
 

 

Some pages of this thesis may have been removed for copyright restrictions. 

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches 
copyright, (either yours or that of a third party) or any other law, including but not limited to 
those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, 
libel, then please read our Takedown policy and contact the service immediately 
(openaccess@aston.ac.uk) 

http://www.aston.ac.uk/library/additional-information-for/aston-authors/aston-research-explorer/takedown-policy/


- 1 - 

 

 

An investigation of primary human cell sources and clinical 

scaffolds for articular cartilage repair 

 

Doctor of Philosophy 

by 

Nupur Kohli 

Aston University 

September 2015 

 

©Nupur Kohli, 2015 

Nupur Kohli asserts her moral rights to be identified as the author of this thesis. 

This copy of the thesis has been supplied on condition that anyone who consults it is 

understood to recognise that its copyright rests with its author and that no quotation 

from the thesis and no information derived from it may be published without 

appropriate permission or acknowledgement. 

 

 



- 2 - 

 

Aston University 

An investigation of primary human cell sources and clinical 

scaffolds for articular cartilage repair 

Nupur Kohli                                                                          Doctor of Philosophy, 2015 

Thesis Summary 

Damage to articular cartilage of the knee can be debilitating because it lacks the 

capacity to repair itself and can progress to degenerative disorders such as 

osteoarthritis. The current gold standard for treating cartilage defects is autologous 

chondrocyte implantation (ACI). However, one of the major limitations of ACI is the 

use of chondrocytes, which dedifferentiate when grown in vitro and lose their 

phenotype. It is not clear whether the dedifferentiated chondrocytes can fully 

redifferentiate upon in vivo transplantation.  

Studies have suggested that undifferentiated mesenchymal stem or stromal cells 

(MSCs) from bone marrow (BM) and adipose tissue (AT) can undergo chondrogenic 

differentiation. Therefore, the main aim of this thesis was to examine BM and AT as a 

cell source for chondrogenesis using clinical scaffolds. Initially, freshly isolated cells 

were compared with culture expanded MSCs from BM and AT in Chondro-Gide®, 

Alpha Chondro Shield® and Hyalofast™. MSCs were shown to grow better in the 

three scaffolds compared to freshly isolated cells. BM MSCs in Chondro-Gide® were 

shown to have increased deposition of cartilage specific extracellular matrix (ECM) 

compared to AT MSCs. 

Further, this thesis has sought to examine whether CD271 selected MSCs from AT 

were more chondrogenic than MSCs selected on the basis of plastic adherence (PA). It 

was shown that CD271
+
MSCs may have superior chondrogenic properties in vitro and 

in vivo in terms of ECM deposition. The repair tissue seen after CD271
+
MSC 

transplantation combined with Alpha Chondro Shield® was also less vascularised than 

that seen after transplantation with PA MSCs in the same scaffold, suggesting anti-

angiogenic activity. Since articular cartilage is an avascular tissue, CD271
+
MSCs may 

be a better suited cell type compared to the PA MSCs. Hence, this study has increased 

the current understanding of how different cell-scaffold combinations may best be 

used to promote articular cartilage repair. 
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Chapter 1: Introduction 
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1.1 Definition, function and types of joints 

A joint is the location where two bones meet. Joints are the essential organs of the locomotion 

system in that they provide mechanical support and stability to body segments.  Structurally, 

the joints are classified into three different types based on the materials binding the bones 

together and the presence or absence of a cavity. These are: fibrous, cartilaginous and synovial 

joints (Figure 1.1). Functionally, the joints are classified into synarthroses, amphiarthroses and 

diarthroses joints, based on the extent of movement. Fibrous joints are held together by 

collagen fibres and are mostly synarthrotic, i.e. where the bones have very limited or no 

movement (the term “synarthroses” comes from Greek for fixed or immovable joints). An 

example of synarthroses or the fibrous joints are the junctions of bones in between the skull. 

Cartilaginous joints are the joints in which bones are connected by cartilage. Cartilaginous 

joints are amphiarthrotic as they allow greater movement between the bony surfaces than 

fibrous joints, e.g. those found between the two pubic bones or joints between two vertebral 

bodies of the spine. Both fibrous and cartilaginous joints lack a joint cavity. The synovial 

joints are diarthrodial joints, simply meaning “freely movable joints” and are very different 

from fibrous and cartilaginous joints in that they permit extensive motion of the opposing 

bones. Along with the knee, other examples of diarthrodial joints are those of the shoulder, 

hip, elbow and the ankle.  These are the only joints that contain a fluid filled joint cavity (Mow 

and Huiskes 2004). There are many different types of synovial joints depending on the shape 

of the articulating surfaces and the range of motion; these are ball-socket joints, condyloid 

joints, hinge joints, saddle joints, gliding joints and pivot joints (Ateshian and Eckstein 2004). 

In the following sections of this thesis, the knee synovial hinge joint will be described in more 

details. 
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Figure 0.1 Structural classification of joints 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Structural classification of joints. (a) A fibrous joint between the 

junction of bones in the skull, (b) a cartilaginous joint between two vertebral 

bodies of the spine, (c) a synovial joint of the knee. Image derived from cnx.org
1
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1.2 Structure and function of the synovial knee joint 

The knee is one of the largest joints in the human body formed between three bones, the thigh 

bone or femur, the shin bone or tibia and the patella. Another bone called the fibula sits just 

behind the tibia and only contacts this bone. The distal end of the femur looks like two convex 

processes known as condyles which meet the concave processes on the proximal end of the 

tibia.  This joint is also called the tibiofemoral joint as it’s the joint formed between the tibia 

and the femur. Anterior to the tibiofemoral joint is the patella where its smooth posterior 

surface faces the femur and forms the patellofemoral joint. The ends of the bones that come 

together to form the synovial joint are covered by a layer of connective tissue called articular 

or hyaline cartilage (Khan et al., 2007). The term hyaline, meaning “glass-like” represents the 

smooth appearance of the articular cartilage that helps in reducing friction during joint 

movement. In between the femur and tibia is a thick pad of fibrocartilage called the meniscus 

that acts as a shock absorber and helps to provide stability during joint movement. Like with 

all synovial joints, the knee joint is also encapsulated within a joint capsule consisting of a 

fibrous outer layer and a thin layer of synovial membrane that lines the joint capsule. The 

synovial membrane produces synovial fluid that fills the space in the joint cavity and acts as a 

lubricant to reduce friction. The synovial fluid, articular cartilage and the supporting bones 

form the diarthrodial joints that function together to provide smooth gliding almost friction 

free movements (Archer et al., 2003). In addition, the knee joint is encapsulated by collateral 

and cruciate ligaments. Collateral ligaments are extracapsular and restrict the sideways motion 

of the knee, whereas cruciate ligaments are intracapsular as they connect the femur and the 

tibia at the centre within the joint capsule and limit rotation and forward and backward motion 

of the tibia. Along with the collateral and cruciate ligaments, several other important structures 

provide stability to the knee and help cushion and protect the joint during movement. These 

include small pockets of synovial fluid, known as bursae, that surround the joint to reduce 

friction from the movement of tendons present in the joint, as well as the infrapatellar fat pads 
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that act as shock absorbers and help cushioning the knee from external impact (Figure 1.2) 

(Mow et al., 2004). 

The knee is a hinge joint and therefore it functions to provide the flexion and 

extension of the lower leg relative to the thigh. The anatomy of the bones and ligaments and 

the alignment of different structures of the knee joint limit the knee’s range of motion; 

however, the joint does allow for approximately 120 degrees of flexion. The knee hinge joint 

also allows for limited medial and lateral rotation when the knee is flexed, which distinguishes 

knee hinge joints from other hinge joints found in the body. The movements at the knee joint 

are vital for many day-to-day activities like walking, running, sitting and standing. The joint 

also ensures, during these movements, that the loads and bending moments acting along the 

long bones remain within acceptable physiological limits. Although these joints undergo an 

enormous range of loading conditions, the cartilage layer undergoes little wear and tear under 

normal situations. The knee joint functions effectively under the very high loads and for up to 

seven or eight decades. This movement and loading must demand effective lubrication to 

minimize friction and breakdown of articular cartilage. Wear of articular cartilage of the knee 

by biochemical or biomechanical means can lead to arthritis. Therefore, articular cartilage is 

one of the essential components in the effective functioning of human knee joint. (Mow et al., 

2004).  
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Figure 1.2. Sagittal section of synovial knee joint.  Anatomical structures of the 

synovial hinge joint formed between the two long bones of the knee and the accessory 

structures including bursa, fat pad and the ligaments. Image taken from cnx.org
2
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1.3 Cartilage 

 Cartilage is a highly specialized connective tissue that is composed of a single cell type called 

a chondrocyte which occupies only 5% of the tissue volume (Freyria & Mallein-Gerin 2012). 

The sparsely populated chondrocytes are embedded within a dense hydrated extracellular 

matrix (ECM). Depending on the biochemical composition and the molecular integrity of the 

ECM, there are three major type of cartilaginous tissues i.e., hyaline cartilage, elastic cartilage 

and fibrocartilage.  The surface of the synovial joints is covered with a special type of hyaline 

cartilage called the articular cartilage (Mow et al., 1992; Poole et al., 2001; Becerra et al., 

2010). Apart from the synovial joints, hyaline cartilage is also found in the larynx, the trachea, 

the nasal septum and the sternal end of the rib cage. The cartilage found in the ears, epiglottis 

and the eustachian tube is more flexible due the presence of elastic fibres and hence referred to 

as elastic cartilage. It generally appears pale white in colour and opaque in texture. 

Fibrocartilage on the other hand, contains layers of thick collagen fibres in its ECM and 

therefore, appears to be fibrous and relatively rough. They are found in two major sites in the 

human body, which are the annulus fibrosus in the intervertebral discs of the spine and the 

meniscus of the knee (Mow et al., 2004).  

1.3.1 Articular cartilage development 

The developmental stages of cartilage and other synovial joint structures are tightly 

synchronized (Archer et al., 2003; Khan et al., 2007). The cartilaginous skeleton arises from 

mesenchyme and is first recognised at about five weeks of gestational age (Glenister 1976). In 

the primitive mesenchyme, cells appear stellate, however during cartilage and joint 

development they condense and become rounded and their cytoplasm to nuclear ratio 

decreases. This condensation process is controlled by various factors including cell-adhesion 

molecules (CAMs) e.g., cadherins and N-CAMs and membrane receptors, such as CD44 

(Archer et al., 2003). This cell-condensation process results in the formation of pre-cartilage 

blastemata in which the blastema cells start secreting matrix molecules. As long as this 
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intercellular space/ matrix remains sufficiently pliable, the blastema continues to expand by 

the interstitial growth of cellular divisions. The cells at the periphery condense to form a 

bilaminar perichondrium whose outer layer forms a fibrous tissue while the inner layer 

contains the chondroblasts that are responsible for the appositional growth of the developing 

cartilage anlage (Glenister 1976; Koyama et al., 2008). The chondroblasts undergo further 

divisions and form chondrocytes that secrete ECM molecules intrinsic to the cartilage type and 

express cartilage specific genes. Then, in a remodelling phase, chondrocytes undergo 

hypertrophy and express angiogenic factors that encourage vascularisation. Here, the mid-

shaft or the diaphysis of the long bones develops in a process called endochondral ossification 

at the primary ossification centre. The cartilaginous epiphysis appears at the ends of diaphysis 

just before or after birth. Postnatally, chondrocytes in the epiphysis undergo hypertrophy and 

the matrix next to the hypertrophic chondrocytes gets invaded by vessels of the cartilage 

canals and forms the secondary ossification centre. With the further growth of the secondary 

ossification centre, the surrounding epiphyseal cartilage gets thinner (Blumer et al., 2008; 

Caldwell & Wang 2015). Traditionally, it was believed that articular cartilage represents a 

remnant of epiphyseal cartilage that does not undergo endochondral ossification (Archer et al., 

1994). However, that idea was constantly challenged and studies now suggest that a special 

cell population called interzone cells may be responsible for the formation of different joint 

structures (Archer et al., 2003; De Bari et al., 2010). In the developing cartilage anlagen of the 

long bones, at the prospective joint site, the cells lose their rounded shapes and become 

elongated and express growth and differentiation factor 5 or Gdf5. This region of elongated 

cells sandwiched by cartilage anlagen is called interzone which separates into two outer layers 

and an inner intermediate layer (Archer et al., 2003; Khan et al., 2007; Iwamoto et al., 2013). 

The cells flanking the interzone dorsally and ventrally activate the expression of TGFβ type II 

receptor (Tgfbr2), while the anlagen-bound chondrocytes in the intermediate layer start 

expressing Matrillin-1 (Matn1) (Hyde et al., 2007; Decker et al., 2014).  The chondrocytes in 

the flanking outer interzone region lose collagen type II and up-regulate the expression of 

hypertrophyic markers such as collagen type X and initiate the expression of matrix 
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degradative enzymes. Subsequently, this region turns into bone marrow cavity with the supply 

of blood vessels and bone forming osteoblasts  (Decker et al., 2014). Cells from the 

intermediate layer of the interzone appear later in the cartilage epiphysis. The Gdf5 positive, 

Matn1 positive cells give rise to non-articular chondrocytes e.g., growth plate chondrocytes 

while the  Gdf5 positive, Matn1 negative cells adjacent to the cartilage anlagen differentiate 

into articular chondrocytes (Hyde et al., 2007; Decker et al., 2014). A schematic 

representation of this process is provided in Figure 1.3. 
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Figure 0.1 Development of cartilage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Development of cartilage. A schematic representation of the stages of 

development of cartilage. Following mesenchymal condensation, an interzone is formed, 

which consists of Gdf5 positive cells. The interzone then divides into three layers, two 

outer layers and an inner intermediate layer during early stages of embryogenesis. Cells 

within the intermediate layer that are Gdf5,Matn1 negative form articular cartilage and 

cells that are Gdf5,Matn1 positive form other joint structures such as synovial lining and 

ligaments. Cells in the outer layer undergo hypertrophy and form bone. Abbreviations: 

Gdf5, growth and differentiation factor 5; Matn1, Matrilin-1. Image adpated from De Bari 

et al., 2010 and Caldwell et al., 2015.  
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1.3.2 Articular cartilage composition and structure  

The articular cartilage lines the end of the long bones of the knee. It is a tissue with low 

friction and high capacity to bear load and therefore, is essential to permitting smooth 

movement of one bone against another (Athanasiou et al., 2010). It is composed of 

chondrocytes that are embedded within an extracellular matrix which is aneural, avascular and 

alymphatic in nature.  Chondrocytes receive their nutrition by diffusion through the matrix and 

are  highly specialised in synthesizing and maintaining the ECM infrastructure (Buckwalter & 

Mankin 1997; Becerra et al., 2010). 

Composition of the articular cartilage 

The articular cartilage is composed of highly specialised macromolecules and proteins that 

allow the tissue to functionally fulfil the mechanical demands of the articulating joints. The 

composition of cartilage changes as the tissue develops; however, a mature cartilage is 

primarily composed of a fluid phase of water and electrolytes and a solid phase of collagens, 

proteoglycans, non-collagenous proteins and the chondrocytes. Water constitutes about 68-

85% of the wet weight of the cartilage. Water allows for a low friction gliding surface and acts 

as a medium for lubrication in addition to permitting load-dependent deformation. Collagens 

account for 10-20% of the wet weight of the tissue and proteoglycans account for 5-20% of 

the wet weight of cartilage (Buckwalter & Mankin 1997; Pearle et al., 2005; Becerra et al., 

2010). The unique mechanical properties of the cartilage are attributed to the interactions of 

collagen and proteoglycans within a charged fluid environment (Athanasiou et al., 2010). This 

section of the thesis will describe the biochemical composition of the articular cartilage and 

the importance that the structural integrity of this tissue has in its function as a mechanical 

surface. 
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Water  

Approximately 30% of the water is found in the intrafibrillar space of collagen and its 

amounts are modulated by the diameters of the collagen fibres and the swelling pressure 

generated by the surrounding proteoglycans. A small percentage resides in the intracellular 

space and remainder is contained in the molecular pore space of the ECM and acts as the 

primary carrier for transporting nutrients and waste with the tissue.  Inorganic ions including 

sodium, calcium, potassium and chloride are present in the extracellular tissue fluid (Linn and 

Sokoloff 1965; O’Hara et al., 1990; Maroudas et al., 1991). Water permeating the tissue also 

plays an important mechanical role. Through interactions with the proteoglycans present, 

water provides articular cartilage with tremendous compressive resistance. The interstitial 

fluid can be extruded from the tissue by applying a pressure gradient across the tissue or by 

the constant compressive loads the articular cartilage is exposed to. As the fluid flows through 

the small pores of the ECM, it causes high frictional resistance and it is this frictional 

resistance coupled with the pressurization of water within the ECM that gives the articular 

cartilage the ability to withstand high compressive loads (Williams et al., 2007).  

Collagens 

Collagen is the most abundant protein in humans. Its critical role is to maintain structural 

integrity and to provide mechanical stability to various tissues. More than 20 different 

collagens have been identified so far consisting of at least 38 genetically distinct polypeptide 

chains (Thomas et al., 1994; Ricard-Blum 2011). Structurally, collagens form right-handed 

triple helices comprising of three polypeptide α chains (Ramachandran and Kartha 1954). The 

nomenclature for the collagens includes Roman numerals to indicate the genetic type with the 

α-chain composition. The three α chains can be homotrimers (identical) or heterotrimers (non-

identical). An example of a homotrimeric chain is seen in collagen type II which makes 90-

95% of the collagens found in articular cartilage, in addition to the small amounts of  

heterotrimeric chains of collagen type V, VI, IX  and XI (Ricard-Blum 2011). The α chains of 

collagens contain amino acid repeat motifs of Glycine-X-Y where X is often proline and Y is 
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often hydroxyproline. The number of repeats varies among different collagen types and this 

has been the reason that they have been categorized into different families.  The majority of 

collagens in articular cartilage belong to the class of fibril-forming collagens, which include 

type II, type V and type XI collagen. Fibrillar collagens contain one major triple-helical 

domain, whereas collagen type IX, which belongs to a group called FACIT (Fibril-Associated 

Collagens with Interrupted Triple helices), contains several triple helical domains (Mow and 

Huiskes 2004). The collagen fibrils of one particular collagen subtype are frequently cross-

linked with other collagens in cartilage. For e.g., collagen type II is the main collagen, 

however, it is frequently cross-linked to collagen IX and XI. Collagen type XI is found mostly 

within the fibrils and covalently cross-linked to collagen type II. Collagen type IX also 

extends into the matrix from the surface of type II fibrils and may interact with type IX 

molecules. These interactions may help in stabilising the collagen fibril meshwork  (Eyre 

2002). In articular cartilage, the primary function of collagens is to provide tensile strength 

and stiffness to the tissue. Collagen networks in the ECM of cartilage also functions to entrap 

large proteoglycans and consequently restrain their swelling pressure and provide compression 

stiffness (Mow and Huiskes 2004).  
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Proteoglycans  

Proteoglycans represent the second largest group of macromolecules in the ECM of articular 

cartilage. They are produced by chondrocytes and secreted into the ECM. Proteoglycans are 

large complex molecules composed of a core protein with one or more covalently attached 

glycosaminoglycan side chains (GAGs). The GAG chains are made up of negatively charged 

sulphate and carboxyl groups and extend out from the protein core while they remain 

separated from each other due to charge repulsion. The density of the fixed negatively charged 

sulphate and carboxyl groups is called the fixed charge density. These negatively charged 

groups attract cations and consequently result in a build of an osmotic gradient that draws 

water into the matrix and supports tissue hydration (Roughley 2006). The swelling pressure 

resulting from osmotic gradient created by the fixed charged density is called the Donnan 

osmotic pressure (Donnan 1924).  

One of the major proteoglycans in articular cartilage is the large aggregating 

proteoglycan, aggrecan (Knudson & Knudson 2001). It constitutes as much as 80% to 90% of 

the proteoglycans present in articular cartilage. In addition to aggrecan, versican is another 

proteoglycan that belongs to the large aggregating proteoglycan family because of their ability 

to form large aggregates. Aggrecan is composed of a core protein to which attaches sulphated 

GAG chains of chondroitin sulphate and keratan sulphate. As many as 50 keratan sulphates 

and 100 chondroitin sulphates can attach to the core protein forming 90% of the molecular 

mass of the aggrecan molecule (Aspberg 2012). In articular cartilage, numerous aggrecan 

monomers non-covalently attach to hyaluronan in the presence of a link protein which 

stabilise this bond. Hyaluronan, also known as hyaluronic acid (HA) is a non-sulphated GAG 

and functions to interact with aggrecan and link protein to form macromolecular aggregates 

that are entrapped within the collagen networks (Hardingham 1981). HA also functions to link 

the ECM and chondrocytes through interaction with the HA cell surface receptor CD44, 

forming a direct link between the cells and their surrounding ECM. These aggregating 

proteoglycans reside in the interfibrillar space of the cartilage ECM (Heinegård 2009).  
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Non-Collagenous matrix proteins 

Articular cartilage contains many non-collagenous proteins such as small leucine-rich 

proteoglycans (SLRPs), matrilins and cartilage oligomeric matrix protein (COMP), which are 

important for organizing and maintaining macromolecular structure of the ECM (Heinegård 

2009). The SLRPs are an important set of molecules in the ECM and belong to the large 

family of leucine-rich proteins with multiple adjacent domains carrying a leucine-rich motif 

(Schaefer & Iozzo 2008). They can be classified into different sub-families based on their 

gene structure, the number of leucine-rich repeats and the type of GAG chain substituent. One 

class of SLRPs is represented by decorin and biglycan, both of which contain an 8 exon gene 

structure and dermatan sulphate chains. Another class of SLRPs represented by fibromodulin 

and lumican have a 3 exon gene structure and keratan sulphate side chains. The functions of 

SLRPs depend on their core protein and GAG chain (Roughley 2006). Their core protein 

allows them to interact with collagens during fibril formation and also help in cross-linking 

with other ECM molecules such as matrilins. Matrilins are multimeric proteins with three or 

four subunits, which have high affinity interactions with biglycan and decorin that in turn bind 

to collagen type VI beaded filament. Matrilin is interspersed between collagen type VI via 

SLRPs and collagen type II thereby interconnecting various entities of the ECM (Wagener et 

al., 2005). Matrilin also binds to triple helical collagen domains of collagen type IX and 

another non-collagenous matrix protein called COMP. COMP is one of the five family 

members of the thrombospondin glycoproteins (Adams & Lawler 2004). COMP has five 

identical subunits that have the capacity to bind to five collagen molecules at the same time. 

This helps in bringing collagen molecules in close proximity to facilitate fibril formation. It 

also binds to collagen type IX and matrilin and in the adult cartilage primarily plays a role in 

stabilising the collagen network (Heinegård 2009).  
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Chondrocytes 

Chondrocytes are the resident cells of the articular cartilage and play a specialized role in the 

development and maintenance of the ECM. Their shape, number and size vary and depend on 

the anatomical regions of the articular cartilage. Chondrocyte physiology and its role in ECM 

turnover depend on a number of environmental factors such as matrix composition, growth 

factors and cytokines, and biophysical factors generated by the mechanical loading of the joint 

(reviewed by Freyria & Mallein-Gerin 2012). These specialised cells have limited potential for 

replication, a contributing factor for their limited intrinsic healing capacity and their survival 

depends on optimum chemical and mechanical environment (Wilusz et al., 2014). Because 

cartilage is avascular, the immediate pericellular microenvironment of the chondrocytes plays 

an important role in regulating cell activity. Within the ECM, the chondrocytes are surrounded 

either as single cells or in groups by a narrow matrix called the pericellular matrix (PCM) that 

together with the enclosed cell is referred to as a chondron. A detailed understanding of the 

PCM function is currently unclear but it has been reported that PCM plays a role as a 

transducer of both biomechanical and biochemical signals for the chondrocytes (Guilak et al., 

2006). The chondrocyte primary cilium (single cytoplasmic organelle found in virtually all 

eukaryotic cells) extends into the PCM of the chondron and interacts with matrix molecules 

such as fibrillar collagen type II and non-fibrillar collagen type VI (McGlashan et al., 2008). 

The PCM contains many of the same matrix molecular components as the ECM, however 

there is a distinct variation in the structure and composition of the PCM. A typical feature of 

the PCM is the lack of fibrillar collagens and the abundance of collagen type VI expression 

around the chondrocyte which co-localises with a large heparan sulphate proteoglycan called 

perlecan.  Collagen type VI and perlecan have important functional roles in the maintenance 

of biochemical and biomechanical characteristics of the PCM. PCM is also rich other matrix 

components including fibronectin, aggrecan, HA, decorin,collagen type IX as well as cell 

membrane-associated molecule anchorin CII (Guilak et al., 2006; Wilusz et al., 2014).  A 

normal matrix turnover is maintained through a balance between anabolic and catabolic 

factors secreted by chondrocytes. As chondrocytes are surrounded by PCM, all matrix 
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components secreted by chondrocytes must pass through the PCM. As growth factors and 

matrix protein pass through the PCM, they may be modified in their structure and action. It 

has been reported that matrilin-3 becomes pro-anabolic from anti-anabolic once it enters PCM 

(Vincourt et al., 2012). In addition, changes in the PCM structure may have an effect on the 

response of enclosed chondrocytes to physical or chemical mediators. Therefore, PCM may 

have an important role in modulating the biochemical and biomechanical environment of 

chondrocytes (Guilak et al., 2006). The matrix surrounding the PCM is the territorial matrix. 

Territorial region surrounds the PCM of single chondrocytes and in some parts the matrix of 

two or more chondrocytes. The fine collagen fibrils in this region form a basket-like network 

around the cells, which may have a protective role for the chondrocytes against mechanical 

stress during loading and deformation of the tissue.  The interterritorial region makes up most 

of the volume of the articular cartilage ECM where the largest diameter of collagen fibrils and 

an abundant amount of proteoglycans is seen. This region consist of randomly oriented 

bundles of large collagen fibrils, arranged parallel to the superficial zone surface, obliquely 

angled in the middle zone and perpendicular to the joint surface in the deep zone (Buckwalter 

& Mankin 1997; Becerra et al., 2010) 

Zonal structure of articular cartilage 

The ECM of articular cartilage consists of a dense stable network of collagen fibres embedded 

within a high concentration of a viscoelastic network of proteoglycans. The composition of the 

cartilage ECM varies with depth with regards to chondrocyte shape and size, differences in 

collagen fibre and proteoglycan network and also the water content (Figure 1.4). These 

differences are categorised into four layers or zones i.e. the superficial layer, the middle layer, 

the deep layer and the tide mark (Buckwalter et al., 1988; Bhosale & Richardson 2008). 

Although the different zones have distinct morphological features, the borders in between the 

zones cannot be easily identified. However, studies have shown that the zonal organisation has 

functional importance (Becerra et al., 2010). 
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The superficial zone is the thinnest zone (10% - 20% of total cartilage thickness), with 

the highest content of collagen and low levels of proteoglycans, although decorin and biglycan 

are found in higher concentrations (Fox et al., 2009). This zone consists typically of two 

layers, a thin outer layer of fine fibrils with no chondrocytes and a layer of flattened ellipsoid 

shaped chondrocytes with little PCM that are oriented parallel to the joint surface. 

Chondrocytes here synthesize and secrete lubricin, an important joint lubricant responsible for 

providing a gliding surface to the articular cartilage (Flannery et al., 2009). This zone is 

exposed to the highest tensile and compressive stresses. The parallel arrangement of collagen 

fibrils helps to resist shear forces generated during the joint movement. The zone next to 

superficial zone is the middle zone, which comprises 40% to 60% of total cartilage thickness. 

Collagen fibrils in this zone are less tightly packed with random orientation and have large 

diameters. Chondrocytes in this zone are spheroidal in shape and synthesize matrix that has 

high proteoglycan (aggrecan) content and low collagen and water content as compared to the 

superficial zone. In the deep zone (about 30% of the cartilage thickness), collagen fibres 

appear to be woven together into bundles and organise themselves perpendicular to the joint 

surface (Grogan et al. 2013). These bundles cross the tidemark (the border between calcified 

and non-calcified cartilage) to secure the attachment of cartilage onto the bone ends (Havelka 

et al. 1984). This zone contains spheroidal shaped chondrocytes with extensive PCM that 

align themselves in columns perpendicular to the joint surface and produce highest 

concentration of proteoglycans. The deepest zone is the calcified cartilage zone, which is the 

zone that separates the softer cartilage from the subchondral bone.  The cells of this zone have 

a smaller volume compared to the other zones and are surrounded by calcified cartilage 

(Buckwalter et al. 1994; Fox et al. 2009).  
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Figure 0.1 Extracellular matrix molecules and zonal organisation of articular cartilage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Extracellular matrix molecules and zonal organisation of articular 

cartilage. (A)  Major constituents of the ECM of articular cartilage showing fibrils of 

collagen type II, aggrecan molecule , hyaluronic acid backbone and the chondrocytes; (B) 

zonal arrangement of chondrocytes; and (C) zonal  arrangement of collagen fibers. 

Images adapted from Izadifar et al., 2012 and Buckwalter et al.,1994. 
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1.4 Articular cartilage defects  

Degradation of articular cartilage can arise as a result of trauma, disease or continual 

mechanical loading. There are two broad categories of acute cartilage injuries: 1) direct 

mechanical trauma with a loss of matrix molecules without damage to the chondrocytes or the 

collagen meshwork; 2) blunt or penetrating trauma resulting in the mechanical destruction of 

chondrocytes and matrix (Bhosale & Richardson 2008; Memon & Quinlan 2012). However, 

these two categories can overlap as progressive loss of ECM macromolecules can cause 

mechanical disruption of the cartilage surface and that can further result in factors causing 

ECM degeneration. Acute injuries or trauma to the knee joint can cause focal damage to the 

cartilage, including fissures, chondral flaps or tears, and loss of a segment of articular 

cartilage. Because of the avascular nature of the tissue and the low number of cells present, the 

response to the injury is limited (Buckwalter 1998). 

Depending on the depth of the defect, articular cartilage defects are classified as 

chondral or osteochondral. Chondral defects as the name suggest are the defects involving 

cartilage only, whereas osteochondral defects are the defects involving cartilage and the 

underlying subchondral bone. Chondral defects are further categorized as full-thickness where 

they extend all the way to the subchondral bone but do not penetrate it or partial thickness 

defects, which involves cartilage only (Redman et al., 2005; Bhosale & Richardson 2008)         

(Figure 1.5). There are grading systems in place such as those devised by Outerbridge, ICRS 

and Bauer–Jackson to precisely define the defect and to approach them with suitable treatment 

options (Falah et al., 2010). The grading system devised by Outerbridge is simple and 

clinically useful system to accurately describe the defects based on their location, size, shape, 

description of the wall and the depth of the defect (Outerbridge 1964). 
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Figure 0.1 A schematic representatio n of articular cartilage defects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Chondral defects 

(B) Osteochondral defects 

Figure 1.5. A schematic representation of articular cartilage defects. (A) Chondral 

defects can be classified as full-thickness where the defect extends down to the 

subchondral bone without penetrating it, or partial thickness where the damage is only 

reserved to cartilage; (B) Osteochondral defects damage the cartilage and penetrate the 

subchondral bone. Image adapted from Bhosale & Richardson, 2008.  
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The response to an injury of the articular cartilage depends upon numerous factors: the 

type of the injury, the severity of the injury, the condition of cartilage and joint as a whole at 

the time of the injury as well as the age of the patient (Buckwalter 1998). Immediately 

following a trauma, there is a structural damage to the joint tissue, which may lead to 

disruption in the collagen network and suppression of proteoglycan synthesis (DiMicco et al. 

2004). Cartilage being a mechanosensitive tissue, senses the damage in the ECM by signalling 

the activation of chondrocyte surface receptors such as integrins, calcium ion channel and 

primary cilium (Vincent 2013). Articular chondrocytes and ECM work together to respond to 

an injury. The injury response of articular cartilage can be both catabolic and anabolic. The 

catabolic activity of chondrocytes includes the release of aggrecan-degrading enzyme 

disintegrin, metalloproteinase with thrombospondin motifs-5 (ADAMTS-5) and the 

collagenase matrix metalloproteinase-13 (MMP-13), which is specific to collagen type II 

(Burleigh et al. 2012). Various inflammatory mediators are also activated in injured cartilage 

such as interleukin (IL)-1 alpha (α), IL-6 and chemokine ligand 2 (CCL2). When the PCM is 

breached, various growth factors sequestered within the PCM are released for e.g. fibroblast 

growth factors (FGFs), connective tissue growth factor, insulin-like growth factor (IGF) and 

members of the TGF-β superfamily (Vincent 2013). These growth factors participate in the 

catabolic and anabolic activities of chondrocytes. For e.g., FGF-2 through its interaction with 

fibroblast growth factor receptor (FGFR)-1, enhances ADAMTS-5 and MMP-13 activity 

(Ellman et al. 2013). This results in degradation of the damaged tissue and apoptosis mediated 

chondrocyte death (Kramer et al. 2011). In contrast, there is also evidence of an increase in the 

anabolic factors shortly after injury. These include chondroprotective genes such as tumor 

necrosis factor-inducible gene 6 protein (TSG-6), hyaluronan-binding anti-inflammatory 

molecule, tissue inhibitor of metalloproteinases-1 (TIMP-1) and activin A – a transforming 

growth factor beta (TGF-β) family member (Burleigh et al. 2012). Also, FGF-18 with FGFR-3 

enhances chondrocyte viability and ECM formation  (Ellman et al., 2013). During the healing 

of articular cartilage, the growth factors, cytokines and chemokines released by chondrocytes 
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may cause a disruption in the balance between the catabolic and anabolic factors. Therefore, 

chondrocyte homeostatis is important for the quality of healing cartilage.(Kramer et al., 2011) 

1.5 Cartilage repair strategies 

Nearly three centuries ago, Hunter reported that “Ulcerated cartilage is a troublesome thing. . . 

once destroyed it is not repaired” (Hunter 1743). Efforts towards repairing damaged cartilage 

for the last few hundred years have been the major focus for scientists and clinicians in the 

field of cartilage regenerative medicine. Conventional treatment strategies include various 

medications, which give only temporary relief of symptoms rather than cure, and clinicians 

have sought various surgical procedures (Browne and Branch 2000). The repair techniques are 

mostly aimed at reducing pain in addition to restoring functionality to the tissue. The success 

of different treatment strategies depends on the long term performance of the knee joint along 

with the restoration of the damage with native-like cartilage tissue in terms of its composition 

and mechanical properties (Detterline et al., 2005). To determine which repair approach to 

take, there are evidence based algorithms (Figure 1.6) depending on factors such as age, defect 

size and medical history (Cole et al., 2009). These algorithms help to precisely define the 

defect and to approach them with suitable treatment options (Makris et al., 2014). Current 

clinical treatments include arthroscopic repair procedures and cell and tissue transplantation 

procedures (reviewed by Matsiko et al., 2013). These are described in the following sections 

of this thesis.  
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Figure 1.8 Cartilage defect treatment algorithm. 

Figure 0.1Cartilage defect treatment algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Cartilage defect treatment algorithm.  Assessment is based on the size and 

the location of the lesion  as well as the demand of the patient i.e. whether a more active 

(high demand) or sedentary (low deman) lifestyle is desired. *First line treatment options. 

Image adapted from Makris et al., 2014. 
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1.5.1 Arthroscopic procedures 

Arthroscopy is a minimally invasive procedure in which an endoscope is inserted into the joint 

through a small incision for examination and treatment of cartilage injuries.  

Debridement and lavage 

Arthroscopic debridement and lavage is an approach whereby loose cartilage fragments that 

arise following an injury are removed from the joint surface (debridement) followed by an 

irrigation of the joint (lavage). It is mostly used for patients with less than 2 cm
2 

defect sizes 

and is generally reserved for lower demand (patients with sedentary life style) older patients 

with limited symptoms (review by Detterline et al., 2005). This procedure is believed to 

alleviate joint pain through an unknown mechanism, however it does not induce a repair 

response and it was reported that the reduction in the joint pain observed in the patients 

following this procedure could be no more than a placebo effect after surgery (Moseley et al., 

2003).  

Microfracture 

Microfracture is a reparative procedure for patients with small to moderate sized chondral 

lesions (1 to 5 cm
2
). The procedure is done arthroscopically and involves drilling 0.5-1 mm 

diameter holes in the subchondral bone to create bleeding within the defect, allowing cells 

from the bone marrow (BM) to enter the cartilage and promote healing of the defect 

(Steadman et al., 1997; Gill and Macgillivray 2001; Steadman et al., 2003). To achieve 

optimal results with this procedure continuous passive motion with limited weight bearing is 

required post-operatively (Detterline et al., 2005). Clinical data at follow-ups has revealed that 

this procedure results in the formation of fibrocartilage that is biochemically and 

biomechanically inferior to hyaline articular cartilage  (Mithoefer et al., 2009; Saris et al., 

2009). In addition, due to the penetration of subchondral bone, intralesional osteophytes have 

been reported in 20-50% of the cases (Mithoefer et al., 2009).Therefore, special indications 
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(shown in Figure 1.6) based on size, depth and location of the lesion, have been proposed for 

performing microfracture procedure (Makris et al., 2014).  

Autografts 

Treatment strategies including soft tissue grafts and osteochondral autograft transplantations 

have been employed clinically for intermediate to high demand patients (patients who require 

an active lifestyle) due to the failure of arthroscopic procedures. The soft tissue grafts can be 

employed in two techniques i.e., chondrocyte autograft transfer (OAT) or mosaicplasty 

(Memon & Quinlan 2012). In OAT, osteochondral autografts are harvested from the non-

weight bearing area of the joint and placed in the prepared cylindrical defect. These autografts 

are round cylinders of full-thickness cartilage attached or plugged to its underlying bone. This 

procedure is used mainly for small to medium sized (0.5 to 3 cm
2
) defects as the amount of 

transplanting material is limited. This lead to the development of mosaicplasty in which 

multiple smaller sized osteochondral plugs are harvested for transplantation into the defect.  

Histological analysis of repair tissue following such grafting has revealed satisfactory clinical 

results with survival of transplanted hyaline cartilage as well as formation of fibrocartilage 

(Hangody et al., 2008; Chow et al., 2004). However there are some major limitations of this 

procedure including donor-site morbidity, the technical difficulty of donor-tissue grafting and 

the risk of joint incongruity in the case of multiple plugs (Huang et al., 2004; Detterline et al., 

2005; Hangody et al., 2008).   
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1.6 Tissue engineering based strategies for cartilage repair 

Currently, the standard surgical treatment for advance-stage degenerative joint pathology is 

total knee replacement. Early surgical interventions for cartilage defects as mentioned in the 

previous section of this thesis, whilst prevent further joint deterioration, they are not long-term 

clinical solutions (Makris et al., 2014). This highlights a need for tissue engineering and 

regenerative medicine approaches to repair articular cartilage. Tissue engineering is an 

interdisciplinary field that adopts the principles of engineering and life sciences to 

biocompatible substitutes to restore and maintain tissue function (Langer & Vacanti 1993). 

Tissue engineering strategies are focused on three key aspects, which are the choice of cells, 

the cell carriers or scaffolds and the provision of the right signals (Figure 1.7). The cells are 

the key to the development and synthesis of native-like tissue. The cell-carriers or scaffolds 

provide a substrate for the cells to attach to and lay down matrix and potentially provide 

biological cues for encouraging cell differentiation. The signals help in directing 

differentiation of cells and assist in tissue synthesis (Matsiko et al., 2013). These are described 

in more details in the following sections of the thesis.  
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Figure 1.9 The three key factors required for cartilage tissue engineering: cells, scaffolds and 

growth factors 

Figure 0.1The three key factors required for cartilage tissue engineering: cells, scaffolds and signals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signals 

Growth factors-TGF-β, BMP 

Platelet-rich plasma 

Biomechanical stimulation 

Cartilage 
tissue 

engineering 

Scaffolds 
• Natural – e.g. 

collagen type 
I/III matrix 

• Synthetic- e.g. 
PGA mesh 

• Composites e.g. 
PGA-PLGA 

                 Cells 
• Autologous 

chondrocytes 
• Mesenchymal 

stem cells (bone 
marrow-derived 
or adipose 
derived) 

Scaffolds act as 
cell-carriers and 

provide substrate 
for cell growth and 
tissue regeneration 

Signals may 
enhance the 
regenerative 
capacity of 

biomaterials 

Signals may 
induce 

differentiation 
of cells 

Figure 1.7. The three key factors required for cartilage tissue engineering: cells, 

scaffolds and signals. Cells, scaffolds and signals are the key elements for cartilage 

tissue engineering. For this purpose, many different combinations of cells, scaffolds and 

signals have been investigated. An example of each of the key elements is shown here. 

Abbreviations: TGF-β, transforming growth factor- beta; BMP, bone morphogenetic 

protein; PGA, poly glycolic acid; PLGA, Poly-lactic-co-glycolic acid. 
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1.6.1 Cells for cartilage tissue engineering  

Various different cell sources have been examined such as chondrocytes and adult stem cells, 

and in combination with scaffolds and growth factors for cartilage tissue engineering (Makris 

et al., 2014), however a simplistic first approach for cartilage repair was to use just cell-

transplants as described below.   

Chondrocytes- Autologous chondrocyte implantation 

Chondrocytes were used in a first-generation cell therapy procedure called autologous 

chondrocyte implantation (ACI). ACI is a two-step procedure (Figure 1.8) where during the 

first step a biopsy of cartilage is taken arthroscopically from the non-weight bearing area of 

the joint and enzymatically digested to isolate chondrocytes. The chondrocytes are then 

expanded in cell number by culturing the cells in vitro for two-three weeks to generate 

subsequent numbers for cell transplantation. The second step of the procedure involves an 

open arthrotomy to expose the defect, which is debrided to ensure the vertical circumferential 

walls of the defect have normal articular cartilage. A periosteal patch is harvested from the 

ipsilateral tibial shaft to act as a cover for the defect. The patch is sewn to the cartilage surface 

around the debrided defect and fixed with fibrin glue. The cultured chondrocytes are then 

injected under the sealed periosteal flap. This procedure was first used clinically in human 

patients by Brittberg and co-workers in 1987 (Brittberg et al., 1994). They published the 

results of their first 23 patients with a mean follow-up of 39 months where good to excellent 

results were reported for 70% of the cases. Biopsies of the repair tissue were taken 12 months 

post-operation and 11 out of 15 had hyaline-like appearance. Since then a number of studies 

have reported that the resulting repair tissue from the ACI procedure is more durable and 

biomechanically similar to native tissue with better long-term outcomes than the other 

cartilage restoration procedures, like microfracture  and mosaicplasty (Peterson et al., 2010; 

Bentley et al., 2012; Minas et al., 2014). The ACI procedure is mainly reserved for 

intermediate to high demand patients (aged 20-50 years) who were previously unsuccessful 

with arthroscopic procedures. It is used for larger sized defects (2 to 10 cm
2
) involving both 

femoral condyles and the patella (Detterline et al., 2005).   
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Figure 1.10 Autologous chondrocyte implantation 

Figure 0.2Figure 1.10 Autologous chondrocyte implantation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Autologous chondrocyte implantation. A biopsy of healthy cartilage from a 

non-weight bearing area of the knee joint is digested enzymatically to isolate 

chondrocytes which are then culture expanded and injected back into the defect with the 

help of a periosteal flap harvested from tibia. Image adpated from Brittberg et al.,1994. 
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Generations of autologous chondrocyte implantation procedures 

A range of complications are associated with the use of periosteal flaps in ACI procedures. 

