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A prerequisite for vaccine-mediated induction of CD8™ T-cell responses is the targeting of dendritic cell (DC) sub-
sets specifically capable of cross-presenting antigen epitopes to CD8* T cells. Administration of a number of cat-
ionic adjuvants via the intraperitoneal (i.p.) route has been shown to result in strong CD8" T-cell responses,
whereas immunization via e.g. the intramuscular (i.m.) or subcutaneous (s.c.) routes often stimulate weak
CD8™ T-cell responses. The hypothesis for this is that self-drainage of the adjuvant/antigen to the lymphoid or-
gans, which takes place upon i.p. immunization, is required for the subsequent activation of cross-presenting
lymphoid organ-resident CD8«™* DCs. In contrast, s.c. or i.m. immunization usually results in the formation of a
depot at the site of injection (SOI), which hinders the self-drainage and targeting of the vaccine to cross-present-
ing CD8a™ DCs. We investigated this hypothesis by correlating the biodistribution pattern and the adjuvanticity
of the strong CD8* T-cell inducing liposomal cationic adjuvant formulation 09 (CAF09), which is composed of
dimethyldioctadecylammonium bromide/monomycoloyl glycerol liposomes with polyinosinic:polycytidylic
acid electrostatically adsorbed to the surface. Biodistribution studies with radiolabeled CAF09 and a surface-
adsorbed model antigen [ovalbumin (OVA)] showed that a significantly larger fraction of the vaccine dose local-
ized in the draining lymph nodes (dLNs) and the spleen 6 h after i.p. immunization, as compared to after i.m. im-
munization. Studies with fluorescently labelled OVA + CAF09 demonstrated a preferential association of
OVA + CAF09 to DCs/monocytes, as compared to macrophages and B cells, following i.p. immunization. Admin-
istration of OVA + CAF09 via the i.p. route did also result in DC activation, whereas no DC activation could be
measured within the same period with unadjuvanted OVA and OVA + CAF09 administered via the s.c. or i.m.
routes. In the dLNs, the highest level of activated, cross-presenting CD8c* DCs was detected at 24 h post immu-
nization, whereas an influx of activated, migrating and cross-presenting CD103" DCs to the dLNs could be mea-
sured after 48 h. This suggests that the CD8«™ DCs are activated by self-draining OVA + CAF09 in the lymphoid
organs, whereas the CD103* DCs are stimulated by the OVA + CAF09 at the SOL These results support the hy-
pothesis that the self-drainage of OVA + CAF09 to the draining LNs is required for the activation of CD8a™
DCs, while the migratory CD103% DCs may play a role in sustaining the subsequent induction of strong CD8*

T-cell responses.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Vaccination against infectious diseases is one of the most successful
and cost-effective medical inventions [1]. Many licensed vaccines in-
duce robust antibody responses, which are sufficient for the protection
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against a number of different pathogens [2]. However, there is an unmet
medical need for novel vaccines that concomitantly induce strong cell-
mediated immunity (CMI) and cytotoxic T-lymphocyte (CTL) re-
sponses, in particular against certain intracellular pathogens, e.g. HIV
and Mycobacterium tuberculosis [3]. One subunit vaccine technology ex-
ploits pathogen-specific and highly purified, synthetic peptides or re-
combinant proteins as antigens, in combination with an adjuvant. This
enables the safe control of the specific type of immune response in-
duced [2,4,5]. Vaccine delivery systems, e.g. liposomes, emulsions and
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virus-like particles (VLPs), have appeared very useful for the induction
of strong antigen-specific immunity when combined with one or sever-
al immunostimulating compounds [6]. This allows for the design of vac-
cine adjuvants inducing highly customized immune responses through
careful selection and optimization of the delivery system, the
immunostimulator(s), and the administration route [4,5,7].

The CTL-inducing cationic adjuvant formulation (CAF) 09
(Statens Serum Institut, Denmark) is a promising novel adjuvant
[8]. It is composed of the Toll-like receptor (TLR)-3 ligand
polyinosinic:polycytidylic acid [poly(I:C)] electrostatically adsorbed
to dimethyldioctadecylammonium (DDA) bromide/monomycoloyl
glycerol (MMG) liposomes. This adjuvant has been shown to induce
robust antigen-specific CD8™ T-cell responses for a number of different
surface-adsorbed antigens, and it has been shown to be efficacious as a
vaccine adjuvant for cancer vaccines in a number of preclinical animal
models [8]. However, the induction of CD8™ T-cell responses appears
to be highly dependent on the administration route, as also reported
for the comparable adjuvant CAF05, which is composed of poly(I:C)
adsorbed to liposomes comprised of DDA and the glycolipid trehalose
6,6'-dibehenate (TDB): Induction of strong CD8* T-cell responses is
only observed upon intraperitoneal (i.p.) or nasal immunization for
both adjuvants [8-10], whereas subcutaneous (s.c.) and intramuscular
(i.m.) administration elicit weak CD8 " T-cell responses [8].

