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ABSTRACT   

A method based on optical heterodyning is proposed for measuring relative optical phases of pulses circulating in a 
synthetic photonic lattices. The knowledge of the phases can be further used for qualitative reconstruction of an 
eigenmode excitation spectrum in the synthetic photonic lattice.  

Keywords: Photonic lattice, eigenmode excitation spectrum, optical heterodyning. 
 

1. INTRODUCTION  
Light propagation in periodic structures is the object of everyone's attention over the years1.This area of research is 
exploring the dynamics of light, which cannot be observed in a continuous medium. An example of such systems are 
Bragg grating structures or structures consisting of optical waveguides. The latter are a special class of periodic systems, 
opening are range of possibilities for controlling light. 

Structures consisting of optical waveguides can serve as a platform for observations of a wide variety of physical 
phenomena. For example, in the work2 optical analogue of the Bloch oscillations in the structure of the heat-sensitive 
waveguide was observed. These oscillations are manifested as a change in the width of the wave packet. Linear law for 
the propagation constant is achieved by creating a temperature gradient in a direction perpendicular to the light 
propagation. The propagation of light in waveguide arrays is described by the nonlinear Schrödinger equation. Therefore, 
optical solitons can be observed in such systems. This phenomenon has been experimentally demonstrated in 19883 
along with a discrete self-focusing of wave packets. In the paper4 authors studied and realized an optical analogue of 
Rabi oscillations. The oscillations were observed between their modes of photonic lattice. This effect was achieved by 
periodic modulation of the refractive index in light propagation direction. In addition, in the paper5 dynamic localization 
of the wave packet has been obtained, both in one and in two-dimensional photonic lattices. 

Recently more and more attention is given to photonic lattices implemented by means of optical fibers. The main 
representatives of this class are mesh and synthetic photonic lattices (SPL). The first one is a network of a number of 
optical couplers, and has some practical limitations. The second one consists of two fiber rings of different lengths, 
connected through the 50/50 fiber coupler (see Fig.1, left panel). Optical losses are vanished due to optical amplifiers 
inserted into the system. A sequence of light pulses circulates through the system, with the number of pulse, phase and 
amplitude of each pulse varying. Phase of the pulses can be altered by means of phase modulator, inserted into one of the 
loops. It can be shown that pulse evolution in both systems is governed by the same equation set6. Though, use of SPL 
opens new fields for research because of huge experimental possibilities. For example, in the work7 an evolution of 
pulses in a system with the introduction of various kinds of local inhomogeneities was studied. It was shown that the 
controlled phase shift of each pulse plays a role of quantum potential, while the envelope of the pulse chain plays a role 
of a wave function of the quantum particle. For example, in the absence of phase shifts train of the pulses circulates in 
the two rings, with the number of pulses gradually increasing. This can be considered as spreading of the wave function. 
But if the phase shifts are applied randomly for different pulses, the effect of Anderson localization can be observed in 
synthetic photonic lattices8,9. Indeed, implementing the phase shift for each of the pulses in random fashion is like to 
obtain an analogue of a random potential in quantum systems. In the absence of phase shifts a pulse chain increases in 
time from roundtrip to roundtrip, whereas when the random phase shift is applied, the number of pulses in the chain can 
reach the steady-state level that analogues to the analogue Anderson localization (see Fig. 2). 
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3. EIGENMODE STRUCTURE 
Equation set governing a SPL can be easily obtained6 from the basic principles ቐ ௡௠ାଵݑ = ଵ√ଶ ௡ାଵ௠ݑ) + ௡ାଵ௠ݒ݅ ௡௠ାଵݒ( = ௘೔ക೙√ଶ ௡ିଵ௠ݒ) + ௡ିଵ௠ݑ݅ )                                                                      (1) 

Equations (1) are valid if the coupling ratio is 50%. Here ݑ and ݒ are complex amplitudes of the pulses in long and short 
loop respectively, situated at the nth position in the pulse train at the mth roundtrip. 
In case phase is randomly distributed along the coordinate n and is constant along the coordinate m, function φ is, 
obviously, becomes independent of m and eigenmodes structure of such system can be found. Eigenmodes of such 
system can be written in the form of functions, similar to Bloch functions: ݑ௡௠ 	= 	ܷ௡	݁(ߚ݉݅)݌ݔ - for a long loop, ݒ௡௠ 	= 	 ௡ܸ	݁(ߚ݉݅)݌ݔ - for a short loop, where β – propagation constant. 
Then, considering assumption about the eigenmodes form, system of the equations for the two loops system with a 
random phase shift in each loop and an arbitrary coefficient of the fiber coupler can be written as follows: 

	ቀܷܷ ܷܸܸܷ ܸܸቁ ∗
ۈۉ
ۈۈۈ
ۋیே௠ݒ⋮ଶ௠ݒଵ௠ݒே௠ݑ⋮ଶ௠ݑଵ௠ݑۇ

ۋۋۋ
ۊ =

ۈۉ
ۈۈۈ
ۇۈ
ۋیே௠ାଵݒ⋮ଶ௠ାଵݒଵ௠ାଵݒே௠ାଵݑ⋮ଶ௠ାଵݑଵ௠ାଵݑ

ۋۋۋ
ۊۋ = ߣ ∗

ۈۉ
ۈۈۈ
ۋیே௠ݒ⋮ଶ௠ݒଵ௠ݒே௠ݑ⋮ଶ௠ݑଵ௠ݑۇ

ۋۋۋ
 (2)																																																																	ۊ

here matrices UU, UV, VU, VV – are defined as follows: 

ܷܷ = ۈۉ
ۇ 0cos	(ߠ)exp	(݅߮ଶ)0⋮0

00cos	(ߠ)exp	(݅߮ଷ)⋮⋯
0⋯0⋱0

⋯⋯⋯⋱cos	(ߠ)exp	(݅߮ே)
cos	(ߠ)exp	(݅߮ଵ)00⋮0 ۋی

ۊ
 

 

ܷܸ = ۈۉ
ۇ 0݅sin(ߠ)exp	(݅߮ଶ)0⋮0

00݅sin(ߠ)exp	(݅߮ଷ)⋮⋯
0⋯0⋱0

⋯⋯⋯⋱݅sin(ߠ)exp	(݅߮ே)
݅sin(ߠ)exp	(݅߮ଵ)00⋮0 ۋی

ۊ
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ۇ 00⋮0݅sin(ߠ)exp	(݅߮ே)
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⋯⋯⋱⋱0
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ۊ
 

 

(݅߮ேିଵ)ۋی
ۊ
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⋯⋮(݅0	exp(ߠ)0
݅߮ଵ) cos	
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