distractor stimulus more potent 

(distracting attention away from the target), whereas faster response times (but no changes in 

accuracy) have been associated with high pre-stimulus alpha in visuomotor go/no-go (Vecchio, 

Lacidogna, Miraglia, Bramanti, Ferreri & Rossini, 2014) and simple target detection (Minkwitz, 

Trenner, Sander, Olbrich, Sheldrick, Schönknecht et. al., 2011) studies. Over and above basic 

perception and discrimination, studies probing various aspects of memory have provided 

valuable evidence that pre-stimulus activity can affect behavior thought to reflect higher order 

neuronal processes in specific ways, explored below. 

Regarding memory (stimulus) encoding, it has been shown that pre-stimulus alpha power 

correlates negatively with memory accuracy for the upcoming stimulus in a task requiring the 

subjects to memorize a sequence of location-orientation associations (of simple shapes) to be 

recalled a few seconds later (Myers, Stokes, Walther & Nobre, 2014). Intracranial recordings 

from the hippocampus (a structure instrumental in memory formation) suggest that increased 

pre-encoding theta correlates with old-new recognition memory but not free recall of word 

stimuli (Merkow, Burke, Stein & Kahana, 2014). Interestingly, the latter authors employed a 

combined free recall (i.e. ‘name the words just memorized’) and recognition (i.e. ‘distinguish 

between new words’) task, where the latter happened several minutes after encoding. Pre-

stimulus theta appears also to play a role in memory retrieval. A study utilizing word stimuli 
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reported enhanced theta-band power before presentation of test words eliciting both accurate old-

new recognition and retrieval of contextual details of the prior study phase, compared to trials for 

which only recognition was successful (Addante, Watrous, Yonelinas, Ekstrom & Ranganath, 

2011). 

Further evidence that pre-stimulus activity influences higher order processes and 

behavior is provided by studies probing multi-sensory integration, in particular designs relying 

on the McGurk effect. This well-established effect shows the influence of visual stimuli on 

auditory perception, where mismatching information from both modalities can fuse to a novel 

percept that does not follow from either the auditory or the visual stimulus alone. Using MEG, it 

has been suggested that high pre-stimulus beta activity correlates with the rate of fused percepts 

(Keil, Müller, Ihssen & Weisz, 2012). Employing a variant of the McGurk effect, the so-called 

sound-induced flash illusion, the same team demonstrated that alpha and beta band activity as 

detected by MEG correlates with the rate of perceiving an illusory but non-existent flash (Keil, 

Müller, Hartmann & Weisz, 2014). Interestingly, pre-stimulus alpha-phase has also been linked 

to perceiving a similar illusion, where touch induces a flash instead of sound (van Erp, Philippi, 

de Winkel & Werkhoven, 2014). 

Towards what are generally accepted as even higher processes, it has been demonstrated 

that pre-stimulus activity biases perceptual decisions on an ambiguous figure, such as Rubin’s 

face-vase image. Evidence from fMRI suggests that activity in the fusiform face area, a brain 

region preferentially responding to faces, correlates with a subsequent face rather than vase 

percept (Hesselmann, Kell, Eger & Kleinschmidt, 2008). Using MEG to investigate the neuronal 

response to the same ambiguous figure, there is tentative evidence that pre-stimulus power in the 

alpha and beta bands correlates with subsequent face percepts (Peateld, Mueller, Ruhnau & 
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Weisz, 2015). 

In summary, there is now converging evidence that the spontaneous activity affects, in 

complex ways, perception, cognitive control, and motor performance over and above the reactive 

response to stimuli. Electrophysiological approaches have been used most often as they are most 

sensitive to rapid neuronal dynamics, however, other imaging technologies have made 

significant contributions to the debate. Given that different technologies are differentially 

sensitive to neuronal mechanisms, this implies that pre-stimulus effects neither are quantifiable 

in terms of a single measure of neuronal activity nor are explainable in terms of a universal 

process, although modulation of attention might often play a role, particularly in the case of 

simple detection tasks. Also, there is still clarification required as to what extent pre-stimulus 

activity can explain the variance in the behavioral response to identical stimuli, as there are no 

definitive figures available at present. 

Despite these limitations, it is reasonable to argue that the spontaneous activity reflects 

time-varying functional states of the brain, which affect the fate of an incoming stimulus within 

physiological constraints. These momentary brain states are assumed to reflect, in a dynamic 

fashion, internal models of the environment to anticipate and interpret sensory inputs and to 

prepare for action, much in the sense of Hebb’s original reasoning (see also the discussion by 

Qian & Di, 2011). In this view, one moves away from the many constituting cellular sub-

processes, towards the notion of a global brain state present at each moment in time, which, as 

abstract as it may sound, it is perhaps not less plausible than attaching a single figure, i.e., body 

temperature, to a bacterial infection despite extraordinarily complex immunological processes 

working to restore normality. That said, while insightful in a general neuroscientific sense, the 

electrophysiological studies reported above have utilized techniques essentially based on the 
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Fourier transform, named after the 18th century French mathematician Jean-Baptiste Fourier, in 

order to achieve signal representation in time and frequency. Although time-frequency 

decompositions can be justified by neuronal models to some extent, the techniques are very 

general in nature and do not easily relate to the notion of (brain) state. As such, we believe that a 

framework loosely termed state-space reconstruction would be most beneficial to organizational 

neuroscience at this stage. Given the importance and ramifications of the underlying theory, it is 

necessary to elaborate a little on its background, which we do below, before discussing a specific 

algorithm that can be used to represent the dynamic endogenous brain state. 

