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Improved data visualisation through multiple
dissimilarity modelling

Iain Rice

Aston University, UK.

Abstract

Popular dimension reduction and visualisation algorithms rely on the assump-
tion that input dissimilarities are typically Euclidean, for instance Metric Mul-
tidimensional Scaling, t-distributed Stochastic Neighbour Embedding and the
Gaussian Process Latent Variable Model. It is well known that this assumption
does not hold for most datasets and often high-dimensional data sits upon a
manifold of unknown global geometry. We present a method for improving the
manifold charting process, coupled with Elastic MDS, such that we no longer
assume that the manifold is Euclidean, or of any particular structure. We draw
on the benefits of different dissimilarity measures allowing for the relative re-
sponsibilities, under a linear combination, to drive the visualisation process.

Keywords: Dissimilarity, Visualisation, Multidimensional Scaling,
Euclidean

1. Introduction

In order to create humanly interpretable visualisations, popular algorithms
which chart high dimensional data assume some global or local geometric struc-
ture. Methods such as the Sammon map [25], Stochastic Neighbour Embedding
(SNE) [12] and its’ derivatives, the Gaussian Process Latent Variable Model [13],
the Generative Topographic Map (GTM) [5], Metric Multidimensional Scaling
(MDS) and Curvilinear Component Analysis (CCA) [7] assume global Euclidean
structure. The work of [27, 30, 29] removes the metric constraint in MDS and
CCA using the Bregman divergence, however the Euclidean dissimilarity over
inputs is retained. Typically observation manifolds are better characterised by
Riemannian manifolds than the restrictive Euclidean spaces [2]. These mani-
folds can be assumed to have locally Euclidean structure, as in Locally Linear
Embedding [24], Laplacian Eigenmaps [4], Riemannian Manifold Learning [18]
and methods using geodesic distances based upon local Euclidean structure
such as Isomap [31], the Geodesic Nonlinear Map [17] and Curvilinear Distance
Analysis [16].
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These methods relying on a local Euclidean structure, assuming smooth con-
tinuity between local charts. This assumption can lead to a poor approximation
of the manifold chart when observations are complex non-Euclidean structures
or have a fractal dimensionality. Further to this the local estimates of a chart
in high dimensional space can be unreliable, particularly when data is sparse.
These methods are also sensitive to the choice of the neighbourhood size pa-
rameter, potentially leading to false neighbourhoods in the mapping of data.

In particular we can consider the case of GTM which assumes the observa-
tions are distributed according to an isotropic Gaussian, akin to a hypershpere,
which in high dimensions contains nearly all of its’ mass in a thin shell sitting
upon the surface (see [15] for an overview of this). This particular case highlights
the need for a more thorough approach to characterising reliable dissimilarities
over observations in the generation of visualisations.

The combination of different dissimilarity operators has recieved much inter-
est in recent years, particularly in the area of multiple kernel learning. The use
of these multiple kernels allows for measures inducing diverse topologies upon
observations to warp high dimensional data, often with complex structure, in
order to achieve better regression and classification performance, outlined in
[6, 10], as well as in the field of manifold learning [1]. The tasks of regression
and classification are supervised by nature in that true targets exist. In this
paper we consider the unsupervised case where the targets are learned by min-
imisation of a mapping cost function, such that the data structure is preserved.
One such case where a non-Euclidean dissimilarity measure was used to char-
acterise observations is described in [20] where class label information was used
as a descriptor to motivate the visualisation process. We present an extension
to this work where we no longer rely on a single dissimilarity measure. Similar
work was performed in [19] relying on linear discriminant analysis to form visu-
alisations, however the learned mapping is linear and the optimisation method
does not generalise to nonlinear mappings as in this paper.

