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The research described in this PhD thesis focuses on proteomics approaches to study the effect of 

oxidation on the modification status and protein-protein interactions of PTEN, a redox-sensitive 

phosphatase involved in a number of cellular processes including metabolism, apoptosis, cell 

proliferation, and survival. While direct evidence of a redox regulation of PTEN and its downstream 

signaling has been reported, the effect of cellular oxidative stress or direct PTEN oxidation on PTEN 

structure and interactome is still poorly defined.  

In a first study, GST-tagged PTEN was directly oxidized over a range of hypochlorous acid (HOCl) 

concentration, assayed for phosphatase activity, and oxidative post-translational modifications 

(oxPTMs) were quantified using LC-MS/MS-based label-free methods. In a second study, GST-

tagged PTEN was prepared in a reduced and reversibly H2O2-oxidized form, immobilized on a resin 

support and incubated with HCT116 cell lysate to capture PTEN interacting proteins, which were 

analyzed by LC-MS/MS and comparatively quantified using label-free methods. In parallel 

experiments, HCT116 cells transfected with a GFP-tagged PTEN were treated with H2O2 and PTEN-

interacting proteins immunoprecipitated using standard methods.  

Several high abundance HOCl-induced oxPTMs were mapped, including those taking place at 

amino acids known to be important for PTEN phosphatase activity and protein-protein interactions, 

such as Met35, Tyr155, Tyr240 and Tyr315. A PTEN redox interactome was also characterized, which 

identified a number of PTEN-interacting proteins that vary with the reversible inactivation of PTEN 

caused by H2O2 oxidation. These included new PTEN interactors as well as the redox proteins 

peroxiredoxin-1 (Prdx1) and thioredoxin (Trx), which are known to be involved in the recycling of 

PTEN active site following H2O2-induced reversible inactivation. The results suggest that the 

oxidative modification of PTEN causes functional alterations in PTEN structure and interactome, with 

fundamental implications for the PTEN signaling role in many cellular processes, such as those 

involved in the pathophysiology of disease and ageing. 
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1.1 Ageing and disease 

1.1.1 Ageing in human societies 

A constant, gradual and inevitable change occurs in living organisms over their entire life, leading 

to increased risk of disease and worsened health. This phenomenon goes by the name of ageing, and is 

a process that spans many different aspects of a person’s life, reflecting physical, psychological and 

social changes. Over the centuries, many artists have been fascinated by the different features of 

ageing, and have tried to capture them on canvases, or through other forms of art like music, poetry or 

prose (Figure 1.1). 

Figure 1.1 “Where Do We Come From? What Are We? Where Are We Going?”  

The painting is the masterpiece of the French post-impressionist artist Paul Gauguin (1848-1903). 

Read from right to left, this canvas illustrates various stages of life from birth to death.  

Ageing plays an important role in human societies from a cultural, economic, and social point of 

view. Considering the high complexity and the multidimensionality of this phenomenon, it is 

challenging to study the effects of ageing and its impact on human societies on a global scale. As far 

as the social impact goes, significant cross-cultural variations have been observed in the views of 

ageing, particularly when looking at a wide range of cultures. That is, depending on educational, 

religious or personal values, the effects of ageing – and ageing itself – may be interpreted as symbols 

of different characteristics, indicating different concepts of time and death across cultures [1]. 
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However, recent studies on the psychology of ageing also suggest a cross-cultural consensus in 

relation to certain views of ageing and its impact on human societies [2]. For example, several cultures 

recognize ageing as a process leading to increased knowledge, wisdom or respect, therefore helping 

individuals in achieving favorable outcomes, such as better wealth and life satisfaction [3]. In a similar 

way, negative age-related perceptions such as decreased attractiveness or impaired ability to perform 

certain tasks, were also found to be consistent across different cultures [2,3]. Some of those 

undesirable effects are typically linked to socio-cultural implications, and may be responsible for 

fueling the depiction of the ageing body as something that has to be “cured” in the pursuit of a 

younger or healthier appearance [4]. While a great deal of scientific effort is being made in the field of 

cosmetic surgery and pharmaceutical sciences to lessen the aesthetic effects of ageing, most of the 

modern research into ageing is focused on the biological connection between ageing and health. This 

is because a number of serious health problems become more prominent when people age, including 

mental health conditions as well as diseases such as cancer and cardiovascular conditions, for which a 

definitive cure does not yet exist. The negative impact of age-related morbidity on human society is 

such that a great deal of research effort on this phenomenon has been expended in the last few years 

by several different field of study, in particular the life sciences.  

Much of the current biomedical research into ageing has addressed the cellular and molecular 

changes that are associated with old age, aiming to increase human life expectancy and reduce the 

impact of age-related diseases. The life expectancy at birth (LEB) is defined as “the average number 

of years that a newborn could expect to live if he or she were to pass through life subject to the age-

specific mortality rates of a given period” [5]. The LEB is influenced by infant mortality, proneness to 

disease, accident, and should not be confused with lifespan (or maximum life span), which is a 

measure of the maximum amount of time that a person lives [6]. As shown in Figure 1.2, the life 

expectancy at birth (LEB) has almost doubled in England and Wales since 1841 and it is currently at 

almost 80 years. The increasing LEB in the developed world over the past century has been mainly 

attributed to improvements in the public health, medical care and diet [7], suggesting a fundamental 

role for health research in reducing mortality and increasing the quality of life. It has been argued that 

a consequence of prolonged life is the generation of an ever more aged population, which currently 

presents a significant financial challenge as the increased number of elderly can slow economic 
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growth by increasing benefit demand and decreasing the labor-force [8]. In addition, as the number of 

elderly people increases, the healthcare costs are also rising because of the increasing incidence of 

age-related conditions [9]. It is clear, though, that by tackling the issue of age-related morbidity the 

economic burdens can be significantly reduced and the general level of health and, consequently, the 

quality of life of the ageing population can be improved. 

 

 

Figure 1.2 Life expectancy at birth over time in England and Wales   

In general, available data show a higher LEB in recent times, reflecting a significant improvement in 

human health over the years. Office for National Statistics (2012): Mortality in England and Wales: 

Average Life Span, 2010. 

While the LEB is a direct measure of mortality conditions, it is not a good indicator of the actual 

level of health of the ageing population. To answer the question as to whether a prolonged life is 

accompanied by a change in morbidity, the concept of disability-free life expectancy (DFLE) has been 

introduced [10]. The DFLE, also known as healthy life expectancy, can be defined as “an estimation 

of the length of time that an individual can expect to live free from a limiting long-standing illness or 

disability” [11]. This indicator can be useful to predict a ranking for age-related diseases the 

suppression of which is most correlated with increased LEB and DFLE [12]. According to the Office 
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for National Statistics, the current healthy life expectancy in England is only 63.4 years for males and 

64.1 years for females, significantly lower than the current LEB (78.7 years for males and 82.6 for 

females in 2010). These figures suggest that while advances in medical care have prolonged life, age-

related diseases are significantly reducing the proportion of these additional years that are spent in 

favorable health conditions.  

It is important for modern biomedical research to take on the challenge of improving the health of 

the ageing population in order to add the dimension of quality to the increasingly longer life 

expectancy. A healthier population will result in the extension of the social function of the elderly, 

which in turn would benefit human societies by accelerating the economic growth (e.g. by delaying 

the retirement age), thus reducing the burden of disability and disease. 

1.1.2 Age-related diseases 

Age-related conditions are responsible for approximately 100.000 deaths every day across the 

globe accounting for two thirds of the total number of people (150,000) who die every day worldwide, 

and for about 90% of the total deaths in the developed world [13]. Examples of age-related disease 

are: Alzheimer’s and Parkinson’s disease, arthritis, type 2 diabetes, cancer, and cardiovascular 

diseases. Much of the modern biomedical research into ageing is focused on those age-related 

diseases, mainly because they represent the most important cause of mortality in many developed 

countries. Cardiovascular diseases are the biggest cause of death worldwide, although the mortality 

induced by those conditions has been reducing in developed countries over the past few decades [14]. 

Age is one of the main risk factors for cardiovascular disease: in the US, over 40% of deaths in those 

aged 65 years and above was caused by cardiovascular diseases (e.g. hypertension, atherosclerosis) 

[15]. Following cardiovascular diseases, cancer is the second leading cause of death in the US [16]. 

Cancer incidence is increasing due to the fact that people live to an older age then they did years ago 

[17], which makes age a major risk factor for this disease. For example, a woman aged 60 years is 

more than 40 times more likely to develop breast cancer than a woman aged 25 years (Figure 1.3). 

However, cancer survival rates are increasing in developed countries due to improving therapeutic 

interventions [18]. Neurodegenerative diseases (including Alzheimer’s, Parkinson’s, Huntington’s 
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diseases and amyotrophic lateral sclerosis) represent another relevant group of age-related conditions 

for which ageing is considered the greatest risk factor [19-25]. In the US, the age-standardized 

mortality from Alzheimer’s disease has increased in the past decade [26], likely as a result of higher 

survival rates for cancer and heart disease [27]. In addition, Alzheimer’s and Parkinson’s disease can 

be a contributing cause of mortality from other conditions, including pneumonia, cerebrovascular 

disease, and cardiovascular disease [28,29].  

 

Figure 1.3 The incidence of breast cancer increases with age. 

Average number of new cases per year and age-specific incidence rates per 100,000 population, 

females, UK. Cancer Research UK (2014), Breast Cancer (C50): 2009-2011, Cancer Research UK.  

Many studies have shown a close relationship between the above conditions and human age, but 

the degree by which this correlation occurs is yet to be understood [30]. In addition, there is a 

profound disagreement in the gerontology community about whether ageing is itself a disease, rather 

than a process separate from age-related diseases [31]. However, if ageing is to be treated as the 

progressive accumulation of changes over time, it should be noted that those changes happen 

continuously over the course of the entire life of an individual, from birth to death. Therefore, 

biological ageing could not be considered as a disease per se (unless, controversially, it is regarded as 

a “congenital condition”), and it should rather be treated as the common risk factor for age-associated 

conditions [32].  
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1.1.3 Theories of biological ageing 

Biogerontologists distinguish chronological ageing (the number of years a person has lived) from 

biological ageing, also known as senescence [33]. Because of its intrinsic multi-factor nature, and of 

its yet-to-be determined biological cause, it is extraordinarily difficult to define ageing. If a 

comprehensive and modern definition of biological ageing has to be found, as far as it is possible, it 

may be useful to refer to that reported by Bowen et al [34], where ageing is defined as “any change in 

an organism over time”. The concept of biological ageing refers to the changes that take place at the 

cellular and molecular level in the body of a given organism. Those changes progressively cumulate 

over time [35] and can occur both at the organismal level (organismal senescence) and at the 

individual cell level (cellular senescence) [36]. Biological ageing is usually further divided between 

primary and secondary ageing [37]: primary ageing represents the gradual and inevitable deterioration 

of cellular structure and function and is independent of environmental factors and disease [38], while 

secondary ageing is the result of disease and environmental causes including poor diet, radiation, 

smoking and other factors that are often preventable. Despite advances in cellular and molecular 

biology, the causes underlying ageing are not completely understood, and multiple theories have been 

proposed to explain this phenomenon [39,40]. Traditionally, these theories have been divided between 

programmed and stochastic theories [41]. Programmed theories consider ageing as a process resulting 

from predetermined genetic factors [42], while stochastic theories (otherwise known as damage-based 

theories or “wear and tear” theories) argue that ageing is result of a continuous build-up of damage at 

various levels in the body, encompassing damage to tissue, cells, proteins, and nucleotides [43]. 

However, these models are often complementary and interact with each other [44,45], thus many 

contemporary authors consider this division between programmed and stochastic theories to be 

obsolete [46,47].  

One of the most credited theories over the past decade that has been proposed to explain ageing is 

the free radical theory of ageing (FRTA), developed by Denham Harman in 1956. This theory states 

that organisms age because cells accumulate free radicals-induced damage over time [48]. Excess free 

radicals may cause tissue and cell damage, resulting in further radical generation through a series of 

chain reactions, leading to increased level of reactive species in the body [49]. The increasing amount 

of free radicals results in oxidative stress, which according to the FTRA is a major factor for the 
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development of age-related conditions and is driving the ageing process [50,51]. The FRTA has been 

extensively discussed and reviewed, and is the center of today’s debate on the role of free radicals in 

ageing. In 1972, Harman also proposed the mitochondrial theory of ageing (MTA), which can be 

considered as an extension of the free radical hypothesis [52]. This theory has also received much 

attention, although like the FTRA it is widely debated [53]. The MTA maintains that electrons leaking 

from the electron transfer chain (ETC) can lead to production of reactive oxygen species (ROS) that 

can damage the mitochondrial DNA (mtDNA). This results in the accumulation of mutations in the 

mitochondrial DNA, which are responsible for the generation of additional ROS, triggering oxidative 

stress and tissue damage owing to the production of dysfunctional ETC proteins [54]. According to the 

MTA, both mitochondrial DNA mutations and free radicals present in the body can contribute to the 

process of ageing. MTA and FRTA are two similar aspects of the same generally accepted hypothesis, 

which is now known as the free radical mitochondrial theory of ageing [55]. Significant evidence has 

been found to support Harman’s theories, even though their validity still needs to be fully established 

[56]. On the other hand, several authors have shown that reactive species also have a beneficial effect, 

and might even be associated to increased lifespan [57]. Aside from the FTRA, other possible 

hypotheses explaining the causes of ageing are also being explored. These include, but are by no 

means limited to: the evolutionary theory of ageing, which explains ageing as a result of a decline in 

the force of natural selection that acts to reduce mortality [58,59]; the telomere theory, which relies on 

the experimental evidence showing the shortening of telomeres with each successive cell division 

[60,61], and a strong correlation between telomeres length and realized lifespan [62]; the reproductive-

cell cycle theory of ageing, which implies that a dysregulation in the reproductive hormones is driving 

the senescence process and it is also a key element in the development of age-related diseases [34,63]; 

and the DNA damage theory of ageing, which states that accumulating damage to DNA and/or DNA 

mutations/alterations are the main cause of the functional decline associated with ageing [64].  

While in many cases these theories are interconnected (e.g. the DNA damage theory of ageing and 

the mitochondrial theory of ageing), a complete picture of the biological basis of ageing is still far 

from being described [39]. Because ageing is a complex and multidimensional phenomenon, it is 

likely to result from the interaction of several different biological and cellular processes. Therefore, 

the different theories of ageing should not be treated as unrelated or contradictory models, but rather 
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as complementary hypotheses explaining various aspects of the same process [40]. By collecting 

increasing amount of experimental evidence, it may be possible to connect the dots between the 

proposed explanations, to generate a holistic model including the different biological processes 

underlying ageing. 

 

1.1.4 The pathways of ageing  

Research into the cellular and molecular biology of ageing has uncovered a number of metabolic 

pathways that are able to modulate the rate of ageing, challenging the theories maintaining ageing as a 

stochastic, irreversible process. Among those, three main independent metabolic pathways were found 

to extend lifespan and are thought to hold a great potential for therapeutic intervention to combat age-

related diseases and promote health in humans [65,66].  

The first is caloric restriction (CR), which has been shown to be very effective in prolonging the 

lifespan in various different species [67-70]. In addition, lifespan extension induced by caloric 

restriction has been found to reduce the effects of oxidative damage in mammals [71]. The molecular 

mechanism by which CR affects lifespan is currently under evaluation [70], although evidence is 

accumulating showing that signaling by the serine/threonine kinase target of rapamycin (TOR) is 

related to this process (Figure 1.4). Rapamycin-induced inhibition of the mTOR (mammalian target of 

rapamycin) signaling pathway was found to be associated with extended median lifespan in mice [72]. 

The AMP-activated protein kinase (AMPK), the activation of which results in mTOR inhibition [73], 

was also required for lifespan extension in both worms [74] and mice [75] on a caloric restriction 

regimen. Similar CR-induced positive effects on lifespan have been found for a class of protein 

deacetylases called sirtuins [76,77]. Sirtuin 1 (Sirt1), activated by caloric restriction, has been found to 

negatively regulate the mTOR/IGF-1 pathways [78] and to increase mitochondrial biogenesis and 

function [79]. Sirt1 has also been reported to be activated by resveratrol [80], although the relationship 

between resveratrol, sirtuins and increased lifespan is currently at the center of an animated debate 

with multiple authors reporting contradictory findings [76,81]. In addition, there is significant 
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evidence that the deacetylase activity of sirt1 is associated to cancer, which challenges the alleged 

tumour suppressor role of this protein [82]. 

Another promising pathway the study of which holds great potential for the understanding of 

ageing is the insulin/IGF-1-like signaling pathway (IIS). Inhibition of IIS activity has been associated 

with extended lifespan in mice [83], although the exact relationship between the molecules involved 

and the increased longevity is uncertain due the complexity of this pathway [84]. Calorie restriction 

has been also reported to have an inhibitory effect on the IIS activity in human skeletal muscle [66], 

suggesting an interplay between the two pathways in regulating longevity [85].  

The third metabolic pathway that has been found to affect ageing is related to the mitochondrial 

electron transfer chain (ETC) activity. There is increasing attention on the signaling effects of 

mitochondria-generated ROS and their relationship with mitochondrial energy metabolism in the 

pathophysiology of many age related diseases [86]. A decreased function of the mitochondrial 

respiratory chain, also linked to reduced endogenous ROS production, has been reported to increase 

lifespan in worms [87,88]. Moreover, mutations in key mitochondrial genes was reported to increase 

the protection from oxidative stress and damage to DNA in worms [89] and mice [90], leading to 

increased cellular fitness and lifespan. However, in humans many mtDNA mutations are associated 

with shorter lifespan, age associated phenotypes and age-related diseases [91,92], although the 

implicated causative effect of these mutations on the ageing process is currently debated [93]. In 

addition, mitochondrial function and respiratory chain activity have been shown to decline with age in 

mammals including humans [94], but it is not clear whether these changes are secondary to other 

cellular or metabolic mechanisms [92]. Recent work has also addressed the investigation of the 

relationship between mitochondrial function, caloric restriction [95] and insulin signaling [96], 

implicating a fundamental role for mitochondrial metabolism in modulating ageing and lifespan. 
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Figure 1.4 Schematic of caloric restriction-induced pathways that modulate ageing   

Caloric restriction is involved in the activation of metabolic pathways such as those controlled by Sirt1 

and AMP Kinase resulting in extended longevity and decreased ageing-associated phenotypes. 

1.1.5 Innovative therapy solutions 

It is hoped that scientific research efforts will soon be able to address the issue of ageing and age 

related diseases, especially by means of innovative therapy solutions along with new generation high 

throughput technologies for the treatment of age-related diseases such as cancer, cardiovascular 

diseases, and neurodegenerative diseases. While a great deal of research is still needed to overcome 

numerous biological and medical challenges in these growing areas of ageing research, most of the 

proposed strategies do show great promise for the modulation of ageing-associated phenotypes and 

age-related conditions.  

With an increasing number of research studies uncovering metabolic pathways able to modulate 

ageing, there is growing interest for the development of pharmacological solutions that can “mimic” 

the health effect of specific biomolecules, thus delay or prevent the occurrence of age-related diseases. 

In the light of promising findings showing their positive effect on the lifespan of model organisms, 
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rapamycin and resveratrol are currently being tested as caloric restriction mimetics (CRM) and 

represent an attractive target for the discovery and development of anti-ageing drugs [97-99]. Even so, 

research studying the effect of caloric restriction on humans is at a very early stage, also because of 

the intrinsic time constraints of performing long term CR studies (and difficulties of finding 

volunteers) [65,100]. In addition, the beneficial effects of resveratrol on life span and their potential 

effects on human health are under debate [101]. 

