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ABSTRACT

A method based on optical heterodyning is proposed for measuring relative optical phases of pulses circulating in a
synthetic photonic lattices. The knowledge of the phases can be further used for qualitative reconstruction of an
eigenmode excitation spectrum in the synthetic photonic lattice.
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1. INTRODUCTION

Light propagation in periodic structures is the object of everyone's attention over the years'.This area of research is
exploring the dynamics of light, which cannot be observed in a continuous medium. An example of such systems are
Bragg grating structures or structures consisting of optical waveguides. The latter are a special class of periodic systems,
opening are range of possibilities for controlling light.

Structures consisting of optical waveguides can serve as a platform for observations of a wide variety of physical
phenomena. For example, in the work® optical analogue of the Bloch oscillations in the structure of the heat-sensitive
waveguide was observed. These oscillations are manifested as a change in the width of the wave packet. Linear law for
the propagation constant is achieved by creating a temperature gradient in a direction perpendicular to the light
propagation. The propagation of light in waveguide arrays is described by the nonlinear Schrédinger equation. Therefore,
optical solitons can be observed in such systems. This phenomenon has been experimentally demonstrated in 1988°
along with a discrete self-focusing of wave packets. In the paper* authors studied and realized an optical analogue of
Rabi oscillations. The oscillations were observed between their modes of photonic lattice. This effect was achieved by
periodic modulation of the refractive index in light propagation direction. In addition, in the paper’ dynamic localization
of the wave packet has been obtained, both in one and in two-dimensional photonic lattices.

Recently more and more attention is given to photonic lattices implemented by means of optical fibers. The main
representatives of this class are mesh and synthetic photonic lattices (SPL). The first one is a network of a number of
optical couplers, and has some practical limitations. The second one consists of two fiber rings of different lengths,
connected through the 50/50 fiber coupler (see Fig.1, left panel). Optical losses are vanished due to optical amplifiers
inserted into the system. A sequence of light pulses circulates through the system, with the number of pulse, phase and
amplitude of each pulse varying. Phase of the pulses can be altered by means of phase modulator, inserted into one of the
loops. It can be shown that pulse evolution in both systems is governed by the same equation set’. Though, use of SPL
opens new fields for research because of huge experimental possibilities. For example, in the work” an evolution of
pulses in a system with the introduction of various kinds of local inhomogeneities was studied. It was shown that the
controlled phase shift of each pulse plays a role of quantum potential, while the envelope of the pulse chain plays a role
of a wave function of the quantum particle. For example, in the absence of phase shifts train of the pulses circulates in
the two rings, with the number of pulses gradually increasing. This can be considered as spreading of the wave function.
But if the phase shifts are applied randomly for different pulses, the effect of Anderson localization can be observed in
synthetic photonic lattices®’. Indeed, implementing the phase shift for each of the pulses in random fashion is like to
obtain an analogue of a random potential in quantum systems. In the absence of phase shifts a pulse chain increases in
time from roundtrip to roundtrip, whereas when the random phase shift is applied, the number of pulses in the chain can
reach the steady-state level that analogues to the analogue Anderson localization (see Fig. 2).
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2. SINTHETIC PHOTONIC LATTTICE
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Figure 1. Scheme of a synthetic photonic lattice and basics of an operation.

Fig. 1 shows a scheme of synthetic photonic lattice. The evolution of the pulse in such a system is shown in Fig. 1, right.
After the initial pulse is launched into a long loop and makes the first pass, it is divided into two pulses. The pulses have
the same intensity, but different relative phases. A pulse propagating in a short loop (upper part of the figure), has an
additional phase shift of @ / 2 because of its transition through the coupler. The next pass through the fiber coupler
further divides pulses by two, and four pulses (two in each loop) arise because of different lengths of two loops. Phases
of the pulses should be /2 and  / 2 in the small (upper on the Fig.1) loop, 0 and n in the large (lower on the Fig.1)
loop. The next roundtrip brings constructive and destructive interference into the picture. Indeed, the third roundtrip
makes two pulses to be fully overlapped. These two pulses have gone through the same optical path, but have changed
the fiber coupler ports different number of times. Therefore the two pulses have phase n /2 and 3n / 2 in the shorter loop,
thus leading to destructive interference, while in the larger loop to pulses are with phases m and =, that corresponds to
constructive interference. The evolution of this kind corresponds to a ballistic regime of pulse propagation (fig. 2, left).
The typical number of pulses in the pulse chain increases proportionally to the number of rounds.