This paper details a method for incorporating several dissimilarity measures
into a visualisation framework. By learning a mixture representation for the ob-
servation space the learned visualisation is more interpretable and better spans
the latent dimensions than the Euclidean counterpart. It was found in [15]
that visualisation mappings which learn the position of latent points through
optimisation of a non-convex cost function (such as MDS, SNE and CCA) per-
form better than those whose cost functions are convex (such as PCA, LLE
and Isomap). SNE, CCA and their variants require tuning of the mapping pa-
rameters such as the perplexity and neighbourhood parameters in CCA and
Culrvilinear Distance Analysis. The more traditional approaches of the Sam-
mon map and MDS require no such tuning. Despite constructing a topographic
mapping, the local focus of the Sammon mapping is improved by using Elastic
MDS as shown in [27]. Further local focus can be achieved with other vari-
ants of MDS, however the optimisation of the resulting cost functions requires
stochastic gradient descent and poor local minima are likely in the optimisa-
tion procedure. We therefore focus on the specific case of Elastic MDS to show
the potential improvements in this paper, though the approach does generalise
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to the other methods mentioned. Five standard datasets are analysed with the
proposed mixture dissimilarity approach qualitatively compared to the standard
MDS method. Following [33] quantitative quality measures typically used for
visualisations are not appropriate so we rely on a visual comparison to show
improvement.

2. The Learning Task

The method described in this paper is born from the desire for robust dimen-
sion reduction, however we focus on the particular case of visualisation where
the mapped data is 2-dimensional. Elastic MDS [22] embeds a dataset, X, into
a reduced dimensional space, Y ∈ RV . In the experiments of this paper we fix
V = 2. X can be nonvectorial as all that is required for the projection to Y is
a matrix of pairwise relative dissimilarities, Dx(i, j), between observations Xi

and Xj . The latent points corresponding to each observation, denoted yi, are
learned through gradient descent of the cost function:

E =
∑

i,j<i

(Dx(i, j)−Dy(i, j))
2

(Dx(i, j))
2 , (1)

where Dy(i, j) denotes the dissimilarity between visualised points yi and yj ,
taken as standard to be the Euclidean distance. The term Elastic MDS is due
to the quadratic factor in the denominator of equation (1), as opposed to that
of the Sammon map. This has the effect of forcing the mapping process to
focus more on local than on global distance preservation. We naturally desire
to observe a physically motivated clustering of observations in a visualisation
without imposing this in the mapping procedure.

In order to remove the restrictive assumption that Dx consists of Euclidean
distances only we treat the measure as a weighted combination of multiple
separate dissimilarity measures:

Dx =
∑

l

αlD
l
x

where αl is the weight corresponding to the l-th dissimilarity measure. To
construct a more flexible input dissimilarity matrix we utilise 15 dissimilarity
measures for the experiments in this paper. Our approach is flexible such that
additional measures can be included and removed if desired. Table 1 taken from
[23] lists 14 of the dissimilarities and the final measure is the geodesic distance
given by Dijkstra’s algorithm [8] as in Isomap and other related algorithms.
In this paper we restrict our discussion and experiments to the case where
observations are vectorial. However, the approach of learning a mixture of input
dissimilarities is generic and a trivial change of the measures of table 1 to other
measures allows for analysis of other data structures. Typical non-vectorial
examples include probability distributions, binary data, images, graphs and
time series for instance. Dissimilarity measures specific to these applications
are detailed in [23].
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Measure Dissimilarity - d(x,y) M E

1 Euclidean
√

(x− y)T (x− y) Yes Yes

2 Weighted Euclidean
√

(x− y)T diag(w2
i )(x− y) Yes Yes

3 City block
∑m
i=1 |xi − yi| Yes No

4 Max norm maxi |xi − yi| Yes No

5 Minkowski (lp) (
∑m
i=1 |xi − yi|p)

1
p , p ≥ 1, p 6= 2 Yes No

6 Mahalanobis
√

(x− y)TC−1(x− y) , C psd Yes Yes

7 Median distance mediani(|xi − yi|) No No

8 Correlation based (Dcorr)
1
2

(
1− xTy

‖x‖2+‖y‖2
)

No No

9 Correlation based (Dcorr2) 1
2

(
1− xTy

‖x‖2+‖y‖2−2xTy

)
No No

10 Cosine 1
2

(
1− xTy

‖x‖‖y‖

)
No No

11 Divergence
√∑n

i=1
(xi−yi)2
(xi+yi)2

No No

12 Bray and Curtis
∑n

i=1 |xi−yi|∑n
i=1 xi+yi

No No

13 Soergel
∑n

i=1 |xi−yi|∑n
i=1 max{xi,yi} No No

14 Ware and Hedges
∑n
i=1

(
1− min{xi,yi}

max{xi,yi}

)
No No

15 Geodesic δ(DEuc) No No

Table 1: Numbered dissimilarity measures between vectors x,y listing whether
they are metric (M) and Euclidean (E).

