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Abstract. We propose a mathematically well-founded approach for 
locating the source (initial state) of density functions evolved within 
a nonlinear reaction-diffusion model. The reconstruction of the initial 
source is an ill-posed inverse problem since the solution is highly unstable 
with respect to measurement noise. To address this instability problem, 
we introduce a regularization procedure based on the nonlinear Landweber 
method for the stable determination of the source location. This 
amounts to solving a sequence of well-posed forward reaction-diffusion 
problems. The developed framework is general, and as a special instance 
we consider the problem of source localization of brain tumors. We 
show numerically that the source of the initial densities of tumor cells 
are reconstructed well on both imaging data consisting of simple and 
complex geometric structures. 

 
1 Introduction 
Brain cancer is one of the most common cancers worldwide. A brain tumor 
is an abnormal growth of tissue cells partly due to genetic events. Treatment 
of brain tumors includes surgery, radiotherapy and chemotherapy and is 
based on a number of factors, with the location in the brain where the tumor 
formed being of pivotal importance. Studies have been conducted showing that 
the source of a tumor is correlated with characteristics such as genetic signature 
[17,30]. These characteristics can influence the behaviour of the tumor 
including its diffusion and proliferation properties and can therefore be an 
important marker for diagnosis. The influence of the source location on the 
diffusion and proliferation properties is herein neglected for simplicity, and 
future work can focus on incorporating priors on the multimap between the 
source location and the diffusion and proliferation properties due to genetics. 
In this work, largely motivated by the potential impact of tumor source localization, 
we address the problem of reconstructing the source of cell densities evolved 
within a reaction-diffusion model commonly used to describe tumor growth. 
Unlike the majority of research done in the area of tumor source localization, 
which aim at approximating the nonlinear PDE models by systems of ODEs (for 
example with the Eikonal equation [21]), we propose here a novel and altogether 
different mathematical approach. We take advantage of the theory of inverse 
problems to reconstruct initial data in parabolic equations, that is we recast the 
reconstruction of the source as a backward parabolic problem (for an overview 
of backward problems, see Chap. 9 in [10]). In doing this, we remove sources of 
uncertainty introduced when reducing the model to ODEs, i.e., we work with 
the reaction-diffusion model directly. 
Our approach formulates an iterative procedure for solving well-posed forward 



PDEs at each iteration step, with the aim of adjusting the initial state to 
match the given data. On an abstract level, this procedure can be seen as a nonlinear 
Landweber method [23] for an operator equation. The proposed approach 
assumes that the initial tumor cell density (needed as input data) is measurable; 
typically it would be extracted from medical imagery. 
1.1 Overview 

In Sect. 2, we give an overview of some current mathematical models describing 
tumor growth, i.e., the forward-problem. In Sect. 3, we describe the reactiondiffusion 
model and state the corresponding inverse problem; the iterative procedure 
is outlined in Sect. 3.1 together with its connection to the non-linear 
Landweber method. In Sect. 3.2, some details are given to motivate the wellposedness 
of the forward problems and the uniqueness of a solution to the inverse 
problem as well as the convergence of the procedure. In Sect. 4, we describe 
numerical implementation of the procedure and perform numerical experiments 
on the Shepp-Logan phantom as well as on MRI data, showing the accuracy of 
the approach for source localization with different source terms. Finally, some 
conclusions and remarks are given in Sect. 5. 

 
2 Reaction-Diffusion Models and Related Works 
One of the first PDE models for tumor growth was proposed by Murray in the 
early 1990s [3,5,26]. This model consists of a reaction-diffusion type parabolic 
PDE with the reaction term representing the proliferation and the diffusion term 
representing the infiltration [18]: 

⎧⎨ 
⎩ 

∂tu − div(D∇u) − f(u) = 0 in Ω × (0, T) 

u(0) = ϕ in Ω 

D∇u ・ n = 0 on ∂Ω × (0, T) 