Nearly 40% of the cases have reported symptomatic hypertrophy of the periosteal flap at one 

year follow-up (Gooding et al., 2006). In addition, studies have reported the major 

complications of the procedure to be graft failure and delamination, tissue hypertrophy, 

chondromalacia, formation of a loose body and arthrofibrosis (Driesang and Hunziker 2000; 

Niemeyer et al., 2008; Harris et al., 2011). In the light of addressing these limitations, the 

traditional technique of ACI has undergone a series of major advances and developments 

including the use of alternative membranes to seal the cartilage defect. In 2004, Haddo and co-

workers (Haddo et al., 2004), reported on a small study of 31 patients treated with ACI using a 

porcine collagen type I/III membrane called Chondro-Gide® (Giestlich Biomaterials) instead 

of a periosteal flap. This study reported graft hypertrophy in only one case at 1 year follow up 

(Haddo et al., 2004). In 2006, these results were reproduced on a larger scale by Gooding et 

al, where they reported on 68 patients treated by ACI in which the defects were covered 

Chondro-Gide® (ACI-C) and compared it with defects covered with periosteal flaps (ACI-P). 

They reported that greater than 36.4% of the ACI-P cases showed signs of graft hypertrophy 

compared to none of the ACI-C cases and suggested the use of collagen membrane in future 

for the success of the technique (Gooding et al., 2006). One year later, Steinwachs and Kreuz 

reported on 63 patients treated by ACI-C. Patients were evaluated at six, 18 and 36 months 

after surgery and showed significant improvement at all evaluation time-points. Not even a 

single case presented with symptomatic graft hypertrophy. Therefore, they also concluded that 

graft hypertrophy can be avoided by using a collagen membrane instead of periosteal flap 

(Steinwachs and Kreuz 2007). Despite the success of ACI-C, an open surgical procedure with 

sutures was still required.  Furthermore, the traditional ACI-C or ACI-P techniques required 

the injection of chondrocytes underneath the periosteal or collagen membrane, which still risks 

an uneven distribution within the defect and leakage of chondrocytes (reviewed by Hunziker 

et al., 2015). These factors lead to the development of a third generation approach called 
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matrix-induced autologous chondrocyte implantation (MACI), combining chondrocytes and a 

matrix/scaffold e.g., Chondro-Gide® (Brittberg 2010). The rationale for this approach was that 

the scaffold will provide a structure that would facilitate chondrocyte adhesion and expansion 

whilst maintaining their chondrocytic phenotype. In this procedure, the chondrocytes are 

seeded directly onto the porous side of Chondro-Gide® rather than being injected underneath 

the membrane like in the second generation ACI. Chondrocytes are pre-seeded onto Chondro-

Gide® and following debridement and sizing of the defect, the cell-seeded membrane is then 

fixed onto the defect with the help of fibrin glue. Reported benefits of this technique are that 

there is no periosteal flap harvesting, no sutures are used and there is good stability of the 

implant. In a two-year clinical and histological follow-up study, it was reported that MACI 

was associated with pain relief, restoration of knee function and generated hyaline-like 

cartilage (D’Anchise et al., 2005). Behrens et al., in 2006 reported five-year follow up data 

after a MACI treatment and concluded that MACI was a suitable treatment for local cartilage 

defects of the knee joint (Behrens et al., 2006).  Zheng et al., in 2007 also reported similar 

results of hyaline-like cartilage formation in 75% of biopsies from a group of 11 patients at 6 

months follow-up following MACI (Zheng et al., 2007). In a review by Brittberg on the 

MACI procedure, it was suggested that MACI is a safe and clinically effective procedure for 

the treatment of moderate to large symptomatic cartilage defects. The data reviewed is also 

suggestive of hyaline-like tissue repair with this procedure (Brittberg 2010).  

In spite of the successful clinical outcomes of ACI, ACI-C and MACI, a major 

disadvantage of these techniques is that the surgical intervention requires a two-step 

procedure which requires long-term patient planning and costly cell-culture expansion. Not 

only this, the quantity of tissue that can be harvested as a biopsy to isolate chondrocytes is 

limited due to the risk of creating new cartilage defects (reviewed by Hunziker et al., 2015). 

Although a small biopsy is taken, studies have reported that it could heighten the risk for 

osteoarthritis (OA) (Lee et al., 2000; Hjelle et al., 2002). Moreover, chondrocytes lose their 

chondrogenic phenotype during the in vitro culture expansion step in a process termed as 
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chondrogenic dedifferentiation. This causes several changes in the synthesis pattern implying 

a shift from production of type II collagen to type I collagen, a typical marker of fibroblast 

like cells such as tendon and skin (Benya et al., 1978; Benya and Shaffer 1982). 

Consequently, the need for alternative cell sources for cartilage repair has been widely 

investigated and the following sections will explore the potential cell types for this 

application.  
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Mesenchymal stem cells  

As stated above, one of the main hurdles for successful ACI is obtaining vital and 

differentiated chondrocytes. Due to the pre-requisite expansion of chondrocytes in culture, 

they are forced to give up their round shape and attain a fibroblast-like morphology with a loss 

of their chondrogenic potential (von der Mark et al., 1977; Benya & Shaffer 1982). Although 

some studies have shown that chondrocytes can re-differentiate in vitro with (Barbero et al., 

2003) and without (Anderer and Libera 2002) the addition of growth factors, the need for an 

alternative cell source with stable chondrogenic potential becomes necessary. An 

undifferentiated progenitor cell that possesses chondrogenic differentiation potential would be 

ideal for cartilage tissue engineering. Here, multipotent mesenchymal stem or stromal cells 

(MSCs) present themselves as a promising cell source (Caplan 1991; Caplan & Goldberg 

1999).  

MSCs are a heterogeneous subset of stromal cells that can be isolated from various 

tissues. The presence of regenerative cells in BM was first hypothesized by Cohnheim who 

believed that these regenerative cells were involved in wound healing throughout the body 

(Cohnheim 1867). In the 1960s and 1970s, Friedenstein et al., pioneered the methods of 

isolation of BM-derived stromal cell by adherence to tissue culture plastic and reported their 

colony forming capacity, i.e. an ability to form colonies of fibroblasts or  CFU-F (colony 

forming unit-fibroblast) after cell mitosis on the culture dishes, and their role in bone 

formation (Friedenstein et al., 1966; Friedenstein et al., 1970; Friedenstein et al., 1976). Since 

then numerous groups have further investigated the potential of MSCs in regenerative 

medicine. Following their successful identification in the BM, human MSCs were isolated 

from various other tissues, including adipose tissue, umbilical cord and peripheral blood 

(reviewed by Hass et al., 2011). In vitro and preclinical animal studies suggest that MSCs can 

provide an alternative to autologous chondrocytes for the regeneration of cartilage, as they 

possess chondrogenic differentiation potential, are obtainable from a number of tissue sources 
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and can be culture expanded in vitro to provide increased cell numbers for transplant therapies 

(Mitchell and Shepard 1976; Caplan and Goldberg 1999; Pittenger 1999). 

 A stem cell is an unspecialized progenitor cell that can self-renew or multiply whilst 

maintaining its potential to differentiate into other cells with specialised functions.  These cells 

reside in tissue niches from where they can be recruited to replenish specific tissue cells that 

have died (Caplan and Dennis 2006).  Stem cells are found in the embryo known as embryonic 

stem cells, as well as in adults known as adult stem cells. Embryonic stem cells are pluripotent 

in that they have the potential to form cells of all the three germ-layers, i.e. endoderm, 

ectoderm and mesoderm (Doss et al., 2004). Adult stem cells, on the other hand, are tissue 

specific as they have limited differentiation potential and produce only a set of specialised 

cells of a particular tissue (Pittenger 1999). 

The term MSCs was coined by Arnold Caplan in 1991 where he described how these 

MSCs divide and their progeny becomes committed to a particular, distinctive phenotypic 

pathway (Caplan 1991). In 1999, Pittenger and co-workers demonstrated their ability to 

differentiate down the three mesodermal lineages of osteoblasts, adipocytes and chondrocytes 

(Pittenger 1999). Since then, MSCs have been extensively studied as an alternative cell source 

for tissue engineering. Whilst Caplan popularised the term MSCs, some researchers refrained 

the reference to a stem cell identity when publishing pre-clinical or clinical results in the late 

1990s (Horwitz & Keating 2000). In 2000, at the  meeting of the International Society for 

Cellular Therapy (ISCT), many leading investigators concluded that convincing data to 

support the ‘stemness’ of the unfractionated plastic adherent cells was lacking. Thereafter, 

Horwitz et al, published a position statement to address the inconsistency between 

nomenclature and the biologic properties of these cells (Horwitz et al., 2005). They suggested 

that the multipotent plastic adherent cells derived from mesenchymal tissues should be termed 

mesenchymal stromal cells, regardless of the tissue origin. The term stem cell should be used 

to describe a subset of cells showing distinct characteristics, including (1) adherence to tissue 

culture plastic; (2) multipotent differentiation potential and (3) their ability to self-renew. 
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Nonetheless, the terminology has persisted and the acronym MSC is used to describe the 

mesenchymal stem or stromal cells that are isolated from mesenchymal tissues and have the 

multipotent differentiation capacity (Horwitz et al., 2005). 

MSCs are known to secrete an array of trophic factors such as cytokines and growth 

factors which influence cellular activity from cell survival, growth and differentiation to 

immunological response. They express mitogenic proteins such as transforming growth factor- 

alpha (TGF-α), TGF-β, hepatocyte growth factor (HGF) and FGF (Haynesworth et al., 1996). 

It has been hypothesized that the expression of and reaction to these cytokines and growth 

factors is dependent on an individual’s genotype giving credence to the philosophy of 

personalized medicine (Murphy et al., 2013). Studies have also shown that MSCs can 

modulate immune responses in vitro by secreting factors that inhibit  interleukin-1 (IL-1), IL-

2, IL-12, tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) secretion (Beyth 

et al., 2005; Iyer and Rojas 2008; Pittenger 2008). In an inflamed environment, MSCs are 

shown to have anti-inflammatory effects by restoring the T helper cells 1(TH1)/TH2 balance 

through inhibiting INF-γ secretion and increasing IL-4 and IL-10 (Aggarwal and Pittenger 

2005). These properties of MSCs offer a great advantage for their utilization in regenerative 

medicine and could have a considerable impact on the future of tissue engineering 

interventions (Shi et al., 2010). 

Mesenchymal stem cells from bone marrow  

Amongst the various tissue sources, BM derived MSCs are the most extensively studied and 

investigated both in vitro and in vivo. Since the work of Johnstone et al., Pittenger et al., and 

Barry et al, it is well-known that BM MSCs can undergo chondrogenesis in vitro through the 

induction of a cocktail of growth factors (Johnstone et al., 1998; Pittenger 1999; Barry et al., 

2001). MSCs derived from the BM in humans are mainly isolated from the iliac crest. They 

are an attractive source for cartilage tissue engineering due to their ability to expand to high 

numbers in vitro as well as their potential towards chondrogenic differentiation (Boeuf & 

Richter 2010). However, the current term defining MSCs does not represent a homogeneous 
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population of cells. MSCs are a heterogeneous population of cells and their frequency of CFU-

F is approximately 1 per 10,000- 100,000 mononuclear cells in BM (Friedenstein et al., 1976). 

This number varies from donor to donor and declines with age. A newly born child has 

approximately 1 MSC per 10,000 cells, a teen approximately 1 in 100,000 and a 50 year old 

adult,  1 in 400,000 BM mononuclear cells (Caplan 2007). Due to the heterogeneity in 

mononuclear cell populations,the ISCT had listed three main criteria for cells to be regarded as 

MSCs, these are;  their ability to adhere to plastic, their ability to differentiate into osteoblasts, 

adipocytes and chondrocytes and their expression of CD73, CD90 and CD105 (Dominici et 

al., 2006). 

 Proof-of-concept for the use of BM MSCs for cartilage repair has been shown in 

various animal models of chondral and osteochondral defects and has showed improved repair 

of the defects when compared with the no MSC control groups (Wakitani et al., 1994; Im et 

al., 2001; Guo et al., 2004; Koga et al., 2008). Moreover, BM cells have already been 

employed in clinical trials where the cells have either been directly used as mononuclear cell 

concentrates (Wakitani et al., 2002; Gigante et al., 2011;  Gobbi et al., 2011; Skowroński et 

al., 2013) or the MSCs have been culture expanded and  pre-seeded on to cell-carriers or 

scaffolds to contain the cells with subsequent transplantation into the defects (Adachi et al., 

2005; Haleem et al., 2010; Kasemkijwattana et al., 2011). Most of these cases reported on 

clinical outcomes at follow-ups and where histological assessment was made, a mixture of 

hyaline-like and fibrocartilaginous repair tissue has been observed. In 2007, Kuroda et al, 

treated a 31 year old judo player suffering from a full-thickness cartilage defect with 

autologous BM MSCs embedded within a collagen gel. At seven months follow-up, histology 

of the repair tissue revealed hyaline-like tissue and the patient reported significant 

improvement in clinical symptoms (Kuroda et al., 2007). In a study of 72 patients,  BM MSCs 

were compared to first generation ACI procedure and the results have been reported to show 

that BM MSCs are as effective as chondrocytes, although the use of BM MSCs is cost-

effective with no damage to the normal articular cartilage (Nejadnik et al., 2010).  Despite the 
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success of clinical outcomes, BM MSCs are not fully-established for their use as candidate-

cell types for cell-based cartilage repair treatments. The painful iliac crest biopsies 

accompanied with donor site morbidity as well as the limited number of MSCs in the BM are 

some of the hurdles in their successful therapeutic application (reviewed by Ahmed and 

Hincke 2014). In addition, it has also been shown that the chondrogenic differentiation 

potential of rat MSCs decline with age (Zheng et al., 2007). This may have a major impact on 

the therapeutic capacity of autologous MSCs as a majority of orthopaedic pathologies present 

in older individuals in humans.  

Mesenchymal stem cells from adipose tissue 

Over the last decade, it has been recognised that fat, apart from being an energy reservoir is 

also a rich source of multipotent stem cells (Baer & Geiger 2012). Similar to BM, adipose 

tissue (AT) is also derived from embryonic mesenchyme and consists of a stroma that can be 

easily harvested (Ugarte et al., 2003). The initial method to isolate adipose MSCs was first 

described by Rodbell and co-workers in the 1960s where they minced rat fat pads, digested the 

minced tissue with collagenase and centrifuged the digest to separate mature adipocytes from 

the pelleted stromal vascular fraction (SVF). The SVF is a heterogeneous population of cells 

including blood cells, fibroblasts, pericytes, endothelial cells as well as pre-adipocytes and 

adipocyte progenitors (Rodbell 1966). Subsequently, this method was modified for the 

isolation of human AT mesenchymal stem or stromal cells (AT MSCs) (reviewed by Bunnell 

et al., 2008). Initially, the AT was minced manually, however with the advent of the 

liposuction technique, this procedure has been simplified. During this procedure, the AT is 

infused with a saline solution via a cannula and the tissue is harvested with the saline solution 

under suction (Illouz 1983). In 2001, Zuk and co-workers described a putative population of 

multipotent stem cells that they termed processed lipoaspirate cells or PLA cells due to their 

derivation from processed lipoaspirate tissue obtained through cosmetic surgery (Zuk et al., 

2001). These cells were shown to be capable of differentiating into adipocytes, osteoblasts and 

chondrocytes upon induction with specific growth factors (Zuk et al., 2002). Nonetheless, a 
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multipotent adherent stromal cell population can be generated from liposuction tissue as well 

as from the SVF of manually minced AT (Schreml et al., 2009).  

There has been some confusion with regards to the nomenclature of the plastic 

adherent cell population from collagenase digested AT. Various terms have been used to 

describe the same population of cells including adipose-derived stem/stromal cells (ASCs), 

adipose derived adult stem cells (ADAS), adipose derived stromal cells (ADSC), adipose 

stromal cells (ASC), adipose mesenchymal stem cells (AdMSC) and processed lipoaspirate 

(PLA) cells (Bunnell et al., 2008). Due to the variation in the terms used to describe the same 

population of cells, the International Fat Applied Technology Society  (IFATs) reached a 

consensus to adopt the term ‘‘adipose-derived stem cells” (ASCs) to identify the plastic-

adherent multipotent cell population (Gimble et al., 2007). As per the ISCT, the term stem 

should be used for cells that meet a certain criteria including, adherence to plastic, ability to 

differentiate into different cell type and the ability to self-renew long term in vivo. Despite the 

absence of data confirming the last characteristic, the IFATs conference adopted the term 

ASC, or Adipose-derived Stem Cell, to describe plastic-adherent, cultured multipotent stromal 

cells isolated from the SVF (Bourin et al., 2013). Throughout this thesis, the acronym AT 

MSCs will be used to describe mesenchymal stem or stromal cells isolated from AT. 

Furthermore, the ISCT recently proposed criteria to define AT MSCs similar to BM MSCs in 

that, they should be plastic adherent and should differentiate down the three mesodermal 

lineages as well as display CD profile negative for haematopoietic markers (CD11b and 

CD45) and positive for stromal cell markers such as CD13, CD73 and CD90 (Bourin et al., 

2013).   

The application of AT MSCs for tissue engineering purposes has a number of 

advantages compared to BM MSCs in that AT contains a large number of multipotent cells, a 

necessary pre-requisite for cell-based therapies. It has been shown that the multipotent stromal 

cells in the SVF of AT constitutes up to 3% of the mononuclear cells, which is 2,500 fold 

higher than the frequency of MSCs in the BM (Fraser et al., 2008). Other studies have also 
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reported on similar findings regarding the higher numbers of MSCs obtained from AT 

compared with BM. Approximately 6 million mononuclear cells are present per millilitre (ml) 

of BM aspirate, of which only 0.001- 0.01%  are MSCs. In contrast, in a gram of AT, 

approximately 0.5-2 million mononuclear cells are present, of which 1 to 10 % are MSCs 

(Ugarte et al., 2003; Aust et al., 2004; Zhu et al., 2008). The percentage varies from donor to 

donor, the age of the donors and on the tissue harvesting procedure (Oedayrajsingh-Varma et 

al., 2006; Choudhery et al., 2014). In addition, the adipose depots can be found ubiquitously 

in human body and are easily accessible with minimally invasive procedures. Liposuction is a 

safe and well-tolerated procedure yielding large quantities of tissue. It is also cheaper and less-

invasive than BM aspiration for MSC isolation. In addition, AT harvested during cosmetic 

surgeries or other procedures is generally regarded as a medical waste product, hence 

representing a readily available source for stem cell isolation for tissue engineering purposes 

(Bunnell et al., 2008).  

Various animal studies have provided the proof-of-concept for the potential of AT 

MSCs for cartilage repair in vivo. Studies in rabbits of full-thickness osteochondral defects 

have shown promising results when transplanted with AT MSCs compared to the control 

groups (Nathan et al., 2003; Masuoka et al., 2006; Dragoo et al., 2007). Some studies have 

reported the inferior chondrogenic potential of AT MSCs when compared with BM MSCs 

(Koga et al., 2008; Im and Lee 2010; Li et al., 2011). Nonetheless, according to the most 

recent systematic review performed by Perdisa et al, all 28 preclinical animal studies 

investigating the potential of AT MSCs for cartilage repair have reported that AT MSCs have 

a regenerative effect on cartilage repair (Perdisa et al., 2015).  A few human case reports have 

also been published for the use of AT MSCs in degenerative joint pathologies including 

chondromalacia patellae and OA.  Most of the human trial studies have used the intra-articular 

injection of freshly isolated SVF cells in combination with growth factors such as platelet rich 

plasma (PRP) and hyaluronic acid (HA). Follow ups from three to 30 months have reported 

significant improvement in functional outcomes as well as pain relief (Pak 2011; Koh and 
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Choi 2012; Pak et al., 2013; Bui et al., 2014; Koh et al., 2014). The site of AT harvest for 

these studies has either been subcutaneous AT from the abdominal area or the buttocks or the 

infrapatellar fat pad in the knee joints. Infrapatellar fat pad is also a promising source of 

multipotent cells, particularly advantageous for orthopaedic applications (Khan et al., 2008). 

These AT MSCs have shown potential for cartilage tissue engineering due to their 

chondrogenic differentiation potential, ease of harvest during knee surgeries and limited 

morbidity to patients (Dragoo et al., 2003; Buckley et al., 2010). Moreover, it has been shown 

that intra-articular injection of AT MSCs isolated from infrapatellar fat pad results in pain 

relief and an improvement in knee functions in patients suffering from knee OA (Koh and 

Choi 2012; Koh et al., 2013). Furthermore, only a single study of 18 patients has been 

published to date, to test the safety and efficacy of culture expanded autologous AT MSCs for 

knee OA. Patients were injected with low-dose (1.0 x 10
7
 cells), mid-dose (5.0 x 10

7
), or high-

dose (1.0 x 10
8
) of AT MSCs.  The results at 6 months follow-up showed improved function 

and pain of the knee joint with histology of the repair tissue revealing hyaline-like tissue in 

patients receiving high dose of AT MSCs (Jo et al., 2014).  

Other sources of mesenchymal stem cells 

With the increasing evidence of MSCs found in various tissues, the question arises as to which 

cell source is the most advantageous for cartilage repair? Whilst a single ideal cell source has 

not yet been defined, a few noteworthy studies point towards the use of BM MSCs compared 

to AT MSCs (Im et al., 2005; Jakobsen et al., 2010; Strioga et al., 2012). In addition, MSCs 

from synovial tissue (ST MSCs) have also been reported to have multipotent progenitor cells 

that have considerable potential to synthesize cartilage matrix in vitro (De Bari et al., 2001). 

They express MSC surface markers and have the ability to maintain linear growth over 30 

population doublings (reviewed in Fan et al., 2009). A study comparing the different cell 

sources in vitro including, synovium, BM, AT, periosteum and muscle tissue have 

demonstrated the superiority of ST MSCs regarding their proliferation and chondrogenic 

differentiation (Yoshimura et al., 2007). Another study in rabbits reported that transplanted 



- 56 - 

 

autologous BM and ST MSCs gave rise to a significantly higher in vivo chondrogenic 

response than AT MSCs and muscle-derived MSCs (Koga et al., 2008). The reason for 

enhanced chondrogenic potential of ST MSCs over other MSCs is not fully understood; 

however, it has been shown that synovium tissue may be a tissue-specific stem cell niche for 

cartilage repair since the healing response of the meniscus and articular cartilage tissue may be 

largely attributed to the synovium (Hunziker and Rosenberg 1996). There is also growing 

evidence that a population of progenitor cells exists within the articular cartilage. These 

progenitor cells play a role in supporting appositional cartilage growth from the surface. 

Although, the need to harvest large amounts of tissue i.e cartilage or synovium to obtain 

sufficient cell number is a major drawback of these cell sources (Dowthwaite et al., 2004).  

Freshly isolated versus culture expanded cells 

Despite the successful clinical outcomes using chondrocytes or MSCs, these techniques are 

limited in their clinical use due to the need for two operations. In addition, the success of 

MSCs for cartilage repair relies not only on the intrinsic capability of the cells but also on the 

interaction between a cell and its surrounding microenvironment. It is also well established 

that MSCs secrete bioactive factors that are immunomodulatory and have regenerative 

capacity (Somoza et al., 2014). As per this paradigm, it was proposed that MSC selection and 

culture expansion may not be necessary, allowing the development of a one-step procedure 

(Giannini et al., 2009). Furthermore, the in vitro culture and expansion of MSCs could be 

associated with the risk of trans-differentiation or reprogramming of the cells as well as the 

possibility of infection, contamination and spontaneous transformation (Song & Tuan 2004; 

Herberts et al., 2011; Neri et al., 2013). These considerations prompted the use of autologous 

BM aspirate concentrate (BMAC) for the treatment of chondral defects. The rationale for this 

approach was that the concentrated BM would not only contain MSCs but also other precursor 

and accessory cells as a source of regenerative tissue (Cavallo et al., 2013). In 2009, Giannini 

et al were the first to use such an approach for the treatment of talar osteochondral lesions 

(Giannini et al., 2009). They concentrated the BM aspirate using a commercially available 
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system and combined it with collagen powder or hyaluronic acid membrane and platelet gel. 

No control group was used in this study. The results at a mean follow up of 29 months showed 

functional improvement with both scaffolds and the histology of the biopsy revealed hyaline-

like cartilage. They concluded that although longer term follow-up is needed to ensure the 

validity of the repair over-time, the one-step arthroscopic technique is advantageous when 

compared with previous techniques (Giannini et al., 2009). An animal study of full-thickness 

chondral defects in minipigs compared culture expanded BM MSCs with freshly isolated 

mono-nuclear cells (MNCs). The result at 8 weeks showed no significant difference between 

the repair tissue of the two cell-treated groups which led them to conclude that MNCs may be 

more economical and convenient for cartilage repair in clinical applications as they obviate the 

need for culture expansion (Zhang et al., 2011). At the same time, Gobbi et al, published 

clinical results of 15 patients suffering from chronic large full-thickness cartilage lesions 

(Gobbi et al., 2011). In this study, the BM aspirate was concentrated and using batroxobin 

enzyme was transformed into a sticky clot. The clot was pasted into the defect and covered 

with collagen-based membrane and fixed in place with fibrin glue. At 6, 12 and 24 months 

follow-up, patients showed significant improvement in functional scores and histology 

revealed hyaline-like cartilage (Gobbi et al., 2011). Although the technique of BMAC is 

utilized in these clinical studies, only a limited in vitro data on chondrogenesis is currently 

available to support its use in clinical practice (Kasten et al., 2008; Cavallo et al., 2013).  

 The use of freshly isolated cells from the SVF of AT (AT SVF) cells is more 

established than that of the MNCs from BM. Most of the clinical studies reported have tested 

the uncultured freshly isolated MSCs from the SVF in combination with PRP for knee OA and 

reported an improvement in clinical outcomes (reviewed by Perdisa et al., 2015). The concept 

of using AT SVF cells was already tested in vitro and showed promising results confirming 

the ability of AT SVF cells to adhere to a poly (L-lactic-co-epsilon-caprolactone) scaffolds in 

a short time, and their capacity to undergo chondrogenic differentiation (Jurgens et al., 2009; 

Jurgens et al., 2011). The safety and feasibility of this technique was further tested for the 
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treatment of osteochondral defects in vivo. Here, the authors compared freshly isolated SVF 

cells with culture expanded AT MSCs seeded on collagen I/III scaffolds and showed that after 

1 month and 4 months post-transplantation in goat models of osteochondral defects, similar 

regeneration was found between freshly isolated and culture expanded cells (Jurgens et al., 

2013).  

Pre-culture selective isolation of mesenchymal stem cells  

Human MSCs from different tissue sources constitute a heterogeneous population of cells 

comprising sub-populations each having its own particular phenotype and functional 

characteristics. These sub-populations presenting different cell surface markers may parallel 

their stage of differentiation, their location within the tissue niche and their ultimate functional 

fate (Somoza et al., 2014). Therefore, current research in the field of cartilage tissue 

engineering is also focussing on identifying markers to select sub-populations from the pool of 

MSCs that may have higher chondrogenic potential compared to the uncultured heterogeneous 

population (Battula et al., 2009; Arufe et al., 2010). Pre-culture identification markers would 

ensure higher purity of chondrogenic MSCs than that obtained from plastic adherence and 

could potentially be used in a one-step procedure for cartilage repair. It has been shown that 

cells isolated using CD44, CD105 and CD29 as markers have greater chondrogenic potential 

over other MSC populations (Rada et al., 2011). In addition, it was also shown that isolating 

MSCs that are positive for the CD271 marker express higher levels of collagen type II and 

aggrecan compared with CD73 and CD106 positive MSCs (Arufe et al., 2010). A recent in 

vivo study confirmed these in vitro findings for the potential of CD271 positive cells to show 

therapeutic superiority over cells selected by plastic adherence alone (Mifune et al., 2012).  

CD271 has been increasingly used as specific marker for the characterization and purification 

of human BM MSCs (Flores-Torales et al., 2010). It is also known as the low-affinity nerve 

growth factor receptor (LNGFR), nerve growth factor receptor (NGFR), or neurotrophin 

receptor (p75 NTR). In 2002, Quirici and co-workers reported that anti-CD271 antibody is 

specific for a population of multipotent cells and suggested the use of this marker for selective 
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isolation of MSCs from BM (Quirici et al., 2002). Work by Jones et al has since confirmed 

these findings and have demonstrated consistently that CD271 antigen (followed by CD146, 

CD106, D7-FIB, CD13 and CD166) is the most selective marker for the enrichment of 

multipotent progenitor cells from BM (Jones et al., 2002; Jones et al., 2006; Jones and 

McGonagle 2008). Numerous other groups have also published similar results supporting the 

idea of CD271 as a marker to selectively isolate MSCs from BM (Bühring et al., 2007; Flores-

Torales et al., 2010; Kuçi et al., 2010). Despite the availability of CD271 as a marker of MSCs 

from BM, which could potentially be used in a one-step treatment for orthopaedic pathologies, 

a major limitation for its use in autologous therapies is that both the number of MSCs and their 

differentiation potential decreases with age (Stolzing et al., 2008). AT may be better suited for 

this purpose. AT MSCs were first isolated using P75NTR/ CD271 antibody in mice 

(Yamamoto et al., 2007). Following this Quirici et al, isolated CD271 positive MSCs from AT 

in a similar way as had been done from BM. They reported that CD271 positive MSCs from 

AT showed higher clonogenic and differentiation potential compared to MSCs isolated with 

plastic adherence alone (Quirici et al., 2010). Furthermore, researchers investigated the 

relationship between age and the CD271
+
 cell yield and they found that the highest cell yield 

was seen in donors that were 30 to 40 years old; in addition, although the number of CD271
+
 

MSCs decline with age, the ability to obtain these cells was maintained through all age ranges 

with a yield higher than that reported from BM. Therefore, the authors proposed the use of 

CD271 positive MSCs as the primary choice for autologous cell-based therapies in older 

patients (Duran et al., 2013). These findings prompted researchers to isolate CD271 positive 

MSCs from other sources including synovium, umbilical cord and placenta (reviewed by 

Álvarez-Viejo 2015). However to date, only one pre-clinical animal study has been published 

to show the potential of CD271 positive MSCs for cartilage repair (Mifune et al., 2012). This 

highlights the need for further in vivo investigation into the use of CD271 as a marker for cell-

based therapies. 
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1.6.2 Signals for chondrogenesis 

Present knowledge and success of in vitro differentiation of MSCs is based on the 

understanding of the mechanism of cartilage formation and its regulation in vivo. 

Chondrogenesis in the limb bud is initiated by sonic hedgehog signalling, which induces bone 

morphogenetic proteins (BMPs) to induce MSCs towards chondrogenesis (Lefebvre & Smits 

2005). One of the earliest markers expressed in the mesenchymal condensations is sex 

determining region-Y-box 9 (Sox 9). Sox9 is one of the key transcription factors in 

chondrocyte differentiation (Lefebvre et al., 1998). Two other Sox family members, L-Sox5 

and Sox6 are co-expressed with Sox9 and their activity is required for Sox9-mediated 

differentiation of MSCs into chondroblasts. These Sox family members maintain the 

chondrocyte phenotype in the mature cartilage by controlling the expression of various 

cartilage-specific genes including collagens (Col2a1, Col9a1 and Col11a1) and aggrecan 

(Acan) (Huang et al., 2001).  In addition, the ECM plays a crucial role in determining the fate 

of mesenchymal cells as well as the development of chondrocytes. The expression of cartilage 

specific genes is under strict control and ECM helps in the regulation of signalling pathways 

for co-ordination of cartilage formation (Bi et al., 2005). The members of TGF-β superfamily 

play a key role in directing MSCs towards chondrogenic pathway (Kingsley 1994). ECM 

integrates several signalling pathways including the fibroblast growth factor (FGF), BMP and 

the indian hedgehog  (IHH) pathway (Bi et al., 2005) (Figure 1.9).  

 It has been proposed that for in vitro chondrogenic differentiation, the following is 

required (1) MSCs should be grown in a three-dimensional (3D) culture format, (2) culture 

conditions should consist of serum-free nutrient medium, (3) induction with a member of 

TGF-β superfamily (Johnstone et al., 1998; Tanaka et al., 2004). The 3D culture system for 

MSC chondrogenesis is typically a micromass pellet culture which was first described by 

Johnstone et al (Johnstone et al., 1998). The micromass pellets cause cell condensation and 

allow cell-cell interactions thereby recapitulating pre-chondrogenic condensations during 

embryonic development (Barry et al., 2001).  In response to these specific conditions, the cells 
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lose their fibroblast morphology and undergo a sequence of cellular and molecular events 

resulting in a series of morphological alterations. At first, the spindle shaped MSCs aggregate 

and form junctional complexes. A week into the induction period, the cell pellets comprise 

three layers: the superficial layer of elongated, fibroblast-like cells, the middle zone with 

apoptotic cells and the deep zone consisting of chondrocyte-like cells. During the early stages 

of chondrogenesis, progressive alterations in the sulphation patterns of chondroitin-6-sulphate 

are also observed in that its ratio becomes four-fold higher than chondroitin-4-sulphate. 

Similar shifts in the ratio of chondroitin sulphates are also observed during maturation of 

human articular cartilage (Bayliss 1990). After two weeks, the middle zone is no longer 

present and after three weeks the elongated cells in the superficial layer also disappears and 

the chondrocyte-like cells in the deep zone are surrounded by ECM (Sekiya et al., 2002). 

During the early stages of chondrogenesis, ECM molecules like cadherins, versican, 

fibromodulins and COMP are expressed, whereas the intermediate stage is defined by the 

synthesis of aggrecan, decorin and biglycan and subsequently type II collagen and 

chondroadherin (Barry et al., 2001; Koga et al., 2008). Members of TGF-β superfamily 

especially TGF- β1, TGF- β2 and TGF- β3 have the ability to induce this response. Numerous 

reports have described the role of Smads, in particular the Smad3-mediated TGF-β signalling 

for chondrogenesis. Smad3 induces Sox9 transcriptional activity and stimulates TGF-β1 

signalling and together with Smad2, Smad4 and Sox9 forms a transcriptional complex to 

activate the expression of Col2a1 gene for the synthesis of collagen type II (Li et al., 2006; 

Furumatsu et al., 2009). 

In addition to the response to biological signals, mechanical stimuli may also play an 

important role in directing MSC chondrogenesis since native articular cartilage tissue is 

subject to various mechanical stimuli, such as hydrostatic pressure, as well as compressive and 

shear straint. For this purpose, bioreactors have been designed in which mechanical stimuli 

and fluid flow can be applied in a controlled setting to assess chondrogenesis of cell-seeded 

scaffolds (Chung et al., 2014).  
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Figure 1.11 A schematic representation of the sequence of events during MSC chondrogenesis.   

Figure 0.3Figure 1.11 A schematic representation of the sequence of events during MSC chondrogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. A schematic representation of the sequence of events during MSC 

chondrogenesis. The main transcriptional and growth factors involved from the 

condensation step to the terminal differentiation step are shown. Abbreviations: TGF-β, 

transforming growth factor-beta; BMP, bone morphogenetic protein; FGF, fibroblast-like 

growth factor; IGF, insulin-like growth factor, VEGF, vascular endothelial growth factor; 

Shh, sonic hedgehog; Ihh, indian hedgehog; PTHrP, parathyroid hormone-related protein; 

Wnt, wingless family; Runx2, Runt-related transcription factor 2; TCF- transcription 

factor; LEF- Lymphoid enhancer-binding factor. Image adpated from Vinatier et al., 

2009.  
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1.6.3 Scaffolds for cartilage repair 

It is well known that in vivo cells reside, proliferate and differentiate within a 3D environment. 

Chondrocytes in the native tissue are embedded within an abundant ECM comprising of 

collagens and proteoglycans. As stated above, when cultured in a two-dimensional (2D) 

environment in vitro, these chondrocytes lose their phenotype and dedifferentiate (Benya and 

Shaffer 1982). However, this process is reversible as dedifferentiated chondrocytes can 

recover their differentiated phenotype when grown in 3D environments (Bonaventure et al., 

1994). These observations confirm that a 3D environment is a pre-requisite for the success of 

cartilage tissue engineering approaches. 3D environments have therefore been used in the 

form of scaffolds to support chondrocyte growth and stabilize their phenotype in culture. 

Micromass pellets also provide a 3D environment for MSCs to aggregate and mimic 

mesenchymal condensation observed during the developmental stages of chondrogenesis 

(Johnstone et al., 1998; Barry et al., 2001).  

For functional tissue engineering, the scaffold used to provide a 3D environment 

should fulfil three main requirements: (1) it should be biocompatible and bioresorbable, with a 

degradation rate that ideally matches regeneration of new tissue; (2) it should have 

interconnected network to allow nutrient diffusion; (3) it should allow for cell attachment, 

proliferation and differentiation. In addition, the architectural structure of the scaffold can 

have an effect on the mechanical properties of the scaffold, cell-seeding and diffusion of 

nutrients. The biomaterial that the scaffold is made from is vital to the success of tissue 

engineering as it can either facilitate or impede cell attachment, proliferation and synthesis of 

the new tissue. These biomaterials can be classified as natural, synthetic and composites. 

Natural biomaterials are found naturally in living organisms and can be extracted and utilized 

as functional biomaterials. Synthetic biomaterials are created artificially using chemical 

processes and therefore have the advantage of customization of the required structural and 

mechanical properties. Composite scaffolds are a combination of two or more biomaterials 

that may have special characteristics intrinsic to each constitute material (Athanasiou et al., 
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2010). The following sections of this introduction will describe natural and synthetic scaffolds 

in more details.  

Natural scaffolds 

Natural biomaterials are relatively well established for their use in biological applications 

because they elicit little or no immune response and are believed to facilitate cell adhesion due 

to the presence of natural ligands that support cellular interactions. Various natural scaffolds 

used in cartilage tissue engineering are derived from components of the ECM. Their structure 

can vary from a hydrogel (i.e. colloidal gel-like form containing water as the dispersion 

media) to fibrous and porous constructs. Collagens and hyaluronic acid-based materials are 

some of the most widely used natural biomaterials in addition to alginate, agarose, fibrin glue 

and chitosan. ECM polypeptides and polysaccharides are most widely used as they are 

biodegradable and produce non-toxic agents upon degradation (Athanasiou et al., 2010). 

 Collagens 

Collagen type I is the traditionally used collagen-based scaffold in tissue engineering and 

studies have shown that this scaffold can facilitate cartilaginous tissue formations under the 

influence of mechanical compression (Hunter et al., 2002) or when cross-liked with GAGs 

(Van Susante et al., 2001; Lee et al., 2004). However, collagen type II is the predominant 

collagen found in the ECM of articular cartilage and some studies have proven its superiority 

in making cartilaginous tissue compared to collagen type I (Mueller et al., 1999; Bosnakovski 

et al., 2006). For clinical application, collagen type I/type III membranes have been used for 

MACI including MACI® (Verigen, Lever- kusen, Germany), Maix® (Matricel, Hezoenrath, 

Germany) and Chondro-Gide® (Geistlich Biomaterials, Wolhusen, Switzerland)(Cherubino et 

al., 2003). A collagen type I gel called Atelocollagen® (Koken Co. Ltd, Tokyo, Japan) has 

been utilized for culture and in vivo implantation of human autologous chondrocytes (Ochi et 

al., 2002) and of BM MSCs (Kuroda et al., 2007). The utilization of these collagen-based gels 

and matrices has shown promising results clinically.  
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Hyaluronic acid (HA) 

HA or hyaluronan is a non-sulphated GAG found in the ECM of articular cartilage. This 

polysaccharide has been used to create biocompatible scaffolds for cartilage tissue 

engineering. It can be cross-linked to form a porous matrix or it could be used as an injectable 

gel. It has been commercially fabricated into a matrix called HYAFF II® (Fidia Advanced 

Biopolymers, Italy) which has been used mainly for osteochondral application (Solchaga et 

al., 1999). This matrix is a derivative of HA formed by esterification of carboxyl groups of 

glucuronic acid with benzyl alcohol and the scaffold has been shown to support cellular 

growth, proliferation and chondrogenic differentiation in vitro (Campoccia et al., 1998). For in 

vivo application, HYAFF II® was seeded with autologous chondrocytes and this tissue-

engineered graft for the treatment of full-thickness cartilage defects was referred to as 

Hyalograft C® (Grigolo et al., 2001; Marcacci et al., 2005). In a recent systematic review of 

clinical trials with Hyalograft C®, it was reported that the quality of the repair tissue was 

predominantly of a hyaline-like in nature (Wylie et al., 2015). Despite the success of this 

scaffold for the treatment of chondral and osteochondral defects, the European Medical 

Association (EMA) expressed concerns regarding its manufacturing and the company 

withdrew their EU application for further approval (McGowan and Stiegman 2012).  