For the experiments described in this paper the weighted Euclidean (mea-
sure 2) parameters were fixed to be the inverse of the sample mean vector and
p in the Minkowski distance (measure 5) was fixed to be 1.2 to induce a metric
between the city block and Euclidean measures. The weighting matrix, C, in
the Mahalanobis distance (measure 6) is the data sample covariance matrix.
These choices of parameters allow the measures to be invariant to the absolute
scaling of the data in each of the observed dimensions such that a single dimen-
sion does not disproportionately affect the overall dissimilarity. The geodesic
distance (measure 15) is performed over the Euclidean distance as is typical in
the literature.

We propose an iterative learning scheme such that the αl weights are opti-
mised on a slower timescale to the visualised points, yi. The latent points can
be learned using gradient descent over the standard cost function of equation (1)
using scaled conjugate gradients, as in section 3, or a quasi-Newton approach
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with the following gradients:

∂E

∂yi
= 4

∑

j

(
− 1

Dx(i, j)Dy(i, j)
+

1

(Dx(i, j))2)

)
(yi − yj) .

The weight parameters can also be learned through gradient descent of equation
(1). Due to the requirement for normalisation of the weights we opt to learn α̃l
to recover the weights αl = α̃l/

∑
m α̃m as follows:

∂E

∂α̃l
=

∂E

∂Dx(i, j)

∂Dx(i, j)

∂α̃l
=

(−2(Dy(i, j))2

(Dx(i, j))3
+

2Dy(i, j)

(Dx(i, j))2

)(
∂Dx(i, j)

∂α̃l

)
.

Through use of the product rule we can write the final term as:

∂

∂α̃l

[∑

l

α̃l∑
m α̃m

Dl
x(i, j)

]
=

(
1∑
m α̃m

Dl
x(i, j)− 1

(
∑
m α̃m)2

∑

l

α̃lD
l
x(i, j)

)
.

Combining these two parts we find the gradients with respect to the weights:

∂E

∂α̃l
=
∑

i,j

(−2(Dy(i, j))2

(Dx(i, j))3
+

2Dy(i, j)

(Dx(i, j))2

)(
Dl
x(i, j)∑
m α̃m

−
∑
l α̃lD

l
x(i, j)

(
∑
m α̃m)2

)
.

It should be noted that αl can be negative as well as positive, and indeed greater
than 1, allowing for a more flexible model than restricting αl to between 0 and
1.

Since we are optimising over the MDS cost function of equation (1) we should
note the obvious characteristic that a minimum occurs when Dy(i, j) matches
Dx(i, j) as closely as possible, i.e. when the elements Dx(i, j) can be reproduced
in Dy(i, j). In standard MDS the only way to achieve this is by manipulating
the latent points, yi. Our approach allows for the modification of Dx(i, j) in
order to further minimise the mapping error. The learning task has therefore
shifted from not only identifying the latent co-ordinates which minimise the
equation (1), but which mixture of dissimilarity measures generates the Dx(i, j)
which is most re-producible by Dy(i, j), subject to Dy(i, j) = ‖yi − yj‖2.

Naturally optimising αl with respect to the mapping STRESS is one of
several ways to determine the parameters. An alternative way to pose the
problem occurs when we consider combining the mapping with a feed-forward
network as in the NeuroScale [21] approach to information visualisation. In this
setting the set of latent points are learned at each gradient step and the feed-
forward mapping weights, W , are found through the iterative shadow-targets
approach [32]. When the network prototypes span the entire observation space
this can be considered as the solution of:

φ (Dx)W = Y ,

where the weight matrix W is learned by pseudoinverse and φ is a nonlinear
basis function. Once the learning problem is posed this way it is clear that αl
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Algorithm 1 Pseudocode for multiple dissimilarity learning in Elastic MDS.

