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Abstract. In multi-unit organisations such as a bank and its branches or a national body delivering 

publicly funded health or education services through local operating units, the need arises to 

incentivize the units to operate efficiently. In such instances, it is generally accepted that units 

found to be inefficient can be encouraged to make efficiency savings. However, units which are 

found to be efficient need to be incentivized in a different manner. It has been suggested that 

efficient units could be incentivized by some reward compatible with the level to which their 

attainment exceeds that of the best of the rest, normally referred to as “super-efficiency”. A recent 

approach to this issue (Varmaz et. al. 2013) has used Data Envelopment Analysis (DEA) models to 

measure the super-efficiency of the whole system of operating units with and without the 

involvement of each unit in turn in order to provide incentives. We identify shortcomings in this 

approach and use it as a starting point to develop a new DEA-based system for incentivizing 

operating units to operate efficiently for the benefit of the aggregate system of units. Data from a 

small German retail bank is used to illustrate our method.  
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1. Introduction 

In many instances in the public and the private sector, we encounter situations where a central body 

manages a large set of similar units delivering some services. Examples of such centrally managed 

multi-unit organisations are a bank managing its branches, a tax authority managing local tax 

offices, a supermarket chain managing its outlets etc. In such organizations, the operating units have 

various degrees of autonomy. The central management varies in the degree to which it controls the 

day to day operations of each unit, and typically there is a considerable degree of autonomy for each 

organizational unit in terms of how it may use a centrally allocated budget for the services it is 

expected to deliver. Therefore, the need for the central management of such organisations arises to 

develop a system which incentivizes the local management of each unit to act in a way which 

optimizes performance (e.g. profits) for the organization as a whole. In particular, an individual 

organizational unit may choose to maximize its own efficiency which may not be optimal for the 

organization as a whole in terms of resource use relative to outcomes. For example, a redistribution 

of resources among operating units may lead to better performance for the organisation as a whole.  

One of the key methods deployed for measuring the relative efficiencies of a set of homogeneous 

operating units or “Decision Making Units” (DMUs) is Data Envelopment Analysis (DEA). This 

method has generally been developed for the case where the DMUs are independent rather than 

under some form of central management (e.g., Boussofiane et al. 1991, Thanassoulis 2001; Bogetoft 

2013). However, DEA models have also been proposed for the case where the operating units are 

functioning under a centralised management (e.g. Athanassopoulos 1995; Lozano and Villa 2004; 

Varmaz et al. 2013). This paper adds to this literature by introducing a method for incentivizing 

DMUs to act optimally for the overarching central organization. The method takes the approach 

developed by Varmaz et al. (2013) as its starting point. We highlight some drawbacks of their 

approach and propose a modified system which not only overcomes those drawbacks but also 

enhances the functionality of the DEA-based incentives system. 

DEA based approaches to managing the performance of multi-unit organisations have been 

developed so as to address the degree of autonomy enjoyed by the operating units. In this respect, 

we can discern two broad categories of units: those with limited and those with an enhanced degree 

of autonomy. For DMUs with limited autonomy, DEA approaches to measuring and managing 

performance depend on the assumed ease of transferring inputs or re-allocating output requirements 

between units. Where unimpeded re-allocation of inputs or transfer of outputs is possible, approaches 

such as those proposed by Athanassopoulos (1995) as well as Lozano and Villa (2004) can be used. 
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On the other hand, when there exist inflexibilities which make it difficult to reallocate inputs or 

transfer outputs among the DMUs, approaches such as those proposed by Nesterenko and Zelenyuk 

(2007) and Asmild et al. (2009) can be used. (See also Fang 2013 and Mar-Molinero et al. 2014 on 

the re-allocation of inputs and transfer of outputs in centrally managed multi-unit organisations.) 

DMUs with enhanced autonomy are those addressed by this paper. Such DMUs have control over 

their resources, products or services. Central management (the central decision maker or regulator) 

is responsible only for determining the strategic direction of the organisation as a whole, making 

policy decisions and monitoring but not micro-managing the activities of the DMUs (Afsharian and 

Ahn 2014). The central management may want to “induce continuous efficiency improvements, 

organizational learning and transfer of knowledge with a minimum of control exercised” (Agrell et 

al. 2002). One approach to measuring and managing performance of such loosely centralised (in 

effect decentralised organisations) can be found in Varmaz et al. (2013) which is the starting point 

for this paper.  

Varmaz et al. (2013) were the first to propose a DEA-based incentive system for managing the 

performance of loosely centralised multi-unit organisations. In their approach, it is assumed that the 

central decision maker aims to minimize the overall input consumption by the units given the 

aggregated outputs they produce; alternatively, it is desired to maximize the overall output 

production by all DMUs given the aggregated inputs they use. To operationalize their system, they 

modify the centralized resource allocation DEA model (CRA-DEA) proposed by Lozano and Villa 

(2004). The modification draws among others from the DEA-based incentive mechanism in the 

context of regulation proposed by Bogetoft (1997). The original framework of this regulatory 

method – which has its roots in the seminal work of Shleifer (1985) – applies conventional DEA 

models, i.e. those where the aim is to improve the performance of each unit independently. Varmaz et 

al. (2013) adapted the framework of the CRA-DEA model of Lozano and Villa (2004) so that it 

yields a “super-efficiency” measure for each unit. This super-efficiency measure features within the 

incentive mechanism proposed by Varmaz et al (2013). 

The concept of super-efficiency was first proposed by Andersen and Petersen (1993) in order to 

improve the discrimination between efficient units in DEA. In their approach, the DMU under 

evaluation is assessed relative to the rest of the DMUs itself being excluded from the comparator 

units. As a consequence, while inefficient DMUs receive the same efficiency score whether or not 

they themselves can feature in the comparator set of units, efficient DMUs may have efficiency 

scores greater than one relative to the most efficient of the rest of the units. The resulting level of 
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“super-efficiency” leads to discrimination between efficient units. To this effect, super-efficiency 

measures have been applied for a variety of purposes in the framework of efficiency measurement, 

such as for incentive regulation (see, e.g., Bogetoft 1997), acceptance decision rules (see, e.g., 

Seiford and Zhu 1998), detecting exceptional pupils (see, e.g., Thanassoulis 1999), sensitivity 

analysis in DEA (see, e.g., Zhu 2001), ranking efficient units (see, e.g., Chen 2004) and outlier 

identification (see, e.g., Banker and Chang 2006). 

Varmaz et al. (2013) make use of the concept of super-efficiency as in Bogetoft et al. (1997) in order 

to devise an incentive compensation formula for the case of centrally managed multi-unit 

organisations. They modify the CRA-DEA model proposed by Lozano and Villa (2004) in order to 

arrive at a variant of the super-efficiency measure. The resulting super-efficiency measure is then 

used within an incentives formula so that inefficient units are encouraged to become more efficient 

and those with super-efficiency above 100% are incentivised by “rewards” compatible with their 

level of super-efficiency. As it will be shown in this paper, their approach can lead to counter-

intuitive results, incompatible with incentivizing units to improve their performance. The key pitfall 

in their approach is that their so-called super-efficiency measure does not capture appropriately the 

impact of a unit on the system as a whole because the system is not defined in a stable manner.  

In order to remedy this deficiency, we adapt and extend their approach. We redefine the super-

efficiency measure and integrate it in a formula which reflects more accurately how the efficient 

frontier of the system of units varies with and without each unit under consideration. This in turn 

leads to a more appropriate level of incentives for each unit. In addition, we highlight that it is 

possible for units to be “joint super-efficient” if they are located close to each other (in terms of 

input-output levels). Approaches based on super-efficiency measured by excluding from the 

referent set one DMU at a time can miss the super-efficiency of jointly super-efficient units. We 

suggest a practical approach for overcoming this problem so that units which are jointly super-

efficient can have their individual super-efficiency identified. This in turn can again lead to more 

accurate levels of incentives where super-efficiency features in the incentive formula.  