One promising approach currently being tested to treat age-related conditions involves genetic 

modification-based strategies such as gene therapy (or gene replacement therapy), which are showing 

promising results in animal models, also highlighting a fundamental role for DNA damage in 

mediating age-related phenotypes [102]. Clinical and preclinical studies implementing gene therapy 

solutions have shown encouraging results for the treatment of Parkinson’s disease [103-105], and 

preclinical studies have shown positive results for the treatment of other age-related conditions such as 

age-related macular degeneration [106], and cardiovascular disease [107]. However, current gene 

therapy techniques still present a number of issues that are considerably limiting their application in 

clinical trials, including unwelcome immune response against the transgene or virus used to deliver the 

genetic information and other adverse effects [108,109].  

Another group of new generation biomedical technologies holding great potential for the treatment 

of age-related diseases include regenerative medicine solutions such as the transplantation of stem 

cells [110]. Telomerase-transduced human bone marrow stem cells showed increased lifespan due to 

increased telomere length, and could be used for in vivo transplants to reduce ageing-associated 

phenotypes [111]. Recently, mesenchymal stem cells from young donors were transplanted in aged 

mice showing reduction of age-related bone density loss along with increased lifespan [112]. The 

transplantation of hematopoietic stem cells is currently widely practiced to replace the heathy cells lost 

following chemotherapy-based treatment of cancers such as leukemia and lymphoma [113]. Stem cells 

have also been successfully used for the treatment of age related conditions including cardiovascular 

diseases [114] and other non-malignant diseases [115]. As of yet, though, a number of ethical concerns 

and technical difficulties are holding back the clinical application of stem cells-based therapeutic 

solutions [115].   
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1.2  Protein oxidation 

1.2.1 Oxidative stress 

At the present time, oxidative damage has been recognized as one of the most common feature of 

several inflammatory and age-related human diseases such as cancer, atherosclerosis, rheumatoid 

arthritis and neurodegenerative diseases, among others [116]. Oxidative stress is the result of a 

disequilibrium between the production of oxidizing agents and the cellular antioxidant defences that 

act to eliminate them [117]. Under normal redox conditions most cellular compartments are a reducing 

environment, as cytoplasmic antioxidants response readily detoxify excess oxidants [118]. 

Circumstances of altered redox status, such as those found in disease, reflect a disturbance in this pro-

/anti-oxidant balance, due to a decrease in effectiveness of antioxidant response and/or an increase in 

oxidizing agents exposure [119]. Whether oxidative stress is the cause or the consequence of disease is 

not yet clear, although increasing evidence suggests that oxidizing molecules exacerbate the 

pathological state of many conditions [120]. Nonetheless, while oxidative stress has been associated 

with disease onset and progression, recent studies suggest that minor levels of oxidative stress, such as 

those generated by regular exercise, have systemic beneficial effects [121]. Research into oxidative 

stress has also uncovered an important role for oxygen-derived species in intracellular and 

extracellular signaling networks [122]. A relatively new field of study, called redox biology, has 

emerged in the past few years to answer key questions pertaining the coordination of redox changes in 

the cell, their relationship to disease onset and progression, and their physiological significance more 

generally [123]. 

1.2.2 Reactive species 

Much of the redox process in biological systems involves an electron flow moving from a donor 

molecule to a final acceptor molecule, which for aerobic organisms is ultimately molecular oxygen. 

Four electrons are normally required to completely reduce molecular oxygen to water. Occasionally, 

though, oxygen undergoes an incomplete reduction, thereby leading to the formation of reactive 
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intermediates, also known as reactive oxygen species (ROS). ROS are typically divided between 

radicals and non-radicals. Radical reactive species (or free radicals) are atoms, molecules or ions that 

possess at least one unpaired electron, many of which are highly reactive [124]. Non-radical reactive 

species do not possess any unpaired electron(s), but are also relatively chemically reactive and can be 

converted into free radicals [125]. Because of their high reactivity, free radicals are chemically 

unstable, and have a natural tendency to react with other molecules by donating or accepting an 

electron in order to form more stable chemical species [126]. This results in the propagation of free 

radicals species by means of chain reactions. Free radical chain reaction processes can be broken down 

in three different stages: initiation, propagation and termination (Figure 1.5) [127]. During the 

initiation phase, the radical species can be formed essentially in three different ways: by homolytic 

covalent bond cleavage of a neutral molecule (homolytic fission); by the transfer of a single electron 

from a radical to a stable molecule; by the loss of a single electron from a stable molecule (typically as 

result of abstraction of an hydrogen atom in lipid and protein oxidation) [124]. In general, homolytic 

fission requires a considerable amount of bond dissociation energy, such as that of high temperatures, 

UV light, ionizing radiations or radical initiators such as peroxides [128]. Under normal conditions, 

single electron transfer or loss are a much more common process of radical formation in biological 

systems than homolytic fission [129]. Most radicals have a very short in vivo lifetime. For example, 

highly reactive oxygen radicals such as the hydroxyl radical (OH
●
) have half-lives in the millisecond 

to nanosecond range [130]. Once formed, the free radicals react with other stable molecules in the 

propagation phase of the chain reaction resulting in the generation of new reactive species. It is worth 

mentioning that after the initiation step, the chain reactions do not increase the net amount of radical 

species, which stays the same throughout the propagation phase [131]. Finally, the termination phase 

takes place when two radical species react with each other generating a stable molecule, thus 

decreasing the number of free radicals. However, this is regarded as a rather rare event, because the 

concentration of free radicals in the cellular environment is never high enough for two radical species 

to frequently collide [132]. Compounds known as antioxidants are also capable of terminating the free 

radical chain reaction by stabilizing free radical intermediates and inhibiting further oxidation [126]. 

These molecules include reducing agents such thiols, ascorbic acid and polyphenols, among others 

[133].  
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Figure 1.5 The three stages of free radical chain reaction typical of biological systems  

In the initiation phase, a reactive molecule (R
●
) removes a hydrogen atom from a normal molecule (A) 

generating an unstable radical. In the propagation phase, newly formed radical species react readily 

with other non-radicals in order to generate more stable products. The propagation continues until the 

chain process is terminated by a collision event between two radicals or other biochemical events. 

Reactive species (RS) including reactive oxygen species (ROS), and reactive nitrogen species 

(RNS) that are generated intracellularly (endogenous) or that enter the body from the environment 

(exogenous) are known to contribute to oxidative stress and function as signaling intermediates in 

many cellular pathways [51,134]. Endogenous sources consist of free radicals species that are 

generated intracellularly and that are subsequently released both within and outside the cell [135]. 

Intracellularly generated, endogenous free radicals can be formed in a number of ways, including 

autoxidation, enzymatic activity, and respiratory burst. Autoxidation is a free radical chain process that 

can be originated by the action of various radical initiators [127]. Molecules inside the cells that 

undergo autoxidation include catecholamine, thiols, flavins, and quinones [136,137]. A number of 

cellular enzymatic systems are also capable of mediating intracellular free radical generation. These 

include enzymes involved in various cellular processes including the mitochondrial respiratory chain 



Chapter 1: General Introduction 

  37   

(such as oxidases), inflammation (such as myeloperoxidase generated by activated phagocytic cells) 

[138], biosynthesis of certain biomolecules (such as prostaglandin synthase and lipoxygenase) [139], 

and in the redox cycling of xenobiotics [140] or estrogens [141]. Oxygen-derived reactive species such 

as superoxide radical (O2
●−

) and hydrogen peroxide (H2O2) are also produced by the NADPH oxidase 

during the respiratory burst in phagocytic cells [142]. Nitrogen-derived radicals are generated via a 

series of reactions catalyzed by nitric oxide synthases (NOSs) such as the inducible form iNOS 

expressed in macrophages during inflammation [143]. ROS can also be generated in non-phagocytic 

cells by stimulated growth factors, such as PDGF (platelet-derived growth factor), EGF (epidermal 

growth factor), and insulin [144,145]. Exogenous sources of reactive species include tobacco smoke, 

drugs, radiation, dust particles and pollutants present in the environment [135]. The lungs are the 

organs in the body that are most exposed to environmental free radicals, as most of these exogenous 

sources are found in the ambient air [146]. Ionizing radiation is also responsible for the generation of 

reactive species in the body by a mechanism of water radiolysis resulting in the formation of oxygen-

containing reactive molecules including hydrogen peroxide and superoxide radical [147]. Table 1.1 

shows some of the most important reactive species that are responsible for oxidative stress. 

  

Table 1.1 Some of the most important reactive oxygen and nitrogen species

 Reactive oxygen species (ROS) Reactive Nitrogen species (RNS) 

Radical Non-radical Radical Non-radical 

O2
●−

 Superoxide H2O2 
Hydrogen 

Peroxide 
NO

●
  Nitric Oxide ONOO

−
 Peroxynitrite 

OH
●
 Hydroxyl HOCl 

Hypochlorous 

acid 
NO2

●
 

Nitrogen 

dioxide 
ROONO 

Alkyl 

peroxynitrite 

RO2
●
 Peroxyl O3 Ozone   N2O3 

Dinitrogen 

trioxide 

RO
●
 Alkoxyl ONOO- Peroxynitrite   N2O4 

Dinitrogen 

tetraoxide 

      HNO2 Nitrous acid 

      NO2
+
 Nitronium anion 

      NO
−
 Nitrosyl anion 

      NO
+
 Nitrosyl cation 

      NO2Cl Nitryl chloride 
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1.2.3 Protein oxidation and oxidative post-translational modifications (oxPTMs) 

In the redox biology field there is increasing interest in the oxidation processes that involve 

proteins and affect their folding, function and interactivity [148]. Protein oxidation has been 

implicated as one of the contributing factors to the onset and progression of many age-related diseases 

such as neurodegeneration [149], Alzheimer’s disease [150,151], Parkinson’s disease [152], cancer 

[153], cardiovascular diseases [154] and inflammatory diseases [155]. The accumulation of oxidized 

proteins in human cells has been linked to several ageing-related changes including increases in rates 

of ROS generation, decreases in antioxidant activities and decreased cellular stress response, that 

would act to reduce the level of oxidized proteins [156]. Recently, oxidized proteins have also been 

implicated in intracellular and extracellular signaling pathways, indicating their involvement in 

modulating the cellular response to stress induced by disease or environmental triggers [157,158]. 

When exposed to oxidizing agents such as ROS and RNS, proteins may undergo a number of 

intermolecular and intramolecular changes that affect their structure and folding and, ultimately, their 

activity and function. Among these functionally relevant alterations, oxidative post-translational 

modifications (oxPTMs) are of great interest in current research in redox biology. Generally, the 

majority of human proteins undergo a number of post-translational modifications (PTMs) during their 

life cycle, reflected in the great level of complexity of the proteomes in comparison to the genome and 

the transcriptome [159]. PTMs are involved in many aspects of cell biology, including protein 

biosynthesis [160], enzymatic activity [161], localization [162], degradation [163] and protein-protein 

interactions [164]. As most of these cellular functions are likely to be altered in disease states, 

understanding PTMs is crucial to gain insight into the molecular mechanisms behind the 

pathophysiology of many conditions. Specifically, the study of oxPTMs appears critical to elucidate 

the role of oxidizing species in the signaling networks involving age-related diseases, as recent studies 

have exposed an existing correlation between those conditions and protein oxidative damage [165]. 

A number of oxPTM mechanisms that involve both intermolecular and intramolecular protein 

dynamics have been reported to date, including oxidation of amino acid residue side chains, formation 

of protein-protein cross-linkages (via intermolecular disulfide bonds or dityrosine formation), 

oxidation of the protein backbone resulting in protein fragmentation and/or aggregation, and oxidation 
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of amino acid residues near to metal-binding sites via metal-catalyzed oxidation (MCO) [166,167]. 

Generally, the oxidizing action of ROS and RNS has been shown to cause protein inactivation and loss 

of function, although there is increasing evidence showing that ROS have also regulatory/signaling 

role function on specific redox-regulated and redox-sensitive proteins [168,169]. Table 1.2 lists the 

some of the amino acids that are most susceptible to redox reactive species-mediated oxidation along 

with their corresponding oxidation products. 

 

Table 1.2 The most common oxidative products due to oxPTMs

 

As oxPTMs emerge as one of the common feature of many age-related diseases, their potential as 

predictive biomarkers for the early screening and diagnosis of these conditions also becomes of great 

importance in both research and clinical settings. Among the many different types of protein oxidative 

products identified so far, those that have been associated with human disease onset include protein 

carbonyls [170], cysteic acid [171,172], cysteine disulfide bonds [173], cysteine S-glutathionylation 

[174], cysteine S-nitrosylation [175], methionine sulfoxide and methionine sulfone [152], 3-

nitrotyrosine, 3-chlorotyrosine and dityrosine [176].  

 

 Amino acids Modification Oxidative product 

Cysteine Oxidation Cysteine sulfenic acid, cysteine sulfonic acid, cysteine 

sulfinic acid, cystine 

Cysteine S-glutathionylation S-glutathionyl cysteine  

Cysteine S-nitrosylation S-nitrosocysteine 

Methionine Oxidation Methionine sulfoxide, methionine sulfone 

Tyrosine Chlorination 3-chlorotyrosine  

Tyrosine Nitration 3-nitrotyrosine  

Tyrosine Oxidation Dityrosine, 3,4-dihydroxyphenylalanine  

Tryptophan Oxidation 5-hydroxy-tryptophan 

Phenylalanine Oxidation 2,3-dihydroxyphenylalanine, 2-, 3-, 

and 4-hydroxyphenylalanine 

Arginine Oxidation Glutamic semialdehyde 

Lysine Oxidation α-Aminoadipic semialdehyde 

Histidine Oxidation 2-Oxohistidine 

Threonine Oxidation 2-Amino-3-butyric acid 

Proline Oxidation Glutamic semialdehyde, 5-oxoproline 



Chapter 1: General Introduction 

  40   

1.2.3.1 Protein carbonyl formation 

A broad range of amino acids oxidative products can result from the formation of primary protein 

carbonyls. This occurs presumably by means of a metal-catalyzed oxidation (MCO) of the side chain 

of a number of amino acids [177]. Protein carbonyl formation is an irreversible oxidative process, 

which has been linked to protein degradation and function loss, thereby contributing to cellular 

damage and disease state [178]. Preferential amino acid targets of protein carbonyl formation include: 

histidine, oxidized to 2-oxohistidine, lysine to α-aminoadipic semialdehyde, threonine to 2-amino-3-

oxo-butyric acid, proline to glutamic semialdehyde or 5-oxoproline, and arginine to glutamate 

semialdehyde. Alternatively, protein carbonyls can be generated by the Michael addition reaction of 

lipid oxidation products with the side chains of lysine, histidine or cysteine residues [179]. Protein 

carbonyl formation is one of the most well-studied and widely established biomarkers of oxidative 

stress-related human diseases [170]. Evidence has been detected for protein carbonyls in the clinical 

samples of patients affected by several disease states, including Alzheimer’s disease [152,180,181], 

cancer [182], and diabetes [183,184] as well as in the biological samples obtained from animal models 

of ageing [185-187] and ischemia/reperfusion [188]. 

1.2.3.2 Oxidative products of cysteine 

The thiols groups of cysteine residues in proteins are among the most susceptible targets of ROS-

induced oxidation in cells [189]. Moreover, they often play a very important role in the stabilization of 

protein structure by forming covalent disulfide bonds as well as in the regulation of protein function 

and activity in response to oxidative stress. Cysteines are often found in the active sites of several 

enzymes where they directly participate in catalysis [190]. Hence, modifications occurring at the level 

of the active site cysteines of proteins have the potential to affect activity and function dramatically. 

The reaction of cysteinyl thiolates with ROS results in the formation of three different oxidized forms 

of cysteines: cysteine-sulfenic (-SOH), -sulfinic (-SO2H), and -sulfonic (-SO3H) acid. Cysteine 

sulfenic acid is an unstable product and is usually further oxidized to cysteine sulfinic and/or cysteine 

sulfonic acid [191]. Alternatively, cysteine sulfenic acid modifications have been shown to be an 

intermediate in the formation of intermolecular and intramolecular cysteine disulfide bonds [192] 

(Figure 1.6). The oxidation of cysteine to cysteine sulfenic acid has been shown to be reversible as 

well as the formation of the cysteine disulfide bridges [169,193]. The formation of cysteine sulfinic 
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acid has also recently been suggested to be reversible [194], although it is commonly considered to be 

an irreversible process [195]. Conversely, the formation of cysteine sulfonic acid has been shown to be 

irreversible [169,196,197]. The redox processes of cysteine, both reversible and irreversible, are of 

emerging clinical interest [173,198]. The formation of oxidized cysteines has been associated with 

inflammatory conditions and age-related neurodegenerative diseases [195,199]. Both reversible and 

irreversible oxidized forms of cysteines have been reported in the clinical samples of patients affected 

by Alzheimer’s and Parkinson’s disease [152,171,172,200] and in animal models of ageing [201] and 

ischemia/reperfusion [202,203]. 

 

 

Figure 1.6 Commonly oxidized forms of cysteine  

Redox-sensitive cysteine residues of proteins play a major role in the regulation of protein properties 

in response to changes in the cellular redox status [204]. 

 

1.2.3.3 Oxidative products of methionine 

Alongside cysteine, methionine residues are by far the most sensitive residues to oxidation 

mediated by several kinds of ROS [156], and the occurrence of methionine oxidation has been shown 

to affect protein function and stability [205,206]. Figure 1.7 shows the two most common protein-

bound methionine oxidative products. Many reactive species are capable of oxidizing methionine 

readily to methionine sulfoxide, which can be further oxidized to methionine sulfone, although this 
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happens to a much lesser extent [207]. However, in most biological systems it is possible to convert 

methionine sulfoxide, but not methionine sulfone back to their unmodified forms. This normally 

happens via the action of specific enzymes such as methionine sulfoxide reductases [197]. Methionine 

oxidative products are apparent in age-related conditions in which oxidative stress is involved, such as 

Alzheimer’s [150], Parkinson’s disease [152,208], type2 diabetes [209] and ageing [210]. 

 

 

 

Figure 1.7 Oxidative products of methionine   

Methionine residues are among the most vulnerable to oxidation by many reactive species. The 

oxidation of methionine into methionine sulfoxide occurs easily in biological systems under the 

conditions of oxidative stress, as in disease states or ageing. 

 

1.2.3.4 Oxidative products of tyrosine  

Tyrosine oxidative-induced modifications have also attracted the interest of biomedical research in 

recent times. Depending on the type of reactive species involved, tyrosine residues of proteins undergo 

different types of oxPTMs pathways, the most common being chlorination (formation of 3-

chlorotyrosine), nitration (formation of 3-nitrotyrosine) and dityrosine formation [189,211-213] 

(Figure 1.8). The 3-chlorotyrosine modification is regarded as a specific marker of oxidative damage 

induced by the haem enzyme myeloperoxidase (MPO) secreted by phagocytes activated during the 

inflammatory response [155]. MPO converts chloride ions (Cl
−
) and H2O2 produced during the 

neutrophils respiratory burst into the reactive intermediate HOCl, which reacts with tyrosine residues 

generating 3-chlorotyrosine [214]. Multiple oxidative pathways have been proposed for the formation 

of the nitrotyrosine modification, including peroxynitrite (ONOO
−
), nitrogen-dioxide (NO2

●
), and 

nitric oxide (NO
●
) induced oxidative damage [215]. Peroxynitrite (ONOO

−
) is generated following 
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reaction of superoxide radical (O2
●−

) with nitric oxide radical (NO●) produced by inducible nitric oxide 

synthase, and is capable of inducing protein-bound nitrotyrosine although the mechanism also requires 

free radical attack [216,217]. Alternatively, nitrogen dioxide radicals (NO2
●), generated via MPO-

mediated oxidation of nitrite [218], react with tyrosyl radical leading to the formation of 3-

nitrotyrosine [219]. Nitric oxide (NO●) may also react with tyrosine residues generating 

nitrosotyrosine, which can be subsequently converted to nitrotyrosine via a further oxidation step 

[220]. Various types of oxidants including hydrogen peroxide, myeloperoxidase (MPO), nitrogen 

dioxide and peroxynitrite have been also shown to cause the formation of dityrosine by cross-linking 

of two spatially close tyrosyl radicals [221,222]. 