Require: Dissimilarities Dl
x(i, j),

1: Initialise α̃l randomly or by the method of section 3.5 and αl = α̃l/
∑
m α̃m,

2: Initialise Dx =
∑
l αlD

l
x

3: Initialise yi by kernel PCA or randomly.
4: Calculate latent dissimilarities Dy(i, j) = ‖yi − yj‖2,
5: Calculate initial error E from equation (1),
6: for epochs = 1:Nepochs do
7: for iter = 1:Niter do
8: Calculate error gradients ∂E

∂yi
,

9: Perform a gradient step for yi with SCG to give ȳi,
10: Re-calculate latent dissimilarities Dy(i, j) = ‖ȳi − ȳj‖2,
11: Re-calculate mapping error E,
12: if error reduced then
13: Update yi ← ȳi,
14: end if
15: end for
16: Perform a gradient step of α̃l with ∂E

∂α̃l
with SCG to give α̃′l,

17: Re-calculate input dissimilarities Dx =
∑
l α
′
lD

l
x,

18: Re-calculate mapping error E,
19: if error reduced then
20: Update α̃l ← α̃′l
21: end if
22: end for

can be learned in one of the many ways from the field of multiple kernel learning
(see [10, 34] for an overview). A natural way of using these multiple dissimilarity
measures is the incorporation into kernel PCA [26] as this naturally operates
on kernels (which may in fact be the weighted sum of a number of different
kernels), however it is well known that PCA spreads data in the direction of
maximal variance and is therefore an inferior method of generating reliable,
structure-preserving mappings compared to Metric MDS.

In this context there are many different ways of optimising the mixing
weights in both convex and non-convex ways to improve the regression per-
formance. For the purpose of generating a fixed visualisation in this paper
however we choose to learn αl though the gradient descent procedure detailed
above by minimising the MDS cost function as by design this will improve visu-
alisation quality. The pseudocode for the algorithm used to obtain the results of
section 3 is shown in algorithm 1. For the experiments performed for this paper
Nepochs was fixed to 10 and Niter was fixed to 75, however with αl initialised
as outlined in section 3.5 Nepochs and Niter can be changed to 3 and 150 re-
spectively reducing the training time whilst achieving the same visualisations.
Scaled conjugate gradients (SCG) was used to update the latent positions, yi,
and the input mixture weights, αl.
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Figure 1: Open box dataset in 3-dimensional observation space. The structure
contains an open top which typically poses problems for visualisation algorithms.
The regular spacing between points in the box sides should be preserved in the
visualisations.

3. Experimental Results

In order to compare the impact of learning the input dissimilarities with that
of standard Elastic MDS we generate visualisations of five datasets using the
standard version of Elastic MDS and the modified version proposed in this paper
for comparison. Experiments were run five times, using the above iteration and
epoch setups in algorithm 1, with random initialisations of the latent points to
avoid poor local minima. In each case the models arrived at the same latent
space indicating a minima of the stress measure was achieved.

For comparison we also include visualisations computed by Isomap, both
assuming a geodesic dissimilarity over Euclidean distances (as is standard in
the literature) and a geodesic over the learned Dx by the Elastic MDS case for
each dataset. In both cases the neighbourhood parameter, k, is fixed to the
smallest neighbourhood size for which a connected graph is achieved.

3.1. Open Box Dataset

Firstly we consider the Open Box dataset [28] which is used as a benchmark
comparison for linear and nonlinear visualisation algorithms in [15] containing
an open top and uniformly sampled faces with 316 datapoints shown in figure
1.