Synthetic scaffolds 

Synthetic scaffolds have been produced commercially and can be customized according to 

their physical and chemical properties. One of the major advantages of these scaffolds are that 

they are pathogen-free and can therefore have low potential for immunological rejection. They 

can be tightly controlled for their mechanical strength and degradation profile as per the 

demand of the tissue they are designed to repair or regenerate. Poly-glycolides, poly-lactides, 

and their co-polymers are extensively used for designing synthetic scaffolds. They can be 

conformed into porous matrices, non-woven meshes, or felts which allow flexibility to shape 

and architecture. The most commonly used synthetic materials in cartilage tissue engineering 

include polycaprolactone (PCL), poly L-lactic acid (PLLA), poly(DL-lactic-co-glycolic acid) 
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(PLGA) and polyglycolic acid (PGA) (reviewed by Matsiko et al., 2013). PCL scaffolds have 

been used to investigate the in vitro chondrogenic potential of MSCs and the results indicated 

chondrogenic gene expression and matrix deposition (Kim et al., 2010). PGA based porous 

felt has been evaluated in vitro and in vivo for repair of cartilage defects (Endres et al., 2012). 

It has shown successful results when transplanted with autologous chondrocytes in a porcine 

model of chondral defects (Liu et al., 2002). ECM production has been consistently observed 

using PGA scaffolds, which, along with predictable degradation rates, makes PGA attractive 

for cartilage tissue engineering purposes (Freed et al., 1994; Freed et al., 1993; Kreuz et al., 

2013). PLA is another polymer used extensively in the medical field and along with PGA, has 

been approved by the FDA for application in humans. PLA generally degrades slower than 

PGA with a total degradation time ranging from twelve months to over two years (Middleton 

and Tipton 2000). PLGA is a copolymer composed of PGA and PLA monomers. It has been 

used to assess chondrogenesis of MSCs in vitro (Zheng et al., 2011) and in vivo (Han et al., 

2008) and has shown successful cartilage regeneration. The controllable degradation rate of 

these polymeric scaffolds is advantageous for cartilage tissue engineering purposes, however a 

major drawback of the synthetic materials is that their degradation products are highly 

concentrated acids that can lead to localised inflammation and apoptosis in vivo (reviewed by 

Hutmacher 2001). A synthetic bilayered product licensed as TRUFIT CB® is composed of 

poly-(DL-lactide-co-glycolide or PDLG) and calcium sulphate and is commercially available 

for chondral and osteochondral tissue repair applications (Carmont et al., 2009) 

 The microarchitecture of these biomaterials is a key factor in determining the adhesion 

and proliferation of cells as well as the retention of newly synthesized matrix. Porosity and 

pore size can have a major impact on cell infiltration and matrix production. The pores need to 

be large enough to permit cell migration, but also small enough to provide sufficient surface 

area for cell adhesion (Zeltinger et al., 2001). The mechanical properties of the scaffold play a 

significant role in the regeneration of neo-cartilage. These biomaterials must be able to support 

cell growth whilst possessing adequate durability to remain uncompromised by normal joint 
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functioning until sufficient new tissue regenerates. To truly mimic articular cartilage, scaffolds 

must be able to withstand high compressive loads (Matsiko et al., 2013). It has been 

previously shown that the mechanical properties of a biomaterial can have an effect on the 

differentiation of MSCs where scaffolds with stiff compressive modulus encouraged 

osteogenic differentiation and softer more compliant scaffolds supported chondrogenic 

differentiation (Murphy et al., 2012). Furthermore, for the success of tissue engineered 

constructs to regenerate cartilage, they should be retained at the implantation site. Not only 

this, constructs should allow for the integration of the regenerated tissue with the native tissue 

(Risbud and Sittinger 2002). 

Despite the various different natural and synthetic scaffolds developed for the restoration 

of damaged cartilage, their clinical use is limited due to either a lack of preclinical animal 

studies or their risk of disease transmission and immune reaction. As a result, collagen- and 

HA-based matrices are the most popular natural biomaterials in clinical use nowadays, as they 

offer a substrate naturally found in native cartilage tissue (Iwasa et al., 2009; Wylie et al., 

2015).  

Clinically available scaffolds used for cartilage repair 

Several different biomaterials have been utilized clinically for restoration of chondral defects 

including NeoCart (Histiogen- ics Corporation, Waltham, MA), CaReS-1S (ArthroKinetics, 

Esslingen, Germany), Hyalograft C (Fidia Farmaceutia, Italy), Cartipatch (TBF Tissue 

Engineering, Bron, France), BST-CarGel (Bio- syntech, Quebec, Canada), Bioseed-C 

(BioTissue Technologies, Freiburg, Germany), Chondro-Gide® (Geistlich Biomaterials, 

Wolhusen, Switzerland), MACI® (Genzyme, Cambridge MA), and Novocart (TETEC AG, 

Reutlingen, Germany) (Getgood et al., 2009; Brittberg 2010). Table 1.1 represents some of the 

current scaffolds used for clinical trials for cartilage repair. In this study, three clinical grade 

scaffolds have been investigated for their potential towards chondrogenesis, namely; Chondro-

Gide®, Alpha Chondro Shield® and Hyalofast™. 
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Chondro-Gide® 

Chondro-Gide® is a bilayered structured scaffold consisting of collagen type I and collagen 

type III. The external layer is a compact surface with good mechanical strength and the 

internal layer is a porous surface that supports cell attachment and matrix synthesis. The 

compact surface acts as a barrier and prevents cell leakage. In vitro and in vivo studies have 

demonstrated the excellent capacity of this scaffold for cell attachment, maintenance of 

chondrocyte phenotype and encapsulation of the cells within the defect (Fuss et al., 2000; 

Gigante et al., 2007).  This scaffold has also been clinically applied in MACI procedure for 

over a decade (reviewed by Iwasa et al., 2009). As per a recent systematic review on the 

effects of matrices on cartilage repair, it was shown that Chondro-Gide® was one of the two 

most common membranes used with the ACI procedure. Clinical outcomes at follow-ups have 

shown significant improvement in functional scores as well as regeneration of a hyaline-like 

repair tissue or hyaline-like and fibrocartilage repair tissue (Wylie et al., 2015).  

Alpha Chondro Shield® 

Alpha Chondro Shield® is a synthetic non-woven mesh of PGA. It is intended for use in 

microfracture procedures as an easy-to-use, off-the-shelf and cost-effective implant. So far, 

only one pre-clinical animal study has been performed using this scaffold in combination with 

HA in an ovine chondral defect model with promising outcomes revealing cartilaginous repair 

tissue 3 months after transplantation (Erggelet et al., 2007). 

Hyalofast™ 

Hyalofast™ (Fidia Advanced Bio- polymers, Abano Terme, Italy) is a non-woven HA-based 

mesh intended for use as a cell-free implant for the in situ entrapment of MSCs for the 

treatment of chondral and osteochondral lesions. So far only one clinical study has been 

published where this scaffold was filled with BM concentrate and covered with a layer of 

platelet-rich-fibrin in a one-step procedure. The authors reported overall good results in terms 

of the functional improvement, graft integration and defect fill at a 2 year follow-up (Buda et 

al., 2010). 
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Table 0.1Table 1.1  Scaffolds used for clinical applications 

Table 1.1  Scaffolds used for clinical applications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1.  Scaffolds used for clinical applications.  A variety of scaffolds have been 

developed for the restoration of cartilage defects. This table provides a description of the 

commercially available scaffolds, their composition, cell type they are implied to use with 

and the on-going or completed clinical trials. Table adapted from Ryan and Flanigan, 

2013.  
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1.7 Current perspective 

Articular cartilage is an avascular, load bearing connective tissue, which has limited intrinsic 

healing capacity. Chondral or osteochondral defects and OA represents major clinical 

challenges. As per the ICRS, there are numerous emerging therapies for restoring damaged 

cartilage and some of these have become available in the last five years. The microfracture 

procedure, ACI and osteochondral autografting procedures have the capacity to stimulate 

cartilage repair and restoration, but the results are highly variable. In addition, clinical 

outcomes may be greatly influenced by patient-specific and defect-specific factors (Harris et 

al., 2010). Tissue engineering approaches with chondrocytes and MSCs are now considered to 

be promising for the repair of articular cartilage lesions. There is a significant need for novel 

methods and procedures that can provide sufficient cell numbers, either using chondrocyte or 

MSCs, which are capable of effective cartilage repair. The wide availability of MSCs from 

different sources makes their use for cartilage repair an attractive option (reviewed by 

Mobasheri et al., 2014). Although tissue engineering approaches for cartilage repair using 

MSCs appear promising, the question of which cell source is the most suitable source still 

remains. Future efforts in cartilage tissue engineering should focus on addressing the question 

of which cell type and which scaffold is most suited for cartilage repair.  
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1.8 Aims and objectives 

The overriding aim of this thesis was to investigate cell sources for cartilage repair using 

commercially available and clinically applicable cell scaffolds. In particular, the thesis 

examined the chondrogenic differentiation potential of primary human MSC populations from 

BM and AT in three clinical scaffolds, namely Chondro-Gide®, Alpha Chondro Shield® and 

Hyalofast™. It has also examined the chondrogenic and cartilage repair potential of plastic 

adherent versus CD271 selected MSCs. 

 In order to address the overriding aim, the following objectives were determined: 

 To examine in vitro the incorporation, growth and chondrogenic differentiation 

potential of culture expanded MSCs versus freshly isolated cells from BM and AT. 

This study has been presented in Chapter 3. 

 To further examine in vitro the chondrogenic differentiation potential of AT MSCs 

selected using CD271 as a marker compared to MSCs selected on the basis of plastic 

adherence alone. This study has been presented in Chapter 4. 

 To test in vivo the potential of CD271 positive AT MSCs versus AT MSCs selected 

on the basic of plastic adherence for cartilage repair. This study has presented in 

Chapter 5.  

The findings of these studies have been discussed in Chapter 6.  
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Chapter 2: Materials and methods 
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2.1 Routine cell culture 

2.1.1 Isolation and culture of primary bone marrow-derived mesenchymal stem cells (BM 

MSCs) 

Bone marrow aspirates were kindly provided by Mr. Martyn Snow at the Royal Orthopaedic 

hospital, Birmingham. Following local research ethical committee (LREC) approval (LREC 

number 12/EE/0136 and 06/Q2601/9) and informed consent, BM was harvested from the 

posterior superior iliac crest of patients having a knee-reparative surgery. BM-MSCs were 

isolated from BM aspirates by density gradient centrifugation (Ficoll-Paque™ Plus). Briefly, 

2-5 ml of aspirate was mixed with 5ml phosphate buffered saline (PBS) (PAA, Yeovil, 

Somerset, UK), and was gently layered onto 5 ml of Ficoll-Paque™ Plus (GE Healthcare, 

Buckinghamshire, UK) in 15 ml tubes (SLS, East Riding of Yorkshire, UK) and centrifuged at 

900g for 20 minutes. After this time a “buffy coat” containing mononucleated cells would 

appear, which was harvested with sterile plastic pasteur pipettes and washed in standard 

culture media, i.e., Dulbecco’s Modified Eagel’s Medium (DMEM)/F-12, supplemented with 

10% (v/v) fetal calf serum, 1% (v/v) penicillin (50U/ml) and 1% (v/v) streptomycin (50µg/ml) 

(All from PAA, Yeovil, Somerset, UK), followed by  centrifuging at 750g for 10 minutes. The 

resulting pellet was re-suspended in standard culture media when a viable cell count was 

performed by trypan blue exclusion [See section 2.1.3(b)]. These freshly isolated cells were 

referred to as BM mononucleated cells (BM MNCs). BM MNCs were either used directly for 

experiments (see section 2.3.1) or were plated out at a density of 2x10
7
 cells per 75cm

2
 flask in 

20 ml of standard media and incubated at 37 °C in humidified atmosphere containing 5% CO2. 

After 24 hours the non-adherent cells were washed off gently with PBS and the adherent cells 

referred to as BM MSCs were subsequently culture expanded until they reached ∼70% 

confluence. At 70% confluency the cells were passaged and sub-cultured as described below 

in section 2.1.3 (a).  
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2.1.2 Isolation and culture of primary adipose-tissue derived mesenchymal stem cells (AT 

MSCs) 

Following ethical approval and informed consent (LREC number 12/EE/0136), AT MSCs 

were harvested from the excised infrapatellar fat pad of the knee joints of patients having a 

knee replacement surgery. The stromal cells were isolated from the AT as previously 

described (Bunnell et al., 2008). Briefly, the tissue sample was minced and treated with 

0.075% collagenase type I (Sigma, Dorset, UK) for 30 minutes to one hour at 37 °C and 5% 

CO2. After collagenase digestion, DMEM with 20% (v/v) FCS and 1% (v/v) penicillin (50 

U/ml) and 1% (v/v) streptomycin (50 µg/ml) was added to neutralise collagenase activity and 

the digest was centrifuged at 1200 rpm for 10 minutes. Next, the supernatant was discarded 

and the pellet was washed in DMEM containing 20% (v/v) FCS and 1% (v/v) penicillin (50 

U/ml) and 1% (v/v) streptomycin (50 µg/ml) followed by centrifugation at 1200 rpm for 10 

minutes. The re-suspended cell pellet was filtered through 70mm cell strainers. These cells 

were referred to as freshly isolated AT stromal vascular fraction (AT SVF) cells. The AT SVF 

cells were either used directly for experiments (see section 2.3.1) or were cultured in standard 

culture media at 37 °C and 5% CO2. After 24-48 hours the non-adherent cells were washed off 

and the adherent cells referred to as AT MSCs were subsequently culture expanded until they 

reached ∼70% confluence. At 70% confluency the cells were passaged and sub-cultured as 

described below in section 2.1.3 (a).  
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2.1.3 Expansion and storage of cells 

2.1.3 (a) Passaging monolayer of cells 

Monolayer of cells in tissue culture flasks were washed with PBS and incubated with 0.25% 

(w/v) trypsin-ethylendiamine tetra-acetic acid (EDTA) (PAA) for 5-10 minutes at 37˚C. After 

cell detachment, trypsin activity was neutralised by adding an equal volume of standard 

culture media. This cell suspension was centrifuged for 10 minutes at 1000 rpm to form a cell 

pellet. The supernatant was discarded and the cell pellet was re-suspended in standard culture 

media. Following this a viable cell count was performed using trypan blue exclusion [see 

section 2.1.3(b)]. The cells were then seeded into fresh tissue culture flasks at 5x10
3 

cells/cm
2
 

or used at the desired seeding density for different experimental procedures.  

2.1.3 (b) Viable cell counting by trypan blue exclusion 

Trypan blue selectively stains dead cells or membrane damaged cells due to its unique 

property of not passing through intact cell membranes of live cells (Altman et al., 1993). A 20 

µl sample of cell suspension was mixed with 20 µl of trypan blue dye in an eppendorf tube. 

After this, 20 μl of the cell sample and dye mix was loaded onto a standard improved 

Neubauer Haemocytometer (Fisher Scientific, Loughborough, Leicester, UK). Using an X10 

objective, trypan blue negative cells were counted as viable cells and trypan blue positive cells 

were counted as non-viable cells. The numbers of both viable and non-viable cells within an 

area corresponding to a volume of one square of the haemocytometer i.e. 1 x 10
4 
cells/

 
ml were 

counted to give a ratio of viable to non-viable cells. The concentration of viable cells per ml in 

the original cell suspension was calculated by multiplying the viable cell count by 2. 

2.1.3 (c) Cryopreservation of cells 

Cells were harvested by trypsinisation and the cell pellet after centrifugation was re-suspended 

in cold 10% (v/v) dimethyl sulphoxide (DMSO- Sigma) in FCS. Cryovials containing 1-2 ml 

per vial were then placed in a designated cryofreezing container called Mr Frosty (Genta 

Medical, York, UK) that contains isopropyl alcohol (IPA) which is stored at -80˚C. This 
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container allows slow freezing at the rate of -1°C/minute, the optimal rate for cell 

preservation. The cryovials were then stored in -80˚C freezers or liquid nitrogen for long-term 

storage. 

2.1.3 (d) Thawing of cells 

Cells were recovered from -80˚C storage by rapidly thawing the cryovials under a running hot 

tap water. 1 ml of cold standard culture media was then added to the thawed cell suspension 

drop wise over a minute and the resultant diluted cell suspension was transferred to a 15 ml 

centrifuge tube.  After this, 5 ml of cold standard culture media was added drop wise over a 

period of 5 minutes. The cell suspension was left to stand for 5 minutes after which, a further 4 

ml of cold standard culture media was added slowly over a period of one minute. The cells 

were subsequently pelleted by centrifugation for 10 minutes at 1,000 rpm. The pellets were re-

suspended in warm standard culture media, counted and then cultured at a seeding density of 

5x10
3 
viable cells/cm

2 
in 37˚C at 5% CO2.  

 

 

 

 

 

 

 

 



- 77 - 

 

2.1.4 Mycoplasma testing of primary cells 

 Mycoplasma are a large group of intracellular micro-organisms that can contaminate cell 

cultures, and affect experimental data. They lack a cell wall and therefore are  unaffected by β-

lactam antibiotics such as penicillin used in cell culture media, as these antibiotics target 

bacterial cell wall synthesis. These bacteria have the ability to induce remarkable changes in 

cell behaviour with regards to their growth and metabolism and can also cause chromosomal 

aberrations and deprivation of cell culture growth (Chernov et al., 2014). In response to this 

potential problem, cell cultures were screened for contamination with mycoplasma whenever a 

primary cell sample was acquired and then routinely during subsequent culture expansion of 

primary cells every 3-6 months. The EZ-PCR mycoplasma test kit protocol (Geneflow, 

Lichfield, Staffordshire, UK) was used as per manufacturer’s instructions to screen cell 

cultures. For each culture tested, 0.5-1.0 ml of cell culture supernatant was transferred into a 

2ml micro-centrifuge tube and cellular debris was pelleted by centrifugation at 250 g for 1 

minute. The supernatant was transferred into a fresh micro-centrifuge tube and centrifuged at 

15,000 g for 10 minutes to sediment any mycoplasma. The supernatant was carefully decanted 

and the pellet was re-suspended with 50 μl of the Buffer Solution and mixed thoroughly with a 

micro-pipet and heated to 95°C for 3 minutes. The reaction mix was prepared by combining 

35 μl of H2O, 10 μl of reaction mix and 5 μl of test sample in sterile PCR tubes. A positive 

template control was also prepared by adding 1 μl of positive template in place of the 5 μl 

sample. All tubes were placed into a DNA thermal cycler and the following parameters were 

set to amplify the DNA: 30 seconds at 94°C, then 35 cycles of; 30 seconds at 94°C then 120 

seconds at 60°C then 60 seconds at 72°C, followed by 30 seconds at 94°C, 120 seconds at 

60°C and finally 5 minutes at 72°C. The amplified products were analysed using gel 

electrophoresis by loading 15 μl of the amplified PCR product and running the samples in a 

2% (w/v) agarose gel at 100 volts for 1 hour,  alongside a known DNA ladder of 100-1013 

base pairs (HyperLadder™ 100bp, Bioline, London, UK). The gel was then visualised under 

UV light and digitised images were taken using Syngene imaging software (Syngene, 
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Cambridge, UK). The positive control for mycoplasma infection gave a visible band at 270bp.  

Mycoplasma positive cultures were omitted from further experimentations and have not been 

included in any analysis presented in this thesis.  
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2.2 Phenotypic characterisation of culture expanded mesenchymal stem cells 

2.2.1 Immunophenotyping by flow cytometry 

The isolated stromal cells from BM and AT were characterised as per the guidelines proposed 

by the ISCT (Dominici et al., 2006). The stromal cells at passage II-III were harvested by 

trypsinisation and suspended in PBS containing 2% bovine serum albumin (BSA) (Sigma-

Aldrich). The cells were then initially blocked with 10% normal human immunoglobulin (Ig) 

(Grifols, Cambridge, UK) prior to incubation at 4 °C with one of the following phycoerythrin 

(PE) conjugated mouse monoclonal anti-human antibodies: CD34, CD45, CD105 

(Immunotools, Friesoythe, Germany), CD73 or CD90 (BD Biociences, UK). Non-specific 

fluorescence was determined by incubating cells with isotype-matched control phycoerythrin-

conjugated antibodies IgG2a and IgG1 (Immunotools). Immunoreactivity for each CD marker 

was assessed by flow cytometry using a Beckman Coulter FC500 flow cytometer and data 

were analysed using Kaluza® Flow Analysis Software (Beckman Coulter, High Wycombe, 

UK) 

2.2.2 Tri-lineage differentiation of primary stromal cells 

2.2.2 (a) Osteogenic differentiation  

Passage II-IV MSCs were cultured in a 24-well plate and allowed to reach 70-80% 

confluency. The cells were then maintained under osteogenic conditions, consisting of 

standard culture medium supplemented with 10 nM dexamethasone (DEX), 10 mM β-

glycerophosphate and 50 μM ascorbic 2-phosphate (all from Sigma), as previously described 

(Bajada et al., 2009) for 28 days at 37°C and 5% CO2. Control cultures were maintained in 

standard culture media with carriers alone which were methanol as a control for DEX, sterile 

cell culture water for β-glycerophosphate and ascorbic 2-phosphate. The media was 

completely replaced every 2–3 days in either osteogenic or control conditions. Differentiation 

along the osteogenic lineage was evaluated by increased amount of alkaline phosphatase 

activity in differentiated cells compared to undifferentiated cells [See section 2.2.3(a)] 
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2.2.2 (b) Adipogenic differentiation 

Passage II-IV MSCs were cultured in a 24-well plate and allowed to reach 70-80% 

confluence. The cells were then maintained under adipogenic conditions, consisting of 

standard culture medium supplemented with; 1 μM DEX, 0.5 mM 3-isobutyl-methylxanthine 

(Sigma-Aldrich), 1% insulin, transferrin and selenium (ITS-X 100 pre-mix; PAA) and 100 μM 

indomethacin (Sigma-Aldrich), for 28 days at 37°C and 5% CO2 as previously described 

(Bajada et al., 2009). Control cells were maintained in complete media with carriers alone 

which were methanol for DEX and IBMX, and DMSO for indomethacin. Both adipogenic and 

control medium were completely replaced every 2–3 days. Differentiation along the 

adipogenic lineage was evaluated by cellular accumulation of neutral lipid vacuoles by 

staining with Oil Red O [see section 2.2.3(b)] 

2.2.2 (c) Chondrogenic differentiation 

A cell suspension of 25x10
4 
cells was prepared per 1ml of standard culture medium. 1ml of the 

cell suspension was transferred into a 1.5 ml eppendorf and pelleted by centrifugation at 500g 

for 5 minutes (Johnstone et al., 1998). The standard culture medium was then replaced with 

chondrogenic induction medium consisting of DMEM/High glucose supplemented with 

100nM DEX, 37.5μg/ml ascorbate-2-phosphate, ITS-X and 10 ng/ml transforming growth 

factor-β1 (TGF-β1) (PeproTech Ltd., London, UK), and antibiotics. The control cultures were 

treated with DMEM/High glucose media with carriers alone which were methanol for DEX, 

sterile water for ascorbate-2-phosphate and 0.1%  bovine serum albumin (BSA) solution for 

TGF-β1. Pellets were maintained at 37°C and 5% CO2 for 28 days. Both chondrogenic and 

control medium was replaced every 2-3 days, after which the differentiation status of the 

pellets was examined histologically by fixing the pellets, embedding and staining sections 

with toluidine blue histological stain [see section 2.2.3 (c)]. 
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2.2.3 Assessment of MSC differentiation potential 

2.2.3 (a) Alkaline phosphatase activity for osteoblastic differentiation 

Alkaline phosphatase is an extracellular enzyme which is extensively used as a marker for 

osteoblastic differentiation. It was detected by alkaline phosphatase mediated hydrolysis of 

substituted naphthol ester substrate (Naphthol AS-MX phosphate- Sigma), which liberates a 

naphthol derivative that in turn reacts with a diazonium salt (Fast red TR) to produce an 

insoluble azo dye at the site of presence of the active enzyme (Jaiswal et al., 1997). A staining 

solution was prepared immediately prior to staining as follows; 10 mg of Fast red TR was 

added to 8.4 mls of 0.1M Tris HCl buffer, then 1.6 mls of naphthol was added and filtered 

(Whatman No.1 filter paper, Maidstone, UK) just before use. Differentiated and control 

cultures were fixed with 4% formaldehyde for 1 minute and then washed with Tris-Buffered 

Saline and Tween 20 (TBS-T) twice for 1 minute at each wash. To each well of a 24 well 

plate, 500 μl of staining solution was added and then the plates were incubated at room 

temperature for 3-5 minutes. Alkaline phosphatase activity was indicated by the formation of 

dark pink cellular precipitates.  

2.2.3 (b) Oil Red O staining of lipid vacuoles for adipogenic differentiation 

Oil Red O is a dye that binds to lipids such as triglycerides and was used as a marker to assess 

adipogenic differentiation as described previously (Ramírez-Zacarías et al., 1992). The Oil 

Red O staining solution was prepared by dissolving 60mg of Oil Red O powder (Sigma) to 20 

mls of isopropanol and then mixing 6 mls of this stock solution with 4mls of distilled water. 

This solution was then filtered using Whatman filter paper No.1. Differentiated and control 

cultures were washed and fixed with 4% formaldehyde for 30 minutes at room temperature. 

To each well of a 24-well plate was added 500 μl of staining solution and the plates were 

incubated for 1 hour at room temperature. After this time, any unbound dye was washed off 

and lipid accumulation was indicated by red staining of the intracellular lipid vacuoles.  
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2.2.3 (c) Toluidine blue staining of extra cellular matrix for chondrogenic differentiation 

Toluidine blue is an acidophilic metachromatic dye that selectively stains negatively charged 

tissue components  i.e, sulphates, carboxylates, and phosphate radicals. In cartilage, this 

cationic dye binds to negatively charged sulphates attached to glycosaminoglycan chains in 

the extracellular matrix and gives a purple colour (Sridharan and Shankar 2012). Pellets were 

harvested at week 4, fixed with 10% neutral buffered formalin for 24 hours and then processed 

in graded strengths of alcohol and paraffin embedded and sectioned at 5 micron thickness. The 

sections were dewaxed three times in xylene for 4 minutes each and then rehydrated in graded 

strengths of ethanol i.e, 100%, 96% to 70% for 2 minutes in each and then rinsed in tap water 

for 1 minute. Then 0.4% staining solution of toluidine blue (Sigma) in 0.2 M sodium acetate 

buffer (pH 3.75 to 4.25) was added to the sections for 10 minutes. After 10 minutes, the slides 

were rinsed in tap water for 1 minute and then briefly (10 dips) rehydrated through a graded 

alcohol series followed by clearing in two changes of xylene for 5 minutes in each and then 

mounted in Pertex mounting media (Sigma). 
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2.3 In vitro experimental procedures 

2.3.1 Cell seeding into 3-D scaffolds 

In initial experiments to assess the incorporation and growth of different cell sources in 

different scaffolds, the freshly isolated cells from BM (BM MNCs) and AT (AT SVF) were 

used directly for cell seeding following isolation and without culture expansion. The culture 

expanded cells from BM (BM MSCs) and AT (AT MSCs) were used after II-IV passages in 

culture following trypsinisation as previously described [section 2.1.3 (a)]. All cell types were 

seeded at a density of 5x10
4
 cells per 3x3mm

2
 piece of Chondro-Gide®, Alpha Chondro 

Shield® or Hyalofast™ in a volume of 30 µl. The cell-seeded scaffolds were left to incubate at 

37°C and 5% CO2 to allow cell attachment and then 1ml of standard culture media was added 

to each well. This was done in non-tissue culture coated plates to avoid cell adhesion to the 

well surface.  All cell-seeded scaffolds were fed with standard culture media, three times a 

week for a period of four weeks, unless they were used for chondrogenic assessment where 

they were treated with chondrogenic versus control conditions.  

2.3.2. Cell viability assay 

 At day 1, day 7, day 14 and day 28, the cell-seeded scaffolds were assessed for cell 

incorporation and viability using the live/dead cell double staining kit (Sigma-aldrich). The 

staining solution was prepared by mixing 10 μl of calcein AM and 5 μl of propidium iodide 

(PI) in 5 mls of PBS. Calcein-AM, is highly lipophilic and cell membrane permeable. The 

intracellular esterase activity of viable cells hydrolysis Calcein AM that generates calcein 

which emits a strong green fluorescence (λex 490 nm, λem 515 nm). Alternatively, the nuclei 

staining dye PI cannot pass through a viable cell membrane and only intercalates with nucleic 

acid in the nucleus. When the cell membrane is damaged, it emits red fluorescence (λex 535 

nm, λem 617 nm). At each of the time points mentioned, the media was replaced with 1ml of 

the live/dead staining solution and incubated in the dark for 30 minutes at 37°C in 5% CO2. 

After incubation, the staining solution was removed and the cell seeded scaffolds were washed 
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in PBS.  The live and dead cells were visualised by fluorescence imaging and confocal 

microscopy (see section 2.3.4). 

2.3.3 Cell viability scoring 

At each time point, the number of live and dead cells was counted by randomly selecting two 

different regions within each cell-seeded scaffold. Cells were counted throughout the depth of 

the scaffold taking in four fields of view from when the first cell was seen to when the last cell 

was seen. The count of number of cells within the four fields of view was performed for each 

of the two regions. The cell viability data is plotted as number of cells/mm
2
. This was 

calculated by measuring the area of the field of view using x10 lens and then dividing the 

number of cells in that field of view by the area of that field of view to calculate the number of 

cells/mm
2
. If x number of cells were counted in a single field of view, the number of 

cells/mm
2
 were calculated as shown below: 

Area of field of view = πr
2
, where r is the radius of the field of view calculated using a 10x 

lens. 

Cells/mm
2
 = x 

                    πr
2
 

2.3.4 Confocal microscopy  

Confocal microscopy was performed with the Leica SP5TCSII microscope (Leica, Wetzlar, 

Germany). All images were acquired using the 10X dipping objective. The Z-stacks were 

acquired at a resolution of 1024x1024  pixels firing at 200Hz with a 2 μm to 3.21 μm distance 

between each z-stack slice depending on the scaffold. Following acquisition of the z-stack, 

images were compressed into a maximum projection using the Leica imaging software (Leica 

Microsystems DM6000B – SP5TCS).  
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2.3.5 Chondrogenesis of MSC-seeded scaffolds 

To induce chondrogenesis of MSCs seeded within Chondro-Gide®, Alpha Chondro Shield® 

and Hyalofast™, the cell-seeded scaffolds were treated with inducers of chondrogenic 

differentiation, consisting of DMEM-High glucose supplemented with 100 nM DEX, 1μM 

ascorbic acid (Sigma), 1% ITS-X, 10 ng/ml TGF-β1 (PeproTech). The control cultures were 

maintained in DMEM-High glucose with carriers alone. These were cultured for a period of 

28 days at 37°C and 5% CO2. Pellet cultures were used as a control for chondrogenesis. In all 

cases, media was replaced 2-3 times per week. 
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2.3.6 Histological processing, paraffin embedding and sectioning of cell-seeded scaffolds 

Cell-seeded scaffolds were washed twice in PBS and then fixed in 10% neutral buffered 

formalin (Sigma) for 24 hours. After 24 hours, formalin was discarded and replaced with PBS. 

The samples were then processed by the staff at Department of Musculoskeletal Pathology, 

Birmingham, UK. Following tissue processing, the scaffolds were embedded in paraffin in an 

automated tissue embedder. Briefly, the processed cell-seeded scaffold were placed in molten 

wax in a metal container and then the wax was allowed to set at 4°C and a paraffin wax block 

was generated. The blocks were then inserted into the block holder of a standard rotary 

microtome and 5 micron thin sections were taken and were left to air dry for 15 minutes 

before incubation of the slides at 65°C for 60 minutes. The sections on glass slides were then 

stained using different histological stains.  

2.3.7 Haematoxylin and eosin staining of paraffin embedded sections of cell-seeded scaffolds 

Haematoxylin and Eosin (H&E) staining of paraffin embedded sections was performed 

according to the standard operating protocol from the Department of Musculoskeletal 

Pathology, Birmingham, UK. Briefly, sample sections were dewaxed with xylene and 

rehydrated in serial dilutions (100%-70%) ethanol and then washed in tap water. Sections 

were then stained with Ehrlich’s haematoxylin, washed in tap water and differentiated in 0.3% 

acid alcohol (0.3% hydrochloric acid in 70% ethanol). Following this, sections were washed in 

running tap water and counterstained with 1% eosin, washed again with running tap water and 

finally dehydrated. They were then “cleared” and a coverslip was mounted onto the sections 

with Pertex mounting media. The H&E stain indicates nuclei with dark blue colour and 

cytoplasm with varying shades of pink. 
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2.3.8 Toluidine blue staining of paraffin embedded sections of cell-seeded scaffolds 

 For staining of GAGs in the cartilage ECM, 5 um thick sections were cut and deparaffinized, 

rehydrated through a series of graded alcohols, and stained with 0.4% toluidine blue stain as 

previously described [see section 2.2.3 (c)]. Toluidine blue stains cartilage GAGs purple and 

cytoplasm and other connective tissue varying degrees of blue.  

2.3.9 Collagen type II immunohistochemistry 

Collagen type II immunolocalisation was used to identify articular cartilage extracellular 

matrix. Antigen retrieval was performed by incubating sections in 0.1% hyaluronidase and 

0.2% trypsin in hyaluronidase buffer (comprising of 0.02 M phosphate buffer  at pH 7, with 77 

mM sodium chloride and 0.01% BSA: all from Sigma) for 60 minutes at 37°C in a humidified 

chamber. After antigen retrieval, the sections were washed three times in PBS and then 

incubated with a solution of 6.5 μg/ml of collagen type II antibody (Clone CIIC1; 

Developmental Studies Hybridoma Bank, Iowa City, IA) for 60 minutes at room temperature. 

The primary antibody was rinsed off and washed three times in PBS. Visualisation of positive 

collagen type II immunostaining was performed using a commercial kit (Vecta Stain Elite 

ABC kit, Vector labs, Peterborough, UK). Briefly, sections were incubated with a biotinylated 

secondary anti-mouse IgG for 30 minutes at room temperature. The sections were then washed 

three times in PBS and endogenous peroxidise activity was blocked using 0.3% hydrogen 

peroxide in methanol for 30 minutes at room temperature. During this incubation step, the 

Vecta ABC reagent (Vector labs) was prepared and was allowed to stand for 30 minutes 

before use as per the manufacturer’s instructions. After blocking the endogenous peroxidise 

activity, sections were washed three times in PBS and incubated with ABC reagent for 30 

minutes at room temperature. Following this, DAB chromogen (Vector labs) was added for 6-

8 minutes depending on the intensity of colour desired. Sections were then washed in PBS and 

dehydrated through a series of ethanol (70-100%), cleared with xylene and mounted in Pertex 

mounting media. 
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2.3.10 Dimethylmethyline blue (DMMB) assay for proteoglycans 

The DMMB assay protocol was adapted from the method of Farndale et al., 1986 as follows: 

(i) the DMMB dye solution was prepared by adding 3.04g of glycine, 2.37g of NaCl and 16 

mg of 1,9 DMMB to 1 litre of deionized water; (ii) the pH was adjusted to 3.0 with 

hydrochloric acid and the dye solution was stored in a brown bottle; (iii) 50μl aliquots of 

culture medium harvested from the cell-seeded scaffolds at day 28 were added in triplicate to a 

96 well plate; (iv) 200μl of the DMMB dye solution was added to the culture medium and the 

absorbance was assessed at 540 nm immediately. Chondroitin sulphate (CS) from shark 

cartilage (Sigma) was used to provide a standard curve of absorbance (0-40 µg/ml, CS) from 

which the GAG content in the samples of culture medium was calculated. The levels of 

absorbance for GAG content in the samples of culture medium were normalized to account for 

the background absorbance resultant from the presence of phenol red within the medium by 

dissolving the standards in DMEM medium.  

2.3.11. Selective isolation of MSCs using CD271 as a marker 

Following ethical approval and informed consent (LREC number 12/EE/0136), a total of 

61.15 grams of subcutaneous AT and 300 ml of lipoaspirate was used from waste products of 

an abdominoplasty procedure. The AT was minced into small pieces and treated with 0.3 U/ml 

of collagenase (Sigma) for two hours at 37°C. The lipoaspirate sample was digested with 0.3 

U/ml of collagenase for 30 minutes on a pre-warmed orbital shaker at a rotation of 250 rpm 37 

°C. After collagenase digestion, the enzyme was neutralised by adding an equal volume of 

DMEM/20% (v/v) FCS and 1% (v/v) penicillin and streptomycin. The digested preparation 

was transferred to fresh sterile conical bottom tubes and spun at 600g for 10 minutes. The 

resulting cell pellet (i.e, the SVF) was re-suspended in 10 ml of standard culture media and 

was passed through a 100µm cell strainer (BD Biosciences) to remove undigested connective 

tissue. The filtrate was collected in a fresh sterile 15 ml conical bottom tube and was 

centrifuged again at 600g for 10 minutes. The resulting cell pellet was re-suspended in 5ml 

standard culture media and passed through a 40µm cell strainer and a cell count was 
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performed using trypan blue exclusion technique. If red blood cells were observed then the 

cell suspension was treated with one times dilution of erythrocyte lysis buffer (pre-made-

Miltenyi) constituting 1.55M NH4Cl, 100mM KHCO3 and 1mM EDTA at pH7.3, for 10 

minutes at room temperature. The single cell suspension was then used for magnetic 

associated cell sorting (MACS) to isolate CD271
+
MSCs. Half of the cell suspension was 

culture expanded as plastic adherent MSCs (PA MSCs) at a seeding density of 5x10
3
 cells/cm

2 

in tissue culture flasks and the rest was used for CD271
+
MSCs isolation using Miltenyi 

Biotec’s CD271 MicroBead kit with the magnetic separators (Miltenyi, Surrey, UK), as per 

manufacturer’s instructions. Briefly, a cell suspension of up to 10
7
 cells was transferred to 

fresh sterile 15 ml conical bottom tube and centrifuged at 300 g for 10 minutes. The cells were 

then re-suspended in 60 µl of PBS containing 0.5% BSA and 2mM EDTA at pH 7.2 (MACS 

buffer). Then 20 µl of FcR blocking reagent and 20 µl of CD271 MicroBeads were added to 

the suspension and incubated for 15 minutes in the refrigerator (2-8°C). The unbound 

MicroBeads were then washed off by adding 1-2 ml of MACs buffer and centrifuged at 300 g 

for 10 minutes. The supernatant was aspirated completely following centrifugation and the 

cells were re-suspended in 500 µl of MACs buffer. Then a MACS column was prepared by 

placing the column in the magnetic field of a MACS separator and rinsing with 3 ml of MACS 

buffer. The cell suspension of 500 µl was applied to the column and the flow-through was 

collected as the negative fraction. A further 3 ml of MACS buffer was passed through the 

column three times to collect unlabelled cells. Then, using a plunger, 5 ml of MACS buffer 

was flushed through the column and the flow-through was collected as the positive fraction 

referred to as CD271
+
MSCs. The recovery of CD271

+
MSCs (n=2) was 0.3% ± 0.14%.  
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Figure 2.1 A schematic representation of the isolation of CD271 positive MSCs and PA MSCs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. A schematic representation of the isolation of CD271
+
MSCs and PA 

MSCs. Adipose tissue was minced and collagenase digested, after subsequent 

centrifugation and washing steps, the SVF cell pellet was used for either magnetic 

labelling with CD271 microbeads (to generate CD271 MSCs) or directly added to tissue 

culture flasks to select MSCs based on their ability to adhere to plastic (PA MSCs).  

PAMSCs CD271MSCs 

Minced adipose 
tissue Collagenase 

digested and 
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2.3.12 Scanning electron microscopy 

SEM was performed in collaboration with the University of Fukui, Japan and the College of 

Medical and Dental Sciences, Birmingham, UK using their standard operating procedures. 

Briefly, the cell-seeded scaffolds were washed in PBS and then fixed in 2% glutaraldehyde in 

0.1M phosphate buffer (pH 7.4) for 2 hours. Following this, the samples were washed in 0.1M 

phosphate buffer and then treated with 1% osmium tetraoxide for 1 hour. The samples were 

then dehydrated through a graded series of ethanol solution from 50% to 75% to 90% to 95% 

and finally 100% for 10 minutes in each. This was followed by treating the samples with 

transition solvent, t-butyl alcohol for 30 minutes in order to allow freeze-drying in the same 

solvent or they were dried overnight in hexamethyldisilizane (HMDS). After the samples were 

freeze-dried, they were coated with gold palladium and then imaged using a JSM-6390 (JEOL, 

Tokyo, Japan) scanning electron microscope or a Zeiss EVO10 scanning electron microscope 

(Carl Zeiss, Cambridge, UK). 

 

 

 

 

 

 

 

 

 

 



- 92 - 

 

2.4 In vivo experimental procedures 

The in vivo study was conducted as a collaborative project with Dr Kenzo Uchida and Prof. 

Hisatoshi Baba along with other members of the surgical team at the Department of 

Orthopaedic and Rehabilitation Medicine, University of Fukui, Fukui, Japan. 

2.4.1 Animal study design 

A total of 36 female athymic nude rats (F344/N Jcl rnu/rnu, CLEA Japan, Inc. Tokyo, Japan) 

age 6 to 10 weeks and weighing 150 to 170 grams were divided into five groups as; group A 

with PA MSCs (n=12), group B with CD271 MSCs (n=12), group C with scaffold alone 

control group (n=6), group D with fibrin glue alone control group (n=4), group E with no 

intervention (n=2). Bilateral osteochondral defects were created in the patellar groove of each 

animal and either Chondro-Gide® or Alpha Chondro Shield® was used as a cell carrier or 

scaffold. At 3 weeks and 6 weeks post-transplantation, animals were sacrificed to examine the 

extent of wound repair macroscopically (section 2.4.6) and histologically (section 2.4.8). An 

overall representation of the animal study design is shown in Figure 2.3. 

 The rats were fed a standard maintenance diet and provided water freely. The Institutional 

Animal Care and Use Committees of Fukui University, Department of Orthopaedics and 

Rehabilitation Medicine approved all animal procedures (Ethical Approval Number 25-053). 