While initially thought to be irreversible, increasing evidence suggests that both protein 

chlorination and nitration are, in fact, reversible by means of either enzymatic or non-enzymatic 

processes in biological systems. It has been suggested that nitrotyrosine can be reduced to 

aminotyrosine in a non-enzymatic process involving haem and thiols [223], or even converted back to 

tyrosine via a mitochondrial oxygen-dependent denitration system [224]. Likewise, recent studies have 

worked towards the determination of enzymatic pathways involved in the reduction of chlorination in 

vivo, which is most likely accomplished by means of a reductive deiodinase promoting dehalogenation 

of both chlorotyrosine and bromotyrosine [225,226]. In contrast, the formation of the dityrosine cross-

link is currently considered irreversible [227]. 

Oxidatively modified tyrosines have also been proposed as biomarkers of several age-related and 

inflammatory diseases [228]. Elevated levels of protein-bound 3-chlorotyrosine have been recently 

detected in mouse models of influenza [229], as well as in the clinical samples of inflammatory bowel 

disease [230], atherosclerosis [231], systemic lupus erythematosus [232] and post-myocardial 

infarction [233]. Elevated levels of protein-bound 3-nitrotyrosine have been detected in proteins 

obtained from the biological samples of patients affected by arthritis, atherosclerosis [234], cancer 

[235], inflammatory bowel disease [230], systemic lupus erythematosus [232], and Alzheimer’s 

disease [236]. Increased dityrosine formation has been associated with a number of age-related 

conditions, including eye cataract, acute inflammation, Alzheimer’s disease, and atherosclerosis 

[215,222]. Besides nitration, chlorination and dityrosine formation, inflammatory and age-related 

conditions also seem to be related to other oxidative modifications on tyrosine such as bromination, 
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and hydroxylation [237]. Other than protein-bound modification, the occurrence of free tyrosine 

oxidative products in the blood and urine have been reported as promising biomarkers of several 

human conditions such as diabetes [238], obstructive sleep apnea patients [239], Fabry’s disease [240] 

and low birth weight [241]. 

 

 

Figure 1.8 Examples of tyrosine oxidative products induced by different reactive species  

(A) Tyrosine residues exposed to myeloperoxidase (MPO) or H2O2 are oxidized to tyrosyl radicals that 

can cross-link to generate a stable dityrosine. (B) Different oxidizing agents (HOCl, peroxinitrite, 

nitrogen dioxide radical) can generate specific oxidative products of tyrosine such as 3-chlorotyrosine 

and 3-nitrotyrosine. 

1.2.4 Redox signaling  

Biological organisms continuously rely on the cellular ability to counter the action of oxidizing 

agents in order to maintain redox homeostasis. Some endogenous reactive species act as second 

messengers for the activation of a complex array of stress response systems, mediated by various 

processes including receptor agonists, transcription factors and novel signaling patterns [242]. Thiol 

groups have shown redox-sensing capacity because of the propensity of cysteine residue to undergo 
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reversible oxidation states (such as disulfide bonds), which function as a switch for the transmission of 

the signal via proteins intra and extracellularly. Two main redox signaling mechanisms involving the 

thiol groups of cysteines have been proposed so far that have a key role in cellular redox regulation.  

One major mechanism of redox signaling is based on the ability of protein thiols to maintain a 

normal cellular redox potential when cells are challenged in oxidative stress conditions [242]. This 

happens via a number of oxidoreductase systems that act as a buffer for the restoration of a 

thiol/disulfide equilibrium in cells. Cellular systems exhibiting such mechanism include the 

glutathione reduced/disulfide (GSH/GSSG) system, the thioredoxin (Trx) system and the glutaredoxin 

system. The tripeptide glutathione in its reduced form plays a key antioxidant role by donating an 

electron to reactive species [243]. This process results in the formation of glutathione disulfide 

(GSSG), which can be re-reduced to GSH by the NADPH-dependent enzyme glutathione reductase 

(GR), thus restoring the cellular antioxidant defences [244]. In healthy cells, more than 90% of total 

glutathione is in the reduced form (GSH), which suggest that the action of the GR is very efficient in 

reducing GSSG [245]. The thioredoxin system, consisting of NADPH, NADPH-dependent 

thioredoxin reductase (TrxR), and thioredoxin (Trx) is another important oxidoreductase system 

involved in the regulation of cellular redox balance [246]. Trx uses electrons from NADPH to reduce 

with a thiol-disulfide exchange mechanisms thioredoxin peroxidase, which acts as a ROS scavenger, 

while NADPH-dependent TrxR catalyzes the re-reduction of Trx disulfide. The glutaredoxin system, 

consisting of glutaredoxin (Grx), glutathione (GSH), and NADPH-dependent GSH reductase (GR) 

acts as an antioxidant by catalyzing the reduction of cysteine oxidative products such as S-

glutathionylcysteine and disulfides, with a mechanism similar to that of thioredoxin [247,248]. 

Another important mechanism of redox regulation involves a number of redox-sensing target 

proteins, the thiol groups of which are transiently oxidized in the active site and are responsible for the 

modulation of key cellular pathways via direct signal transmission or protein protein-interactions, in 

response to activation of receptors such as growth factors. The oxidation of target proteins that initiate 

the signal transmission can occur directly or indirectly through thiol-disulfide transfer or other 

reversible cysteine oxidation mechanisms initiated by other sensor proteins [249,250]. Members of the 

Trx family (including thioredoxins, peroxiredoxins and glutaredoxin), protein tyrosine phosphatases 

such as PTEN and PTP1B, and other proteins such as caspases have been shown to be regulated by 
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reversible oxidation of their active site thiolates, with effects on various cellular process such as their 

subcellular localization, activation of specific signaling pathways, or selective protein-protein 

interactions [242,251-254]. 

Increasing evidence suggests that the thiol redox balance is shifted toward oxidation (both 

reversible and irreversible) with age and disease, although little is known about the exact mechanisms 

controlling redox balance in cells in response to oxidative stress. With cumulative knowledge of the 

thiol switches dynamics and their pleiotropic implication in signaling pathways, it will be possible to 

characterize disease-specific antioxidant pathways, potentially leading to new clinical solutions for the 

treatment of age-related conditions. 

1.2.5 Measurement of oxidative stress 

The increasing volume of clinically-relevant findings pertaining to oxidative stress has driven 

research efforts toward the development of methods for the detection and the characterization of 

protein oxidation products in a wide range of in vitro and in vivo settings. A large number of 

methodologies are available for the analysis of protein oxidation products, including immunological, 

spectrophotometric, and mass spectrometry (MS)-based techniques, often used in combination for 

increased accuracy, sensitivity or to suit different research needs. 

Immunological methods are typically based on antibodies that recognize specific tags reacting with 

protein oxidative products [255], or raised against a specific peptide containing an oxidized residue 

[256], or against a specific modification such as nitrotyrosine [257], chlorotyrosine [258], or thiol 

oxidation states [259]. Among those methods, protein carbonyl content-(PCC) based techniques have 

been extensively used to screen both biological and in vitro samples for protein oxidative products and 

shed light on the involvement of oxidative stress in several diseases [170,182,183,186,187,260-264]. 

Carbonyl-containing proteins can be identified by immunological methods after labeling with reactive 

hydrazines, most notably 2,4-dinitrophenylhydrazine (DNPH). DNPH specifically reacts with protein 

carbonyls group forming adducts that can be determined by immunodetection with anti-DNP 

antibodies in a Western blotting (oxy-blotting) and enzyme-linked immuno sorbent assay (ELISA). 
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Spectrophotometric methods (based on measuring the absorption of specific oxidative products or 

their tags) have been also widely used for the detection and quantification of oxidative products. PCC-

based assays can be performed with spectrophotometric methods by recording the absorbance of 

DNPH at 365 nm following carbonyls labeling at 365 nm. Alternatively, carbonyls can be derivatized 

with a number of fluorescent tags [265], which generally represent a valid, timesaving and 

multiplexable alternative to DNPH labeling [262]. In addition, protein oxidative products such as 

oxidatively modified tyrosine absorbing at specific wavelengths have been measured with 

spectrophotometric methods both as free and protein-bound oxPTMs [266]. Similar strategies have 

been also used to quantify thiol reversible and irreversible oxidative products by means of 

fluorescence and colorimetric methods based on specific probes or affinity tags [259].  

The main disadvantage of immunological and spectrophotometric methods is that, when used on 

their own, they do not provide information on the oxidized protein identity nor the spatial location of 

the oxidative modifications. To answer increasingly complex biological questions with regards to the 

redox regulation of signaling pathways by or via specific redox-sensor proteins, better technologies 

have been developed for the in-depth investigation of protein oxidative products and their cell-wide 

implications. When investigating biological problems at the protein level, few analytical techniques, if 

any, possess the sensitivity and the throughput offered by mass spectrometry (MS). Using mass 

spectrometry-based analysis, it is possible to obtain detailed and wide-ranging information about the 

identity and the abundance of the oxidized proteins present in a given sample. MS can be used on its 

own or in combination with immunological, spectrophotometry based, or gel-based methods, in order 

to increase the resolution power of the analysis. This offers the potential of analyzing the effect of 

protein oxidation in a given sample with a high degree of resolution and sensitivity, at the 

multidimensional levels of identity and quantity, both within and between samples. 
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1.3 Mass spectrometry 

1.3.1 Introduction 

Mass spectrometry (MS)-based methodologies are currently among the state-of-the-art of the 

available analytical techniques used in the “omics” fields of research, including proteomics [267], 

lipidomics [268], and metabolomics [269]. The resolution and sensitivity offered by modern MS 

systems is such that an unprecedented level of detail is achievable these days when investigating by 

mass spectrometry the structure, modification status, and dynamics of the different cellular 

components at the molecular level. Because of their resolving power and broad range of application, 

MS methodologies have widened the scope of many research sceneries, holding a great potential for 

gaining further insight into the mechanism of life-threatening human diseases. In addition, 

increasingly automatable and rapid analysis procedures are making MS one of the most promising 

tools in the field of drug discovery, drug development and for the screening of predictive biomarkers 

in biological samples of clinical interest. 

Several types of mass spectrometry systems are currently available in different configurations, each 

of them having strengths and limitations that affect the range and type of biomolecules capable of 

being analyzed, as well as the level and quality of information that can be obtained from the analysis. 

A number of quantification strategies have also been developed to determine the relative or absolute 

abundance in MS data, with a broad range of applications in proteomics and clinically relevant 

research settings. 

1.3.2 Sample preparation for mass spectrometry 

Many biospecimens of research interest, such as biological samples, are complex matrices 

containing a large number of different macromolecules. Moreover, many buffers used for the 

extraction of the proteins from biological materials such as cells, tissue or biological samples contain 

high salt concentration and detergents, which can interfere with the ionization of the analyte (which is 

necessary for mass spectrometric analysis e.g. by competing for charges), therefore reducing the 
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sensitivity and accuracy of the analysis. Hence, before undertaking MS analysis, it is generally 

necessary to perform a number of preliminary steps in order to solubilize and purify the protein(s) of 

interest from the raw sample and to reduce the detrimental effects of interfering molecules on the MS 

analysis. 

 Depending on sample composition, analytical needs and type of instrumentation, a great variety of 

methods are available for the preparation of protein and peptide mixtures for mass spectrometry 

analysis. These methods can be generally divided between protein pre-fractionation/separation and 

protein digestion. 

1.3.2.1 Protein pre-fractionation and separation 

In MS workflows, cell/tissue extracts or biological samples containing the protein(s) of interest are 

first pre-fractionated with different methods depending on the focus of the analysis and the sample 

composition. Pre-fractionation techniques are generally adopted for the multiple (and sometimes 

simultaneous) purposes of purifying and/or concentrating the protein(s) of interest, performing a 

selective affinity-based enrichment (e.g. to study protein complexes), or removing specific molecules 

(such as detergents or salts used in protein extraction buffers) that may interfere with the MS-based 

detection [270]. Protein fractionation techniques are typically based on protein physiochemical 

properties such as size/mass, charge, isoelectric point, hydrophobicity or specific molecular 

interactions, such as with antibodies. These methods include chromatographic-based methods (such as 

affinity, ion-exchange, size-exclusion, and hydrophobic interaction chromatography), antibody-based 

methods (such as immunoprecipitation, and co-immunoprecipitation), and precipitation-based methods 

(such ionic precipitation with ammonium sulfate or sodium chloride) [271].  

After protein purification and/or enrichment, the sample may be further separated by 

polyacrylamide gel electrophoresis (PAGE), which is one of the most universally used methods for the 

isolation of proteins prior to mass spectrometry analysis. Depending on sample composition and 

research needs, PAGE can be also used for the separation of proteins from crude lysates, without 

previous sample preparation with pre-fractionation methods. Different PAGE methods are available 

that are capable of separating proteins according to different physical properties: native (non-

denaturing) PAGE separates proteins upon both their mass and charge. Denaturing and reducing one-

dimensional (1D) SDS-PAGE separates proteins largely according to their mass. Two-dimensional 
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(2D) PAGE separates proteins based on isoelectric point in the first dimension and mass in the second 

dimension. PAGE is particularly efficient for both protein separation and contaminant (e.g. salts) 

removal, and is often the ideal solution for the MS-based proteomics analysis of biological samples or 

other complex materials. 

1.3.2.2 Protein digestion 

Following pre-fractionation and separation, protein samples are further prepared for MS analysis 

by in-gel or in-solution proteolytic (usually tryptic) digestion of proteins into small peptides (0.1-10 

kDa), a strategy known as “bottom-up” proteomic approach. In-gel digestion requires protein pre-

fractionation and/or separation performed with PAGE-based methods, while in-solution digestion can 

be performed on fractionated or even crude extracts [272]. These methods offer great resolving power 

and sensitivity, because peptides exhibit better front-end separation than intact proteins, and are more 

amenable to MS analysis [273]. However, digestion-based methods present a number of limitations 

due to the incomplete recovery of the peptides after trypsin digestion, which results in partial protein 

sequence coverage. This can be a major drawback for PTMs studies because of the loss of information 

on any modification present in the uncovered portion of the identified protein [274].  Nonetheless, 

bottom-up methods are well-suited to large-scale proteomics studies, as only a small portion of the 

sequence (10-20 amino acids) is often necessary to identify protein IDs from search engine databases 

(even though one challenge is the ambiguity of identified proteins due to redundant peptide 

sequences). 

Alternatively, intact proteins can be directly analyzed by MS without proteolytic digestion, in the 

so-called “top-down” approach. This strategy offers the advantage of preserving the protein primary 

structure, which translates in increased throughput for the analysis of labile protein PTMs, amino acid 

polymorphism, mutants and protein isoforms resulting from alternative splicing [270,275]. However, 

the universal implementation of top-down approaches in proteomics research is currently held back by 

a number of technical and intrinsic challenges, including protein chromatography issues, low 

sensitivity, and limited availability of bioinformatics tools [276]. 
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1.3.3 Instrumentation 

Mass spectrometry (MS) is used to obtain information about the identity and abundance of the 

molecules present in a given sample. The mass-to-charge (m/z) ratio of ionized molecules is used to 

produce a mass spectrum, which is then analyzed for molecule identification and quantification. 

Most mass spectrometers are equipped with four different basic components: a sample inlet, an 

ionization source, a mass analyzer and a detector (Figure 1.9). In a typical mass spectrometry (MS) 

experiment a solid, liquid or gaseous sample is first introduced into the mass spectrometry system via 

a sample inlet through which the analytes are converted to ions in the gas. The ionization process can 

be achieved in a variety of ways (Section 1.3.2.2), and can be completed within or outside the vacuum 

system of the mass spectrometer. Once formed, the ions enter the mass analyzer where their paths are 

deflected by electric and/or magnetic fields, which separate and/or filter the ions according to their m/z 

ratio. This part of the analysis is performed under vacuum as collision with other molecules reduces 

the effectiveness of the analysis. Individual ions hit the ion detector (commonly an electron multiplier) 

that converts the impact of the ions into an electric signal, which is processed via specific software 

controlled from computers connected to the mass spectrometer. Data recorded by the ion detector are 

plotted as a mass spectrum for further analyzing and/or processing via additional software tools or 

database search engines. 

 

Figure 1.9 Basic components of a typical mass spectrometry system  

The ionization source can operate at atmospheric pressure or within the vacuum of the mass 

spectrometer. Mass analyzers separate and/or filter ions formed in the ion source according to their 

m/z ratio by deflecting their path using electric and magnetic fields. Ions passing through the mass 

analyzer reach the ion detector that converts them into a digitized output. 
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1.3.3.1 Sample introduction 

The main purpose of inlet systems in mass spectrometry is to provide an interface to transfer 

sample molecules at atmospheric pressure to the much lower pressure conditions operating in the mass 

spectrometer with minimal loss of vacuum. Modern mass spectrometers allow the introduction of a 

great variety of samples through different types of interface systems. In proteomics applications, the 

most commonly used sample introduction systems are from chromatographic and capillary 

electrophoresis systems. 

Chromatography-based sample introduction involves coupling of the mass spectrometer to high 

performance liquid chromatography (HPLC-MS or simply LC-MS) or gas-chromatography (GC-MS) 

columns. These configurations are also used for the purpose of separating the analytes present in a 

sample before mass spectrometry, in order to enhance the sensitivity and resolving power of the 

analysis.  

Because of its great sensitivity and specificity, for several years gas chromatography (GC) has been 

considered the most suitable chromatographic platform to couple with MS for the detection of volatile 

metabolites in complex samples. However, GC-MS based equipment suffers a number of intrinsic 

limitations that have considerably hampered its attractiveness to life sciences in recent times. For 

example, GC-based platforms are only suitable for volatile or vaporizable compounds, and most 

biomolecules are likely to break down at the high temperature required for vaporization in these 

systems. High performance liquid chromatography (HPLC), on the other hand, can be conveniently 

coupled with MS ionization systems that allow a better retention of the original features of many 

biomolecules (discussed in Section 1.3.2.2). Most HPLC columns used in combination with MS for 

proteomics applications are reverse-phase (RP) columns. That is, the protein of interest binds to a 

hydrophobic (non-polar) stationary phase in the presence of an aqueous (polar) mobile phase, and is 

eluted from the column using a gradient of organic solvent. Reverse-phase columns are particularly 

advantageous to MS analysis as they offer broad applicability to varied analysis, compatibility with 

vaporization/ionization systems, and high reproducibility and separation efficiency [277]. In LC-MS 

configuration, the sample is directly introduced into the mass spectrometer by feeding the liquid 

eluting from the HPLC column directly to the ionization source, which typically operates at 

atmospheric pressure.  
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Alternatively, mass spectrometers can be also interfaced with capillary electrophoresis systems 

(CE-MS), which are based on the separation of molecules according to their charge and size. CE can 

be considered a complementary technique to LC-MS [278], as it offers unique advantages over HPLC 

such as different selectivity, separation of highly polar compounds (which are not retained by standard 

RP columns), high speed, being inexpensive, and a relatively small amount of sample required. CE is 

also used online with MS, by connecting the CE capillary directly to the MS ion source with 

appropriate interface systems [279]. However, CE-MS analytical techniques present a number of 

difficulties that have been limiting its widespread use in biological applications over the last decade. 

The major drawback of CE-MS has been the low sensitivity of detection, which makes this technology 

not ideal for the study of low abundant proteins [280]. Another problem is the incompatibility of MS 

with sodium phosphate or borate buffers usually used as running buffer in CE [281]. Nonetheless, 

recent improvement in MS technologies have contributed to reduce the impact of these issues, and CE-

MS is currently considered a valid alternative to LC-MS for different biological applications in 

proteomics [282]. 