The use of super-efficiency in the context of incentive regulation has been researched extensively 

(see, e.g., Bogetoft 1997, Agrell et al. 2005). A good theoretical foundation of the approach can be 

found in Bogetoft (1994). In the context of the centralized multi-unit organisations which are the 

subject of this paper, the problem is modelled in a principal-agent context. The principal (central 

management) does not have access to full information as to the true cost function that pertains to 

each agent (unit) in delivering the outputs it is charged with delivering. This leads to an asymmetry 
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of information which can be exploited by the agent to extract rents, i.e. the agent finds it takes effort 

to be cost-efficient and so tends to slacken effort (extract rent). The principal on the other hand 

wishes to reduce this rent by incentivizing the agents to reveal information that leads to cost-

efficient behavior by the agents. One means at the disposal of the principal is the revealed 

information of the operating costs of all agents. By using methods such as DEA it is possible to 

arrive at target efficient costs for each agent. The agent is then incentivized (compelled if 

inefficient) to move towards (not necessarily to) the efficient cost level. However, this approach 

breaks down as an incentive mechanism for units that are already efficient. They will have no 

incentive to reveal further efficient cost levels which will lead to a ratchet effect as new efficient 

cost norms will be incorporated in the compensation formula. It is here that the notion of super-

efficiency comes in (see Agrell et al. 2005). The exclusion of a unit from the units used to derive 

the minimum cost norm for its own compensation eliminates the ratchet effect. Our paper makes 

use of the concept of super-efficiency in proposing a compensation scheme in the context of a 

multi-unit organization where the principal is the central management and the agents are the units 

comprising the organization.  

The paper proceeds as follows: Section 2 presents a brief overview of the use of DEA for 

incentivizing operating units. In Section 3, the approach of Varmaz et al. (2013) is revisited and its 

drawbacks are identified. In Section 4, we present a new approach for incentivizing the units of a 

centrally managed multi-unit organisation with respect to their performance. Section 5 extends the 

approach of Section 4 to cater for cases where the level of super-efficiency of certain units may not 

be identified due to “joint super-efficiency” of units. Section 6 illustrates our approach using data 

from a small German retail bank. Section 7 concludes the paper. 

2. Overview of the Use of DEA for Incentivizing Operating Units  

Let us assume that we have a centrally managed multi-unit organization in which the central 

management (henceforth “regulator”) oversees n agents (i.e. DMUs) who may benefit from a 

natural monopoly or pre-given rights and flexibilities in producing certain products and/or services. 

Let 1 2( ) m

j j j mjX x ,x ,...,x    and 1 2( ) s

j j j sjY y ,y ,..., y    be non-zero vectors which quantify 

the level of inputs and outputs of DMUj (j=1,…,n). The regulator seeks to incentivise the agents to 

better performance by controlling their budget bj (j=1,…,n). However, it is assumed that there is 

asymmetry of information between the local, autonomous units and the regulator as to the 

“technology” by which the resources or inputs used by the units are converted to outputs. The 

regulator can use revealed ex post data on the inputs (X) and outputs (Y) of the units to determine 
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the budget bj. In DEA, the technology operated by the units is represented by a production 

possibility set (PPS) as follows: 

 ( ) can produce .m sPPS X,Y X Y     (1) 

Drawing of the work of Shleifer (1985), Bogetoft (1997) proposed the following DEA-based 

incentive formula by which an optimal compensation plan for DMUp – indicated by pb  – is obtained: 

( 1) , 1,..., .   p p p p pb c c p n    (2) 

In this formula, cp is the observed historical cost of the operations of DMUp. p  quantifies the 

efficiency of DMUp which is obtained by an appropriate DEA model, using the input-output data 

(X,Y) observed at the operating units. Thus, p  represents the fraction of cost cp that the activities of 

DMUp would actually justify if it had been operating as efficiently as benchmark units. Therefore, 

(1– p ) is the fraction of cp available for saving. The parameter p  is subjective and moderates the 

savings fraction ( p –1) imposed on DMUp. Note that we have ( 1) 1p    when a unit is inefficient 

while 1p   would allow for uncertainties in the data such as special factors at play concerning the 

unit or other considerations which would hamper the unit from saving in full the amounts reflected 

in (1– p ). As Agrell et al. (2005) note, ρ represents “the power of the incentive scheme”. It 

determines how much of a short fall from efficient cost a unit is forced to save or, as we will see 

below, when 1p  , ρ reflects what bonus the unit gets to keep out of the amount by which its costs 

are below benchmark costs.  

In the original framework of the above DEA-based reimbursement scheme, conventional DEA 

models have mainly been used (see, e.g., Bogetoft 2013), such as the BCC DEA model proposed by 

Banker et al. (1984): 

1 1

1 1

max 1,

0, 1
.

0, 1 ; 0, 1 ;

s m

p rp rp ip ip

r i

s m

rp rj ip ij

r i

ip rp

u y v x

u y v x j ,...,n

v i ,...,m u r ,...,s free in sign

 





 

 


  




    


    

 

 
 (3) 
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In model (3), ( , )rp ipu v  stand for the weights (multipliers) of outputs and inputs respectively, 
p  

represents the relative efficiency score of DMUp and   reflects the returns to scale (RTS) 

(increasing, constant or decreasing) of the unit p. Depending on the context, one could impose, e.g., 

constant, non-decreasing or non-increasing returns to scale by setting   as zero, non-negative or 

non-positive, respectively. Furthermore, (3) reflects an input-oriented DEA model in the sense that 

targets are sought which minimize inputs (e.g. operating costs), controlling for output levels. The 

model can be readily converted to an output-oriented one (see, e.g., Thanassoulis 2001). 

The above model determines individual efficiency scores which have a range between zero and one. 

On this basis and according to (2), the costs of an agent with a relative efficiency score of one will 

be reimbursed fully while the inefficient agents are not fully reimbursed. However, in order to give 

incentives to the efficient agents, Bogetoft (1997) proposed modifying model (3) by means of the 

super-efficiency concept of Andersen and Petersen (1993). The basic idea is to compare DMUp 

under evaluation with all other units in the sample except itself so that DMUp cannot influence its 

own benchmark. This modification can be incorporated in model (3) (see Andersen and Petersen 

1993) by replacing the constraints j=1,…,n by those in (4). 

1 1

0, 1 ; .
 

     
s m

rp rj ip ij

r i

u y v x j ,...,n j p  (4) 

The resulting model will provide the same scores as before for the inefficient units, while the 

efficient ones will normally have efficiency scores greater than one. Hence, utilizing these super-

efficiency scores in (2), agents with poor performance are not fully reimbursed, while performers 

with super efficiency 1s

p   can be awarded budgets above cp (depending on the p  value chosen) 

to incentivize them to better performance in future. 

3. The Incentivisation System Proposed by Varmaz (2013)  

Unlike in the framework addressed by Bogetoft (1997), Varmaz et al. (2013) address specifically 

the objective of improving the efficiency of the whole system of units rather than improve 

efficiency at unit level. Instead of conventional DEA models such as the one in (3), they use the 

CRA-DEA model proposed by Lozano and Villa (2004) as a vehicle for determining resource 

allocation to units. This model, whose mathematical structure has recently been simplified by Mar-

Molinero et al. (2014), is as follows:  
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1 1 1 1

1 1

max 1,

0, 1
.