2.4.2 Femoral osteochondral defect model 

 The rats were anaesthetized by exposure to 3% isoflurane in O2 gas in an anaesthetic chamber 

and during surgery were maintained at 1.5% isoflurane in O2 gas delivered through the 

inhalation mask. After sterilising the knees using 70% ethanol, a medial parapatellar skin 

incision was made followed by dissecting through the muscle and then exposing the knee joint 

by lateral dislocation of the patella. A reproducible model of osteochondral articular cartilage 

defect of 2 mm diameter and 1 mm depth was created in the patellar groove of each femur 

using a 2mm diameter surgical drill. Although the plan was to create full-thickness chondral 

defects, on later histological inspection it was clear that the injury penetrated beyond the 
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subchondral bone and into the trabecular spaces on several occasions. Therefore, the study has 

been designated as osteochondral defect to reflect this extent of injury.  
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Figure 2.2A schematic representation of the in vivo study design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group C 
Scaffold alone  

(n=6) 

Group B 
CD271MSCs  

(n=12) 

Group A 
PAMSCs 
 (n=12 ) 

Group D 
Fibrin glue only 

(n=4) 

Group E 
Defect only 

(n=2) 

36 Athymic rats 

Defect in one knee 
underwent MSC 
transplantation with 
Chondro-Gide® as 
the cell carrier 

Defect in the other knee 
underwent MSC 
transplantation with 
Alpha Chondro Shield® 
as the cell carrier. 

Figure 2.2. A schematic representation of the in vivo study design. A total of 36 

athymic female rats were divided into five groups. Bilateral osteochondral defects were 

created in the patellar groove of each animal. For animals in groups A and B, one knee 

received MSCs seeded on Chondro-Gide® as the cell-carrier and the other knee received 

MSCs seeded on Alpha Chondro Shield® as the cell-carrier. For animals in group C, both 

knees received scaffolds alone. For animals in groups D and E, both knees received fibrin 

glue only or had no intervention, respectively.  
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2.4.3 Preparation of scaffolds for cell seeding  

2mm diameter disks of sterile Chondro-Gide® and Alpha Chondro Shield® were cut out using 

a sterile 2mm diameter punch and a hammer. After the scaffolds pieces were cut, they were 

UV treated on both sides for 15 minutes each to further sterilise the pieces.   

2.4.4 Cell seeding and transplantation 

AT derived, PA MSCs and CD271
+
 MSCs were trypsinised at confluency as previously 

described in section 2.1.3(a). A viable cell count was performed using the trypan blue 

exclusion technique and 5x10
4
 viable cells were seeded in a volume of 10 μl of standard 

culture medium onto the 2 mm diameter disks of each of Chondro-Gide® and Alpha Chondro 

Shield® and were left to promote cell adherence and incorporation at 37°C and 5% CO2 for 30 

minutes before transplantation. Scaffolds were imaged using SEM to examine the extent of 

cell attachment at this time using separate samples. The cell-seeded scaffolds were 

transplanted into the osteochondral defects created in the patellar groove of each rat knee joint 

and then fixed in place with fibrin glue, which was allowed to set for about 10-20 seconds 

(Figure 2.4). The patella was then relocated and the connective tissue was sutured followed by 

the suturing of the skin with nylon sutures. The inhalation mask was then removed and rats 

were transferred back to their cage and were allowed to move freely following recovery. The 

rats were inspected for any signs of infection or inflammation every day.  
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Figure 2.3 A schematic representation of MSCs transplantation for full-thickness osteochondral defects 

 schematic representation of the in vivo study design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chondro-Gide®  Alpha Chondro 
Shield® 

5x10
4
 cells were seeded 

in a volume of 10ul and   
incubated for 
30minutes at 37°C and 
5%CO

2
 prior to 

implantation 
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into discs of 2mm 
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An osteochondral 
defect 2 mm in 
diameter was made on 
the trochlear groove of 
each femur 

Figure 2.3. A schematic representation of MSCs transplantation for full-thickness 

osteochondral defects. Both scaffolds were cut into 2mm
 

diameter sized disks and were 

sterilised using UV prior to cell-seeding. Culture expanded MSCs were trypsinised and 

seeded onto the disk shaped scaffolds using a simple pipetting technique in a volume of 

10µl. Subsequently the cell-seeded scaffolds were transplanted into the defects and fixed 

in place using fibrin glue.  
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2.4.5 Animal sacrifice and perfusion  

At 3 weeks and 6 weeks post-transplantation, 18 animals (comprising of n=6 animals in PA 

MSCs; n=6 animals in CD271
+
MSCs; n=3 animals in scaffold alone control group; n=2 

animals i.e, n=4 knees in fibrin glue alone control group and n=1 animal i.e., n=2 knees for 

no- intervention control group) were sacrificed by overdoes of 3% isoflurane. Once the 

animals had reached the surgical plane of anaesthesia, they were placed on the surgical tray 

and a toe pinch-response test was conducted to determine depth of anaesthesia and to ensure 

that the animals were unresponsive. A 5-6 cm medial incision was made in the middle of the 

rib cage and the skin was separated using the blunt scissors. Then a small lateral incision was 

made through the integument and abdominal wall just beneath the rib cage and the liver was 

carefully separated from the diaphragm. The diaphragm was carefully excised using blunt 

scissors along the entire length of the rib cage to expose the pleural cavity. The sternum was 

then lifted away, carefully trimming any tissue connecting to the heart and the major vessels of 

the heart were clearly viewed. A small incision was then made to the posterior end of the left 

ventricles using sharp scissors. A 15 gauge blunt needle was passed through the cut ventricle 

into the ascending aorta. A haemostat was used to clamp the heart and an incision was made in 

the right atrium to create an outlet of flow without damaging the descending aorta. At this 

point, the animal was ready to be perfused. This was done by attaching the outlet port of the 

tube containing 4% paraformaldehyde to the needle and opening the port to allow perfusion of 

paraformaldehyde through the animal’s heart until the outlet flow from the atrium runs clear. 

Once the animal was fixed, the knees were surgically opened in a similar way as at the time of 

surgery.  

2.4.6 Macroscopic scoring   

All n=18 animals at each time point were assessed macroscopically as follows. After exposing 

the knee joint, the defect was observed and scored macroscopically using an established 

macroscopic scoring system for smaller animal models (Goebel et al., 2012).  Table 2.1 shows 

the parameters used for macroscopically scoring the extent of wound repair. The degree of 
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repair was scored from 0 points (for the best outcome) to 4 points (for the worst outcome) for 

each of the parameters examined. For total scores, the points were added and the degree of 

best repair was represented with the lowest score from a total score of 20 (Table 2.1). Figure 

2.4 shows the representative example images for each of the parameters.  
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Table 2.1.1 Parameters utilized for macroscopic scoring of the repair tissue at 3 weeks and 6 weeks post-

transplantation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1. Parameters utilized for macroscopic scoring of the repair tissue at 3 

weeks and 6 weeks post-transplantation. The degree of repair tissue was scored 0 

points for the best outcome and 4 points for the worst outcome for each of the parameters 

assessed. On total the worst repair would get a score of 20 points and the best repair 

would get a score of 0 points. Parameters adapted from Goebel et al., 2012.  
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Figure 2.4 Representative examples for macroscopic scoring of the defects. 

Figure 2.4. Representative examples for macroscopic scoring of the defects.  

The images display representative examples for the scores (bottom left) for each of the 

parameters assessed. Image adapted from Goebel et al., 2012.  
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2.4.7 Histology 

Out of the 18 animals sacrificed at each time point, 9 animals and one knee from no 

intervention control group were used for histological assessment. The study was designed to 

use the rest 9 animals and one knee for RNA isolation, which was unsuccessful. Therefore, the 

extent of defect repair was only assessed qualitatively using histological assessments. The 

number of n’s presented in Chapter 5 of this thesis for histological scoring reflects the number 

of knees. For histological assessment at 3 weeks and 6 weeks, the n’s were, n=3 in PA MSCs 

group for each of the scaffolds, n=3 in CD271
+
MSC group for each of the scaffolds, n=2 for 

each of the scaffolds in scaffold alone control group, n=2 for fibrin glue only, n=1 knee for no 

intervention control group.  

The animal knees were fixed in 10% neutral buffered formalin (Sigma) for 48 hours and then 

fixed in K-CX decalcifying solution (FALMA, Tokyo, Japan) for 24-48 hours at 4°C. K-CX is 

a rapid decalcification solution constituting mainly hydrochloric acid along with other 

chelating agents. Following this, the rat knees were washed overnight in running tap water and 

then processed and embedded in paraffin wax blocks ready for sectioning. Tissue sections 

were cut at 5 micron thickness in a standard rotary microtome and were then stained with 

H&E stain and toluidine blue histological stain and collagen type II immunolocalisation as 

described in sections 2.3.7, 2.3.8 and 2.3.9, respectively. The tissue sections were scored for 

the extent of cartilage repair using a modified Wakitani scoring system as described in the 

section below.  

2.4.8 Histological scoring 

A modified Wakitani scoring system was used to assess the extent and quality of cartilage 

repair (Wakitani et al., 1994). The original scoring system was modified to add two more 

parameters, to examine the presence of blood vessels and foreign body giant cells (FBGCs). 

Hence, the scoring system comprised of seven different parameters to examine the histological 

quality of the repair tissue. For each of these parameters (presented in Table 2.2), the lowest 
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score represented the ‘best’ repair and a highest score represented the ‘worst’ repair .The 

overall scores were added and then compared between groups. 
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Table 2.2 Modified Wakitani scoring system for histological assessment of repair tissue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2. Modified Wakitani scoring system for histological assessment of repair tissue. 

The best repair tissue was scored 0 points and the worst repair was scored either 2,3 or 4 

depending on the parameter assessed (Wakitani et al., 1994).  
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2.4.9 Immunohistochemistry for human mitochondrial antigen staining 

The sections were stained with anti-human mitochondrial antigen (HMA) antibody (Clone 

113-1: Abcam, Cambridge, UK) to assess the presence of human MSCs. The sections were 

first immersed in citric acid-based antigen retrieval solution (Vector Labs Ltd ) at pH 6 and 

incubated at 60°C in a waterbath overnight (minimum 12 hours). Following this antigen 

retrieval step, the slides were washed in three changes of PBS and incubated for 20 minutes 

with 2.5% horse serum (Vector Labs Ltd) at room temperature to prevent non-specific 

binding. The sections were then incubated with the mouse anti-HMA antibody (1:400 dilution 

in PBS) for 1 hour at room temperature in a humidified chamber. Following this, any unbound 

antibody was washed off in three changes of PBS gently and the sections were incubated with 

biotinylated anti-mouse IgG for 30 minutes at room temperature. The sections were washed 

three times in PBS and endogenous peroxidise activity was blocked using 0.3% hydrogen 

peroxide in methanol for 30 minutes at room temperature. During this incubation step, the 

Vecta ABC regent (Vector Labs Ltd) was prepared and was allowed to stand for 30 minutes 

before use as per the manufacturer’s instructions. After blocking the endogenous peroxidise 

activity, sections were washed in three times PBS and incubated with the ABC reagent for 30 

minutes at room temperature. Following this, a DAB chromogen (Vector labs) was added for 

6-8 minutes depending on the intensity of colour desired. Sections were then washed and 

dehydrated through series of ethanol (70-100%), cleared with xylene and mounted in Pertex. 

Chondrogenic pellet of human MSCs was used as a positive control. Negative control included 

chondrogenic pellet where the primary antibody was omitted.  
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2.5 Statistical analysis 

For results presented in Chapter 3, data was generated from a minimum of n=2 independent 

donors for each BM and AT. For n=2 donors, e.g., live/dead scoring for BM and AT cells in 

scaffolds, data was pooled from internal replicates and has been presented as means ± standard 

deviation of the mean (SD). For n=3 donors, e.g., CD profiling of BM and AT MSCs, data has 

been presented as means ± SEM.   

For results presented in Chapter 4, with the exception of SEM, data was generated from n=2 

MSC donors. This was pooled from internal replicates of GAGs analysis and has been 

presented as means ± SDs.  

For results presented in Chapter 5, data was generated from a single MSC donor, but from 

multiple animals that were included in different experimental groups. For macroscopic scoring 

for e.g., this varied from n=6 for PA MSC group to n=3 for scaffold alone control groups. 

Here, data has been presented as means ± SDs for all groups except for the no intervention 

control group where only 1 animal was assessed.  

Statistical analysis was performed using GraphPad Prism6 software (GraphPad Software, Inc. 

CA, USA) for data presented within Chapter 5 only for groups that had a minimum of n=3 

animals.  Data presented in Chapters 3 and 4 were excluded from statistical analysis due to 

small sample size. For macroscopic scoring of repair tissue in different animal groups, a non-

parametric one-way ANOVA in conjunction with Dunn’s multiple comparison test was 

performed. For histological scoring of cell-treated groups A and B, a non-parametric Mann 

Whitney U test was performed. P values of <0.05 were considered significant. 
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Chapter 3: An in vitro investigation of the incorporation, 

growth and chondrogenesis of freshly isolated versus 

culture expanded cells from human bone marrow and 

adipose tissue in clinically used scaffolds 
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3.1 Background and aims 

ACI is the most extensively studied and practised cell-based therapy for chondral 

defects. This procedure requires the expansion of autologous chondrocytes in the laboratory 

followed by subsequent cell transplantation in a second surgery (Brittberg et al., 1994). The 

long term (3-9 years) clinical outcomes of ACI has shown variable results with some studies 

indicating a production of durable cartilage-like repair tissue (Bartlett et al., 2005; Peterson et 

al., 2010) and others reporting the production of fibrous cartilage (Horas et al., 2003; Roberts 

et al., 2003). Despite the success of a few clinical studies for the use of autologous 

chondrocytes, one of the main obstacles to successful cartilage repair is the de-differentiation 

of chondrocytes to a fibroblast-like state during cell culture expansion (Benya et al., 1978). 

This phenotypic shift is accompanied by alterations in collagen expression patterns with a loss 

of type II collagen, the major extracellular matrix collagen found in hyaline cartilage 

(Schnabel et al., 2002), and a decreased synthesis of proteoglycan. Although, chondrocyte re-

differentiation in appropriate 3D culture systems has been shown in vitro (Benya and Shaffer 

1982), there is less clear evidence of this occurring after transplantation ( Roberts et al., 2003;  

Bartlett et al., 2005). In addition, the chondrocytes that are used for ACI are derived from 

biopsies of tissue obtained from the articular joint, which may be associated with some donor 

site morbidity (Matricali et al., 2010). Therefore, a current focus in regenerative medicine for 

the loss of cartilage is to identify alternative potential therapeutic cell sources that form 

cartilage repair tissue with the characteristics and functionality of native hyaline articular 

cartilage.  

Several preclinical in vitro and animal studies have suggested that MSCs can 

potentially provide an alternative to autologous chondrocytes for the regeneration of cartilage 

as they have the ability to differentiate towards chondrogenic lineage (Mitchell and Shepard 

1976; reviewed by Caplan and Goldberg 1999; Pittenger 2008). BM is the most extensively 

studied source of MSCs, however, AT also appears to be a good source of MSCs (Zuk et al., 

2001). Moreover, MSCs from AT may have certain advantages over those derived from BM, 
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for example, AT can be obtained by minimally invasive procedures compared to highly 

invasive iliac crest biopsy for BM aspirate. Also, the yield of MSCs from AT is markedly 

greater than other sources (Kern et al., 2006; Helder et al., 2007).  

Whether or not AT MSCs are equivalent to BM MSCs in terms of  their chondrogenic 

differential potential is still a matter of debate, where some studies suggested that AT MSCs 

may have inferior potential for  chondrogenesis (Im et al., 2005; Lee et al., 2012) whilst others 

reported on the successful multilineage differentiation potential of AT MSCs that included 

chondrogenesis (Danišovič et al., 2007; reviewed by Strem et al., 2005). Therefore, it is 

important to consider both cell sources when examining and identifying potential therapeutic 

targets for cartilage repair.  

In addition, the uptake of cell therapies for cartilage repair is limited, due, in part, to 

the perceived need for a costly phase of cell culture expansion, whether using chondrocytes or 

MSCs, in order to generate enough cells for transplantation. An alternative approach has 

recently gained some attention, where freshly isolated cells have been used in transplantation 

studies, as BM concentrate, without a period of culture (Giannini et al., 2009; Buda et al., 

2010;  Gobbi et al., 2011). Using freshly isolated cells obviates the need for culture expansion, 

thereby reducing the costs of cell therapies for cartilage repair, as cells can be obtained and 

administered in a one-step procedure, so long as there is a suitable cell scaffold/delivery 

system.  

This chapter has focussed on looking at a variety of potential therapeutic human cell 

sources in combination with three clinically useable cell carriers or scaffolds; Chondro-Gide®, 

Alpha Chondro Shield® and Hyalofast®. The work described was performed to assess the 

incorporation and viability of each of the cell types examined, and to establish the potential of 

the cell-seeded scaffolds for chondrogenesis. The different cell sources were cell culture 

expanded MSCs from BM (BM MSCs) and from AT (AT MSCs), compared with freshly 

isolated mononucleated cells from BM (BM MNCs) and from AT,  the AT SVF.  
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3.2. Phenotypic characterisation of BM MSCs  

Mononucleated cells isolated from BM were selected according to their ability to adhere to 

tissue-culture plastic and culture expanded to passage II-III. These culture expanded cells 

demonstrated a phenotype consistent with the three main criteria proposed by the ISCT. As 

show in Figure 3.1, the adherent culture expanded cells of stromal appearance differentiated 

down the three mesodermal lineages as indicated by positive alkaline phosphatase staining for 

osteogenesis, positive Oil Red O staining of lipid vacuoles for adipogenesis and 

metachromatic toluidine blue staining of paraffin-sections of cell pellets for chondrogenesis. 

The BM MSCs also showed immunopositivity for MSC specific cell-surface antigens, which 

were CD73, CD90 and CD105 and immunonegativity for haematopoietic markers, which were 

CD34 and CD45 (Figure 3.3). 2.2% ± 0.3% cells were CD34 positive, 2.7% ± 0.7% cells were 

CD45 positive, 90.4% ± 5.1% cells were CD73 positive, 84.8% ± 4% cells were CD90 

positive, and 97.8% ± 0.6% cells were CD105 positive, respectively. Table 3.1 shows the 

percentage expression of positive and negative markers in BM MSCs (n=3).  
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Figure 3.1 Tri-lineage differentiation potential of BM MSCs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Tri-lineage differentiation potential of BM MSCs. BM MSCs 

differentiated into osteoblasts, adipocytes and chondrocytes as indicated by the presence 

of alkaline phosphatase positive pink osteoblasts (osteogenesis), Oil Red O positive red 

lipid vacuoles (adipogenesis) and purple metachromatic staining of cartilage ECM 

(chondrogenesis), respectively. BM MSCs, n=3. Original magnification x10. Scale bar = 

100 µm.  
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Figure 3.2 Flow cytometry for CD-cell surface antigen characterisation of BM MSCs. 
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Figure 3.2. Flow cytometry for CD-cell surface antigen characterisation of BM 

MSCs. The grey lined histogram shows immunopositivity for each indicated marker 

whereas the black histogram indicates immunolabelling with an isotype-matched control 

antibody. The x- axis represents the fluorescence intensity and the y-axis represents the 

number of cells counted. The marker M1 indicates positive events. BM  MSCs,  n=3.  
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Table 3.1 Immunoreactivity of BM MSCs for each CD marker 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Percentage expression  of CD markers 

Cell type Patient ID CD34 CD45 CD73 CD90 CD105 

BM MSCs 12-067 2.46 2.74 99.19 84.24 99.07 

BMS 050 1.72 3.84 90.67 92.23 97.37 

BMS 101 2.69 1.54 81.48 78.16 97.15 

Table 3.1. Immunoreactivity of BM MSCs for each CD marker. The percentage of 

cells that were immunopositive for CD34, CD45, CD73, CD90 and CD105 are shown. 

2.2% ± 0.3% cells were CD34 positive, 2.7% ± 0.7% cells were CD45 positive, 90.4% ± 

5.1% cells were CD73 positive, 84.8% ± 4% cells were CD90 positive, and 97.8% ± 

0.6% cells were CD105 positive. Data has been presented as means ± SEM of n=3 patient 

donors.  
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3.3 The incorporation and viability of culture expanded BM MSCs versus freshly 

isolated BM MNCs in the three clinically relevant scaffolds 

The BM MSCs (n=2) adhered and incorporated in all three scaffolds with a greater initial 

incorporation of cells in Chondro-Gide
®
 compared to Alpha Chondro Shield

®
 and 

Hyalofast™. Many cells were lost during cell-seeding and only 0.8% ± 0.1% of BM MSCs 

retained in Chondro-Gide® compared with 0.5% ± 0.4% of cells retained in Alpha Chondro 

Shield® and 0.5 ± 0.3% of cells in Hyalofast™ at day 1. With time in culture after initial cell 

seeding, the prevalence of BM MSCs became markedly greater in Chondro-Gide
®
 than the 

other two. The mean number of BM MSCs per mm
2
 in Alpha Chondro Shield® and 

Hyalofast™ did not appear to increase with time in culture. The morphology of BM MSCs in 

Chondro-Gide
®
 and Alpha Chondro Shield® appeared to be fibroblast-like whereas the cells 

in Hyalofast™ showed a mixed morphology of elongated fibroblast-like cells and round cells. 

Cell viability remained greater than 95% at all-time points and in all the scaffolds. Data has 

been presented as means ± SDs of 16 internal replicates pooled from two patient donors 

(Figure 3.3 and Figure 3.4).  

Freshly isolated BM MNCs (n=2) showed poor incorporation and adhesion in all three 

scaffolds. The number of cells initially incorporated were lower compared to the culture 

expanded MSCs. With time in culture, no viable BM MNCs were seen at day 7 in Chondro-

Gide® and Hyalofast™ and only a few BM MNCs were seen in Alpha Chondro Shield®. 

Morphologically, these cells appeared round and did not show a fibroblast-like appearance. By 

28 days post-seeding, no viable BM MNCs were seen in any of three scaffolds (Figure 3.5 and 

Figure 3.6).  
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Figure 3.3 Growth  and viability of BM MSCs in Chondro-Gide®, Alpha Chondro Shield® and Hyalofast™ 

over 28 days in culture 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Growth  and viability of BM MSCs in Chondro-Gide®, Alpha Chondro 

Shield® and Hyalofast™ over 28 days in culture.  Representative confocal z-stacks are 

shown of BM MSCs following live/dead staining. There appeared to be a greater 

prevalence of viable BM MSCs in Chondro-Gide® compared to Alpha Chondro Shield® 

and Hyalofast™ over a 28 day period. Overall BM MSCs were over 95% viable in all 

three scaffolds during these long term cultures. Viable cells = green fluorescence, non-

viable cells = red fluorescence. BM MSCs, n=2. Scale bar = 100 µm.   
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Figure 3.4 The number of viable BM MSCs in Chondro-Gide®, Alpha Chondro Shield® and Hyalofast™ over 

28 days in culture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. The number of viable BM MSCs in Chondro-Gide®, Alpha Chondro 

Shield® and Hyalofast™ over 28 days in culture. The prevalence of BM MSCs was 

greatest in Chondro-Gide® compared to Alpha Chondro Shield® and Hyalofast™ at all 

time points studied. An increase in the number of cells was seen in Chondro-Gide® only 

with time in culture. All data have been presented as means ± SD of 16 internal replicates 

pooled from n=2 patient donors.  
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Figure 3.5 Growth  and viability of BM MNCs in Chondro-Gide®, Alpha Chondro Shield® and Hyalofast™ 

over 28 days in culture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Growth  and viability of BM MNCs in Chondro-Gide®, Alpha Chondro 

Shield® and Hyalofast™ over 28 days in culture. Representative confocal z-stacks are 

shown of BM MNCs following live/dead staining. The prevalence of BM MNCs was 

poor in all three scaffolds. At day 1, a few cells were seen in Chondro-Gide® and Alpha 

Chondro Shield®, however no cells were seen in any of the three scaffolds during long 

term cultures. Viable cells = green fluorescence, non-viable cells = red fluorescence. BM 

MNCs, n=2. Scale bar = 100 µm. 
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Figure 3.6. The number of viable BM MNCs in Chondro-Gide®, Alpha Chondro 

Shield® and Hyalofast™ over 28 days in culture 

Figure 3.6 The number of viable BM MNCs in Chondro-Gide®, Alpha Chondro Shield® and Hyalofast™ over 

28 days in culture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. The number of viable BM MNCs in Chondro-Gide®, Alpha Chondro 

Shield® and Hyalofast™ over 28 days in culture. The prevalence of BM MNCs was 

greater in Chondro-Gide® followed by Alpha Chondro Shield®, however during long 

term cultures (over 7 days), no cells were seen in any of the three scaffolds. Data has 

been presented as means ± SD of 16 internal replicates pooled from n=2 patient donors.  
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3.4 Phenotypic characterisation of AT MSCs 

Mononucleated cells isolated from the SVF of AT were selected according to their ability to 

adhere to tissue-culture plastic and culture expanded to passage II-III. These culture expanded 

cells demonstrated a phenotype consistent with the three main criteria proposed by the ISCT. 

As show in Figure 3.7, the adherent culture expanded cells of stromal appearance 

differentiated down the three mesodermal lineages indicated by the positive alkaline 

phosphatase staining for osteogenesis, positive Oil Red O staining of lipid vacuoles for 

adipogenesis and metachromatic toluidine blue staining of paraffin-sections of cell pellets for 

chondrogenesis. The AT MSCs also showed immunopositivity for MSC specific cell-surface 

antigens, which were CD73, CD90 and CD105 and immunonegativity for haematopoietic 

markers, which were CD34 and CD45 (Figure 3.8). 3% ± 1.1% cells were CD34 positive, 3% 

± 1.2% cells were CD45 positive, 92.4% ± 4% were CD73 positive, 90.4% ± 3% cells were 

CD90 positive and 93.8% ± 2.8% cells were CD105 positive, respectively. Table 3.2 shows 

the percentage expression of positive and negative markers in AT MSCs (n=3).  
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Figure 3.7 Tri-lineage differentiation potential of AT MSCs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Tri-lineage differentiation potential of AT MSCs. AT MSCs differentiated 

into osteoblasts, adipocytes and chondrocytes as indicated by the presence of alkaline 

phosphatase positive pink osteoblasts (osteogenesis), Oil Red O positive red lipid 

vacuoles (adipogenesis) and purple metachromatic staining of cartilage GAGs 

(chondrogenesis), respectively. AT MSCs, n=3. Original magnification x10. Scale bar = 

100µm. 
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Figure 3.8 Flow cytometry for CD-cell surface antigen characterisation of AT MSCs. 
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Figure 3.8. Flow cytometry for CD-cell surface antigen characterisation of AT MSCs. 

The grey lined histogram shows immunopositivity for each indicated marker whereas the 

black histogram indicates immunolabelling with an isotype-matched control antibody. The x- 

axis represents the fluorescence intensity and the y-axis represents the number of cells 

counted. The marker M1 indicates positive events. AT MSCs, n=3. 
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Table 3.2.  

Table 3.2 Immunoreactivity of AT MSCs for each CD marker. 

 

 

 

 

 

 

 

 

 

 

 

  Percentage expression  of CD markers 

Cell type   Patient ID CD34 CD45 CD73 CD90 CD105 

AT MSCs BMS 003 1.30 1.26 84.77 92.07 88.30 

BMS 006 2.27 1.63 97.92 84.54 98.09 

BMS 010 5.11 5.32 94.78 94.67 95.07 

Table 3.2. Immunoreactivity of AT MSCs for each CD marker. The percentage of 

cells that were immunopositive for CD34, CD45, CD73, CD90 and CD105 are shown. 

3% ± 1.1% cells were CD34 positive, 3% ± 1.2% cells were CD45 positive, 92.4% ± 4% 

were CD73 positive, 90.4% ± 3% cells were CD90 positive, and 93.8% ± 2.8% cells were 

CD105 positive. Data has been presented as means ± SEM of n=3 patient donors.  
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3.5 A comparison of the incorporation and viability of culture expanded AT MSCs 

versus freshly isolated AT SVF cells in the three clinically relevant scaffolds 

Similar to BM MSCs, AT MSCs (n=2) also incorporated and adhered to all three scaffolds and 

there was a greater initial incorporation of AT MSCs in Chondro-Gide® compared to Alpha 

Chondro Shield® and Hyalofast™, and this difference in the prevalence of cells became 

increased considerably by day 7 in culture. Many cells were lost during cell-seeding and only 

1.2% ± 0.1% of AT MSCs retained in Chondro-Gide® compared with 0.7% ± 0.4% of cells 

retained in Alpha Chondro Shield® and 0.6 ± 0.4% of cells in Hyalofast™ at day 1. AT MSCs 

in Alpha Chondro Shield® and Hyalofast™ remained 100% viable during short and long term 

cultures; however, the number of cells incorporated in the two scaffolds did not show an 

increase with time in culture. Morphologically, AT MSCs were similar in appearance to BM 

MSCs, which was fibroblast-like in Chondro-Gide® and Alpha Chondro Shield® where no 

round cells were seen and a mixed morphology of round and elongated cells in Hyalofast™ 

alone. Data has been presented as means ± SDs of 16 internal replicates pooled from two 

patient donors (Figure 3.9 and Figure 3.10). 

Freshly isolated AT SVF cells (n=2) showed better incorporation into the cell scaffolds than 

the BM MNCs. However, only Chondro-Gide® showed cellular incorporation during long 

term cultures. No AT SVF cells were seen in Alpha Chondro Shield® past day 7 and in 

Hyalofast™  past day 14. AT SVF cells appeared mostly round with very few fibroblast-like 

cells where cell incorporation was seen. No cell death was observed in any of three scaffolds 

(Figure 3.11 and Figure 3.12). 
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Figure 3.9The viability of AT MSCs in Chondro-Gide®, Alpha Chondro Shield® and Hyalofast™ over 28 days 

in culture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. The viability of AT MSCs in Chondro-Gide®, Alpha Chondro Shield® 

and Hyalofast™ over 28 days in culture. Representative confocal z-stacks are shown of 

AT MSCs following live/dead staining. There appeared to be a greater incorporation of 

viable AT MSCs in Chondro-Gide® compared to Alpha Chondro Shield® and 

Hyalofast™ over a 28 day period.  Overall AT MSCs were over 95% viable in all three 

scaffolds during these long term cultures. Viable cells = green fluorescence, non-viable 

cells = red fluorescence. AT MSCs, n=2. Scale bar = 100µm. 
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Figure 3.10 The number of viable AT MSCs in Chondro-Gide®, Alpha Chondro Shield® and Hyalofast™ over 

28 days in culture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. The number of viable AT MSCs in Chondro-Gide®, Alpha Chondro 

Shield® and Hyalofast™ over 28 days in culture. The prevalence of AT MSCs was 

greatest in Chondro-Gide® compared to Alpha Chondro Shield® and Hyalofast™ at all 

time points studied. An increase in the number of AT MSCs was seen Chondro-Gide® 

and Hyalofast™ up to day 7 whereas AT MSCs in Alpha Chondro Shield® did not 

increase with time in culture. During long term cultures of day 14 and day 28, AT MSCs 

within all three scaffolds decreased in numbers. All data are presented as means ± SD of 

16 internal replicates pooled from n=2 patient donors. 
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Figure 3.11 The viability of AT SVF cells in Chondro-Gide®, Alpha Chondro Shield® and Hyalofast™ over 28 

days in culture 
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Figure 3.11. The viability of AT SVF cells in Chondro-Gide®, Alpha Chondro 

Shield® and Hyalofast™ over 28 days in culture. Representative confocal z-stacks are 

shown of AT SVF cells following live/dead staining. The was a greater prevalence of AT 

SVF cells in Chondro-Gide® compared to Alpha Chondro Shield® and Hyalofast™. 

Overall AT SVF cells were over 95% viable where cell incorporation was seen and 

appeared mostly round. Viable cells = green fluorescence, non-viable cells = red 

fluorescence. AT MSCs, n=2. Scale bar = 100µm. 
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Figure 3.12 The number of viable AT SVF cells in Chondro-Gide®, Alpha Chondro Shield® and Hyalofast™ 

over 28 days in culture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. The number of viable AT SVF cells in Chondro-Gide®, Alpha Chondro 

Shield® and Hyalofast™ over 28 days in culture.  The prevalence of AT SVF cells 

was greatest in Chondro-Gide® from early time points (day 1 and day 7) through to long 

term cultures of day 14 and day 28. The incorporation of cells diminished in Alpha 

Chondro Shield® and Hyalofast™ after day 7 and no cells were seen in these two 

scaffolds during long term cultures. All data are presented as means ± SD of 16 internal 

replicates pooled from n=2 patient donors. 
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3.6 Chondrogenesis of culture expanded MSCs in the three clinically relevant scaffolds 

The initial studies on cell incorporation and growth of culture expanded versus freshly isolated 

cells from BM and AT demonstrated that for both cell sources, the culture expanded  cells 

appeared to incorporate and grow better than the freshly isolated cells. Therefore, further 

experiments were performed to test whether these culture expanded cells (MSCs) could be 

induced towards chondrogenesis within the same scaffolds.  

3.6.1 BM MSCs 

Viability  

BM MSCs (n=2) incorporated, adhered and remained viable over a 28 day culture in Chondro-

Gide® and Alpha Chondro Shield® under both chondrogenic (+CM) and non-chondrogenic (-

CM) conditions and only under +CM conditions in Hyalofast™. Hyalofast™ had disintegrated 

under -CM conditions. Under +CM conditions, in Chondro-Gide® and Alpha Chondro 

Shield®, BM MSCs were mostly round with a very few elongated or fibroblast-like cells, and 

there was the appearance of dense networks or aggregates of cells throughout the depth of the 

scaffolds. In control -CM conditions, BM MSCs in Chondro-Gide® were mostly individually 

dispersed and grew sparsely throughout the scaffold with an appearance mostly of fibroblast-

like cells and a few round cells that did not aggregate together. In Alpha Chondro Shield® 

under -CM conditions, BM MSCs grew in a less dense network with an appearance of mainly 

elongated and fibroblast-like cells. The Hyalofast™ scaffold showed clusters of cells which 

were mainly round in morphology with few elongated cells that grew along the length of the 

fibres under +CM conditions (Figure 3.13). 
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Figure 3.13 The viability of BM MSCs in Chondro-Gide®, Alpha Chondro Shield® and Hyalofast™ under 

chondrogenic (+CM) and non-chondrogenic (-CM) conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. The viability of BM MSCs in Chondro-Gide®, Alpha Chondro Shield® 

and Hyalofast™ under chondrogenic (+CM) and non-chondrogenic (-CM) 

conditions. Representative confocal z-stacks are shown of BM MSCs seeded scaffolds 

following live/dead staining after 28 days in culture. BM MSCs remained over 95% 

viable under both +CM and –CM conditions in Chondro-Gide® and Alpha Chondro 

Shield®. Hyalofast™ degraded during these long term cultures under –CM conditions 

and viable cells were seen only under +CM conditions. BM MSCs pellet showed mostly 

viable cells with a few dead cells seen towards the centre of the cell pellet. BM MSCs, 

n=2. Scale bar = 100 μm. 
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H&E staining 

The haematoxylin and eosin (H&E) staining of paraffin embedded sections of Chondro-Gide® 

and Alpha Chondro Shield® revealed cell penetration throughout the scaffolds (Figure 3.14).  

Under +CM conditions, cells within the Chondro-Gide® scaffold showed characteristic 

rounded shape of mature chondrocytes embedded within ECM on the porous side of the 

scaffold, whereas cells within Alpha Chondro Shield® showed a more elongated morphology 

through the scaffold with little ECM deposition. BM MSCs showed a more elongated 

fibroblast-like morphology with no matrix deposition under –CM conditions in both Chondro-

Gide® and Alpha Chondro Shield®. The Hyalofast™ scaffold did not survive histological 

processing and this precluded further histological examination of chondrogenesis with this 

scaffold. 

Toluidine blue staining 

In +CM conditions, toluidine blue staining of Chondro-Gide® and Alpha Chondro Shield® 

scaffold showed varying degrees of ECM deposition with the greatest evidence of purple 

metachromatic staining seen in Chondro-Gide® consistently with the cells of mature 

chondrocytic (round or oval) morphologies. Although there was ECM deposition observed in 

Alpha Chondro Shield® seeded with BM MSCs, there were no clearly chondrocytic round-

shaped cells present. BM MSCs seeded within both scaffolds under –CM conditions showed 

no ECM deposition (Figure 3.15).   

Soluble GAG analysis 

BM MSCs in Chondro-Gide® secreted an average of 13 µg/ml ± 7 µg/ml of GAGs in +CM 

conditions compared to 4 µg/ml ± 2 µg/ml under –CM conditions. In Alpha Chondro Shield®, 

BM MSCs secreted an average of 7 µg/ml ± 2 µg/ml of GAGs  under +CM and 5 µg/ml ± 3 

µg/ml  under –CM conditions. In Hyalofast™, BM MSCs secreted an average of 14 µg/ml ± 2 

µg/ml of GAGs under +CM conditions compared to 7 µg/ml ± 4µg/ml of GAGs under –CM 
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conditions. BM MSCs when cultured as pellets secreted lower levels of GAGs (3µg/ml ± 2.5 

µg/ml) than BM MSCs seeded within the three scaffolds under +CM conditions (Figure 3.16). 
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Figure 3.14 The incorporation and distribution of BM MSCs in Chondro-Gide® and Alpha Chondro Shield® 

under chondrogenic (+CM) and non-chondrogenic conditions (-CM). 
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Figure 3.14. The incorporation and distribution of BM MSCs in Chondro-Gide® 

and Alpha Chondro Shield® under chondrogenic (+CM) and non-chondrogenic 

conditions (-CM). Representative haematoxylin and eosin (H&E) staining of BM MSCs 

seeded scaffolds is shown.  Purple haematoxylin staining of cell nuclei was observed in 

both the scaffolds under both +CM and –CM conditions. In Chondro-Gide®, cells 

showed a characteristic rounded morphology, indicative of chondrocytes, under +CM 

conditions. In Alpha Chondro Shield®, cells were seen along the length of the fibres with 

little evidence of ECM deposition under +CM conditions. In both scaffolds under –CM 

conditions, cells showed dispersed penetration through the scaffolds. BM MSCs, n=2. 

Original magnification x10.  Scale bar =100 µm.  
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Figure 3.15 GAG deposition by BM MSCs in Chondro-Gide® and Alpha Chondro Shield® under chondrogenic 

(+CM) and non-chondrogenic (-CM) conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. GAG deposition by BM MSCs in Chondro-Gide® and Alpha Chondro 

Shield® under chondrogenic (+CM) and non-chondrogenic (-CM) conditions. 

Representative images are shown of toluidine blue stained BM MSCs seeded  scaffolds 

after 28 days in culture. BM MSCs in Chondro-Gide® showed greater GAG deposition 

than BM MSCs in Alpha Chondro Shield® under +CM conditions. BM MSCs in 

Chondro-Gide® showed a differentiated morphology of distinct round cells (arrowed) 

embedded within the metachromatic purple ECM under +CM conditions only. BM MSCs 

in Alpha Chondro Shield® did not show distinct round shaped cells and the purple 

metachromatic staining was less marked. BM MSC pellet and a section of human knee 

cartilage were used as controls. BM MSCs, n=2. Insets represents x10 image of the same 

sample; scale bar = 100 µm. Original magnification x40; scale bar = 25 µm.  
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Figure 3.16 GAG secretion by BM MSCs within Chondro-Gide®, Alpha Chondro Shield® and Hyalofast™ 

under chondrogenic (+CM) and (–CM)  conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. GAG secretion by BM MSCs within Chondro-Gide®, Alpha Chondro 

Shield® and Hyalofast™ under chondrogenic (+CM) and (–CM) conditions. BM 

MSCs seeded within all three scaffolds secreted greater levels of GAGs in +CM 

conditions compared to –CM conditions.  BM MSCs seeded within these scaffolds also 

secreted greater levels of GAGs than the cell pellet alone. BM MSCs seeded within 

Alpha Chondro Shield® secreted lower levels of GAGs compared to BM MSCs seeded 

within Chondro-Gide® and Hyalofast™. Data shown are means + SD of 6 internal 

replicates pooled from n=2 patient donors. 
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Collagen type II immunostaining 

As shown in Figure 3.17, BM MSCs under +CM conditions deposited an ECM that was 

immunopositive for collagen type II. This immunopositive staining for collagen type II was 

absent under –CM conditions. There was marked and more widespread immunopositivity for 

collagen type II within the porous layers of Chondro-Gide® than in Alpha Chondro Shield®. 

Some positive staining for collagen type II was seen in the pellets of BM MSCs; however, it 

was not as marked as that seen in Chondro-Gide®. The strongest collagen type II staining was 

seen in sections of human articular cartilage used as controls.  
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Figure 3.17 Collagen type II immunolocalisation in BM MSCs seeded Chondro-Gide® and Alpha Chondro 

Shield® under chondrogenic (+CM) and non-chondrogenic conditions (-CM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. Collagen type II immunolocalisation in BM MSCs seeded Chondro-

Gide® and Alpha Chondro Shield® under chondrogenic (+CM) and non-

chondrogenic conditions (-CM).  BM MSCs within Chondro-Gide® scaffold under 

+CM conditions showed collagen type II immunostaining staining of ECM (black 

arrowed). BM MSCs within Alpha Chondro Shield® showed no obvious mature 

chondrocytes, however localised darker brown staining was seen around the scaffold 

fibres (black arrowed). BM MSCs pellets showed some positivity for collagen type II. 

The positive control was a tissue section of human knee articular cartilage and the 

negative control was the same section with the omission of primary antibody. BM MSCs, 

n=2. Original magnification x40. Scale bar = 25 µm. 
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3.6.2 AT MSCs 

Viability 

AT MSCs (n=2) remained viable in all three scaffolds under +CM conditions and –CM 

conditions, with the exception of Hyalofast™ that has degraded under –CM conditions. 

Similar to BM MSCs, AT MSCs appeared condensed and formed confluent layers of cells in 

Chondro-Gide® and Alpha Chondro Shield® only under +CM conditions. AT MSCs 

appeared to be individually dispersed under –CM conditions.  Morphologically, cells appeared 

round within Chondro-Gide® and Alpha Chondro Shield® with a few fibroblast-like cells 

seen under +CM conditions compared to a greater number of elongated and fibroblast-like 

cells seen under –CM conditions. AT MSCs in Hyalofast™ condensed to form clusters of cells 

in round shaped nodules which were evenly distributed throughout the scaffold under +CM 

conditions only (Figure.3.18).  