Antigen-presenting cells (APCs), e.g. dendritic cells (DCs), link the
innate and adaptive immune system by presenting pathogen-specific
antigens and providing activation signals to naive T cells [11]. The acti-
vation of CD8™ T cells and their subsequent differentiation into effector
CTLs requires the presentation of antigen epitopes on major histocom-
patibility complex class I (MHC-I) molecules, which usually present en-
dogenously derived peptide epitopes [12]. However, specialized DC
subsets are capable of processing antigens and presenting epitopes
from exogenously derived peptides and proteins on MHC-I via a process
referred to as cross-presentation [ 12-14]. It is well established that both
lymph node (LN)-resident CD8a* DCs and epithelium-resident
CD103" DCs play a role in cross-presentation of protein antigens to
CD8™ T cells. The CD8at and the CD103™ DCs are developmentally re-
lated [15], but there are conflicting data in the literature with respect to
whether both subsets are capable of cross-presenting antigens in the
dLNs [16,17], or if one of the subsets is the predominant inducer of
CD8* T-cell responses [18,19]. The site of pathogen infection may likely
have an influence on this [17,19,20]. In mice, the LN-resident CD8a™
DCs effectively cross-present antigens derived from particles or cell de-
bris capable of self-drainage to the LNs [21,22], and depletion of the
(D8« DC population has been shown to abrogate CD8™ T-cell re-
sponses in mice [23]. On the other hand, after migration to the LNs,
the CD103 " DCs have been proposed to either cross-present exogenous
antigen or pass it on to CD8a™ DCs for cross-presentation [14,21].

Self-drainage of vaccines from the site of injection (SOI) to the
draining LNs (dLNs) is hypothesized to be the main requirement for
targeting the LN-resident CD8at DCs [24]. However, targeting of
CD103* DCs at the SOI might also play a role for the induction of
(D8 T-cell responses. In the present study we show that the drainage
of a subunit vaccine composed of the model antigen ovalbumin (OVA)
surface-adsorbed to CAF09 following i.p. immunization far exceeds
that of the drainage measured after i.m. immunization. The result is in-
creased activation of DCs and induction of significantly stronger CD8 ™
T-cell responses.

2. Materials and methods
2.1. Materials

DDA (Clauson-Kaas A/S, Farum, Denmark), the synthetic analogue of
the mycobacterial lipid MMG, also referred to as MMG-1 [25], poly(I:C)

(Sigma-Aldrich, St. Louis, MO, USA) and endograde chicken egg ovalbu-
min (OVA) (Hyglos GmbH, Bernried am Starnberger See, Germany)

were used for the preparation of the vaccine. All other chemicals were
obtained commercially at analytical grade. Tris buffer (10 mM, pH 7.4)
was used throughout the studies.

2.2. Preparation and physicochemical characterization of the vaccine
formulations

The liposomes were prepared by using the thin film method com-
bined with high shear mixing, and characterized with respect to the av-
erage intensity-weighted hydrodynamic diameter (z-average),
polydispersity index (PDI) and zeta-potential (Laser-doppler electro-
phoresis) essentially as described by Korsholm et al. [8]. The final con-
centration of CAF09 was 2.5/0.5/0.5 mg/ml DDA/MMG;/poly(I:C). In
addition, a control dispersion was prepared consisting of DDA/MMG at
2.5/0.5 mg/ml, referred to as CAFO4. CAF04 has been shown to induce
mixed Th1/Th17 T-cell responses [25]. The degree of adsorption of
OVA to CAF09 was determined by mixing different amounts of OVA in
Tris buffer (0.10-1.5 mg/ml final concentration) with equal volumes
of CAF09, and the mixtures were left to equilibrate for 30 min at room
temperature (rt) followed by ultracentrifugation at 135,700 x g for
30 min. The OVA concentration in the supernatant was determined by
using the bicinchoninic acid assay (BCA) analysis (Thermo Scientific,
Waltham, MA, USA) according to the manufacturer's recommendations.
The amount of OVA adsorbed to CAF09 was calculated as the difference
between the added amount of OVA and the amount recovered in the su-
pernatant. The morphology of CAF09 was determined by cryo-transmis-
sion electron microscopy (cryo-TEM) using a Philips CM100 BioTWIN
electron microscope (Philips, Eindhoven, The Netherlands) equipped
with a side-mounted Olympus Veleta camera (Olympus Soft Imaging
Solutions GmbH, Miinster, Germany) essentially as described elsewhere
[10]. The gel-to-liquid crystalline phase transition temperature (Ty,) of
the undiluted liposomal dispersions was determined by using differen-
tial scanning calorimetry (DSC). Thermograms were recorded using a
puDSC3evo (Setaram, Caluire, France) heating 0.8 g samples from 30 °C
to 60 °C at 0.5 °C/min with Tris buffer as the reference solution.

2.3. Immunization of mice for immunological studies

All animal experiments were conducted in accordance with the na-
tional Danish guidelines for animal experiments as approved by the
Danish Council for Animal Experiments and in accordance with EU di-
rective 2010/63/EU for animal experiments. All efforts were made to en-
sure maximum comfort for the animals. Female, 6-8 week old C57BL/6
mice were purchased from Harlan (Horst, The Netherlands). Mice (4-8/
group) were immunized s.c. or i.p. with a dose of 10 pg unadjuvanted
OVA or OVA adjuvanted with CAF09 at a dose of 250/50/50 pg DDA/
MMG/poly(I:C), all in a dose-volume of 200 pl in isotonic, 9% (w/v) tre-
halose Tris buffer. Mice received three immunizations with two-week
intervals, and the immune responses were evaluated eight days after
the final immunization. The studies were repeated twice.