(1) 
Here, u is the tumor cell density at time t at the spatial position x, with D 
the diffusion tensor for tumor cells and f a reaction term describing the cell 
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growth as a function of the current cell concentration. Different models have 
been suggested for the proliferation rate f, e.g., f(u) = ρu referred to as the 

exponential source term and f(u) = ρu(1 − u) as the logistic source term where 

ρ > 0, see [27] and [16] for specific applications.1 The interpretation of the term 

div(D∇u) in (1) is that it describes the invasion of tumor cells as a diffusive 

flux along the concentration gradient. The initial tumor cell density ϕ is given 
at time t = 0, and the boundary condition on ∂Ω states that tumor cells do not 
diffuse outside the brain region. 
Let us briefly give some works on (1) to show that it is an established model 
with known and validated parameters. 
Clinical imaging data offers the benefit of non-invasive, in vivo and timely 
measurement of parameters needed in (1). Under the influence of experimental 
results of Giese et al. [8] regarding the differential motility of tumor cells on 
grey and white matters, Swanson et al. [25] assumed an infiltrative growth of 
the tumor cells, while considering differences in cell diffusion in white and gray 
matter. They suggested that the diffusion tensor D in (1) is spatially dependent: 
D = d(x)I, where I is the identity matrix and d(x) is the diffusion coefficient. 
Moreover, this diffusion coefficient should only take two different values; in the 
white matter (myelin) of the brain it is dw, and in the grey matter it is dg, with 
dw >> dg > 0, corresponding to the observation that tumor cells move faster 
on myelin. Furthermore, in [25] medical images necessary for the diagnosis (CT 
and MR images) of brain tumors were used to calibrate the parameters ρ and 
D. Extending the work [25] regarding the differential motility of tumor cells on 
different tissues, Jbabdi et al. [11] assumed that tumor cells not only move faster 
on myelin, but also that they follow the white matter fiber tracts that are present 
in the brain. Simulations using (1) incorporating this extension corroborated well 
with real tumor growth obtained from MR images. 
Other extensions can be done, for example, the invasive nature of tumor 



growth. Clatz et al. [6] did this by assuming that brain tissue is a linear viscoelastic 
material. 
Let us mention that Konukoglu et al. proposed an altogether different tool for 
radiotherapy in [13], which extrapolates the extents of the tumor invasion not visible 
in MR images from the visible part. Based on the reaction-diffusion formalism, 
they deduced the anisotropic eikonal equation: 

√ 
∇u·(D∇ √ u) 

ρu = 1, u(∂Ω) = 
u0, describing the extents of the tumor starting from the visible tumor contour 
in the MR image. With this, one can obtain ordinary differential equations to 
solve for the cell density rather than a partial differential equation. 
However, as explained above, (1) is well-established for tumor growth, and 
although challenging to solve due to its nonlinear term, we shall base our reconstruction 
of the tumor source on this model. 
1 Note that the PDE models considered in this work have their origin in ordinary 
differential equation (ODE) models and the terminology is adopted from ODE models 
with corresponding source terms as their solution. For example, ut = ρu has 
the exponential function u = Ceρt as a solution. Furthermore, the logistic equation 
ut = u(1 − u) has the logistic function u = 1/(1 + e 

−t) as a solution. 
Source Localization of Reaction-Diffusion Models for Brain Tumors 417 

 
3 Source Location 
The model (1) describes the tumor cell density u over time. Given knowledge of 
this density at a fixed time T > 0, that is u = ψ at t = T, to find the initial 
distribution (source) amounts to solving 

⎧⎨ 

⎩ 

∂tu − div(D(x)∇u) − f(u) = 0 in Ω × (0, T) 

u(T) = ψ in Ω 

D∇u ・ n = 0 on ∂Ω × (0, T) 

(2) 
Compared with (1), we have now a final condition imposed (at t = T) instead of 
an initial one (when t = 0), and (2) is known as a backward parabolic problem 
having the additional challenge of being ill-posed with respect to measurement 
noise in the data, see further [10, Chap. 9] for details on backward problems. 
To obtain a regularizing procedure for the stable determination of the initial 
source ϕ, we note that the backward problem in (2) can be rewritten as: 
Determine ϕ in (1) matching the given data 
u(x, T) = ψ(x). (3) 
The determination of ϕ from this data is our inverse problem (IP) and amounts 
to solving (2). 
3.1 Nonlinear Landweber Method 