0, 1 ; 0, 1 ;

n s n m

o r rj i ij

j r j i

s m

r rj i ij

r i

i r

Eff u y n v x

u y v x j ,...,n

v i ,...,m u r ,...,s free in sign







   

 


  




    


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 

 
 (5) 

The model in (5) identifies output weights ur, r=1,…s and input weights vi, i=1,…,m which are 

applied to the input-output levels of all units j=1,…,n. In the objective function and the 

normalization constraint, the aggregate levels of each output and of each input across the units are 

used. The constraints j=1,…,n are those of a classical input-oriented DEA model under VRS, 

ensuring that no individual unit, when its inputs and outputs are evaluated by the above common set 

of weights, has an efficiency above the nominal 1. It is possible for some of the units j=1,…,n to be 

given by the common input and output weights a negative efficiency value, should the value of μ be 

highly negative (see Soares de Mello et al. 2013). However, it can be readily seen that a negative 

value for the overall efficiency oEff  though mathematically feasible, it will never be optimal.  

The model in (5) provides a single overall efficiency score oEff  for the entire group of units or 

equivalently for a virtual unit that has the mean value of each input and output computed across all 

units. However, the reimbursement formula in (2) requires individual efficiency scores to determine 

the respective compensation level for each unit. Therefore, Varmaz et al. (2013) proposed a 

measure of efficiency which determines the individual “contribution” of each unit to the efficiency 

of the whole system. This measure is based on a comparison of the efficiency of the entire system – 

obtained from the above model in (5) (denoted by oEff ) – with the efficiency score of the system 

where the unit under evaluation is excluded entirely from the set of observations in the analysis 

(indicated by 
p

oEff 
). Thus, 

p

oEff 
 can be computed by means of the model in (6): 

1 1 1 1

1 1

max 1,

0, 1 ,
.

0, 1 ; 0, 1 ;

n s n m
p

o r rj i ij

j r j i
j p j p

s m

r rj i ij

r i

i r

Eff u y n v x

u y v x j ,...,n j p

v i ,...,m u r ,...,s free in sign









   
 

 




  




     


    

 

 

 (6) 
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Once the value of 
p

oEff 
 is known, the ratio in (7) is computed as

2
 

.


 o
p p

o

Eff

Eff
  (7) 

p  reflects the difference in the overall efficiency score between including and excluding the unit 

under evaluation p from the analysis. Varmaz et al. (2013) argue that the higher value of p , the 

higher the individual “contribution” of DMUp to the overall efficiency of the system of operating 

units. It should be noted that – due to the nature of the efficiency measure in (6) – 
p

oEff 
 and p  

can also take values above one.  

Although the core idea behind the approach proposed by Varmaz et al. (2013) is interesting, it is 

questionable whether the “contribution” measure in (7) can determine a suitable incentive level for 

each unit. In order to illustrate the problem, consider the simple case depicted in Figure 1(a), where 

there exist eight units with two inputs and one output, i.e. all units are assumed to have the same 

level of output. 

Figure 1. Representation of the production possibility set within the approach of Varmaz et al. (2013) 

 

 

(a) (b) 

  
2  The authors have emphasized that one could alternatively use    1 / 1p

p o oEff Eff     instead of (7) to 

calculate individual contributions. This ratio provides results which fully correlate to those from (7) but differ in 

variance. In this paper, we consider only their original ratio given in (7). 
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Applying the model in (5), the overall efficiency of the whole system, depicted as Uag in Figure 1, 

will be 0.569, i.e. 0.569.oEff   The corresponding PPS in Figure 1(a) is bounded by ABCDE. In 

order to determine the individual contribution of each unit to the overall efficiency of the whole 

system according to Varmaz et al. (2013), model (6) has to be solved for each unit. The results of 

this model and the corresponding values of measures used in the Varmaz et. al. (2013) approach are 

given in Table 1. 

Table 1. Results for the example determined by the approach of Varmaz et al. (2013) 

Unit p  p

oEff   
p  

1 1.000 0.593 0.961 
2 1.000 0.860 0.662 
3 1.000 0.586 0.972 

4 0.500 0.581 0.980 
5 0.606 0.577 0.986 
6 0.615 0.576 0.988 
7 0.476 0.593 0.961 
8 0.571 0.596 0.956 
    

As an example, let us focus on the result for unit #2, i.e. U2 in Figure 1(a). The efficiency score 

p

oEff 
 of this unit obtained from model (6) is 0.860. This shows that the efficiency score of the 

whole system increases significantly when this unit is excluded entirely from the analysis, c.f. 

0.569oEff   and 
2 0.860oEff   . The measure 2  (see (7) of this unit) with a value less than one 

(i.e. 0.662) also captures its negative contribution to the overall efficiency of the whole system. 

However, as can be seen in Figure 1(a), this unit is not only efficient considering any conventional 

DEA model – like model (3) which reports an efficiency score of 2 1   (see the second column of 

Table 1) –, but also uses the resources in a balanced way compared to the other units (see, e.g., Ahn 

et al. 2012). Moreover, unit #2 is a benchmark unit when measuring the efficiency of the whole 

system by model (5), attesting to the fact that other units should emulate unit #2 in order for the 

performance of the whole system to improve. Consequently, it would be very difficult to accept that 

this unit should not be compensated in the framework of an incentives formula as proposed by 

Varmaz et al. (2013). Such a counter-intuitive result is not limited to this example.  

Varmaz at al. (2013, p. 113) themselves introduced a requirement for an appropriate performance 

measure, stating that “… the performance estimator has to be able to take values above 1. If this 

requirement is not met, agents would only receive negative incentives, i.e. punishments for 

performing worse than best practice. Consequently, they would only try to perform as good as best 

practice, but would have no incentives for further improvements”. A look at the “super-efficiency” 

scores in the last column of Table 1 reveals that there is no unit with a positive contribution to the 
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overall efficiency of the whole system, i.e. all values are less than one. Due to this result, all units 

are considered inefficient so that their costs are not fully reimbursed. This is obviously inconsistent 

with the definition of relative efficiency itself as there is no unit with a full efficiency score in the 

results. These results also contradict the concept of the “super-efficiency” measure and the above 

statement by which high-powered incentives should be given to efficient units. It must therefore be 

concluded that the approach of Varmaz at al. (2013) cannot always incentivize units to improved 

performance under centralized management.  

The reason for the counter-intuitive results above can be explained by looking at the ratio in (7). 

oEff and 
p

oEff 
 are both “relative” efficiency scores ranging from zero to one. As can be seen in 

Figure 1(a), for determining oEff as the overall efficiency score, all units are included in the relative 

efficiency measurement system. The aggregate unit expressed in mean values of inputs and output 

is depicted in Uag. However, 
p

oEff 
 is computed by means of all units except the unit under 

evaluation. As it is shown in Figure 1(b), for determining 
2

oEff 
, e.g., unit #2 is excluded entirely 

both from the potential referent units and from the computation of the aggregate levels of the inputs 

and outputs of the system of units. The resulting PPS, depicted in Figure 1(b), is now bounded by 

ABDE while the aggregate unit has input-output levels at Uag. It is clear now that 
p

oEff 
 and oEff  

cannot capture appropriately the impact of unit U2 on the system of units because their ratio 

conflates the change both in the efficient boundary and in the definition of the system of units when 

unit U2 is removed. This can be seen when comparing the positions of the efficient boundary and of 

unit Uag in Figures 1(a) and 1(b) where two different units are reflected on two different efficient 

boundaries. Consequently, a comparison of the two resulting scores cannot be readily interpreted.  