To observe the effect of Anderson localization one should create a random phase for each pulse in the roundtrip m. In
practice, this is carried out by a phase modulator. The resulting pulse evolution strongly deviates from the ballistic

regime (fig. 2, right).
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Figure 2.Evolution in a synthetic photonic lattice without optical potential (left) and with randomly distributed phase shifts
(right). Data is taken from an experiment.
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3. EIGENMODE STRUCTURE

Equation set governing a SPL can be easily obtained® from the basic principles

1 .
u = = (Ul + L)

)
ot = S (U + )

Equations (1) are valid if the coupling ratio is 50%. Here u and v are complex amplitudes of the pulses in long and short
loop respectively, situated at the nth position in the pulse train at the mth roundtrip.

In case phase is randomly distributed along the coordinate n and is constant along the coordinate m, function ¢ is,
obviously, becomes independent of m and eigenmodes structure of such system can be found. Eigenmodes of such
system can be written in the form of functions, similar to Bloch functions: ul! = U, exp(imf) - for a long loop,
vt = V, exp(imf) - for a short loop, where  — propagation constant.

Then, considering assumption about the eigenmodes form, system of the equations for the two loops system with a

random phase shift in each loop and an arbitrary coefficient of the fiber coupler can be written as follows:
m+1
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here matrices UU, UV, VU, VV — are defined as follows:
0 0 0 cos (8)exp (i¢py)
cos (0)exp (ip,) 0 o 0
Uu = 0 cos (B)exp (ip3) O i 0
6 ' 0 cos (6)exp (ipy) O
0 0 0 isin(6)exp (ig,)
isin(8)exp (ip,) 0 i 0
uv = 0 isin(@)exp (ip3) O i 0
0 - o isin(®)exp (ipy) 0
0 isin(0)exp (ip;) 0 0
0 0 isin(0)exp (ip,) :
VU = : : 0 0
0 : : ~ isin(8)exp (igy_1)
isin(8)exp (ipy) 0 0 0
0 cos (8)exp (ip,) 0 0
0 0 cos (B)exp (i¢2) - :
Vv = : : 0 0 _
0 : : ~ cos (B)exp (igy-1)
cos (8)exp (igy) 0 0 0
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where 0 depends on coupler ratio (and is equal to /4 msa 50% coupling ratio).

Thereby, solving the matrix equation (2) eigenvalues and eigenvectors of this system can be found. Propagation
constants ; = log(4;)/i form a dispersion curve. Eigenvalue and corresponding eigenvector form an eigenmode.

To present system (1) as a matrix equation (2) it was necessary to enter the boundary conditions which are considered to
be periodic. To demonstrate the structure of eigenmodes, we calculated it in case of no phase shifts applied (Fig.3).
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Figure 3.Eigenmode spectrum (propagation constant § versus mode number) (upper) and corresponding spatial forms of
different modes (lower) for the synthetic photonic lattice without phase shifts.

4. DERIVING OPTICAL PHASE

Figure 4. Heterodyning scheme used for deriving the optical pulses phase.

Knowledge of both phase and intensity of the pulse train means the SPL is completely described. So it’s of interest to
find the relative phases of the pulses in the pulse train.

For phase extraction heterodyne method was proposed. In this method, the pulse chain from the output port coupler from
the SPL interferes at the photodiode with a CW signal of local oscillator (LO). Wavelength of local oscillator is chosen
to be closed with the frequency of output signal. The result of summation of the signal and LO waves can be found from
the formula
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I'=|Us|* + |ALol? + 2UsALo(1 + cos(Awt + ¢y)) 3)

Here [ is resulting intensity at the photodiode, U and A ¢ are fields of the signal and local oscillator correspondingly.