2.4. Antigen-specific CD8™ T-cell responses

Blood lymphocytes were separated by centrifugation using
Lympholyte (Cedarlane, Burlington, Canada) at 900 x g for 20 min,
followed by two washes in phosphate-buffered saline (PBS). In a V-bot-
tomed 96-well plate, 1 x 10° lymphocytes were stained with antibody
panel 1 (Supplementary data, Table S1). The data was acquired using
a FACSCanto (BD, Franklin Lakes, NJ, USA) followed by analysis using
the Flow]Jo v10 software (Tree Star Inc., Ashland, OR, USA).

2.5. Preparation of radiolabelled CAF09 and OVA
125]_.0VA was prepared by mixing OVA and 3 MBg/mg OVA Na'!2’]

(Perkin Elmer, London, UK) in an lodo-Gen pre-coated tube (Pierce Bio-
technology, Rockford, IL, USA) and incubating for 1 h at rt. with
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intermittent mixing. Unincorporated Na'2’ was removed by gel filtra-
tion using a G-75 Sephadex chromatography column (GE Healthcare,
Amersham, UK) with Tris elution buffer. Aliquots were collected and
quantified for the protein content by BCA analysis according to the
manufacturer's protocol. The '2°[ content was quantified by gamma
counting using a Cobra CPM Auto Gamma-counter (Perkin Elmer, Lon-
don, UK), and aliquots containing both protein and 21 were pooled
and subsequently used in the experiments. >2P-poly(I:C) was prepared
by dephosphorylation of poly(I:C) with FastAP thermosensitive alkaline
phosphatase (Thermo Fisher Scientific, Hempstead, UK) and subse-
quent phosphorylation using y->P-ATP and T4 polynucleotide kinase
(Thermo Fisher Scientific) according to the manufacturer's specifica-
tions. Unreacted 32P-ATP was removed using illustra ProbeQuant G-
50 pcolumns (GE Healthcare). The CAF09 liposomes were radiolabelled
by mixing DDA and MMG dissolved in CHCl; with trace amounts of >H-
cholesterol (Perkin Elmer), and the liposome dispersions were prepared
as described above. Poly(I:C) mixed with trace amounts of >2P-labelled
poly(I:C) was added as described above. Un-labelled OVA with 20% (w/
w) 12°I-OVA was added 30 min prior to immunization and adsorbed
onto the liposome surface, facilitated by intermittent vortexing.

2.6. Biodistribution assessed by using radioactively labelled vaccine
components

Biodistribution studies were conducted in accordance with the EU
directive 2010/63/EU for animal experiments. Female, 6-8 week old
BALB/c mice were immunized with unadjuvanted OVA or OVA adsorbed
to CAFQ9, either i.p. or i.m. using a final dose of 250/50/50/20 pug DDA/
MMG/poly(1:C)/OVA and 100/12/100 kBq/dose >H/>?P/'?°1 in a total
volume of 200 pl or 50 pl, respectively. The studies were repeated
twice. At 6 h after the immunization, the mice were euthanized and
the dLNs [the mediastinal lymph node (MLN) and the tracheobronchial
lymph node (TLN) upon i.p. immunization and the popliteal lymph
node (PLN) for i.m. immunization, respectively], the spleen and the tis-
sue surrounding the SOI were removed. The organs were dissolved in
Solvable (Perkin Elmer) for 2 h with shaking at 60 °C, and the '2°I con-
tent was analyzed by using a Cobra CPM Auto Gamma-counter (Perkin
Elmer). Subsequently, the samples were bleached with H,0, for 15 min
at 60 °C followed by addition of Ultima Gold (Perkin Elmer), and the >H
and 3P contents were quantified using a 1600TR Liquid Scintillation
Counter (Perkin Elmer). Samples of the total administered dose were
counted for reference purposes.

2.7. Preparation of fluorescently labelled liposomes

Fluorescently labelled liposomes were prepared as described above
with the fluorescent label 3,3’-dioctadecyloxacarbocyanine perchlorate
(DiO, Thermo Scientific, Waltham, MA, USA). The final dose was 250/50/
50/0.002 pg DDA/MMG/poly(1:C)/DiO in 200 pl (i.p. immunization) or
50 pl (i.m. immunization) isotonic, 9% (w/v) trehalose Tris buffer and
20 pg/dose OVA-AlexaFluor (AF) 647 (Thermo Scientific).

2.8. Biodistribution assessed by fluorescent labelling of the vaccine
components

Female, 6-8 week-old C57BL/6 mice from Harlan were immunized
either i.m. or i.p. with either unadjuvanted OVA-AF 647 or OVA-AF
647 adsorbed to CAF09-DiO. A naive group was also included as a neg-
ative control. The studies were repeated at least twice. Mice were eutha-
nized 1, 6, 24, or 48 h after the immunizations, and the dLNs [the TLN
and the MLN for i.p. immunization, and the inguinal lymph node (ILN)
upon i.m. immunization] and the spleens were removed. Single cell sus-
pensions of splenocytes were obtained by passing the spleens through a
nylon-mesh cell-strainer. The LNs were treated with Liberase TL (Roche,
Hvidovre, Denmark) to liberate the APCs from the LN collagen structure.
Each LN was treated with 1.5 ml RPMI 1640 supplemented as described

elsewhere [10] containing 3 pug DNAse I and 30 pg Liberase. After 15 min
incubation at 37 °C the LNs were passed through a nylon-mesh cell-
strainer, treated with 150 pl 100 mM EDTA for 3 min, and washed in
ice-cold PBS. Hereafter, the LNs were treated as the spleens. For each
spleen or LN 1 x 10° cells, or everything if the sample contained fewer
cells, were transferred to a 96-well, V-bottomed plate and treated
with Fc-block followed by fluorescent staining with antibody panel 2
(Supplementary data, Table S2). The data was acquired using a
FACSCanto followed by analysis using the Flow]o v10 software.