In the next section, we propose a modification of the approach of Varmaz et al. (2013) so that the 

foregoing efficiency measures can be compared more readily in the framework of an incentivisation 

formula under centralized management.  

4. The Proposed Incentivisation Method for Centrally Managed Organisations 

Let us revisit the original reimbursement scheme given in (2) in conjunction with model (3). The 

model has to be run n times in order to determine the maximum efficiency score for each unit and 

the corresponding optimal input-output weights ( , )rj iju v  for each unit j. This process implies that 

each unit may use different implicit values for inputs and outputs for calculating its efficiency. This 

flexibility reflects an important principle of DEA models when DMUs operate independently, each 
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one according to its own priorities. However, it is not a desired approach in centralized management 

systems, such as those addressed in this paper, where the fundamental objective is improving the 

performance of the whole system rather than that of individual units.  

The reason is that selecting the weights in such a manner may allow the DMUs to focus on different 

goals and strategies which might be inconsistent with the central decision maker’s preferences, e.g., 

organizational goals and strategies (for more details, see, e.g., Chen and Zhu 2011). In the worst 

case, this flexibility of conventional DEA models may even allow a DMU in the system to assign 

very low implicit values to some inputs/outputs in order to exclude them from the analysis. This is 

inappropriate, especially under a centralized management which aims to improve the system’s 

performance. Instead, the central management may select the input-output factors and measure the 

efficiency periodically in order to direct the units towards the organizational goals and strategies. 

Thereby, it wants to preserve the consistency across the units and keep the overall focus on the 

strategic direction of the organization. In such situations, the central management can apply a 

common set of preferences to improve the performance of the whole system.  

Several authors have shown that such a structure can be modelled by deriving a common basis – in 

terms of a common set of input and output multipliers – for measuring efficiency in centrally 

managed organisations. Examples include common-weights DEA models proposed by Roll et al. 

(1991), Roll and Golany (1993), Cook et al. (2004), Kao and Hung (2005), Cook and Zhu (2007) as 

well as Zohrehbandian et al. (2010). A close look at the structure of model (5) reveals that it also 

belongs to the above outlined family of the common-weights DEA models (see Lozano and Villa 

2004, p. 149). As in the case of the other members of this family, the model is therefore capable of 

determining a common set of input-output multipliers as a by-product of measuring overall 

efficiency. The respective set of weights can be used for measuring the efficiency of all units on a 

conjoint basis. More precisely, after having computed a common set of input-output multipliers by 

model (5) – indicated by 
* *( , )r iu v  –, one can derive an individual common-weights efficiency score 

of DMUp (p=1,…,n) by the following ratio of efficiency (RE):  

* *

1

*

1

.










s

r rp
CM r
p m

i ip

i

u y

RE

v x



 (8) 
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The results are marked by a superscript “CM” to emphasize that the individual efficiency scores are 

now computed within the proposed framework under centralized management and based on the 

common-weights DEA model (5). We note here, however, that the optimal solution of model (5) 

(though rarely) may not be unique. Thus, a unique set of individual common-weights efficiency 

scores may not be obtained either. The model in (9) is proposed for arriving at the common-weights 

efficiency CM

p  for DMU p: 

1

1

1 1

1 1 1 1

max

1

0, 1
.

0

0, 1 ; 0, 1 ;

s
CM

p rp rp

r

m

ip ip

i

s m

rp rj ip ij

r i

n s n m

rp rj o ip ij

j r j i

ip rp

u y

v x

u y v x j ,...,n

u y n Eff v x

v i ,...,m u r ,...,s free in sign

 











 

   


 




 




    



   

    





 

 

 
(9) 

 

This model in (9) seeks the set of multipliers which maximize the efficiency score of DMUp 

(p=1,…,n), while 
oEff  – the overall efficiency score of the entire system computed by model (5) – 

is fixed at its previous optimal value and has been added as a constraint. Hence, CM

p  represents the 

efficiency score of DMUp in the best possible light under centralized management.  

As in the case of model (5), – and most other common-weights DEA models – the efficiency CM

p  

yielded by (9) under VRS may in certain cases take negative values. This would be the case when μ 

is negative and has an absolute value large enough to render the optimal objective function value in 

(9) negative. However, this will happen less often than in the case when the common-weights are 

directly extracted from model (5) because model (9) will maximise the μ value compatible with the 

value of 
oEff . Where a negative value of CM

p  does result, one of the procedures outlined in Soares 

de Mello et al. (2013) can be used to resolve the problem. For simplicity, we shall in the remainder 

of this paper ignore the case of a negative value for CM

p .  

Theorem 1. The efficiency score of DMUp determined by the proposed centralized model (9), 

represented by CM

p , never exceeds p , the efficiency score of this unit under decentralized 

management computed by model (3).  
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Proof. Let us assume that ( , )rp ipu v  is a feasible solution to the model in (9). Therefore, ( , )rp ipu v  

satisfies each of its constraints. This implies that ( , )rp ipu v  is a feasible solution to model (3) as it 

also satisfies the constraints in this model. Thus CM

p p  . ■ 

Although the model in (9) can determine a set of relative efficiency scores CM

p  consistent with 

optimizing the performance of the system as a whole, it can only provide efficiency values within a 

range of zero to one. In line with Bogetoft (1997) and Varmaz et al. (2013), our proposed 

framework needs to also be capable of yielding efficiencies above 1 for units that are good 

performers and we want to incentivize them to perform better still. In order to meet this 

requirement, we propose that the model in (10) be solved for each unit p under evaluation:  

1 1 1 1

1 1

max 1,

0, 1 ,
.

, 1 ; , 1 ;

n s n m
p

o r rj i ij

j r j i

s m

r rj i ij

r i

i r

Eff u y n v x

u y v x j ,...,n j p

v i ,...,m u r ,...,s free in sign





  

   

 


  




     


    

 

 
 (10) 

This model is a modification of model (5) in such a way that the DMU under evaluation itself is 

excluded from candidate boundary units. This is reflected in the constraints j=1…n, j≠p in (10). 

Note however that unit p is not excluded from the aggregation of units of the system, as reflected in 

the objective function. This is a crucial difference from the model proposed by Varmaz et al. (2013) 

in that we retain constant the definition of the aggregate unit representing the system across all 

instances of model (10). This provides a constant reference point for capturing the changes in the 

efficient boundary as each unit p in turn is taken out of the constraints to model (10). Another 

difference from the model proposed by Varmaz et al. (2013) is that in model (10) we restrict the 

input/output weights ( , )r iu v to be strictly positive rather than non-negative. The requirement for 

strictly positive weights is standard in DEA models as it ensures that models such as the one in (10) 

lead to Pareto efficient solutions (e.g. see also Thanassoulis 2001, model (3.4), for more details).  

It should be noted that the model in (10) – like other standard VRS DEA models which are based on 

the super-efficiency concept – might be infeasible. This can occur when the aggregate DMU under 

evaluation is not enveloped by the boundary formed by all bar the excluded DMUp. This occurrence 

though theoretically possible should be rare since in essence the aggregate unit is seen by the 

assessment model as having the average level of each input and each output observed and so it 
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should normally be enveloped. In cases where model (10) yields no feasible solution, one approach 

that can be adopted to arrive at a super-efficiency for unit p is to change the orientation of the model 

(e.g. from input to output orientation). This will in most cases lead to a feasible solution which still 

can reflect the impact of unit p on the system. In the highly unusual case where the model is 

infeasible in both input and the output orientation we in effect have insufficient information to offer 

such unusual units incentive through model (10) (see also Agrell et al. 2005 on this point). Such 

units would need to be considered by the central management as special cases. 

