
GiGAn: Evolutionary Mutation Testing for
C++ Object-Oriented Systems

ABSTRACT
The current trend in mutation testing is to reduce the great
testing effort that it involves, but it should be based on well-
studied cost reduction techniques. Evolutionary Mutation
Testing (EMT) aims at generating a reduced set of mutants
by means of an evolutionary algorithm, which searches for
potentially equivalent and difficult to kill mutants to help
improve the test suite. However, there is little evidence of
its applicability to other contexts beyond WS-BPEL compo-
sitions. This study explores its performance when applied to
C++ object-oriented programs thanks to a newly developed
system, GiGAn. The conducted experiments reveal that
EMT shows stable behavior in all the case studies, where
the best results are obtained when a low percentage of the
mutants is generated. They also support previous studies
of EMT when compared to random mutant selection, rein-
forcing its use for the goal of improving the fault detection
capability of the test suite.

CCS Concepts
•Software and its engineering → Software testing
and debugging; Search-based software engineering;

Keywords
mutation testing; evolutionary computation; genetic algo-
rithm; object orientation; C++.

1. INTRODUCTION
A test suite is developed in order to reveal possible faults in
a system under test. Mutation testing provides a means for
measuring its ability to detect coding errors. In this tech-
nique, new versions of the code with injected faults (mu-
tants) are used to stress the test suite. The outputs after
their execution against the test suite should be different from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’17, April 3-7, 2017, Marrakesh, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . . $15.00
http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx

the expected ones in all the cases (mutants should be killed).
Undetected or alive mutants reflect weaknesses in the test
suite. The goals when a system undergoes a mutation test-
ing process are: (1) evaluate to what extent the test suite
is able to identify faults and (2) improve the test suite with
new test cases based on the inspection of alive mutants.

Several techniques have been suggested in the past to ease
the cost of applying mutation testing [11]. While most
of them are useful for (1), Evolutionary Mutation Testing
(EMT) [8] was recently presented with a focus on (2). EMT
proposes the generation of a subset of mutants through an
evolutionary algorithm. That subset should contain a high
proportion of the mutants that can guide on the creation
of new test cases (called strong mutants): potentially equiv-
alent (currently not detected) and difficult to kill mutants
(detected by one test case only killing that mutant).

EMT was successfully put into practice regarding WS-BPEL
compositions [8], but it has not been assessed in other do-
mains after that. As a result, its applicability to other con-
texts is an open question. In this paper we analyze the per-
formance of this technique in object-oriented systems. To
that end, GiGAn has been developed to make use of a ge-
netic algorithm (GA) in connection with MuCPP [6], a C++
mutation tool implementing operators at the class level.

The evaluation in this paper replicates existing studies but
in an object-oriented context, revealing that the technique
effectively outperforms the random selection of mutants, as
a smaller percentage of mutants is needed to achieve a per-
centage of strong mutants. Another interesting finding of
the performance of EMT is that it only varies slightly among
case studies and percentage of mutants produced.

The paper is structured as follows. Section 2 describes the
fundamental aspects of EMT. Section 3 explores the de-
tails of its application to C++ object-oriented applications
through GiGAn. Section 4 is about the empirical evaluation
carried out and discussion about results. The last section
presents conclusion and future research lines.

2. EVOLUTIONARY MUTATION TESTING

2.1 Definition
Evolutionary Mutation Testing [8] proposes the use of an
evolutionary algorithm to produce only a subset of the full
set of mutants in order to reduce the cost. This algorithm

works under the assumption that there are some mutants
with greater potential than others in guiding the tester to
the design of new test cases with high fault detection capabil-
ity, which are referred to as strong mutants. The generation
of strong mutants is favored by the evolutionary algorithm
search, thereby reducing the number of mutants while re-
taining the power to refine the test suite.

These two kinds of mutants are regarded as strong mutants:

• Potentially equivalent: mutants not detected by the
initial test suite. These mutants either lead to the gen-
eration of new test cases or result in equivalent mutants
once they are inspected.

• Difficult to kill: mutants detected by only one test case
that detects no other mutants.

Ideally, all potentially equivalent mutants help improve the
test suite with new test cases. However, some of those mu-
tants may turn out to be equivalent as this is an undecidable
problem and they cannot be discarded automatically.