 

NONLINEAR APPROACHES TO ENDOGENOUS BRAIN ACTIVITY 

Many interesting systems and phenomena in nature are complex, in particular – only few would 

doubt – the human brain. Complexity science is a relatively young area of research, which was 

treated with some skepticism (Horgan, 1995) in its early phases but is now very much en vogue, 

with 50 or more high profile research institutes around the world focusing on complex systems. 

Indeed, none other than Stephen Hawking expressed the view that the 21st century “will be the 

century of complexity” (Hawking, San Jose Mercury News, 23 January 2000). 

Perhaps the most important contribution to the study of complex systems comes from the 

theory of nonlinear deterministic dynamical systems. The theory, which is deeply rooted in 

mathematics and theoretical physics, posits that certain systems can exhibit apparent 

randomness, making precise predictions of future states impossible for all practical purposes, 

despite the underlying dynamical laws being deterministic and thus allowing in principle exact 

predictions at all times (Tél & Gruiz, 2006). A hallmark of this apparent randomness (or chaotic 
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behavior) is sensitivity to initial conditions, implying that infinitesimally small uncertainties in 

knowledge of the current state of the system become exponentially large as time progresses. A 

concept often cited in this context is the ‘Butterfly Effect’ where small causes can have large 

effects (e.g. Hilborn, 2004). 

Chaos: When the present determines the future, but the approximate present does not 

approximately determine the future. Edward Lorenz 

One should not, however, simply equate complexity with nonlinear dynamics. There are 

complex systems without any apparent dynamical features (e.g., complex mechanical structures), 

dynamical complex systems that would not normally be explained in terms of nonlinear 

dynamics (e.g., game-theoretic dynamics), and linear complex systems (e.g., networks with 

linear response functions). This last point alludes also to the observation that although a system 

is nonlinear as a whole, some of its behavior (or at least to a good approximation), can be 

reduced to the sum of the behavior of the constituent parts (see, e.g., Bertuglia &Vaio, 2005). 

Ultimately, this is the justification of some approaches to the analysis of brain data, such as time-

frequency analysis where a complex signal is assumed to be a linear superposition of waves 

localized at certain points in time and in distinct frequency bands. 

There is now considerable evidence that nonlinear system theory applies to a variety of 

domains, including amongst others meteorology, stock markets, car traffic, biology (e.g., 

population growth models) and psychology (e.g., group dynamics). Most importantly for our 

purposes, the theory provides frameworks to recover certain features of a dynamical system from 

observations without knowledge of the underlying laws of the system, and only assuming that 

these laws have very general properties. State-space reconstruction is one such framework, 
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which is based on the assumption that an experimentally observed time series (e.g., an EEG or 

MEG trace) has been generated by a deterministic dynamical system, i.e., a system, which is 

described by the time evolution of a (typically small) fixed number of variables forming a 

trajectory in some suitable space, known as the state (or phase) space of the system (e.g., Stam, 

2005). Critically, due to the deterministic nature of the system, the points in state space form, 

under certain conditions, sets (loosely speaking, attractors) with well-defined mathematical 

properties. 

Dependent on the dynamics, such attractors can be simple shapes like points, lines, 

circles or surfaces, but often have a complex structure reflecting the system’s sensitive 

dependence on initial conditions, which in turn relates to the apparent randomness a 

deterministic system can display (Tél & Gruiz, 2006). Thus, the complex but bounded structure 

of the attractor implies both local unpredictability and global stability; once trajectories have 

entered the attracting set, nearby points may rapidly diverge from one another but never depart 

from the attractor, reflecting the fact that the system’s dynamics is bound by limitations imposed 

by physics, biology and physiology (e.g., a neuron’s firing rate cannot be infinitely large because 

of cell membrane refractory periods). Typically, for real systems, the state space is not directly 

accessible and needs to be inferred from the observed data that are seen as an image of the 

trajectory under some, at best only partially-known, function constituting the measurement 

process. These concepts are illustrated in Fig. 1, and the below discussion. 

 

<Figure 1 about here> 
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As a simple example (Fig. 1, upper row), one may imagine a pendulum swinging gently by an 

angle (!) of a few degrees to the left and right (! is the position variable). Now, as the pendulum 

swings, one plots points in a coordinate system where the x-axis represents momentary angle (-! 

at leftmost deflection, 0 at center, ! at right) and the y-axis represents momentary velocity (0 at 

turning points ±!, ±vmax [maximal velocity] at the center swinging to the right and left, 

respectively). Then, it turns out that one obtains a circle (Fig.1, upper row, right panel, solid 

line), which fully describes the dynamics of the swinging pendulum in a space spanned by angle 

of deflection and velocity of swing. More abstractly, the pendulum is in a circular state (which 

becomes larger and more deformed if one increases the angle of swing; turning into open, wavy 

lines for angles so large that the pendulum rotates around its suspension point [not shown]). In 

this scenario, plotting only the momentary angle as function of time (which turns out to be a sine 

wave) yields an observation (Fig. 1, upper row, middle panel). 