Remark 1. The definition of model (10) inherits the original concept of the super-efficiency 

measure outlined in Section 2.1 so that 
p

o oEff Eff , as model (10) has one less constraint than the 

model in (5). 

We can now use the measure in (11) in the framework of the incentivisation formula in (2).  

p
CM CMo
p p

o

Eff

Eff
     (11) 

oEff , CM

p  and 
p

oEff  are computed by means of (5), (9) and (10), respectively.  

The following scenarios can occur in respect of the value in (11): 

1. The unit under evaluation p is inefficient, i.e. CM

p  determined by (9) represents a value less than 

one. In this case, 
p

oEff  equals oEff automatically and so 
CM

p  equals CM

p . As this value is less than 

one, such units are not reimbursed fully but are required to make certain savings to improve 

efficiency in line with the formula in (2).  

2. The unit p under evaluation is a benchmark unit and so CM

p  is one. Then, two situations may 

arise: 

2.1. The exclusion of unit p does not affect the assessed performance of the whole system. In 

this case, 
p

oEff  also equals oEff , which results in 1CM CM

p p   . This will be the case when in 

rare circumstances removing an efficient unit from the boundary does not affect the boundary 

(e.g. because the unit concerned is a linear combination of other efficient units). Units of this 

type may not be required to make savings but will also not be offered budgets in excess of 

expenditure unless they are identified as being “jointly super-efficient” in the manner outlined 
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in Section 6. In that case, the procedure in Section 6 can lead to compensation beyond their 

level of expenditure. 

2.2. The exclusion of the unit under evaluation affects the assessed performance of the whole 

system. In this case, 
p

oEff  will be greater than oEff , which leads to 1CM

p  . We propose that 

this 
CM

p  be used within the incentivisation formula (2). 

Remark 2. As the model in (10) retains the same efficiency scores as before for the inefficient units 

(see scenario 1 in which 
p

o oEff Eff  and CM CM

p p  ), the model in (10) and consequently the 

formula (11) need to be calculated only for units whose 1CM

p   (see scenario 2 above). 

Thus in the approach being proposed inefficient units where 1CM

p   will not be fully compensated 

and hence they will be encouraged to make efficiency savings. In contrast, for efficient units 

characterized by 1CM

p  , the incentivisation formula in (2) gives higher budgets for a period of time 

than their projected operating costs cp. This would prove an incentive to higher efficiency because 

the higher the super-efficiency a unit registers the larger the budget that can be awarded to be used 

going forward at the discretion of local management. In practice, the central management has the 

opportunity to control the incentive level through the parameter ρ in (2), and potentially the period 

of time over  which the incentive is spread. One consideration in this context would be to ensure 

that the incentive levels will maintain the units concerned as benchmarks relative to other units.  

It is important to note that using 
CM

p  within the incentivisation formula in (2) cannot lead to over-

compensating a unit that had been inefficient under standard DEA. This is a consequence of 

Theorem 2. 

Theorem 2. It is the case that 
CM s

p p  , where 
s

p  is the super-efficiency of unit p as derived using 

the Andersen and Petersen 1993 approach. 

Proof. See the Appendix. 

Theorem 2 states that the derived efficiency 
CM

p  for unit p to be used in the incentivisation formula 

in (2) cannot exceed its super-efficiency under decentralized management 
s

p  (as derived using the 

Andersen and Petersen 1993 approach). Thus, the incentivisation formula in (2), when 
CM

p  is used 
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within it, will never over-compensate a unit that is inefficient in a decentralized context. As we 

might expect, a unit p that is not efficient even when it pursues its own best interests cannot be 

offered an incentive to become even more inefficient when pursuing global system objectives under 

centralized management. Furthermore, even when a unit p is efficient in our approach, it will still 

not be over-compensated if its removal from the efficient boundary does not affect the location of 

that boundary. In this case, we have 1CM CM

p p   , as can be seen in the proof in the Appendix. 

Thus, our approach only offers an over-compensation to a unit when its location in terms of input-

output levels is material for the location of the PPS frontier. This property of our approach is in 

contrast with that of Varmaz et al. (2013), where inefficient units in a decentralized context can be 

over-compensated while the reverse is also possible, where super-efficient units in a decentralized 

context are not incentivized through over-compensation (see Table 1). 

We conclude this section by a graphical illustration of the incentivisation approach we propose. 

Consider again the example given in Section 3. Applying model (5), the efficiency of the whole 

system based on model (3) is 0.569, denoted by 0.569oEff  . The corresponding PPS in Figure 

2(a) is bounded by ABCDE.  

Figure 2. Representation of the production possibility set within the proposed approach 

 

 

(a) (b) 

Solving the model in (9) provides the individual efficiency scores CM

p  under centralized 

management, which are reported in the second column of Table 2. Solving next model (10) for each 

unit, we obtain the efficiencies 
p

oEff , and using them in (11), we obtain the adjusted CM

p  denoted 

by 
CM

p . The results are given in the last two columns of Table 2. 
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Table 2. Results for the example determined by our proposed approach 

Unit 
CM

p  p

oEff  
CM

p  

1 1.000 0.571 1.004 

2 1.000 0.913 1.604 
3 0.476 0.569 0.476 
4 0.500 0.569 0.500 
5 0.606 0.569 0.606 
6 0.526 0.569 0.526 
7 0.476 0.569 0.476 

8 0.435 0.569 0.435 
    

Let us look, e.g., at unit #5 depicted as U5 in Figure 2(a). The efficiency score of this unit obtained 

via the model in (9) is 5 0.606.CM   As the unit is inefficient, its exclusion as candidate benchmark 

unit in the model in (10) does not change the value of efficiency estimated for the whole system 

(see Figure 2(a)). This means that 
5

oEff  equals oEff  (= 0.569), and so 5 0.606.CM   This efficiency 

used in (2) would imply the unit needs to make savings. 

In contrast, if we take unit #2 and assess it using model (9), the resulting efficiency is 1CM

p  . 

Assessing the performance of the whole system by model (10), the result is 
2 0.913oEff  . This 

value implies that the efficiency score of the whole system increases significantly when unit #2 is 

excluded from units which serve as benchmarks in (10), c.f. 
2 0.913oEff   compared to 

0.569oEff   when unit 2 is among the benchmarks. Thus 2

CM >1, meaning that the unit should be 

incentivised by the award of a budget in excess of what it had spent. The central management could 

use the parameter p  in (2) to moderate the fraction ( 2 1CM  ) of cp that the unit is awarded as 

discretionary budget over and above their estimated operating costs of cp.  

Note that unit #2 was also assessed earlier by the method proposed by Varmaz et al. (2013) yielding 

counter-intuitive results unlike those obtained with the method proposed in this paper. The difference 

can be traced to the way super-efficiencies are computed in the two methods. As can be seen in 

Figure 2(b), unlike in the Varmaz et al. (2013) approach, our suggested framework does not exclude 

unit #2 from the aggregate system of units when the super-efficiency of the latter is assessed. It is 

only excluded from the set of units which can serve as benchmarks. Therefore, the resulting value 

of “contribution” reflects the original concept of the super-efficiency central to both approaches.  
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5. A Modified Approach to Cater for Joint Super-Efficiencies 

A potential problem with super-efficiency based approaches, including that of Varmaz et al. (2013), 

is that they may not identify properly the impact of certain units if they have very similar 

performance to each other, even if jointly they are significantly different from other units in the 

system. In order to illustrate the issue, consider once again the numerical example in the previous 

section. Let us now assume that there exists another unit in the system whose operation in terms of 

input-output levels is very similar to that of unit #2. The entire system is depicted in Figure 3(a) in 

which the new unit is represented by U9.  