The inverse problem consisting of finding the initial condition in (1) to match 
(3) can be reduced to a nonlinear operator equation. This takes the form 
A(ϕ) = ψ. (4) 
The definition of Aϕ is uT (ϕ), with uT (ϕ) the restriction of the solution of (1) 
to t = T for a given initial state ϕ. 
Equation (4) inherits the ill-posedness of the backward parabolic problem (2). 
Therefore, to obtain a stable solution, the nonlinear Landweber method given, 
for example, in [23] can be applied. In this method, the initial source is updated 
according to 

ϕk+1 = ϕk − A 

_∗(Aϕk − ψ), (5) 

where ϕ0 is an arbitrary initial guess of the source (belonging to the standard 
space of square integrable functions, L2(Ω)), and A_∗ is the adjoint of the Fr´echet 

derivative of the operator A. Convergence rates and stability results can be found 
in [23]. In particular, for noisy data, the iterations has to be ceased at some point 
otherwise the errors will start to magnify. In the linear case, an approach of this 



form to find the initial distribution together with a source term, was used in [12]. 
Thus, it is natural to generalize this to the nonlinear setting. 
To calculate the action of the operator A on the element ϕk amounts to 
solving (1) with data ϕk, resulting in an approximate cell density distribution 

uk. Moreover, the action of the operator A_∗ on the element (Aϕk−ψ) is obtained 

by solving a corresponding adjoint linear problem to (1). 
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Lemma 1. The adjoint linear equation corresponding to the governing equation 
in (1), that is 

∂tu − div(D(x)∇u) − f(u) = 0, (6) 

is given by 

∂tv +div(D(x)∇v) + f 
_ 

u(u)v = 0. (7) 
Proof. Briefly, without entering into full details, the change of sign in Eq. (7) is 
obtained by multiplying the Eq. (6) by a suitable (test) function v and integrating 
by parts over the time interval (0, T). Moreover, the linear elliptic part in (7) 
is obtained by observing that A has a Fr´echet derivative, and that the Gateaux 

derivative of −div(D(x)∇u) − f(u) at u in the direction of v, can be used to 

evaluate it, 
d 
dε 

[−div(D(x)(∇u + ε∇v)) − f(u + εv)]|ε=0 = −div (D(x)∇v) − f 
_ 

u(u)v, (8) 

and the result follows. __ 
To solve the inverse problem (1) and (3), following the scheme (5), we start by 
solving 

⎧⎨ 

⎩ 

∂tu1 − div (D(x)∇u1) − f(u1) = 0, in Ω × (0, T) 

∂nu1 = 0, on ∂Ω × (0, T) 

u1(0) = ϕ0, in Ω 
(9) 

Given that uk, k ≥ 1, has been constructed, we proceed by solving the linear 

adjoint problem 

⎧⎨ 

⎩ 

∂tvk +div(D(x)∇vk) + f_ 

u(uk)vk = 0, in Ω × (0, T) 

∂nvk = 0, on ∂Ω × (0, T) 

vk(T) = uk(T) − ψ, in Ω 

(10) 
to obtain vk. Then uk+1 is constructed as the solution to 

⎧⎨ 
⎩ 

∂tuk+1 − div (D(x)∇uk+1) − f(uk+1) = 0, in Ω × (0, T) 

∂nuk+1 = 0, on ∂Ω × (0, T) 

uk+1(0) = uk(0) − vk(0), in Ω 

(11) 
We iterate the last two steps until the desired level of accuracy has been obtained. 
Using Lemma 1, it is straightforward to verify that the above procedure corresponds 
to the nonlinear Landweber method (5) for solving (4). 
3.2 Well-Posedness of the Forward Problem (1) 

It is possible to introduce a weak formulation and with a rather direct approach 
prove that (1) is well-posed in standard Sobolev spaces for parabolic equations 
(for such spaces, see [15, Chap. 4.2]). However, to save space, we refer to general 
theory for abstract parabolic equations and note that (1) can be written 



_u_ 

t + Bu = f(u(t)) 
u(0) = ϕ 
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Equations of this form and further abstractions have been studied in depth in 
the literature in various spaces, see for example, [29, Chap. 30]. 
In our case of (1), B is the divergence term, and B generates a semi-group, 
see [20, Theorem 7.2.5]. From this, and since we work with functions f being at 
least Lipschitz continuous, we have from [20, Theorem 6.1.2], 

