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Abstract—Text detection in natural scene environment plays
an important role in many computer vision applications. While
existing text detection methods are focused on English characters,
there is strong application demands on text detection in other
languages, such as Chinese. As Chinese characters are much
more complex than English characters, innovative and more
efficient text detection techniques are required for Chinese texts.
In this paper, we present a novel text detection algorithm for
Chinese characters based on a specific designed convolutional
neural network (CNN). The CNN model contains a text struc-
ture component detector layer, a spatial pyramid layer and a
multi-input-layer deep belief network (DBN). The CNN is pre-
trained via a convolutional sparse auto-encoder (CSAE) in an
unsupervised way, which is specifically designed for extracting
complex features from Chinese characters. In particular, the
text structure component detectors enhance the accuracy and
uniqueness of feature descriptors by extracting multiple text
structure components in various ways. The spatial pyramid
layer is then introduced to enhance the scale invariability of
the CNN model for detecting texts in multiple scales. Finally,
the multi-input-layer DBN is used as the fully connected layers
in the CNN model to ensure that features from multiple scales
are comparable. A multilingual text detection dataset, in which
texts in Chinese, English and digits are labeled separately,
is set up to evaluate the proposed text detection algorithm.
The proposed algorithm shows a significant 10% performance
improvement over the baseline CNN algorithms. In addition the
proposed algorithm is evaluated over a public multilingual image
benchmark and achieves state-of-the-art results for text detection
under multiple languages. Furthermore a simplified version of the
proposed algorithm with only general components is compared
to existing general text detection algorithms on the ICDAR 2011
and 2013 datasets, showing comparable detection performance
to the existing algorithms.

Keywords—Chinese Text Detection, Unsupervised Learning,
Text Structure Detector, Convolutional Neural Network

I. INTRODUCTION

ITH increasing penetration of portable multimedia
recording devices (such as smart phones and tablets),
multimedia contents proliferate in image and video sharing
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Fig. 1: The flowchart of the algorithm.

websites, e.g. Youtube and Flickr. Extracting text informa-
tion from those natural images and videos are conducive to
a wide range of applications such as image classification,
scene recognition and video retrieval. Although traditional
optical character recognition (OCR) systems have achieved
good performance in extracting text information from scanned
documents, their performance on natural images and videos
could drop significantly. The biggest challenge of using OCR
systems in natural environment is detecting text regions, as
the background in natural images and videos is much larger
in size and much more complex in texture. To quantify
and track the progress of text location in natural images,
several competitions, including four ICDAR Text Location
Competitions in 2003, 2005, 2011 and 2013 [1], [2], [3],
[4] have been held in recent years. However, even the best
performing algorithm reported in ICDAR 2013 can localize
only 66% of words in the dataset [4], which clearly shows
that there is still a large room for performance improvement.

The challenges in detecting texts from natural images come
from the variations of texts in font, size and style, complex
backgrounds, noise, unconfirmed lighting conditions (like us-
ing flash lamps), and geometric distortions [5], [6], [7], [8], [9],
[10]. As video contains additional time sequence information,
effective utilization of text motion estimate technique is vital
in video text detection and tracking [11], [12], [13], [14], [15].
Moreover, due to the widespread usage of smart phones, the
limited computational ability also becomes a main challenge of
text detection [16], [17]. The existing text detection algorithms
can be roughly classified into two major categories: region-
based methods and texture-based.

Region-based approaches detect texts by analyzing local
features in extracted image regions. Those local features are
unique in representing scene texts and ensure most text regions
can be detected. However, as some complex background
regions also have similar texture as text regions, it is very
challenging to design filtering rules or classifiers. Texture-
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based approaches analyze global texture features in the entire
image to localize texts. Global texture features of text and
background regions are clearly distinguishable, thus the back-
ground regions are rarely mistaken for text regions. Among
text regions, the global text features also vary significantly
due to the various scene conditions of texts and hence cause
a large number of missed detected texts.

Most of the above text detection algorithms use one or
several manually designed features such as HOG or SIFT to
extract text regions using a discriminative classifier or some
heuristic rules. Those features are designed for universal image
description instead of specific usage, which leads to difficult
optimization problem and weak adaptability. In contrast to
those traditional algorithms, recently some deep learning mod-
el based text detection algorithms [18], [19] report significant
performance improvement. Deep learning algorithms employ
original image pixels to detect candidate text regions by
extracting strongly adaptable features. Convolutional neural
network (CNN) is one of the most widely used deep networks
in text detection. A large labeled dataset is needed to train
a responsible CNN but labeled scene text datasets have only
limited sizes. And as the size of feature maps becomes larger,
which is essential in extracting text features, the similarity of
features also becomes higher.

It is noted that the above reported works are mainly focused
on extracting English text from natural images, while few
research works on Chinese text extraction have been reported
in the literature. Chinese characters are more complex than
English characters. Most Chinese characters contain more than
5 strokes, while the most complex English character “W”
has only 4 strokes (we split a line into strokes by the turn
point). In addition, there are more than 30 different types of
Chinese strokes, while only 10 different types of strokes exist
in English. Therefore, for English text detection algorithms,
analyzing the relationship between the English characters such
as words is more important than character-level detection. On
the contrary, the complexity of Chinese characters requires the
detection algorithms to focus more on the inner relationship
of strokes.

In this paper we propose a Chinese scene text detection
algorithm based on CNN (the structure of our CNN is shown
in Fig.2), making a number of key contributions.

Our main contribution is a novel Chinese text structure
feature extractor, which is a special layer in CNN called
text structure component detector (TSCD) layer. In the TSCD
layer, Chinese text characters are modeled in different ways
as multiple text structure components by the TSCDs. By
analyzing the structures of Chinese characters, the Chinese
text structure component types can be effectively classified
to several easily distinguishable groups based on their aspect
ratios. For each text structure component group, a specific
TSCD is designed to extract its feature, which has its unique
feature map shape. The multi-shape feature maps in the TSCD
layer also limit the similarity of features when the feature map
size expands thus the requirement of training set is reduced.
Extensive simulations demonstrate the TSCD is effective in
improving Chinese text detection performance.