2.9. Activation of DCs and T cells following immunization

The study design was comparable to the design of the
biodistribution studies of the fluorescently labelled vaccines. Mice
were immunized i.p. with unlabeled vaccines, and the lymphoid organs
were analyzed at 1, 6, 24, 48 and 72 h. Single cell suspensions were
stained with antibody panel 3 (Supplementary data, Table S3) to assess
DC activation. In addition, activation of DCs following i.p. immunization
with CAF04 and CAF09 was analyzed with antibody panel 4 (Supple-
mentary data, Table 4). T-cell activation was assessed with antibody
panel 5 (Supplementary data, Table 5). The data was acquired using a
FACSCanto or a FACSFortessa followed by analysis using the Flow]o
v10 software.

2.10. Statistics

Statistical analysis of the in vivo studies was performed using one-
way or two-way ANOVA at a 0.05 significance level followed by Tukey's
multiple comparisons test using Prism v. 6.05 (GraphPad Software, La
Jolla, CA, USA).

3. Results

3.1. Preparation and physicochemical characterization of the CAF09-
adjuvanted vaccine formulation

The CAF09 adjuvant was prepared by using the thin film method
combined with high shear mixing, as previously described [8]. The
resulting multilamellar liposomes (Fig. 1a) had an average hydrody-
namic diameter of 311 + 108 nm (Fig. 1b), a PDI of 0.18 + 0.08 (Fig.
1b), and a zeta-potential of +48 + 2 mV (n = 3), which are well in ac-
cordance with previously reported values for CAF09 and CAF05 [8,10].
The Ty, was 42.0 4 0.3 °C (Fig. 1c), with membranes in the gel state at
normal human body temperature, as observed for CAF05 [10], while
DDA:MMG-liposomes without poly(I:C) (CAF04) had a Ty, of 41.6 +
0.1 °C (Fig. 1c) as previously reported [25]. The model antigen OVA
was 100% adsorbed to the surface of CAF09 (results not shown). The iso-
electric point (pl) of OVA is approx. 4.5 [26], which suggests that attrac-
tive electrostatic interaction is an important adsorption mechanism of
the net anionic protein to the cationic CAF09 liposomes, as observed
for CAFO1 [26]. CAFO1 is liposomes comprised of DDA and TDB [27].
The hydrodynamic diameter and the PDI of CAF09 was significantly in-
creased following OVA adsorption (Fig. 1b), probably due to flocculation
of the dispersion upon addition of OVA. This is in contrast to adsorption
of OVA to CAF01, where minimal flocculation was observed in the same
dose range [26].

3.2. Lp. immunization with CAF09-adjuvanted OVA induces strong antigen-
specific CD8™ T-cell responses in vivo

I.p. immunization was compared to the s.c. administration route. Ei-
ther unadjuvanted (unadj.) OVA (10 pg/dose) or OVA adjuvanted with
CAF09 (OVA + CAF09) was administered. Immunization with
OVA + CAFO09 via the i.p. route resulted in induction of very strong
CD8™" T-cell responses (Fig. 2a), whereas the responses were very
weak when OVA + CAF09 was administered s.c. These results are in
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accordance with results from previous studies using CAFO9 or CAF05 as
adjuvants [8-10], which also showed that neither the Th1/Th17-induc-
ing adjuvant CAFO1 nor poly(I:C) alone induce CD8™" T-cell responses
[10]. Robust CD8™ T-cell responses were achieved upon vaccination
with a number of different recombinant synthetic peptide and protein
antigens surface-adsorbed to CAF09; the M. tuberculosis antigens
TB10.3-P1 and H56, the human papilloma virus antigen HPV16-E7,
and the HIV antigen Gag p24 [8]. Inmunization with OVA + CAF09
did not stimulate CD4 " T-cell responses (results not shown), which
might be explained by the weak MHC-II epitopes of OVA, as CAF09
has previously been reported to induce CD4" T-cell responses with
other antigens [8].