2.2 Fitness function
Although the algorithm favors the generation of strong mu-
tants, each of the mutants receives a fitness. The fitness of
a mutant decreases as a) the number of test cases detecting
the mutant increases and b) the number of mutants killed by
those test cases increases. Therefore, to calculate the fitness
function every mutant has to be executed against every test
case. Equation 1 shows how the fitness of mutant I is com-
puted with respect to test suite S, where M is the number
of mutants, T is the number of test cases in S and mij is 1
when mutant i is detected by test case j, and 0 otherwise.

Fitness(I, S) = M × T −
T∑

j=1

(
mIj ×

M∑
i=1

mij

)
(1)

According to this fitness function, if the mutant I is:

• Potentially equivalent, it receives the maximum value
(M × T) because mIj = 0 for all j.

• Difficult to kill, it receives a fitness of M×T−1 because
mIj = 0 for all j except for one (z), which kills no other

mutants (mIz = 1 and
M∑
i=1

miz = 1).

• Weak, it receives a fitness lower than M × T − 1. The
more test cases kill I, the lower the fitness; also, the
more mutants those test cases kill, the lower the fitness.

As a final remark, invalid mutants (i.e., they infringe the
language rules and cannot be executed) neither are assigned
a fitness nor affect the fitness computation of the rest of
valid mutants.

2.3 Individuals
In EMT, the mutants are the individuals for the GA and,
as such, they must be uniquely identified. To this end, each

int f (int x , int y){
i f (x > 0){

i f (y > 1){
return y ;

}
}
return x ;

}
(a) Original

int f (int x , int y){
i f (x > 0){

i f (y < 1){
return y ;

}
}
return x ;

}
(b) Mutant

Operators Attributes

1.Relational operator replacement <=, >=, <, >, ==, !=
2.Arithmetic operator replacement +, -, *, /, %
... ...

(c) List of operators

Figure 1: Information for mutant encoding: a) orig-
inal code, b) mutation inserted (second appearance
of > by <) and c) predefined positions of operators
and their attributes

mutant is encoded with 3 fields: operator (identifier of the
mutation operator), location (order in the code of the mu-
tants of an operator) and attribute (variant inserted in a
location). As an illustration, consider the information in
Figure 1. The mutant depicted in the figure is identified as:

• Operator = 1: The first operator is applied.

• Location = 2: The second relational operator in the
code is mutated.

• Attribute = 3: The relational operator is changed
by the third variant in the predefined set of attributes.

2.4 Genetic algorithm
The GA produces several generations of mutants during its
execution, which is directed by the search of strong mutants
through the fitness function. The algorithm performs two
main steps in each generation:

1. Generation of mutants:

• First generation: mutants are generated randomly.

• Next generations: mutants are generated both
randomly and with reproductive operators.

2. Execution of the mutants generated. The fitness as-
signed to the mutants generated is computed with re-
spect to:

• First generation: the mutants in that generation.

• Next generations: all the mutants generated so
far. This is achieved by storing a second popula-
tion with the mutants created in previous genera-
tions, which helps the fitness function to produce
better estimations (see [8] for an example).

Regarding the reproductive operators, the GA can apply
mutation operators and crossover operators to individuals
from the previous generation to create new ones (the roulette
wheel method is used to select the mutants):

• Mutation operators: One of the three fields (operator,
location or attribute) is mutated.

• Crossover operators: Starting from two parents (opera-
tor1, location1, attribute1) and (operator2, location2,
attribute2), one of these crossover points is selected:

– Point 1: generates (operator1, location2, attrib-
ute2) and (operator2, location1, attribute1).

– Point 2: generates (operator1, location1, attrib-
ute2) and (operator2, location2, attribute1).

We should note that a process of normalization of the fields
avoids that invalid representations of mutants are produced.
Further details on the essentials of the technique are in-
cluded in the paper by Domı́nguez-Jiménez et al [8].