Theorem 1. Let ϕ ∈ L2(Ω). Then there exists a unique (weak or mild) solution 

u ∈ L2(0, T;H1(Ω)) to the reaction-diffusion problem (1), and this element u 

depends continuously on the data. 
The similar result holds for classical solutions in spaces of H¨older continuous and 
differentiable functions, see Theorem 7.4, p. 491, in [14]. The adjoint and linear 
problem (10) is also well-posed. 
More general reaction-diffusion models containing, for example, convection 
terms and having non-linearities in the divergence term, can be considered, see 
[22, Chap. 8.6]. Thus, our approach is not limited to (1). 
For the reconstructions, it is important to know that there is only one solution 
to the backward problem (2). Formally, the solution to the backward problem 
can be represented as 

u(t) = S(t − T)ψ − _ T 

t 

S(t − s)f(u(s)) ds 

with S being the semi-group generated by the divergence term in (1). Using 
this representation, one can build on the results for source reconstructions, see 
[4,7], to obtain that the backward problem has a unique solution. This holds for 
functions f that are locally Lipschitz, see further [28]. Thus, we can state 
Theorem 2. The backward problem (2) has a unique solution. 
We assume that data are given and compatible such that (2) has a solution. 
For the convergence of the nonlinear Landweber type method outlined in 
the steps (9)–(11), we assume that the initial guess is chosen such that in a 
neighbourhood of it there is the estimate 

_A(ϕ) − A(ϕ0) − A 

_(ϕ0)(ϕ − ϕ0)_ ≤ η_A(ϕ) − A(ϕ0)_ 
with 0 < η < 1/2, and A from (4). Given this, the nonlinear Landweber method 
converges, see Theorem 2.4 in [9]. 

 
4 Evaluation 
We evaluate the proposed solution scheme (9)–(11) on two types of data with 
synthetically generated tumors obtained via the forward model (2). The parameters 
values are equal in the forward and backward model. 
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Fig. 1. Source localization for the Shepp-Logan phantom image with different source 
terms and proliferation rates: logistic in (d), (e) and exponential source term in (f), (g). 
In (d)–(g): right figures show the final source location in red and the initial distribution 
in yellow; left figures show the tumour distribution at time T in yellow and the tumor 
boundary in green. Panel (c) illustrates the randomly generated seed-points. (Color 
figure online) 

4.1 Discretization 

We adopt a generic forward Euler discretization strategy using finite differences 
approximating derivatives in the parabolic PDEs [19]. Since Ω is the (curved) 
boundary of the brain (union of white and gray matter segments), special care 
needs to be taken when computing the Neumann boundary condition on irregular 
grids. We approach this problem by replicating the boundary pixels in the 
outward normal direction of Ω sequentially (left-right, up-down, right-left and 
down-up). Any inconsistency for diagonal flow vectors could not be observed, 
and this straightforward strategy performs remarkably well. 
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Table 1. Mean L1 pixel distance and standard deviation for 100 seed-points between 



the ground truth seed center location and the estimated tumor source for the Shepp- 
Logan and the MRI images. 
Shepp-Logan phantom f = ρu(1 − u) f = ρu 

ρ 0.001 0.01 0.001 0.01 

Landweber 1.35 ± 1.40 2.73 ± 1.56 1.37 ± 1.36 2.67 ± 1.56 
Centroid 1.65 ± 2.05 3.16 ± 1.91 1.35 ± 1.37 2.65 ± 1.55 

MRI T1 
Landweber 1.54 ± 2.01 3.52 ± 1.84 0.77 ± 0.98 2.17 ± 1.35 
Centroid 1.98 ± 2.30 5.34 ± 2.12 0.77 ± 0.98 2.16 ± 1.34 

4.2 Evaluation Setup 

We use two different settings to evaluate the proposed source reconstruction of 
tumors: the first is usage of the standard Shepp-Logan phantom [24] describing 
a comparably simple geometry, the second setting describes a more involved 
geometry and consists of an MRI T1-weighted brain scan [2] from the Internet 
Brain Segmentation Repository (IBSR) [1]. In the synthetic setting of the 
Shepp-Logan phantom, we manually selected hypothetical white and gray matter 
regions whereas in the second configuration the data has ground truth segmentation 
provided by experts. These imaging data are illustrated in Figs. 1(a), (b) 
and 2(a), (b), respectively. 
For each of the data, we use 100 seed-points shown in panels (c) of respectively 
figure. For each seed-point we run the forward model to obtain a synthetic tumor 
at time a T > 0 for a particular parameter configuration. In the Shepp-Logan 
phantom we used diffusivity speed 1 in the white matter and 0.05 in the gray 
matter segment. For the MRI image we set diffusivity speed 1 in the white matter 
region and 0.1 in the gray matter region. In all of the experiments, we let the 
update step in the Euler scheme be 10−1, ρ either 0.001 or 0.01 influencing the 