H&E staining 

H&E staining of sections of the cell-seeded scaffolds revealed cell penetration throughout the 

scaffold in Chondro-Gide® in both +CM and –CM conditions. In Alpha Chondro Shield®, 

AT MSCs were seen in clusters along the length of the scaffolds mostly under +CM 

conditions (Figure 3.19). Similar to the studies of BM MSCs, the Hyalofast™ scaffold did not 

survive the histological processing and therefore no histological analyses were possible for 

this scaffold.  

Toluidine blue staining 

ECM deposition was observed to varying degrees under +CM conditions with the greatest 

amount of deposition observed in Chondro-Gide®, followed by Alpha Chondro Shield®. AT 

MSCs in Chondro-Gide® showed localised areas of purple metachromatic toluidine blue 

staining only under +CM conditions. Under –CM conditions no ECM deposition was seen in 

both the scaffolds (Figure 3.20).   
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Soluble GAG analysis 

AT MSCs in Chondro-Gide® secreted an average of 18 µg/ml ± 10 µg/ml  of GAGs in +CM 

conditions compared to 4 µg/ml ± 3 µg/ml  under –CM conditions. In Alpha Chondro 

Shield®, AT MSCs secreted an average of 12 µg/ml ± 6 µg/ml of GAGs  under +CM and 4 

µg/ml ± 4 µg/ml  under –CM conditions. In Hyalofast™, AT MSCs secreted an average of 14 

µg/ml ± 7 µg/ml of GAGs under +CM conditions compared to 6.5 µg/ml ± 1 µg/ml of GAGs 

under –CM conditions. Similar to the GAG studied on BM MSCs, AT MSCs when cultured as 

pellets secreted lower levels of GAGs (1 µg/ml ± 0.8) µg/ml than AT MSCs seeded within the 

three scaffolds under +CM conditions (Figure 3.21). 
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Figure 3.18 The viability of AT MSCs in Chondro-Gide®, Alpha Chondro Shield® and Hyalofast™ under 

chondrogenic (+CM) and non-chondrogenic (-CM)  conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. The viability of AT MSCs in Chondro-Gide®, Alpha Chondro Shield® 

and Hyalofast™ under chondrogenic (+CM) and non-chondrogenic -CM) 

conditions. Representative confocal z-stacks are shown of AT MSCs seeded scaffolds 

following live/dead staining after 28 days in culture. AT MSCs remained over 95% viable 

under +CM and –CM conditions in Chondro-Gide® and Alpha Chondro Shield®. 

Hyalofast™ degraded during these long term cultures under –CM conditions and viable 

cells were seen only under +CM conditions. AT MSCs pellet showed mostly viable cells 

with a few dead cells seen towards the centre of the cell pellet. AT MSCs, n=2. Scale bar 

= 100 μm. 
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Figure 3.19 The incorporation and distribution of AT MSCs in Chondro-Gide®, and Alpha Chondro Shield® 

under chondrogenic (+CM) and non-chondrogenic conditions (-CM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. The incorporation and distribution of AT MSCs in Chondro-Gide®, 

and Alpha Chondro Shield® under chondrogenic (+CM) and non-chondrogenic 

conditions (-CM). Representative images are shown of H&E stained AT MSCs seeded 

scaffolds. Purple haematoxylin staining of cell nuclei was observed in all the scaffolds 

under both +CM and –CM conditions. In Chondro-Gide®, AT MSCs distributed evenly 

through the porous side of the scaffold. In Alpha Chondro Shield® cells were seen along 

the length of the fibres with evidence of ECM deposition in +CM conditions only. AT 

MSCs, n=2. Original magnification x10. Scale bar =100µm.  

Compact 
side 

Porous side 

Compact 
side 

Porous side 

C
h

o
n

d
ro

 G
id

e®
 

  A
lp

h
a 

C
h

o
n

d
ro

 S
h

ie
ld

®
 

+ CM - CM 



- 140 - 

 

 

 

Figure 3.20 GAG deposition by AT MSC in Chondro-Gide® and Alpha Chondro Shield® under chondrogenic 

(+CM) and non-chondrogenic (-CM) conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20. GAG deposition by AT MSC in Chondro-Gide® and Alpha Chondro 

Shield® under chondrogenic (+CM) and non-chondrogenic (-CM) conditions. 

Representative images are shown of toluidine blue stained AT MSCs seeded scaffolds 

after 28 days in culture. AT MSCs in Chondro-Gide® showed greater GAG deposition as 

indicated by more marked purple metachromatic staining in Chondro-Gide® than in 

Alpha Chondro Shield® under +CM conditions only. AT MSC pellet and a section of 

human knee cartilage were used as controls. AT MSCs, n=2. Insets represents x10 image 

of the same sample; scale bar = 100 µm. Original magnification of each image is x40; 

scale bar = 25 µm.   
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Figure 3.21 GAG secretion by AT MSCs seeded within Chondro-Gide®, Alpha Chondro Shield® and 

Hyalofast™ under chondrogenic (+CM) and (–CM) conditions 
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Figure 3.21. GAG secretion by AT MSCs seeded within Chondro-Gide®, Alpha 

Chondro Shield® and Hyalofast™ under chondrogenic (+CM) and (–CM) 

conditions. AT MSCs seeded within all three scaffolds showed greater levels of GAGs 

under +CM conditions compared with –CM conditions. AT MSCs seeded within the 

three scaffolds also secreted increased levels of GAGs than the cell pellet alone. The 

highest amounts of GAGs were secreted by AT MSCs seeded within Chondro-Gide®. 

Data shown are means + SD of 6 internal replicates pooled from n=2 patient donors.  
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Collagen type II immunostaining 

In contrast to the results seen with BM MSCs, there was little immunopositivity for collagen 

type II observed in Chondro-Gide® seeded with AT MSCs under +CM or –CM conditions. 

however, some collagen type II immunopositivity was seen around the fibres of the Alpha 

Chondro Shield® scaffolds seeded with AT MSCs, but only under +CM conditions. The cell 

pellet of AT MSCs under +CM conditions stained weakly for collagen type II. The strongest 

staining was observed in the sections of human articular cartilage used as controls (Figure 

3.22). 
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Figure 3.22Collagen type II immunolocalisation in AT MSCs seeded in Chondro-Gide®, and Alpha Chondro 

Shield® under chondrogenic (+CM) and non-chondrogenic (-CM) conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22. Collagen type II immunolocalisation in AT MSCs seeded in Chondro-

Gide®, and Alpha Chondro Shield® under chondrogenic (+CM) and non-

chondrogenic (-CM) conditions. AT MSCs seeded within Chondro-Gide® and Alpha 

Chondro Shield® showed localised collagen type II under +CM conditions only. AT 

MSCs cell pellet did not stain strongly positive for collagen type II. The positive control 

was a section of human knee articular cartilage and negative control is the same section 

with the omission of primary antibody. AT MSCs, n=2. Original magnification of each 

image is x40. Scale bar = 25 µm. 
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3.7  Discussion  

MSCs have been studied as a potential alternative cell source to chondrocytes for repairing 

damaged cartilage for over a decade now  (reviewed by Csaki et al., 2008). Preclinical animal 

studies suggest the potential of various different cell types or sources to address this need 

(reviewed by Leijten et al., 2013). This study was therefore designed to examine the in vitro 

incorporation, viability and chondrogenesis of several different cell sources in three clinical 

and commercially available scaffolds or cell carriers used for cartilage repair.  

In this set of experiments, it was demonstrated that culture expanded BM MSCs and 

AT MSCs incorporate, adhere and proliferate more readily in clinical scaffolds tested than 

freshly isolated cells from both cell sources. Both BM and AT MSCs showed the best 

incorporation within Chondro-Gide® scaffolds where the cells attained a fibroblast-like 

morphology and showed penetration throughout the scaffolding network. This bilayer 

structured scaffold has a porous side for cell attachment and a compact side to prevent cell 

leakage. It  has been the scaffold of choice for MACI since 2004 (Haddo et al., 2004). One 

reason for the greater incorporation of cells within Chondro-Gide®, which is composed of 

type I and type III porcine collagen, could be the ability of MSCs to bind to the scaffold fibres 

through the integrin based family of receptors, specifically the α2β1 integrins, which is the 

major receptor for type I collagen and other fibril-forming collagens (Jokinen et al., 2004). 

The α2β1 integrin has also been shown to increase ECM synthesis and turn over which is 

fundamental to chondrogenesis (Riikonen et al., 1995). Alpha Chondro Shield® on the other 

hand is a synthetic scaffold made of pure PGA. The scaffold is an absorbable non-woven 

fleece that lacks specific cellular adhesion sites and therefore, the adhesion of cells to the 

scaffold is aided by extracellular molecules adsorbed on the polymer surface from the serum 

in culture medium (Lamba et al., 1998). Previous studies have utilized  integrin binding 

peptide domains like Arg-Gly-Asp (RGD) coatings to facilitate further adhesion of cells to the 

polymer based scaffolds (Kim and Park 2006; Huang et al., 2010). However, in this study 

Alpha Chondro Shield® scaffold was used uncoated primarily because it is commercially 
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available as an easy-to-use, off-the-shelf product for cartilage repair therapies. Hyalofast™ is 

made of fibres of HA. HA is the major component of the ECM of articular cartilage and 

therefore, may serve as a successful scaffold for articular cartilage regeneration (Solchaga et 

al., 1999). MSCs are known to express CD44 which is a membrane bound receptor with HA 

(Peach et al., 1993; Goodison et al., 1999; Cristino et al., 2005). Migration of cells across a 

HA substrate via CD44 cell-mediated movement has previously been reported (Thomas et al., 

1992). It has also been shown that interaction of CD44 with HA can cause cells to aggregate 

or round up (Green et al., 1988), which is consistent with the findings in this chapter, however 

MSCs showed a mixed morphology of round and elongated cells when grown in the 

Hyalofast™ scaffold.  

MSCs in Alpha Chondro Shield® and Hyalofast™ remained 100% viable during short 

and long term cultures but within Chondro-Gide®, some cell death was observed after 14 days 

in culture. This could be due to excessive proliferation of MSCs and subsequent cell death due 

to nutrients and oxygen deprivation.  

AT MSCs showed a markedly greater incorporation in all of the scaffolds compared to 

BM MSCs. If AT MSCs are consistently shown to incorporate into cell scaffolds more readily 

than BM MSCs (with further donor analysis), there may be reasons for such differential 

incorporation. Strioga et al suggested that AT MSCs have a higher proliferative capacity and 

express greater levels of CD49d (integrin α4β1) and CD54 (intercellular adhesion molecule-1, 

ICAM-1) compared to BM MSCs (Strioga et al., 2012). The α4β1 integrins have long been 

known to play a role in cell-cell and cell-matrix interactions (Takada et al., 1989). One of the 

ligands for α4β1 is fibronectin (Wayner et al., 1989), which is present in media containing 

serum (Swisher and Rannels 1997). The increased retention of AT MSCs compared to BM 

MSCs within Chondro-Gide® may be due, in part, to the adsorption of serum proteins 

especially to the collagen fibers (Mosher et al., 1991); hence this may enhance the adhesion of 

AT MSCs via α4β1 integrins. On synthetic polyglycolic acid scaffold, the cells adhere by non-

specifically adsorbing proteins from their microenvironment (Lamba et al., 1998). Fibronectin 
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being one of the key ligands for α4β1 integrins may play a key role in facilitating increased 

AT MSCs adhesion to the PGA fibres. For the HA based, Hyalofast™ scaffold, the increased 

adhesion of  AT MSCs may likely be due to ability of α4β1 integrins to act as a co-receptor 

with CD44 (Verfaillie and Benis, 1994;Acharya et al., 2008) 

Structural properties of the scaffold like porosity, pore size, fibre thickness, 

topography as well as scaffold stiffness can directly influence cell behaviour and colonization 

(reviewed by Lawrence and Madihally 2008). It has been previously shown by Nuernberger et 

al, that collagen based fleeces supports a polygonal morphology of chondrocytes (Nuernberger 

et al., 2011) whereas the HA based scaffold supports both elongated and round morphology of 

chondrocytes. They showed that in scaffolds with widely spaced fibres and thickness less than 

the cell diameter, chondrocytes adopt a spherical morphology whereas, if the scaffold fibres 

are tightly packed and have thickness more than the cell diameter then the cells adopt a 

polygonal or elongated morphologies (Nuernberger et al., 2011). The findings of this chapter 

are consistent with the study by Nuernberger and co-workers in that the fibrous Alpha 

Chondro Shield® and Hyalofast™, the cells showed a mixed morphology of both round and 

elongated cells depending on whether the surface the cells adhere to diameter larger the cell 

type or not. These findings have also been observed by Schlegel and co-workers in 2008 using 

chondrocytes. The chondrocytes developed a fibroblast-like morphology when seeded onto a 

type I and type III collagen scaffolds whereas cells on a HA scaffold showed a mix of round 

and elongated morphologies (Schlegel et al., 2008). The molecular mechanism behind this 

difference in morphologies of the same cell type grown on different scaffolds remains 

unknown. 

The differences in MSC proliferation that were observed between the scaffolds may 

be attributed to their differing degradation rates. BM MSCs proliferated in Chondro-Gide® 

throughout the time course of the experiments. Conversely, there was no increase in the BM 

MSC numbers in Alpha Chondro Shield® or Hyalofast™ with time in culture. The collagens 

in Chondro-Gide® are slow to degrade compared to PGA fibres  in Alpha Chondro Shield® , 
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which begins to lose mechanical integrity over a 12 day period (Vunjak-Novakovic et al., 

1998) and degrades to about 50% of its initial mass by 28 days (Freed et al., 1994).  In the 

absence of matrix production or a blood-clot (generated in vivo), it is likely that the fast 

degrading Alpha Chondro Shield® does not provide a suitable environment for cells to grow 

and proliferate and, therefore, this results in cell loss.  In addition, whilst PGA based scaffolds 

provide a good substrate for chondrocyte adhesion, cell proliferation during long term cultures 

may be significantly affected by acidic products during scaffold degradation (Rampichová et 

al., 2010). The Hyalofast™ scaffold disintegrated during long term cultures and this loss of 

scaffold integrity may have contributed to the lack of growth of cells within the scaffold. 

Although MSCs generally adhered and incorporated in all three scaffolds, overall the 

cell retention in all three scaffolds was poor, with only ~ 0.1-1.5% of the MSCs that were 

seeded attached to the scaffolds following a 2 hour incubation period. The effectiveness of the 

cell-seeding process is a crucial step, which could have a significant effect on the number of 

cells delivered to a cartilage lesion and thus the clinical outcome of any cell therapy. For 

MACI procedures, chondrocytes pre-seeded  onto Chondro-Gide® have been grown for four 

weeks prior to implantation (Behrens et al., 2006), whereas ACI procedures have been adapted 

to pre-seed Chondro-Gide® with chondrocytes for a recommended time of only 10-15 minutes 

prior to transplant (Steinwachs et al., 2012). Studies have previously examined the use of 

spinner flasks to encourage more efficient cell seeding in porous scaffolds (Vunjak-Novakovic 

et al., 1998) or of using polymerizing gels as a delivery vehicle for rapid cell seeding within 

collagen sponges (Radisic et al., 2003). However, in this study, a simple cell-seeding strategy 

was utilized to replicate the clinical setting, with the results probably representing the best 

case scenario given an incubation period that is in excess (2 hours) of what would be clinically 

acceptable for a one-step procedure. The small size of the scaffolds used in this study may 

have contributed to the low incorporated cell numbers as they could have been of insufficient 

size to initially retain the total volume of medium used for cell-seeding. Hence, cells may have 
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initially leaked out of the scaffolds into the wells. Although a potential weakness of the study, 

this scenario may commonly reflect the clinical situation. 

The clinical use of MSCs is limited due to the need for culture expansion to generate 

enough cells for transplantation. Therefore, current research is focusing on developing one 

step procedures for the use of freshly isolated population of MSCs as a potential for cartilage 

repair. In this in vitro study, freshly isolated and minimally manipulated populations of cells 

from the BM or the SVF cells of AT showed poor incorporation and growth within all three 

scaffolds compared to the culture expanded MSCs. The BM mononucleated cell prep is a 

heterogeneous population containing differentially matured haematopoietic cells, endothelial 

cells and MSCs. Literature suggests that only 0.01-0.00001% of the BM mononucleated cell 

population are MSCs (Caplan 1994). This could explain the poor incorporation and growth of 

the adherent cell population of MSCs from BM MNCs as the cell count used for cell-seeding 

experiments constituted all the mononucleated cells and not just the MSCs. Although these 

finding suggest that BM MNCs may be unsuitable as a cell source for one-step cell-based 

therapies for cartilage repair, a study conducted on human patients by Buda et al, using 

Hyalofast™ and BM concentrate fixed into the defect with platelet-rich fibrin, reported 

clinical improvement at 2 years follow up with 80% graft integration and 70% defect fill 

(Buda et al., 2010). Similarly, Gobbi et al used Chondro-Gide® with clotted BM concentrate 

to fill chondral defects that were subsequently covered with fibrin glue, and also reported 

promising results at 2 years follow-up, with MRI showing good defect fill and histology of 

biopsy samples showing hyaline like tissue (Gobbi et al., 2011). These clinical studies 

demonstrate that in vitro experiments are not very effective in mimicking the situation in vivo 

and therefore, preclinical animal studies maybe required to better examine the potential of 

different cell sources for the treatment of cartilage defects.  

The AT SVF cells incorporated in all three scaffolds during short-term cultures, but 

only proliferated in Chondro-Gide®. Morphologically, these cells appeared mostly round with 

very few fibroblast-like cells in Chondro-Gide®. Alpha Chondro Shield® showed very few 
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elongated cells that did not survive through the long-term cultures. This may have been due to 

disintegration of scaffold structure, which was initially observed at day 14. It has been shown 

previously that cell-free PGA scaffolds after 28 days of incubation in PBS lose their integrity 

(Li and Mak 2005).  AT SVF cells in Hyalofast™ were mostly of a round morphology with 

very few elongated cells present and the scaffold was observed also to have disintegrated 

during longer-term cultures. The problem of scaffold disintegration was one of the limitations 

of the experiments conducted in this study. The scaffolds used are all commercially available 

and are stored in air tight packs ready to use clinically. In this study, the scaffolds were 

exposed to atmospheric gases and studies have shown that this can alter the chemical and 

mechanical properties of the PGA based scaffolds particularly (Ma and Langer 1995) This was 

only observed for Alpha Chondro Shield® and Hyalofast™ scaffold and not for Chondro-

Gide® scaffold. Nonetheless, AT SVF cells showed better incorporation than BM MNCs over 

all. This may be because there is a greater number of MSCs present within the SVF of adipose 

tissue. Literature suggests that the MSC population in the uncultured SVF usually amounts to 

up to 3% of the cells present, and this is 2,500-fold more than the frequency of stem cells in 

BM (Fraser et al., 2008).  

Therefore, the first part of this chapter suggests that the use of culture expanded MSCs 

from both BM and AT is favoured over that of freshly isolated cells with Chondro-Gide® 

proving an effective cell delivery system.  

The next part of this chapter focussed on looking at chondrogenic differentiation 

potential of BM and AT MSCs in Chondro-Gide® and Alpha Chondro Shield® only. As 

stated earlier, the Hyalofast™ scaffold disintegrated during long term culture and therefore, no 

chondrogenic assessment was possible for this scaffold. BM MSCs seeded on Chondro-Gide® 

showed distinct rounded shape of mature chondrocytes that deposited matrix rich in type II 

collagen which was not seen in Alpha Chondro Shield® under +CM conditions. AT MSCs on 

the other hand showed round shaped cells with matrix deposition in Chondro-Gide® and 

Alpha Chondro Shield® and localised positivity of type II collagen was observed  within these 
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two scaffolds under +CM conditions. BM MSCs showed an increased amount of 

metachromatic staining with toluidine blue under +CM conditions in both Chondro-Gide® 

and Alpha Chondro Shield® compared to–CM conditions. This result was consistent with the 

soluble GAG biochemical analysis. The soluble proteoglycans secreted into the media were 

analysed as an indirect measure of ECM synthesis because it has been shown that the removal 

of proteoglycans from the ECM in cartilage explant cultures is in balance with the deposition 

of newly synthesised GAGs (Ilic et al., 1995). In addition, another study has shown that the 

kinetics of GAG release into culture media by chondrocytes seeded within agarose, collagen 

and PGA constructs were comparable to the GAGs found in the cell-seeded constructs (Mouw 

et al., 2005). The reason why elevated soluble GAGs were seen in Hyalofast™ scaffold may 

be due to disintegration of fibres of HA and loss of potential ECM and their subsequent 

binding to DMMB dye. Overall, AT MSCs produced similar amounts of GAGs in the three 

scaffolds and secreted comparatively more GAGs in response to chondrogenic inducers as 

compared to controls when seeded within Chondro-Gide® and Alpha Chondro Shield®. With 

time in culture the PGA based scaffold Alpha Chondro Shield® and HA based scaffold 

Hyalofast™ will degrade faster than the collagen based scaffold Chondro-Gide® resulting in a 

potential of loss of deposited matrix with continuous media changes in culture (Ma and Langer 

1995, Lee and Lee 2006). Therefore, it was expected that cells within Alpha Chondro Shield® 

and Hyalofast™ may show decreased levels of soluble GAGs at day 28 compared to Chondro-

Gide®. Chondro-Gide® proved to be a superior scaffold for BM MSC differentiation as 

determined by the increased expression of type II collagen under +CM conditions. In Alpha 

Chondro Shield® there was a weak and nonhomogeneous ECM staining which is likely due to 

the relatively short culture period of 28 days. PGA based scaffolds have previously been 

successful for in vitro chondrogenesis of chondrocytes after 40 days in culture (Freed et al., 

1993).  

In summary, the major findings of this chapter suggest that culture expansion of 

MSCs and the use of the Chondro-Gide® scaffold is favoured as an effective cell-delivery 
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system. Furthermore, BM MSCs successfully underwent chondrogenesis when seeded within 

Chondro-Gide® scaffold and AT MSCs when seeded within Alpha Chondro Shield® scaffold. 

Therefore, further studies in this thesis have focused on Chondro-Gide® and Alpha Chondro 

Shield® scaffolds and MSCs rather than freshly isolated cells. 

Furthermore, the work presented in this chapter indicates the need for culture 

expansion of MSCs for chondrogenesis; however, further work is also needed to optimise the 

incorporation and growth of mononucleated cells, possibly by selectively purifying the MSC 

progenitors from heterogeneous cell populations present.   
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Chapter 4: An in vitro investigation of the chondrogenic 

differentiation potential of adipose tissue derived CD271 

selected MSCs versus standard plastic adherent MSCs in 

clinically used scaffolds 
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4.1 Background and aims  

BM has been shown to be a promising source of MSCs for cartilage repair with evidence of 

hyaline like cartilage formation both in vitro (Johnstone et al., 1998; Jakobsen et al., 2010) 

and in vivo (Im et al., 2001; Zhang et al., 2011). In comparison only a few studies support the 

use of MSCs derived from AT for their use in cartilage repair. From the previous chapter, even 

with the limited donors investigated, the MSCs from BM were a better source for in vitro 

chondrogenesis as indicated by the deposition of ECM that was positive for collagen type II. 

However, there are advantages to using AT as a source of MSCs as it has been shown that up 

to 3% of the SVF population are MSCs which is 2500 fold more than the frequency of MSCs 

in the BM (Fraser et al., 2008). In addition, the method for AT harvest is simple and less 

invasive than that for BM, and in most orthopaedic surgical procedures often regarded as 

medical waste.  

AT is a suitable reservoir of potentially regenerative cells as this tissue is abundant 

and easy to harvest in human adults. The cells present within the SVF of AT can be easily 

isolated by tissue digestion and subsequent washings and centrifugation steps, followed by the 

outgrowth of a plastic adherent fraction referred to as AT MSCs (Zuk et al., 2001).  The SVF 

is a highly heterogeneous population consisting of AT MSCs along with many other cell types 

such as preadipocytes, adipocytes, endothelial cells, fibroblasts, monocytes, macrophages and 

lymphocytes (Baer & Geiger 2012). The plastic adherent population of MSCs has been 

extensively characterised for their expansion and differentiation potential; however, the 

reproducibility of the methods used is questionable due to the heterogeneity of the starting 

population and the variability in the stem cell recovery among different donors and different 

tissue sources (Van Harmelen et al., 2004; Schipper et al., 2008). Therefore, there is a need to 

investigate and identify pre-culture markers that would ensure higher purity than that obtained 

by selection based on adherence to plastic. 

 A focus of current research in regenerative medicine has been examining the potential 

of defined subpopulations of MSCs from the heterogeneous pool of cells from different tissue 
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sources towards a defined lineage (Jones et al., 2002; Psaltis et al., 2010; Rada et al., 2011; 

Churchman et al., 2012). CD73 and CD105 are shown to have better chondrogenic 

differentiation potential compared to the unsorted population of MSCs (Arufe et al., 2009; 

Rada et al., 2011). In this regard, CD271 has been described as a  specific markers for the 

purification of BM MSCs (Álvarez-Viejo 2015). CD271 is the low affinity nerve growth 

factor receptor (LNGFR), also referred to as P75 neurotrophin receptor (P75NTR) and belongs 

to the tumor necrosis factor superfamily (Thomson et al., 1988). CD271 has been extensively 

studied as a suitable marker for selectively isolating MSCs from BM (Quirici et al., 2002; 

Jones et al., 2002; Jones et al., 2006; Jones and McGonagle 2008). However, only a single 

study has so far reported on the enhanced capacity of CD271
+ 

MSCs from AT towards 

chondrogenesis.  In a study by Quirici and co-workers, CD271
+
MSCs were isolated from AT 

using magnetic microbeads and were compared for their clonogenicity and differentiation 

potential with PA MSCs (Quirici et al., 2010). They showed that CD271
+
 MSCs had a greater 

differential potential towards osteogenesis, adipogenesis and chondrogenesis compared to PA 

MSCs (Quirici et al., 2010). The results reported in the previous chapter of this thesis are 

indicative of inferior chondrogenic potential of AT MSCs when compared to BM MSCs. The 

heterogeneity in the SVF of AT may contribute to this effect.  

Therefore, the rationale of this chapter was based on the hypothesis that CD271
+
MSCs 

have an increased chondrogenic differentiation potential compared to the MSCs isolated by 

plastic adherence. The aim of this chapter was to investigate the chondrogenic differentiation 

potential of MSCs selected on the basic of plastic adherence (PA MSCs) versus CD271 

selected MSCs (CD271
+
MSCs) in Chondro-Gide® and Alpha Chondro Shield® in vitro. 

These two scaffolds were selected because Hyalofast™ had not been suitable for longer term 

(28 days) in vitro analysis. 
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4.2 The morphology and growth of PA MSCs and CD271
+
MSCs under chondrogenic 

(+CM) and non-chondrogenic (-CM) conditions  

No major differences were observed between PA MSCs and CD271
+
MSCs with regards to 

their morphology. PA MSCs and CD271
+
MSCs grew in dense networks in Chondro-Gide® 

compared to MSCs in Alpha Chondro Shield® where they grew along the length of the fibres 

and appeared to be less dense. Under +CM conditions only, at day 7, cell condensation and 

aggregation was seen to some extent in Chondro-Gide® (Figure 4.1) whereas, such 

condensations and aggregations were seen to a greater extent in Alpha Chondro Shield® 

(Figure 4.2) compared to the flattened morphology of cells observed in both the scaffolds 

under –CM conditions.  

Also from SEM, it appeared that MSCs in Chondro-Gide® (Figure 4.3) and Alpha Chondro 

Shield® (Figure 4.4) proliferated under both +CM and –CM conditions. At day 28, MSCs 

appeared denser and covered the entire surface of the scaffold. Therefore, it was difficult to 

assess any morphological differences between PA and CD271
+
MSCs especially in Alpha 

Chondro Shield® where the scaffold was covered entirely by a dense layer of cells and matrix. 

In Chondro-Gide®, a few round-shaped cells were distinguishable in both PA and 

CD271
+
MSCs seeded scaffolds under +CM conditions only.   
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 Figure 4.1 The morphology of PA MSCs and CD271+MSCs in Chondro-Gide® under chondrogenic (+CM) and 

non-chondrogenic (- CM) conditions 

 

 

 

 

 

 

 

 

 

Figure 4.1. The morphology of PA MSCs and CD271
+

MSCs in Chondro-Gide® 

under chondrogenic (+CM) and non-chondrogenic (-CM) conditions. Representative 

SEM images are shown of PAMSCs and CD271
+

MSCs in Chondro-Gide® 7 days post-

seeding. Both PA MSCs and  CD271
+ 

MSCs were seen as flattened cells and rounded 

cells under +CM and –CM conditions, however cell aggregation into clumps was most 

prominently seen under +CM conditions. Arrows represent cells and asterisks represent 

scaffold fibres. PA MSCs and CD271
+

MSCs, n=1 matched donor.  
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Figure 4.2 The morphology of  PA MSCs and CD271+MSCs in Alpha Chondro Shield® under chondrogenic 

(+CM) and non-chondrogenic (-CM) conditions. 

 

 

 

 

 

 

 

 

Figure 4.2. The morphology of PA MSCs and CD271
+

MSCs in Alpha Chondro 

Shield® under chondrogenic (+CM) and non-chondrogenic (-CM) conditions. 

Representative SEM images are shown of PAMSCs and CD271
+

MSCs in Alpha Chondro 

Shield® 7 days post-seeding.  PA MSCs and CD271
+

MSCs were mostly condensed and 

aggregated around the fibres of PGA under +CM conditions and appeared to be flat and 

elongated along the length of the fibres under –CM conditions. Arrows represent cells 

and asterisks represent scaffold fibres. PA MSCs and CD271
+

MSCs, n=1 matched donor. 
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4.3Figure 4.3 The morphology of PAMSCs  and CD271+MSCs in Chondro-Gide® under chondrogenic (+CM) 

and non-chondroge   nic (-CM) conditions 

 

 

 

 

 

 

 

 

Figure 4.3. The morphology of PAMSCs and CD271
+

MSCs in Chondro-Gide® 

under chondrogenic (+CM) and non-chondrogenic (-CM) conditions. Representative 

SEM images are shown PAMSCs and CD271
+

MSCs in Chondro-Gide® 28 days post-

seeding. PA MSCs and CD271
+

MSCs showed dense growth patterns under +CM and –

CM conditions. Under +CM conditions a mixed morphology of flat and round cells was 

seen with both PA MSCs and CD271
+

MSC seeded Chondro-Gide®, whereas under –CM 

conditions the cells appeared mostly flat and spread. Red arrows represent flat cells and 

yellow arrows represent round cells. PA MSCs and CD271
+

MSCs, n=1 matched donor.   
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4.4Figure 4.4The morphology of PAMSCs  and CD271+MSCs in Alpha Chondro Shield® under 

chondrogenic (+CM) and non-chondrogenic (-CM) conditions. 

 

 

 

 

 

 

 

 

 

Figure 4.4. The morphology of PAMSCs and CD271
+

MSCs in Alpha Chondro 

Shield® under chondrogenic (+CM) and non-chondrogenic (-CM) conditions. 

Representative SEM images are shown PAMSCs and CD271
+

MSCs in Alpha Chondro 

Shield® 28 days post-seeding. PA MSCs and CD271
+

MSCs showed dense growth 

patterns under +CM and –CM conditions. The entire scaffold surface was covered with a 

dense growth of cells. Due to the extent of the growth of cells, any morphological 

differences were difficult to assess.  Asterisks represent fibres of the scaffold. PA MSCs 

and CD271
+

MSCs, n=1 matched donor. 
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4.3 The viability of PA MSCs and CD271
+
MSCs in Chondro-Gide® and Alpha Chondro 

Shield® under +CM and –CM conditions 

No cell death was observed in either Chondro-Gide® or Alpha Chondro Shield® scaffolds 

under any condition. A homogenous distribution of PA and CD271
+
MSCs was seen 

throughout the depth of the scaffolds after live/dead staining and 3D confocal microscopy. 

Similar to the SEM results, cell aggregations were observed in Chondro-Gide® under +CM 

conditions. Under –CM conditions, MSCs appeared to be individually dispersed and showed a 

fibroblast-like appearance. No cell aggregation was observed under –CM conditions in 

Chondro-Gide® (Figure 4.5).   

In Alpha Chondro Shield®, a dense growth of MSCs was observed under +CM conditions 

whereas under –CM conditions the cells grew sparsely along the length of the fibres and 

appeared elongated along the length of the fibres. No cell aggregation was observed under –

CM condition (Figure 4.6).  
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Figure 4.5The viability of PAMSCs  and CD271+MSCs  in Chondro-Gide® under chondrogenic (+CM) and 

non-chondrogenic (-CM) conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. The viability of PAMSCs and CD271
+

MSCs in Chondro-Gide® under 

chondrogenic (+CM) and non-chondrogenic (-CM) conditions. Representative 

confocal z-stacks are shown of PA MSCs and CD271
+

MSCs following live/dead staining 

after 28 days in culture. PA MSCs and CD271
+

MSCs remained viable at day 28 in both 

scaffolds and under +CM and –CM conditions. MSCs under +CM conditions appeared 

aggregated and grew in dense layers compared to –CM conditions where they appeared to 

be individually dispersed throughout the depth of the scaffold. PA MSCs and 

CD271
+

MSCs, n=2 matched donor. Scale bars = 100 μm. 
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Figure 4.6 The viability of PAMSCs  and CD271+MSCs  in Alpha Chondro Shield® under chondrogenic (+CM) 

and non-chondrogenic (-CM) conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.6. The viability of PAMSCs and CD271
+

MSCs in Alpha Chondro Shield® 

under chondrogenic (+CM) and non-chondrogenic (-CM) conditions. Representative 

confocal z-stacks are shown of PA MSCs and CD271
+

MSCs following live/dead staining 

after 28 days in culture. PA MSCs and CD271
+

MSCs remained viable at day 28 in both 

scaffolds and under +CM and –CM conditions. MSCs under +CM conditions appeared 

more dense and aggregated along the length of the fibres compared to –CM conditions, 

where they grew in less dense layers and appeared elongated along the length of the 

fibres of Alpha Chondro Shield®. PA MSCs and CD271
+

MSCs, n=2 matched donors. 

Scale bars = 100 μm. 
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4.4 Histology of PA MSCs and CD271
+
MSCs in Chondro-Gide® and Alpha Chondro 

Shield® under +CM and –CM conditions  

There were no differences observed with regards to the distribution and growth of PA and 

CD271
+
 MSCs in both the scaffolds. H&E staining of sections of Chondro-Gide® 

demonstrated that PA and CD271
+
MSCs were evenly distributed throughout the porous side 

of Chondro-Gide® scaffold under both +CM and –CM conditions; however, it was difficult to 

distinguish between matrix derived from MSCs and the collagenous fibres of the scaffold 

(Figure 4.7). 

In Alpha Chondro Shield®, H&E staining revealed the distribution of cells to be homogenous 

under both +CM and –CM conditions; however, ECM deposition was only seen under +CM 

conditions and cells were individually dispersed under –CM conditions (Figure 4.8). 

Toluidine blue staining of proteoglycans revealed a greater amount of ECM staining in 

Chondro-Gide® seeded with CD271
+
MSCs only compared to no ECM deposition seen in 

Chondro-Gide® seeded with PA MSCs or with both cell types under –CM conditions (Figure 

4.9). Similarly, in Alpha Chondro Shield® stained with toluidine blue, ECM deposition was 

only seen with CD271
+
MSC seeded scaffolds compared to PA MSCs seeded scaffolds. No 

ECM deposition was seen in MSC-seeded Alpha Chondro Shield® under –CM conditions 

(Figure 4.10).  

Pellets of PA MSCs and CD271
+
MSCs both showed purple metachromatic staining with 

toluidine blue. However, an ECM positive for collagen type II was only seen in the pellets of 

CD271
+
MSCs (Figure 4.11).  
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Figure 4.7 The incorporation and distribution of PA MSCs and CD271+MSCs in Chondro-Gide® under 

chondrogenic (+CM) and non-chondrogenic (-CM) conditions. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. The incorporation and distribution of PA MSCs and CD271
+

MSCs in 

Chondro-Gide® under chondrogenic (+CM) and non-chondrogenic (-CM) 

conditions. Representative images are shown of H&E stained PA MSCs and 

CD271
+

MSCs seeded Chondro-Gide® after 28 days in culture. PA MSCs and 

CD271
+

MSCs were evenly distributed along the porous side of the scaffold as indicated 

by the purple haematoxylin staining of the cell nuclei. The collagen fibres of the scaffold 

stained pink with eosin. PA MSCs and CD271
+

MSCs, n=2 matched donors.  Original 

magnification x10.  Scale bar =100 µm.  
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Figure 4.8 The incorporation and distribution of PA MSCs and CD271+MSCs in Alpha Chondro Shield® 

under chondrogenic (+CM) and non-chondrogenic(-CM) conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. The incorporation and distribution of PA MSCs and CD271
+

MSCs in 

Alpha Chondro Shield® under chondrogenic (+CM) and non-chondrogenic (-CM) 

conditions. Representative images are shown of H&E stained PA MSCs and 

CD271
+

MSCs seeded Alpha Chondro Shield® after 28 days in culture. Dark purple 

haematoxylin staining of cell nuclei was observed under both +CM and –CM conditions. 

Under +CM conditions, little ECM deposition was observed with either PA MSCs or 

CD271
+

MSC seeded scaffolds. Under –CM conditions, cells appeared dispersed 

homogenously along the length of the scaffold fibres. PA MSCs and CD271
+

MSCs, n=2 

matched donors. Original magnification x10.  Scale bar = 100 µm.  
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Figure 4.9 GAG deposition by PA MSCs and CD271+MSCs in Chondro-Gide® under chondrogenic (+CM) and 

non-

chondrogenic (-CM) con  ditions 

 

 

 

 

 

 

 

 

Figure 4.9. GAG deposition by PA MSCs and CD271
+

MSCs in Chondro-Gide® 

under chondrogenic (+CM) and non-chondrogenic (-CM) conditions.  Representative 

images are shown of toluidine blue stained PA MSCs and CD271
+

MSCs in Chondro-

Gide® after 28 days in culture. GAG deposition was indicated by toluidine blue 

metachromasia only in CD271
+

MSC seeded scaffolds under +CM conditions. A round 

morphology of cells (black arrowed) was also observed under +CM condition within the 

CD271
+

MSC seeded scaffolds. No GAG deposition was seen with PA MSCs seeded 

scaffold under +CM conditions or in PA MSC or CD271 MSC seeded scaffolds under –

CM conditions. PA MSCs and CD271
+

MSCs, n=2 matched donors. Insets represent 

images at x10 magnification, scale bar = 100 µm. Original magnification x40, scale bar = 

25µm. 
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Figure 4.10 GAG deposition by PA MSCs and CD271+MSCs in Alpha Chondro Shield® under chondrogenic 

(+CM) and non-chondrogenic (-CM) con  ditions 

. 

 

 

 

 

 

 

 

 

Figure 4.10. GAG deposition by PA MSCs and CD271
+

MSCs in Alpha Chondro 

Shield® under chondrogenic (+CM) and non-chondrogenic (-CM) conditions. 

Representative images are shown of toluidine blue PA MSCs and CD271
+

MSCs in Alpha 

Chondro Shield® after 28 days in culture. GAG deposition was observed only in 

CD271
+

MSC seeded scaffolds with a few round shaped cells (black arrowed) seen only 

under +CM conditions. No matrix deposition was seen with PA MSCs seeded scaffold 

under +CM conditions or in PA MSC or CD271
+

MSC seeded scaffolds under –CM 

condition. Black asterisks represent the fibres of the scaffold. PA MSCs and 

CD271
+

MSCs, n=2 matched donors. Insets represent images at x10 magnification, scale 

bar = 100 µm. Original magnification x40, scale bar = 25 µm. 
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Figure 4.11 GAG secretion by PA MSCs and CD271+MSCs seeded within Chondro-Gide® and Alpha Chondro 

Shield® under chondrogenic (+CM ) and non-chondrogenic (–CM) conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. GAG deposition and collagen type II immunolocalisation in PA MSCs 

and CD271
+

MSCs pellets under chondrogenic (+CM) conditions. GAG deposition 

was seen in PA MSCs and CD271
+

MSCs pellets as indicated by the metachromatic 

staining of these pellets after toluidine blue staining (top panels). Collagen type II 

immunolocalisation was observed in the ECM deposited by CD271
+

 cell pellet only 

(bottom panels). The positive control was a section of human knee articular cartilage and 

negative control is the same section with the omission of primary antibody. PA MSCs 

and CD271
+

MSCs, n=2 matched donors. Insets represent images at x10 magnification, 

scale bar = 100 µm. Original magnification x40, scale bar = 25 µm. 
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4.5 Glycosaminoglycan (GAG) production by PA MSCs and CD271
+
MSCs seeded within 

Chondro-Gide® and Alpha Chondro Shield® under +CM and –CM conditions 

 There was greater GAG production by PA and CD271
+
MSCs in both of the scaffolds tested 

under +CM conditions compared with –CM conditions (Figure 4.12).  PA MSCs secreted 9.9 

± 4.0 µg/ml of GAGs within Chondro-Gide® and 4.5 ± 2.6 µg/ml of GAGs within Alpha 

Chondro Shield® under +CM conditions, compared to 2.8 ± 2.1 µg/ml of GAGs within 

Chondro-Gide® and 2.8 ± 2.3  µg/ml of GAGs within Alpha Chondro Shield®  under –CM 

conditions.  

CD271
+
MSCs secreted 10 ± 1.0 µg/ml of GAGs within Chondro-Gide® and 3.0 ± 1.2 µg/ml 

of GAGs within Alpha Chondro Shield® under +CM conditions, compared to 1.7 ± 1.0 µg/ml 

of GAGs within Chondro-Gide® and 1.7 ± 1.4 µg/ml of GAGs within Alpha Chondro 

Shield®  under –CM conditions.  

There was no marked difference in levels of GAG production between the two cell types in 

either of the scaffolds or conditions. 
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Figure 4.12 GAG deposition and collagen type II immunolocalisation in PA MSCs and CD271+MSCs pellets 

under chondrogenic (+CM) conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. GAG secretion by PA MSCs and CD271
+

MSCs seeded within Chondro-

Gide® and Alpha Chondro Shield® under chondrogenic (+CM) and non-

chondrogenic (–CM) conditions. Greater levels of GAGs were secreted by both cell 

types and in both scaffolds under +CM conditions compared to –CM conditions. The 

GAG levels secreted by PA MSCs and CD271 MSCs were similar and no major 

differences were seen in between the two cell types with either scaffold. Data has been 

presented as means ± SD of 6 internal replicate values pooled from n=2 matched patient 

donors. 