3. GIGAN: EMT IN OBJECT-ORIENTED SYS-
TEMS FOR C++

3.1 Class mutation operators for C++
Most of the studies in the literature covering issues related to
the cost of mutation testing have been carried out with tra-
ditional operators [2]. However, it remains unclear whether
the same benefits apply to operators at the class level. Stud-
ies on class operators [14] consistently show that they exhibit
different properties when compared to traditional operators:
they generate fewer mutants but a higher equivalence per-
centage. In particular, EMT has only been applied to WS-
BPEL in the past. However, it is unknown to what extent
the reduction achieved in that study holds in other contexts.

The GA described in Section 2.4 is implemented in GAm-
era [7], and this tool makes use of MuBPEL to analyze, gen-
erate and execute mutants for these compositions. Recently,
the mutation tool MuCPP [6] has been developed including
a set of class operators for C++ programs. In order to reuse
the same GA, we developed a new tool, GiGAn, to connect
the algorithm in GAmera and the mutation tool MuCPP. In
the experiments in this paper, the same list of 31 operators
shown in the study by Delgado-Pérez et. al [6] is applied.

3.2 GiGAn
Figure 2 displays how GiGAn connects MuCPP and GAm-
era to apply EMT to C++ object-oriented systems. As it
can be seen, GiGAn acts as a bridge between both tools,
translating the commands that each of the tools uses and
mapping mutant identifiers so that MuCPP and GAmera
can work together. Moreover, GiGAn presents two main
changes with respect to the original description of the tech-
nique, which can impact the results:

• Attribute: Some class operators in MuCPP [6] pro-
duce multiple mutations from a single location. The
available mutations depend on the context, so the range
of the attribute field is unknown in advance. As a re-
sult, the tool treats each of these mutations as its own
location and consequently all mutants have attribute =
1. Thus, we limit reproductive operators to mutation
of operator and location fields and point 1 crossover

Figure 2: GiGAn diagram

(see Section 2.4), as the rest of operators would result
in the same mutant being created.

• Mutants in different source files: MuCPP allows
several source files of a project to be analyzed in the
same execution. As a result, mutants from different
files can be generated when the location field is changed
to produce new individuals from previous ones (notice
that in GiGAn the location of each mutation in each
file is known because files are sorted beforehand). Even
though classes in a project often use a similar design
pattern, it is possible that the behavior of a mutation
operator varies for different classes, especially when
they belong to different source files.

4. EMPIRICAL EVALUATION

4.1 Research Questions
This empirical study investigates the relative effectiveness of
the use of EMT in real C++ programs using object orien-
tation. In particular, this experiment aims to know 1) how
many mutants EMT needs to generate to find different per-
centages of strong mutants and 2) whether this technique
produces better results when compared to random mutant
selection. Thus, these are the research questions to answer:

RQ1: How does EMT behave when searching different per-
centages of strong mutants in C++ object-oriented systems?

RQ2: Does EMT outperform the random selection of mu-
tants?

4.2 Case Studies
This study includes four open-source programs, which were
chosen because they make use of C++ object-oriented fa-
cilities and are distributed with a test suite. As it can be
seen in Table 1, MuCPP generates a different number of
mutants for these applications. Thanks to a previous execu-
tion of all the mutants, we also know how many mutants are
strong with the current test suite (used as a ground truth
to compute our results).

4.3 Experiment design
EMT needs to be configured with several parameters:

Table 1: Mutant distribution and number of test
cases in the applications under study

TCL DPH TXM DOM Total

Total 137 219 614 1,146 2,116
Valid 135 208 433 681 1,457
Strong (%) 33.3% 49.5% 36.7% 51.1% 45.0%
Test cases 17 61 57 46 181

TCL=Matrix TCL, DPH=Dolphin, TXM=Tinyxml2, DOM=QtDOM

Table 2: Genetic algorithm configuration

Parameter configuration Value

Population size 5%
Individuals generated randomly 10%
Individuals generated by reproductive operators 90%
- Mutation probability 30%
- Crossover probability 70%

• Population size: individuals in each generation. It is a
percentage of the number of mutants in each program.

• Individuals generated randomly and by reproductive op-
erators: since all the mutants in a generation are pro-
duced through these two ways (see Section 2.4), the
sum of both percentages has to be 100%.

• Mutation and crossover probability : the probability
that mutation or crossover operators are used when
a mutant is generated through reproductive operators.
As in the previous item, they have to sum 100%.