The goal is then to re-build the original trajectory by a set of points extracted from the 

time series. These points are commonly defined as elements of a Euclidean space of some fixed 

dimension. Mathematical theories are needed to specify under which condition the reconstruction 

is faithful, i.e., the reconstructed trajectory reflects the geometrical and dynamical characteristic 

of the underlying dynamical system. This is critical as one has a framework based on first 

principles allowing one to study at least some aspects of the system without further knowledge of 

the underlying laws governing its dynamics. In principle, there are many measures one could 

apply to probe state space depending on what aspects of the dynamics are of interest (Faust & 

Bairy, 2012). Here, we focus on a particular method directly linked to the concept of 

determinism. The details of the procedure have been published in more depth elsewhere 

(Braeutigam & Swithenby, 2003; Braeutigam, 2007), and only a brief summary is provided here, 
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with interested readers referred to the cited works. 

1) Suitable stretches of pre-stimulus data (i.e., multi-channel EEG or MEG recordings) are delay-

embedded, yielding a trajectory in some n-dimensional space (e.g. for the pendulum, choose n=2 

and plot points (xt, xt+"), where " can be almost any value). The dimension n can be estimated in 

a data driven fashion using suitable algorithms. Note that there is one trajectory for each channel 

(with each channel referring to a local recording site, such as an electrode if using an EEG). 

2) Compute a measure STL (STate Local) according to equation (1) for each trajectory.  

 

where E is a measure the diversity of neighboring data points on the trajectory in the 

reconstructed state space. E can become zero for a completely deterministic (e.g. constant) 

signal, but cannot become arbitrarily small on average for a system with a stochastic content. Er 

(and its variance #Er) are obtained by calculating E for a number of surrogate replications of the 

original data in such a way that the score z tests against the null hypothesis that the data 

measured is linearly-autocorrelated, stationary Gaussian noise observed through a static, 

nonlinear transform. Thus, STL is a measure of the determinism of the brain, defined locally for 

each channel, subject and trial (which group according to conditions of interest). 

3) Compute a measure STG (STate Global) for each subject and trial by collapsing STL over all 

channels using equation (2) 

 

(1)     STL = ! ln(prob(z)) with z = (E ! Er )
"Er

(2)     STG = ! ln(prob(" 2 )) with " 2 = 2 STLii=1

N
#
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where N denotes the number of recording channels. Thus, STG is a measure of the (pre-stimulus) 

determinism of the brain, defined for each subject and trial. From a neurophysiological 

perspective, determinism as measured by STG implies that the dynamic behavior - the totality of 

electrophysiological processes observed macroscopically - of a neural system is ordered, stable, 

and predictable to some extent. This determinism measure then can be used to describe the 

endogenous brain state at any given point in time (i.e. as more or less deterministic). Of course, 

many other variables could be captured (e.g. the amplitude of the endogenous signal) to describe 

different aspects of endogenous activity. However, we believe that the determinism measure is of 

significant import for many research topics of relevance to management and organizations. 

Briefly, in a conceptual sense, determinism in the neuronal (pre-stimulus) response can be 

argued to be highly relevant to conceptualization of free will, and thus choice and decision. It is 

beyond the scope of this section to go into details, but it suffices to say that some scholars view 

nonlinear dynamic system theory as an operational means to define free will, in a way that 

allows one to reconcile free will with determinism (Ridley, 2003). The system is deterministic, 

but still by no mechanism can you definitively say what the system is going to do next. In a sense 

then, it is argued that this unpredictable behavior provides the illusion of free will, which, in 

words of Wilson (1998) “… would seem to be free will enough to drive human progress and 

offer happiness …". 

TAKING ACCOUNT OF ENDOGENOUS BRAIN ACTIVITY IN ORGANIZATIONAL 

RESEARCH 

In this section, we build on the more technical introductions above to define a series of 

applications in organizational and management research where an incorporation of endogenous 

brain activity both in theory development and empirical testing may lead to substantive advances 
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in knowledge. Our intention is not however to exhaust all possible avenues where EBA may be 

of significant use, but rather to provide a set of useful examples, that should inspire readers to 

think about the utility of incorporating EBA in their own research topics. At this point though, 

we would like to sound a note of caution. Specifically, we do not wish to inspire what might be 

most kindly termed exploratory, atheoretical, ‘fishing expeditions’ by researchers. It is vital that 

work incorporating EBA and related concepts is strongly theory-driven. Specifically, we urge 

researchers to avoid simply looking for observed correlations between EBA and organizational 

activities or decisions. Such an approach is likely of course to lead to some observed findings, 

but the scientific value of such findings is highly questionable. Rather, researchers should first 

develop deep theoretical understandings of how EBA is likely to influence organizational 

decisions and behaviors, develop strong hypotheses, and only then proceed to empirical work.  

We begin with an overview of an existing example of an organizationally-relevant study 

which incorporated EBA, with the intention of setting the scene, and also translating the possibly 

rather abstract idea of EBA and pre-stimulus brain states into a concrete business-relevant 

context. Further, we will show how the general principles uncovered by this particular study can 

be extended to many other organizational and management contexts. In essence then, we move 

from the specific to the general, in a step-by-step process that should help readers apply EBA to 

their own topics. 

Specifically, Braeutigam (2007) drew from theories regarding preference construction 

(e.g. Bettman, Luce, & Payne, 1998) to develop a study which measured the impact of EBA on 

decision making in 16 subjects, across a total of 90 different choice-inducing stimuli in a 

simulated shopping trip, using Magnetoencephalography (MEG). The measurements of EBA 

were in line with those already outlined in Section 3 of the present paper – that is, a measure of 
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the determinism of the pre-stimulus brain signal, with the sample split into high and low 

determinism groups. A significant difference was observed across the two groups, with those 

choices made when the subject exhibited a highly deterministic pre-stimulus brain state (i.e. 

before the choice stimuli were presented) making significantly quicker choices, and also 

choosing significantly less familiar items than those in the low determinism pre-stimulus state. 