Our second contribution is a novel unsupervised learning

Soft-max
classifier

1011111101000100111111010010000110110001011101100010001010010111101101101110000001
1011000110000111110001010011110111001000100100010111111011111010100100101101110110
T N
00001100100000101101100001000011100100000110011110011010111010000
01011011010101110000111111100111010111000101100000101001100111101
T Iy
1001011110101@100100111000010101110110111100101100100‘
11001100000000111101010110111011011001100101101001001

I
FANXY S | Gy

Multi-input-layer
DBN

Spatial pyramid
layer

8 text
structure
component
detectors

ks =
1Y ) )

Fig. 2: The overview of the CNN model.
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method, named convolutional sparse auto-encoder (CSAE),
for complex and abstract Chinese texts. As the availability
of public scene Chinese text datasets is very limited, applying
an unsupervised learning method to pretrain a CNN model is
important in avoiding overfitting. The CSAE is designed by
combining the convolutional layer in CNN and the sparse cod-
ing method. Apart from the optimization functions of sparse
coding, we add another optimization function to enhance the
ability of complex feature representation in our unsupervised
learning method.

Our third contribution is on the application of a spatial
pyramid layer (SPL) and designing a multi-input-layer deep
belief network (DBN) as the fully connected layer in our
model. The SPL improves the scale invariability of CNN,
which is vital to detect various scale texts in natural. With the
multi-input-layer DBN, the scale features extracted by SPL
and the text features extracted by TSCD can be combined
effectively.

Our fourth contribution is setting up a new multilingual text
detection dataset for training and evaluation. Different from the
public multilingual dataset in [20], our dataset labels Chinese,
English and digits separately for both training set and testing
set to evaluate text detection algorithm which detects one
specific type of language text more accurately with appropriate
evaluate method.

The rest of the document is organized as follows. In Section
II, we introduce the related works. In Section III, we describe
the proposed CNN model based text detection algorithm. In
Section IV, we present the experimental evaluation setting up,
results and discussions. The paper is concluded in Section V.

II. RELATED WORKS

Traditionally, text detection algorithms can be roughly clas-
sified into two major categories: region-based and texture-
based.

1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2625259, IEEE

Transactions on Multimedia

Region-based approaches, such as the traditional sliding
window based approach, limit the detection and feature ex-
traction route to a subset of image rectangles. For example,
Wang et al. [5] use Random Ferns to classify the sliding
windows in the images by some chosen features, then use non-
maximal-suppression to detect the text regions. Shivakumara
et al. [11] segment an image to a number of blocks and detect
text blocks by applying several edge descriptors in different
block contrast. Li et al. [6] apply a stroke filter to extract
feature maps from images, and then classify the feature maps
in a sliding window fashion to detect text regions. On the other
hand, connected component (CC)-based approach is another
type of region-based approach, which extracts regions from
images and uses a set of rules to filter out non-text regions.
Following this line of researches, Jung et al. [7] apply a stroke
filter for the canny edge map of images, and generate CC
regions to detect text regions with several additional features.
Epshtein et al. [8] propose a CC extractor named stroke
width transform, which is generated by shooting rays from
canny edges in the gradient direction, and filter out non-text
regions by geometric constraints. Shivakumara et al. [13] filter
the input images with Fourier-Laplacian, and compute the
text string straightness and edge density to exclude non-text
regions.

Texture-based approaches detect texts by their special tex-
ture structures and usually use machine learning methods to
distinguish texts from background by extracting certain fea-
tures. As a typical example, Chen et al. [9] design several weak
classifiers by using joint probabilities for feature responses and
use Adaboost machine learning algorithm to build a strong
classifier for detecting texts. Ye et al. [10] use multi-scale
wavelet transform to extract features and an SVM classifier is
applied to identify text lines from scene images.

Recently deep learning based text detection algorithms have
been ever more reported. Deep learning based approaches train
a deep network to extract features in replace of the manually
designed feature extractors, which are hard to optimize for
text detection. Convolutional neural network (CNN) is one
of the most popular deep learning models for text detection.
The work in [18] trains a five-layer CNN model to detect
text regions in natural images by using a supervised learning
method. Huang et al. [19] also train a CNN model with two
convolutional layers to detect text regions in natural images.
The first convolutional layer is pre-trained with an SVM
classifier. Maximally Stable Extremal Region (MSER) is used
as a candidate text region extractor to reduce the number of
background regions before the CNN model.

III. THE PROPOSED TEXT DETECTION ALGORITHM
A. Overview of the proposed algorithm

The proposed Chinese scene text detection algorithm con-
sists of three parts: image patches extraction, CNN based
classifier and text line formation method. The CNN based
classifier is the core in the proposed algorithm. The flowchart
of the algorithm is shown in Fig.1.

The functionality of image patch extraction model is to
extract patches from scene images, in which a multi-scale

sliding window method is used to guarantee all the texts in
the image can be detected with full range of text scales.

The functionality of the CNN based classifier is to classify
the candidate text patches obtained from the image patch
extraction model with a 5-layer CNN model and a linear
classifier. The overview of the CNN model is shown in
Fig.2. The first convolutional layer of the CNN is pre-trained
by convolutional sparse auto-encoder (CSAE), which is an
unsupervised learning method designed for CNN, to extract
Chinese text features effectively. The CSAE is to be introduced
with more details in Section III.B. The second convolutional
layer is replaced by a text structure component detector layer
to enhance the accuracy and uniqueness of feature descrip-
tion, which can extract different text structure components in
different ways. The text structure component detector layer
is presented with more details in Section III.C. The extracted
features of text structure component detector layer are input
to a spatial pyramid layer to generate scale property, which
enhances the scale invariability of the CNN model and has
advantages in detecting texts with various sizes. A multi-input-
layer deep belief network (DBN) is designed for analyzing the
features with properties, which is used as the fully connected
layer in the CNN model. The design of spatial pyramid and
multi-input-layer DBN is described in Section IIL.D.