 

1.3.3.2 Ionization 

The most commonly used ionization methods in proteomics application are: matrix assisted laser 

desorption ionization (MALDI) and electrospray ionization (ESI). Both these approaches are 

considered “soft” ionization methods, which are able to transfer the analyte into the gas phase with 

little or no fragmentation (without breaking chemical bonds), allowing the molecules to remain 

relatively intact for the MS analysis, and preserving covalent interactions.  

In MALDI, a non-volatile sample is co-crystalized with a large excess of an organic matrix in 

aqueous or organic solvents, and deposited onto a stainless steel target plate, which is then introduced 

in the MS vacuum (10
-2

-10
-3 

Torr). MALDI matrix materials are typically highly conjugated organic 

acids capable of absorbing energy at the wavelength of a pulsed laser beam (typically 337 nm), used to 

irradiate the target plate. The matrix absorbs the laser energy in form of heat, and sublimes forming a 

gas cloud (known as MALDI plume) carrying the analyte in the gas phase (Figure 1.10). As a result of 

the collision between the analyte containing the sample (M) and the matrix, which acts as a proton 

(H
+
) donor or acceptor, pseudo-molecular ions such as [M+H]

+
(in positive ion mode) or [M-H]

-
 (in 
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negative ion mode) as well as other adducts such as [M+Na]
+
 or [M+K]

+
 are formed (in positive ion 

mode). MALDI is well-suited for the ionization of peptides and proteins with a molecular mass 

ranging from 1 to 300 kDa, and offers several advantages such as high speed of analysis as well as 

high sensitivity and specificity. As most ions formed are monocharged molecular species, the MALDI 

analysis is relatively straightforward in terms of spectral data interpretation, as usually there is only 

one molecular specie having a specific m/z value for each analyte in the sample. However, this can 

also be a disadvantage as multiply charged ions are better analyzed than large single charged ions in 

high-resolution mass spectrometers. 

 

Figure 1.10 The process of laser-assisted desorption and ionization in MALDI  

The sample and the matrix spotted on the MALDI target plate form co-crystals, which sublime 

following irradiation with a laser beam. This process triggers the generation of molecular ions by 

proton transfer from the excited matrix ions to the neutral analyte. 

 

Electrospray (ESI) is a soft ionization method that is performed at atmospheric pressure and 

involves the nebulization of a liquid sample by applying high electric voltage, resulting in the 

production of ion species [283]. The process of ionization by ESI is not a process of ion formation per 

se, but rather a method for releasing analyte ions already present in the sample, the formation of which 

is achieved prior to MS analysis. This is accomplished by modulating the pH of the sample solution 

(in case of batch introduction or direct infusion, in which a liquid sample is introduced into the mass 

spectrometer without LC separation), or by modulating the pH of mobile phase (in case of LC-MS 
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configuration). The sample is dissolved in a polar volatile solvent, which is typically water mixed with 

volatile organic compounds such as acetonitrile or methanol that facilitate nebulization, as well as 

acetic acid or formic acid to increase the conductivity and protonate the molecules. The liquid is 

pumped through a capillary or needle at a controlled flow rate into the ion source, and a voltage of 

approximately 3kV is applied between the analyte solution and the mass spectrometer. The potential 

difference causes the liquid droplet at the tip of the capillary to assume a conic form, a process known 

as Taylor cone formation, which eventually results in the dispersion of the sample into a fine aerosol 

containing charged droplets (Figure 1.11). This process is assisted by the addition of an inert gas (such 

as nitrogen), which is applied both around the outside of the capillary (the nebulizing gas, which 

assists the nebulization), and  across the front of the ionization source (the drying gas, which promotes 

desolvation) [284]. As the liquid evaporates, the charged droplets shrink in size until the charge 

density becomes too great on the droplet (a threshold referred to as the Rayleigh limit), and the 

electrostatic repulsion force becomes stronger than the surface tension. At this point, the droplets are 

subjected to Coulombic fission, whereby single droplets explode into smaller and more stable droplets 

(as a result of the increased surface area), and the process repeats until solvent-free ions are released. 

Once formed, the ion species are directed through the sampling orifice into an intermediate vacuum 

section, before entering the mass analyzer, which operates under high vacuum, where any residual 

solvent associated with the ion is removed. 
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Figure 1.11 Ionization mechanism in ESI  

At the tip of the capillary, the liquid containing the sample is subjected to high voltage and assumes a 

conical shape (the Taylor cone) resulting in a fine jet of liquid, which becomes unstable and breaks up 

into a plume of small, highly charged droplets. The droplets are directed toward the counter electrode 

orifice of the ionization source, while the solvent evaporates. Solvent-free ions accelerated by the 

counter electrode enter an intermediate vacuum region through a sampling orifice, before being 

allowed into the mass analyzer. 

 

Ion species generated by the ESI ionization process include single protonated pseudo-molecular 

ions [M+H]
+ 

(in positive ion mode) and single deprotonated pseudo-molecular ions [M-H]
-
 (in 

negative ion mode). In addition, a number of additional cation species such as [M+Na]
+
, [M+K]

+
 and 

[M+NH4]
+
 can be formed in positive ion mode [285]. Ions entering the mass analyzer following 

ionization can be multiply charged pseudo-molecular ion species such as [M+nH]
n+

 in positive ion 

mode, and [M-nH]
n-

 in negative ion mode, with the number of charges (n) increasing with the 

molecular weight of the analyte. In general, multiple charging represents an advantage of ESI over 

MALDI ionization, as it allows the analysis of high molecular weight analytes, which in MALDI 

would produce m/z values beyond the limit of most modern high-resolution analyzers. However, 

multiple charging results in a complex ion series for a single compound, which requires mathematic 

transformation for the interpretation of ESI-derived mass spectra, making the analysis more difficult 

[286,287]. Moreover, ESI is more susceptible than MALDI to the presence of charge-competing non-
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volatile salts and detergents, which can form cluster or spread an ion’s signal over several adducts, 

thus causing signal suppression, increased background noise, and reduced sensitivity [288]. 

 

1.3.4.1 Mass analysis and analyzers 

Many types of mass analyzers are implemented for the mass-to-charge based separation of the ions 

formed in the ionization source, all of them operating according to the Lorentz force law and 

Newton’s second law of motion: 

 

𝐹 = 𝑞𝐸 + 𝑞𝑣𝑥𝐵 (Lorentz force law) 

𝐹 = 𝑚𝑎 (Newton’s second law of motion) 

 

These can be combined in the differential equation: 

 

𝑚

𝑞
𝑎 = 𝑞𝐸 + 𝑞𝑣𝑥𝐵 

 

where F is the force applied to the ion, q the ion charge, E the electric field, v the ion velocity, B the 

magnetic field, m the mass of the ion, and a the acceleration. This equation describes the motion of 

charged particles as function of their mass-to-charge ratio (m/q in the equation) [289]. Many mass 

analyzers separate the ions by applying electric and/or magnetic fields under vacuum that accelerate 

the ions toward the detector of the mass spectrometer. 

The simplest mass analyzer used in proteomics applications is the Time of Flight (TOF), which 

offers very rapid analysis times, high sensitivity, high resolution, and a wide mass-to-charge range (20 

to 20,000 m/z). The TOF analyzer is a field-free drift tube of known length in which the ions are 

accelerated by a fixed potential (20-30kV). As a result, same-charge ions obtain the same overall 

kinetic energy (k) and lower mass ions will travel down the tube with a higher velocity (v) than higher 

mass ions of the same charge (as kinetic energy equals 0.5mv
2
). The TOF measures the ions velocity 

by recording the time required by the accelerated ions to cover the distance between the introduction 

of the ions and the detector (time-of-flight), so that m/z values for each ion can be determined. 
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Another type of mass analyzer extensively used in proteomics applications (and perhaps the most 

widely used in MS applications) is the quadrupole mass analyzer (QMS), which is commonly coupled 

to ESI ionization, and can be used both alone or in tandem, for increased analysis throughput and 

sensitivity. QMS consists of two pairs of parallel cylindrical rods in a vacuum chamber, equally 

distant from each other, and electrically connected so that a positive potential is applied to one 

diagonal pair and a negative potential to the other pair. Ions entering the mass analyzer from the 

ionization source travel along the axis of the quadrupole. A combination of alternating radio frequency 

(RF) and fixed direct current (DC) voltage are applied to each quadrupole rod pair. By varying the 

magnitude of the applied voltages, the quadrupole operates as an ion filter that can be set to pass only 

resonant ions having a certain m/z value, while all other ions will collide into the tube and disappear 

[290]. Performing MS analysis using a quadrupole has multiple advantages such as good 

reproducibility, excellent linear dynamic range, and low cost, in spite of the limited working mass 

range (1-4000Da) and relatively modest mass resolving power in comparison with TOF analyzers 

[291].  

 

 

Figure 1.12 Ion filtering by quadrupole mass analyzers  

Depending on the magnitude of the applied voltage, only resonant ions with a certain mass-to-charge 

ratio have a stable trajectory while traveling the quadrupole mass filter. Non-resonant ions drift away 

from the center of the quadrupole and never reach the detector. 
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Two quadrupoles mass filters can be arranged in series, separated by a RF-only quadrupole 

functioning as a collision cell, to operate in tandem mass spectrometers (tandem MS), with a number 

of research applications in proteomics (such as protein sequencing). A mass spectrometer equipped 

with this quadrupole configuration is known as triple-quadrupole mass spectrometer (TQMS), usually 

denoted as QqQ or Q1q2Q3. While both Q1 and Q3 operate as mass filters, q2 is responsible for 

producing fragments of molecular ions selected by Q1 through a mechanism known as CID (collision-

induced dissociation). This is accomplished by allowing the molecular ion selected in Q1 (called the 

parent ion) to collide with neutral molecules of an inert gas (Ar, He, or N2) in the collision cell in order 

to induce bond breakage and consequent fragmentation of precursor ions into smaller product ions 

[292]. Different degrees of fragmentation can be achieved by varying the collision energy, with effects 

on reproducibility and sensitivity of the analysis. The selection of the appropriate collision energy can 

be crucial for sequence coverage in peptide fragmentation [293]. Tandem mass spectrometers can also 

use a combination of quadrupoles with other mass analyzers. The final quadrupole (Q3) in the triple 

quadrupole mass analyzer can be replaced by a TOF analyzer, a configuration known as qTOF (or 

QqTOF), which has been also used in MS-based proteomics, with better resolving power [294]. 

Alternatively, the third quadrupole in a triple quadrupole mass analyzer can be operated as a linear ion 

trap (a mass analyzer that captures and stores ions using a combination of RC and DC fields), a 

configuration known as QTrap, offering improved sensitivity and choice of additional fragmentation 

stages [295]. 

1.3.5 Mass spectrometry approaches in proteomics 

In the proteomics field, tandem mass spectrometers such as TQMS, qTOF and qTRAP can be 

operated in a number of different tandem MS (MS/MS) modes, to perform multiple steps of ion 

selection in order to fit different analytical needs in protein identification and quantification. 

Depending on which MS acquisition mode is used, several different approaches have been 

implemented in modern proteomics applications, including discovery (or shotgun), directed, semi-

targeted, and targeted approaches [296] (Figure 1.13). 
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In a discovery (or shotgun) experiment, a series of peptide ions (called precursor ions) obtained 

from a proteolytic digest (“bottom-up” approach) are automatically selected from a survey scan by the 

mass spectrometer according to their signal intensity and subsequently fragmented and in the fragment 

MS recorded. This process, commonly called a ‘product ion scan’, is typically used in a LC-MS/MS 

configuration, with the mass spectrometer operating in a data dependent analysis (DDA) mode. 

Because protein identification and protein quantification in shotgun proteomics are performed in the 

same experiment, quantification will only be limited to those features corresponding to the selected 

precursor ions (typically from 3 to 10), which are characteristically the most abundant within a mass 

spectrum. The obvious resulting limitation of this method is that the quantitative analysis will be 

restricted to a certain set of ions that exhibit similar abundance values, therefore potentially excluding 

from the analysis biologically relevant changes in protein abundance. Moreover, the process of the 

selection of the precursor ions can be biased, particularly when dealing with complex samples, 

because at times during the analysis the number of analytes of interest exceeds the maximum number 

of selectable precursor ions. Overall, shotgun strategies offer great power to discover new proteins, but 

they do need to operate on small or fractionated datasets in order to maximize protein identification 

and quantification inputs.  

In a directed proteomics approach, precursor ions of interest can be selected from a pre-recorded 

survey scan obtained from a LC-MS or LC-MS/MS run, and are collected into an inclusion list along 

with their m/z, charge and retention time. A second LC-MS/MS run will then be performed in ‘product 

ion scan’ mode fragmenting only the selected precursor ions present in the previously recorded list. 

With this method protein quantification and identification are performed separately. The analytes are 

first quantified in the first LC-MS full spectrum survey scan, and the selected precursors are identified 

with the second LC-MS run. Same sets of precursor ion can be selected across repeated experiments, 

which results in higher reliability and reproducibility comparing to shotgun strategies. Moreover, 

because the selection of the precursor is not based upon signal abundance, low abundance features 

(such as oxidatively modified peptides) can be quantified and identified, allowing of a deeper and less 

biased exploration of the proteome. Directed proteomics approaches can therefore deal with larger 

data sets than shotgun approaches, and have higher selectivity, sensitivity and reproducibility. 
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However, as two separate MS acquisition are effectively performed, directed proteomics experiments 

are more time-consuming and require a larger sample size than shotgun approaches. 

Semi-targeted approaches rely on the mass spectrometry-based detection of fragments having 

specific structural features that are ‘diagnostic’ for the identification of certain molecular ions[297]. 

The semi-targeted approach most widely implemented in proteomics applications are precursor ion 

scanning and neutral loss scanning. In precursor ion scanning (PIS), the second analyzer is set to select 

only one specific fragment ion having a specific m/z value, while the first analyzer scans all the 

precursor ions over a chosen mass range. Only the precursor ions that after fragmentation generate the 

pre-selected diagnostic fragment will be detected. In Neutral Loss scan (NLS) both analyzer are set to 

scan all m/z values, but the second analyzer is offset from the first by a difference in m/z values equal 

to the m/z of a specific diagnostic fragment of interest that is lost as a neutral species during the 

fragmentation. Semi-targeted methods are particularly useful for the rapid and highly specific 

detection of protein modifications such as phosphopeptides [298] and oxPTMs [299-301]. However, 

when analyzing complex mixtures, these methods can often be limited by poor resolution due to co-

elution of unrelated peptides from the online HPLC column [302], loss of sensitivity due to large 

dynamic range of peptide abundance and signal suppression effects [303]. Due to these limitations, 

semi-targeted approaches are limited in terms of accurate protein quantification, for which the 

implementation of label-based techniques is often required [302].   

Targeted experiments are based on SRM (selective reaction monitoring), also called MRM 

(multiple reaction monitoring), in a non-data-dependent acquisition mode, which does not require 

survey scans at all. Similarly to the directed approach, quantification in targeted experiments is 

performed on specific fragment ions obtained by the fragmentation of preselected precursor ion. 

However, in targeted proteomics the precursor ions are selected using prior acquired information about 

their identity, therefore the only detected product ions are those deriving from the fragmentation of the 

selected precursor (both mass filters are set to acquire a preselected ion having a specific m/z). This 

method allows high signal-to-noise ratio and high performances, although requires some optimization 

of fragmentation parameters for specific precursors. Using either label-based or label-free strategies, 

very accurate differential quantification can be obtained with targeted-based methods. Although 

targeted approaches are not a discovery strategy as prior knowledge of analytes is required, they 
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represent the most accurate available MS-based quantification tool and can be conveniently used in 

hypothesis-driven studies upon optimization of chromatographic and mass spectrometric features 

[304].  

 

Figure 1.13 Representation of various proteomics strategies based on tandem MS   

Depending on the proteomics approach used, mass analyzers  such as triple quadrupoles can be 

operated in three different ways: in a shotgun or directed proteomics experiment, a precursor ‘parent’ 

molecular ion is selected in the first analyzer (Q1), fragmented in the collision cell (q2) and its product 

ions are scanned in the third analyzer (Q3) and finally detected (product ion scan); in semi-targeted 

approach, the precursor ions are scanned in Q1 and only fragments corresponding to a certain m/z 

value set in the third analyzer Q3 are detected (precursor ion scan); in a targeted proteomics 

experiment, precursor and product ion are both pre-selected so that only specific fragments selected in 

Q3 from parent ions pre-selected in Q1 are detected. 

1.3.6 Quantification of protein oxidative products using MS 

Quantitative technologies in mass spectrometry have naturally evolved to face the challenges of the 

increasingly data-driven outputs in interactomics, functional proteomics, systems biology, redox 

biology and many other biological applications. Quantitative proteomics strategies can be divided 

between two major groups: relative and absolute. Relative quantification relies on the measurement of 
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the fold change in the abundance of peptide ions across two or more samples, whereas absolute 

quantification delivers direct information about the actual peptide concentration in a given sample. 

High throughput quantitative proteomics workflows require the combination of mass spectrometry 

with additional - both MS and non-MS based - methods capable of delivering the most possible 

unbiased information on the levels of the proteins and peptides detected and identified in a given 

sample. Several label-based and label-free techniques have been developed and are currently 

implemented in both absolute and relative MS-based strategies, each of them having strengths and 

limitations that can affect the analysis to some extent. 

1.3.6.1 Label-based methods 

One possible approach in relative quantification is to compare the MS spectra of two or more LC-

MS runs (e.g. control versus oxidized sample) to determine the abundance of the modified peptide 

between different samples. However, this method requires extensive optimization and normalization at 

all experimental stages, because uncontrolled experimental settings might result in unpredictable 

fluctuations in peak intensities. A valid solution to this problem is the stable incorporation of isotope 

labels prior to mass spectrometry analysis. With this method, multiple samples can be labelled with 

different isotopic reagents, resulting in peptides coded with tags having different mass that can be 

discriminated in a single mass spectrometry run, eliminating any possible bias in the relative 

quantification. When approaching the quantification of protein modifications (such as oxPTMs) with 

this method, the total mass shift of modified peptides compared to control has to be obtained from the 

total sum of the mass shift due to the isotope label and the mass shift due to the oxidative 

modification. The isotope labels can be introduced at various stages of the experimental workflow, 

depending on type of sample and MS approach.  

In metabolic labeling, proteins are generally labelled at the cell culture level, implementing growth 

media modified to contain stable-isotopes containing amino acids. This method was developed in 

mammalian cell culture under the name of SILAC (stable isotope labeling with amino acids in cell 

culture), and is currently the metabolic labeling technique of choice in post-translational modifications 

and protein-protein interaction studies. SILAC approaches have been recently implemented to quantify 

protein oxidative modifications at the whole proteome level, whereby the proteins of oxidation-

stressed and control cells can be labelled with different ‘light’ or ‘heavy’ isotopic variants, and in vivo 
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versus spontaneously occurring oxidation can also be discriminated [207]. A recent evolution of 

SILAC is the stable isotope labelling of amino acids in mammals (SILAM), another exciting label-

based quantification technology whereby the label is incorporated at the whole animal level and the 

MS quantitation can be performed one entire tissue-specific proteomes. The clear advantage offered 

by the SILAM-MS approach is the potential to quantify changes in proteome between diseased versus 

healthy mammalian tissues, obtained by animal models of certain human pathologies [305]. While 

offering great isotope incorporation rates (> 90%) with little bias in the quantification, metabolic 

labeling suffers from some limitations, including issues with cell lines showing altered growth in 

modified media, formation of labeling-induced artifacts, limited availability of required reagents, 

among others [306].  