As such, the endogenous brain activity (that is, brain activity before the choice options were 

presented) explained significant amounts of variance in the actual choices that were made. To 

put it another way, one could predict the future choice of the subject (in terms of the familiarity 

of the product), before that subject even saw the choice options, by observing their EBA. Given 

that it appears to be relatively well established that our EBA is constantly fluctuating between 

higher and lower deterministic states (see Braeutigam and Swithenby, 2003), the finding that our 

EBA seems to bias our decision making towards more or less familiar choice outcomes is 

significant.  

While Braeutigam (2007) expressly referred to existing theories on consumer preference 

construction, research in that area is almost entirely behavioral in nature, and considerably less 

attention is given to the psychological and / or neurobiological underpinnings of preference 

construction (CITE). Incorporating EBA into work in the area is thus likely to provide significant 

insight into human decision making, preference, and choice. For example, in a face recognition 

context Braeutigam and Swithenby (2003) suggest that high determinism pre-states may signify 

a kind of ordered anticipatory state, where the brain may be anticipating making some decision 

and is preparing templates and pathways for the anticipated recognition task. Conversely, low 

determinism pre-states may be a less anticipatory, and more unordered, state. Braeutigam and 

Swithenby (2003) reported that low pre-states exhibited rapid activity in facial recognition areas, 
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presumably as the brain quickly activated those areas needed for the unanticipated situation, 

while those in high pre-states did not exhibit the same activity, presumably because they were 

already in an anticipatory state. Applying this reasoning to the Braeutigam’s (2007) study, it may 

be that a highly deterministic pre-state may signify some kind of preparation for or anticipation 

of a decision-task, which is supported Braeutigam’s (2007) finding that these high pre-state 

subjects also exhibited high activity in brain areas associated with evaluation of reward (orbito-

frontal and parietal cortices). Building on this, individuals in high determinism pre-states could 

be considered as more prepared to choose unfamiliar outcomes, and then to evaluate the rewards 

/ costs of those choices. In other words, they are better prepared for what amounts essentially to a 

learning activity. Conversely, those in low pre-states are less capable of doing this, and tend 

towards the familiar (which has no novel learning opportunity). It is important to note however, 

that this ‘learning capability’ is seen here as a dynamic quality rather than person-specific trait.   

Indeed, the integration of EBA into organizational theory looks likely to extend our 

knowledge quite substantively. While it would be reasonably easy to speculate rather widely, in 

our view this would be counterproductive, and thus we restrict our general discussion to fields in 

which we believe researchers can most clearly derive testable hypotheses at this point. 

Specifically, we believe that the fields of organizational study that will find most benefit from 

understanding EBA at present are those concerned with choices and decisions, and particularly 

when involving risk. Of course, the Brautigam (2007) example above was in a consumer-specific 

context, and it can be easily seen how EBA can play a major role here. However, many fields of 

study relevant to management and organizations involve judgments, choices, preferences, 

decisions, and risk.  
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It is not possible to give details on every single possible area of application for EBA in 

organizational research, and we would expect many readers to naturally fit their own specific 

areas of interest to our more general ideas here. However, we can provide a more detailed 

illustration of the potential of EBA to inform organizational research by using as a context a 

topic that has proven to be both popular within general organizational research, and also with 

those employing neuroscientific methods; entrepreneurship. A stream of research has recently 

developed that purports to show differences in brain functioning between highly entrepreneurial 

individuals, and those lower in entrepreneurship (Lawrence et al., 2008; Nicolaou et al., 2008). 

Studies have suggested that highly entrepreneurial people differ in terms of the structure of the 

reward centers in the brain, which somehow predisposes them towards risk-seeking behavior 

during particular circumstances relevant to entrepreneurship (i.e. high-stakes opportunities, 

which as a result contain high levels of potential affect). As such, authors such as Becker, 

Cropanzano and Sanfey (2011) suggest that successful entrepreneurs can be identified by 

examining their brain structure, and even that it is feasible to use neurochemical-altering drugs to 

increase entrepreneurial behavior (Lawrence et al., 2008). Such work has been strongly criticized 

in a number of quarters, as overly reductionist, ignoring the complexities of organizational and 

human life, and even as being somewhat questionable, being as it looks to categorize employees 

and perhaps advocates developing them using neuroscientific means (e.g. Lindebaum and 

Zundel, 2013). 

Incorporating a dynamic perspective based around EBA can help extend our growing 

knowledge of how individuals may make entrepreneurial decisions, and in doing so also respond 

to existing criticisms of neuroscientific work within organizations (e.g. Lindebaum, 2016), and 

also to. Specifically, we have shown above that the determinism (high or low) of an individual's 
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intrinsic brain activity, even before they are presented with a choice, has a substantive impact on 

the level of risk inherent in the choice they will make in the future. Further, we also know that 

these endogenous brain states fluctuate dynamically in all individuals, so that any given 

'potential entrepreneur' say, could be in either a high or low deterministic pre-state at any given 

time. Thus, rather than classify subjects into stable and defined 'high' and 'low' type 

entrepreneurial groups by way of their brain structure and neurochemistry, it is probably more 

accurate to explore the dynamic impact of pre-stimulus brain states on entrepreneurial decisions 

over time. In other words, if we are in the right endogenous brain state, any of us could exhibit 

(at least to some extent) high-type entrepreneurial activity. This makes it very questionable to 

classify individuals (as for example high or low-type entrepreneurs) at the neuroanatomical level, 

since EBA fluctuations would ensure that any individual at the right time could be (in this 

example) highly entrepreneurial.  