The functionality of the text line formation method is to
merge candidate text patches to text lines based on the scale
information and several other geometric and heuristic rules.

B. Convolutional Sparse Auto-Encoder (CSAE)

CNN was first introduced in 1980 [21] and becomes one of
the most popular deep learning models. In 1990s, following
the discovery of human visual mechanisms, local visual field is
designed to make CNN model deep and robust. In a standard
CNN structure, convolutional layers and pooling layers are
connected one by one and trained by supervised learning
method with labeled data. CNN is usually used as a strong
feature extractor and has achieved great success in image
processing fields. The feature extracting ability of CNN is
highly correlated with the quantity of training data. However,
as the research reports about Chinese text detection are very
few, the quantity of labeled Chinese text data is not adequate
for supervised learning method. Recently some works [22],
[23], [24] introduced several unsupervised learning methods
to train CNN with unlabeled data. The features extracted
by unsupervised learning CNN have better performance in
applications. However, those unsupervised learning methods
cannot extract Chinese character features effectively, because
Chinese characters are much more abstract than other natural
objects. Thus, we need to specifically design unsupervised
learning methods for Chinese texts, which is introduced below.

Convolutional layer determines the ability of the CNN
model to extract useful features from image data, which is
suitable for processing image data due to its convolutional
operation. It is the most important part in a CNN model. A
single convolutional layer is formed as follows:

f(l’, Wa b) =h= {hk}k:l...na (1)
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hi = tanh(z @ Wi, + by), 2

where © € RP*9%7 ig an input data matrix. W € Rm*pxmxm
is a set of filters where each filter is represented by W €
Rpxmxm ¢ R™ is a bias for each filter output. ® operator
represents convolution operator that applies on a single input
and a single filter. The output h € R™**¢-m+1xa=m+l jg 5 et
of feature maps extracted by the convolutional layer.

Sparse coding is a popular unsupervised learning method
used in many deep learning models. The general formulation
of sparse coding is a reconstruction model with a sparse
penalty term:

2* = argmin ||z — Dz||2 + \s(2), 3)

where z* is the optimal sparse representation corresponding to
the input z € R™ and the coefficients z € R™, D € R™*" is
an overcomplete dictionary (m > n), s(.) is a sparse penalty
function and A is a penalty parameter. Here we use the ||.||;
norm penalty, which has the same weight on all the elements
in z. The aim is to minimize the function (3) to obtain the
optimal z* .

The CSAE merges a single convolutional layer and the
sparse coding method, which enables more effective unsu-
pervised training for CNN models. Considering the functions
of convolutional layer and sparse coding, the optimization
function of CSAE is defined as follows:

* : _ 2
Bt = argin @ ijDmthzHthl, 4)

where h* is the optimal feature map correspond to the
input x € RP*9%? and convolutional feature map h €
Rrxa—mH1xa—m+1 "D js a dictionary of filters with the same
size as W, X is a penalty parameter. Note that function (4)
contains two variables D and h, so one variable needs to be
fixed when optimizing the other variable. We first optimize
the sparse feature map h using the FISTA method proposed
in [25] with fixed D. Then the stochastic gradient decent
(SGD) method is used to update the dictionary D for an
efficient estimation of the gradient with the optimal h. Finally
the convolutional parameters W and b are optimized using
SGD in the following function:

(W, 0%) = axgamin |1~ f@ W,D)3,  ©)

where h* is the optimal feature map.

In CSAE, the convolutional parameters are updated more
than once by one set of training samples as the feature maps
of Chinese characters are so complex that the parameters need
more updating to extract them accurately. The optimization
goal is defined as follows:

|h* = fz; W,b)[3 < 0 (6)

where 6 is the parameter of optimization goal, which decreases
as the iteration of CSAE increases. The optimization procedure
is sketched in Algorithm 1.

Algorithm 1 Convolutional Sparse Auto-Encoder
function CSAE(xz, D, P,{\, 5},{W,b},n)
Initialize :z = (), D, W and b randomly
repeat
Minimize function 4 wrt h using FISTA.
Update D using SGD in function (4).
repeat
Update W using SGD in function (5).
Update b using SGD in function (5).
until function (6) is satisfied
until convergence
Return {D,W,b}
end function
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Fig. 3: (a) Left-right structure. (b) Top-bottom structure. (c)
Inner-outer structure. (d) Single character.

C. Text structure component detector (TSCD)

1) Analysis of text structure feature extraction: Chinese
characters are a kind of pictographs, which contain a large
number of radicals and structures. To detect Chinese texts,
an efficient method is to analyze Chinese character structure,
which is the most remarkable feature of Chinese characters.
Chinese character structure is abstracted form natural objects.
After a long time use of the Chinese characters, their structures
evolved to be more and more abstracted. Modern Chinese
character structures are largely different from natural object
structures. In [26], Chinese character structures are classified
into four basic types: left-right structure, top-bottom structure,
inner-outer structure and single character (examples are shown
in Fig.3). There are many complex Chinese character struc-
tures based on the basic structures, such as top-middle-bottom
structure. Chinese character structure component is the most
basic constituent element of Chinese characters. Each Chinese
character is constituted by one or more structure components.
Therefore, the Chinese character structure component is con-
sidered as one of the most important features for Chinese text
detection and recognition.

The large quantity and valid formation of Chinese charac-
ter structure components can make a big difference among
the structure component features. However, CNN model has
difficulty in learning many features with large difference in
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Fig. 4: Visualized features in a single convolutional layer.
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Fig. 6: The statistical result of Chinese character structure component aspect ratio types.

one convolutional layer. The learning methods of the convo-
Iutional features in the same layer are the same. The final
difference of the convolutional features is determined by the
initial parameter values. In many cases, due to the strong
learning ability of CNN, the learned convolutional features
have big difference even with similar initial parameter values.
However, in one convolutional layer, structure component
features are too valid to be learned with the initial parameter
values. In Fig.4, a set of features in a single convolutional
layer are visualized. It shows that each convolutional feature
corresponds to one type of image features. It can be observed
that some convolutional features are very similar. With larger
number of convolutional features, the similar cases occur more
frequently. Therefore, a convolutional layer needs to be very
large to extract most Chinese text structure component features
as the features are large in quantity and valid in formation. An
efficient CNN model demands more initial differences rather
than the initial parameter values alone to extract Chinese text
structure component features.