These data thus confirm that the CD8* T-cell responses induced by
CAF09 are largely dependent on the administration route. We therefore
hypothesized that this difference may be a consequence of distinct
biodistribution patterns of the vaccine administered via different routes.
Following s.c. or i.m. immunization, the vaccine is expected to form a
depot at the SOI as a result of the net positive surface charge and/or
the particle size of the liposomes, as reported for CAFO1 [28,29]. Parti-
cles with a positive surface charge tend to aggregate in the interstitial
fluid [28], and the formation of larger aggregates prevents their self-
drainage via the relatively narrow lymphatic vessels to the local LNs
[30]. In contrast, self-drainage of OVA + CAFO09 to the local LNs is ex-
pected following i.p. immunization [31]. To confirm this, we performed
a biodistribution study for a quantitative pharmacokinetic evaluation.
The liposomes were labelled with trace amounts of H-cholesterol in-
corporated in the membrane bilayer, 32P-labelled poly(I:C) and ?°I-la-
belled OVA. Mice were immunized i.p. or i.m. with either unadj. OVA
or OVA + CAF09. The radioactivity in the dLNs was determined at 6 h

as the percentage of the administered dose. . m. immunization was cho-
sen for the biodistribution studies to enable the recovery of the SOI and
evaluate the depot-forming ability of the adjuvant. Data showed that
the adjuvant, but not the antigen, remained at the SOI 6 h after i.m. im-
munization with a recovery of approx. 80% of the initial liposome dose
(Fig. 2b). In contrast, the vaccine was rapidly cleared following i.p. im-
munization with approx. 2% of the administered liposome dose recov-
ered in the peritoneum after 6 h (Fig. 2b).

In accordance with the hypothesis, only a small fraction of the ad-
ministered liposome dose was recovered in the spleen (approx. 0.05%)
and the dLN (approx. 0.05%) following i.m. immunization (Fig. 2c and
d). In contrast, approx. 44 and 7 times higher levels of the adjuvant, re-
spectively, were recovered in the spleen and the TLN following i.p. im-
munization (Fig. 2c and d). The vaccine did also drain to the MLN
following i.p. immunization (data not shown since the drainage kinetics
to the MLN was similar to the drainage kinetics to the TLN). These re-
sults support the hypothesis that the adjuvant forms a depot at the
SOI following i.m. immunization, but not upon i.p. immunization.

3.3. OVA co-administered with CAF09 is preferentially associated with DCs/
monocytes

DCs are expected to be the main cell type responsible for driving the
induction of CD8™" T-cell responses [11,14]. Therefore, it was of particu-
lar interest to analyze the association of this APC subset with the vaccine
components. Mice were immunized once i.m. or i.p. with fluorescently
labelled OVA and CAF09. At 6 h post immunization, single cell suspen-
sions from the spleen and the dLNs were stained with a simplified anti-
body panel directed against major APC markers; DC/monocytes
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(CD11c™*, F4/80, CD197), B cells (CD19%, CD11¢ ™, F4/80~) and mac-
rophages (Mds; F4/80", CD11¢—, CD197) (Supplementary data, Table
S2). Boolean gating was chosen for the separation of the individual
APC subsets to weight the different subsets equally during analysis.
Within each subset, vaccine association was defined as OVA*' or
OVA™/CAF09™ cells (Supplementary data, Fig. S2).

The total fraction of each APC subset in the spleen and dLNs, respec-
tively (Fig. 3a), as well as the total number of vaccine-associated cells,
were assessed (Fig. 3b). The higher dose-fraction of the adjuvant recov-
ered following i.p. immunization, as compared to i.m. immunization, in
the biodistribution studies (Fig. 2b and c) correlated well with a higher
number of OVA™/CAF09™ cells in both the dLNs and the spleen (Fig. 3b).
The B cell population was the most numerous APC subset in both the
spleen and the dLNs (Fig. 3a). However, this was not reflected in the
vaccine association pattern following i.p. immunization; OVA™/
CAF09" DCs/monocytes were more numerous than both B cells and
Mds (Fig. 3b, left). Furthermore, the mean fluorescence intensity
(MFI) values for the antigen (i.e. an estimation of the amount of
OVA associated to each cell), showed that significantly higher levels
of OVA were associated with DCs/monocytes than with B cells and
Mds. This confirms the biodistribution results (Fig. 2 ¢ and d),
since only insignificant numbers of OVA*/CAF09" APCs were mea-
sured in the dLN and the spleen 6 h after i.m. immunization (Fig.
3c) and the MFI levels of the APCs were low as compared to after
i.p. immunization (Fig. 3d).

3.4. CAF09 retains OVA in the draining lymph nodes and the spleen upon i.p.
administration

The association kinetics of OVA to DCs/monocytes in the dLNs were
subsequently evaluated for 48 h, with samples collected at 1, 6, 24 and
48 h (Fig. 4a). Unadj. OVA drained rapidly upon i.p. immunization, evi-
dent from the high association degree to DCs/monocytes (~26% OVA™
DCs/monocytes) 1 h post immunization with a steady decline over the
48 h study period. The profile for mice immunized i.p. with
OVA + CAF09 showed a delayed drainage, with the highest OVA associ-
ation to DCs/monocytes measured 6 h post immunization (Fig. 4a) and
with significantly (p < 0.001) elevated levels of OVA™ monocytes de-
tected for the remaining study period as compared to immunization
with unadj. OVA. Furthermore, the MFI values for the unadj. OVA
group were significantly lower than the values for the OVA + CAF09
group (Fig. 4b). The observed OVA association to DCs/monocytes and
MFI peaks coincided 6 h post immunization, indicating that the drainage
of the majority of the vaccine took place within the first 6 h following i.p.
administration. The association kinetics between OVA and DCs/mono-
cytes in the spleen was comparable to that observed in the dLNs follow-
ing i.p. administration (Fig. 4c). Only very low levels of OVA™ DCs/
monocytes were measured in the dLNs and the spleen within the 48 h
study period following i.m. immunization with both unadj. OVA and
OVA + CAFO09. These observations are in accordance with results ob-
tained with the closely related adjuvant CAFO1, which has been
shown to form a depot at the SOI, with only minute amounts of
vaccine™ DCs detected in the dLNs [29].