The values selected for these parameters (see Table 2) are
the ones found as optimal for the execution of this algorithm
in the experiments where the technique was presented [8].

In these experiments, we want to know the ability of EMT
to find strong mutants. Thus, all mutants were generated
and executed against all test cases in a previous execution
to maintain a record of strong mutants in the analyzed pro-
grams. We established several stopping conditions for the
algorithm: finding 30%, 45%, 60%, 75% and 90% of the set

Figure 3: Average percentage of mutants generated
in the programs to reach the stopping conditions.

of strong mutants. Then EMT was run 30 times with differ-
ent seeds for each of the five conditions. Therefore, the data
shown are obtained from the results of these 30 executions.

In order to answer RQ2, we make use of a random strat-
egy where mutants are selected one by one until reaching
the stopping condition. Again, this random technique was
executed 30 times and several statistics were calculated.

4.4 Results and discussion
Table 3 contains, individually for each program, the aver-
age, median, minimum, maximum and standard deviation
of the results of the 30 executions for each of the 5 stopping
conditions. Thus, the numbers shown in this table repre-
sent the percentage of mutants that EMT needs to generate
before finding 30%, 45%, 60%, 75% and 90% of the set of
strong mutants in these applications. We can observe that
the percentage of necessary mutants increases as the stop-
ping condition becomes more demanding in all the programs.

Table 3: Percentage of the number of mutants gen-
erated to achieve 30%, 45%, 60%, 75% and 90% of
the strong mutants (SD: standard deviation)

Program 30% 45% 60% 75% 90%

TCL
Average 23.45 37.59 53.55 67.59 84.33
Median 24.08 39.05 54.74 67.52 83.94
Min. 13.13 25.54 40.14 51.09 70.07
Max. 37.22 51.09 65.69 79.56 92.70
SD 5.44 6.67 6.10 6.98 5.21

DPH
Average 28.35 41.94 55.19 69.87 85.35
Median 28.54 42.23 54.79 70.09 85.38
Min. 24.65 38.35 50.68 62.55 78.99
Max. 33.33 47.03 59.81 76.71 90.41
SD 2.11 2.28 2.10 3.57 2.67

TXM
Average 24.09 36.62 49.74 64.91 84.32
Median 24.18 36.07 49.67 64.74 84.12
Min. 20.52 31.92 44.78 60.58 77.85
Max. 27.85 41.04 56.35 71.49 89.73
SD 1.61 2.34 3.05 2.59 3.34

DOM
Average 21.20 34.86 52.21 69.96 87.84
Median 21.16 34.86 52.31 70.15 88.09
Min. 19.02 32.28 46.59 66.05 83.33
Max. 23.03 37.26 57.06 73.38 90.13
SD 1.01 1.26 2.39 1.98 1.60

Figure 3 focuses on the average, allowing us to know the ten-
dency of this increase in each application. Given that the
stopping conditions have been selected in 15% increments,
this graphic reflects that the upward tendency is quite stable,
not only between conditions but also among applications.
Still, there is often a small increment in the percentage of
mutants generated as the stopping condition increases. Tak-
ing TXM to illustrate this fact, on average EMT needs to
produce 12.5% more mutants to find 45% of the strong mu-
tants than to find 30%. However, this difference increases
when considering the conditions 45%-60% (13.1%) 60%-75%
(15.2%) and 75%-90% (19.4%). The standard deviation does
not follow a pattern and is quite low, except for TCL where

Figure 4: Average percentage of the number of mu-
tants generated with EMT and random selection to
achieve 75% (a) and 90% (b) of the strong mutants

(a) 75%

(b) 90%

it might be affected by the few mutants in this program.