2) Design of text structure component detector layer: In
order to initialize a convolutional layer properly for Chinese
text structure component features, we analyze the structure
components of some commonly used Chinese characters. The
work in [27] studies the utility of Chinese characters. They
propose a Chinese character utility function based on the fitted
model of character occurrence rate, which is presented below:

fn)

1 _ _
p~0-512,—n/T48.814

- 7
748 81404871 (0.487) 2

where f(n) is the utility of the n!* most commonly-used
Chinese character, and I'(x) is the gamma function. We
analyze the structure components of the most commonly-used
1290 Chinese characters because the utility drops below 104
when n is larger than 1290. Among the most commonly-
used characters, 46% of the characters are formed with left-

right structure, 26% are with top-bottom structure, 11% are
with inner-outer structure and 17% are with single character.
Each basic structure type can be further divided into several
sub-structures based on the character statistical analysis. The
statistical result of top-bottom structure characters is shown
in Fig.5. More than 95% top-bottom structure characters can
be classified into the 10 sub-structures as shown in Fig.5. It is
noted that although the character structures have diverse forms
and many types of components, the aspect ratios of the struc-
ture components are highly clustered. There are three main
aspect ratio types of the structure components with the top-
bottom structure characters: 3:1, 3:2 and 2:1. There are also
three secondary aspect ratio types in the top-bottom structure
characters: 1:2, 1:1 and 2:3. Thus, the aspect ratio type is an
important property of character structure component, which
makes the structure components easier to be distinguished and
classified into several groups. The aspect ratio type is therefore
used as an initial difference to enable the CNN model to
extract more Chinese text structure features with acceptable
complexity.

A TSCD is a convolutional feature extractor for the charac-
ter structure components with a particular aspect ratio type.
In the TSCD the aspect ratio of the normal convolutional
window with an aspect ratio of 1:1 is adjusted to be the same
aspect ratio type of target character structure components by
fixing the length of the longer edge. For example, a TSCD
adjusts the aspect ratio of convolutional window to 2:1 to
detect character structure components whose aspect ratio is
also 2:1. The convolutional window determines which part of
the feature map the convolutional operation will be performed
on. A convolution window with a 2:1 aspect ratio uses all
the information of the structure components with a 2:1 aspect
ratio and less information of structure components is used with
other aspect ratio. Thus, the TSCD is sensitive to the structure
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components with a 2:1 aspect ratio. In this way, TSCDs for
extracting features of the structure components with different
aspect ratio can be designed. To ensure the completeness of
the text structure component features, we analyze the character
structure components of all the most commonly-used 1290
Chinese characters focusing on their aspect ratios. It is found
from the statistical result (as shown in Fig.6) that there are 11
aspect ratio types of structure components. The share of the
most common eight structure component aspect ratio types is
over 99%. The number of text structure component detectors
is set up based on the proportion of the structure component
aspect ratio types. In the TSCD layer, all the TSCDs extract
features in parallel. Therefore the quantitative distribution of
TSCDs corresponds to the quantitative distribution of natural
structure components, which ensures most of the Chinese
character structure components can be detected in the TSCD
layer. The CNN can extract Chinese text structure component
features more accurately and comprehensively by using the
TSCD layer than normal convolutional layer with the same
number of feature maps.

D. Spatial Pyramid Layer (SPL) and Multi-input-layer Deep
Belief Network (DBN)

The texts in natural images have many manifestations,
including various sizes, fonts and colors. The CNN model
has strong invariability in extracting features from natural
text regions with different fonts and colors. However, when
extracting features from natural text regions with different
sizes, the invariability of the CNN model is very weak.
Generally, if a text region is small in the input image, or
an input image cuts off a small part of one text region,
the CNN cannot extract the text feature accurately. In order
to generate image patches for every text region with proper
size, the most popular method is to extract image patches by
multi-scale sliding window algorithm. However, there are two
major problems with the multi-scale sliding window algorithm.
Firstly, because of the wide range of recognizable text sizes
in natural images, a large number of sliding window scales
are needed to generate image patches. Thus there are a large
number of image patches, which will significantly increase the
computational complexity. Secondly, the source image needs
to be magnified to generate image patches for small-scale texts,

which will also boost the image noise and reduce the accuracy
of the extracted text features.

A spatial pyramid layer (SPL) with a structure shown in
Fig.7(a), is designed to solve the problem of various text
sizes in natural images. Several features with scale properties
are generated based on the extracted features without scale
properties by the SPL. The spatial pyramid is named after
the feature map pyramid in which each layer represents
the size of the feature map with one scale type. The scale
invariability of the CNN model is enhanced by adding the
SPL to generate scale properties for extracted features. Taking
the advantages of the SPL, the features of small texts can be
extracted accurately from much bigger scale image patches.
Because the number of small scale image patches is much
larger than the big scale image patches, the computational
complexity of CNN is significantly reduced for the small
scale image patches are not essential. And the accuracy of
small text features is significantly increased as the interference
of magnified image noise is decreased. Meanwhile, the text
structure component features with scale properties are used to
analyze the relationship of the text structure components as the
scales of the text structure components in a single character
are not always the same.

The text structure component features with scale properties
have two feature dimensions: structure component dimension
and scale dimension. They are extracted by the text detection
CNN with TSCD layer and SPL. The learning ability of
a normal fully connected layer, which is usually a deep
neural network, is limited in learning complex two dimension
features. Deep Belief Network (DBN) is a generative graphical
model, which generates a joint probability distribution of
observational data and their labels. A DBN can learn both
P(Observation | Label) and P(Label | Observation),
while a deep neural network can only learn the latter. DBN
is proposed by Hinton in 2006 [28], which is composed
of several hidden layers and one visible layer. The hidden
layers in the DBN are pre-trained by restricted Boltzmann
machines (RBMs) layer by layer. The first layer is pre-trained
as a RBM using the input training data as the visible layer.
Then the second is pre-trained as a RBM using the output
of the first layer as the visible layer. After all the hidden
layer are pre-trained in this way, they are connected to the
visible layer with a classifier and fine tuned by the training
data for classification. The learning ability of DBN is much
stronger than the normal fully connected network used in
CNN, which has large advantage in learning complex two
dimension features. Thus, a DBN based network is used as
the full-connect layer in the text detection CNN.