3.5. Activation of DCs is dependent on the presence of the adjuvant in the
lymphoid organs

We further characterized the immunostimulatory capacity of CAF09
by assessing the activation of DCs (CD11c* MHC-II") in the dLNs via
their expression of the maturation marker CD86. L.m. and i.p. immuniza-
tion with unadj. OVA did not activate DCs, as compared to unimmunized
mice, and approx. 10% of the DCs were CD86™ in both groups at 24 h
(Fig. 4d). In contrast, i.p. immunization with OVA + CAF09 resulted in
a significant increase in the frequency of CD86™" DCs, and approx. 70%
of the total DC population expressed CD86 at 24 h (p < 0.001) (Fig.
4d). The highest measured level of DC activation was at 24 h and 48 h
post i.p. immunization, and the activation was thus delayed, as com-
pared to the observed highest level of OVA™/CAF09 " DCs/monocytes
(Fig. 4a). The ability of CAF09 to induce CD8* T-cell responses thus cor-
relates well with its propensity to drain rapidly to the LNs.
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i.m. immunization with OVA + CAF09 6 h after immunization. Data represent mean values + SEM (n = 9-13). c) MFI values for OVA as represented in b). Data represent mean

values 4 SEM (n = 2-10). **p < 0.01, ****p < 0.0001.

3.6. Only i.p. immunization with OVA + CAF09 induces CD86™ DCs in the
spleen

The investigations described above do not explain why poly(I:C) is
required for the induction of CD8* T-cell responses with CAF09 [8],
since the draining kinetics observed for CAF09-adjuvanted vaccines fol-
lowing i.p. and i.m. immunization are largely expected to be dependent
on the physicochemical properties of the delivery system. We therefore
compared the ability of CAF09 to activate DCs with its poly(I:C)-free
counterpart CAF04 [32].

L.p. immunization with OVA 4 CAF04 and OVA + CAF09 both
resulted in increased frequencies of CD86™ DCs of the total DC pop-
ulation in the dLNs at 24 and 48 h, as compared to OVA alone
(p<0.001) (Fig. 5a). At 24 h the frequency of activated DCs was sig-
nificantly higher (p <0.01) for the OVA + CAF09 immunized group
(63% CD86™ DCs) than for the OVA + CAF04 immunized group
(49% CD86™ DCs) (Fig. 5a). In the spleen, only immunization with
CAFOQ9 activated the DCs (p < 0.0001), though at a lower frequency
than in the dLNs (15% CD86™ DCs at 24 h) (Fig. 5b). Division of the
CD86™ DCs in the dLN into subsets according to their expression of
CD8« and CD103 revealed that the phenotype distribution of the
activated DCs resembled that of the total DC population at 24 and
48 h (Fig. 5¢). However, the CD8« expression in the spleen was
more prevalent on the activated CD86™ DCs (~30%) than on the
total DC population (~20%) (Fig. 5¢). As expected, no CD103* DCs
were observed in the spleen, as this organ has no direct connection
to the lymph ducts (Fig. 5¢). The highest number of the proposed
migratory CD86% CD8«~/CD103" DCs was measured at 48 h post
immunization in the dLNs for the OVA + CAF09 immunized mice,
whereas the highest number of CD86" CD8a*/CD103~ DCs was
measured at 24 h (Fig. 5d top). The measured maximum of the
amount of CD8«~/CD103 ™" DCs was delayed by 24 h, as compared
to the other DC subsets in the dLNs of OVA + CAF09 immunized
mice. This suggests that this particular subset migrates from the

peritoneum in response to the local activation by CAF09. An influx
of CD86" CD8a /CD103%* DCs was also observed in the
OVA + CAF04 immunized group, though the effect was less pro-
nounced in relation to the other DC subsets, as compared to the
OVA + CAFO09 group (Fig. 5d bottom).

Poly(I:C) is recognized by TLR-3, which mediates the induction of
CD8™ T-cell responses upon activation [33]. In this study, TLR-3 was
expressed by approx. 80% of the CD103™ DCs, but only on approx. 20%
of the CD8a™ DCs (Fig. 5e). Within the TLR-3" DC population there
was no significant difference in the expression level (MFI) between
the CD8a* and the CD103 ™" subsets (results not shown). Furthermore,
no significant difference in the expression (frequency and MFI), was ob-
served between mice immunized with OVA, OVA + CAF04 or
OVA + CAF09, respectively, suggesting that the expression of TLR-3 is
subset-, rather than activation-dependent (results not shown).