PAMSCs CD271
+
MSCs 
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4.6 Discussion 

There were no differences seen between PA and CD271
+
 MSCs from AT with regards 

to the cell morphology and growth. However, cell condensation and aggregation was observed 

under +CM conditions as early as day 7 in all cell-seeded scaffolds. Cell-rounding and 

aggregation may be indicative of chondrogenesis, which involves condensation of the MSCs 

followed by their differentiation into chondrocytes and subsequently chondrocyte maturation 

and ECM production during long-term cultures (Goldring et al., 2006). CD271
+
 MSCs showed 

greater chondrogenesis in both scaffolds compared to PA MSCs as indicated by greater 

metachromatic staining by toluidine blue.  In addition, collagen type II immunostaining was 

more intense in CD271
+
 MSC pellet compared to the pellets of PA MSCs. These finding are 

consistent with a recent report in which synovium derived CD271
+
MSCs showed significantly 

more intense staining of collagen type II at day 28 of chondrogenesis compared to cells 

selected with CD73 or CD106 (Arufe et al., 2010). Arufe and co-workers suggested that the 

enhanced chondrogenic potential of CD271
+
MSCs could be attributed to the higher co-

expression of CD105 marker in the CD271
+
 cells compared to CD73

+
cells (Arufe et al., 2010). 

CD105, also known as endoglin, is a TGF-β1 and TGF-β3 co-receptor and has been shown to 

modulate TGF-β signalling in endothelial cells (Dijke et al., 2008) and chondrocytes (Parker 

et al., 2003). Since TGF-β is one of the most important factors for the induction of 

chondrogenesis in MSCs,  CD105 co-expression linked to TGF- β signalling may induce 

greater chondrogenesis in CD271
+
MSCs (Jiang et al., 2010).   

With regards to GAG secretion, greater levels of GAGs were secreted by both PA and 

CD271
+
MSC seeded scaffolds under +CM conditions only. In this set of experiments an 

increase in GAG synthesis of PA MSCs was observed without much evidence of ECM 

deposition within the scaffold. The higher levels of GAGs released into the media allied to the 

toluidine blue staining of the ECM may be indicative of the inferior chondrogenesis of PA 

MSCs compared to CD271
+
 MSCs. This may be associated with the low levels of collagen 

type II deposition by the PA MSCs, as proteoglycans interact with the fibrillar collagens (as 
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reviewed by Roughley 2006). In the absence of collagen type II in the ECM deposited by PA 

MSCs, greater levels of GAGs may be released into the medium. In contrast, CD271
+
MSCs 

deposit ECM that contained more collagen type II. Therefore, in addition to retaining the 

GAGs within the ECM, GAG secretion is also observed in the media.   

Overall, limited or poor chondrogenesis was observed in these cell-seeded scaffolds as 

indicated by a sparse and irregular deposition of ECM. The limited chondrogenesis observed 

in these set of experiments maybe influenced by the age of the donors. The samples used were 

isolated from patients in the age range of 53 to 69 years old. BM MSCs harvested from 

patients with advance stage OA with an age range of 59-82 years have a reduced chondrogenic 

activity (Murphy et al., 2002). A recent study also investigated the age-related effect of AT 

MSCs on their expansion and differentiation and reported that MSCs from older patients (over 

46 years of age) had significantly reduced expressions of aggrecan and collagen type II 

compared to young donors of under 30 years of age (Choudhery et al., 2014). It was also 

reported that the frequency of CD271
+
 cells in AT decreases with age, however the osteogenic 

and adipogenic differentiation potential of these cells was not affected by age (Duran et al., 

2013).  

The results reported in this chapter indicate that CD271
+
MSCs may have a greater 

chondrogenic potential than that of PA MSCs. Therefore, selectively isolating CD271
+
 cells 

from the heterogeneous SVF into a purified population may increase their capacity towards 

chondrogenic differentiation. In the case of PA MSCs, which are a more heterogeneous 

population that includes those cells expressing CD271 during early cultures, the chondrogenic 

capacity of these CD271
+
 cells within the PA MSC population may be limited due to the 

presence of other subpopulations of cells and because the expression of CD271 is lost during 

culture expansion (Jones et al., 2002). The results presented within this chapter are limited due 

to in vitro analysis of chondrogenesis of cell-seeded scaffolds. Further work would require 

testing these cell-scaffolds combinations in vivo to adequately examine the potential of 

selectively isolated cells for cartilage repair. 
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Chapter 5: An in vivo investigation of the chondrogenic 

differentiation potential of adipose tissue derived CD271 

selected MSCs versus standard plastic adherent MSCs in 

clinically used scaffolds 
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5.1 Background and aims 

Studies have shown that selectively isolating MSCs from the heterogeneous population of 

cells from BM, AT and synovium can enrich for cells with improved differentiation potential 

towards mesenchymal lineages compared to the unsorted population (Arufe et al., 2010; Kuçi 

et al., 2010; Rada et al., 2011; Álvarez-Viejo 2015; Cuthbert et al., 2015). In the previous 

chapter, it was shown that selectively isolated CD271
+
MSCs from the SVF of AT deposited an 

ECM that was positive for collagen type II compared to PA MSCs in pellet cultures.  

Similar findings of CD271
+
 MSCs having a higher chondrogenic potential than PA 

MSCs have been reported in vitro (Quirici et al., 2010; Arufe et al., 2010); however, only one 

study has reported that CD271 MSCs have a better chondrogenic potential in vivo (Mifune et 

al., 2012). Mifune et al, reported that CD271 selected MSCs from BM are a superior cell 

source for cartilage repair compared to PAMSCs in a rat model of a full-thickness chondral 

defect (Mifune et al.,2012). No studies have been published to date, regarding the 

chondrogenic potential of adipose derived CD271
+
 MSCs versus PA MSCs in vivo. Therefore, 

and on the basis of the results shown in Chapter 4, the rationale for the experiments reported in 

this chapter was to test whether CD271
+
 MSCs from AT may also have a greater potential for 

repairing cartilage compared to PA MSCs from AT in vivo. This involved creating 

osteochondral defects in athymic female rats and transplanting the defects with human AT 

derived CD271
+
MSCs or PA MSCs in Chondro-Gide® and Alpha Chondro Shield®. Athymic 

nude rats are a common model for xenograft research as they lack functionally mature T cells 

and therefore are deficient in initiating T cell-mediated immune responses (Rolstad 2001). 

Transplantations of the cell scaffolds alone were also performed to assess tissue repair and 

scaffold biocompatibility in the absence of MSCs.  
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5.2 Incorporation of PA MSCs and CD271
+
MSCs within Chondro-Gide® and Alpha 

Chondro Shield® prior to transplantation 

SEM demonstrated that PA MSCs and CD271
+
MSCs had incorporated within the two 

scaffolds within 30 minutes of seeding. This time point was used to ensure cell adhesion prior 

to implantation of the cell-seeded scaffolds into the defects created simultaneously in the 

athymic rats. There was no difference between the prevalence of PA MSCs and CD271 MSCs 

within the two scaffolds. Both cell types showed firm attachment to the fibres of collagen in 

Chondro-Gide® and the fibres of polyglycolic acid in Alpha Chondro Shield® 30 minutes 

after incubation. There was evidence of penetration of cells into the inner parts of both the 

scaffolds. Morphologically, the cells still appeared round with more cells showing flat 

adherent morphology in Chondro-Gide® than in Alpha Chondro Shield®. Scaffolds without 

cells were used as controls (Figure 5.1).  
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Figure 5.1. The morphology of PA MSCs  and CD271
+

MSCs in Chondro-Gide® and 

Alpha Chondro Shield® after 30 minutes of incubation prior to transplantation. 

Representative SEM images are shown of PA MSCs and CD271
+

MSCs seeded scaffolds. 

PA MSCs and CD271
+

MSCs (red arrowed) were seen to be attached to the fibres of 

collagen (Chondro-Gide®) and PGA (Alpha Chondro Shield®). Asterisks display the 

fibres of the scaffolds. Insets show high magnification images of flattened cell 

morphology in Chondro-Gide® and round cell morphology in Alpha Chondro Shield®, 

scale bar = 10 μm.  The scaffold alone controls are also shown. PA MSCs and 

CD271
+

MSCs, n=1 matched donor. Scale bar = 50 μm. 
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5.3 The effects of PA MSCs and CD271
+
MSCs seeded scaffolds on cartilage repair: gross 

morphology at 3 weeks post-transplantation 

Gross examination of the defects at 3 weeks post-transplantation revealed a well-integrated 

glossy white repair tissue in the defects transplanted with CD271
+
MSCs (group B) seeded 

within both Chondro-Gide® and Alpha Chondro Shield®. In the defects transplanted with PA 

MSCs (group A) with either Chondro-Gide® or Alpha Chondro Shield®, a depressed repair 

tissue with distinct defect edges was observed. Moreover, the border area of the defect was 

clearly distinguishable and depressions were obvious in the defects of the control groups of 

scaffolds alone (group C), fibrin glue alone (group D) and the no intervention control (group 

E) (Figure 5.2).  

The scoring system used to macroscopically assess cartilage repair considers five main 

parameters; (i) the colour of the repair tissue; (ii) the presence of blood vessels in the repair 

tissue; (iii) the surface of the repair tissue; (iv) filling of the defect; (v) the degeneration of 

adjacent host  cartilage. An overall score of 0 represents the best outcome indicative of 

complete repair and an overall score of 20 represents the worst outcome indicative of 

incomplete repair. As per this macroscopic scoring system, defects transplanted with 

CD271
+
MSCs (group B) had a significantly better repair compared to the defects in group A, 

C and D (p value < 0.05; Dunn’s multiple comparison test). Defects in group B were scored at 

5.2 ± 1.3 with Chondro-Gide® and 5.0 ± 2.5 with Alpha Chondro Shield®, whereas, defects 

transplanted with PA MSCs (group A) were scored at 11.2 ± 3.1 with Chondro-Gide® and 9.8 

± 1.7 with Alpha Chondro Shield®.  Defects transplanted with scaffolds alone (group C) were 

scored at 11.6 ± 4.0 with Chondro-Gide® and 10.6 ± 1.5 with Alpha Chondro Shield® alone. 

The fibrin glue (group D) and the no intervention (group E) control groups were scored at 11.5 

± 3.7 and 13.5 ± 0.7, respectively. All data has been presented as means ± SDs of n=6 for 

defects transplanted with PA MSCs (group A) and CD271
+
MSCs (group B), n=3 for defects 

transplanted with scaffold alone (group C), n=4 for defects that were treated with fibrin glue 
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only (group D) and n=2 for defects that had no intervention (group E). Group E was excluded 

from the statistical testing due to a small sample size (see also Figure. 5.3). 

For each of the parameters examined for the macroscopic assessment of the defects, an 

individual score of 4 represents the worst repair and an individual score of 0 would represent 

the best repair (Table 5.1). The repair tissue in the CD271
+
MSC transplanted animals (group 

B) was predominantly white coloured, whereas the repair tissue present in the defects in the 

other groups were predominantly translucent coloured. Less than 25% of the repair tissue in 

group B showed the presence of blood vessels, whereas 25 -75% of the repair tissue in all of 

the other groups contained blood vessels.   A smooth surface of the repair tissue was only seen 

in group B and with either Chondro-Gide® or Alpha Chondro Shield®. The defects 

transplanted with PA MSCs (group A) or scaffold alone (group C) had fibrillated surface of 

repair tissue, whereas those transplanted with fibrin glue only (group D) or had no intervention 

(group E) showed an incomplete new repair tissue that had not fully resurfaced the defect. The 

defect fill was in line with the adjacent cartilage in the defects transplanted with CD271
+
MSCs 

(group B) with either of the scaffolds. In Alpha Chondro Shield® alone (group C) over 50% of 

the defect depth was filled. In the defects transplanted with PA MSCs with either scaffolds 

(group A), or Chondro-Gide® alone (group C) or the fibrin glue alone control group (group D) 

and the no intervention control (group E), less than 50% of the defect was filled with a repair 

tissue. Few fibrillations or cracks were seen at the integration zone of defects with the host 

tissue for group B with either scaffold, whereas the defects of group A, C and D showed 

degenerative changes at these integration sites with the extension of the defect into the 

adjacent host cartilage. 
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Figure 5.2. Gross morphology of the defects at 3 weeks post-transplantation. 

Representative images are shown of the gross morphology of the defects in groups A, B, 

C, D and E.  Gross examination of defects at 3 weeks revealed glossy white and well-

integrated repair tissue in the animals that received CD271
+

MSCs (Group B) and not in 

the animals that received PA MSCs (Group A), or scaffold alone (Group C), or fibrin 

glue alone (group D), or had no intervention (Group E).  



- 180 - 

 

Figure 5.3 Macroscopic scores for cartilage repair at 3 weeks post-transplantation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Macroscopic scores for cartilage repair at 3 weeks post-transplantation. 

The macroscopic mean scores of the defects transplanted with CD271
+

MSCs (group B) 

were significantly better than the defects transplanted with PA MSCs (group A) with 

Chondro-Gide® (p value = 0.015), and Alpha Chondro Shield® (p value = 0.043) as well 

as the defects that received scaffold alone (group C) (p value = 0.040 for Chondro-Gide® 

and p value = 0.039 for Alpha Chondro Shield®). The defects transplanted with 

CD271
+

MSCs (group B) also showed significantly lower scores than defect treated with 

fibrin glue alone (group D) (p value = 0.022 for Chondro-Gide® and p value = 0.032 for 

Alpha Chondro Shield®). Data are presented as means ±  SD of n=6 for group A and B, 

n=3 for group C, n=4 for group D and n=2 for group E. Group E was excluded from 

statistical analysis due to a small sample size. p value <0.05; Dunn’s multiple comparison 

test. Dotted lines indicate significance for Chondro-Gide® and intact lines indicate 

significance for Alpha Chondro Shield®.  



- 181 - 

 

Table 5.1 Macroscopic scores for the individual parameters of cartilage repair at 3 weeks post-

transplantation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1. Macroscopic scores for the individual parameters of cartilage repair at 3 

weeks post-transplantation. The colour of the repair tissue in the defects transplanted 

with CD271
+

MSCs (group B) had a significantly lower score than that of the defects 

transplanted with PA MSCs (group A) using Chondro-Gide® (p value = 0.006). Blood 

vessel scores were significantly lower in the macroscopic repair tissue of the defects of 

group B with Alpha Chondro Shield® compared to the defects treated with fibrin glue 

alone (group D) (p value = 0.041). The surface of the repair tissue was also significantly 

better in these defects of group B as compared to the  defects of group A with Alpha 

Chondro Shield® only (p value = 0.039) and defects of group E (p value = 0.009. Data 

are presented as means ± SD (n=6 for group A and B, n=3 for group C, n=4 for group D 

and n=2 for group E). Group E was excluded from statistical analysis due to a small 

sample size. p value <0.05; Dunn’s multiple comparison test. Bold text indicates 

statistical significance with asterisks displayed on the lower scores.  
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5.4 The effects of PA MSCs and CD271
+
MSCs seeded scaffolds on cartilage repair: 

overall histological outcomes at 3 weeks post-transplantation 

5.4.1 H&E staining  

A greater extent of defect fill was observed in the defects transplanted with CD271 MSCs 

(group B) with Chondro-Gide® or Alpha Chondro Shield® compared to defects transplanted 

with PA MSCs (group A) (Figure 5.4.1).  A firm attachment of the scaffold to the underlying 

trabecular bone was seen in all cases when transplanted using Alpha Chondro Shield®. 

However, Chondro-Gide® was present in two out of the three animals that received 

CD271
+
MSCs (group B) and one out of the three animals that received PA MSCs (group A). 

For gross morphology scoring, Chondro-Gide® was seen in all the animals; however there 

was no Chondro-Gide® present in several animals following processing of the rat knees for 

histology. Therefore, histological scoring of defect fill included any repair tissue present 

within the defect. Defects transplanted with scaffold alone (group C) were covered with the 

scaffolds and were infiltrated with a cell-rich fibrous tissue in the case of Alpha Chondro 

Shield® and a development of a fibrous layer of tissue in between the scaffold-bone 

interphase in the case of Chondro-Gide®. The development of a cell-rich fibrous layer 

overlying the trabecular bone was seen in the defects treated with fibrin glue only (group D) 

and the defects that had no intervention (group E) (Figure 5.4).  

5.4.2 Toluidine blue staining  

The repair tissue within the defects that received PA MSCs (group A) and CD271
+
MSCs 

(group B) when transplanted with Alpha Chondro Shield® and the repair tissue at the 

scaffold-bone interphase in the case of Chondro-Gide® showed localised toluidine blue 

metachromasia. The cell-rich fibrous tissue in the defects transplanted with scaffolds alone 

(group C) or fibrin glue only (group D) or the no intervention control (group E) also showed 

no metachromasia with toluidine blue dye (Figure 5.5).  
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5.4.3 Collagen type II immunostaining  

Localised collagen type II immunostaining was seen at the scaffold-bone interphase in the 

CD271
+
 MSC group (group B) transplanted with Chondro-Gide® and within the repair tissue 

of defects transplanted with CD271
+
MSCs and Alpha Chondro Shield®. No collagen type II 

production was seen in the repair tissue of the defects of all the other groups (Figure 5.4.3).  

5.4.4 Overall histological scores 

The extent of repair was evaluated in each group using a modified Wakitani’s score (Wakitani 

et al., 1994). As described in the methods section of this thesis, the scoring system is 

composed of eight parameters with a score range from 0 to 20 points, where a lower score 

represented a superior repair tissue and a higher score represented a poor repair tissue. The 

mean score of the repair tissues for CD271
+
MSC transplants in Chondro-Gide® or Alpha 

Chondro Shield® were lower than the scores for PA MSCs transplants in the respective 

scaffolds (CD271
+
MSCs: Chondro-Gide® = 9.3 ± 1.5, Alpha Chondro Shield® = 9.2 ± 1.0; 

PA MSCs: Chondro-Gide® = 12.3 ± 1.6, Alpha Chondro Shield® = 12.3 ± 0.8). Defects 

treated with scaffolds alone (group C) were scored at 12.5 ± 0.7 with Chondro-Gide® and 

15.5 ± 0.7 with Alpha Chondro Shield®. Defects in the control groups treated with either 

fibrin glue alone (group D) or the control groups that had no intervention (group E) were 

scored at 14.5 ± 0.7 and 16.5, respectively. The histological scores were consistent with the 

macroscopic scores where defects transplanted with CD271
+
MSCs in combination with either 

cell-carrier obtained the lowest overall scores. All data has been presented as means ± SDs of 

n=3 for PA MSCs group (group A) and CD271
+
MSCs group (group B) and n=2 for each of 

the control groups i.e. scaffold alone group (group C) and fibrin glue only group (group D). 

Data for no intervention control group (group E) has been presented as the overall score of 

n=1 animal. There were no statistical differences between any of the groups (See also Figure 

5.7).  
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Figure 5.4 Histology of rat knee tissue sections at 3 weeks post-transplantation. 

 

 

 

 

 

Figure 5.4. Histology of rat knee tissue sections at 3 weeks post-transplantation. 

Representative images are shown of the H&E stained tissue section of the osteochondral 

defects. A greater extent of defect fill was observed in defects transplanted with 

CD271
+

MSCs (group B) with both scaffolds as compared to the defects in group A, C, D 

or E. Original magnification x4. All scale bars = 200 µm. Dotted line with arrows 

indicates the margins of the defect.  
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Figure 5.5 GAG deposition in the defects 

 

 

 

 

 

 

Figure 5.5. GAG deposition in the defects at 3 weeks post transplantation.  

Representative images are shown of toluidine blue stained tissue sections of the 

osteochondral defects. GAG deposition was seen in PA MSCs (group A) and 

CD271
+

MSCs (group B) and no obvious metachromatic staining indicative of GAG 

content was seen in the three control groups (group C, D and E). Original magnification 

x4. All scale bars = 200 µm. Dotted line with arrows indicates the margins of the defect.  
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Figure 5.6 Collagen type II immunolocalisation in the defects at 3 weeks post-transplantation. 

 

 

 

 

 

 

Figure 5.6. Collagen type II immunolocalisation in the defects at 3 weeks post-

transplantation. Localised collagen type II immunoreactivity was seen in the defects 

treated with CD271
+

MSCs (group B) in the fibrous layer between Chondro-Gide® and 

the underlying bone, and in the repair tissue around the fibres in Alpha Chondro Shield®.   

No type II collagen was seen within the repair tissue of the defects of groups A,C,D and 

E. Original magnification x4. All scale bars = 200 µm. Dotted line with arrows indicates 

the margins of the defect.  
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Figure 5.7 Histological scoring at 3 weeks post transplantation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Histological scoring of the repair tissue at 3 week post-transplantation.   

The defect transplanted with CD271
+

MSCs (group B) using Alpha Chondro Shield® as 

the cell-carrier achieved a lower overall histological score; however, no significant 

differences were observed in the histological scores between the cell-treated groups. Data 

are presented as means ± SD n=3 for group A and B, n=2  for group C and D, n=1 for 

group E). The Mann-Whitney U test was used to compare histological scores of group A 

versus group B for each cell-carrier. Group C, D and E were excluded from statistical 

analysis due to the small sample size.  
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5.5 The effects of PA MSCs and CD271
+
MSCs seeded scaffolds on cartilage repair: 

detailed histological outcomes at 3 weeks post-transplantation 

Differences observed in the various histological parameters that were assessed have been 

described below and are summarised in Table 5.2:  

5.5.1 Cell morphology 

Cell morphology was graded from 0 for round or oval shaped cells (i.e. chondrocytic in shape) 

to 4 points when no round or oval shaped cells were present within the repair tissue. The repair 

tissue of the defects transplanted with PA MSCs (group A) and CD271
+
MSCs (group B) with 

Alpha Chondro Shield® only showed the presence of both round-shaped cells and elongated 

fibroblast-like cells in the repair tissue indicative of  fibro-cartilaginous repair tissue; whereas 

those with Chondro-Gide® showed elongated spindle shaped cells indicative of mostly non-

cartilaginous repair tissue. Cell infiltration within Chondro-Gide® was limited, whereas Alpha 

Chondro Shield® allowed greater cell infiltration. Cell morphology in the repair tissue of the 

defects transplanted with scaffolds alone (group C) with both Chondro-Gide® and Alpha 

Chondro Shield® and of the defects in fibrin glue only group (group D) and the no 

intervention control group (group E) were also indicative of mostly non-cartilaginous repair 

tissue (Figure 5.8).  

5.5.2 Matrix staining 

The extent of metachromatic staining by toluidine blue in the repair tissue was compared with 

the adjacent normal cartilage. Toluidine blue metachromasia was reduced compared to the 

adjacent cartilage in the defects of animals transplanted with PA MSCs (group A) and 

CD271
+
MSCs (group B) and with both scaffolds, but it was more markedly reduced in the 

defects of the control groups, scaffold alone (group C), fibrin glue alone (group D) and no 

intervention control (group E). None of these groups showed metachromatic staining 

equivalent to the surrounding host cartilage.  
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5.5.3 Surface regularity 

Surface regularity referred to the defect surface that appeared smooth compared to the whole 

defect surface. Defects transplanted with either PA MSCs (group A) or CD271
+
MSCs (group 

B) using Alpha Chondro Shield® showed a moderately smooth surface of the repair tissue 

compared to an irregular surface of the repair tissue seen in the control groups of scaffold 

alone (group C) and no interventional group (group E). Defects in PA MSC transplanted 

animals (group A) and CD271
+
MSC transplanted animals (group B) with Chondro-Gide® also 

showed an irregular surface of the repair tissue. In contrast, defects in the fibrin glue control 

group (group D) showed a smooth surface of repair tissue.  

5.5.4 Thickness 

Cartilage thickness was scored from 0 (over two/third of the defect filled with a repair tissue) 

to 2 (less than 1/3 of the defect was filled with a repair tissue). Defect fill was greater in the 

defects transplanted with either PA MSCs (group A) or CD271
+
MSCs (group B) with Alpha 

Chondro Shield®, which showed over 2/3 repair of the defect depth compared with all the 

other groups. In the scaffold alone control group (group C), between 1/3-2/3 of the defects was 

filled with a repair tissue with either Chondro-Gide® or Alpha Chondro Shield®. Defects in 

the fibrin only group (group D) and the no intervention control group (group E) showed less 

than 1/3 of the defect was filled with a repair tissue. In defects where Chondro-Gide® was 

absent, the repair tissue within the defect was scored for thickness (Figure 5.9). 

5.5.5 Integration of the repair tissue with the host adjacent cartilage 

Integration of repair tissue with adjacent host tissue was scored from 0 (no gap between the 

repair tissue and host cartilage) to 2 (incomplete integration of the edges of the repair tissue). 

Both the PA (group A) and the CD271
+
MSCs (group B) treated groups and the scaffold alone 

control group (group C) showed a good integration of the scaffold with the surrounding host 

cartilage when transplanted using Alpha Chondro Shield®. Since Chondro-Gide® was either 

absent or delaminated within the defects, the score for the defects transplanted using Chondro-
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Gide® was higher than those transplanted using Alpha Chondro Shield®. In defects where 

Chondro-Gide® was absent, the repair tissue within the defect was scored for thickness. Due 

to a poor defect fill, the defects treated with fibrin glue only (group D) or had no intervention 

(group E) scored the worst as the surface of the repair tissue was not seen to be integrating 

with the adjacent host cartilage.  

5.5.6 Vascularisation within the defect 

The presence of blood vessels was graded from 0 to indicate the absence of blood vessels to 4 

to indicate the presence of 30+ blood vessels within the repair tissue. Defects transplanted 

with either PA MSCs (group A) showed greater vascularisation within the defect compared to 

the defects transplanted with CD271
+
MSCs (group B) with either of the scaffolds. Defects 

treated with Alpha Chondro Shield® alone (group C), or with fibrin glue only (group D) or 

those that had no intervention (groups E) showed enhanced vascularisation within the repair 

tissue compared to the cell treated groups. The repair tissue of the defects transplanted with 

PA MSCs (group A) using Chondro-Gide® had less vascularisation compared those that were 

transplanted using Alpha Chondro Shield®. The blood vessels were observed in the fibrous 

tissue layer in between Chondro-Gide® and the underlying trabecular bone and no blood 

vessels were seen within Chondro-Gide® (Figure 5.10).  

5.5.7 Foreign body giant cells 

Only the repair tissue of the defects transplanted with Alpha Chondro Shield® showed an 

inflammatory response where FBGCs were seen to be engulfing the fibres of the scaffold. In 

comparison, defects transplanted using Chondro-Gide® showed no FBGC reaction. Also, no 

FBGC reaction was observed in the repair tissue of the defects treated with fibrin glue alone 

(group D) or no intervention control (group E) (Figure 5.11). 
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Table 5.2 Histological scores of the individual parameters at 3 weeks post-transplantation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2. Histological scores of the individual parameters at 3 weeks post-

transplantation. Defects of group B showed better overall defect fill as indicated by low 

scores of thickness and little overall vascularisation as indicated by a lower score for 

blood vessels. Data are presented as means ± SD (n=3 for group A and B, n=2  for group 

C and D and n=1 for group E). No significant differences were observed in the individual 

histological scores of the cell-treated groups. Groups C, D and E were excluded from 

statistical analysis due to a small sample size. The Mann Whitney U test was used to test 

for statistical significance.  
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 of t Figure 5.8 Representative he repair tissue at 3 week post-transplantation 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. Representative H&E stained images are shown to demonstrate the 

difference in cell morphology of the repair tissue. The image on the left demonstrates 

the cell morphology occasionally observed in defects treated with PA MSCs (group A) in 

combination with Alpha Chondro Shield®, i.e. showing mostly round or oval shaped 

cells in the repair tissue (red arrowed) with a few elongated cells (black arrowed); 

whereas defect of the no intervention control group (group E) showed mostly flat 

elongated cells in the repair tissue. Yellow asterisks represent the fibres of Alpha 

Chondro Shield®. Scores have been presented as means ± SD for n=3 in group A and 

overall score of n=1 for group E. Original magnification x40. Scale bar = 25µm. 



- 193 - 

 

Figure 5.9 Representative H&E stained images are shown to demonstrate the difference in 

the defect fill or thickness of the repair tissue 

 H&E stained images are shown to demonstrate the difference in cell morphology of the repair tissue 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Representative H&E stained images are shown to demonstrate the 

difference in the defect fill or thickness of the repair tissue. The image on the left 

demonstrates a near-complete defect fill where over 2/3 of the defect depth was filled 

with a repair tissue in the case of CD271
+

MSCs with Alpha Chondro Shield® (group B). 

In contrast, the image on the right demonstrates an incomplete defect fill with less than 

1/3 of the defect depth filled with a repair tissue in the case of the fibrin glue alone 

control group (group D).  Black dotted lines indicates the depth of the defect and red 

dotted single brackets indicates the depth of the repair tissue. Scores have been presented 

as means ± SD of n=3 in group B and n=2 in group D. Original magnification x10. Scale 

bar = 100 µm. 
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presentative Figure 5.10 Representative H&E stained images are shown to demonstrate the 

difference in the defect fill or thickness of the repair tissue 

 

 

 

 

 

 

 

 

 

Figure 5.10. Representative H&E stained images are shown to demonstrate the 

differences in the extent of vascularisation of the repair tissue. The image on the left 

demonstrates a low number of blood vessels (red arrowed) in the repair tissue of the 

defects transplanted with Chondro-Gide® (group B) compared to the number of blood 

vessels (red arrowed) in the defects treated with Alpha Chondro Shield® alone (group C) 

(right image). Blood vessels were observed in the fibrous tissue between the scaffold-

bone interphase in the case of Chondro-Gide®, whereas blood vessels were present 

throughout the repair tissue in the case of Alpha Chondro Shield®. Yellow asterisks 

represent the fibres of Alpha Chondro Shield®. Scores have been presented as means ± 

SD of n=3 in group B and group C. Original magnification x20. Scale bar = 50 µm. 
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Figure 5.11 Representative H&E stained images are shown to demonstrate the differences in FBGC reaction 

in  the repair tissue 

 H&E stained images are shown to demonstrate the differences in the extent of vascularisation of the 

repair tissue. 

 

 

 

 

 

 

 

 

 

Figure 5.11. Representative H&E stained images are shown to demonstrate the 

differences in FBGC reaction in  the repair tissue. FBGC reaction was only seen in the 

defects that were transplanted with Alpha Chondro Shield® (right image) compared to 

those that were transplanted using Chondro-Gide® (left image). FBGCs (red arrowed) 

were seen to be engulfing the fibres of Alpha Chondro Shield®. Yellow asterisks 

represent the fibres of Alpha Chondro Shield®. Scores have been presented as means ± 

SD of n=3. Original magnification x40. Scale bar = 25 µm. 
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5.6 Human mitochondrial staining at 3 weeks post-transplantation 

Immunolocalisation for human mitochondrial antigen (HMA) was observed in the repair 

tissues of both PA MSCs (group A) and CD271
+
MSC groups (group B) with both Chondro-

Gide® and Alpha Chondro Shield®. HMA expression was more marked in the defects 

transplanted using Alpha Chondro Shield® than Chondro-Gide® with both PA and CD271
+ 

MSCs. In animals where Chondro-Gide® was present in the defects, the HMA expression of 

PA or CD271
+
MSCs was mostly detected in the fibrous tissue layer in the junction between 

the scaffold and the underlying trabecular bone and was minimally detected within the 

scaffold also. In animals where Chondro-Gide® was absent, little HMA expression was 

detected in the fibrous repair tissue in the defects. Between PA and CD271
+
MSCs treated 

animals using Chondro-Gide®, HMA expression was more marked in the CD271
+
MSCs 

transplanted group.  

In animals treated with PA or CD271
+
MSCs with Alpha Chondro Shield®, HMA expression 

was detected in the ECM surrounding the scaffold fibres.  Similar extent of HMA expression 

was detected in both PA and CD271
+
MSC group. Due to the nature of mitochondrial staining, 

the exact number of cells was difficult to quantify. There was no evidence of HMA 

immunolocalisation in any of the controls groups that were not transplanted with human 

MSCs, i.e groups C, D and E. Greatest HMA expression was detected in the pellet cultures of 

human MSCs used as controls (Figures 5.12 and 5.13).   
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Figure 5.12 Immunolocalisation of human mitochondrial antigen (HMA) in the repair tissue of the defects 

at 3 week post-transplantation with Chondro-Gide®.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12. Immunolocalisation of human mitochondrial antigen (HMA) in the 

repair tissue of the defects at 3 week post-transplantation with Chondro-Gide®. 

HMA immunoreactivity, indicated by brown punctate staining (red arrowed), was 

observed in the repair tissue of the defects treated with PAMSCs (group A) and 

CD271
+

MSCs (group B). The positive expression was seen at the bottom of the defect in 

the fibrous tissue layer formed between the scaffold and the trabecular bone. No HMA 

expression was detected in the defects of group C,D and E. Haematoxylin was used as a 

counterstain. Human MSC pellets were used as positive controls. Original magnification 

x100; scale bar = 10 µm. 
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Figure 5.13 Immunolocalisation of human mitochondrial antigen (HMA) in the repair tissue of the defects 

at 3 week post-transplantation with Alpha Chondro Shield®. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13. Immunolocalisation of human mitochondrial antigen (HMA) in the 

repair tissue of the defects at 3 week post-transplantation with Alpha Chondro 

Shield®. HMA immunoreactivity indicated by brown punctate staining (red arrowed), 

was observed in the repair tissue of the defects treated with PAMSCs (group A) and 

CD271
+

MSCs (group B). The positivity was localised either around the fibres of the 

scaffolds or within the repair tissue itself. No HMA expression was detected in the 

defects of group C, D and E but there was dark brown artifactual staining (yellow 

asterisks) of the fibres of Alpha Chondro Shield®. Haematoxylin was used as a 

counterstain. Human MSC pellets were used as positive controls. Original magnification 

x100; scale bar = 10 µm. 
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5.7 The effects of PA MSCs and CD271
+
MSCs seeded scaffolds on cartilage repair: gross 

morphology at 6 weeks post-transplantation 

Gross examination of the defects at 6 weeks post-transplantation revealed no differences in the 

quality of the repair tissue of the defect when transplanted with either PA MSCs (group A) or 

CD271
+
MSCs (group B). Both group A and group B showed a poorly integrated repair tissue 

with the edges of the defects clearly visible. The scaffold alone control group (group C), 

showed no repair tissue and had severe degeneration of the adjacent cartilage in the case of 

Chondro-Gide®. In contrast, the control groups with fibrin only (group D) or no intervention 

(group E)  appeared to have a well-integrated repair tissue, especially in the no intervention 

control group (group E) where a glossy pale-white repair tissue was seen and the edges of the 

defects were difficult to distinguish from the surrounding cartilage (Figure 5.14).  

As per the macroscopic scoring system, defects transplanted with PA MSCs (group A) or 

CD271+MSCs (group B) had comparatively lower scores with either Chondro-Gide® or 

Alpha Chondro Shield®  than defects that were treated with scaffolds alone (group C). Defects 

in group A were scored at 7.5 ± 2.4 with Chondro-Gide®  and  8.3 ± 3.0 with Alpha Chondro 

Shield®  and defects in group B were scored at  7.8 ± 3.4 with Chondro-Gide® and 8.3 ± 2.6 

with Alpha Chondro Shield®. In contrast, defects in group C were scored at 12 ± 2.6 for 

Chondro-Gide® and 10.3 ± 3.1 with Alpha Chondro Shield®. The defects treated with fibrin 

glue only (group D) had similar scores (7.5 ± 2.6) as the two cell-treated groups, group A and 

B. The no intervention control group (group E), was scored at 6 ± 1.6, which was the lowest 

compared to all the other groups. However, no statistical significant differences were seen in 

the overall histological scores between any of the groups. All data has presented as means ± 

SDs of n=6 for defects transplanted with PA MSCs (group A) and CD271+MSCs (group B), 

n=3 for defects transplanted with scaffold alone (group C), n=4 for defects that were treated 

with fibrin glue only (group D) and n=2 for defects that had no intervention (group E) (see 

also Figure. 5.3). 
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For individual parameters examined, the defects in groups D and E showed a predominantly 

(>50%) white repair tissue, whereas the defects transplanted with PA MSCs (group A) and 

CD271
+
MSCs (group B) and cell-free groups (group C) revealed a predominantly translucent 

repair tissue. Macroscopically, the presence of blood vessels was reduced in the cell-treated 

groups (group A and B) with both the scaffolds as well as in the defects that received fibrin 

glue only (group D) or had no intervention (group E). Between 25-50% of the repair tissue in 

all the groups contained blood vessels except for the scaffold alone control group (group C), 

which showed up to 75% of blood vessels in the repair tissues examined. A smooth 

heterogeneous surface of the repair tissue was seen only in group D and E. In PA MSCs 

transplanted animals (group A) with both scaffolds, there was a heterogeneously smooth to a 

somewhat fibrillated surface. The defects in the CD271
+
MSC transplanted animals (group B) 

with both scaffolds and the scaffold alone control group (group C) showed mostly fibrillated 

or an incomplete surface of the repair tissue. Over 50% of the defect depth was filled in the 

defects that received PA MSCs (group A) and CD271
+
MSCs (group B) with both the cell-

carriers and in the defects treated with fibrin glue only (groups D) or had no intervention 

(group E). The defects treated with scaffolds alone (group C) with both the cell-carriers 

showed less than 50% of the defect fill. Cracks or fibrillations were observed at the integration 

zone of the repair tissue in the defects transplanted with PA MSCs (group A) with Chondro-

Gide® and in the defects treated with fibrin glue only (group D) or had no intervention (group 

E). In contrast, the defects in group A with Alpha Chondro Shield® as the cell carrier and 

CD271
+
MSCs group (group B) and scaffold alone control group (group C) showed diffuse 

degenerative changes in the adjacent articular cartilage of the host (Table 5.3).  
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Figure 5.14 Gross morphology of the defects at 6 weeks post transplantation 

 

 

 

 

 

 

Figure 5.14. Gross morphology of the defects at 6 weeks post transplantation. 

Representative images are shown of the gross morphology of the defects in groups A, B, 

C, D and E. Gross examination of defects at 6 weeks revealed a translucent coloured and 

poorly integrated repair tissue in both the cell treated groups (group A and B)  and in the 

animals that received scaffold alone (group C).The animals that received fibrin glue alone 

(group D) or had no intervention (group E) showed a predominantly white and well-

integrated repair tissue. 
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Figure 5.15 Macroscopic scores for cartilage repair  at 6 weeks post-t ransplantation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15. Macroscopic scores for cartilage repair  at 6 weeks post-

transplantation. Mean macroscopic scores for animals transplanted with PA MSCs 

(group A) or CD271
+

MSCs (group B) were lower than the scaffold alone control group 

(group C) and were similar to the fibrin glue alone control (group D) but the no 

intervention control group (group E) showed the lowest scores compared to all the other 

groups. However, no significant differences were observed in the macroscopic mean 

scores of group A, B, C and D. Group E was excluded from statistical analysis due to s 

small sample size. Data are presented as means ± SD (n=6 for group A and B, n=3 for 

group C, n=4 for group D and n=2 for group E).  
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Table 5.3 Macroscopic scores for the individual parameters of cartilage repair at 6 weeks post-

transplantation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3. Macroscopic scores for the individual parameters of cartilage repair at 6 

weeks post-transplantation. The colour of the repair tissue in the defects treated with 

fibrin glue only (group D) was significantly better than that of the defects that were 

transplanted with Chondro-Gide® alone (group C, p value = 0.02). There was also a 

significant difference in the scores for degeneration of adjacent cartilage in defects 

transplanted with CD271+MSCs (group B) with both the scaffolds (p value = 0.030, 

Chondro-Gide® and Alpha Chondro Shield®) and when transplanted with Chondro-

Gide® alone (group C) compared to fibrin glue alone group (group D, p value = 0.024). 

Data are presented as means ± SD (n=6 for group A and B, n=3 for group C, n=4 for 

group D and n=2 for group E). Group E was excluded from statistical analysis due to a 

small sample size. (p value <0.05; Dunn’s multiple comparison test). Bold text indicates 

statistical significance with asterisks displayed on the lower scores.  
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5.8 The effects of PA MSCs and CD271
+
MSCs seeded scaffolds on cartilage repair: 

overall histological outcomes at 6 weeks post-transplantation 

5.8.1 H&E staining  

A poor degree of defect fill was observed in the defects of the MSC transplanted (group A and 

B) and scaffold alone transplanted animals (group C) regardless of the type of scaffold.  

Whilst the animals transplanted with Alpha Chondro Shield® showed good integration with 

the host adjacent cartilage and a firm attachment to the underlying trabecular bone, animals 

that were transplanted with Chondro-Gide® either contained delaminated scaffold or the 

scaffold detached during histological processing. In PA MSCs transplanted animals (group A), 

Chondro-Gide® was delaminated in one out of the three animals and was not present in the 

other two animals; in addition, in CD271
+
MSCs transplanted animals (group B), Chondro-

Gide® delaminated in all three animals. Defects that were treated with fibrin glue alone (group 

D) showed a fibrous repair tissue with a partial defect fill; whereas the defects that had no 

intervention (group E) showed the greatest degree of defect fill compared to the defects of 

other groups. Bone matrix deposition was seen at the bottom of the defects in cell-treated 

groups (group A and B) or the scaffold alone control group (group C) with Alpha Chondro 

Shield® scaffold only. No bone was seen in the defects that were transplanted using Chondro-

Gide® (Figure 5.16).  

5.8.2 Toluidine blue staining  

The repair tissue within the defects of PA MSC (group A) and CD271
+
MSC (group B) 

transplanted animals with Alpha Chondro Shield® only and the repair tissue of the no 

intervention control group (group E) showed localised toluidine blue metachromasia. In 

contrast, defects of any group transplanted with Chondro-Gide® showed no metachromasia. 

The fibrous tissue in the defects of the fibrin glue only control group (group D) also showed 

no metachromasia with toluidine blue dye (Figure 5.17).  
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5.8.3 Collagen type II immunostaining  

No collagen type II production was observed in the repair tissues of the defects of  cell-treated 

groups (group A and B) or the scaffold alone and fibrin glue only control groups (group C and 

D). However, collagen type II was only seen in the defects of the no intervention control group 

(group E) (Figure 5.4.3).  