It is noted that the sizes of feature maps with scale properties
vary with different scales. The size of the feature maps in
the lower spatial pyramid layer is much larger than that in
the upper layers. When the feature maps are input to a DBN
together, the small scale features have much smaller influence
to the output as the large scale features, which may weaken
the effects of scale properties. In order to solve the influence
problem, we designed a modified DBN model, named multi-
input-layer DBN, which is suitable for learning features with
different map size. The multi-input-layer DBN learns the
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TABLE I: A description of proposed methods

TABLE II: A description of the various datasets evaluated on

Methods Usage in CNN Modeling Datasets Texts Label #Train ~ #Test
CSAE Pretraining Chinese specialized ICDAR 2011 English, digits - 229 255

TSCD layer Convolutional layer Chinese specialized ICDAR 2013 English, digits - 229 233

SPL Down-sampling layer General Pan’s dataset ~ Chinese, English, digits Mixed 248 239
Multi-input-layer DBN  Fully connected layer General Our dataset Chinese, English, digits  Separately 194 200

features with scale properties half-jointly, which guarantees the
influences of features with different size are similar and retains
the correlation of neighbor scale features. The structure of the
multi-input-layer DBN is shown in Fig.7(b). The number of
hidden layers in a multi-input-layer DBN equals the number of
spatial pyramid layers. The feature maps in the lowest spatial
pyramid layer are input to the first hidden layer of the multi-
input-layer DBN. Besides the first layer, the input of each
hidden layer combines the output of its former hidden layer
and the features in the corresponding spatial pyramid layer.
In order to guarantee the appropriate influences of features
with different sizes and retain the correlation of neighbor scale
features, the number of hidden units is set as the size of feature
maps in the corresponding spatial pyramid layer of its next
hidden layer.

E. Text Line Formation Method

The text line formation method merges the candidate text
patches selected by the CNN model into text lines. The texts
in a text line usually share similar scales while the neighbor
background text-alike regions unlikely share similar scales.
Thus, a candidate text region to form a text line should contain
more candidate text patches with similar scale than those
with the average value of the image. The filtered candidate
text regions in similar horizons are merged if they satisfy
several geometric and heuristic rules such as similar colors
and horizontal distances, which is similar to the work in [8].
Finally, the boundary of the text line is delimited by the text
line scale as the candidate text patches with larger scale are
usually half outside the text line boundary.

IV. EXPERIMENTS

In this section the proposed Chinese text detection algo-
rithm is evaluated. The algorithm is first evaluated with two
multilingual text detection datasets. The first one is proposed
by this paper for training and testing the proposed algorithm.
The multilingual text detection dataset is a separate-labeled
dataset in which different language texts are labeled separately.
The second dataset is mix-labeled in which different language
texts are labeled without language information [20]. The
Chinese text detection performance of the proposed algorithm
is evaluated with the separately labeled dataset, while the text
detection performance under multiple language is evaluated
with the mix-labeled dataset.

It is noted that the proposed algorithm has a number of
components, including CSAE, TSCD layer SPL and multi-
input-layer DBN. Some of them are specially designed for
Chinese texts to improve text detection performance, while
some are general and can be used to detect other language

texts such as English texts. The functionalities of the major
components and their generalities for text detection are shown
in Table I. Apart from the overall performance evaluation
of the whole Chinese text detection algorithm on Chinese
text datasets, it is also interesting to know how the indi-
vidual algorithm components perform and contribute to the
performance improvements, and how the proposed Chinese
text detection algorithm can perform on general text dataset
for English text detection to have a reasonable comparison
to general text detection algorithms. With this performance
evaluation in mind, we have an additional set of experiments
on evaluating a slightly simplified algorithm in which the
components specifically designed for Chinese texts processing
are removed and replaced by the general ones. The simplified
version of the proposed algorithm is evaluated on the two
most recent ICDAR text detection datasets [3], [4], which are
the most widely used datasets for evaluation of scene text
detection algorithms.

Next we present the proposed multilingual text detection
dataset in Section IV.A. In section IV.B, the training method
of our text detection deep network is introduced. Then the
experiment results with the separately labeled dataset, mix-
labeled dataset and two ICDAR datasets are presented and
discussed.

A. Multilingual Text Detection Dataset

To enable effective evaluation of the new CNN model based
Chinese text detection algorithm, we set up a multilingual text
detection dataset for our algorithm training and evaluation,
which labels Chinese, English and digits separately for both
training set and testing set. The dataset has similar size of
the most popular ICDAR text detection datasets. The size
and image categories of our dataset are both similar to the
most popular ICDAR 2011 text detection dataset and another
multilingual text detection dataset set up by Pan et al. in [20].
In the ICDAR datasets text contents and positions are labeled
for all text regions in training set and testing set, while Pan’s
dataset only labels text position for text regions in testing
set. We not only label text contents and positions for all
text regions in training set and testing set, but also label
Chinese, English texts and digits separately, which is suitable
for evaluating a text detection algorithm used to detect one
specific type of language text. In this way our dataset can be
designed to evaluate Chinese text detection algorithm as well
as general English text detection algorithm.