As can be seen from the formula (3) the resulting intensity is proportional to the cosine of the difference between the
local oscillator frequency and the main signal Ao=ws-®; 0. We include an initial phase of the main signal ¢,, in the
expression. ¢, varies from pulse to pulse (for example, upper and lower signal pulses on Fig. 4). In fact, to construct the
evolution of the synthetic photonic lattice one should know difference between adjacent pulses. Because different pulses
arrive to the photodiode at different times, additional phase AwAt corresponding to difference in arrival times At
appears. Thus, this phase should be subtracted to reveal ¢,. To derive the latter, the following technique is used. We
calculate overlap integral, using measured time traces of two adjacent pulses as a function of phase difference :

F) = J Iy ()l (¢ + 22)dt @)
here I,,;(t) and I,,,,(t) are measured intensities for two adjacent output heterodyned pulses. Maximum of F(y) can be
found numerically and is reached when 1, that determines position of one of the pulses relative to the second one, is
equal to ¢py- dmp. Thus, it’s possible to derive relative phase between two adjacent pulses in the pulse train, and then
caluclate all phases in the pulse train. Together with knowledge of amplitudes of the pulse train, this provides complete
information about the evolution of the light in a synthetic photonic lattice.

We simulate an experimental heterodyning technique using equation set (1) and equations (3,4), and construct

the matrix of complex pulse amplitudes U(m,n). The phase derived by this method exactly reproduced pulse phases
derived straightforwardly from the equation set (1).
The technique is due to be proved experimentally though. To make the heterodyning measurements possible, time
coherence of the local oscillator should be no less than the time duration AT;,.,; between first and last pulse in the pulse
chain. AT;,¢q; is proportional to the roundtrip time multiplied by the number of steps over the “time” coordinate m. In the
synthetic photonic lattices demonstrated up to dates AT, is about of several milliseconds, thus making strict
requirement for the local oscillator bandwidth.

5. RECONSTRUCTING EIGENMODE EXCITATION SPECTRUM

Knowledge of both phase and intensity of the pulse train means the SPL becomes completely described. We have found
an easy way to qualitatively reconstruct the eigenmode excitation spectrum using this knowledge.

After constructing a matrix of complex pulse amplitudes U(m,n) by means of optical heterodyning discussed above, one
can calculate the Fourier transform U(B,n) over the “time” coordinate m. According to definition of an eigenmode, the
Fourier transform is finding all the eigenmodes contributing to the evolution at the nth slot. Averaging < U(B,n)>, over
the all slots summarizes all eigenmodes involved in the particular realization of a synthetic photonic lattice. We have
chosen the SPL with randomly distributed phase shifts as a testbed, i.e. in case when Anderson localization is realized.
Calculated intensity of the image <|T(B,n)|*>, indeed has the form similar to the eigenmode excitation spectrum derived
analytically using methods described in section 3 (see Fig. 5). Similarity is preserved for different levels of disorder (see
Fig. 6). The structure of spectrum with the maxima at the edge of the bandgap, typical for localization processes, is
directly reproduced in Fourier transform calculated from the complex amplitude U(m,n).

Figure 5. Comparing mode excitation spectrum (left) and result of Fourier transform of complex pulse amplitude over m
(right) with random distribution of potential with value of /2.
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Figure 6. Comparison of mode excitation spectrum (left) and result of Fourier transform of evolution of the SPL (right) for
different levels of potential disorder.

6. CONCLUSION

We propose a technique of measuring relative optical phases of pulses circulating in synthetic photonic lattices. The
technique is based on optical heterodyning and makes it possible to obtain complete knowledge about light evolution in
the synthetic photonic lattices. One of the sequences is the possibility of reconstructing the eigenmode excitation
spectrum, using measurements of output pulse train phases and intensities only. We demonstrate that the Fourier
transform intensity of the complex amplitude over roundtrip number m has a shape similar to that of eigenmode
excitation spectrum.
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