Figure 3. Representation of the production possibility set within the proposed extended approach  

 

 

(a) (b) 

Applying model (5), the overall efficiency of the whole system will be 0.598, i.e. 0.598oEff  . 

The corresponding PPS in Figure 3(a) is bounded by ABCDE. Solving the proposed models in (9) 

and (10), the formula in (11) can then be used to determine the individual efficiency scores and the 

contribution of each unit to the overall efficiency of the whole system. The results are given in 

Table 3. 

Table 3. Results for the modified example determined by the proposed approach 

Unit 
CM

p  p

oEff  
CM

p  

1 1.000 0.600 1.003 
2 1.000 0.601 1.005 
3 0.476 0.598 0.476 
4 0.500 0.598 0.500 
5 0.606 0.598 0.606 
6 0.526 0.598 0.526 

7 0.476 0.598 0.476 
8 0.435 0.598 0.435 
9 0.995 0.598 0.995 
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As can be seen in Table 3, the contribution of unit #2 has decreased significantly from the previous 

value of 1.604 where unit #9 was not included in the example (see Table 2: 
2 1.604CM  ) to the new 

value of 
2 1.005CM  . The reason is that excluding unit #2 results in a very similar shape of the PPS 

by which model (10) determines a super-efficiency value of 
2 0.601oEff  . In addition, as unit #9 is 

inefficient (i.e. 9 0.995CM  ), the exclusion of this unit does not affect the performance of the whole 

system in model (10), i.e. 
9 0.598o oEff Eff  . Accordingly, the contribution of this unit to the 

overall performance is represented by a value of 
9 0.995.CM   This phenomenon has occurred 

because units #9 and #2 mask the “exceptional” performance of each other. Therefore, two or more 

neighbouring units in terms of mix of inputs and output levels having similar high performance – 

even if collectively significantly away from the rest of the units – will not be identified as 

“significantly” super-efficient, if at all.  

This is a technical problem which can be overcome by a form of sensitivity analysis. As a solution, 

we propose an adaptation of the procedure introduced by Thanassoulis (1999). We first determine 

initial efficiencies CM

p . We then collect within a set S100-r all the units with an efficiency 

 100 %CM

p r   where 100-r is a user-specified efficiency level which is close enough to 100% to 

be deemed as 100%. We now assess again the units not in S100-r adding to the set S100-r any new 

units with CM

p  efficiency at or above (100-r)%. This is done until either there are no more units 

with CM

p  efficiency (100-r)% or a significant percentage π (e.g., π = 5%) of the full set of units has 

been placed within the aggregate set S100-r. At that point, we have a final set FS100-r. The units in 

FS100-r are potentially super-efficient.  

We now re-calculate the adjusted efficiency 
CM

p values for each one of the units in FS100-r as 

follows. For each one of these units, model (10) is recomputed using the complement of the set 

FS100-r by replacing in model (10) its constraint with the constraint in (12). 

100

1 1

0, 1 , .
s m

r rj i ij r

r i

u y v x j ,...,n j FS 

 

       (12) 

Thus, the modified model in (10) measures the efficiency of the whole system while its potential 

benchmarks – represented by the constraint (12) – do not include the units in FS100-r. In other words, 

in measuring 
p

oEff  for each one of the units in FS100-r, the performance of the whole system is 
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compared to another system which excludes jointly the units with a CM

p  efficiency value greater 

than or equal to (100-r)% as we progressively remove super-efficient units. Note that the exclusion 

is only in respect of being potential frontier units and not from the definition of the aggregate inputs 

and outputs of the system of units which is stable throughout.  

Using – on the data in Table 3 – r = 0.5 and π=5% within the foregoing procedure, we deduce that 

units #1, #2 and #9 belong to S99.5. The three units represent over 5% of all units and so FS99.5 

consists of units #1, #2 and #9. Excluding jointly these units will lead to the PPS labelled as FGDE in 

Figure 3(b). Hence, this PPS is now used to re-calculate the super-efficiency scores of the units in 

FS99.5. The results are summarized in Table 4. 

Table 4. Results for the modified example determined by the procedure to identify jointly 

super-efficient units  

Unit 
CM

p  p

oEff  
CM

p  

1 1.000 1.057 1.768 
2 1.000 1.057 1.768 
3 0.476 0.598 0.476 
4 0.500 0.598 0.500 
5 0.606 0.598 0.606 
6 0.526 0.598 0.526 

7 0.476 0.598 0.476 
8 0.435 0.598 0.435 
9 0.995 1.057 1.759 

     

As can be seen, the inefficient units out of FS99.5 have received the same contribution scores as 

before, cf. Table 3 and Table 4 for units 3 to 8. However, the contribution values of units in S99.5, 

reported in the last column of Table 4, are all positive and significantly higher than what had been 

reported in Table 3.  

Clearly, the parameters r and π are subjective. The r conveys the user’s sense of what constitutes a 

close enough distance to 100% efficiency and π conveys the user’s view as to what proportion of 

units achieving a level of efficiency means that efficiency is no longer “exceptional”. For example, 

if 5% or more units exceed a level of attainment, then that level is within reach and an acceptable 

benchmark rather than exceptional. As r% and π% are user-dependent, it makes good sense for the 

user to carry out a respective sensitivity analysis.  

6. An Empirical Illustration Using Data from a German Retail Bank 

In order to numerically illustrate the features of our proposed approach and to show its practical 

relevance, we analyse the performance of 16 branches of a small German retail bank. The data set, 

which originates from Varmaz et al. (2013), is shown in Table 5. 
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Table 5. Input and output data of a German retail bank 

Unit PEX (input 1) IEX (input 2) IIN (output 1) OIN (output 2) 

1 1532.00 2769.00 11092.00 1231.00 
2 998.00 1757.00 5529.00 778.00 
3 853.00 1220.00 2384.00 464.00 

4 180.00 378.00 632.00 133.00 
5 584.00 876.00 1847.00 297.00 
6 498.00 2080.00 2689.00 524.00 
7 261.00 395.00 1358.00 203.00 
8 609.00 883.00 2688.00 352.00 
9 222.00 528.00 791.00 149.00 
10 264.00 700.00 856.00 193.00 
11 1078.00 1448.00 1873.00 611.00 

12 222.00 503.00 770.00 217.00 
13 258.00 412.00 520.00 138.00 
14 696.00 1099.00 2836.00 443.00 
15 176.00 361.00 477.00 104.00 
16 236.00 301.00 724.00 159.00 

 

The data set comprises two inputs and two outputs which were chosen by Varmaz et al. (2013) 

drawing on work by Avkiran (2009). The inputs are personnel expenses (PEX) as well as expenses 

on interest payments (IEX). IEX consist of payments of interest for deposits. In addition to wages, 

PEX also include payments for employee training and social insurance contributions. Interest 

income (IIN) and all other income (OIN) are considered as the two outputs in the bank branches. 

OIN mainly contain the fees earned by branches from securities trading, transactions and insurance 

sales. (For a more detailed description of these inputs and outputs, see Varmaz et al. 2013).  

The models developed in this paper have been encoded in AIMMS, version 3.13. Applied to the 

data in Table 5, Table 6 summarizes the results from these models. Its second column presents the 

results obtained by the BCC model (3). Modifying this model according to (4), the corresponding 

super-efficiency scores 
s

p  are shown in the third column. Seven branches (1, 4, 6, 7, 12, 15 and 16) 

are reported to be efficient
3
. The single overall efficiency score of the bank with its 16 branches, 

computed by model (5), is 0.835 (see the fourth column). The next two columns summarize the 

results obtained by model (6) and formula (7) within the centralized framework proposed by 

Varmaz et al. (2013). 
p

oEff 
 represents the efficiency score of the bank where the pth branch is 

excluded entirely from the set of observations in the analysis, while 
p  reports the individual 

contribution of this branch to the overall efficiency of the whole system of bank branches, derived 

as the ratio 0.835/
p

oEff 
.  