The multilingual text detection dataset contains a training
set and a testing set. For training text detection artificial
network, the training set needs to simulate common application
usages, in which various noises, backgrounds, text types, light
conditions etc. are all need to be included. Thus we set up the
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(b)

Fig. 8: Examples of training image.(a) The artificial Chinese
character examples. (b) The training image patch examples.
The first is a simple text sample, the second and third are
complex text samples, the last is a background sample.

training set by taking text pictures in open fields with different
weathers and indoor with different lights from various objects
by a camera. The training set contains 194 scene pictures
which have two different sizes: 1632 x 1224 and 1224 x 1632.
There are 597 text regions in the training set, including 457
Chinese text regions, 102 English text regions and 38 digits
regions. For evaluating text detection algorithm, the testing set
needs to simulate not only application usages but also some
special usages. Thus we set up the testing set by adding the
image sources such as processed images from the Internet. The
testing set contains 200 scene pictures, which have various
sizes because of their various sources. There are 531 text
regions in the testing set including 391 Chinese text regions,
115 English text regions and 25 digits regions.

Compared to the wide-used text detection datasets ICDAR
2011, ICDAR 2013 and Pan’s dataset, which contains 255,
233 and 239 test images, our dataset contains a bit less (200)
test images. However, as the labels in our dataset are more
comprehensive, it is expected using our dataset can be more
effective than the other datasets above for evaluation of our
proposed Chinese text detection algorithm. A summary of the
datasets is shown in Table II.

B. Training Details

1) Training Samples: The training samples for the CSAE
to pre-train the convolutional layer are set up artificially
(examples are shown on Fig.8 (a)). As the number of Chinese
characters is very large, we collect all the characters in the
training set of the separate-labeled dataset and 50% of the
most common Chinese characters which are not included in
the training set. The artificial images have white character and
black background. The characters are generated by the 15 most
popular Chinese fonts such as Sun, Kai and Hei to enrich the
descriptions of characters, which enhances the feature learning
ability of the CSAE.

The training samples to train the 5-layer CNN model with
a text structure component detector layer are extracted from
the training set of the separate-labeled dataset (examples are
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shown on Fig.8 (b)). There are approximately 25,000 training
samples used to train the CNN model. The training samples
are composed of about 3000 simple text samples, 6000 com-
plex text samples and over 16000 background samples. The
percentage of text region in a simple text sample is over 80%,
while in a complex text sample is 25% to 66% and in a
background sample is less than 10%. The characters in a text
sample needs to be brighter than their nearby background,
otherwise the sample will be inverted.

As the ICDAR 2011 and ICDAR 2013 share the same
training set, the training samples to train the 5-layer CNN
model for general text detection are only extracted from the
training set of ICDAR 2011 text detection dataset. There are
25,000 training samples are used to train the CNN model. 60%
of them is background samples. In the other 40% text samples,
simple and complex text samples have similar amount (about
5000) because many characters in the training set are too large
to extract complex samples.

2) Deep Network Parameters: The CNN model in our
Chinese text detection algorithm has five layers including a
convolutional layer, a down-sampling layer, a text structure
component detector layer, a spatial pyramid layer and a fully
connected layer. The convolutional layer is pre-trained by
using the CSAE to learn a dictionary D € R™*"*™ and the
convolutional parameters from the training samples for the
CSAE with size of 32 x 32. N is the number of filters in the
convolutional layer and m x m is the size of the convolutional
window, which are 64 and 9 x 9 in our experiment. The learn-
ing rates of the dictionary and the convolutional parameters
are different for their different convergence speeds, which are
1.5x 1073 and 5 x 10~4, respectively. The maximum times of
updating the convolutional parameters in an epoch are set to 50
to avoid overfitting. The down-sampling layer is max-pooling
with pool-size of 2 x 2. The text structure component detector
layer is composed of eight text structure component detectors
corresponding to most common eight structure component
aspect ratio types. The total number of the filters in the text
structure component detector layer is 256, which is distributed
to the eight text structure component detectors based on their
proportions of the total text structure components (as shown in
Fig.6). The spatial pyramid layer has three scale layers, whose
pool-sizes are 2 X 2, 4 x 4 and 8 x 8, to generate features with
scale properties. The output feature maps are fully connected
to a 1024 dimension feature vector by the fully connected
layer, which is a three-input-layer DBN. The learning rate
for pre-training the three-input-layer DBN is 1 x 107%. The
final output of the CNN is input to a softmax classifier to
learn the parameters in the model by using the stochastic
gradient decent (SGD) method from the train samples with
size of 64 x 64 after the convolutional layer is pre-trained.
The learning rate for all the parameters is 1 x 1073, Totally
there are approximately 32 thousand convolution parameters
and 132 million fully connected parameters in our Chinese
text detection CNN model.

The general text detection CNN model has five layers
including two convolutional layer, a down-sampling layer, a
spatial pyramid layer and a fully connected layer. The structure
of this model is the same as the Chinese text detection model
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expect the following two differences. First, the TSCD layer
is replaced by a normal convolutional layer, which has 256
filters with 9x9 window size. Second, no convolutional layer
in the general text detection model is pertained. Totally there
are approximately 48 thousand convolution parameters and
81 million fully connected parameters in our general text
detection CNN model.

3) Training Steps: First, the convolutional layer is pre-
trained by the CSAE unsupervised learning method using the
artificial training samples. The learning processing stops when
the average reconstruction error in function 4 decreases to
less than 1 x 107> and the average network error in function
5 decreases to less than 1 x 10~7, which guarantees the
accuracy of trained parameters and controls the computational
complexity.

Second, the text detection CNN model is trained by replac-
ing the multi-input-layer DBN with a normal two-layer fully
connected DNN after the convolutional layer is pre-trained.
The parameters in the text structure component detector layer
are randomly initialized. The simplified text detection CNN
model is trained 500 rounds by SGD method using the natural
training samples to generate the multi-scale feature maps for
pre-training the multi-input-layer DBN.

Third, the multi-input-layer DBN is pre-trained using the
multi-scale feature maps generated in the former step. The unit
number of each hidden layer is set as the input feature map size
of its next hidden layer to guarantee the appropriate influences
of features with different sizes and retain the correlation of
neighbor scale features. Every hidden layer are pre-trained
1000 rounds.