3.7. Unspecific activation of T cells in the spleen is highest following
OVA + CAF09 immunization

Immunization with OVA + CAF04 and OVA + CAFO09, respectively,
induced the expression of CD69 on T cells in the dLNs and spleen with
the highest level measured at 24 h post immunization (Fig. 6). The
expression of CD69 by T cells is not necessarily antigen specific, be-
cause other noncognate stimuli can induce CD69 [34,35]. When
CD69 is expressed by T cells, migration out of the lymphoid tissue
is prevented due to downregulation of the sphingosine 1-
phosophate receptor-1 [34]. No significant differences in the CD69
expression levels were observed between OVA + CAF04 and
OVA + CAFO09 in the dLNs (Fig. 6a-b). However, immunization with
OVA + CAFO09 resulted in a significantly stronger activation of both
CD4™" and CD8™" T-cells in the spleen (p < 0.0001) (Fig. 6¢-d), sug-
gesting that poly(I:C) is partly responsible for the unspecific T cell
activation in the spleen.
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Fig. 4. Qualitative association of fluorescently labelled vaccine components with DCs/monocytes was evaluated as described in Supplementary data, Fig. S2. a) Mice were immunized with
unadj. OVA or OVA + CAF09, respectively, either i.p. (left) or i.m. (right), and the percentage of OVA™ monocytes in the dLNs was evaluated. *p <0.05, **p < 0.01, ***p £0.001, ****p < 0.0001
for each time point. Data points represent mean 4+ SEM (n = 8-12). b) MFl values determined for OVA* monocytes in the dLNs. *p < 0.05, ***p < 0.001, within each time point. Data points
represent mean + SEM (n = 6-12). ¢) The percentage of OVA™ monocytes in the spleen following i.p. (left) and i.m. (right) immunization. *p < 0.05, **p < 0.01 for each time point. Data
points represent mean + SEM (n = 8-12).d) Maturation of DCs (CD86™) in the dLNs as response to immunization with unadj. OVA and OVA + CAF09, respectively, either i.p. (left) or i.m.
(right). **p < 0.01, ****p < 0.0001, of the OVA + CAF09 group compared to all other groups for that time point. No markers: No significance. Data points represent mean + SEM (n = 4). The
data are also presented in Fig. S5 as the number of cells.
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4. Discussion

In the present study, we confirm that the stimulation of a CD8™* T-cell
response upon CAF09-adjuvanted immunization is highly dependent on
the administration route. We furthermore show that i.p. immunization
results in a fast drainage to the local LNs, whereas i.m. immunization
leads to the formation of a depot at the SOI, which might prevent the
self-drainage of the vaccine to the dLNs and the spleen at a sufficient
level to pass the threshold for CD8* T-cell activation.

The recovery of a major fraction of the vaccine components in the
dLNs and the spleen following i.p. immunization correlated closely
with a high frequency of vaccine™ APCs in the respective organs (Fig.
3). Furthermore, adsorption of OVA to CAF09 caused a significant reten-
tion of the antigen in the dLNs and the spleen, as compared to adminis-
tration of unadj. OVA. The influx of a large dose fraction of OVA + CAF09
in the draining lymphoid organs and the high prevalence of vaccine™
APCs thus correlate with the ability of CAF09 to induce a strong CD8™
T-cell response upon i.p. administration.

This suggests that i.p. immunization facilitate the concomitant deliv-
ery of the OVA antigen and the CAF09 adjuvant to professional cross-
presenting CD8a™ DCs in the lymphoid tissues. In agreement with pre-
vious studies with cationic liposomes [29,36], we observed that OVA
adsorbed to CAF09 was preferentially associated with DCs/monocytes,
as compared to B cells and Mds, both with respect to the total number
of cells and the amount of OVA delivered to each cell (Figs. 3b-c and 4a-
¢). Furthermore, CAF09 facilitated the activation of DCs within the first
24 h after i.p. but not i.m. immunization.

In accordance with the results of the present study, other
biodistribution studies of vaccine adjuvants upon immunization of
mice via different administration routes generally show that there is a
preferential uptake of the antigen and/or the vaccine adjuvant by DCs
and macrophages residing in the dLNs [36-38]. One example are cation-
ic liposome-antigen-nucleic acid complexes that are mainly associated
with CD11b™ cells in the dLN 4 h after i.p. immunization [36]. Similarly,

s.c. immunization with OVA-conjugated nanoparticles in the footpad
and the non-conjugated nanoparticles in the tail showed a preferential
uptake of OVA and the nanoparticles by DCs in the dLNs [37,38]. L.p. in-
jection of the dye Indian ink showed that the MLN is the main dLN as
compared to the jejunal, gastric and maxillary LNs; the spleen and the
liver were also identified as target organs [39]. In accordance with
this, Alum was found to have the strongest adjuvant activity in the
MLN following i.p. immunization, and i.p. immunization with Alum re-
sulted in recruitment of innate immune cells to the peritoneum [40].

The distinct differences previously observed in the capability of
CAF04 and CAF09 to induce CD8 ™" T-cell responses [8] could not be read-
ily explained by the activation patterns of DCs in the dLNs, which were
very similar for the two adjuvants. In contrast, we observed that only
CAF09 was capable of activating DCs in the spleen, suggesting that
poly(I:C) plays a role in the activation of DCs in the spleen. Interestingly,
both CAF04 and CAF09 facilitated an unspecific activation (CD69 ex-
pression) of both CD4" and CD8™ T cells in the dLNs and the spleen.
This activation coincided with the activation of CD8a™ DCs peaking at
24 h, whereas the influx of CD103* DCs was observed at 48 h, when
the unspecific activation of the T cells had declined. Even though
CAF04 did not induce significant DC activation in the spleen, it still facil-
itated unspecific activation of T cells, although this activation was signif-
icantly lower than the activation induced by CAF09. These results
indicate that the self-draining OVA + CAF09 and the activation of
CD8a™ DCs in the spleen may play important roles for the induction
of CD8* T-cell responses. On the other hand, the migratory CD103*
DCs may contribute to sustaining the CD8™ T-cell response in the
dLNs in the CAFO9 immunized mice (Fig. 7).