  
3  It should be noted that the first unit was not enveloped in the input orientation (more details about the infeasibility 

issue of super-efficiency models can be found in, e.g., Seiford and Zhu, 1999; Chen 2005; Chen and Liang 2011; 

Lee et al. 2011). 
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Table 6. Results of the various efficiency measures previously defined  

Unit p  s

p  
oEff  p

oEff   
p  CM

p  p

oEff  
CM

p  

1 1.000 Na. 0.835 0.808 1.033 1.000 0.847 1.014 

2 0.981 0.981  0.817 1.022 0.978 0.835 0.978 
3 0.818 0.818  0.843 0.991 0.753 0.835 0.753 
4 1.000 1.075  0.837 0.998 0.755 0.835 0.755 
5 0.699 0.699  0.845 0.988 0.674 0.835 0.674 
6 1.000 1.242  0.846 0.987 0.735 0.835 0.735 
7 1.000 1.182  0.839 0.995 1.000 0.845 1.012 
8 0.837 0.837  0.838 0.996 0.786 0.835 0.786 
9 0.892 0.892  0.841 0.993 0.643 0.835 0.643 

10 0.831 0.831  0.842 0.992 0.669 0.835 0.669 
11 0.923 0.923  0.837 0.997 0.817 0.835 0.817 
12 1.000 1.176  0.850 0.982 1.000 0.858 1.027 
13 0.807 0.807  0.841 0.993 0.643 0.835 0.643 
14 0.864 0.864  0.835 1.000 0.835 0.835 0.835 
15 1.000 1.037  0.840 0.993 0.590 0.835 0.590 
16 1.000 1.262  0.833 1.002 0.924 0.835 0.924 

     

Taking a closer look at 
p , four branches (1, 2, 14 and 16) are seen to have a contribution of 1 or 

higher to the overall efficiency, and so deserving a budget beyond the expenditure they report. In 

particular, branches #2 and #14 have contributions of 1.022 and 1.000, respectively. However, the 

corresponding conventional efficiency score of these branches, reflected in p  (or s

p ), are 0.981 and 

0.864, respectively. In both cases, a branch which is inefficient under the decentralized framework 

is being “rewarded” in a centralized scenario. This result is counter intuitive, as noted earlier.  

Under the decentralized management scenario, the fundamental objective of the benchmarking system 

is defined as improving the performance of each individual unit, independently. This objective is 

reflected in the mathematical structure of the decentralized framework whose DEA model is given 

in (3). In contrast, under centralized management, it is assumed that the fundamental objective of 

the benchmarking system is improving the overall performance of the whole system. Hence, it is 

expected that a branch which proves inefficient under the more flexible structure of the decentralized 

scenario should never have a positive contribution to the overall efficiency of the system where a 

more restricted centralized framework is applied. This once again demonstrates that the way of 

computing the contribution scores is problematic in the approach proposed by Varmaz et al (2013). 

The last three columns in Table 6 summarize the results of our alternative approach under 

centralized management. The column represented by CM

p  reports the efficiency scores computed 

by the centralized DEA model in (9). Three branches (1, 7 and 12) are efficient. These three 

branches are also super-efficient, as 
1

oEff , 
7

oEff  and 
12

oEff  capture values greater than 0.835 – the 

overall efficiency score of the entire system. Therefore, their contributions to the overall efficiency 
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should also be positive. The last column, represented by CM

p , confirms the positive contribution of 

these branches to the overall efficiency of the system.  

Consider now branches #2 and #14. Unlike in the approach of Varmaz at al. (2013), in our approach 

they receive a negative contribution score of 0.978 and 0.835, respectively. In particular, the 

individual contribution score of these branches under centralized management never exceeds the 

super-efficiency score under decentralized management, i.e. CM s

p p   (see Theorem 2). This 

verifies numerically that our proposed approach overcomes the problem identified in the approach 

of Varmaz et al. (2013).  

Their approach can also lead to a set of unexpected compensation plans, as Table 7 reveals. It shows 

plans which have been determined by utilizing formula (2) with the three measures of efficiency s

p  

(normal super-efficiency of p), 
p  (Varmaz et al. 2013 approach) and CM

p  (our approach). It 

should be noted that pc  represents the aggregate operating cost level of each branch, computed as 

the sum of the two inputs. For illustrative purposes, p  in (2) has been set at 0.7 for all branches.  

Table 7. Alternative compensation plans  

Unit 
s

p  
p  CM

p  
pc  s

pb  
pb  CM

pb  

1 Na. 1.033 1.014 4301 Na. 4400.18 4343.17 
2 0.981 1.022 0.978 2755 2717.54 2798.01 2711.94 
3 0.818 0.991 0.753 2073 1808.63 2059.65 1714.77 
4 1.075 0.998 0.755 558 587.34 557.13 462.15 
5 0.699 0.988 0.674 1460 1152.09 1447.40 1126.59 
6 1.242 0.987 0.735 2578 3015.08 2554.14 2099.58 
7 1.182 0.995 1.012 656 739.59 653.67 661.43 
8 0.837 0.996 0.786 1492 1321.79 1487.95 1268.56 

9 0.892 0.993 0.643 750 693.22 746.27 562.56 
10 0.831 0.992 0.669 964 850.11 958.67 740.89 
11 0.923 0.997 0.817 2526 2390.71 2521.43 2201.98 
12 1.176 0.982 1.027 725 814.26 716.03 738.94 
13 0.807 0.993 0.643 670 579.49 666.94 502.43 
14 0.864 1.000 0.835 1795 1623.78 1795.00 1587.73 
15 1.037 0.993 0.590 537 551.03 534.55 382.94 
16 1.262 1.002 0.924 537 635.52 537.93 508.35 

      

In Table 7, compensation plans based upon s

p , 
p  and CM

p  are shown by s

pb , 
pb  and CM

pb , 

respectively. There exist compensation plans, determined by the approach proposed by Varmaz et 

al. (2013), which are greater than those computed within the decentralized framework, i.e. s

p pb b . 

Taking into account the inefficient branches, which have been recognized within the decentralized 

framework (i.e. branches 2, 3, 5, 8, 9, 10, 11, 13 and 14), the results by Varmaz et al. (2013) 
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reflected in 
pb  are counter-intuitive. Although these branches are inefficient in a decentralized 

framework, the centralized compensation plans reflected in 
pb  are greater than those reflected in 

s

pb  under decentralized management. Thus, the Varmaz et al (2013) approach fails to provide a set 

of intuitive compensation plans which would incentivise such inefficient branches to contribute as 

much as possible to the overall performance under centralized management. By contrast, the 

compensation plans in our approach never exceed those determined in the decentralized framework, 

i.e. we always have s CM

p pb b . This is in line with the expectation that under central management, 

branches should receive an incentive to always operate in the best interest of the entire organization in 

order to improve the overall performance of the system. This could lead to resources being diverted 

from some branches to others for the benefit of the system as a whole, and hence s CM

p pb b . 

One can alternatively apply the extended approach in Section 5 to determine a joint-contribution 

value of highly efficient units. Let us assume that r is set to be 8. On this basis, branches with a 

contribution score higher than or equal 0.920 are included in S92, i.e. branches 1, 2, 7, 12 and 16. 