The two visualisations in figure 2 are similar, due to the fact that the struc-
ture consists of six connected Euclidean planes. The modified inputs allow for

7
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(a) (b)

Figure 2: Visualisations of the open box dataset with (a) standard Elastic MDS
and (b) Elastic MDS with input learning.
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Figure 3: Weighting of the dissimilarity measures for the Open Box mapping.
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(a) (b)

Figure 4: Visualisations of the open box dataset with (a) Isomap and (b)
Isomap with learned input dissimilarities.

the visualisation in figure 2b to curve the lid and sides more than the stan-
dard visualisation in figure 2a, allowing for a further unfolding of the box. The
weights, αl, corresponding to each of the dissimilarity measures listed in ta-
ble 1 are shown in figure 3. Interestingly despite the box being a Euclidean
structure there is as much emphasis given to the Euclidean measures as for the
non-Euclidean measures. The second correlation distance (measure 9) is given
a negative weight, in part to cancel out the similar effects of the first correlation
distance (measure 8) as the dissimilarities are constant for many points along
each box face contrary to the other measures.

Figure 4 shows the visualisations of the Open box using Isomap with neigh-
bourhood sizes k = 4andk = 14 for the standard and learned input mappings
respectively. When the learned input dissimilarities, Dx, are used as inputs the
box is a deformed version of the standard version in figure 4a). The embedding
generated by preservation of inner products in Isomap is not as effective as in
the MDS case of figure 2b) where the box appears to be perturbed by random
noise. In this case the visualisation generated by Isomap with a mixture input
dissimilarity is inferior to the standard Isomap mapping. It should be noted
that this structure is an entirely artifical dataset and the mappings generated
in the following experiments are more representative of real-world observations.
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Figure 5: Swiss roll dataset in 3-dimensional observation space. The structure
contains dark blue points at the centre (the left of the 2-dimensional latent
rectangle) and dark red points at the exterior of the curve (the right of the
2-dimensional latent rectangle).

3.2. Swiss Roll

The second dataset used in this paper is the swiss roll, a benchmark for
visualisation algorithms studied extensively in [15]. The 3-dimensinoal manifold
consists of 300 points randomly sampled from a 2-dimensional rectangular grid
mapped into the roll.

Figure 6 shows the two visualisations of the swiss roll generated by Elastic
MDS. When the input dissimilarities are learned, achieving the visualisation of
figure 6b), the degree of overlap between the blue and orange points is lessened,
better preserving the local neighbourhood structures than the mapping of figure
6a). The learned weights for this toy example are shown in figure 7. The
dominating dissimilarity measure is the Bray and Curtis, followed by the second
correlation based measure. The normalisation terms in both of these measures
have allowed the mapping to focus more on local neighbourhoods than the more
separated points.

The visualisations of the swiss roll generated by Isomap are shown in figure
8 with neighbourhood sizes of k = 6andk = 10 for the standard and multiple
dissimilarity input methods respectively. The standard Isomap visualisation of
figure 8a) attempts to unfold the structure, however the 2-dimensional rect-
angle is not recovered and many points are sat atop one-another. When the
learned mixture of dissimilarities, as in figure 6b), is used with Isomap the la-
tent representation of figure 8b) is obtained. This latent representation more
closely matches the 2-dimensional rectangle than the Euclidean Isomap coun-
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(a) (b)

Figure 6: Visualisations of the swiss roll dataset with (a) standard Elastic MDS
and (b) Elastic MDS with learned input dissimilarities.
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Figure 7: Weighting of the dissimilarity measures for the swiss roll mapping.
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(a) (b)

Figure 8: Visualisations of the swiss roll dataset with (a) standard Isomap and
(b) Isomap with mixture of input dissimilarities.

terpart. Neighbourhoods are better preserved in this visualisation, however the
Elastic MDS mapping of figure 6b) provides a human observer with a clearer
understanding of the observed manifold.