Figure 4 shows the average results of the random strategy
focused on the two more demanding stopping conditions. In
the light of the results, EMT produces a better outcome
than the random mutant selection in all cases. Similar re-
sults are obtained for the other three stopping conditions
and the rest of statistics, except for the standard deviation
(where we can observe varying results). We run a statisti-
cal test to know about the significance of the results. We
used STATService1, which selects an appropriate statisti-
cal test depending on the data (smart statistical test). The
results (collected in Table 4) lead us to accept that the me-
dian percentage of mutants that EMT needs to generate to
find a subset of strong mutants is significantly lower than
with random selection within a 99.9% confidence interval.
In order to evaluate the effect size, we also computed the
non-parametric Vargha and Delaney’s A12 statistic. In all
cases, the difference between the results for both algorithms
can be described as large, especially in TXM where the best
results were achieved (with a difference over 10% for the 75%
stopping condition) Still, the gap between both strategies in
the experiments by Domı́nguez-Jiménez et al. [8] is greater
than in this study in the better case (16% on average for the
more complex WS-BPEL composition when trying to find all

1http://moses.us.es/statservice

strong mutants). Overall, EMT should work better as the
probability of randomly selecting a strong mutant lowers.
Given that finding a strong mutant in TXM is harder than
in DOM (36.7% and 51.1% of strong mutants respectively),
the good results in TXM when compared to DOM might be
related to this fact, but this merits further investigation.

Table 4: Results of the smart and Vargha and De-
laney’s A12 statistical tests

75% 90%

Program p-value A12 p-value A12

TCL 2.26×10−03 0.711 1.24×10−03 0.734
DPH 4.55×10−07 0.848 2.72×10−06 0.829
TXM 7.14×10−21 0.996 1.65×10−06 0.937
DOM 4.31×10−12 0.962 1.71×10−05 0.816

RQ1: How does EMT behave when searching different per-
centages of strong mutants in C++ object-oriented systems?
The GA behaves in a very stable way for all the tested pro-
grams. Additionally, the proportion of strong mutants found
by EMT slightly decreases with the number of mutants gen-
erated in general.

RQ2: Does EMT outperform the random selection of mu-
tants? Yes. EMT yields better results than the random
strategy with high confidence. The difference between both
selection strategies is on average 6.17% and 3.80% to find
75% and 90% of strong mutants for the analyzed programs.

4.5 Threats to validity
Representativeness of the programs under study presents a
threat to the validity of the results. To counter this threat,
we have selected four applications in which (a) different mu-
tation operators were applied and (b) those operators gener-
ated a different number of mutants. Moreover, the number
of strong mutants varies among those programs.

The GA can show a different behavior depending on the
configuration. Since the best configuration for a particular
program is unknown in advance for the user, we have set the
same parameters for all the programs. Namely, we have used
the configuration found as optimal in previous studies, but
other parameters could yield a worse or better performance.
EMT selects and generates new individuals on a random
basis. As such, we have executed the technique 30 times in
order to avoid biased results because of a single execution.

5. RELATED WORK
There exist several techniques to alleviate the cost of mu-
tation testing by reducing the number of mutants gener-
ated [11], such as mutant sampling [4] (selects a subset of the
mutants randomly), selective mutation [2] (selects a subset
of the mutation operators) or high order mutation (HOM) [10]
(combines more than a single fault into a mutant). EMT [8]
was proposed recently for test suite improvement and as-
sessed with 3 WS-BPEL compositions. The technique was
later extended to generate HOMs [3]. In this work, EMT has
been shown to be better than mutant sampling at finding
strong mutants in 4 different C++ object-oriented programs.

Silva et al. [15] surveyed the studies applying search based
techniques in the scope of mutation testing. However, most
of these works are devoted to test data generation, even
for object-oriented software [9], and only a few to mutant
generation (where EMT is classified). Adamopoulos et al. [1]
were the first in using a GA for the co-evolution of mutant
and test suite population, where difficult to kill mutants
are favored and equivalent mutants are penalized (unlike
EMT), while Oliveira et al. [5] also studied this approach but
describing a new representation with new genetic operators.
Other studies in the literature have focused on using a GA
to generate interesting HOMs [10, 12]. Finally, Schwarz et
al. [13] leveraged a GA to find mutations not detected by
the test suite, which have a high impact and are also spread
throughout the tested code.

6. CONCLUSIONS
The experiments in an object-oriented context using GiGAn
confirm the promising results yielded by EMT in previous
research, thereby supporting this cost reduction technique
as a useful mechanism for the selection of mutants with the
goal of improving the test suite. The evaluation reveals that
there is high stability among the results for the tested pro-
grams, and little variation in the percentage of strong mu-
tants found as the number of mutants increases (best results
with low percentages of mutants generated). Additionally,
this study has shown EMT to be different from random test-
ing, with better results in all case studies with high confi-
dence. The gap between both strategies was however greater
in the experiments with WS-BPEL.