Protein oxidative events can be detected with label-based methods adding differential stable 

isotopes after cell lysis, using chemical or enzymatic methods to place the label after the protein 

tryptic-digestion. These systems are beneficial in situations whereby metabolic labeling is difficult 

(e.g. because of the lack of ability of certain cell lines to grow in modified media), as well as in non-

tissue culture settings (e.g. non-cell cultured biological samples). Among the chemical methods, those 

based on amino acid-specific labeling are extensively used to detect oxPTMs. An example of such 

methods is ICAT (isotope coded affinity tags), which is a gel-free cysteine-specific strategy, based on 

a iodoacetamide (IAM)-based thiol-reactive group that carries an affinity tag (usually biotin) for the 

enrichment of labelled peptides, and have been used to quantify evidence of cysteine oxidation in 

biological samples and complex protein matrixes [307,308]. However, ICAT is applicable to cysteine-

containing peptides only and there are potential limitations in terms of number of proteins detected, 

which have been shown to be considerably less in comparison to gel-based methods (most likely 

because of the presence of large tags that interfere with database search and consequent mass 

spectrometry sequencing [309]. Other solutions have been proposed to overcome such problems, 

including the implementation of isotope-labeled N-ethylmaleimide (NEM) in a targeted MS approach 

to monitor the redox status of reversibly oxidized cysteines [310,311]. NEM-based technologies have 

been used for the detection and quantification of cysteine disulfide bonds, using a ‘light’/‘heavy’ ratio 

as direct measure of reduced/oxidized cysteines [312]. In addition, both IAM and IAM based 

strategies can be adapted to measure protein S-glutathionylation and such strategies are now being 
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further developed for the detection and quantification of protein S- nitrosothiols [307]. Promising 

results in the detection of oxPTMs have also been generated using specific enzymatic reactions to 

place the isotope tag at specific amino acid groups. Among those approaches, the enzyme-catalyzed 

O
18

-based labeling has been successfully used in the for the accurate quantification of oxidized 

methionine, whereby the protein oxidation experiment was carried out using O
18

-enriched H2O2 to 

generate differentially labeled oxidized methionine [313]. However, when the biological question 

requires the simultaneous analysis of several samples (e.g., the analysis of oxPTMs over a range of 

oxidant concentrations), few available labeling techniques, if any, offer the flexibility and the power of 

iTRAQ (isobaric tags for relative and absolute quantification). With this approach, primary amino 

groups in intact or enzyme-digested are labeled by attaching an N-methyl piperazine reporter group 

linked to a carbonyl group, which functions as a mass balance to generate isobaric-labelled peptides. 

iTRAQ-based strategies have been used quantify the occurrence of protein S-glutathionylation [314], 

protein carbonyl formation [264], as well as to selectively label and quantify 3-nitrotyrosine, both on 

their own [315] or in combination with precursor isotopic labeling [316]. In combination with NEM-

based thiol-blockade, iTRAQ has been also used to identify the redox-sensitive reversibly-oxidized 

cysteines in proteins and to quantitatively assess the oxidation states of individual cysteine residues 

[317]. Similarly, tandem mass tags (TMT), another type of isobaric mass tags, and their variants are 

also a popular choice for the analysis of different types of cysteine modification, including S-

nitrosylation (SNO) [318] and S-sulfenylation (SOH) [319]. 

Up-to-date absolute quantification (AQUA) approaches in SRM or MRM mode are also benefiting 

from of the multiplexing potential of novel isotope- and isobaric tags-based tools for the analysis of 

protein oxPTMs. For example, absolute quantitation of glutathione-disulfide in erythrocytes was 

obtained using a multiple-label isotope-based method by spiking differentially labeled standard 

solutions of glutathione-disulfide and glutathione-sulfonic acid against control [320]. iTRAQ-labeled 

internal standards have been recently used in combination with targeted MS approaches to quantify 

evidence of proteolytic post translational modifications such as proteolytic cleavage [321] or 

phosphorylation [322] as well as to validate candidate biomarkers of clinical interest [323]. However, 

despite their proven high accuracy and reliability, absolute label-based quantification techniques are 
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costly and time-consuming compared to relative counterparts, which are therefore preferred for 

multiplexed proteome-wide studies. 

1.3.6.2 Label-free quantification and software based analysis. 

Label-free methods represent a fast, easy-to-use alternative to label-based approaches. The main 

advantage of label-free based quantification strategies is that no additional sample manipulation step is 

required before the mass spectrometric analysis. In addition, there is virtually no limit to the number of 

samples that can be processed in a single experimental analysis, which represents a significant 

advantage over label-based strategies that are limited by the availability of labeling reagents to be used 

in an individual experiment. The two fundamental strategies currently used in label-free quantification 

are spectral counting and feature-based quantification [324]. 

Methods based on spectral counting rely on the number of identified MS/MS spectra corresponding 

to a given protein as a measure of protein relative abundance. A high correlation (R
2
 > 0.995) has been 

demonstrated between relative protein abundance and number of spectral counts, showing a linear 

dynamic range higher than that observed with metabolic labeling methods [325,326]. However, 

spectral counting-based label-free quantification strategies suffer from poor reproducibility for the 

analysis of low abundance proteins, thus they are not appropriate for the specific analysis of oxPTMs. 

In fact, because a limited number of MS/MS spectra are detected for low abundance proteins, some 

proteins and their PTMs may not be detected across all samples, causing misleading results. A number 

of algorithm-based solutions have been recently developed to optimize the performances spectral 

counting technologies, including emPAI (exponentially modified protein abundance index) [327,328] 

and APEX (absolute protein expression index) [329,330], both implementing an algorithm based upon 

the ratio between observed and observable peptides. These platforms have been used in discovery-

driven proteomics investigations [331] as well as to monitor protein expression changes such as those 

induced by oxidative stress [332]. Nonetheless, critical evaluation of label-free methods did show that 

emPAI and APEX generated values suffer from concentration-dependent saturation effect among 

other limitations, compared to more robust feature-based software solutions [333]. 

Feature-based quantification methods rely on the summed measurement of the peak intensities of 

peptide ions contributing to a given protein. In a given mass spectrum, each peptide ion that gives rise 

to a peak represents a feature that is detected by the feature-finding algorithm and plotted in a heat 
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map showing m/z value, retention time and intensity. The software then aligns the heat maps 

generated by different LC-MS runs so that the same features are assigned to each other for quantitation 

and the protein abundance is measured by summing up the peak intensities corresponding to the same 

area corresponding to the feature. With emerging interest in label-free methods, a new generation of 

feature-based software solutions capable of processing large amount of high resolution data has been 

made available for the analysis of LC-MS data, including Progenesis QI for proteomics (Non Linear 

Dynamics, UK), msInspect/AMT [334], MAXQuant [335], Rosetta Elucidator (Rosetta Biosoftware, 

Seattle, WA), OpenMS [336], and Superhirn [337], among others. Several recent articles have 

portrayed a positive picture for the implementation of label-free software based technologies in 

biomarker discovery in biological samples [338-343], but few studies have reported the use of label-

free software based methods for the quantitative determination of specific oxPTMs. This is mainly 

because software solutions do not offer rigorous analysis tools for the analysis of peptide 

modifications, and would not be appropriate for a discovery approach in the specific analysis of 

oxPTMs without implementing a proper downstream validation strategy. Nonetheless, both 

commercial and open-source modern software packages do include statistical tests tools in order to 

threshold false positives and significant results over a large amount of features [344]. Recently, 

reversibly oxidized cysteines in the membrane proteins of human erythrocytes have been quantified 

using a robust computational software-based approach and validated by matching the modified 

peptides against Protein Data Bank (PDB) entries [345]. However, higher quality outputs with low 

false positive rates can be achieved using label-free, narrow-mass window XIC to detect and quantify 

low abundance oxPTMs in targeted MS approach [346]. Such strategy can be used to validate the 

oxPTMs discovered with software-based technologies or on its own for the quantitative determination 

of specific oxPTMs in targeted proteomics (with prior knowledge of peptides and modifications of 

interest).  

The core drawback of label-free methods is that they require highly reproducible experimental 

techniques, as well as careful control of LC and MS machines performances, much more so than label-

based method [347]. In addition, changes in peptide charge state due to oxPTMs affect both peptide 

ionization efficiency and MS/MS fragmentation pattern, which can alter the feature intensity in a non-

controllable way. Therefore, stringent analysis criteria have to be followed using label-free strategies 



Chapter 1: General Introduction 

  68   

to ensure a high level confidence in both protein identification (features representative of identified 

proteins have to be carefully selected) and quantification (a sufficient number of replicate experiments 

have to be performed to evaluate statistical significance and biological variability). When the above-

mentioned conditions are satisfied, label-free software based quantification can be a robust, 

inexpensive and timesaving alternative to label-based methods, also holding a great potential for the 

transition of MS proteomics platforms in clinical applications. 

 

1.3.7 MS-based detection of protein oxPTMs in disease 

The last decade of proteomics research has witnessed increasing evidence that mass spectrometry 

can be successfully applied to several scientific problems, including biomarker discovery, biomarker 

validation, and analysis of clinical samples [348,349]. The identification of novel biomarkers in 

disease is expected to open new doors for the screening of life-threatening diseases like diabetes, 

cardiovascular diseases, and chronic inflammatory diseases. Many studies have exposed an existing 

correlation between those conditions and protein oxidative damage [165]; hence, there is increasing 

attention to the identification of oxPTMs in clinical and animal samples for the characterization of 

disease-specific modifications. The measurement of amino acid oxidative products has been 

successfully demonstrated in biological samples using several MS- and non-MS-based techniques 

[350], yet it remains a challenging task. Critical factors including sample complexity, low abundance 

of the modifications and pre-analysis spontaneous oxidation during sample handling, often represent a 

serious problem for a clinically-translatable measure of protein oxidative products [351]. 

Among the biological samples usable for the detection of oxPTMs, the main sources of proteins are 

body fluids and tissue extracts. Blood plasma and urine samples are by far the most widely examined 

body fluids to profile systemic oxidative damage in clinical settings with MS techniques [241,352-

354]. However, blood collection is not the preferred method from a patient’s perspective, especially 

for newborn screening, and large amount of sample would be required to detect low abundance 

proteins. Urine samples are easy to obtain in large volumes, and can be collected non-invasively, but 

the protein concentration is too low to allow extensive detection of protein-bound oxidative 
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modifications. In addition, the presence of protein oxidative products in the urine can be also due to 

the physiological excretory process, since oxidation is a common process in phase 1 metabolism. 

Alternatively, specific body fluids have been also used as sources of protein samples for the MS-based 

identification of oxPTMs in certain diseases, such as cerebrospinal fluids for the detection of oxPTMs 

in patients affected by Alzheimer’s disease [355,356], and synovial fluids for the detection of free and 

protein-bound 3-nitrotyrosine in patients affected by osteoarthritis [357]. Clinically relevant protein 

oxidative products were also detected in saliva [358], seminal fluid [359], and amniotic fluid [360]. To 

profile local oxidative damage, the MS determination of oxPTMs in diseased human tissues has been 

performed using surgical biopsies of human tissue, such as heart [361] or skeletal muscle [362]. 

However, the invasiveness and the proneness to cause infection of surgical biopsies represent a major 

limitation for the analysis of protein oxidation events in human patients. Therefore, there is great 

interest on non-invasive methods to interface MS for the analysis of oxPTMs in human biological 

samples. These include tissue microarrays of needle-core biopsied tissues [363] and analysis of 

exhaled breath condensate [364-367]. 

In spite of several challenges, the application of both label-free and label-based mass spectrometry 

methods to the detection of oxPTMs in clinical samples has progressed exponentially in recent times. 

Label-free targeted mass spectrometry approaches (SRM-based) have been used for the identification 

and quantification of free and protein-bound oxidized amino acids in the clinical samples of patients 

affected by several different diseases [238,368,369]. The specificity of the targeted approached used in 

these studies offers a great deal of accuracy for the quantification of oxPTMs in healthy versus 

diseased sample. Yet, since most of these studies do not provide protein identification data, it is 

impossible to assess the distribution of the protein-bound modifications within the proteomes, which is 

critical for a deeper understanding of the effect of reactive species on specific proteins in a well-

defined disease status. 

Among label-based methods, those based on protein carbonyl content (PCC) have been extensively 

used in combination with MS techniques to identify oxidized proteins in clinical samples. Several 

studies have reported the determination of protein carbonyls in biological samples of clinical interest 

using gel spots obtained by 2D-electrophoresis of DNPH-derivatized proteins in combination with 

non-tandem MS [180,181] and tandem MS [185,263]. The first high throughput protein carbonylation 
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profile in human plasma was recently generated using a combination of carbonyl derivatization and 

MS/MS techniques [370], opening new doors for the study of blood biomarkers in clinical proteomics 

settings to investigate the relationship between oxidation and certain conditions that are linked to the 

formation of protein carbonyls. Alongside PCC-MS-based methods, isotope labels based techniques 

including ICAT and iTRAQ are one of the most promising tool for the clinical application of mass 

spectrometry techniques to identify oxPTMs for biomarker discovery in disease, despite relatively few 

studies have implemented them for such purpose so far [182,183,187,203,371,372]. 

Using MS-based methods, many oxPTMs have been found elevated in diseased samples, including 

carbonylation, [152,180-188], protein-bound 3-chlorotyrosine [229-233], protein-bound 3-

nitrotyrosine [230,232,234-236], cysteine oxidation (both reversible and irreversible) [152,171-

173,198,200-203] and methionine oxidation [150,152,208,209] (Table 1.3). With such an increasing 

amount of published work, it is evident that MS-based strategies represent the cutting-edge technology 

to measure evidence of oxidative damage to proteins in disease. Yet, new generation proteomics 

approaches for the detection of oxPTMs still struggle to break into early diagnosis routines. Factors 

including the lack of a well-established validation protocol for protein oxidation products, the great 

variety of methodologies, and the relatively time-consuming data analysis times are still a considerable 

shortcoming that limits the application of mass spectrometry into clinical settings [373]. Nonetheless, 

the recent advances discussed in this thesis, together with the knowledge that they generate, are having 

an undeniable impact on the analysis of biological samples of clinical interest. Proteomics applications 

based on MS methods are going to be prominent in the near future of clinical research whereby early 

diagnosis becomes essential for the prompt treatment and management of life-threatening human 

diseases. 
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Table 1.3 Identification of protein oxidation biomarkers in biological samples of clinical interest using 

mass spectrometry techniques  

Modification 

type 

Disease  Method Sample type Protein type OX 

sites 

identif.

? 

Reference 

Carbonyl 

formation 

Alzheimer’s 

disease 

DNPH, MALDI-

TOF/MS 

Blood 

(human) 

Fibrinogen γ-

chain precursor 

protein, α-1-

Antitrypsin 

precursor 

no Choi et al., 

2002 [180] 

Carbonyl 

formation 

Ageing Avidin affinity, LC-

MS/MS 

Brain tissue 

(mouse) 

Brain proteins yes Soreghan et 

al., 2003 

[263] 

Carbonyl 

formation 

Ageing FTC-labeling; 2D 

PAGE-MS 

Liver tissue 

(mouse) 

Cytosolic liver 

proteins 

no Chaudhuri et 

al., 2006 

[186] 

Carbonyl 

formation 

Ageing iTRAQ/LC-MS/MS Skeletal 

muscle (rat) 

Mitochondrial 

muscle proteins 

no Feng et al., 

2008 [187] 

Carbonyl 

formation 

Mild Cognitive 

impairment and 

Early Alzheimer’s 

disease 

DNPH, MALDI-

TOF/MS 

Inferior 

parietal lobule 

(human) 

CA II, Syntaxin 

binding protein I, 

Hsp70, MAPK 

kinase I, FBA-C, 

PM-1, GFAP 

no Sultana & 

Perluigi, 2010 

[181] 

Carbonyl 

formation  

Ageing ARP-labeling, 

MS/MS 

Heart (rat) Cardiac 

mitochondrial  

proteins 

yes Chavez et al., 

2011 [185] 

Carbonyl 

formation 

Diabetes LC-MS/MS, SRM Plasma (rat) Plasma proteins yes Madian et al., 

2011 [183] 

Carbonyl 

formation 

Obesity-induced 

diabetes mellitus 

ARP-labeling, RPC-

MS/MS 

Plasma 

(human) 

Plasma proteins yes Bollineni et 

al., 2014 

[184] 

Carbonyl 

formation  

Breast cancer iTRAQ/LC-MS/MS Plasma 

(human) 

Plasma proteins yes Madian et al., 

2011 [182] 

Carbonyl 

formation 

Ischemia/ 

reperfusion 

2D-PAGE-MALDI-

TOF/TOF/MS/MS 

Hippocampus 

(monkey) 

Hsp70-1, DRP2 

isoform 2, GFAP, 

β-actin  

yes Oikawa et al., 

2009 [188] 

Carbonyl 

formation, 

cysteic acid, 

MetO, Met 

O2 

Alzheimer’s 

disease, 

Parkinson’s disease 

2D-PAGE, MALDI-

TOF/MS, MALDI-

TOF/TOF/MS/MS, 

HPLC-ESI/MS/MS 

MALDI-MS/MS 

Brain (human) DJ-1 yes Choi et al., 

2006 [152] 

3-NO2Y Cancer NTAC 

(nitrotyrosine 

affinity column) 

based MALDI–LTQ 

MS/MS 

Nonfunctional 

pituitary 

adenoma 

tissue 

(human) 

NTAC-enriched 

proteins  

yes Zhan & 

Desiderio, 

2006 [235] 
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3-NO2Y, 3-

ClY 

Influenza LC-MS/MS Serum 

(mouse) 

Serum proteins yes Kumar et al., 

2014 [229] 

3-NO2Y, 3-

ClY 

Inflammatory 

bowel disease 

LC-MS/MS Serum, colon 

tissue 

(human) 

Serum, colon 

tissue(mouse) 

Serum proteins no Knutson et al., 

2013 [230] 

3-NO2Y, 3-

ClY 

Systemic lupus 

erythematosus 

LC-MS/MS (MRM) Plasma 

(human) 

HDL yes Smith et al., 

2014 [232] 

3-NO2Y Alzheimer’s 

disease 

LC-MS/MS Brain tissue 

(human) 

α-enolase, 

Triosephosphate 

isomerase, 

Neuropolypeptide 

h3 

no Castegna et 

al., 2003[236] 

3-ClY atherosclerosis LC-MS/MS (SRM) Plasma 

(human) 

ApoA-1 yes Shao et al., 

2012 [231] 

3-ClY, 

carbonyl 

formation 

 

Patients post 

myocardial 

infection 

Stable isotope 

dilution GC/MS; 

LC-MS/MS 

Plasma 

(human) 

fibrinogen no Paton et al., 

2010 [233] 

MetO Type 1 diabetes LC-MS Blood 

(human) 

Apo a1 yes Brock et al., 

2008 [209] 

Cysteine 

reversible 

oxidation 

Ageing Fluorescent labeling, 

LC-MS/MS  

Skeletal 

muscle (rat) 

SERCA yes Sharov et al., 

2006 [201] 

Cysteine-

SNO 

Ischemia/ 

reperfusion 

Affinity-capture, 

LC-MS/MS (label-

free) 

Heart (mouse) Mouse heart 

tissue proteins 

yes Kohr et al., 

2011 [202] 

Cysteine-

SNO 

Ageing, 

Alzheimer’s 

disease 

2D-PAGE, MALDI-

MS/MS 

Brain tissue 

(human) 

Glial fibrillary 

proteins 

yes Riederer et 

al., 2009 

[200] 

Cysteine 

reversible 

oxidation 

Ischemia/ 

reperfusion 

ICAT, LC-MS/MS Heart (mouse) Mouse heart 

tissue proteins 

Yes Kumar et al., 

2013 [203] 

Cysteic acid, 

MetO 

Alzheimer’s 

disease and 

Parkinson’s disease 

LC-MS/MS and 

MALDI-TOF 

Brain tissue 

(human) 

Ubiquitin 

Carboxyl-terminal 

Hydrolase L1 

Yes Choi et al., 

2004 [171] 

Cysteic acid, 

carbonyl 

formation 

Alzheimer’s 

disease and 

Parkinson’s disease 

2D-PAGE, LC-

MS/MS 

Brain tissue 

(human) 

SOD Yes Choi et al., 

2005 [172] 

Free 3-NO2Y Circulating sleep 

apnea 

LC-MS/MS (MRM) Plasma 

(human) 

  Svatikova & 

Wolk, 2004 

[239] 

Free 3-NO2Y, 

free 3-BrY, 

free di-BrY, 

free di-Y 

Diabetes  LC-MS/MS (MRM) Urine 

(human) 

  Kato et al., 

2009 [238] 
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Free 3-NO2Y, 

Free 3-ClY 

Premature birth  LC-MS/MS (MRM) Urine 

(human) 

  Kuligowski et 

al., 2014 

[241] 

free 3-NO2Y, 

total 3-NO2Y 

Vasculopathy in 

Fabry disease 

Isotope-labeled 

standards, 

LC/MS/MS 

(MRM) 

Plasma 

(human), 

plasma (rat) 

  Shu et al., 

2014 [240] 

free 3-NO2Y 

total 3-NO2Y 

Arthritis LC-MS/MS (MRM) plasma (rat)   Nemirovskiy 

et al., 2009 

[368] 

For each modification type in the referenced study, the table above shows the implicated disease, the 

MS method, the sample type, the protein type, and whether the referenced study reported oxidation 

sites. SNO = S-nitrosylation; MetO = methionine sulfoxide; MetO2 = methionine sulfone; 3-NO2Y=3-

nitrotyrosine; 3-ClY= 3-chlorotyrosine; 3-BrY = 3-bromotyrosine; di-BrY = dibromotyrosine; di-Y = 

dityrosine. 
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1.4 The phosphatase PTEN 

1.4.1 Introduction 

PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a lipid and protein 

phosphatase that has attracted significant interest from the biomedical research community over the 

last two decades. The PTEN gene has been found mutated or deleted in many cancers, and its 

phosphatase product has been implicated as tumour suppressor by many authors over time [374-382]. 