3.3. MNist Dataset

The next dataset we consider is a subset of the MNist greyscale digits dataset
[14] containing 50 ‘0’s, ‘1’s and ‘6’s. The images are 28 × 28 pixels and therefore
analysed as 784-dimensional vectors. Of the three classes it is clear that the ‘6’s
share both the circular structure of the ‘0’s and the straight line of the ‘1’s,
sitting between the two classes in the observation space. Figure 10a) shows
the visualisation generated by standard Elastic MDS with the images plotted
atop the latent points, yi. There is a clear separation of the ‘1’s from the
remaining classes, however there are ‘0’s which have clearly been removed from
their neighbourhoods in the mapping process and are then surrounded by ‘6’s
and vice versa. When the input dissimilarities are varied we obtain the mapping
of figure 10b). The visualisation space is more continuous, resembling a filled
circle with the class of ‘1’s on the right hand side and now fully connected to
the class of ‘6’s in the centre with the ‘0’s on the left side. The individual ‘6’s
and ‘0’s at the top of the space are the more deformed with unusual slants
and disconnected circles in the ‘0’s. In addition to this the ‘1’s located in this
region are more slanted than the rest of the class and contain curves which
do not match the standard caligraphy of the digit. The ‘0’s which are placed
in the centre of the space amid the group of ‘6’s now share more in common
with their latent neighbours, unlike those of figure 10a) such as the thick lined
and non-circular ‘0’s. The latent dimensions in figure 10b) clearly span the
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Figure 9: Weighting of the dissimilarity measures for the MNist mapping.

digit thickness in the y-axis (from thin to thick to thin) and digit orientation
in the y = x-axis. The three digits covered in this experiment are estimated to
possess dimensionality between 7 and 12 [11] so there are naturally more latent
dimensions than can be conveyed than for Y ∈ R2, however a visualisation
should present the information of these variables in an interpretable way. The
visualisation of figure 10a) has not clearly conveyed either of these important
latent features. The learning of the input dissimilarity has allowed for a more
visually appealing and intuitive mapping than the standard case.

The weights allocated to each of the dissimilarity measures are shown in
figure 9 where the Ware and Hedges dissimilarity is the most dominant, com-
bined largely with the City block and Minkowski distances. On first inspection
it would appear this is likely caused by the fact that the minimum and maxi-
mum measures in the Ware and Hedges dissimilarity measure in each region are
a sufficient statistic to characterise the largely black and white images. This,
however, is not the only possible cause and will be discussed further in section
3.5.

Figure 11 shows the visualisations of the MNist dataset using Isomap with
neighbourhood sizes k = 15andk = 28 for the standard and multiple dissimi-
larity methods respectively. In the standard Isomap visualisation of figure 11a)
the class of ‘1’s are fixed to a linear structure with left bends appearing on the
left of the cluster and ‘1’s with a right curve at the top on the right. There
is however no clear separation between thick and thin ‘1’s. The remaining two
classes overlap with no clear distinction or structure between bold characters.
On the other hand the visualisation of figure 11b) with a mixture of input dis-
similarities concentrates the bold ‘6’s and ‘0’s in the region connecting the two
clusters. The class of ‘1’s is also more structured than in the standard Isomap
case. The mapping here is not as informative as either of the Elastic MDS cases,
however it is clear that a learned input dissimilarity framework generates a more
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(a)

(b)

Figure 10: Visualisations of the MNist dataset with (a) standard Elastic MDS
and (b) Elastic MDS with input learning.
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(a)

(b)

Figure 11: Visualisations of the MNist dataset with (a) standard Isomap and
(b) Isomap with mixture input dissimilarities.
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Figure 12: Weighting of the dissimilarity measures for the faces mapping.

intuitive and interpretable representation.

3.4. Artificial Faces Dataset

The fouth experiment is the artificial faces dataset [31] originally demon-
strated with Isomap. There are 698 images with varying light levels and camera
orientation on the 64 × 64 pixel images, therefore treated as 4096-dimensional
observation vectors. Grouping in the latent space should be based upon both
factors which make up the dataset in a continuous fashion as the variations
between neighbourhing images in the observation space are small. Figure 13a)
shows the standard Elastic MDS visualisation space where the images are or-
dered from low light levels on the left to higher light levels on the right. The
relative clustering of images with similar camera orientations is not well pre-
served as the neighbourhoods are broken, with many clear outliers. In addition
to this the mapping is not continuous as would be expected, with a series of sim-
ilar images removed from the main cluster on the right side. On the other hand
the visualisation generated with learned input dissimilarities in figure 13b) is a
more continuous mapping. Moving from left to right in the visualisation space
again marks a change in the light levels however the microclusters of camera
orientation are more intuitive now, with higher camera angles associated with
the top and right-most areas of the visualisation space and the more central
orientations in the centre of the latent space. The optimised weights are shown
in figure 12. As with the MNist mapping the most dominant weight is allocated
to the Ware and Hedges dissimilarity, however more weight is given to the City
block and Minkowski dissimilarities.