For illustrative purposes and as the current number of branches in S92 exceeds 30% of the full set of 

branches, the procedure for identifying additional potentially masked super-efficient units is not 

applied further, i.e. FS92 includes the branches 1, 2, 7, 12 and 16. According to the proposed 

procedure, the remaining branches – with a contribution value less than 0.920 – receive 

automatically the same contribution values as before. Hence, Table 8 only contains the contribution 

scores and the corresponding compensation plans of the branches in S92. 

Table 8. Results of joint contributions and the compensation plans for units in S92 

Unit 
CM

p  CM

p  CM

p  (joint) 
pc  CM

pb  CM

pb  (joint) 

1 1.000 1.014 1.231 4301 4343.17 4997.56 
2 0.978 0.978 1.204 2755 2711.94 3148.16 
7 1.000 1.012 1.231 656 661.43 762.24 
12 1.000 1.027 1.231 725 738.94 842.42 
16 0.924 0.924 1.137 537 508.35 588.69 

     

In Table 8, the new contribution scores are reported in the fourth column with a label of “joint”. As 

can be seen in this table, all branches now receive a positive contribution value, cf. the third and 

fourth columns. The reason is that the modified model in (10) measures now the efficiency of the 

whole system of bank branches while its potential benchmarks – represented by the constraint (12) – 

do not include branches in FS92, i.e. branches 1, 2, 7, 12 and 16. In other words, in measuring 
p

oEff  
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for each one of the branches in FS92, the performance of the whole system is compared to another 

system which excludes jointly the units with a CM

p  efficiency value greater than or equal to 92%.  

As a consequence, the contribution values of branches #1, #7 and #12 are all now higher than 

before, cf. the third and fourth columns in Table 8. As can be seen in the sixth and seventh columns 

in Table 8, this also leads to a higher level of incentives in terms of the award of a budget in excess 

of what these branches have spent, i.e. ( joint)CM CM

p p pc b b  . Furthermore, branches #2 and #16 

now show a positive contribution score as their super-efficiency scores in this procedure have been 

deemed to be significant. These results also affected the compensation plan of the branches reported 

in the last column of Table 8. The costs of branches #2 and #16 are now overcompensated, i.e. 

2 2 ( joint)CMc b  and 
14 14 ( joint)CMc b . Hence, they receive high-powered incentives to operate in 

the best interest of the entire system. The higher compensations in the rightmost column of Table 8 

(column labelled “joint”) compared to the compensations for those units under the scheme reflected 

in Table 7 are intuitively acceptable, as the “joint” compensation levels of the jointly super-efficient 

units provide a better measure of the true level of super-efficiency of the units concerned. 

7. Conclusions and Outlook on Future Research 

Recently, Varmaz et al. (2013) proposed a framework of how to incentivise to better performance 

the units of multi-unit organisations operating under centralized management. Their approach is 

centred on computing a form of super-efficiency for each unit applying a variant of the centralized 

resource allocation DEA (CRA-DEA) model of Lozano and Villa (2004). They use this measure of 

super-efficiency within the framework of the DEA-based formula proposed by Bogetoft (1997) as a 

basis for computing resource allocations to units to incentivize them to better performance. Here, 

we revisit their approach and show that it can lead to counter-intuitive results, incompatible with 

incentivizing units to improve their performance. The key pitfall in their approach is that the so-

called super-efficiency measure does not capture appropriately the impact of a unit on the system as 

a whole because the system is not defined in a stable manner.  

In order to remedy this deficiency, we adapt and extend their approach in the following way. 

Firstly, we capture the impact of a unit on the system of units by defining the latter in a stable 

manner across alternative DEA assessments. Then, we measure the impact on the system of units by 

reference to how the efficient frontier of the system of units varies with and without each unit under 

consideration. This leads to measures of efficiency or super-efficiency, as the case may be. The 

measures of efficiency are then used to encourage units to cover a proportion of their shortfall in 
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efficiency from 100%. If they are super-efficient, an incentive component is identified in proportion 

to the degree by which they can impact the performance of the overall system of units when acting 

as a benchmark for other units in the system. Finally, we extend further the approach to deal with 

the possibility that in some data sets one unit can mask the impact of another unit as a benchmark. 

This can happen when the two units are virtually identical in performance and sit on or are close to 

the efficient frontier. We suggest a practical approach for overcoming this problem so that all units 

that are similarly good performers are rewarded appropriately to incentivize them to better 

performance.  

In order to numerically illustrate the features of our proposed approach and to show its practical 

relevance, we analyse the performance of 16 branches of a small German retail bank. We 

demonstrate how our approach leads to the incentive component for super-efficient branches and 

how it copes with cases where certain units mask the super-efficiency of others, allowing for an 

appropriate incentivisation of such units. Our analysis demonstrates that our approach overcomes 

the problems the approach of Varmaz et al. (2013) can cause in incentivising units of centralised 

multi-unit organisations.  

Our work draws upon and adds to the broad field of incentive regulation when it is seen as a 

principal-agent problem where there is asymmetry of information. In our context, the principal is 

the central management, while the agents are the units of a multi-unit organisation. Respective 

research into incentivizing operating units of centrally managed multi-unit organisations is at a 

relatively early stage. As organisations are in general subject to on-going changes, the time 

dimension should be addressed in the context of incentivisation of units. Furthermore, the 

incorporation of value judgements as to the direction of improvement of the system as a whole has 

not been addressed to our knowledge. Depending on the importance attached to improving 

individual inputs and outputs at system level, there could be varying implications for the incentives 

given to individual units to improve performance. Thus, both the use of panel data and value 

judgements in the context of incentivising units under centralised management are interesting future 

research avenues.  
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Appendix 

Theorem 2. It is the case that 
CM s

p p   where 
s

p  is the super-efficiency of unit p as derived using 

the Andersen and Petersen 1993 approach. 

Proof. In formula (11), we define ( / )CM p CM

p o o pEff Eff    where oEff , 
CM

p  and 
p

oEff  are 

computed by models (5), (9) and (10), respectively.  

In Scenario 1, when 1CM

p   we have 
CM CM

p p   due to the fact that 
p

o oEff Eff . Theorem 1 

implies that 
CM

p p   and since the efficiency p  of DMU p cannot exceed its super-efficiency 
s

p  

we have 
CM s

p p  . 

In Scenario 2.1, we have 1CM

p   and 
p

o oEff Eff . Thus following the same reasoning as for 

Scenario 1 above we conclude 
CM s

p p  .  

In Scenario 2.2, we have 1CM

p   and 
p

o oEff Eff . This implies that unit p is one of the 

benchmarks for the “aggregate unit” to which we refer as unit G. Let G
*
 represent the projection of 

G on the efficient boundary before the boundary was revised to exclude DMU p. Two possibilities 

arise. Either G
*
 is coincident in location with p or G

*
 is in the interior of the efficient facet which 

was created as a linear combination of DMUs including DMU p.  

In the rather unlikely situation that G
*
 is coincident with p we have /CM p

p o oEff Eff   since 

1CM

p  . Note also that we have 
*/ ( )p s

o o pEff Eff G . Hence, this implies that 
*( )CM s

p p G  . We 

also have 
*( )s s

p p G   due to coincidence of p and G
*
. Therefore, we conclude that 

CM s

p p  . 

Finally, when G
*
 is in the interior of the efficient facet which was created as a linear combination of 

DMUs including DMU p, the super-efficiency of an extreme point p of that facet, shown by 
s

p , 

will never be less than that of an interior point of that facet G
* 
(see

 
Abri et al. 2013). Thus, we have 

*( )s s

p pG  . As above we have /CM p

p o oEff Eff   since 1CM

p   and 
*/ ( )p s

o o pEff Eff G . 