The example above illustrates how incorporating EBA in neuroscience-based 

organizational research leads to a very important difference in approach from much existing 

organizational research. Specifically, understanding EBA requires that we move beyond looking 

for concrete and time-invariant differences between individuals based on brain structure or 

activity, and using these to classify them into stable groups, and instead move towards a dynamic 

understanding that any individual may have the potential to choose or act in a given way at a 

given time, dependent on fluctuations in their EBA. As alluded to above, this is one way that 

organizational researchers who wish to apply neuroscientific techniques and theories can respond 

to recent criticism of organizational neuroscience as primarily based on unrealistic and naïve 

reductionist classification of individuals, ignorant of social and organizational context (e.g. 

Lindebaum, 2016; Lindebaum and Zundel, 2013).  
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It can be seen that EBA looks to be a powerful addition to theories on choice-making 

under risky conditions, a context relevant to many management and organizational topics beyond 

entrepreneurship and consumer behavior. For example, stock market investment, recruitment, 

incentivization and many other decisions involve trading off more or less risky options. 

However, beyond risk, incorporating an understanding of EBA also sheds light on the topic of 

judgment, choice, and decisions in general. Within this broad context, we will focus here on the 

overarching concept of preference construction. More specifically, in recent years, it has become 

progressively more accepted that individuals do not make decisions and choices in a way that 

suggests they adhere to rational decision rules such as utility maximization (Lichtenstein and 

Slovic, 2006). Indeed, it is increasingly questionable whether it is viable to consider that 

individuals even have stable preferences, and more likely that many of our preferences are at 

least in part constructed during the process of elicitation (Kahneman & Tversky, 2000). Research 

in this area has often relied on changes in the framing of the decision options to exhibit 

differences across individuals in the actual decision. For example, it is well established that more 

individuals will prefer something (e.g. organ donation) if it is framed as an opt-out rather than an 

opt-in (Johnson and Goldstein, 2006), even though the choice itself is exactly the same. This, and 

many other examples, are generally considered as decision biases, where humans make non-

rational decisions in response to changed contextual factors or decision framing (e.g. loss versus 

gain frames). However, research in this area has primarily taken a behavioral approach, rather 

than attempt to understand why we are subject to these so-called biases, other than some 

evolutionary or information processing limitation explanations (CITE). We however suggest that 

fluctuations in EBA may also play some role in the choice-making process. Indeed, interpreting 

the determinism of the endogenous brain state as essentially the brain’s predictive mechanism, 
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biasing us towards the task of making one or another type of choice, or responding to particular 

anticipated types of information (e.g. faces), sheds significant light on the possible reasons why 

humans may exhibit what are currently seen as behavioral decision biases, and as constructed 

rather than stable preferences.    

We have already referred to research showing that the endogenous brain state has a 

significant impact on future choice, even before the choice options are presented, in terms of risk 

taken. However, it remains in question whether this is driven by the actual risk inherent to the 

choice option (e.g. investing in an actually more risky venture with greater payoffs), or whether 

EBA somehow influences an individual’s perception of risk. This could be tested by combining 

measurements of EBA with the use of paradigms common in preference construction research, 

such as perhaps equally risky choices that are framed in different ways. Further, given that 

Braeutigam (2007) shows significant activity in reward evaluation brain areas after subjects in 

high-determinism pre-states made more risky choices, we could theorize that high-determinism 

pre-states could bias the individual towards gain-framed choices, rather than avoiding-loss 

frames. Another theoretical framework can be incorporated here however, concerning perception 

itself. Existing work shows that EBA is associated with differences in the perception of 

ambiguous stimuli such as Rubin's face-vase figure (see section 2). It could be that pre-choice 

brain states could somehow influence the actual perception of the choice options themselves in 

some way, rather than the evaluation of their risk / reward. Such research would however require 

considerable effort to frame theoretical hypotheses which usefully incorporate strands from both 

neuroscience, and behavioral economics. However, such efforts are likely to be extremely 

worthwhile.  
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In this sense then, incorporating EBA into models of judgment, choice and decision, 

allows a further layer of understanding on how humans make decisions in key organizational and 

economic contexts. In particular, we take the point of explanation one step further back, to before 

the choice options have even been presented to the individual. This may indeed help explain 

variability in choice making (see section 2 of this paper also), and preference construction, but 

also presents an even stronger hypothesis. Specifically, it may be that a substantive part of our 

exhibited preference (i.e. our choice) may be influenced even before we see the choices available 

to us. This may at the least narrow down our possible choice space, even if it does not entirely 

predetermine it. Although perhaps not immediately obvious from an applied organizational 

angle, it is important at this point to raise again the notion of free will. From a neuroscience 

perspective, the question of free will gained momentum after the discovery of the so-called 

readiness potential, which is a (kind of state) measure of activity in the brain’s "#$#%!area leading 

up to voluntary muscle movement. Critically, the potential can be measured about 0.4 seconds 

before the subject’s conscious awareness of ‘desiring to make a movement’, raising questions 

about to which extent volition is actually free (Kornhuber & Deecke, 1990).  