Figure 14 contains the visualisations generated by Isomap with neighbour-
hood sizes k = 8 and k = 16 for the standard and multiple dissimilarity ap-
proaches respectively. For the standard Euclidean distances as inputs, shown
in figure 14a), the latent representation contains discontinuities at the top right
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(a)

(b)

Figure 13: Visualisations of the artificial faces dataset with (a) standard Elastic
MDS and (b) Elastic MDS with input learning.
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(a)
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Figure 14: Visualisations of the artificial faces dataset with (a) standard Isomap
and (b) Isomap with learned inputs.

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

Dissimilarity Measure

W
e
i
g
h
t

Figure 15: Weighting of the dissimilarity measures for the Caltech101 mapping.

and left corners. The latent variable of pose is in general preserved with front
facing images in the centre of the visualisation, however the lighting levels in the
images are not so clearly mapped. When the mixture of input dissimilarities is
used as input to Isomap of figure 14b), the latent variable of lighting is mapped
from dark to light at the centre of the latent space. The orientation of the face
in the images moves from left-facing to right facing across the x-axis. As with
the Elastic MDS case this representation is more visually appealing.

3.5. Caltech101 Images Dataset

The final dataset we use in this paper is the Caltech101 computer vision
dataset [9]. This consists of multiple images from 101 different categories. We
focus on a subset of these images, using 52 aeroplanes, 52 Bonsai trees and 52
dollar bills for our visualisations. Following the creation of a SURF bag-of-words
[3] analysis we map the 156 feature vectors (500 features from the bag were used
for each image) into a 2-dimensional visualisation space.

Figure 16 shows the latent space with the corresponding image plotted atop
the latent point, yi as with the previous two datasets. The space appears filled,
however there is a cluster of aeroplanes at the bottom of the visualisation, with
Bonsai trees at the top and left side apart from a small number of outliers. The
dollar bills are split into a main cluster on the right side and a smaller cluster
which sits directly between the aeroplanes and Bonsai trees where there is a
clear region of overlap between all three classes.

The visualisation generated with learned input dissimilarities is shown in
figure 17. As with the previous two datasets it is clear that the mapping gen-
erates a more continuous latent space again resembling a filled circle. Similarly
to figure 16 the aeroplanes are clustered at the bottom with Bonsai trees at the
top but the class overlap has been reduced with only one aeroplane incorrectly
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Figure 16: Visualisation of the Caltech101 dataset with standard Elastic MDS.
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Figure 17: Visualisation of the Caltech101 dataset with learned inputs.
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placed at the left side and a Bonsai tree surrounded by aeroplanes at the bot-
tom right side. Through the mixture of different dissimilarities the mapping has
pulled the dollar bill images to the right side with a small number of outliers.
These outliers are more intuitive now, for instance the dollar bill and Bonsai
tree with dark red backgrounds are now placed in close proximity. Further to
this the aeroplane images with grass are placed close to the Bonsai tree images,
a trait which is not present in figure 16.

When standard Isomap, with neighbourhood size k = 25, is used to generate
a representation of the Caltech dataset (figure 18) the aeroplane and Bonsai
tree classes are separated, but the dollar bill images are not. Some dollar bills
are clustered closer to the Bonsai tree class than other similar images from the
same class. On the other hand the multiple dissimilarity representation, with
neighbourhood size k = 68, of figure 19 separates the main dollar bill cluster
from the other two classes. In addition to this the images of planes with similar
backgrounds, particularly the colour of the sky and clouds, are neighbours unlike
the mapping of figure 18. The latent representations found through Isomap both
include discontinuities and do not map certain features, such as the Bonsai tree
and dollar bill with red backgrounds, in close proximity to one-another. As
with the previous datasets we find that Isomap generates inferior visualisations
to that of Elastic MDS, however the quality does improve when mixtures of
dissimilarity measures are incorporated.