Functionally, PTEN is a dual-specificity phosphatase that can dephosphorylate both lipids and 

proteins. As a lipid phosphatase, PTEN dephosphorylates phosphatidylinositol (3,4,5)-trisphosphate 

(PtdIns(3,4,5)P3) resulting in the production of PtdIns(4,5)P2 [383], while as a protein phosphatase 

PTEN dephosphorylates Ser, Thr and Tyr phosphoproteins [384]. Given the importance of PTEN in 

tumour suppression, a great deal of research effort has been expended to characterize PTEN structure, 

function, signaling networks, and regulation, in order to understand the mechanisms underlying cancer 

and design therapeutic strategies [385]. 

PTEN belongs to the protein tyrosine phosphatases (PTPs) family, a structurally diverse group of 

enzymes that share a highly conserved signature motif in their active site, which contains a reactive 

cysteine residue. PTPs dephosphorylate phosphoproteins with a common catalytic mechanism, based 

on a two-stage phosphate monoester hydrolysis involving the active site reactive cysteine [386]. 

Studies have shown that the thiolate anion of the active site cysteine is essential for the catalytic 

activity of these proteins, and it is susceptible to oxidation [387]. Together with tyrosine kinases, PTPs 

control tyrosine phosphorylation, which is one of the key mechanisms in signal transduction, and are 

therefore implicated in the modulation of many fundamental cellular processes, including cell cycle 

control, gene regulation, cell migration, cell adhesion, cell differentiation and cell proliferation [388-

391]. Because of their importance in cell signaling, there is increasing interest in the study of the 

regulatory mechanisms of PTPs. The reversible ROS-induced oxidation of the active site cysteine 

thiolate has emerged as a putative regulatory mechanism of PTPs activity, and accumulating lines of 

evidence are proposing ROS as important mediators in the signaling pathways controlled by PTPs 

[392]. As PTEN is a central element of many signaling processes in disease, investigating its redox 
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regulation has critical implication for understanding the mechanisms underlying certain conditions and 

developing novel therapeutic intervention. 

1.4.2 The structure of PTEN: functional and regulatory implications 

PTEN is made up of 403 amino acids and consists of two major structural domains: a phosphatase 

domain (PD), which contains the active site pocket of the protein with the catalytic cysteine (Cys124); 

a C2 domain, which binds the phospholipid membrane in an electrostatic (Ca
2+

-independent) manner, 

exposing the active site to the substrate PtdIns(3,4,5)P3. Additionally, PTEN includes a PtdIns (4,5)P2-

binding N-terminal module (PBM), and a C-terminal region (or tail) containing a PDZ (PDS-95/Disc-

large/Zo-1)-binding motif corresponding to the protein C-terminus.  

PTEN exists in mammalian cells either as a monomer or as part of multiple high molecular weight 

complexes (> 600 kDa), often referred to as PTEN-associated complexes (PAC) [393]. The 

recruitment of PTEN into PAC appears to be important for PTEN subcellular localization and 

downstream signaling regulation, although the biological significance of PAC is still under 

investigation [393-396]. 

The crystallographic structure of PTEN was solved by Lee et al in 1999, and it is the only one 

available to date [383]. The resolved residues (amino acids 7-353) include both the phosphatase 

domain (amino acids 14-185), and the C2 domain (amino acids 190-350) [383,397]. Residue 1-6, 286–

309, and 354-403 represent unstructured or loosely folded regions, that have been deleted to allow 

crystallization and are yet to be crystallized [383,398]. Additionally, residues 7–13, 282–285, 310-312, 

and 352-353 are believed to be disordered and are not yet resolved [383,399]. Figure 1.14 shows the 

truncated PTEN crystal structure (residues 7-353) with highlighted key regions referred to in the text, 

and the linear domain map including both crystalized and unresolved regions.  
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Figure 1.14 Domain structure and organization of PTEN  

The phosphatase PTEN consists of two core domains: the phosphatase domain (amino acids 14-185, in 

orange), and the C2 domain (amino acid 190-350, in magenta). The phosphatase domain includes the 

active site pocket of PTEN, which consists of: the WPD-loop (amino acids 88-98, in yellow), the p-

loop (amino acids 123-130, in green), and the T1-loop (amino acids 160-171, in purple). Cys124 in the 

p-loop and the nearby Cys71 (both shown in red in the 3D crystal structure) form a disulfide bond that 

reversibly inactivates PTEN upon reaction with H2O2. The C2 domain includes the CBR3-loop (amino 

acid 263-269, in cyan) and the cα2 helix (amino acids 327-335, in blue). Additionally, PTEN includes 
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a PBM region, a C-terminal tail and a PDZ-binding motif which are yet to be resolved. The linear 

domain map was drawn using the visualization program DomainDraw, available as a webserver at 

http://domaindraw.imb.uq.edu.au [400]. The truncated PTEN crystal structure (lacking residues 1-13, 

282-312 and 351-403)-was obtained by fetching the Protein Data Bank (PDB) ID 1D5R. 

 

1.4.2.1 The N-terminal module 

The PtdIns(4,5)P2-binding N-terminal module (PBM, amino acids 1-13), which includes not yet 

resolved and disordered residues, is a short regulatory region that contains a conserved 

phosphoinositide-binding motif.  

The PBM region plays a fundamental role in regulating PTEN intracellular localization as it 

selectively binds PtdIns(4,5)P2 molecules, allowing PTEN to anchor the plasma membrane, which is 

the site of PTEN phosphatase activity [401]. Accumulating lines of evidence also suggest a role for the 

PBM region in regulating PTEN phosphatase activity. This is supposedly achieved via an 

intramolecular interaction between the PBM and PTEN active site [402,403], although other authors 

have also proposed that PtdIns(4,5)P2 allosterically regulates PTEN conformation (therefore 

controlling its phosphatase activity) upon PBM binding [402,404].  

The N terminal module is also important for PTEN subcellular localization as it contains residues 

that are part of a nuclear localization signal (NLS, residue 8-32), essential for the nuclear-cytoplasmic 

shutting of PTEN [405,406] and cationic residues  Arg11 and  Lys13 required for phospholipid 

membrane binding [407]. In addition, Lys13, which is required for the PtdIns(4,5)P2-mediated 

activation of PTEN [408], was also found mutated in cancer [409].  

1.4.2.2 The phosphatase domain  

The phosphatase domain (PD, amino acids 14-185) consists of five stranded β-sheets surrounded 

by six α-helices (two on one side and four on the other), a structure similar to that of the dual 

specificity phosphatase VHR (vaccinia H1-related phosphatase) [410]. The PD is primarily 

responsible for PTEN catalytic activity, but is also required for PTEN subcellular localization. 

The PD includes the active site pocket of PTEN, at the bottom of which is mapped the highly 

conserved PTPs signature motif H-C-X-X-G-X-X-R (amino acids 123-130), that forms a loop known 
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as p-loop or p-catalytic loop [411]. When at neutral pH, this motif exists as a thiolate anion and 

contributes to the formation of a thiol-phosphate intermediate, which is essential for PTEN catalytic 

activity [412]. Compared to other PTPs, the p-loop sequence of PTEN (H-C-K/R-A-G-K-G-R) is 

unique because it contains two lysines (Lys125 and Lys128) that give a positive charge to the active 

site pocket, explaining the selectivity of PTEN for extremely acidic substrates such as PtdIns(3,4,5)P3 

[413]. Moreover, the active site pocket is larger than that of similar PTPs, a feature that could be 

important for accommodating phosphoinositide substrates [383]. Residues Cys124 and Arg130 in the 

p-loop are essential for PTEN phosphatase activity [383], while His123 and Gly127 are important for 

the conformation of the loop [414]. More recently, mutagenesis studies have shown that tumour-

related mutations of each one of the p-loop residues is capable of causing a complete loss of PTEN 

activity (except for Ala126 and Lys128, the mutation of which that are associated with a partial 

inactivation) [415]. In addition, tumour-related mutation of His123 to Tyr produced an inactive PTEN 

mutant that was also incapable of tumour suppression [416]. It has also been shown that the histone 

acetyltransferase PCAF (p300/CBP-associated factor) is responsible for the acetylation of PTEN on 

Lys125 and Lys128 in the p-loop, and this results in decreased PTEN activity, Akt activation, and 

increased cell cycle progression [417]. 

The walls of the active site pocket are delimited by the “WPD” loop (or pβ4-α3 loop, amino acids 

88–98) and the “T1” loop (or pα5-α6 loop, amino acids 160–171), which are less conserved than the 

p-loop [415]. The residue Asp92 in the WPD loop seems to be important for PTEN catalytic activity 

as it might function as a general acid in the catalysis process, although this is currently under debate 

[415,418]. WPD-loop residues that were found mutated in tumours include Asp92 and His93, which 

were found to cause a dramatic loss of PTEN function [409,415], as well as Pro95 and Pro96, which 

are reported to cause a partial [415] or complete [409] inactivation of PTEN. T1 loop residues Asp162, 

Gly165, Val166, Thr167, Ser170 and Gln171, which were also found mutated in cancer, are associated 

with partial or full inactivation [383,409,415].  

Other key residues mapped in the phosphatase domain of PTEN were found mutated in tumours 

and are required for PTEN catalytic activity. These include Ala34, Met35, Gly36, Leu42, Gly44, 

Asn48, Tyr68, Arg121, Ile122, Thr131, and Leu181 which are associated with a complete loss of 

PTEN catalytic activity [409,415], and Tyr16, Ile33, His61, Pro96, Tyr155, which are required for 
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PTEN activity and also thought to be important for PTEN stability [409]. Additional mutational 

hotspots in PTEN phosphatase domain that are associated with cancer include Arg173, which, together 

with the p-loop residue Arg130, is the most frequently mutated residue of PTEN [419,420].  

Some key residues in the phosphatase domain of PTEN are also important for PTEN membrane 

association, which occurs via an electrostatic interaction with the phosphatidylserine (PS), which is an 

abundant lipid component in the plasma membrane [421]. Residues Lys161, Arg162, Lys163 and 

Arg164 in the TI loop make up a cationic motif (KRKR) that has been shown to be required for PTEN 

membrane binding [407]. In addition, Arg15, which has been repeatedly reported to be essential for 

PTEN catalytic activity and tumour suppression [406,409,422], forms a cationic patch (with Arg11 

and Lys13 on PBM region and Arg14 on the PD), which is also implicated as required for PTEN 

membrane binding [407]. 

Finally, in studying the effect of altered redox conditions on PTEN, it was revealed that Cys124 in 

the p-loop of the active site pocket forms a disulfide bond with Cys71 (located near the active site 

pocket), typically upon H2O2 oxidation, causing reversible inactivation of the phosphatase [423]. 

These findings have a number of important implications for PTEN redox regulation and signaling 

pathways, and are further discussed in Section 1.4.3.3. 

 

1.4.2.3 The C2 domain 

The C2 domain (amino acids 190-350) consists of two antiparallel β-sheets linked by two short α-

helices. The main function of the C2 domain of PTEN is to bind the plasma membrane, transporting 

the active site of PTEN to the membrane-bound PtdIns(3,4,5)P3, where PTEN can dephosphorylate it.  

The C2 domain of PTEN differs from that of other membrane-interacting proteins because it does 

not have calcium-binding activity [383]. The C2 domain lacks the Ca
2+

-binding regions CBR1 and 

CBR2 that are typically found in other C2 domains, but includes the CBR3 loop (amino acids 263-

269), that is required for is Ca
2+

-independent membrane binding [383,403]. The C2 domain binds the 

membrane by associating with phosphatidylserine (PS) in the plasma membrane via the CBR3 loop 

[421]. CBR3 contains a series of positively charged residues (Lys260, Lys263, Lys266, Lys267, 

Lys269) that give an overall positive charge to the region and are required for the phospholipid 

membrane binding[422]. Along with the CBR3, another motif included in the C2 domain of PTEN 
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that is required for membrane binding is the cα2 helix (amino acids 327-335). Positively charged 

residues of the cα2 helix (Lys327, Lys330, Lys332, and Arg335) are involved in the stabilization of 

the PTEN interaction with the plasma membrane [402]. In addition, Lys266 and Lys289 of the C2 

domain are modified by the small ubiquitin-like proteins, small ubiquitin-related modifier 1 (SUMO1) 

and SUMO2, which induce a post-translational modification known as SUMOylation, which controls 

PTEN membrane association [424] and nuclear localization [425]. 

A number of mutagenesis studies revealed an essential role for key residues within the C2 domain 

in PTEN growth suppression and/or phosphatase activity. These include: cα2 helix residues, which are 

associated with decreased affinity of PTEN for phospholipid vesicle and reduced tumour suppression, 

although the mutants retained phosphatase activity [383]; Tyr240 and Tyr 315, which decreased both 

PTEN tumour suppression and phosphatase activity [426]; Asp252, which was found mutated in 

cancer, and is implicated as important for PTEN activity and stability [409]; Lys289, which plays an 

important role in PTEN tumour suppression, stability and nuclear localization [427], and was found 

mutated in tumours [409]; Val343, which was found mutated in cancer and generated a total loss of 

function [415]; and Leu345,which reduced both the growth suppression and the phosphatase activity 

of PTEN [416]. 

 

1.4.2.4 The C-terminal tail 

The C terminal region or tail (amino acids 351-400), which contains residues that are yet to be 

crystallized, and is important for PTEN phosphatase activity, stability, tumour suppression function, 

membrane association and protein-protein interactions [397,428,429]. Compared to any other 50-

amino acid stretch within PTEN, the C-terminal tail shows lower mutability, suggesting a critical 

biological function that is evolutionarily conserved [397]. 

Many studies have revealed that the C-terminal tail is required for the regulation of PTEN stability 

and phosphatase activity via phosphorylation of its residues Ser362, Thr366, Ser370, Ser380, Thr382, 

Thr383, and Ser385 [430-433]. Phosphorylation of Ser370 and the cluster Ser380-Ser385 is catalyzed 

by the casein kinase 2 (CK2), while glycogen synthase kinase 3 (GSK3) is responsible for the 

phosphorylation of Ser362 and Thr366 [429]. Phosphorylation of the cluster Ser380-385 has been 

shown to reduce PTEN activity and in general is associated with loss of PTEN function [428,429], 
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while phosphorylation of Thr366 negatively regulates protein stability and tumour suppressing 

phenotypes [429,434]. In addition, the tail contains two tandem PEST (rich in Pro, Glu, Ser and Thr) 

motifs (amino acids 350-375 and 379-386), which have been shown to be involved in the proteolytic 

degradation, protein stabilization, phosphatase activity, and subcellular localization [416,435].  

The C-terminal tail is also important for the dynamic regulation of PTEN membrane association. 

There is evidence showing that the tail acts as an auto inhibitory domain controlling PTEN membrane 

binding with an open/closed conformation model controlled by phosphorylation [435,436]. According 

to this model, an intramolecular interaction between the C-terminal tail and the phosphatase and the 

C2 domain of PTEN when C-terminal tail is phosphorylated (likely at Ser380, Thr382, Thr383, and 

Ser 385 in the second PEST motif), induces a closed conformation that inhibits PTEN catalytic 

activity and membrane binding [403,436]. It was also reported that the recruitment of PTEN into high 

molecular weight complexes (PTEN-associated complexes) is inhibited by the phosphorylation of the 

tail, with effects on PTEN membrane translocation and function [394-396]. Phosphatase activity and 

protein-membrane interaction are restored by dephosphorylation of the tail residues. This results in the 

C-terminal tail being released from the phosphatase and C2 domains, which can bind the plasma 

membrane by means of electrostatic interactions. 

1.4.2.5 The PDZ motif 

Another interesting feature of the C-terminal tail of PTEN is the functional PDZ-binding motif, a 

three-amino acids unresolved sequence located at the far C-terminus of the protein (residues Thr401-

Lys402-Val403). 

The PDZ-binding motif of PTEN controls the association of PTEN proteins containing PDZ 

domains such as membrane-associated guanylate kinase with inverted orientation (MAGI) proteins 

[437,438], and proteins constituting the PTEN-associated complexes [394].  

The phosphorylation-induced intramolecular interaction between the C-terminal tail and the 

phosphatase and C2 domains seems to masks the PDZ-binding motif due to the closed conformation 

induced, which supposedly prevents PDZ-mediated protein interactions, such as those implicated in 

PTEN function and subcellular localization [395]. However, the deletion of PDZ-domain did not show 

a significant effect on either PTEN membrane targeting [407] or PAC complex assembly [393], which 

suggests that the phosphorylation-mediated regulation of PTEN membrane recruitment does not 
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involve the PDZ domain. In addition, it has been shown that CREB-binding protein (CBP) is 

responsible for the acetylation of PTEN at Lys402 in the PDZ-binding motif, and that such mechanism 

is associated to increased binding of PDZ domain-containing proteins [438]. Deacetylation of PTEN is 

primarily operated by Sirt1, which appears to play a tumour promoting role, despite being implicated 

in extended longevity [439]. 

1.4.3 The role of PTEN in cell signaling 

1.4.3.1 Cancer -related pathways 

PTEN has been identified as central regulatory element in many cellular processes, including cell 

growth, migration, apoptosis, adhesion and DNA repair [440,441]. Much of the research into the 

cellular role of PTEN has been focused on its tumour suppression function that takes place via 

inhibition of the PI3K/Akt pathway [382]. Important studies have shown that the PI3K/Akt pathway is 

associated with both apoptosis and cancer cells proliferation and survival [442,443]. The intracellular 

protein Akt (also known as protein kinase B, PKB) plays a central role in this pathway as it controls 

the signal responsible for the modulation of many cellular functions, including cell cycle regulation, 

cell growth, apoptosis, angiogenesis, protein synthesis, transcription and proliferation among others 

[444,445]. The activation of Akt is achieved through a multistage process, involving the recruitment of 

the protein to the plasma membrane and its activation via phosphorylation operated by specific protein 

kinases. Initially, Class IA phosphoinositide 3-kinases (PI3Ks) catalyze the formation of 

PtdIns(3,4,5)P3 upon activation of specific growth factors receptors tyrosine kinases (RTKs) [445]. 