From a philosophical perspective, Nagel (1987) gives a concise introduction to the 

question of free will, in the end coming to the conclusion that it depends on an untenable 

assumption that one could in principle have made a different choice at any given point in time 

(see also Dennett, 2003 for further discussion). For example, to take the current context of one of 

the present authors, is it really feasible that if he was sent back in time 20 minutes, he could have 

ordered a single malt rather than a bourbon? Nagel suggests that, while he may imagine he 'could 

have' chosen differently, this is in fact an illusion. Rather, every single act, influence, and 

decision taken prior to that instant was leading up to that particular decision to choose bourbon. 
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As such, it is illusory to believe that there could have been a different choice made, without there 

being some different influence, making the idea of free will as we understand it untenable. This 

view would be broadly in line with Lloyd’s recent work, suggesting that the impression of free 

will is caused by the intrinsic computational unpredictability (as evidenced by the halting 

problem1 for example) underlying any decision-making process (Lloyd, 2012).  

As mentioned already, fluctuations in our intrinsic brain activity could be taken to 

represent some notion of practical free will in a deterministic world, given that these fluctuations 

seem to influence our choices. However, a different interpretation would be that taking in hand 

the influence of EBA on choice casts further doubt on commonsense understandings of free will. 

More specifically, we have already established herein that a substantive component of our choice 

making is dependent on a fluctuating intrinsic brain activity, which we cannot ourselves 

apprehend nor therefore control (although see the subsequent discussion of neurofeedback for 

further reflection on this). Taken together with the preference construction literature, we must 

surely now abandon the idea that decision making is simply an act of freely choosing the 

outcome that will maximize some utility function based on stable pre-existing preferences. 

Acceptance of this has significant implications both for how we direct future research efforts on 

individual human behavior, as well as that in organizations, and society in general. 

In this light, it is questionable whether current applications of neuroscience to 

management and organizational research are proceeding in the most insightful manner. 

Certainly, it seems to us that an approach concerned with uncovering stable and general 

neurobiological differences between managers (for example), and further then classifying them 

into 'types' (as for example in the entrepreneurship example discussed earlier), is probably 

lacking in its ability to really explain variation in behavior, performance, and the like. Such 



RUNNING HEAD: ENDOGENOUS BRAIN STATES IN ORGANIZATIONAL RESEARCH 

 26!

observed differences may in fact be little more than chimera when intrinsic brain activity is taken 

into account as an influence on choice and behavior. Similarly, purely event-based experimental 

designs themselves - which all existing neuroscientific research in management and 

organizations consists of - are likely to be ignoring a critical confound at best, and a key 

explanatory variable at worst. We are of course just at the beginning of understanding the 

influence of EBA on management and organizational behavior, and how to incorporate these 

dynamic brain state changes into existing research. However, EBA-based thinking clearly moves 

beyond the simplistic reductionist and classification approaches criticized by those such as 

Lindebaum (2016; Lindebaum and Zundel, 2013). Indeed, ignoring intrinsic brain activity in our 

models would seem to be a significant failing for future neuroscientific work in management and 

organizations. That said, the application of EBA to organizational practice may be seen to be less 

clear. Specifically, if managers do not know what brain state they are in, how can knowledge of 

its influence impact on making better organizational practice? This is a challenging issue. 

However, recent work in the area of neurofeedback may offer the beginnings of a solution. 

5. FROM NEUROFEEDBACK TO NEUROFEEDFORWARD: AN ENDOGENOUS 

BRAIN ACTIVITY PERSPECTIVE 

Neurofeedback is a psychophysiological technique in which participants are shown displays of 

their cortical activity in order to reinforce a subsequent pattern of brain activation in a self-

regulatory fashion (Hammond, 2005, 2011). In essence, with visibility of the neural activity, 

individuals can learn to control it (somewhat akin to learning to wiggle one’s ears with the help 

of a video camera to observe them). This form of biofeedback has been traditionally used with 

EEG, (Light et al, 2010), although the field is rapidly evolving and other neuroimaging 

techniques such as fMRI and MEG are now being advocated (Foldes, Vinjamuri, Wang, Weber 
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& Collinger, 2011). The neurofeedback paradigm exploits cortical plasticity and learning by 

modulating brain activity in response to an external stimulus (e.g., a pleasant picture, or 

suchlike). The accepted rationale is that by modulating the activity at the cortical level, 

neurofeedback training can by extension modulate subsequent behavior (e.g., Gruzelier, 2014a, 

2014b). The implication is that by repeating such training over a period of time, the cortical 

response would become trained to respond to specific stimuli and then adapt the pattern of 

responses, and subsequent behavior, to subsequent presentations of that particular stimulus 

(Bagdasaryan & Quyen, 2013; but see Massaro, 2015). Thus, neurofeedback is effectively 

operant conditioning at a cortical level.  

Needless to say such an approach has immediate and obvious implications for clinical 

therapy, and indeed neurofeedback paradigms are applied to such regimes as a matter of standard 

practice, with patients suffering from conditions such as anxiety and depression benefiting 

(Sterman, 2000; Moore, 2000). Further, Waldman, Balthazard, and Peterson (2011) suggest 

neurofeedback could be an effective tool for management training. Indeed, various studies have 

shown that cognitive skills can be improved with neurofeedback focusing on alpha band [8-