Finally, the whole text detection CNN model is fine-tuned.
The convolutional layer and text structure component detector
layer are initialized by the parameters trained in step 2 and
the multi-input-layer DBN is initialized by the parameters pre-
trained in step 3. The text detection CNN model is fine-tuned
300 rounds by SGD method using the natural training samples
to improve the classification accuracy.

C. Experimental Results on the Separate-Labeled Dataset

The proposed text detection algorithm is designed for
detecting Chinese text regions in scene image. Most text
detection evaluation methods, including the ICDAR evaluation
methods, evaluate all-language text detection performance. In
order to evaluate the Chinese text detection performance of our
proposed algorithm on the separately-labeled dataset, the text
detection evaluation method in ICDAR 2011 [3] is modified.
The modified evaluation method is also composed of a two-
part measurement precision p and recall r and an overall
measurement f — measure:

SN S IPTMp (DL 6

p= SV D , 8)

U Mae(Ge, DY)
ponlite]

f — measure =

) 9

(10)

TR
3

TABLE III: The peculiarities of the CNN models in this paper

Models CSAE TSCD SPL  Multi-input-layer DBN
CNN o o o o
CNN-C . o o o
CNN-T o . o o
CNN-CT . . o o
CNN-CTS . ° ° o
CNN-CTSD . ° . °
CNN-S o o ° o
CNN-SD o o ° .

e donates the method is applied and o donates the method is not

where N is the total number of images in a dataset. |D’|
and |G¢'| are the number detection and Chinese ground truth
regions in the " image. o represents the relative weight
between the two measures. In our evaluation « is typically
set to 0.5, which gives equal weight to precision and recall.

Mp(Dj},G") and Mg.(G¢c}, D*) are the matching scores
for detection region D; and Chinese ground truth region Gc;.
They are described in function 11 and 12,

Matchg.(Gej, D)

1 if Gc; matches one d

. 1D
= 0  if Gc; matches no d

fse(k) if Gc; matches some(k) d
Matchp (Dj7 G)

1 if D; matches against one g.

0 if D; matches against no g
= fsen(l) if D; matches against one gu.

fse(k) if D; matches some(k) g, one is g.

fsen(l) - fsc(k) if D; matches some(k) g, none is g

(12)
where d represents one or some of the regions in D and g
represents one or some of the regions in G. g. represents one
or some of the regions in G, and g, represents one or some
of the regions in G but not in G.. fs.(k) is a punishment
function for matching against more than one text regions. In
our experiment we set it equal to the punishment function of
the ICDAR 2011 text detection evaluation method. fsc, (1) is
a punishment function for matching against non-Chinese text
regions. In our experiment we set it to a constant value of 0.8
for both English and digits regions.

TABLE IV: Text detection results with different models.

precision | recall | f — measure
CNN 0.73 0.74 0.73
CNN-C 0.79 0.78 0.78
CNN-T 0.81 0.76 0.78
CNN-CT 0.85 0.81 0.83
CNN-CTS 0.82 0.80 0.81
CNN-CTSD 0.86 0.83 0.84

Table IV presents the evaluation results of the proposed
Chinese text detection algorithm with different CNN models.
The proposed CNN model with all the previously introduced
components (named CNN-CTSD) is compared to the models
with only partial components. A normal CNN model has five
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Fig. 9: The image rows of both (a) and (b) from up to bottom are the results of text detection algorithm based on CNN-C,
CNN-CT and CNN-CTSD. In each image row, the images from left to right are the text detection result, origin intermediate
result map, small scale intermediate result map, middle scale intermediate result map and large scale intermediate result map.

layers in the following order: a convolution layer, a down-
sampling layer, a convolution layer, a down-sampling layer, a
fully connected layer. The CNN models are configured with
various component combinations in the normal CNN model,
aiming to identify the potential impact of the different compo-
nents. The major components included in these CNN models
are listed in Table III. Note that if the CSAE component is
used, the first convolutional layer is pre-trained. The second
convolutional will be replaced by the TSCD layer if it is
applied. The SPL is in replacement of the second down-

sampling layer. And the multi-input-layer DBN is used as a
more effective fully connected layer.

In the evaluations of the proposed text detection algorithm
with different CNN models, the proposed Chinese text detec-
tion CNN model achieves the best performance of precision
0.86 and recall 0.83. The experiment results show that using
CSAE to pre-train the CNN model can effectively improve
its Chinese text detection accuracy no matter if the TSCD
layer is applied. In both CNN and CNN-T based models,
the CSAE has similar improvements to precision and recall
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(in CNN/CNN-T, precision: 6%/4%, recall: 4%/5%). With
suitable pre-training, the model can extract more accurate text
features, which has balanced effects to precision and recall
improvements. It can be noted that the improvements of the
text structure component detectors are different to precision
and recall. In both CNN and CNN-C based models, the pre-
cision has more improvements than the recall (in CNN/CNN-
C, precision: 8%/6%, recall: 2%/3%). This is because the
text structure component detectors extract more accurate and
unique features by detecting the Chinese character structure
components in the image. Less effective Chinese character
structure component features can be extracted from back-
ground regions than Chinese text regions, and the Chinese
character structure component features vary significantly be-
tween background regions and Chinese text regions. There-
fore, the text structure component detector layer has bigger
improvement to precision than recall. The performance of
CNN-CTS is even worse than CNN-CT (precision is decreased
from 0.85 to 0.82 and recall is decreased from 0.81 to 0.80).
The results indicate that a normal fully connected DNN is not
suitable for the features with scale properties generated by the
text structure component detector layer and the spatial pyramid
layer. It is because the features with scale properties contain
two feature dimensions: structure component dimension and
scale dimension while a normal fully connected DNN has
limited learning ability to learn such complex features with
two feature dimensions. However, the two-dimension features
can be learned effectively by the multi-input-layer DBN due
to its strong learning ability and input layers designed for
every scales. The evaluation of CNN-CTSD shows that both
precision (0.86) and recall (0.83) are improved when using
multi-input-layer DBN as the fully connected layer.