degree of the nonlinearity for the exponential and logistic source terms in the 
PDE model (1). The forward problem was iterated 100 times for the Shepp-Logan 
phantom and 500 for the MRI image, these data were used as ϕ0 in (9). The 
problem (9) is iterated 20 times and the resulting u1 is used as initial data to (10) 
and (11), each iterated two and one time respectively. Finally, the overall problem 
(10)-(11) is iterated 10 times.We found no improvement in source localization by 
performing additional iterations of the outer loop. For comparison, we segment 
the tumor and compute its centroid (or “center of mass”), and let this point 
represent a baseline method for source localization. The next section discusses 
the results. 
4.3 Results 

Figures 1 and 2 display examples of source localization for the Shepp-Logan 
phantom and the MRI image in (a). Panel (b) depicts the regions of hypothetical 
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Fig. 2. Panel (a) shows a T1-weighted MRI brain scan from IBSR. Its ground truth 
segmentation provided by experts is shown in panel (b). Panel (c) illustrates the randomly 
generated seed-points and each point constitutes one experiment. (d), (e), (f) 
and (g) shows different source localization for different proliferation rates. In (d)–(g): 
right figures show the final source location in red and the initial distribution in yellow; 
left figures show the tumour distribution at time T in yellow and the tumor boundary 
in green. (Color figure online) 

white and gray matter regions. In (d)–(f), left panels, show the tumors cell 
densities obtained with the forward model and the initial seed-points depicted 
in yellow in the right panels. When the tumor density is nearly homogeneous the 
source localization works well with a minor error as visualized in the right panels. 
If the tumor source is located close to the boundary Ω it is more difficult to 
reconstruct as the inverse scheme needs to handle a severely anisotropic growth 
pattern. 
Both Figs. 1 and 2 show experiments of source localization for the Shepp- 
Logan phantom image and the MRI data image with different source terms and 
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proliferation rates. In panels (d), (e) of Fig. 1 and panels (d), (e) of Fig. 2, we use 

a logistic source term f = ρu(1 −u) for a small proliferation rate ρ = 0.001 and 

a larger one ρ = 0.01. Moreover, in panels (f) and (g) of Fig. 1 and panels (f) and 
(g) of Fig. 2, we did the similar simulations but with an exponential source term 
f = ρu. For both source terms we obtain an accurate estimate of the tumor (or 



density) source. 
Table 1 shows the mean L1 pixel distance of 100 seed-points (illustrated in (c), 
Figs. 1 and 2) between the ground truth seed center location and the estimated 
tumor source for the Shepp-Logan image and the MRI T1 image. Since we include 
two source terms, the logistic and the exponential proliferation, this is also a 
quantitative evaluation for evaluating the robustness of the scheme for different 
source terms. The parameter ρ determines the influence of the source term and 
a larger value yields a tumor cell density which is more anisotropic than with 
smaller values, making the source localization harder. Therefore, it is expected 
that the error should increase as the value of ρ increases. We also remark that 
the source of tumors located close to the boundary will be harder to reconstruct 
as the proposed regularizing procedure needs to handle a severely anisotropic 
growth pattern. 

5 Conclusion 
Motivated by the importance of being able to determine the initial location where 
a brain tumor formed, we have proposed an iterative regularizing procedure 
for a nonlinear backward parabolic reaction-diffusion model, and applied it for 
the stable determination of the initial brain tumor cell density. Mathematical 
analysis of the procedure, such as well-posedness of the forward problems used 
in the iterations, were undertaken. Numerical experiments were included on the 
Shepp-Logan phantom as well as an MRI image for various nonlinear terms in 
the parabolic equation. These initial experiments show that it is possible to 
retrieve the initial source in a stable way with the proposed procedure, and with 
accepted accuracy. Future work includes, for example, other source terms and 
validation against real data. 
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