5.8.4 Histological scoring of the repair tissue 

The histological scores for the PA MSC (group A) and CD271
+
MSC (group B) transplanted 

groups were similar, irrespective of the cell scaffold used. When Chondro-Gide® was used, 

the repair tissue was scored at 12.5 ± 2.3 for PA MSC transplanted animals (group A) and 11.5 

± 3.0 for CD271
+
MSC transplanted animals (group B).When Alpha Chondro Shield® was 

used, the repair tissue was scored at 11.2 ± 0.7 for PA MSCs group and 11.5 ± 0.5 for 

CD271
+
MSCs group. Defects treated with scaffolds alone (group C) were scored at 15.0 ± 1.4 

with Chondro-Gide® and 15.5 ± 0.7 with Alpha Chondro Shield®. The defects treated with 

fibrin glue only (group D) were scored at 15.5 ± 0.7. The no intervention control group (group 

E) was scored at 9.5. No significant differences were observed in the histological outcomes of 

the cell-treated groups. All data has been presented as means ± SDs of n=3 PA MSCs (group 

A) and CD271+MSCs (group B), n=2 for defects transplanted with scaffold alone (group C) 

and fibrin glue only (group D). Data for no intervention control group (group E) has been 

presented as the overall score of n=1 animal. Group C, D and E were excluded from stats 

analysis due to a small samples size (Figure 5.19).  
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Figure 5.16 Histology of rat 

knee tissue sections at 6 

weeks post 

transplantation. 

 

 

 

 

 

 

Figure 5.16. Histology of rat knee tissue sections at 6 weeks post transplantation. 

Representative images are shown of the H&E stained tissue sections of the osteochondral 

defects.  A poor degree of defect fill was observed in the animals of all groups except for 

the no intervention control group (group E) where the defect was spontaneously 

resurfaced with fibrous tissue. Original magnification  x4. All scale bars = 200µm. Dotted 

line with arrows indicates the margins of the defect.  
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Figure 5.17 GAG 
deposition in the defects 
at 6 weeks post-
transplantation 

 

 

 

 

 

Figure 5.17. GAG deposition in the defects at 6 weeks post-transplantation. 

Representative images are shown of toluidine blue stained tissue sections of the 

osteochondral defects. GAG deposition was seen in the repair tissue of the defects treated 

with PA MSCs (group A) or CD271
+

MSCs (group B) with Alpha Chondro Shield® only 

and in the no intervention control group (group E). Defects transplanted with either cell 

type using Chondro-Gide®, or the control groups C and D showed no metachromatic 

staining. Original magnification x4. All scale bars = 200µm. Dotted line with arrows 

indicates the margins of the defect.  
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Figure 5.18 Collagen type II immunolocalisation in the defects at 6 weeks post-transplantation 

Figure 5.18. Collagen type II immunolocalisation in the defects at 6 weeks post-

transplantation.   No collagen type II  was seen within the repair tissue of the defects of 

either cell treated groups (groups A and B) or of no cell group (group C). Collagen type II 

immunopositivity was only seen in the repair tissue of the defects that had no intervention 

(group E). Original magnification x4. All scale bars = 200µm. Dotted line with arrows 

indicates the margins of the defect.  
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Figure 5.19 Histological scoring of the repair tissue at 6 week post-transplantation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19. Histological scoring of the repair tissue at 6 week post-transplantation. 

The cell-treated groups (group A and B) achieved lower histological scores compared to 

scaffold alone control group (group C) and fibrin blue alone control (group D). The 

defect in group E achieved a lower overall score compared to the other groups. There 

were no significant differences observed in the overall histological scores of the defects 

in group A and B. Data are presented as means ± SD (n=3 for group A and B, n=2  for 

group C and D, n=1 for group E). The Mann-Whitney U test was used to compare 

histological scores of group A versus group B for each cell-carrier. Group C, D and E 

were excluded from statistical analysis due to the small sample size.  
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5.9 The effects of PA MSCs and CD271
+
MSCs seeded scaffolds on cartilage repair: 

detailed histological outcomes at 6 weeks post-transplantation 

Differences observed in the various histological parameters that were assessed have been 

described below and are summarised in Table 5.4:  

5.9.1 Cell morphology 

The repair tissue of the defects transplanted with PA MSCs (group A) and CD271
+
MSCs 

(group B) irrespective of the scaffold showed the presence of mostly elongated fibroblast-like 

cells with a few round-shaped cells indicative of mostly fibro-cartilaginous repair tissue. Bone 

matrix deposition was seen only in the repair tissue of the defects transplanted with PA and 

CD271 MSCs with Alpha Chondro Shield® alone (Figure 5.20). The defects in the controls 

groups of scaffold alone (group C) and fibrin glue alone (group D) showed mostly elongated 

spindle shaped cells indicative of non-cartilaginous repair tissue. The repair tissue of the 

defects that had no intervention (group E) showed a mix of round shaped and elongated cells. 

5.9.2 Matrix staining 

Metachromatic toluidine blue staining was markedly reduced compared with the host adjacent 

cartilage in the defects transplanted with PA MSCs (group A) or CD271
+
MSCs (group B) with 

either of the cell scaffolds. The defects of the scaffold alone group (group C) and the fibrin 

glue control group (group D) showed no metachromatic staining in the repair tissue whereas, 

the no intervention control group (group E) showed metachromatic toluidine blue staining that 

was reduced compared to the adjacent cartilage.  

5.9.3 Surface regularity 

A severely irregular surface of the repair tissue was seen in the defects of PA MSC and 

CD271
+
MSC transplanted animals (group A and B, respectively) with both scaffolds, and the 

scaffold alone control group (group C) as well as the fibrin glue only control group (group D). 

In contrast, the defect alone control group (group E) showed a comparatively less irregular 
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surface of the repair tissue. In defects where Chondro-Gide® was absent, the surface of the 

repair tissue constituted the fibrous repair tissue within the defects.  

5.9.4 Thickness 

Defect fill was greater in the defects transplanted with either PA MSCs (group A) or 

CD271
+
MSCs (group B) with Alpha Chondro Shield® only and in the no intervention control 

group (group E) that showed between 1/3 to 2/3 of the defects were filled with a repair tissue. 

In the scaffold alone control group (group C) and fibrin glue only control group (group D), 

less than 1/3 of the defects was filled with a repair tissue with either Chondro-Gide® or Alpha 

Chondro Shield®. In defects where Chondro-Gide® was absent, the repair tissue within the 

defect was scored for thickness. 

5.9.5 Integration of the repair tissue with the host adjacent cartilage 

Integration of the repair tissue within the defects transplanted with either PA MSCs (group A) 

or CD271
+
MSCs (group B)  in combination with Chondro-Gide® was poor as either only one 

edge or neither of the edges were seen to be integrated with the host cartilage. Similarly, poor 

integration was observed in the scaffold alone control group (group C) with Chondro-Gide and 

in the defects treated with fibrin glue only (group D). Defects in which PA or CD271
+
MSCs 

were transplanted with Alpha Chondro Shield® showed good integration with both edges of 

the repair tissue integrated with the surrounding cartilage. This was also the case with defects 

that had no intervention (group E). In defects where Chondro-Gide® was absent, the repair 

tissue within the defect was scored for integration. 

5.9.6 Vascularisation within the defect 

An increased number of blood vessels were seen in the defects transplanted with PA MSCs 

(group A) or CD271
+
MSCs (group B) using Alpha Chondro Shield® compared to those 

transplanted using Chondro-Gide®. The blood vessels penetrated the repair tissue of the 

defects transplanted with MSCs using Alpha Chondro Shield®, whereas they were only 

present in the fibrous tissue layer between Chondro-Gide® and the underlying trabecular 
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bone. The blood vessels were less frequently seen in the PA or CD271
+
MSC transplanted 

animals and the animals that were treated with fibrin glue alone (group D) than the animals 

that were treated with scaffolds alone (group C) or had no intervention (group E). 

5.9.7 Foreign body giant cell reaction 

Similar to the 3 week results, FBGC reaction was seen only in the defects that were 

transplanted with Alpha Chondro Shield® with or without PA MSCs (group A) or 

CD271
+
MSCs (group B). FBGCs were observed engulfing the fibres of Alpha Chondro 

Shield®. Where Chondro-Gide® was used as the scaffold no FBGCs were present in the 

repair tissue. This was also true for control groups that were treated with fibrin glue only 

(groups D) or those that had no intervention (group E). 
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Table 5.4 Histological scores of the individual parameters at 6 weeks post-transplantation.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.4. Histological scores of the individual parameters at 6 weeks post-

transplantation. The no intervention control group (group E) achieved lower scores for 

most of the parameters assessed excluding blood vessels. Data are presented as means ± 

SD (n=3 for group A and B and n=2  for group C and D, n=1 for group E). There was no 

statistical difference between the repair tissue of the defects of group A and B. Group C, 

D and E were excluded from statistical analysis due to the small sample size. The Mann-

Whitney U test was used to test statistical significance.  
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Figure 5.20 Illustrative images to show the restoration of subchondral bone within the repair tissues of the 
defects at 6 week post transplantation 

 

 

 

 

 

 

Figure 5.20. Representative images to bone matrix within the repair tissues of the 

defects at 6 week post transplantation. Bone matrix deposition was not observed in the 

repair tissue of the defects that received Chondro-Gide®; the space between the scaffold 

and the underlying bone is shown by red asterisks. In contrast, bone matrix was observed 

in the repair tissue of the defects treated with either cell-type using Alpha Chondro 

Shield® as the cell-carrier. Black boxes indicate areas where ECM in the repair tissue has 

been replaced with bone matrix.  Original magnification x10; scale bars = 100µm. Insets 

show x40 magnification of areas shown in black boxes; scale bar 25 μm.  

 



- 215 - 

 

5.10 Human mitochondrial staining  

Only one out of the three animals transplanted with PA MSCs using Alpha Chondro Shield® 

showed HMA expression. There was no HMA immunolocalisation in the repair tissues in the 

CD271
+
MSC (group B) transplanted animals or any of the control groups (group C, D and E) 

at 6 weeks post-transplantation. HMA expression was only detected in the human MSC pellets 

that were used as controls (Figure 5.21 and 5.22)   
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Figure 5.21 Immunolocalisation of human mitochondrial antigen (HMA) in the repair tissue of the defects 

at 6 week post-transplantation with Chondro-Gide® 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21. Immunolocalisation of human mitochondrial antigen (HMA) in the 

repair tissue of the defects at 6 week post-transplantation with Chondro-Gide®. 

HMA immunoreactivity was absent in the repair tissue of the defects treated with 

PAMSCs (group A) and CD271
+

MSCs (group B). HMA expression was also absent in 

the control groups (group C,D and E). Positive expression as indicated by brown punctate 

staining (red arrowed) was only seen in the human MSC pellets used as  positive controls. 

Haematoxylin was used as a counterstain. Original magnification x100. Scale bar = 

10µm. 

Positive control 

CD271
+

MSCs 
(Group B) 

PA MSCs 
(Group A) 

 Scaffold alone 
(Group C) 

Fibrin glue alone 
(Group D)  

No intervention 
(Group E) 
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Figure 5.22 Immunolocalisation of human mitochondrial antigen (HMA) in the repair tissue of the defects at 

6 

week post-transplantation with Alpha Chondro Shield®. 

 

 

 

 

 

 

 

Figure 5.22. Immunolocalisation of human mitochondrial antigen (HMA) in the 

repair tissue of the defects at 6 week post-transplantation with Alpha Chondro 

Shield®. HMA immunopositivity was absent in the repair tissue of the defects treated 

with PAMSCs (group A) and CD271
+

MSCs (group B). Positive expression as indicated 

by brown punctate staining (red arrowed) was only seen in the human MSC pellets used 

as a positive control. There was dark brown artifactual staining (yellow asterisks) of the 

fibres of Alpha Chondro Shield®. Haematoxylin was used as a counterstain. Original 

magnification x100; scale bar = 10 µm.  
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5.11 Discussion 

CD271 selected MSCs from various sources including BM (Cuthbert et al., 2015), AT (Quirici 

et al., 2010; Duran et al., 2013), and synovium (Arufe et al., 2010) have shown an immense 

potential for their use in regenerative medicine. These in vitro studies suggest that isolating 

cells immune-positive for CD271 results in a homogenous population that also co-expresses 

CD73, CD90 and CD105 (Arufe et al., 2010; Cuthbert et al., 2015; Jones and McGonagle 

2008). CD271
+
MSCs from BM have previously been shown to give rise to superior cartilage 

formation in vivo compared to PA MSCs (Mifune et al., 2012). In this study, the defects 

transplanted with AT derived CD271
+
MSCs (group B) at 3 weeks post-transplantation showed 

macroscopically superior repair tissue compared to the defects transplanted with PA MSCs 

(group A) and all the other control groups (groups C, D and E). Histologically, all defects 

showed fibrous cartilaginous repair tissue, but localised metachromatic toluidine blue staining 

was seen in the repair tissue of the defects treated with CD271
+
MSCs (group B). For complete 

healing of the full-thickness defects, it was essential that the trabecular and subchondral bones 

were fully restored followed by resurfacing of the defect with articular cartilage. Therefore, 

the candidate cell type must have the ability to differentiate into both bone and cartilage. There 

was indication of bone matrix deposition at the proximal end of the defects transplanted with 

PA MSCs (group A) and CD271+MSCs (group B) using Alpha Chondro Shield®  only at 6 

weeks post-transplantation. Wakitani et al, have previously listed the sequence of events that 

are likely to take place following transplantation of cell-scaffolds into a full thickness defect 

(Wakitani et al., 1994). They hypothesized that vascular infiltration into the defect causes 

host-derived MSCs to undergo osteogenesis and restore the osseous tissue. This happens only 

up to the natural junction between the host cartilage and subchondral bone, as the distal part of 

the defect is under the influence of the factors present in the synovial cavity where the 

osteochondral progenitor cells give rise to the cartilage (Wakitani et al., 1994). In this study, 

vascular infiltration was seen at 3 weeks followed by bone matrix deposition at 6 weeks in 



- 219 - 

 

both PA and CD271+MSC group. Human cells were seen only in one animal of the PA MSC 

group at 6 weeks and in this animal no evidence of bone matrix was seen.  

 Repair tissue in the defects at 3 week or 6 weeks and in any of the MSC 

transplanted groups (group A and B) did not show a hyaline-like repair tissue at the surface of 

the defect and this may be due to the use of AT as cell source. Previous reports suggest that 

AT is not a suitable source of MSCs for cartilage regeneration (Huang et al., 2005; Im et al., 

2005; Lee, et al., 2012). Studies have also shown that the chondrogenic differentiation 

potential of AT MSCs maybe dependent on the site of harvest of AT (Mochizuki et al., 2006; 

Lopa et al., 2014). Mochizuki and co-workers reported that subcutaneous AT is not a suitable 

source of MSCs for cartilage repair as the subcutaneous fat MSCs have lower chondrogenic 

potential compared to synovium-derived MSCs (Mochizuki et al., 2006). In addition, in a 

donor-matched comparison, infrapatellar fat pad MSCs were reported to have a higher 

chondrogenic potential that subcutaneous AT MSC (Lopa et al., 2014). Furthermore, AT 

MSCs have previously been shown to secrete angiogenic factors that are inhibitory to 

cartilage-like ECM deposition (Lee et al., 2012). The repair tissue of both cell-treated groups 

(groups A and B) with Alpha Chondro Shield® showed vascular invasion and that’s may be 

why hyaline like ECM deposition was not seen. However, selective isolation of CD271
+
MSCs 

may have partially improved the outcome as a comparatively lower number of blood vessels 

were seen in the repair tissue of the defects transplanted with CD271
+
MSCs (group B) 

compared to PA MSCs (group A). In addition, localised metachromasia after staining with 

toluidine blue dye was more markedly seen in the repair tissue of the defects transplanted with 

CD271
+
MSCs. Studies have previously shown that articular cartilage GAGs inhibit 

endothelial cell adhesion (Fenwick et al., 1999; Johnson et al., 2005; Bara et al., 2012). It may 

be that CD271
+
MSCs induced a cartilage-like repair response comprising of GAGs that inhibit 

blood vessel formation, whereas PA MSCs did not induce the deposition of GAGs. Further 

work is needed to explore the anti-angiogenic capacity of the CD271
+
MSCs. 
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 Repair tissue of the defects treated with Alpha Chondro Shield® alone control (group 

C) showed an extensive cell infiltration and little ECM deposition compared to the cell-treated 

groups, where less cells and more ECM deposition was observed. This may suggest that the 

human MSCs were essential for tissue repair. Furthermore, HMA was detected in the cell-

treated defects at 3 weeks post-transplantation indicative of human cell survival in the defects 

that started to lay down ECM.  Human cell survival was observed in the repair tissues of the 

cell-treated groups; however, that did not reduce the FBGC in the defects that received MSCs 

with Alpha Chondro Shield. HMA immunolocalisation at 3 weeks was seen around the fibres 

of PGA in Alpha Chondro Shield, which is also where FBGCs were observed. This co-

localisation of MSCs with FBGCs may suggest that implant rejection continued without 

evidence of an anti-inflammatory activity of the MSCs.  In an inflamed environment, MSCs 

have been shown to have anti-inflammatory effects by restoring the TH1/TH2 balance through 

inhibiting IFN-γ secretion and increasing IL-4 and IL-10 (Aggarwal and Pittenger 2005). 

However, athymic rats do not elicit a T-cell mediated immune response and therefore, MSCs 

may have been unable to induce a T-cell mediated immunomodulatory response. Moreover, 

only one animal in the PA MSCs treated group showed persistence of human cells at 6 weeks 

post-transplantation, all the other animals in the PA or CD271
+
MSC treated groups showed no 

evidence of human cell survival at 6 weeks post-transplantation as depicted by the absence of 

HMA immunopositivity. This may indicate that the inflammatory environment accompanying 

the FBGC reaction to Alpha Chondro Shield® may have contributed to the loss of human 

cells. However, there was also no HMA immunopositivity in the animals transplanted with 

MSCs and Chondro-Gide® at 6 weeks, in which no FBGC reaction was noted. This suggests 

that the human cells failed to persist within the defects irrespective of the FBGC reaction. In a 

recent study of xenogeneic transplantation of human articular chondrocytes into full-thickness 

cartilage defects in minipigs, it was reported that human cells failed to persist in the defects at 

4 weeks following transplantation (Niemietz et al., 2014). The study also reported an 

extensive host cell invasion followed by a decline in human cells to less than 5% of initial cell 

numbers as early as 2 weeks. Co-localisation of macrophages to the implanted cells was 
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suggested to cause this effect. On the other hand, Mifune et al.,, have shown human cell 

survival within a rat model of full-thickness chondral defects at 4 and 8 weeks post 

transplantation (Mifune et al., 2012). Sato et al.,, have also shown human MSC survival in 

guinea pigs knee joints 5 weeks after transplantation (Sato et al., 2012). Clearly, further 

research is needed to understand whether and how transplanted MSC survival is determined, 

particularly if the presence of the MSCs is associated with experimental (or clinical) outcome.  

 Alpha Chondro Shield® showed better integration and tissue ingrowth compared to 

Chondro-Gide® at both 3 weeks and 6 weeks. Alpha Chondro Shield® is a porous scaffold 

with an open pore structure that allows cellular access from all sides whereas Chondro-Gide® 

consist of a porous side for cell-attachment and a compact side  to avoid cell-leakage. Cell-

seeded Chondro-Gide® was fixed with its porous side facing down on to the defect and with 

its compact side lying adjacent to the host articular cartilage. The fixation of MSC-seeded 

Chondro-Gide® was technically challenging in the rat knee joints, which may have resulted in 

the delamination of Chondro-Gide® in some cases. Where Chondro-Gide® was seen in the 

defect, cellular infiltration was observed at the bottom of the defects with the development of a 

fibrous tissue layer in between the scaffold and the underlying trabecular bone. Alpha 

Chondro Shield® on the other hand showed cellular ingrowth from the sides as well as the 

bottom of the defects. At 6 weeks post transplantation, Chondro-Gide® showed poor 

integration and was delaminated within the defect whereas Alpha Chondro Shield® remained 

firmly attached to the donor tissue. Although Chondro-Gide® showed poor integration with 

the host tissue, it evoked no FBGC response and was not supportive of vascular invasion, 

whereas Alpha Chondro Shield® showed a greater degree of FBGC reaction and vascular 

invasion. Host reaction following implantation of a biomaterial can elicit a sequence of events 

including acute and chronic inflammation ultimately resulting in FBGC reaction and fibrous 

capsule formation (Anderson 2001). Depending on the composition of biomaterial, various 

different inflammatory mediators and signalling molecules such as cytokines, chemokines and 

growth factors evoke monocyte/macrophage migration towards the implantation site. During 
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chronic inflammation lymphocytes are recruited to the implantation site. Lymphocytes, 

especially T lymphocytes induce macrophage adhesion, fusion and cytokine secretion 

depending on the material composition of the biomaterial/scaffold. Interleukin-4 (IL-4) and 

IL-13 are cytokines that induce macrophages to gain an alternatively activated phenotype and 

fuse together to form FBGCs. It is believed that these cytokines are produced in vivo by T 

cells (Anderson et al., 2008). In this study, female athymic nude rats were used to create full-

thickness chondral defects; therefore, a T-cell mediated immune response is absent. The 

presence of FBGCs in the repair tissues of the defects transplanted using Alpha Chondro 

Shield® i.e. a synthetic scaffold,  could potentially be due to other sources of IL-4 and IL-13 

production  as it has been previously shown that  NK cells, mast cells, eosinophils and 

basophils are also capable of producing these cytokines (Al-Saffar et al., 1998; Gessner et al., 

2005).  Furthermore, it has also been shown that T cells are not necessary for eliciting a FBGC 

reaction to synthetic materials in nude mice. The authors concluded that T cells are a 

redundant source of IL-4 and/or IL-13 in vivo (Rodriguez et al., 2009). Nevertheless, the 

consequence of FBGC reaction can cause the release of mediators of degradation such as 

reactive oxygen intermediates (ROIs), enzymes and acid. The biomaterials are then exposed to 

these degradative agents in the immediate microenvironment and the chemistry of the 

biomaterial greatly influences its susceptibility to degradation (Anderson et al., 2008). The 

repair tissue of the defects that received Alpha Chondro Shield at 3 weeks and 6 weeks still 

showed fibres of PGA suggesting that the degradation rate of PGA based scaffold is longer 

than 6 weeks in vivo. Freed et al.,, have previously shown when chondrocytes-seeded PGA are 

implanted within a rabbit model of full thickness chondral defect, the remnants of the scaffold 

are still visible at 6 months post-implantation (Freed et al., 1993). Chondro-Gide® is a natural 

scaffold, which did not evoke a FBGC reaction. Natural biomaterials are usually thought to be 

biocompatible and suitable for biomedical applications. Studies have previously shown that 

coating materials with collagen type I reduces macrophage responses to the material and 

fibrosis (Ksander & Gray 1985; Cho et al., 2005). Results presented within this chapter 
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support the previous studies with regards to the absence of FBGC reaction in the case of 

Chondro-Gide®. 

 Rats were chosen as the animal models of osteochondral defects in this study as 

they are cost effective in providing proof-of-concept data to build a bridge between in vitro 

experiments and expensive large animal studies. However, these smaller animals have thin 

cartilage which could be a limiting factor for investigating repair responses as it may heal 

faster than human cartilage and makes it difficult to draw robust conclusions. In addition, the 

small sized joints and thin cartilage also makes it practically difficult to investigate the 

suitability of surgical implants in this model (Constance et al., 2010). In this study, it was 

technically very challenging to fix MSC-seeded Chondro-Gide® and Alpha Chondro Shield® 

into the defects, especially as the cell-seeded scaffolds tend to swell in size. The poor quality 

of repair in rat models of full-thickness cartilage defects has previously been shown by Anraku 

et al.,, who reported that spontaneous cartilaginous repair responses fail to occur in larger 

sized defects (width 1.5mm) compared to hyaline-like cartilage regeneration observed in 

smaller sized defects (width 0.7mm) at 4 weeks after the creation of defects. The larger sized 

defects were covered only with fibrous scar tissue and showed no signs of subchondral bone 

restoration (Anraku et al., 2009). In this study, although the defects were 2 x 2 x 1 mm in size, 

smaller sized defects would spontaneously heal and therefore, to investigate the repair 

responses of MSC transplanted animals, bigger sized defects were created.  

 In summary, the results presented in this chapter are suggestive of 

fibrocartilaginous repair tissue in the defects transplanted with either PA MSCs or 

CD271
+
MSCs derived from AT. There are some indications of improved repair using 

CD271
+
MSCs with regards to ECM deposition and a lower degree of neovascularisation 

compared to PA MSCs. Furthermore, the presence of cells with chondrocytic appearance 

observed in the repair tissue at 3 weeks in the CD271 group (group A) and the presence of 

bony matrix in the defects at 6 weeks also support the observation that CD271
+
MSCs may 

have beneficial healing potential.  May be with longer time-points, the repair tissue would 
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restructure the sub chondral bone and subsequently re-surface with hyaline-like articular 

cartilage, as seen in previous studies in rats that analysed the repair responses at 8 weeks 

(Mifune et al., 2012) or 16 weeks (Chung et al., 2014) post transplantation.  

 In terms of the cell-carriers or scaffolds, it is difficult to draw conclusions with 

regards to Chondro-Gide® as it had either delaminated or was lost during histological 

processing from the defects of the knees of these smaller animal models; although when 

Chondro-Gide® was present, it showed no gross FBGC reaction. In contrast, Alpha Chondro 

Shield® showed good integration within the defects; however, it evoked a FBGC reaction. 

Nonetheless, Chondro-Gide® has been used in the clinics as the scaffold of choice for AMIC 

or MACI procedures and has shown promising clinical outcomes (Wylie et al., 2015). To 

further assess the suitability of Alpha Chondro Shield®, bigger animal models are necessary.  
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Chapter 6: Discussion 
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Damage to the knee articular cartilage is troublesome in that it lacks the capacity to repair 

itself and mostly presents symptomatically when the damage has extended to the subchondral 

bone.  This progressive loss of knee articular cartilage is one of the major causes of 

degenerative joint pathologies such as OA (Buckwalter 1998). Efforts to treat symptomatic 

cartilage defects such as those described in the first chapter of this thesis only provide 

temporary pain relief. Therefore, various surgical procedures have sought to prevent the 

progression of cartilage damage (Falah et al., 2010; Memon & Quinlan 2012). ACI is 

considered the gold standard for the treatment of cartilage defects, however, it has shown 

mixed results with the quality of the repair tissue as fibrocartilage more often than hyaline-like 

cartilage in clinical studies (reviewed by Harris et al., 2010). In addition, there are some major 

drawbacks of ACI including the need for a two-step operative treatment procedure and the loss 

of a chondrocyte phenotype that is seen in monolayered cell culture (Makris et al., 2014). 

Therefore, there is a need to investigate alternative cell sources for cell-based therapies that 

can be easily harvested and can potentially be used in a one-step procedure. As discussed in 

the first chapter, BM and AT MSCs have been extensively investigated both in vitro and in 

vivo for their potential to regenerate damaged articular cartilage (Boeuf & Richter 2010; 

Somoza et al., 2014). Both freshly isolated and culture expanded cells from these two cell 

sources have been used in human patients; however, there is no consensus as to which cell 

type or cell source, in combination with which scaffolds or cell delivery systems, is the best 

for repairing damaged cartilage. With regards to scaffolds or the cell delivery systems, only 

limited in vitro and pre-clinical data is available on scaffolds that are currently in clinical use. 

In addition, culture expanded MSCs are heterogeneous, which is also a potential problem as 

not all isolated or culture expanded MSCs will have the same differentiation or reparative 

capacity (Phinney 2012). This becomes a key issue with regards to the use of MSCs for cell-

based therapies as the isolated population may not be functionally homogenous and uniformly 

chondrogenic. The data presented within this thesis has addressed some of the key features of 

cell-based therapies for cartilage repair, which are:  
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1. To expand or not to expand autologous cell sources for cartilage repair? 

2.  To use BM or AT as a cell source?  

3. To use Chondro-Gide® versus Alpha Chondro Shield® versus Hyalofast™ as 

a scaffold for chondrogenesis? – from an in vitro perspective 

4. To optimise AT as a cell source by selectively isolating a prospective more 

homogeneous cell population? 

5.  To use Chondro-Gide® versus Alpha Chondro Shield® as a scaffold for 

cartilage repair? – from an in vivo perspective 

6.1 To expand or not to expand autologous cell sources for cartilage repair?  

The results presented within Chapter 3 of this thesis sought to answer the first question by 

investigating the incorporation and growth of culture expanded MSCs versus freshly isolated 

cells from BM and AT in three clinical scaffolds, followed by analysis of chondrogenesis of 

the persistent cell type in the scaffolds examined. The findings of this Chapter suggest that 

culture expanded MSCs from both cell sources adhere, incorporate and grow in Chondro-

Gide®, Alpha Chondro Shield® and Hyalofast™. In contrast, freshly isolated BM MNCs or 

AT SVF cells do not grow as well as culture expanded cells in any of the three scaffolds 

during long-term cultures. Unfortunately, that suggests that the proposition of one-step cell-

based therapies for cartilage repair may be less favourable than using culture expanded MSCs 

in a two-step procedure. However, there may be ways to enhance and optimise the freshly 

isolated cell population by enriching for prospective MSCs. One of the ways to do this is 

described in Chapter 4. Interestingly, freshly isolated BM MNCs have already been applied in 

the treatment of full-thickness chondral lesions of the knee in human patients and have shown 

promising results, however the histological assessment was based on small number of biopsies 

(2-3) and the overall studies lacked control groups (Buda et al., 2010; A. Gobbi et al., 2011). 

Similarly, AT SVF cells have been applied clinically in the treatment of knee OA, and have 

shown successful clinical outcomes, although no histological results were reported (Pak et al., 

2013; Bui et al., 2014). Also, a majority of the clinical trials with AT SVF cells have been 
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case series that lack control groups. Therefore, the success of these clinical studies, in terms of 

an improvement in function or reduction in pain, could be attributed to the placebo effect. 

Whilst freshly isolated cells have shown considerable promise in human patients, the results 

presented within Chapter 3 of this thesis do not show good in vitro incorporation and growth 

of freshly isolated cells from BM or AT in the three clinical scaffolds examined. This could be 

attributed to the in vitro cell seeding procedure and culture conditions compared to the clinical 

settings. For in vitro analysis, BM MNCs and AT SVF cells were seeded directly onto the 

scaffold and grown in culture dishes whereas during in vivo studies and clinical treatments, a 

number of different techniques have been utilized for cell seeding, including the mixing of 

concentrated BM MNCs with collagen powders or using collagen and HA membranes as cell 

carriers prior to their fixation into defects with platelet rich fibrin gel (Giannini et al., 2009; 

Gobbi et al., 2011). AT SVF cells have also been used as intra-articular injections in 

combination with platelet rich plasma (PRP)  (Koh et al., 2013; Bui et al., 2014). During the in 

vitro analysis shown in this thesis, cells may have escaped the scaffolds after cell-seeding due 

to a lack of an enclosed environment, e.g. fibrin gel encapsulation. Future work should 

optimise cell seeding and culture conditions to better mimic the surgical procedure including 

encapsulation in fibrin gels. Therefore, the answer to question to culture expand or not to 

culture expand autologous cells is to expand cells, as per the findings of this thesis, but with 

further study warranted.  

6.2 To use BM or AT as a cell source? 

Culture expanded MSCs from BM and AT were further examined for their chondrogenic 

differentiation potential. BM MSCs showed better potential for chondrogenesis than AT 

MSCs as indicated by increased collagen type II and GAG deposition in BM MSC seeded 

scaffolds. This indicates that BM may be a better source of MSCs for cartilage repair than AT. 

There is evidence in the literature that supports these findings (Im et al., 2005b; Danišovič et 

al., 2007; Boeuf & Richter 2010). However, a potential weakness of the studies presented 

within this thesis was that the BM MSCs and AT MSCs were obtained from different patient 
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donors, therefore, direct comparisons on which cell source is better for cartilage repair is 

limited due to the possibility of donor-to-donor variation. Studies have previously highlighted 

the variability in gene expression between different donors of AT, in addition to differences 

observed due to harvest site and isolation and culture conditions (Baer et al., 2012; Lopa et al., 

2014). Ideally, BM and AT obtained from the same donor should have been compared to 

better establish the potential of these cells for chondrogenesis. In addition, TGF-β1 was used 

as an inducer for chondrogenic differentiation of MSCs from both cell sources, which may not 

be ideal for inducing chondrogenic differentiation in AT MSCs. For example, some studies 

have previously reported that TGF- β1 is not as efficient at inducing chondrogenic 

differentiation of AT MSCs as BMP 6 (Estes et al., 2006; Hennig et al., 2007).  

6.3 To use Chondro-Gide® versus Alpha Chondro Shield® versus Hyalofast™ as a    

scaffold for chondrogenesis? – from an in vitro perspective 

MSCs from both cell sources showed the best growth in Chondro-Gide®. Of the three 

scaffolds examined, Hyalofast™ disintegrated and was not suitable for long-term 

chondrogenic experiments whereas Chondro-Gide® and Alpha Chondro Shield® persisted. 

The chondrogenic differentiation of MSCs was evident in both Chondro-Gide® and Alpha 

Chondro Shield® but was most marked in Chondro-Gide® cultured with BM MSCs. 

Furthermore, there was increased collagen type II and GAG deposition in the ECM of BM 

MSC-seeded Chondro-Gide® cultures compared to AT MSC-seeded Chondro-Gide® 

cultures. Therefore, the findings of the chapter 3 favour the use of Chondro-Gide® for cell-

based therapies for cartilage repair. Since Chondro-Gide® is an ECM based scaffolds, it holds 

a considerable promise for engineering cartilage-like tissue in vitro. If cartilage tissue can be 

engineered in vitro using the right cell-scaffold and growth factor combination, it would 

highly benefit the patients and clinicians in that it would obviate the need for highly invasive 

surgeries and prevent donor-site morbidity. However, articular cartilage is a structurally 

complex 3D environment consisting of different types of matrix molecules in which multiple 

bioactive growth factors are incorporated and even with the advances in the development of 



- 230 - 

 

appropriate scaffolds it is very difficult to reach this complexity (Benders et al., 2013). 

Currently in the field of cartilage tissue engineering, efforts are being made to regenerate 

cartilage which would be structurally and functionally similar to the native tissue. However, 

what the current literature reports as hyaline cartilage seems to be far from the true native 

tissue in that, the proportions of the ECM molecules of the tissue engineered cartilage are 

likely to be far from hyaline cartilage, which will have negative implications with regards to 

its load bearing capacity. Additionally, the zonal arrangement and spatial organisation of the 

native cartilage is often not seen in tissue-engineered constructs, which contributes to the poor 

mechanical strength of the construct. ECM based scaffolds such as those used in this thesis 

i.e., Chondro-Gide® and Hyalofast™, may be more suited for this purpose since they already 

mimic a natural 3D environment for cells and may help in retaining growth factors in the 

ECM. The findings presented in this thesis are consistent with the current literature on the use 

of Chondro-Gide® as it has been the scaffold of choice for the MACI procedure for over a 

decade now (Haddo et al., 2004; Wylie et al., 2015). However, to date, no clinical data is 

available on the use of culture expanded MSCs with Chondro-Gide® in human patients, 

possibly due to a lack of robust in vitro and pre-clinical in vivo data demonstrating their 

chondrogenic differentiation potential. Furthermore, studies have also previously shown that 

synthetic scaffolds such as PGA based scaffolds can be optimised for cartilage tissue 

engineering by combining them with fibrin gels (Endres et al., 2012), collagen gels or alginate 

gels (Hannouche et al., 2007). Since PGA has been approved by the FDA for human clinical 

use, it should be further explored for its potential for tissue engineering cartilage constructs.  

Attempts have been made through the isolation of chondrocytes from different layers 

of articular cartilage and encapsulation of cells in a multi-layered hydrogel system to recreate 

the stratification of native cartilage (Kim et al., 2003). Only one recently published study has 

so far shown that by recapitulating the developmental events, MSCs can be induced to form 

mesenchymal cell bodies, which when seeded onto decellularised bone matrix give rise to 

functional cartilage tissue in vitro (Bhumiratana et al., 2014). Overall, whilst it may be 
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possible to optimize culture conditions to recreate the composition of the native cartilage, the 

dynamic complexity required for the recreation of developmental events including an 

understanding of the role of the micro-environmental cues, such as soluble factors, ECM 

molecules, cell-cell and cell-matrix interactions in controlling lineage progression and stem 

cell fate still pose a significant challenge (reviewed by Somoza et al., 2014).   

6.4 To optimise AT as a cell source by selectively isolating a prospective more 

homogeneous cell population? 

On the basis of cell growth and ECM deposition, the use of BM MSCs with Chondro-Gide® is 

favoured. However, due to the easy availability of MSCs from AT and a less-invasive tissue 

harvesting procedure, in addition to the lack of robust preclinical data available on the use of 

AT MSCs for chondrogenesis in clinical scaffolds, this thesis further examined the suitability 

of AT as a cell source for cartilage repair. Chapters 4 and 5 of this thesis focussed on 

investigating the potential of AT MSCs for their chondrogenic differentiation and cartilage 

repair, examining cells that were selected on the basis of plastic adherence (PA MSCs) 

compared to the cells selected on the basis of their expression of CD271. The rationale for this 

study was based on the hypothesis that selective isolation of MSCs from AT SVF using 

CD271 as a marker results in a more homogenous cell population that may have a superior 

potential for chondrogenic differentiation and cartilage repair compared to a heterogeneous 

population of MSCs selected on the basic of plastic adherence. This hypothesis was based on 

the evidence in the current literature regarding CD271 as a selective marker of MSCs from 

BM and their superiority for chondrogenesis in vitro and in vivo (Mifune et al., 2012; Álvarez-

Viejo 2015). The data presented in Chapter 4 suggested that CD271
+
MSCs upon induction 

with chondrogenic inducers deposited better and more ECM in the scaffolds compared to PA 

MSCs, which did not show as much ECM deposition. Also, the pellet cultures of 

CD271
+
MSCs showed a deposition of ECM that was richer in collagen type II compared to 

pellets of PA MSCs. This data is novel and supportive of the hypothesis that CD271 selection 

from AT is advantageous for the use of MSCs in cartilage repair. 
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With these promising in vitro results, the potential of CD271
+
MSCs was compared 

with PA MSCs in the healing of osteochondral defects in a rat model. The data presented in 

Chapter 5 showed superior macroscopic scores for cartilage formation in CD271
+
MSC 

transplanted animals compared to PA MSC transplanted animals and control groups at 3 

weeks post-transplantation. However, histologically, a fibrous repair tissue was seen in all 

cases. The only difference observed between  CD271
+
MSC and PA MSC treated groups was 

in the extent of vascularisation of the repair tissue, where CD271
+
MSCs showed 

comparatively fewer blood vessels compared to PA MSC treated groups. The lower number of 

blood vessels observed in the repair tissue of the CD271
+
MSCs group indicate that these cells 

may have anti-angiogenic activity that may be beneficial for the regeneration of cartilage. For 

bone regeneration, MSCs with angiogenic activity may be more favourable as angiogenesis 

supports bone formation during fracture healing (Dimitriou et al., 2011). A recent study has 

shown that CD271
+
MSCs from BM have elevated gene expression for bone formation and 

vascularisation (Cuthbert et al., 2015). Arufe et al, have also shown increased expression of 

RUNX2, a transcription factor involved in osteochondral differentiation  by CD271
+
MSCs and 

deposition of collagen type II and aggrecan in the pellets of a CD271 selected cell population 

from synovial tissue (Arufe et al., 2010). Mifune et al, also reported on the superior 

chondrogenic potential of BM derived CD271
+
MSCs in vitro and in vivo compared to 

unselected MSCs (Mifune et al., 2012). All these findings indicate that MSCs from different 

tissue sources display intra-population heterogeneity with different subpopulations comprising 

different phenotypic and functional characteristics (Phinney 2012). The evidence regarding the 

functional heterogeneity of MSCs obtained from clonal studies have shown that clones from 

immortalized human MSCs contain tri-potent progenitor that yield more restricted bi-potent 

progenitors such as adipo-chondrogenic progenitors, adipo-osteogenic progenitors or osteo-

chondrogenic progenitors (Okamoto et al., 2002). Likewise, Muraglia et al., showed that only 

one-third of the MSC clones derived from BM were able to display tri-lineage differentiation 

potential (Muraglia et al., 2000). In addition, even with the selective isolation of cells using a 

single marker, not all isolated MSCs may be uniformly tri-potent. In a recent clonal analysis 
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on CD271
+
MSCs it was reported that 13.3% of clones differentiated into osteoblasts, 

adipocytes and chondrocytes (tri-potent), 20% differentiated into chondrocytes and osteoblasts 

(bi-potent) and 7% differentiated into adipocytes and osteoblasts (Kuçi et al., 2013). So, in 

addition to the selective isolation using a single marker, primary MSCs cultures should be 

established at the clonal level. However, still only a fraction of these clonal MSCs will display 

chondrogenic differentiation. Unfortunately, no markers are currently available to distinguish 

multipotent MSCs from bi-potent or uni-potent MSCs in humans (Bianco et al., 2008). In a 

recent study conducted on mice, a mouse skeletal stem cell population, which is multipotent 

and has the ability to self- renew, was identified. Through lineage tracing experiments, it was 

shown that this skeletal stem cell population can differentiate into more lineage-restricted 

progenitor cells, which further produce uni-potent progenitors such as pro-chondrogenic 

progenitors or pro-osteogenic progenitors. In this study, the immunophenotype of each of 

these progenitors was identified (Chan et al., 2015). If similar studies can be conducted in 

humans, it would represent a paradigm shift in the therapeutic regeneration of skeletal tissues 

where specific uni-potent sub-populations of progenitor cells can be isolated for differentiation 

towards a particular tissue type.  CD271
+
MSCs show considerable promise for enrichment of 

MSCs with osteogenic and chondrogenic capacities, however, future work should further 

examine AT derived CD271
+
MSCs to investigate their potential for cartilage and bone repair, 

e.g. by examination at the transcriptional level.  
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6.5 To use Chondro-Gide® versus Alpha Chondro Shield® as a scaffold for cartilage 

repair? – from an in vivo perspective 

Where Chondro-Gide® was used as the scaffold for MSC delivery in vivo there was a 

difference in the results observed compared to the in vitro study. The scaffold was either 

delaminated or absent in the defect at both time points. This poor outcome may well be related 

to the disadvantages associated with using smaller animal models. For example, in the rat 

model tested there was cartilage thickness of less than 0.5 mm, used to test the suitability of 

clinical scaffolds that are intended to be used on human knee cartilage with a thickness 

between 2.2-2.5 mm (Frisbie et al., 2006; Cook et al., 2014). Due to this likely technical issue, 

it was particularly difficult to make firm conclusions on the suitability of Chondro-Gide® for 

repairing damaged cartilage. Nonetheless, Chondro-Gide® has been extensively used in ACI 

procedures and has shown successful results (Haddo et al., 2004). Previously, in small animal 

models of osteochondral defects, different combinations of hydrogels have been used as cell-

delivery systems, including collagen-based hydrogels (Zhang et al., 2011), HA and alginate-

based hydrogels (Chung et al., 2014) or collagen type I sponge (Mifune et al., 2012). 