Fig.9 shows the intermediate result maps, including the
origin result map and three main scales maps, of CNN-C,
CNN-CT and CNN-CTSD. It can be noted that the result of
CNN-CT contains less non-Chinese-text regions than the result
of CNN-C, which demonstrates the text structure component
detector layer has advantage in detecting Chinese texts than a
normal convolutional layer. The scale results of CNN-CTSD
contain more Chinese text regions of appropriate scale and
less of other scales than the scale results of CNN-CT. For
example, the regions corresponding to small texts in the small
scale result (the third image) of CNN-CTSD are much brighter
(which means the regions are more likely to contain texts) than
those corresponding to larger texts. However, in the small scale
result of CNN-CT, the difference is much unclear. It can be
indicated that the spatial pyramid layer and multi-input-layer
DBN can effectively improve the scale invariance of CNN.

D. Experimental Results on the Mix-Labeled Dataset

In order to evaluate our proposed text detection algorithm
in wider language environment and compare to more text de-
tection algorithms, the mix-labeled dataset set up by Pan [20]
is used as benchmark to evaluate our proposed text detection
algorithm. Most of the text regions in the mix-labeled dataset
are Chinese text regions, which limits the performance influ-
ence. The evaluation method is an all-language text detection
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evaluation method as described in [20] in this experiment for
the text regions are labeled without language information. In
this experiment, the proposed Chinese text detection algorithm
is based on the CNN-CTSD model.

TABLE V: Text detection results with different algorithms.

precision | recall | f — measure
The proposed algorithm 0.82 0.72 0.77
Pan’s algorithm [20] 0.65 0.66 0.65
Yin’s algorithm [29] 0.83 0.69 0.75
Liu’s algorithm [30] 0.63 0.67 0.65

Table V summarizes the evaluation results of different
text detection algorithms. It can be noted that although the
dataset contains a number of non-Chinese regions, which
has negative effects on the recall measurement, the proposed
algorithm achieves the best recall and the state-of-art result.
Liu’s algorithm is a text detection algorithm designed for
detecting Chinese texts presented recently and the best Chinese
text detection algorithm on the mix-labeled dataset. The result
shows that the proposed algorithm has better performance than
Liu’s algorithm especially on precision.

E. Experimental Results on ICDAR Datasets

As mentioned before, some components of the proposed
Chinese text detection algorithm are generally designed and
can be used for general text detection. To assess the effec-
tiveness of these general components and compare them with
general text detection algorithms, we evaluate the general text
detection algorithm on ICDAR 2011 and 2013 text detection
datasets, which are the most commonly used text detection
datasets. In this set of experiments, three variants of the
proposed algorithm (namely CNN, CNN-S, CNN-SD with
only general components) are evaluated.

TABLE VI: ICDAR 2011 text detection results.

precision | recall | f— measure
Proposed CNN 0.74 0.64 0.69
Proposed CNN-S 0.79 0.66 0.72
Proposed CNN-SD 0.78 0.67 0.72
Zhang’s algorithm [31] 0.84 0.76 0.80
Huang’s algorithm [19] 0.88 0.71 0.78
Yao’s algorithm [32] 0.82 0.66 0.73
Tsai’s algorithm [33] 0.73 0.66 0.69
Neumann'’s algorithm [34] 0.73 0.65 0.65

TABLE VII: ICDAR 2013 text detection results.

preciston | recall | f— measure
Proposed CNN 0.76 0.63 0.69
Proposed CNN-S 0.81 0.66 0.73
Proposed CNN-SD 0.81 0.67 0.73
Zhang’s algorithm [31] 0.88 0.74 0.80
Yin’s algorithm [4] 0.88 0.66 0.76
Neumann'’s algorithm [35] 0.88 0.65 0.74
Bai’s algorithm [36] 0.79 0.68 0.73

Table VI and VII summarize the evaluation results of
different text detection algorithms in ICDAR 2011 and 2013
datasets. It can be observed that the performance of CNN-SD
is similar to CNN-S on the ICDAR datasets, which indicates
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that the multi-input-layer DBN has no obvious advantage in
analyzing the features with only scale properties than a normal
fully connected DNN. It is also noted that the state-of-the-arts
(e.g., Zhang’s algorithm) perform better than our proposed
general text detection algorithm (with partial components).
The results are not surprising as the leading algorithms all have
specialized modelings for English text detection while our pro-
posed one does not have. For example, Zhang et al. [31] design
a symmetry detector to extract symmetry features, which are
special for English characters. Huang et al. [19] propose an
error-connected component splitting method, which is special
for English texts, to improve text detection performance.
However, compared to the other algorithms that consider
only text generality, our algorithm achieves either similar or
better results. Thus, we believe the general components in
our proposed text detection algorithm are performing well for
detection of both English and Chinese texts.

V. CONCLUSION

In this paper, we present a novel text detection algorithm for
Chinese texts based on CNN, which contains a text structure
component detector layer, a spatial pyramid layer and a multi-
input-layer deep belief network (DBN). The CNN model is
pre-trained via a convolutional sparse auto-encoder (CSAE)
in an unsupervised way to help extracting complex Chinese
text features from natural images and enlarging the training
set. The text structure component detector (TSCD) layer,
which contains several text structure component detectors,
is specifically designed for extracting Chinese text structure
features. Each of the text structure component detectors is
designed to extract the unique features of certain types of
Chinese character structure components. The spatial pyramid
layer is then introduced to enhance the scale invariability of the
CNN model by generating features with scale properties. In
order to learn the text structure component features with scale
properties, a multi-input-layer DBN is used as the fully con-
nected layer. The multi-input-layer DBN ensures the features
from multiple scales are comparable by inputting different
scale features to different hidden layers. Experimental results
demonstrate that the proposed algorithm is effective in Chinese
scene text detection and significantly outperforms the existing
algorithms. The pre-trained CNN model has advantages in
extracting complex Chinese text features. It is also observed
that the unique Chinese character structure component features
extracted by the TSCD layer are suitable for identifying text
regions. The text structure component features with scale
properties, which are generated by the spatial pyramid layer
for different scale texts, can be learned effectively by the multi-
input-layer DBN, which has strong learning ability with input
layers designed for each scale.
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