Future work can be divided into two different lines. Firstly,
we would like to simulate a real process where the test suite
is improved with new test cases. Instead of stopping when
finding a percentage of strong mutants, in that experiment
the algorithm would stop when a percentage of new test
cases is reached. In this way, we could evaluate how EMT
really help us improve the test suite. Secondly, studying the
impact of mutations in the code coverage can help isolate
equivalent mutants [12]. This information could assist in
lowering the probability of selecting equivalent mutants.

7. REFERENCES
[1] K. Adamopoulos, M. Harman, and R. M. Hierons.

How to overcome the equivalent mutant problem and
achieve tailored selective mutation using co-evolution.
In Proceedings of the Genetic and Evolutionary
Computation Conference, 2004, pages 1338–1349.

[2] E. F. Barbosa, J. C. Maldonado and A. M. R.
Vincenzi. Toward the determination of sufficient
mutant operators for C. Software Testing, Verification
and Reliability, 11(2):113–136, 2001.

[3] E. Blanco-Muñoz, A. Garćıa-Domı́nguez, J. J.
Domı́nguez-Jiménez, and I. Medina-Bulo. Towards
higher-order mutant generation for WS-BPEL. In
Proceedings of the International Conference on
e-Business (ICE-B), 2011, pages 1–6.

[4] T. A. Budd. Mutation Analysis of Program Test Data.
PhD thesis, Yale University, 1980.

[5] A. A. L. de Oliveira, C. G. Camilo-Junior, and
A. M. R. Vincenzi. A coevolutionary algorithm to
automatic test case selection and mutant in mutation
testing. In IEEE Congress on Evolutionary
Computation, 2013, pages 829–836.

[6] P. Delgado-Pérez, I. Medina-Bulo, F. Palomo-Lozano,
A. Garćıa-Domı́nguez, and J. J. Domı́nguez-Jiménez.
Assessment of class mutation operators for C++ with
the MuCPP mutation system. Information and
Software Technology, 2016.

[7] J. J. Domı́nguez-Jiménez, A. Estero-Botaro, A. Gar-
ćıa-Domı́nguez, and I. Medina-Bulo. GAmera: an
automatic mutant generation system for WS-BPEL
compositions. Proceedings of the 7th IEEE European
Conference on Web Services, 2009, pages 97–106.

[8] J. J. Domı́nguez-Jiménez, A. Estero-Botaro, A. Gar-
ćıa-Domı́nguez, and I. Medina-Bulo. Evolutionary
mutation testing. Information and Software
Technology, 53(10):1108–1123, Oct. 2011.

[9] G. Fraser and A. Arcuri. EvoSuite: Automatic test
suite generation for object-oriented software. In
Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of
Software Engineering, 2011 pages 416–419.

[10] Y. Jia and M. Harman. Constructing subtle faults
using higher order mutation testing. In Eighth IEEE
International Working Conference on Source Code
Analysis and Manipulation, 2008, pages 249–258.

[11] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Transactions
on Software Engineering, 37(5):649 –678, Oct. 2011.

[12] W. B. Langdon, M. Harman, and Y. Jia. Efficient
multi-objective higher order mutation testing with
genetic programming. Journal of Systems and
Software, 83(12):2416 – 2430, 2010. TAIC PART 2009
- Testing: Academic and Industrial Conference -
Practice And Research Techniques.

[13] B. Schwarz, D. Schuler, and A. Zeller. Breeding
high-impact mutations. In Proceedings - 4th IEEE
International Conference on Software Testing,
Verification, and Validation Workshops, 2011, pages
382–387.

[14] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-
Cortés. Mutation testing on an object-oriented
framework: An experience report. Information and
Software Technology, 53(10):1124–1136, 2011. Special
Section on Mutation Testing.

[15] R. A. Silva, S. do Rocio Senger de Souza, and P. S. L.
de Souza. A systematic review on search based
mutation testing. Information and Software
Technology, 2016.