Although PGA-based porous scaffolds have been studied in animal models before (Erggelet et 

al., 2007), Chondro-Gide® and Alpha Chondro Shield® have not previously been tested in 

combination with MSCs for their potential in healing osteochondral defects. One conclusion 

that can be drawn from this in vivo study is that whilst Chondro-Gide® generally showed poor 

integration, no FBGC reaction was observed where it was seen to be integrated. That may 

favour the use of Chondro-Gide® as the scaffold for autologous cell-therapies  compared to 

Alpha Chondro Shield® as an FBGC reaction can ultimately result in graft failure (Anderson 

et al., 2008). The FBGC reaction observed in the defects that were transplanted using Alpha 

Chondro Shield® could also negatively affect articular cartilage repair due to the release of 

inflammatory cytokines and ROS, and stimulate hypertrophic differentiation in chondrocytes 

(Morita et al., 2007). A pre-requisite for the success of cell transplantation therapies for 

articular cartilage repair using scaffolds is that the scaffold must maintain its properties and 

functions and regenerate tissue even when exposed to a compromised environment, e.g. as in 



- 235 - 

 

the case of FBGC reaction (Iwasa et al., 2009). In the osteochondral defects of the rat knee 

joints, vascularisation was needed to reform bone, followed by re-surfacing with articular 

cartilage. Whilst, some indications of trabecular bone restoration were observed in the repair 

tissue of cell-treated groups at 3 weeks and 6 weeks, no hyaline articular cartilage formation 

was seen at the surface of these defects.  With longer time point analysis, maybe Alpha 

Chondro Shield® would have degraded with subsequent subchondral bone restoration and 

resurfacing with articular cartilage. It has also been shown in human patients that repair tissue 

following ACI procedure showed a fibrocartilage morphology at 12 months follow up whereas 

the repair tissue showed hyaline-like morphology at 19.8 month follow up (Roberts, I. McCall, 

et al., 2003). It was suspected that the fibrous repair tissue may remodel with time to form 

hyaline-like cartilage. Future work should examine the potential for cartilage repair of CD271 

selected MSCs from AT in larger animal models and with longer time point analysis post-

transplantation.  
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6.7 Limitations of the study  

There are various limitations to this study. One of the limitations is the small number of 

patient donors assessed. Experimental data on the incorporation and chondrogenesis that was 

presented within Chapters 3 and 4 of this thesis has been derived from two patient donors for 

each data set. Limited donor availability is a drawback faced by researchers in the field of 

tissue engineering using primary human cells. Further research is required to examine more 

MSC donors from both tissue sources to ensure the reproducibility of the results presented 

within this thesis and to examine mechanisms of increasing the efficiency of cell seeding into 

these scaffolds and their optimal application in cell transplantations for cartilage repair. 

In addition, the source of AT used for the experiments in Chapter 3 and 4 (both 

infrapatellar fat pad) was different to the AT used in the experiments in Chapter 5 

(subcutaneous AT). As stated earlier in this Chapter, variability in gene expression of AT 

MSCs from donor-to-donor as well as in between different harvest sites has previously been 

reported (Baer and Geiger 2012). Another study stated that AT MSCs from infrapatellar fat 

pad showed enhanced levels of cartilage specific genes compared to MSCs from subcutaneous 

fat around the knee (Lopa et al., 2014).  Future studies should compare BM and AT from the 

same patient. Furthermore, even with the same site of harvest of AT MSCs, discrepancies 

were observed between MSC samples used in Chapter 3 versus Chapter 4. That also indicates 

that MSCs display donor -to-donor variation. Indeed, the outcome of any autologous MSC-

based therapies may be ultimately depend on the health, life style and age of the donor 

(Siddappa et al., 2007; Choudhery et al., 2014; Phinney 2012). In a recent review by Somoza 

and co-workers, it was emphasized that MSCs from different anatomical locations, or even 

subpopulations within the same tissue, are most likely to have different proliferation and 

differentiation potentials. They will also have varying requirements for, and responses to 

inducers of differentiation. Therefore, it may well be important to adopt standardised 

approaches for the isolation of MSCs from different sources in future (Somoza et al., 2014).  
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Another limitation of this work is that the results of the in vitro studies reported herein 

are not directly comparable to the in vivo situation in a human knee joint due to differences in 

the environment. For example, the physiological oxygen concentration of cartilage in the 

human knee joint is considered to be 2%, which becomes elevated somewhat in the case of 

joint pathologies such as OA and rheumatoid arthritis (RA) (Henrotin et al., 2005). During the 

in vitro culture conditions in this thesis, the cells were grown in 21% O2 and it has been 

previously shown that MSCs cultured under hypoxic conditions (1% O2) showed enhanced 

expression of  SOX9, Col2a1 and Acan genes compared to atmospheric (21% O2) conditions 

(Lee et al., 2013). It has also been shown that chondrocytes grown in hypoxic conditions show 

enhanced chondrogenic differentiation potential compared to hyperoxic or atmospheric 

conditions (Kay et al., 2011). However,  many different culture conditions are used for 

differentiating MSCs towards cartilage and  certainly researchers and clinicians  have not yet 

adopted a hypoxic approach  as one of the standard conditions for growing MSCs for 

chondrogenesis (reviewed by Freyria and Mallein-Gerin 2012).  

The data presented herein on chondrogenesis is based largely on qualitative histology 

results. Obtaining quantitative data from histological sections is challenging and subjective, 

but nonetheless the results presented in Chapter 5 would have benefited from gene expression 

analysis of cartilage specific genes to more accurately define differences in the quality of the 

repair tissue seen in different localities between the different groups examined. In addition, 

data on the biomechanical functions of the knee joint following treatments would also have 

helped to determine the success of the cell-therapies tested. 
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6.8 Summary 

 A summary of the major findings of this thesis is presented in Figure 6.1. Overall, the 

results presented suggest that the culture expansion of MSCs is better in cell-based cartilage 

repair than the use of freshly isolated cells. On the basis of cell growth and collagen type II 

production, the in vitro studies suggest the use of BM MSCs with Chondro-Gide®. Where 

selective isolation is concerned, this thesis has also shown that better differentiation of CD271 

selected MSCs than PA MSCs towards chondrogenesis was observed in vitro; however, the 

outcomes of the in vivo studies were limited, with poor evidence of chondrogenesis by either 

cell type. The potential for  BM derived CD271 selected MSCs for in vivo cartilage repair has 

only been shown in one study by Mifune and co-workers (Mifune et al., 2012). Further work 

is required to examine AT derived CD271
+
MSCs and to investigate their secretome for the 

effects of trophic factors during cartilage repair. In addition, further work should examine cell-

scaffold transplantation in bigger animal models of reproducible chondral defects.  
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Figure 6.1 A Summary of the major findings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 A Summary of the major findings. The major findings of Chapter 3-5 are 

presented  here in a summary to show that the results of chapter 3 suggest that MSCs are 

better for their incorporation and growth than freshly isolated cells from both BM and AT 

with Chondro-Gide® proving to be the most suitable scaffold for MSCs incorporation and 

growth. In terms of chondrogenesis, BM MSCs with Chondro-Gide® is favoured over other 

cell-scaffold combinations studied. The findings of Chapter 4 and 5 suggest that CD271 

selected MSCs are superior for chondrogenesis compared to PA MSCs and that CD271 

MSCs may be better suited for cartilage repair as compared to PA MSCs. With regards to the 

scaffolds, Chondro-Gide® is favoured over Alpha Chondro Shield®. 
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6.9 Concluding remarks 

Cartilage tissue engineering is an emerging field that holds considerable promise towards the 

success of a cell-based therapy for repairing chondral and osteochondral defects. As 

researchers and clinicians gradually incorporate new data in this rapidly expanding field, the 

tissue engineering of this complex tissue can be perfected. This thesis contributes to the 

current knowledge in the field of cartilage tissue engineering and repair by helping to address 

two main questions, whether to culture expand or not culture expand autologous cells for 

articular cartilage repair and whether to or not to selectively isolate CD271
+
 cells from AT for 

cartilage repair. From the findings presented, culture expansion of cells is favoured with BM 

being a more potent source of MSCs for chondrogenesis than AT. However, isolating 

CD271
+
MSCs from AT may have improved the potential of chondrogenesis of AT MSCs. 

Since the clinical grade anti-CD271 microbeads are already available and licensed for human 

use, CD271
 
can be easily translated for clinical use. Going forward, on the basis of the results 

presented within this thesis, a one-step procedure using CD271
+
MSCs from AT SVF maybe 

proposed for the treatment of chondral defects. This would require a minimally invasive 

liposuction procedure, followed by isolation of CD271
+
MSCs using clinical grade microbeads, 

which takes about 1 hour, with subsequent transplantation of CD271 immunopositive cells in 

combination with Chondro-Gide® as the scaffold, all in the same operating room. This would 

obviate the need for costly cell culture expansion and would greatly benefit the patients by 

reducing the risk of donor-site morbidity, as well as benefit clinicians who would not need to 

perform two highly invasive surgeries, which currently is standard practice.  
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Article

Introduction

The regeneration of hyaline cartilage still poses a signifi-
cant clinical challenge, with current available treatments 
resulting in a reparative tissue with inferior mechanical 
properties.1 Cell therapy using autologous chondrocyte 
implantation (ACI) has been used to treat cartilage defects 
since 1987,2 but has some disadvantages, such as the pro-
duction of fibrous cartilage and donor site morbidity.3 In 
vitro and preclinical animal studies suggest that multipotent 
mesenchymal stem or stromal cells (MSCs) can provide an 
alternative to autologous chondrocytes for the regeneration 
of cartilage, as they possess chondrogenic differentiation 
potential, are obtainable from a number of tissue sources 

and can be culture expanded in vitro to provide increased 
cell numbers for transplant therapies.4,5 Bone marrow (BM) 
is currently the most extensively studied source of MSCs. 
However, harvesting an adequate number of MSCs from 
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Abstract
Aim. To compare the incorporation, growth, and chondrogenic potential of bone marrow (BM) and adipose tissue (AT) 
mesenchymal stem cells (MSCs) in scaffolds used for cartilage repair. Methods. Human BM and AT MSCs were isolated, 
culture expanded, and characterised using standard protocols, then seeded into 2 different scaffolds, Chondro-Gide or 
Alpha Chondro Shield. Cell adhesion, incorporation, and viable cell growth were assessed microscopically and following 
calcein AM/ethidium homodimer (Live/Dead) staining. Cell-seeded scaffolds were treated with chondrogenic inducers 
for 28 days. Extracellular matrix deposition and soluble glycosaminoglycan (GAG) release into the culture medium was 
measured at day 28 by histology/immunohistochemistry and dimethylmethylene blue assay, respectively. Results. A greater 
number of viable MSCs from either source adhered and incorporated into Chondro-Gide than into Alpha Chondro 
Shield. In both cell scaffolds, this incorporation represented less than 2% of the cells that were seeded. There was a 
marked proliferation of BM MSCs, but not AT MSCs, in Chondro-Gide. MSCs from both sources underwent chondrogenic 
differentiation following induction. However, cartilaginous extracellular matrix deposition was most marked in Chondro-
Gide seeded with BM MSCs. Soluble GAG secretion increased in chondrogenic versus control conditions. There was no 
marked difference in GAG secretion by MSCs from either cell source. Conclusion. Chondro-Gide and Alpha Chondro 
Shield were permissive to the incorporation and chondrogenic differentiation of human BM and AT MSCs. Chondro-Gide 
seeded with BM MSCs demonstrated the greatest increase in MSC number and deposition of a cartilaginous tissue.
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BM is problematic because of the finite volume available at 
any one site. Hence, adipose tissue (AT) has recently been 
shown as an attractive alternative,6,7 wherein 200 mL of 
lipoaspirate can readily be removed from patients, yielding  
4 × 108 nucleated cells of which more than 2% constitutes the 
MSC population.8,9 The ready availability of AT MSCs is 
advantageous in autologous cell therapies as the time needed 
for costly culture expansion to generate a sufficient cell num-
ber for transplantation is considerably reduced when compared 
with BM. Moreover, harvesting AT through lipoaspiration 
makes AT MSCs an attractive cell source compared to more 
invasive and potentially painful iliac crest biopsies.

Whether or not AT MSCs are equivalent to BM MSCs in 
terms of their chondrogenic differential potential is a mat-
ter of considerable debate. Some studies have suggested 
that AT MSCs have inferior potential for chondrogenesis 
and hence use in cell therapies for cartilage repair,10,11 
while others have reported on successful multilineage  
differentiation of AT MSCs, including toward 
chondrogenesis.12,13

The aim of this in vitro study was to compare the incor-
poration, growth, and chondrogenic potential of BM ver-
sus AT MSCs in 2 commercially available cell scaffolds 
currently used for cartilage repair in humans, namely 
Chondro-Gide and Alpha Chondro Shield. In vitro studies 
have tested these scaffolds with BM MSCs and chondro-
cytes, but very little data are available on their use with AT 
MSCs in comparison.14,15 Chondro-Gide (Geistlich 
Pharma AG, Wolhusen, Switzerland) is a bilayered scaf-
fold, composed of type I and type III collagen, with one 
porous side for cell attachment and a compact side to pre-
vent cell leakage, which has been extensively used in the 
clinic for autologous matrix induced chondrogenesis 
(AMIC) procedures and ACI.16,17 Alpha Chondro Shield 
(Swiss Biomed Orthopaedics AG, Zurich, Switzerland) is 
intended to be used mainly as a cell-free cartilage implant 
to aid the migration and differentiation of mesenchymal 
progenitor cells from subchondral bone after a microfrac-
ture procedure. Alpha Chondro Shield is composed of 
fibers of polyglycolic acid (PGA) arranged in a homoge-
nous non-woven pattern; currently there is no clinical data 
available on its use with chondrocytes or MSCs, whether 
from BM or AT.

Methods

Before commencement of the study ethical approval was 
obtained from the national review body (12/EE/0136 and 
06/Q2601/9) and the study was conducted with the princi-
ples of the Declaration of Helsinki (World Medical 
Association).

Isolation, Expansion, and Characterisation of 
MSCs

In total, MSCs were cultured from 3 BM donors (age range 
19-80 years) and 4 AT donors (age range 27-75 years). BM 
was aspirated from the posterior superior iliac spine or har-
vested from excised femoral head during total hip replace-
ment surgery. AT was harvested from the infrapatellar fat 
pad of the patients undergoing knee-reparative surgery. 
Mononuclear cells were isolated from BM aspirates by den-
sity gradient centrifugation using Ficoll-Paque Plus (GE 
Healthcare Life Sciences, Buckinghamshire, UK). AT sam-
ples were minced and treated with 0.1% collagenase type 
IA (Sigma; Poole, Dorset, UK) for up to 2 hours at 37°C and 
5% CO

2
. After this enzymatic digestion, Dulbecco’s modi-

fied Eagle medium (DMEM) supplemented with 20% (v/v) 
fetal calf serum (FCS) (PAA, Yeovil, Somerset, UK) was 
added to neutralize collagenase activity and the digest was 
centrifuged into a cell pellet, which was then subsequently 
washed in DMEM/F-12, supplemented with 10% (v/v) 
FCS, 1% (v/v) penicillin (50 U/mL), and streptomycin (50 
µg/mL) (standard medium; all from PAA), and filtered 
through 70-µm cell strainers to remove undigested tissue. 
The BM mononuclear cells and adipose stromal vascular 
fraction (SVF) cells18 were then plated out at a density of 2 
× 107 cells per 75 cm2 flask in 20 mL of standard medium 
and incubated at 37°C in humidified atmosphere containing 
5% CO

2
. After 24 to 48 hours, the nonadherent cells were 

washed off gently with phosphate-buffered saline (PBS; 
PAA) and the adherent cells were subsequently cultured 
until they reached approximately 70% confluence. Cells 
were routinely passaged at 70% confluence using 0.25% 
trypsin-EDTA (Life Technologies Ltd, Paisley, UK) and 
reseeded at 104 cells/cm2 into fresh 75-cm2 flasks to culture 
expand the adherent cell population. At passage II-III, cul-
ture expanded cells were characterised by their adherence 
to tissue culture plastic, by immunoprofiling for CD mark-
ers and by examining their differentiation potential to form 
osteoblasts, adipocytes, and chondrocytes. These criteria 
meet the MSC phenotype defined by the International 
Society for Cellular Therapy.19

Cell Seeding Into Scaffolds and Chondrogenesis

Bone marrow MSCs and AT MSCs were seeded at a density 
of 5 × 104 cells in 50 μL of standard culture medium per 
9mm2 piece of Chondro-Gide or Alpha Chondro Shield (n = 
4 scaffolds per MSC donor) in non–tissue culture coated 
plates. After 2 hours incubation at 37°C to permit cell adhe-
sion to the cell scaffolds, an additional 1 mL of standard 
culture medium was added to each well. For initial assay of 
cell incorporation and growth, the cell-seeded scaffolds 

 at Aston University - FAST on January 5, 2016car.sagepub.comDownloaded from 

http://car.sagepub.com/


254	 Cartilage 6(4)

were maintained in standard culture media for a period of 28 
days. A further analysis to examine the comparative adhesion 
of MSCs to Chondro-Gide and Alpha Chondro Shield was 
performed using scanning electron microscopy, as follows: 
(1) the scaffolds were fixed in 2% glutaraldehyde in 0.1 M 
phosphate buffer (pH 7.4) for 2 hours; (2) the scaffolds were 
then dehydrated through a series of alcohols (20% to 100%) 
for 10 minutes in each solution; and (3) the scaffolds were 
dried overnight in hexamethyldisilizane (HMDS) and then 
gold sputtered and imaged using a Zeiss EVO10 scanning 
electron microscope (Carl Zeiss, Cambridge, UK).

In separate assays of chondrogenesis, the cell-seeded scaf-
folds were maintained in induction medium, consisting of 
DMEM (high glucose) supplemented with 2% FCS (Life 
Technologies Ltd), 100 nM dexamethasone (Sigma), 37.5 μg/
mL ascorbate 2-phosphate (Sigma), insulin, transferrin and 
selenium (1% ITS-X; Sigma) and 10 ng/mL transforming 
growth factor-β1 (PeproTech Ltd., London, UK) (duplicate 
scaffolds for each MSC donor), or with control medium that 
contained carriers alone (duplicate scaffolds for each MSC 
donor) for the same period. Culture medium was replaced 2 to 
3 times per week. The incorporation and viability of cells fol-
lowing these chondrogenesis experiments was assessed by 
DAPI counterstaining of sections of induced cultures har-
vested at day 28 and by Live/Dead staining, respectively. 
MSCs from 2 separate donors from both BM and AT were 
analyzed for the initial incorporation of cells into the cell scaf-
folds and MSCs from a further 2 separate donors of BM and 
AT were analyzed for the inductions of chondrogenesis.

Live/Dead Staining and Confocal Microscopy for 
Cell Viability/Growth

Cell-seeded scaffolds were assessed for cell incorporation, 
viability and growth using Live/Dead cell staining according 
to the manufacturer’s guidelines (Sigma), wherein live cells 
fluoresce green and dead cells fluoresce red. The staining 
procedure was performed in the dark for 30 minutes at 37°C 
and 5% CO

2
. Live and dead cells were visualized and scored 

by fluorescence imaging and confocal microscopy (Leica 
Microsystems DM6000B–SP57CS). This was performed by 
scoring the number of viable (green) and the number of dead 
(red) cells present in each of 4 fields of view taken through 
the depth of the scaffold over 2 separate regions for each 
MSC donor and each scaffold at each time point.

Dimethylmethylene Blue Assay for 
Glycosaminoglycans

The dimethylmethylene blue (DMMB) assay protocol was 
adapted from previously published methods20 as follows: (1) 
the DMMB dye solution was prepared by adding 3.04 g of 
glycine, 2.37 g of NaCl, and 16 mg of 1,9 dimethymethylene 

blue to 1 L of deionized water; (2) the pH was adjusted to 
3.0 with hydrochloric acid and the reagent was stored in a 
brown bottle; (3) 50-µL aliquots of culture medium har-
vested from the cell-seeded scaffolds at day 28 were added 
in triplicate to a 96-well plate; (4) 200 µL of the DMMB 
dye was added and absorbance was assessed at 540 nm 
immediately. Chondroitin sulfate from shark cartilage 
(Sigma) was used to provide a standard curve (0-40 µg/
mL) from which the glycosaminoglycan (GAG) content in 
the samples of medium was calculated. The levels of absor-
bance for GAG content in the samples of medium were 
normalized to account for the background absorbance 
resultant from the presence of phenol red within the 
medium. Replicate values from 2 independent donors of 
BM MSC versus 2 independent donors of AT MSCs for 
each experimental condition were pooled and GAG con-
tent has been presented as means ± standard deviations 
from these pooled data.

Histology and Immunohistochemistry

Cell-seeded scaffolds were harvested at day 28 by fixation 
in 10% neutral buffered formalin for 24 hours, then pro-
cessed and paraffin embedded. Toluidine blue staining was 
performed to reveal GAG content, whilst the presence of 
collagen type II was detected by immunolocalization as fol-
lows: (1) Antigen retrieval was performed by incubating 
sections in 0.1% hyaluronidase; (2) slides were incubated in 
a solution containing antibodies for collagen type II (6.5 µg/
mL; CIIC1: Developmental Studies Hybridoma Bank, Iowa 
City, IA) for 60 minutes at room temperature (RT); (3) the 
omission of a primary antibody was used for control pur-
poses; (4) slides were then incubated with a biotinylated 
secondary antibody for 30 minutes at RT; and (5) immu-
nopositivity was revealed with a streptavidin-based tertiary 
step and 3,3′-diaminobenzidine (DAB) chromogen using a 
commercial labelling kit (Vector ABC Elite, Vector 
Laboratories Ltd, Peterborough, UK). Some sections of the 
harvested cultures were mounted in Vectamount containing 
DAPI (Vector Laboratories Ltd) to counterstain for cell 
nuclei.

Statistical Analysis

Quantitative data for CD profiling have been presented as 
means ± standard error of the mean from 3 independent 
donors for BM MSCs and 3 independent donors for AT 
MSCs. Quantitative data for MSC incorporation, cell via-
bility, and GAG content have been presented as means ± 
standard deviations, which derived from replicate values 
pooled from 2 independent donors for each MSC type, that 
is, n = 2 BM MSC versus n = 2 AT MSC donors for each 
experimental condition and time point.
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Figure 1.  Characterisation of bone marrow (BM) mesenchymal stem cells (MSCs) and adipose tissue (AT) MSCs. (A). Culture 
expanded and plastic adherent cells from BM and AT differentiated along mesenchymal lineages, as indicated by the presence of 
alkaline phosphatase positive osteoblasts or Oil Red O positive adipocytes in monolayer cultures and metachromatic staining for 
glycosaminoglycans (GAGs) in pellet cultures (scale bars represent 100 μm). (B). Representative histograms are shown for positivity 
for CD markers in BM MSCs (left panels) and AT MSCs (right panels). The white histogram shows immunopositivity for each indicated 
marker, which is only clearly apparent when the extent of immunofluorescence is greater than that detected following immunolabeling 
with an isotype-matched control antibody, indicated by the black histogram.
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Results

Mesenchymal Stem Cell Characterisation

Plastic-adherent stromal cells isolated and culture expanded 
from BM and AT differentiated down the three mesodermal 
lineages, as indicated by alkaline phosphatase staining for 
osteogenesis, Oil Red O staining of lipid vacuoles for adipo-
genesis and toluidine blue metachromatic staining of paraffin 
sections of cell pellets for chondrogenesis (Fig. 1A). Using 
flow cytometry, these cells were immunoreactive for MSC-
specific cell surface antigens, that is, CD73, CD90, and 
CD105 and were not immunoreactive for non-MSC markers, 
that is, CD34 and CD45 (Fig. 1B). For BM MSCs, 2.2% ± 
0.3% cells were CD34 positive, 2.7% ± 0.7% cells were CD45 
positive, 90.4% ± 5.1% cells were CD73 positive, 84.8% ± 
4% cells were CD90 positive, and 97.8% ± 0.6% cells were 
CD105 positive. For AT MSCs, 3% ± 1.1% cells were CD34 
positive, 3% ± 1.2% cells were CD45 positive, 92.4% ± 4% 
were CD73 positive, 90.4% ± 3% cells were CD90 positive, 
and 93.8% ± 2.8% cells were CD105 positive.

Bone Marrow MSCs and AT MSCs Incorporated 
and Remained Viable in Chondro-Gide and 
Alpha Chondro Shield during Long-Term 
Cultures

A greater number of MSCs from both tissue sources incor-
porated into Chondro-Gide than into Alpha Chondro Shield. 
Scanning electron microscopy at 30 minutes postseeding 
demonstrated that the cells more readily attached to the sur-
face of the Chondro-Gide than to the surface of Alpha 
Chondro Shield (Fig. 2A). Many cells were lost during the 
cell seeding process. For the AT MSCs, only 1.2% ± 0.1% 
of cells were retained in Chondro-Gide compared with 
0.7% ± 0.4% of cells retained in Alpha Chondro Shield at 
day 1. In comparison, for the BM MSCs only 0.8% ± 0.4% 
of cells were retained in Chondro-Gide and 0.5% ± 0.4% 
retained in Alpha Chondro Shield at day 1. Greater numbers 
of AT MSCs than BM MSCs appeared to incorporate in 
both of the scaffolds at day 1.

In longer term cultures, that is, from 7 days postseeding 
onward, both BM and AT MSCs appeared to become fibro-
blast-like in Chondro-Gide, whereas they also showed an 
elongated morphology and attached and spread along the 
length of the fibers in Alpha Chondro Shield (Fig. 2B). The 
number of viable MSCs from both cell sources increased 
from day 1 with further time in culture in Chondro-Gide In 
contrast, the number of viable MSCs from either BM or AT 
did not increase in Alpha Chondro Shield (Fig. 2C). There 
were increased numbers of viable cells in Chondro-Gide 
compared with Alpha Chondro Shield from day 14 to day 
28 for BM MSCs and from day 7 to day 28 for AT MSCs. 

Fewer than 5% of cells were scored as nonviable (red) in 
both scaffolds and at all time points.

Mesenchymal Stem Cell Condensation under 
Chondrogenic Conditions in Chondro-Gide and 
Alpha Chondro Shield

Under chondrogenic (+CM) and nonchondrogenic (−CM; 
control) conditions BM and AT MSCs remained greater than 
95% viable over a 28-day culture in Chondro-Gide and 
Alpha Chondro Shield. Under chondrogenic conditions, 
there appeared to be a greater increase in the number of via-
ble BM and AT MSCs in Chondro-Gide, where the cells 
appeared condensed and confluent compared with the less 
dense network of cells seen under control conditions. 
Because of this growth of cells, exact cell counts were not 
possible. In Alpha Chondro Shield, there also appeared to be 
an increase in the number of viable BM and AT MSCs under 
chondrogenic versus control conditions, with increased cell 
condensations apparent (Fig. 3A). The distribution of cells 
in these experiments was examined using DAPI staining of 
tissue sections from harvested cultures at day 28. This dem-
onstrated that the MSCs were evenly distributed through the 
porous side of Chondro-Gide only, without any cells pres-
ent within the nonporous side. In addition, there was an 
even distribution of MSCs within Alpha Chondro Shield 
(Fig. 3B).

Cartilage-Specific Extracellular Matrix 
Deposition in BM and AT MSCs Seeded 
Scaffolds Was Seen in Long-Term Cultures 
Following Chondrogenic Induction

Histology and immunohistochemistry were performed to 
examine the deposition of cartilage-specific extracellular 
matrix (ECM) within MSC-seeded scaffolds. Metachromatic 
toluidine blue staining was seen in chondrogenic (+CM) 
treated scaffolds, which is indicative of the accumulation of 
GAGs. A greater amount of metachromatic staining in the 
ECM was seen in both BM and AT MSCs within Chondro-
Gide compared with Alpha Chondro Shield. However, 
rounded cell morphologies surrounded by ECM, which is 
indicative of a mature chondrocytic phenotype was seen 
only in cultures of Chondro-Gide seeded with BM MSCs 
under chondrogenic conditions. None of the MSC-seeded 
scaffolds under non-chondrogenic conditions showed any 
ECM deposition. Collagen type II deposition was most 
markedly seen in Chondro-Gide cultures seeded with BM 
MSCs under chondrogenic conditions, with some collagen 
type II seen to a lesser extent in BM and AT MSCs in Alpha 
Chondro Shield, only under chondrogenic conditions  
(Fig. 4A and 4B). Staining of human articular cartilage was 
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Figure 2.  The incorporation and growth of bone marrow (BM) mesenchymal stem cells (MSCs) and adipose tissue (AT) MSCs in 
Chondro-Gide and Alpha Chondro Shield. (A). Representative images are shown of the appearance of AT MSCs following 30 minutes 
of incubation with Chondro-Gide and Alpha Chondro Shield. As shown, MSCs had already become firmly attached and spread out 
(arrowed) on Chondro-Gide, whereas they appeared mostly spherical in morphology and only projected 1 or 2 cell processes to 
attach to Alpha Chondro Shield. (B). Representative images are shown of BM MSCs (left panels) and AT MSCs (right panels) after 
Live/Dead staining. Scale bars represent 100 μm. (C). The number of viable BM and AT MSCs in each cell scaffold over time. BM 
MSCs proliferated in Chondro-Gide over time. There were more BM MSCs in Chondro-Gide than Alpha Chondro Shield at 14 
and 28 days in culture, whereas for AT MSCs this difference was noticeable after 7 days in culture. Data are presented as means ± 
standard deviations. Black bars = Chondro-Gide, white bars = Alpha Chondro Shield.
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used to demonstrate the specificity of the histological and 
immunohistochemical procedures (Fig. 4C).

Higher Levels of Soluble GAGs Were Detected 
in Culture Medium under Chondrogenic versus 
Nonchondrogenic Conditions

The presence of GAGs was analyzed in cell culture super-
natants harvested at day 28, that is, from medium that 
was harvested from the last feed only (a period of 3 

days). This biochemical analysis of GAG content showed 
that both BM and AT MSCs secreted markedly more 
GAGs in Chondro-Gide than in Alpha Chondro Shield. 
Under chondrogenic conditions, a greater amount of 
GAGs was released into the medium by BM and AT 
MSCs in Chondro-Gide and by AT MSCs in Alpha 
Chondro Shield compared with control conditions. For 
BM MSCs in Alpha Chondro Shield, an increase in solu-
ble GAGs was also detected under chondrogenic condi-
tions (Fig. 4D).

Figure 3.  The viability of bone marrow (BM) mesenchymal stem cells (MSCs) and adipose tissue (AT) MSCs in Chondro-Gide and 
Alpha Chondro Shield under chondrogenic and nonchondrogenic conditions. (A). Representative images are shown of BM and AT 
MSCs at day 28 of culture in the presence (+CM) or absence (−CM, control) of chondrogenic inducers. More than 95% of MSCs were 
viable in Chondro-Gide and Alpha Chondro Shield under both conditions. Scale bar represents 100 μm, digitized images of projected 
z stacks following confocal microscopy. (B). Representative images showing the distribution of BM MSCs and AT MSCs in Chondro-
Gide and Alpha Chondro Shield after 28 days in culture under chondrogenic (+CM) versus control (−CM) conditions. Scale bars = 
100 μm for the main images and 50 µm for the inset images. There was an even distribution of cells throughout the porous elements 
of both scaffolds. MSCs have been arrowed and the autofluorescence of the scaffold fibers in the Alpha Chondro Shield indicated by 
arrowheads.
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Figure 4.  Histology and immunohistochemistry of mesenchymal stem cell (MSC)–seeded Chondro-Gide and Alpha Chondro Shield. 
(A and B). There was greater matrix deposition in Chondro-Gide cultures with bone marrow (BM) MSCs (A) and adipose tissue (AT) 
MSCs (B) than Alpha Chondro Shield, as shown by increased toluidine blue staining and collagen type II immunolocalization under 
chondrogenic conditions (+CM) compared with control conditions (−CM). Alpha Chondro Shield seeded with BM and AT MSCs only 
showed some localized positivity of collagen type II, which was not seen in control conditions. (C) A section of human knee cartilage 
was used as a control for both toluidine blue and collagen type II immunostaining. Scale bars represent 25 µm. (D). A greater level 
of soluble glycosaminoglycan (GAG) was detected in the culture supernatants of Chondro-Gide cultures seeded with BM MSCs and 
AT MSCs at day 28 under chondrogenic conditions (+CM) compared with control conditions (−CM). Data are presented as means ± 
standard deviations.
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Discussion

To date, there are limited clinical data available for the use 
of MSCs in cell-based cartilage repair therapies. One poten-
tial reason is the lack of robust in vitro data demonstrating 
their chondrogenic differentiation potential in clinically 
available scaffolds. This study has suggested that Chondro-
Gide provides a more suitable environment than Alpha 
Chondro Shield for the culture and chondrogenesis of 
MSCs and the formation of a cartilaginous tissue. MSCs 
isolated and culture expanded from BM and AT underwent 
chondrogenic differentiation in response to chondrogenic 
inducers. This was evident in both scaffolds but was most 
marked in Chondro-Gide cultured with BM MSCs.

Bone marrow MSCs and AT MSCs were initially more 
readily incorporated into Chondro-Gide than Alpha 
Chondro Shield. One reason for this greater incorporation 
of cells within Chondro-Gide, which is composed of natural 
type I and type III porcine collagen, could be the ability of 
MSCs to bind to the scaffold through integrin receptors, 
specifically α2β1 integrins, which is the major receptor for 
type I collagen and other fibril-forming collagens.21 In con-
trast, Alpha Chondro Shield is a synthetic scaffold of pure 
PGA that lacks specific cellular adhesion sites, which may 
explain how the adhesion of cells to the scaffold was mini-
mal. The morphologies of MSCs attached to Chondro-Gide 
and Alpha Chondro Shield revealed by scanning electron 
microscopy at an early time point postseeding would sup-
port such an interpretation. The synthetic nature of Alpha 
Chondro Shield may facilitate its adaptation to increase 
MSC incorporation, for example, other researchers have 
used the integrin-binding peptide Arg-Gly-Asp (RGD) into 
polymer-based scaffolds to facilitate cell adhesion.22,23 
Within Chondro-Gide, the increased retention and growth 
of cells is also possibly because of the decreased porosity of 
the scaffold caused by the presence of a compact surface 
that functions to prevent cell leakage. In contrast, Alpha 
Chondro Shield consists of large interconnected pores that 
aim to encourage cell growth and attachment in vivo, where 
blood clot formation from associated microfractures likely 
helps retain cells. Previous studies have shown that with 
time such porous scaffolds in fill with cartilaginous ECM 
deposition in synchrony with the degradation rate of the 
scaffold.24,25 However, in the current in vitro study the 
increased porosity of Alpha Chondro Shield may have 
allowed cells to have escaped the scaffold.

The differences in MSC proliferation that were observed 
between the 2 scaffolds may be attributed to their differing 
degradation rates. BM MSCs proliferated in Chondro-Gide 
throughout the time course. Conversely, there was no 
increase in BM MSC numbers in Alpha Chondro Shield 
with time in culture. The collagens in Chondro-Gide are 
slow to degrade compared with PGA fibers in Alpha 
Chondro Shield, which begins to lose mechanical integrity 

over a 12-day period26 and degrades to about 50% of its 
initial mass by 28 days.25 In the absence of matrix produc-
tion or a blood clot (generated in vivo), it is likely that the 
fast degrading Alpha Chondro Shield does not provide a 
suitable environment for cells to grow and proliferate and, 
therefore, this results in cell loss. In addition, while PGA-
based scaffolds provide a good substrate for chondrocyte 
adhesion, cell proliferation during long-term cultures may 
be significantly affected by acidic products during scaffold 
degradation.27

Overall, cell retention in both scaffolds was poor, with 
only approximately 0.1% to 1.5% of the MSCs attaching to 
the scaffolds following a 2-hour incubation period. The 
effectiveness of the cell-seeding process is a crucial step, 
which could have a significant effect on the number of cells 
delivered to a cartilage lesion and thus the clinical outcome 
of any cell therapy. For MACI procedures, chondrocytes 
preseeded onto Chondro-Gide have been grown for 3 days 
prior to implantation,28 whereas ACI procedures have been 
adapted to preseed Chondro-Gide with chondrocytes for a 
recommended time of only 10 to 15 minutes prior to trans-
plant.29 Studies have previously examined the use of spin-
ner flasks to encourage more efficient cell seeding in porous 
scaffolds26 or of using polymerizing gels as a delivery vehi-
cle for rapid cell seeding within collagen sponges.30 
However, in this study, a simple cell-seeding strategy was 
used to replicate the clinical setting, with the results proba-
bly representing the best case scenario given an incubation 
period that is in excess (2 hours) of what would be clinically 
acceptable. The small size of the scaffolds used in this study 
may have contributed to low incorporated cell numbers as 
they could have been of insufficient size to initially retain 
the total volume of medium used for cell seeding. Hence, 
cells may have initially leaked out of the scaffolds into the 
wells. Although a potential weakness of the study, this sce-
nario commonly reflects the clinical situation. Of the two 
cell sources, there was better incorporation of AT MSCs 
into both scaffolds compared with BM MSCs. If AT MSCs 
are shown to incorporate into cell scaffolds more readily 
than BM MSCs, following analysis of increased numbers of 
MSC donors, there may be reasons for such differential 
incorporation. A recent review suggested that AT MSCs 
express greater levels of integrin α4β1 (CD49d) compared 
with BM MSCs.31 The α4β1 integrins have long been 
known to play a role in cell-cell and cell-matrix interac-
tions32 and one of the ligands for CD49d is fibronectin,33 
which is present in serum-containing medium.34 Hence, 
increased retention of AT MSCs compared with BM MSCs 
within Chondro-Gide may be due, in part, to the adsorption 
of serum proteins especially fibronectin35 to the scaffolds 
via interaction with α4β1 integrins. Further research is 
required to examine more MSCs donors from both tissue 
sources to ensure the reproducibility of our observations 
and to examine mechanisms of increasing the efficiency of 
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cell seeding into these scaffolds and their optimal applica-
tion in cell transplantations for cartilage repair.

It is known from previous studies that scaffold structure 
and properties like porosity, pore size, fiber thickness, 
topography, and scaffold stiffness directly influence cell 
behavior and colonization (reviewed by Lawrence and 
Madihally36). The cells in the Chondro-Gide scaffold 
attained a fibroblast-like morphology and showed progres-
sive penetration throughout the collagen network. This has 
also been shown by Nuernberger et al.37, where the dense 
network of collagen fibers supported a flattened cell shape 
of chondrocytes. In the more fibrous Alpha Chondro Shield, 
the cells showed a mixed morphology of both round and 
elongated cells. These differences in cell morphology in 
similar types of cell scaffolds have been observed by 
Schlegel et al.38 in 2008 using chondrocytes. The chondro-
cytes developed a fibroblast like morphology when seeded 
onto a type I/type III collagen scaffold, whereas the chon-
drocytes showed a mix of round and elongated morpholo-
gies on a scaffold composed of hyaluronic acid.38 Adoption 
of a spherical morphology by MSCs and chondrocytes in 
3-dimensional culture can influence their synthesis of carti-
lage-specific ECM components,39-41 although it is unclear if 
cell shape is a critical factor in influencing chondrocyte dif-
ferentiation.42 In this study, the presence of round-shaped 
MSCs in Alpha Chondro Shield was not associated with 
increased chondrogenic differentiation compared with less 
rounded cell morphologies seen in Chondro-Gide, which 
proved to be a superior scaffold for chondrogenic 
differentiation.

We observed increased collagen type II and GAG depo-
sition in the ECM of BM MSC–seeded Chondro-Gide cul-
tures compared with AT MSC–seeded Chondro-Gide 
cultures. This indicates that BM may be a better source of 
MSCs for cartilage repair than AT. However, a potential 
weakness of this study was that the AT MSCs were derived 
from infrapatellar fat pad, which, although of use as an 
intraoperative cell source in the treatment of cartilage 
defects may be an inferior donor tissue, because cells from 
the damaged or diseased articular environment can possess 
pro-inflammatory characteristics.43 Ideally, AT MSCs from 
peripheral fat sources and BM obtained from the same 
donor should have been compared to better establish the 
potential of these cells for chondrogenesis in autologous 
cell therapy for cartilage repair. In addition, TGF-β1 was 
used as an inducer for chondrogenic differentiation of 
MSCs from both cell sources, which may not be ideal for 
inducing chondrogenic differentiation in AT MSCs. For 
example, some studies have previously reported that TGF-
β1 is not as efficient at inducing chondrogenic differentia-
tion of AT MSCs as bone morphogenetic protein 6.44,45 
Moreover, the faster degradation rate of Alpha Chondro 
Shield makes it difficult to undertake long-term cultures in 
order to compare chondrogenic differentiation of BM MSCs 

and AT MSCs. Future in vitro studies to examine chondro-
genesis with this scaffold should focus on improving cul-
ture conditions for longer term analysis, as well as using 
advanced and effective cell-seeding procedures.

In conclusion, this study has demonstrated that BM MSCs 
and AT MSCs undergo chondrogenic differentiation in vitro 
in cell scaffolds that have been used clinically for cartilage 
repair. On the basis of cell growth and ECM deposition, the 
use of BM MSCs with Chondro-Gide is favored. However, 
further study is required to test the potential of these different 
cell types and scaffolds for cartilage repair in vivo.
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