The relative weights allocated to each of the input dissimilarity measures is
shown in figure 15. As with the previous two datasets the most dominant mea-
sure is the Ware and Hedges dissimilarity. For those mappings there seemed an
intuitive reason as to why the datasets cluster naturally based on minimum and
maximum values in greyscale images, however the inputs here are not greyscale.
Instead they are high dimensional feature vector descriptors of the true images.

In order to gain understanding as to why the weights were allocated in
this way we can analyse the maximal eigenvalues of each of the dissimilarity
measures. For the case of data covariance matrices it is well known that the
eigenvalues define the spread in each principal axis. When we consider a dis-
similarity matrix this maps data from the observation space to the dissimilarity
space [23]. The principal eigenvalue defines the spread of data in the princi-
pal axis of the dissimilarity space. It is therefore clear that greater spread in
the input dissimilarity space (used by Elastic MDS and Isomap), and therefore
less clustering and overlap, lends the input space better to recreation in a la-
tent Euclidean space, reducing the mapping cost function with respect to the
weights αl. The maximal eigenvalues (normalised to maximum unity) shown
in figure 20 correspond to the dominant weights allocated to each of the five
datasets visualised in this section. These relative eigenvalues cannot be used
to fix αl prior to training in this framework, since the maximal eigenvalue for
dissimilarity measures such as those in table 1 will always be positive which does
not match the case of the Open Box dataset. Using normalised eigenvalues is
however a more efficient method for initialising αl than using a random scheme.
Once the visualisation space was constructed from eigenvalue-initialised weights
we analysed the relative deviations from initial to trained weights. The largest
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Figure 18: Isomap Visualisation of the Caltech101 dataset.
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Figure 19: Isomap Visualisation of the Caltech101 dataset with learned inputs.
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Figure 20: Normalised eigenvalues (to maximum unity) of dissimilarity matrices
for each of the five mappings. The relative magnitude of the eigenvalues highly
correlates with the weight allocated to each of the input dissimilarities, Dl.

deviations, maxl |λl − αl|, were 0.16 for the Open Box, 0.09 for the swiss roll,
0.01 for the MNist and faces datasets and 0.03 for the Caltech101 images sub-
set. For best initialisation of the mixing weights we propose to use the relative
normalised eigenvalues, i.e. αl = λl/

∑
m λm. Fixing the weights to the rela-

tive maximal eigenvalues in a re-run of the Open Box experiment produced a
sub-optimal visualisation with higher stress. This shows that weight learning
through the gradient descent procedure of section 2 is required to obtain better
data representations, despite there often only being a minor deviation in the
weight parameters. This finding allows for faster training of the mapping than
when αl is initialised randomly as would be typically done. The training time,
post construction of the multiple dissimilarity matrices which make up Dx, is
almost identical to that of standard Elastic MDS.

4. Conclusion

This paper has presented a novel way of generating projective visualisations
through varying the input dissimilarities used to chart the observed manifold.
The linear combination of different distance measures allows for multiple dis-
similarities to be considered, a particular benefit when the geometry of the
observation manifold is unknown. The combination of dissimilarity measures
has links to the current research in multiple kernel learning, but in particular
our experiments have shown the relative weights which minimise the cost func-
tion of Elastic MDS are linked to the normalised maximal eigenvalues of the
individual dissimilarity matrices. This particular finding will allow for the dis-
similarity weights to be reliably initialised at the start of the mapping to avoid
potential local minima issues.

The changes resulting from a modified input dissimilarity were illustrated
with five datasets. For the real-world high-dimensional datasets the mapping
proposed in this paper generated a much more intuitive visualisation, preserving
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the class structure which is known to humans but was not used in the mapping
process. Further research will assess the impact that learning mixtures of input
dissimilarities has on other mappings such as Curvilinear Component Analysis,
Stochastic Neighbour Embedding and Bregman MDS. The work in this paper
has focused on the case of vectorial observations, however replacing the measures
of table 1 with other dissimilarities allows for trivial extensions to binary, time
series, graph or probability distribution observation spaces.
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