The differences between CAFO4 and CAFO09 in their ability to induce
CD8™ T-cell responses might be explained by the pro-inflammatory ef-
fects of the poly(I:C) component of CAF09. The cross-presentation of an-
tigen on MHC-I is not sufficient for the induction of CD8" T-cell
responses. Cross-licensing, which activates the CD8 ™" T-cells, does also
require type I IFN signaling, which is induced by activation of e.g. TLR-
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Fig. 6. Activation of T cells in the dLNs and the spleen following i.p. immunization with unadj. OVA, OVA + CAF04, and OVA + CAF09. a) Fraction of CD69" CD4™" T-cells in the dLNs
following immunization. Data represent mean + SEM (n = 3-4). ****p < 0.0001, of the unadj. OVA group compared to all other groups within that time point. No marker: No
significance. b) Fraction of CD69*, CD8™ T cells in the dLNs following immunization. Data represent mean + SEM (n = 3-4). ****p < 0.001, of the OVA + CAF09 group, as compared to
all other groups at 6 h, and ****p < 0.0001, of the unadj. OVA group compared to all other groups within that time point. No marker: No significance. c) Fractions of CD69" CD4™" T-
cells in the spleen following immunization. Data represent mean + SEM (n = 3-4). *#¥#p <0.0001, of the OVA + CAF04 group, as compared to unadj. OVA at 24 h, ****p < 0.0001, of
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Fractions of CD69™ CD8™ T-cells in the spleen following immunization. Data represent mean + SEM (n = 3-4). Left: *##p <0.0001, of the OVA + CAF04 group, as compared to
unadj. OVA at 24 h, ****p < 0.0001, of the OVA + CAF09 group, as compared to all other groups at 24 h. The gating strategies used for the flow cytometric analyses are shown in
Supplementary data, Fig. S4. The data are also shown in Fig. S7, where the number of cells are presented.

3[41]. However, the further quantification of the induction of type I I[FNs The liposome-based CAF09 is a potent new adjuvant with the ability
in response to immunization with the adjuvants was considered beyond to induce strong CD8™ T-cell responses against several peptide- and
the scope of the present study. protein-based antigens [8]. However, it has become evident that
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Fig. 7. The hypothesis is that CAF09 can self-drain to the dLNs upon i.p. immunization enabling direct interaction with CD8«™ DCs in the dLNs, which have the ability to cross-present
antigen. Simultaneously, CD103 " DCs at the SOI take up the vaccine particles by phagocytosis and subsequently migrate to the dLNs.
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efficacious induction of CD8™ T cells in particular with CAF09 and relat-
ed adjuvants is highly dependent on the administration route, and that
s.C. or i.m. immunizations do not facilitate CD8" T-cell induction,
whereas particularly airway and i.p. immunization do [8,42]. The choice
of administration route thus seems to play a pivotal role for the quality
and the magnitude of the CD8 " T-cell response. Most particulate vac-
cine delivery systems, including different types of nanoparticles, lipo-
somes, and VLPs, which have been shown to stimulate CD8 ™" T-cell
responses through cross-presentation, were also administered via the
i.p. route [10,36,43-45], or via the nasal routes [44], by footpad [37,38,
46,47], or intradermal administration [48].

Engineering the physicochemical characteristics of the adjuvant par-
ticles might be used to optimize the targeting of LN-resident DCs by en-
hancing the self-drainage from the SOI, e.g. by reduction of the particle
size and shielding of the net positive surface charge. Thorough knowl-
edge of the biodistribution profile of the adjuvants following immuniza-
tion may thus facilitate a more rational design of novel adjuvants.

5. Conclusion

The results of the current studies show that optimal delivery to the
required immune cell subsets is necessary for the induction of a suffi-
cient immune response. When aiming at inducing CD8" T-cell re-
sponses, the delivery is further complicated because the target DCs are
located in the secondary lymphoid organs, which are difficult to target
via the conventional administration routes. However, some studies
have shown that it is in fact possible to design delivery systems that in-
duce CD8™ T-cell responses after s.c. or i.m. immunization [36,37,48,49].
These delivery systems were of different types (cationic liposomes, mi-
crospheres, and nanoparticles), particle size and surface charge, thus il-
lustrating that the specific characteristics required for the efficacious
induction of CD8* T-cell responses remain to be fully defined. There-
fore, care must be taken when designing adjuvants and vaccines
intended for the induction of CD8 " T-cell responses. Furthermore, alter-
native administration routes, such as the pulmonary, nasal, and intra-
dermal routes, may be suitable alternatives to the conventional
parenteral routes. Therefore, it is important to consider the engineering
of the delivery system (chemical composition and physicochemical
properties) in the context of the administration route at an early stage
of the development process when designing novel subunit vaccines.
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