The PtdIns(3,4,5)P3 binds to Akt at the plasma membrane, and this activates the phosphoinositide-

dependent kinase PDK1 to phosphorylate Akt at Thr308 on the catalytic domain of the protein 

[444,446]. The phosphorylation of the Ser473 residue in the C-terminal is also required for the full 

kinase activation [447]. There is evidence suggesting that the mTOR-RICTOR complex is the major 

kinase responsible for the phosphorylation of Akt at Ser473, but other kinases might be involved as 

well [448,449]. The activation of Akt results in increased kinase activity towards pro-apoptotic factors, 

including the Bcl-2 family member BAD (Bcl-2-associated death promoter) [450], caspase-9, GSK-3, 

and many others [428]. In addition, Akt activates mammalian target of rapamycin (mTOR) [451], 
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which promotes translation initiation, a process linked to cancer [452]. Extensive work has been done 

to demonstrate the involvement of PTEN in the Akt pathway and to elucidate the mechanism through 

which PTEN exerts its anti-tumorigenic function [453,454]. PTEN specifically dephosphorylates the 

signaling intermediate PtdIns(3,4,5)P3 to PtdIns (4,5)P2, therefore suppressing the PI3K-dependent 

signaling cascade that leads to the activation of Akt (Figure 1.15). 

Furthermore, many studies have shown a close relationship between the Akt/PI3K/PTEN pathway 

and the signaling pathways of p53 (tumour protein 53, TP53), another tumour suppressor [455]. 

Growth factor-activated Akt promotes MDM2 (mouse double minute 2 homolog) translocation to the 

nucleus, where MDM2 interacts with p53 and initiate its proteasomal degradation [456,457]. There is 

evidence suggesting that by antagonizing the Akt/PI3K pathway, PTEN protects p53 from MDM2-

mediated proteosomal degradation, therefore promoting p53 tumour suppressing function [457].  

While the tumour suppression function of PTEN has been mainly associated with its lipid 

phosphatase activity, accumulating lines of evidence suggest that PTEN protein phosphatase activity 

plays an important role in cell cycle regulation [458]. PTEN can dephosphorylate the integrin-

signaling protein FAK (focal adhesion kinase), thereby reducing focal adhesion formation and 

blocking the downstream activation of the p130 Crk-associated substrate (p130CAS), which promotes 

cell migration and growth [459]. In addition, PTEN dephosphorylates the integrin Shc/Grb2/Sos 

complex, blocking the activation of the MAPK/ERK pathway [460], which regulates cell motility and 

migration [461] and is implicated in cell growth and cycle progression [462,463]. There is also 

evidence that PTEN may autodephosphorylate its C-terminal tail at Thr366, with important 

implications for PTEN-mediated tumour suppressing phenotypes [434]. 
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Figure 1.15 Cellular networks involving PTEN tumour suppression activity  

PTEN is involved in a number of cancer-related signal transduction pathways by means of both its 

lipid phosphatase and protein phosphatase activity. Picture modified from editable pathway map 

obtained from SABiosciences. 

1.4.3.2 Regulation of PTEN by protein-protein interactions 

Many PTEN protein-protein interactions (PPIs) have been identified and characterized in Homo 

sapiens (Appendix, Section 8.4). There is growing evidence that  PPIs play a relevant role in the 

regulation of PTEN function, stability and subcellular localization, and it is likely that the molecular 

dynamics controlling these interactions are modulated in altered cellular conditions such as those 

found in disease states [445]. 

Many PTEN-interacting proteins have been shown to activate PTEN by controlling its subcellular 

localization, regulating its stability and preventing its degradation. PTEN interacts with RhoA-
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associated kinase (ROCK) which can exert positive modulation of PTEN enzymatic activity and 

promote its recruitment to leukocytes membrane by phosphorylating its C2 domain [427,464]. PTEN 

has been shown to interact with melanocortin-1 receptor (MC1R) and Rak kinase (also known as Fyn-

related kinase, FRK), which are both involved in preventing PTEN degradation by antagonizing its 

polyubiquitination mediated by E3 ligases [465,466]. PTEN has also been shown to interact with 

PICT-1 (protein interacting with carboxyl terminus 1) which plays a role in the regulation of PTEN C-

terminal tail phosphorylation and degradation [467]. PICT-1 binds the C-terminus of PTEN and 

promotes its phosphorylation by CK2 (casein kinase 2) and GSK3β (glycogen synthase kinase 3β), 

which has been shown to be associated with increased protein stability [432]. PTEN also interacts with 

members of the membrane guanylate-kinase inverted (MAGI) family, such as MAGI-2, which can 

prevent PTEN degradation by favoring its recruitment into high molecular complexes [468]. Other 

studies have further demonstrated that PTEN-MAGI-2 interaction also results in PTEN stabilization, 

and leads to the inhibition of cell proliferation and migration [469]. Another important PTEN direct 

interaction having a significant effect on PTEN activity is he EGF-dependent association with the PI3 

kinase regulatory subunit p85a, which appears to promote a positive regulation of PTEN  lipid 

phosphatase activity [470]. PTEN has also been shown to bind the tumour suppressor p53 at its C2 

domain, resulting in to increased p53 levels, which in turn leads to up-regulation of PTEN own 

expression, as p53 can also regulates PTEN transcription [471,472]. 

A number of proteins were found to interfere with PTEN phosphatase activity and tumour 

suppressing function by direct interaction. Among those, PtdIns(3,4,5)P3-dependent RAC exchange 

factor 2a (P-REX2a), a component of the PI3K/Akt pathway which is overexpressed in cancer cells, 

has been shown to bind PTEN inhibiting its lipid phosphatase activity increasing Akt phosphorylation 

and tumour growth [473]. Likewise, the shank-interacting protein–like 1 (SIPL1) was also found to 

abrogate PTEN-mediated tumour suppression and inhibiting its lipid phosphatase activity by direct 

interaction, although no concomitant Akt activation was reported [474]. Another PTEN-interacting 

protein involved in inhibition of PTEN activity is α-mannosidase 2C1 (MAN2C1), which is also 

upregulated in cancer, and appears to negatively regulate PTEN phosphatase activity and disturb its 

subcellular localization [429]. In addition, PTEN is negatively regulated by its interaction with DJ-1 

(also known as Parkinson protein 7, PARK7), a tumour-promoting protein that is capable of inhibiting 
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PTEN catalytic activity, resulting in increased cell proliferation and apoptosis due to enhanced Akt 

phosphorylation [475]. 

 

1.4.3.3 Redox regulation of PTEN 

The effect of ROS-mediated oxidation on PTEN catalytic activity has important implications for 

both PTEN tumour suppressing function and signaling role in the cell. Many peptide growth factors 

that are responsible for the activation of Akt such as insulin, the platelet-derived growth factor (PDGF) 

receptor (PDGFR) and epidermal growth factor (EGF) receptor (EGFR), also trigger the generation of 

ROS, which can inactivate cytosolic PTEN, therefore blocking its tumour suppression activity [144]. 

The transmembrane NADPH oxidase Nox4 (or Nox1), has been identified as the main source of H2O2 

production in non-phagocytic cells initiated by growth factors stimulation [476]. Nox4 has been shown 

to be activated by PtdIns(3,4,5)P3, which triggers the increased generation of H2O2 resulting in the 

oxidation of PTEN [144]. As the disulfide bond between Cys71 and Cys124 is formed in PTEN active 

site upon oxidation, the lipid phosphatase activity of PTEN is inhibited, resulting in the accumulation 

of PI3K-generated PtdIns(3,4,5)P3 and consequent Akt activation. PtdIns(3,4,5)P3 can be 

dephosphorylated by both PTEN and 5-phosphatases, but it is likely that accumulating PtdIns(3,4,5)P3 

in oxidizing cellular conditions is primarily due to PTEN inactivation [144].  

The reversible character of the oxidative-induced disulfide bond in the active site of PTEN is 

particularly important for the redox regulation of the phosphatase and may be critical as a redox-

sensing mechanism for the regulation of various cellular processes, including those linked to its 

tumour suppressing function. Important publications have shown that PTEN is inactivated when 

treated with oxidizing agents in vitro, as well as in cells exposed to oxidative stress conditions 

[423,477]. Reversible inactivation of PTEN has been shown upon hydrogen peroxide oxidation, and 

results in the formation of a disulfide bond between Cys71 and the active site Cys124, in the N-

terminal PD of the protein [144]. It has been reported that the thioredoxin system is responsible for the 

re-reduction of the H2O2-induced Cys71-Cys124 disulfide with a NADPH-dependent thiol-disulfide 

exchange mechanism. The antioxidant thioredoxin-1 (Trx) binds the C2 domain of PTEN and is 

capable of completely restoring its activity following H2O2-mediated inactivation [144,423]. 

Interestingly, other authors have shown that in cells treated with H2O2, oxidized thioredoxin-1 forms a 
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disulfide bond with Cys212 in the C2 domain of PTEN, causing PTEN inactivation and promoting 

tumorigenesis due to increased Akt activation [478]. The interaction between PTEN and the 

thioredoxin peroxidase peroxiredoxin-1 (Prdx1) has also been proposed as a possible mechanism to 

protect PTEN from hydrogen peroxide-induced reversible inactivation, therefore preserving its tumour 

suppressing function [479]. Conversely, with high concentration of H2O2 the interaction PTEN/Prdx1 

was reduced, possibly due to oxidative damage to Cys51 of Prdx1, resulting in the dissociation of the 

complex, as this residue may be exposed to further oxidation when Prdx1 interacts with PTEN [480]. 

Other authors have investigated the interaction between PTEN and its negative regulator and tumour 

promoter PARK7, which was found increased in mammalian cells treated with H2O2, in accordance 

with other lines of evidence showing an existing relationship between tumorigenesis and excess ROS 

production [481]. 

Additionally, S-nitrosylation of Cys83 was also reported in PTEN following NO-mediated 

oxidation, with inhibition of PTEN activity, activation of Akt and increased cell survival [482]. Unlike 

H2O2, NO has not been shown to induce the formation of Cys71-Cys124 disulfide bond in the active 

site of PTEN, suggesting different redox-regulation mechanisms depending on the reactive molecules 

involved [482].  
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1.4.4 Aims of the work presented in this thesis 

With growing interest for the role of ROS in the onset and progression of age-related diseases such 

as cancer [168], it is becoming increasingly important to understand the structural and signaling 

dynamics of redox-sensing proteins such as PTEN. Although PTEN structure, function and role in 

signaling pathways have already been characterized to some extent, few studies have addressed its 

signaling role and modification status under oxidative stress conditions.  

The research elaborated in this PhD thesis focuses on the analysis of the functional effect of ROS-

mediated oxidation on PTEN structure and interacting partners. The experimental strategies 

implemented have been designed to investigate a signaling and damaging role of reactive species in 

relationship to PTEN protein function. Three research studies are described in this thesis and are 

summarized below: 

1) Mass spectrometry generated quantitative mapping and functional proteomics of PTEN 

oxidative post-translational modifications (Chapter 3). In this in vitro study is described the 

oxPTMs mapping of irreversibly oxidized PTEN and its relationship to its drop in catalytic 

activity. The aim of the research elaborated in this study was to investigate the effect of 

inflammation-mimicking HOCl oxidizing conditions on the modification state of the protein, in 

order to identify key residues that are best correlated with PTEN phosphatase activity.  

2) Analysis of PTEN protein-protein interactions in its reduced and oxidized form by GSH-

affinity enrichment and label-free MS quantitation (Chapter 4). This in vitro study 

addressed the investigation of the effect of H2O2-mediated reversible oxidation on PTEN 

protein-protein interactions and oxPTMs. The aim of the study was to characterize and 

compare the protein-protein interaction of an active (reduced) and inactive (disulfide) PTEN in 

order to elucidate the role of ROS in modulating the signaling pathways involving PTEN.  

3) Validation and in vivo profiling of PTEN protein-protein interactions in proteomics 

workflows (Chapter 5). This chapter contains in vivo experimental work carried out to follow 

up on the in vitro study described in Chapter 4. The aim of the study was to perform an in vivo 

validation of selective PTEN interactors detected with the method described in Chapter 4, and 

to analyze the interaction profile of those PTEN-binding proteins under oxidative stress 

conditions in cellulo.  
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2.1 Introduction 

2.1.1 Chapter contents 

This chapter describes the general procedures carried out for the experimental work presented in 

this thesis, including molecular biology techniques, protein expression and purification, biochemistry 

techniques, mass spectrometry, and bioinformatics tools.  Experimental methods specific to individual 

chapters (Chapter 3, 4 and 5) are described separately in the appropriate Materials and Methods 

section (Sections 3.3, 4.3, and 5.3). 
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2.2 General information 

2.2.1 Health and Safety 

Risk assessment forms COSHH (Control of substances hazardous to health) and/or MSDS 

(material safety data sheet) form have been used as reference for all the health and safety implications 

for every reagents and protocols used in the laboratory, including commercial kits and stock 

chemicals. For every experiment performed, the corresponding COSHH form was carefully read and 

signed before commencing any laboratory work. 

Biological waste such as tissue culture waste and bacterial cultures waste was disinfected with 1% 

Virkon before disposal. All laboratory equipment used with all kind of biological samples was 

disposed for incineration. Chlorinated and non-chlorinated solvent waste was disposed via the 

appropriate route. 

Ethical implication were also considered regarding samples, protocols and reagents implemented 

and assessed alongside health and safety matters. 

2.2.2 Sterility measures 

All reagents, glassware, pipet tips, tubes, and other material used for sterile applications were 

autoclaved using the Aston University autoclave service. Large laboratory equipment and laboratory 

furniture used for sterile applications were sterilized with 70% ethanol. 

2.2.3 Reagents 

All reagents were stored at recommended temperature and conditions. All reagents were purchased 

from Fisher Scientific (Loughborough, UK), unless otherwise indicated. All solvents used were of LC-

MS grade and Milli-Q water was used at all times. All solutions where solvent is not specified were 

prepared in Milli-Q water.  
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All described reactions and experimental procedures were carried out under normal atmospheric 

conditions and at room temperature unless otherwise specified. All laboratory equipment was operated 

under normal atmospheric conditions and at room temperature unless otherwise specified. 
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2.3 Cell Culture 

2.3.1 Cells propagation 

HCT116 cells (wild-type) were obtained by Rudiger Woscholski’s lab at ICL (Imperial College 

London).  

2.3.2 Sterility measures 

All tissue culture operations were performed strictly under a Class 2 Microbiological Safety cabinet 

(MSC advantage, Thermo Fisher Scientific, Hemel Hempstead, UK) under laminar flow conditions. 

The work surface inside the cabinet was sprayed with 70% ethanol before use. Water baths were 

sanitized using AQUASAN sanitizing tablets (Guest Medical Limited, UK). All laboratory equipment, 

reagents, and tissue culture vessels to be used inside the cabinet were sprayed with 70% ethanol before 

use. 

2.3.3 Cells growth and maintenance 

Tissue culture operations were performed using disposable sterile Serological pipettes (Appleton 

Woods, Birmingham, UK) controlled by a motorized pipetting controller (Fisherbrand, UK). HCT116 

cells were cultured in canted neck, tissue culture-treated, nonpyrogenic, sterile flasks (Appleton 

Woods, Birmingham, UK), grown in Dulbecco's modified Eagle medium (DMEM, 41966, Life 

technologies, Paisley, UK) supplemented with 10% fetal bovine serum (Life technologies, Paisley 

UK) and maintained at 37ºC, 5% CO2 in the controlled incubator Sanyo MCO-18AIC (Sanyo, UK), 

equipped with vapor withdrawal CO2 cylinders (BOC, UK). Cell confluency and health were observed 

using the inverted microscope Olympus CK2 (Olympus Optical Co., Japan). Phosphate buffered saline 

(PBS) tablets (Sigma-Aldrich Chemical Co., Poole, UK) were used to prepare 0.01 M phosphate 

buffer pH 7.4, 0.0027 M potassium chloride and 0.137 M sodium chloride, used to wash the cell layer. 

For harvesting, 0.25% Trypsin EDTA phenol red (25200-056, Life technologies, Paisley, UK) was 
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added to the cell layer, incubated for 10 minutes with occasional shaking. Next, the cells were 

resuspended in fresh medium for sub-culturing. Before use, Growth Medium, Trypsin EDTA and fetal 

bovine serum were warmed in a water bath (Jb Nova Water Bath, Grant, UK) set at 37 ºC. 

2.3.4 Cell counting 

50 µL of cell suspension were mixed with 100µl PBS and 50µL 0.4% Trypan Blue (Sigma-Aldrich 

Chemical Co., Poole, UK). 20µL of this mixture was added onto haemocytometer (Superior, 

Germany), and the live cells counted with a tally counter (Uniwise group, China). 

 

2.3.5 Cell storage and recovery  

The cell suspension was spun down at 500xg at room temperature in an Eppendorf 5810R 

(Eppendorf UK Ltd, Stevenage, UK) centrifuge, the medium removed and replaced with FBS (Life 

technologies, Paisley UK), supplemented with 10% DMSO and pre-warmed to 37 ºC. Next, the cell 

suspension was aliquoted in sterile cryogenic vials (Fisher, US), transferred to -80°C overnight, and 

stored in liquid nitrogen. For thawing, cryovials were removed from the liquid nitrogen, quickly 

placed in 37ºC water bath while swirling the tube, and the cell suspension pipetted out into tissue 

culture flask containing pre-warmed DMEM medium, supplemented with 10% FBS. The cell vessel 

was placed in the controlled incubator, and the culture medium was changed after 24 hours.  
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2.4 Molecular Biology 

2.4.1 Sterility measures 

All microbiology work that needed sterile conditions was performed close to a Bunsen burner 

flame.  

2.4.2 Source of Plasmid expression systems 

The plasmid vector systems PGEX-4T1 containing the Glutathione S-transferase (GST)-PTEN 

cDNA and PEGFP-C1 containing the Enhanced Green Fluorescent protein (EGFP) PTEN cDNA were 

obtained from Rudiger Woscholski’s lab at ICL (Imperial College London). The plasmid sequences 

and maps are shown in the Appendix (Section 8.1). 

 

2.4.3 Preparation of Calcium competent E.coli DH5α cells 

1L of bacterial growth medium Luria Broth (LB) was prepared using 5g of yeast extract, (Fisher 

Scientific, UK), 10g of bacto-tryptone (Fisher Scientific, UK), 10g NaCl (Sigma-Aldrich Chemical 

Co., Poole, UK), pH 7.5, made up to 1L with Milli-Q water. A 5 mL overnight E.coli cell culture was 

set up and grown at 37°C in a shaking incubator (Infors AG, Bottmingen, Switzerland) at 180 rpm. 1 

mL of this culture was used to inoculate 2 x 100 mL LB and further grown at 37 °C in the shaking 

incubator at 180 rpm for 3 hours. The absorbance was monitored the OD at 600 nm using a UV/Vis 

spectrophotometer (PerkinElmer™ instruments, PTP-6 Peltier System, Lambda 35 UV/Vis 

Spectrophotometer, Llantrisant, UK). When the cultures reached approximately OD = 0.6, the cells 

were harvested by centrifugation at 2000xg, 20min using Sorvall Legend XTR centrifuge (Thermo 

Fisher Scientific, Hemel Hempstead, UK) equipped with TX-750 Swinging Bucket. The supernatant 

was discarded and the pellet resuspended in 10 mL of ice-cold 0.1M CaCl2 (Sigma-Aldrich Chemical 

Co., Poole, UK). The suspension was left on ice for 20 minutes and the cells harvested again by 
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centrifugation at 2000xg, 20min using the Sorvall Legend XTR centrifuge. The supernatant was 

discarded and the cell pellet resuspended in 3 mL of ice-cold 0.1M CaCl2 15% glycerol. Cells were 

then aliquoted by dispensing 100 µL into microcentrifuge tubes, frozen on dry ice/ethanol and stored 

at -80°C for later use.  