12Hz] activity, which is thought to play a role in inhibition of distracting information (Vernon et 

al, 2003; Vernon, 2005). Mental skills that would play a role in effective management behavior, 

such as cognitive control, mental manipulation and even task attention, have all been seen to 

show a significant improvement with alpha band neurofeedback (Hanslmayr et al, 2005; Vernon 

et al, 2003; Lubar, 1991; 1997; 2003). However, it is as a means to examine and modulate the 

intrinsic neuronal state (i.e. EBA) that neurofeedback has best utility to inform an understanding 

of our organizational behaviors, and possibly increase their effectiveness. In this sense, given 

that EBA is a pre-stimulus brain state, the more accurate term may actually be neurofeedforward. 
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The idea of neurofeedforward, which we develop here, is an extension of existing 

neurofeedback paradigms to include an adaptive element, where the precise nature of the 

upcoming stimulus is decided upon based on the momentary brain state. Neurofeedforward 

would involve continuous measurement of EBA, and a consequent modification of the stimulus 

presented to the subject, based on the EBA state. We will give a brief example of how this may 

be used in practice in due course. However, first we cover the basic details of which neural 

activity may be of most relevance. First, recall from section 2 of the present paper that research 

into EBA has focused on pre-stimulus brain activity in the theta [4-7Hz], alpha [8-12Hz] and 

beta [13-30Hz] bands. For effective organizational behavior it would seem that 

neurofeedforward training that modulates the endogenous alpha activity would be the most 

obvious choice in the first instance. For example, recent work has shown that endogenous 

coherence in the alpha band window predicts the subsequent outcome of an individual’s decision 

in an ultimatum game (Billeke, Zamorano, Cosmelli and Aboitz, 2013). Further, later work from 

the same laboratory showed that such predictive value is evident only when the individual 

thought they were interacting with a human as opposed to a computer (Billeke, Zamorano, 

Chavez, Cosmelli, and Aboitiz 2014).  

The study of modulation of EBA in the beta and theta frequency windows also lends 

possible insight into the understanding of effective organizational behaviors. For example, the 

ability to decide not to proceed with a particular choice has been shown to be predicted by 

modulations in endogenous beta coherence with a pattern of decreasing and increasing coherence 

in this frequency window suggesting that each potential outcome was considered prior to 

deciding not to respond (Gluth, Rieskamp & Buchel, 2013). Here it seems that neurofeedforward 

paradigms may have particular utility, as it has already been shown that modulation of 
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endogenous brain activity in the beta frequency window leads to an improvement in social facets 

such as familiarity (Keizer, Verment & Hommel, 2010), and in driving decisions that that are 

driven by positive memories (Zotev, Phillips, Yuan, Misaki & Bodurka, 2014). While further 

work has shown that the relationship between increases in theta band power and subsequent 

recall of an event is mediated by the degree of intention to recall and not the ability to recall per 

se (Schneider & Rose, 2016). In addition further studies have revealed that targeted protocols 

that have focused on pre-stimulus levels of theta power have shown a concomitant increase in 

recall in target events (Vernon et al, 2003). 

To show how neurofeedforward may work in practice, we return here to the leadership 

example given at the very beginning of this paper. It can be seen that in most cases, any 

decisions to be made about the implementation of organizational change involve some level of 

risk, whether these be financial, performance-related, social, or many others. Neurofeedforward-

based training may help leaders to cope with such risks by augmenting their ability to make the 

‘correct’ decisions in such circumstances. How would this work? First, consider that existing 

research already suggests that individuals in low-determinism endogenous brain states are more 

likely to choose more familiar alternatives (i.e. less risky / more conservative decisions, see 

Braeutigam, 2007). Thus, it would for example be possible to present those in low-type EBA 

states with a choice set where the optimal choice would be the less conservative / more risky 

option. It is anticipated that in doing so, over time we would be able to train individuals (such as 

leaders) to recognize the potential ‘biases’ caused by their high/low-type EBA state, and in doing 

so make better decisions. The objective is not thus to learn to ‘control’ one’s EBA, but to instead 

learn to take account of it in decision making.   

6. CONCLUSIONS 
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In this paper, we have introduced the important idea of endogenous brain activity to 

management and organizational research. This intrinsic brain activity goes beyond that which is 

necessary to keep our bodies functioning, and its study, and incorporation into theories and 

empirical work, has many important consequences for management and organizational research. 

Certainly, it is now well accepted in neuroscience that endogenous brain activity, typically 

conceptualized as the pre-stimulus brain state, explains a substantive amount of variance in 

stimuli responses. Further, stimulus-driven brain activity does not simply add to or suppress pre-

stimulus activity, the latter instead interacts in a non-linear way with incoming information 

(Sadaghiani and Kleinschmidt, 2013). This makes completely untangling endogenous brain 

activity fluctuations from stimuli-driven activity virtually impossible, and further necessitates its 

consideration in our models.  

Taking account of endogenous brain activity has the potential to revolutionize both our 

understanding of how we make choices and behave in organizational settings, and also how we 

go about theorizing about and investigating such issues. To this end, we have provided a 

conceptual and technical introduction to thinking about and measuring endogenous brain 

activity, in the form of the determinism of the signal. Prior work suggests that this pre-stimulus 

determinism measure is associated with important post-stimulus effects (e.g. Braeutigam, 2007), 

and as such, can be thought of to predict the subsequent decisions to some extent. In light of this, 

we gave a number of specific and general ideas of how pre-stimulus brain states may be of 

significant impact in management and organizational research fields. We spent much of this 

effort on elucidating the impact of EBA on contexts relevant to choice, risk, decisions, and the 

like, where it is evident that incorporating EBA into research here has substantial utility.  
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The notion of intrinsic brain activity however has significant import for a number of 

much more fundamental aspects of how we think about our brain, and its importance to 

management and organizational research. In particular, the approach to research suggested herein 

extends Senior, Lee, and Butler’s (2011) organizational cognitive neuroscience approach, and 

helps to counter criticisms of neuroscience in organizational research levied by authors such as 

Lindebaum and Zundel (2013). More specifically, much of the latter authors’ criticism revolves 

around the basic reductionist idea of isolating specific management or organizational concepts 

(e.g. leadership) within specific parts of the brain. Recognizing the key influence of the brain’s 

ongoing endogenous activity provides one way to navigate around these issues. More 

specifically, we have demonstrated that EBA is best thought of as a whole-brain, dynamically 

fluctuating brain state, which interacts in a complex non-linear way with stimulus-evoked 

activity in a given area or network. As such, we move beyond the reasonably simplistic 

reductionism cited in Lindebaum and Zundel (2013), towards a dynamic, complex-systems based 

model. Further, the intrinsic view, as opposed to the reactive view, tends to draw focus away 

from the categorization of individuals into groups based on neuroanatomical structure or 

functional brain activity associated with a given organizational behavior or performance 

measure, another important criticism implied by prior commentators (e.g. Lindebaum & Zundel, 

203; Lindebaum, 2016). Indeed, Healey and Hodgkinson (2014, p. 6), although they criticize 

Lindebaum and Zundel’s (2013) position, also criticize the localization of function approach to 

neuroscience in management and organizations. Rather, they suggest that it is better to consider 

the interplay of multiple distributed regions and structures (i.e., neuronal dynamics) in producing 

higher-order cognitions, affects, and functions. We concur, but also add to this framework by 

including consideration of whole-brain dynamic intrinsic activity (measured in this case using 
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determinism), which does not reduce to isolated components associated with specific tasks or 

responses. 

Further, accepting the important role of EBA allows us to question our notions of how 

our brain primarily works. Rather than being a reactive engine, waiting for some stimulus to 

respond to – the primary assumption of almost all current experimental neuroscience and 

psychology (including that applied to management and organizations) – it could be that the brain 

is, to a significant extent, a predictive inference engine. In other words, EBA facilitates the 

prediction of future demands and stimuli from the environment, helping prepare the brain to 

respond most effectively to what it ‘guesses’ may occur in the future. In this sense, the brain 

would work similarly to a Bayesian inference engine (e.g. Knill and Pouget, 2004), where EBA 

in some ways represents our ‘priors’, or guesses, about the environment, which are then updated 

by experience. This would tally with the findings reported in a number of EBA studies (e.g. 

Braeutigam and Swithenby, 2003; Braeutigam, 2007).  

Of course, we do not expect this paper to precipitate a wholesale revolution in 

organizational science in general, or even for those working with neuroscience in such fields. 

Many researchers will likely continue to devote their efforts to event-based experiments based 

around a reactive view of evoked brain activity and / or cognition. However, as pointed out by 

Raichle and Snyder (2007, p. 1087): “such a limited approach will eventually be exhausted if not 

nourished by a broader consideration and understanding of the relevant neurobiology. What is 

required is an expanded framework upon which to base such a research agenda. Neuroscience 

and the behavioral sciences together must provide that framework”. We fully support this view, 

indeed, taking in hand the future directions presented in the present paper, we believe that it is by 

incorporating an understanding of EBA into research tasks and problems from management and 
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organizational research (as well as general behavioral science) that we can develop a more 

accurate view of how our brain works to support our path through life. Or, understand how we 

anticipate our ‘collisions with the future’.   
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FOOTNOTES 

1. The halting problem concerns the determination of whether a Turing machine (a theoretical 

computing machine serving as an idealized model for mathematical calculation) will eventually 

come to a halt given an input program. The halting problem is solvable for sufficiently simple 

machines. As first proved by Turing himself, however, the problem of whether a general Turing 

machine will come to a halt is not decidable. 
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Figure caption 

Figure 1 State space. Upper row: The pendulum as a dynamical system (see text for details). The 

panel on the right shows the circular attractors for the pendulum (solid: actual; dotted circle: 

reconstructed assuming a noisy measurement; dotted ellipsoid: noisy measurement reconstructed 

using sub-optimal embedding parameters). Even with noisy data, the reconstructed attractor is 

topological equivalent to a circle allowing faithful feature extraction. Lower row: Time evolution 

of the Henon system (x-axis shown, left inset), which is a 2-dimensional simplification of the 

Lorenz model of atmospheric convection. The time evolution is chaotic implying a complex 

attractor (left panel). The sensitive dependence on initial conditions is illustrated by the two dots 

that differed (in the past) by 1 part per million. The right panel shows the distribution of pre-

stimulus brain states observed in a cohort of subjects performing a simulated shopping trip 

(measure STG; based on Braeutigam 2007). The states (columns) follow closely a statistical 

gamma-distribution (curve; ∼sa e$bs; a ~ 1.4, b ~ 0.003) similar to that seen in models of duration 

of perceptual dominance evoked by bi-stable stimuli. Here, by analogy, individuals may 

fluctuate between certain states of the brain in order to balance anticipation of or preparation for 

upcoming shopping choices. The three snapshots (inset) illustrate apparently erratic pre-stimulus 

brain activity in one subject, which nevertheless contains a deterministic content excavated by 

non-linear state-space analysis. Note the topographical plots follow sequentially with a 0.005s 

time lag (left to right; sensor array projected into the plane, right ear at right, front at top) 
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FIGURE 1: STATE SPACE 

 