2.4.4 Transformation of competent DH5α E.coli cells  

1L of bacterial growth medium Luria Broth (LB) was prepared using 5g of yeast extract, 10g of 

bacto-tryptone,10g NaCl, pH 7.5, made up to 1L with high quality distilled water. The LB broth was 

autoclaved and stored at 4°C. Selective additives were added immediately before inoculation: 100x 

Ampicillin sodium salt (Sigma-Aldrich Chemical Co., Poole, UK) was added to LB media to a final 

concentration of 100 µg/mL; 100x Kanamycin sulphate (Sigma-Aldrich Chemical Co., Poole, UK) 

was added to LB media to a final concentration of 30 µg/mL. LB Agar used to prepare plates was 

made using LB medium with the addition of 1.5% of bacto-agar, (DIFCO, US). LB Agar was 

autoclaved, cooled down at 55°C, and then additives were added right before pouring into petri dishes: 

100x ampicillin sodium salt was added to LB agar to a final concentration of 100 µg/mL; 100x 

kanamycin sulphate was added to LB agar to a final concentration of 30 µg/mL.  

E. coli DH5α Calcium chloride-competent cells competent cells were taken from the -80°C freezer 

and kept on ice. E. coli calcium-competent cells (100μL) were transformed by incubating on ice with 

1μL of either PGEX-4T1-GST-PTEN or PEGFP-C1-EGFP-PTEN plasmid DNA for 30 minutes, heat 

shocking at 42°C for exact 90 seconds, followed by incubation on ice for 2 minutes. The cells 

suspension was pre-incubated at 37°C in a shaking incubator (Infors AG, Bottmingen, Switzerland) at 

180 rpm for 1 hour, and then plated in petri dishes onto sterile LB-agar containing fresh 100 µg/mL 

ampicillin or 30µg/mL kanamycin. A glass spreader dripped with 100% ethanol was used to spread 

cells on the plates under a blue Bunsen burner flame. The plates were sealed with laboratory film 

(Pechiney Plastic Package, US) and incubated at 37°C for 16-21 hours in a plate incubator (Lenton 

Thermal Design, UK).  
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2.4.5 Preculture 

Isolated bacterial colonies obtained from the transformation of E. coli DH5α Calcium chloride-

competent cells were picked up from the agar plate, and pre-cultured in 10 mL of LB Broth medium 

supplemented with 100 µg/mL ampicillin or 30 µg/mL kanamycin at 180 rpm for 16 hours at 37°C. 

2.4.6 Plasmid DNA preparation 

Precultures of E. coli DH5α transformed with PGEX-4T1-GST-PTEN or PEFGP-C1-EGFP-PTEN 

expression plasmid were further grown in 100 mL of LB broth medium supplemented with 100 µg/mL 

ampicillin or 30 µg/mL kanamycin at 37 ºC and at 180 rpm in a shaking incubator (MAXQ 8000, 

Thermo Fisher Scientific, Hemel Hempstead, UK). DNA midipreparation (Midiprep) or 

maxipreparation (Maxiprep) was performed with the PureYield™ Plasmid Midiprep (Promega, US), 

and the PureYield™ Plasmid Maxiprep System (Promega, US), following the recommended protocol. 

All the centrifugation steps were performed using a Sorvall Legend XTR centrifuge (Thermo Fisher 

Scientific, Hemel Hempstead, UK) equipped with TX-750 Swinging Bucket. Once the plasmid DNAs 

were eluted, the concentration and the purity were checked monitoring absorbance ratios at 260/280 

nm and 260/230 nm using Nanodrop 2000c UV-Vis Spectrophotometer (Thermo Fisher Scientific, 

Hemel Hempstead, UK). The obtained DNA concentration values were compared with reference 

values provided by the manufacturer. 
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2.5 Protein expression and purification 

2.5.1 PTEN-GST expression 

Precultures of E. coli DH5α transformed with PGEX-4T1-GST-PTEN expression plasmid were 

further grown in 1L LB Broth medium supplemented with 100 µg/mL ampicillin at 37 ºC and at 180 

rpm in a shaking incubator (MAXQ 8000, Thermo Fisher Scientific, Hemel Hempstead, UK), while 

measuring the optical density at 600 nm (OD600) with a MultiScan GO Microplate Spectrophotometer 

(Thermo Fisher Scientific, Hemel Hempstead, UK). When the OD600 reached 0.5-0.6, isopropyl beta-

D-1-thiogalactopyranoside (IPTG) was added to a final concentration of 1 mM to induce protein 

expression, and the cultures grown for a further 24 hours at 23 ºC. The cells were harvested by 

centrifugation at 4600 rpm for 20 minutes at 4 ºC in a Sorvall EVOLUTION RC centrifuge (Thermo 

Fisher Scientific, Hemel Hempstead, UK) equipped with FIBERLite® F8-6x1000y rotor (Piramoon 

Technologies Inc, USA). Pellets were resuspended in 50 mM Tris pH 7.4 (Trizma base, Sigma-

Aldrich Chemical Co., Poole, UK); supplemented with EDTA-free protease inhibitor cocktail (Catalog 

no.11 873 580 001, Roche Diagnostics GmbH, Mannheim, Germany), the suspension was centrifuged 

at at 4700 rpm for 20 minutes at 4 ºC in a Sorvall Legend XTR centrifuge (Thermo Fisher Scientific, 

Hemel Hempstead, UK) equipped with TX-750 Swinging Bucket Rotor for 20 min at 4°C and stored 

at -20ºC. Cells were lysed in 50 mM Tris pH 7.4, 2 mg/mL lysozyme, 2 mM EDTA (BDH limited, 

UK), 2 mM DTT, 1% Triton, supplemented with EDTA-free protease inhibitor cocktail by 

ultrasonication (UP50H, Ultrasonic processor, Hielscher ultrasound technology) for 5 cycles of 1 

minute pulsing and 2 minutes of rest on ice, and finally with a Potter homogenizer until the suspension 

no longer appeared viscous. The homogenized suspension was centrifuged at 4°C for 45 minutes at 

14,780xg in a Jouan Gr2022 centrifuge (Thermo Fisher Scientific, Hemel Hempstead, UK), the pellet 

discarded and the supernatant filtered through a 0.45 µM syringe filter (Millex® Syringe-driven filter 

unit, Millipore Ltd, Feltham UK).  
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2.5.2 PTEN-GST protein purification  

All purification steps were performed at 4ºC. A 10 mL chromatography column (Econopack, 

BioRad, US) was mounted on a suspension clamp stand, secured with a cap and equipped with a 

valve. The column was packed with Glutathione Sepharose 4B beads (GE Healthcare, Little Chalfont, 

UK) added to a final bed volume of approximately 5 mL, and pre-equilibrated with 50 mM Tris pH 

7.4, 140 mM NaCl, 2.7 mM KCl (Tris column buffer). The filtered cell extract was loaded onto the 

column and allowed to flow through by gravity. A series of reducing saline wash buffers were then 

loaded onto the column and allowed to flow through in the following order: 25 mL of Tris column 

buffer containing 1% Triton X-100 and 2 mM DTT; 40 mL of Tris column buffer containing 2 mM 

DTT; 40 mL of 50 mM Tris pH 7.4, 500 mM NaCl, 2.7 mM KCl, 2 mM DTT. Next, 10 mL 50 mM 

Tris pH 7.4, 20 mM reduced L-Glutathione, 250 mM NaCl, 2 mM DTT (elution buffer) were added, 2 

mL were allowed to flow through, at which point the valve was closed and the beads incubated with 

elution buffer overnight. The valve was then opened, and the flow-through collected while pouring 

additional elution buffer (10 mL) onto the column. The protein solution was then concentrated in the 

Amicon® Ultra-15 centrifugal filter device (Millipore Ltd, Feltham UK), according to the 

manufacturer’s instruction by centrifugation at 4ºC in the Sorvall Legend XTR centrifuge (Thermo 

Fisher Scientific, Hemel Hempstead, UK) equipped with TX-750 Swinging Bucket Rotor. Bradford 

protein assay was used to determine the concentration of the purified PTEN-GST. Serial dilution of 

Bovine Serum Albumin standards (Thermo Fisher Scientific, Hemel Hempstead, UK) were used to 

plot a standard curve from which to obtain the sample protein concentration. Both the standard and the 

samples were loaded in triplicates on a 96-well clear plate (Nunc, Thermo Fisher Scientific, Hemel 

Hempstead, UK). The assays were performed using Coomassie Stain Plus Bradford Assay (Thermo 

Fisher Scientific, Hemel Hempstead, UK) according to the manufacturer’s instruction. A BioTek® 

plate reader (Biotek, UK) and was used to measure absorbance at 570 nm. Next, purified PTEN was 

prepared in 50% glycerol (Analytic reagent grade, Fisher Chemical, UK), aliquoted out in single vials, 

and stored at -80°C. 
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2.6 Biochemistry techniques 

2.6.1 SDS-PAGE gel electrophoresis 

SDS-PAGE was performed using an X-Cell Sure Lock ® module (Life technologies) connected to 

a BioRad powerpack (BioRad, US). A 12% acrylamide gel was made by adding 3.4 mL of water, 2.5 

mL of 1.5M Tris pH 8.8 (gel resolving buffer), 4.0 mL of 40% acrylamide/bis acrylamide 37.5:1 

(Sigma-Aldrich Chemical Co., Poole, UK), 100 μL of 10% Sodium dodecyl sulphate (Sigma-Aldrich 

Chemical Co., Poole, UK) , 90 μL of 10% ammonium persulfate (APS, Sigma-Aldrich Chemical Co., 

Poole, UK), 12μL of TEMED (NNN’-N’ Tetramethylethylenediamine, BDH Limited, UK). The 4% 

stacking gel was prepared by adding 2.0 mL of water, 830μL of 1.0M Tris pH 6.8 (Stacking buffer), 

440μL of 40% acrylamide/bis-acrylamide 37.5:1, 33 μL of 10% SDS, 20 μL of APS, 5 µL of TEMED. 

Running Buffer for the gel was prepared as a 10X solution with 30g Tris, 144g Glycine (Fisher 

Scientific, Loughborough, UK), 10g of SDS, pH 8.3, made up to 1L with water. Protein samples were 

mixed with 2x SDS-PAGE Sample Buffer (Laemmli 2X Concentrate, Sigma-Aldrich Chemical Co., 

Poole, UK) in a 1:1 ratio and loaded with gel loading tips into wells. 5μL of PageRuler™ Plus 

Prestained Protein Ladder (Thermo Fisher Scientific, Hemel Hempstead, UK) was loaded as protein 

visible marker. The gels were run at 80V for 15min, before increasing to 120V when the visible dye 

front reached the resolving gel. 

2.6.2 Coomassie-staining of proteins 

After the electrophoresis run, the gels were taken out of the tank module and stained with 

Coomassie Brilliant Blue stain solution prepared by adding 0.5g Coomassie dye to 100 mL of 45% 

methanol, 45% H2O and 10% acetic acid. The gels were then immersed for 12-16 hours in the staining 

solution with gentle shaking on the Stuart SS-M1 orbital mini shaker (Bibby Scientific, Stone, UK). 

The following day the gels were destained using a destain solution made of 45% methanol, 45% H2O 

and 10% acetic acid. The gels was placed in the destain solution and left on the rotational shaker until 

clear bands were visible on the gel. The destain solution was renewed twice over time. Alternatively, 
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gels were also stained using Coomassie Instant Blue (Expedeon, Cambridge, UK), by immersing for 1 

hour in the staining solution. No destaining procedure was necessary after staining with this system. 

To obtain images of gels displayed in this work, a G:BOX system (Syngene, Cambridge, UK) running 

the GeneSys software (Syngene, Cambridge, UK). 

2.6.3 Protein phosphatase activity assay 

The phosphatase activity of PTEN was measured by monitoring the hydrolysis of the artificial 

substrate 3-O-methylfluorescein phosphate (OMFP) to 3-O-methylfluorescein (OMF). 3-O-

methylfluorescein phosphate cyclohexylammonium salt (Sigma-Aldrich Chemical Co., Poole, UK) 

was prepared in dimethyl sulfoxide (DMSO) to a final concentration of 20 mM. After vigorous 

vortexing, sonication in a water bath (Ultrawave limited, Cardiff, UK) for 30 minutes was used to 

complete the solubilization. Each sample analyzed with the OMFP assay was prepared mixing 10x 

Assay Buffer (150 mM Tris, 10 mM EDTA, 750 mM NaCl, pH 7.4) with an aliquot of the purified 

protein sample (usually 60µg), and made up to 600 µL with water. 600 µL 1X Assay buffer was 

prepared as a negative control. Each sample was used to load three technical replicates (200 µl each) 

onto a black 96-well plate (Nunc, Thermo Fisher Scientific, Hemel Hempstead, UK). The 20 mM 

OMFP solution previously prepared was diluted in a 2:48 molar ratio with 1 M Tris pH 7.4, and 50 µL 

of the resulting substrate mix was pipetted into each of the well of the 96-well plate containing the 

samples. The change in relative fluorescence units (RFUs) due to released OMF was determined with 

at excitation 485 nm and emission at 525 nm and cutoff at 515 nm continuously over 20 minutes using 

a Spectra MAX GEMINI XS Fluorescence plate reader (Molecular Devices Ltd, Wokingham, UK) 

controlled with the Softmax Pro® software. The settings of the Spectra MAX GEMINI XS device 

were as follows. Temperature: 25ºC. Mode: Kinetic. Read mode: Fluorescence (RFUs). Wavelengths: 

1; Excitation 485; Emission 525; Cutoff 515. Sensitivity: readings sensitivity 30 (precise); PMT 

sensitivity medium. Timing: Run time 20:00; interval 15 sec. Automix: before first read 10 sec; 

between reads 3 sec; Autocalibrate: on (calibrate once). Autoread: on, delay 0 sec. Reduction settings 

were as follows. Wavelength combination:!Lm1. Kinetic Reduction: Onset time; Onset RFU 10. 

Limits: RFU min 0; RFU max 400000; Lag time 0:00; End Time 20:00.  An OMF calibration curve 



Chapter 2. General Materials and Methods 

 102   

was produced by dissolving OMF (Apollo Scientific, Denton, UK) in dimethyl sulfoxide to a final 

concentration of 20µM. Serial dilutions of this solution were assayed using the standard conditions 

against a DMSO blank. The nmol of OMF were plotted against net RFU to generate the calibration 

curve. The protein specific activity was calculated as follows: 

 

 𝑒𝑛𝑑 𝑅𝐹𝑈 (𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝑏𝑙𝑎𝑛𝑘)−𝑠𝑡𝑎𝑟𝑡 𝑅𝐹𝑈 (𝑝𝑟𝑜𝑡𝑒𝑖𝑛−𝑏𝑙𝑎𝑛𝑘)

𝑡𝑖𝑚𝑒 𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑠𝑠𝑎𝑦 (min)
  

 

to give the amount of RFU/min which was converted in nmol(OMF)/min using the slope-intercept of 

the OMF calibration curve. 
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2.7 Mass spectrometry 

2.7.1 In-gel digestion for mass spectrometry  

The gel pieces were washed twice with 500 µL 100 mM NH4HCO3 and twice with 100 mM 

NH4HCO3/50% Acetonitrile. Reduction was performed adding 10 µL of 45 mM DTT (Sigma-Aldrich 

Chemical Co., Poole, UK) to 150 µL NH4HCO3 and incubating at 60ºC for 30 mins. Cysteine 

alkylation was performed by adding 10 µL of 100 mM iodoacetamide (Sigma-Aldrich Chemical Co., 

Poole, UK) to 150 and incubating at room temperature for 30 mins in the dark. The gel pieces were 

washed in 100 mM NH4HCO3/50% acetonitrile and incubated in 50 µL of 100% acetonitrile for 10 

min. The gel pieces were then dried completely in a centrifugal evaporator and resuspended in 25 µL 

of 0.1 µg/µL trypsin (Trypsin Gold, Mass Spectrometry Grade, Promega, Southampton, UK) in 50 

mM acetic acid. 100 µL 40 mM NH4HCO3/10% acetonitrile was added to the gel pieces, which were 

incubated overnight at 37 ºC. The gel pieces were pelleted by centrifugation and the supernatant was 

collected in a fresh tube. Peptide extraction from the gel pieces was performed by adding 20 µL 5% 

formic acid and incubating at 37 ºC for 20 mins, followed by addition of 40 µL acetonitrile and 

incubation for 20 mins at 37 ºC. The gel pieces were pelleted by centrifugation, and the supernatant 

was combined with the first extract; this procedure was repeated twice.  The peptide extracts were 

dried completely in a vacuum centrifuge and resuspended in a volume up to 50 µl of 98% H2O, 2% 

acetonitrile, 0.1% formic acid (HPLC solvent A) and loaded into screw top glass autosampler vials 

(Chromacol, Speck and Burke analytical, Clackmannanshire, UK). 

 

2.7.2 LC-MS 

Peptides were separated and analyzed using an Ultimate 3000 system (Dionex, Camberley, UK) 

coupled to a 5600 TripleTOF (ABSciex, Warrington, UK) controlled by Chromeleon Xpress and 

Analyst software (TF1.5.1, ABSciex, Warrington, UK). Enrichment and desalting of the peptides was 

achieved using a C18 pre-column (C18 PepMap™, 5 μm, 5 mm × 0.3 mm i.d. Dionex, Bellefonte, PA, 
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US) washing for 4 min with aq. 2% acetonitrile, 0.1% formic acid at 30 μL/min. The peptides were 

then separated on a C18 nano-HPLC column (C18 PepMap™, 5 μm, 75 μm i.d. × 150 mm, Dionex, 

Dionex, Camberley, UK) at 300 nL/min using a gradient elution running from 2% to 45% aqueous 

acetonitrile (0.1% formic acid) over 45 min followed by a washing gradient from 45% to 90% aq. 

acetonitrile (0.1% formic acid) in 1 min. The system was washed with 90% aq. acetonitrile (0.1% 

formic acid) for 5 min and then re-equilibrated to the starting solvent. Ionization of the peptides was 

achieved with spray voltage set at 2.4 kV, a source temperature of 150°C, declustering potential of 50 

V and a curtain gas setting of 15. Survey scans were collected in positive mode from 350 to 1250 Da 

for 200 ms using the high resolution TOF-MS mode. Information-dependent acquisition (IDA) was 

used to collect MS/MS data using the following criteria: the 10 most intense ions with + 2 to + 5 

charge states and a minimum of intensity of 200 cps were chosen for analysis, using dynamic 

exclusion for 12s, and a rolling  collision energy setting.  

2.7.3 Label-free quantification with Progenesis QI for proteomics 

The LC-MS runs acquired with the 5600 Triple TOF were loaded as .wiff files onto the software 

Progenesis QI for Proteomics (Non Linear Dynamics, Newcastle upon Tyne, UK), implemented for 

the label-free quantification of proteins and peptides throughout the research elaborated in this thesis. 

For each LC-MS run of interest, elution profile and isotope pattern of the analyzed peptides were 

integrated in a 2D map where m/z is plotted against retention time. Each detected ion that produced a 

peak across the mass spectrum represents a feature that can be determined by the feature-finding 

algorithm. 2D maps generated by different LC-MS runs were then aligned for comparison so that 

features corresponding to the same peptide were assigned to each other. Finally, the abundance of a 

given feature was measured summing the peak intensities in the feature region and compared across 

multiple aligned 2D maps. The alignment was performed loading LC-MS runs corresponding to 

peptides digested from gel bands cut at the same molecular weight across three biological replicates. 

The alignment reference was chosen by letting the software automatically assess every run in the each 

of the single fraction experiment for suitability. After manual validation of the alignments, additional 

vectors were added where necessary. The features normalization was set to normalize to all proteins. 
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The automatic sensitivity method of the peak picking algorithm was set at default. The maximum 

allowable ion charge was set at 20. No peptide ion filtering was applied. The experimental design 

setup was set as Between-subject Design. The spectra were exported in .mgf format for database 

searching, and the search results were imported in .xml format after Mascot Database search for the 

identification of matched peptides. Any peptide showing a Mascot ion score below the threshold 

indicative of identity or extensive homology (p value < 0.05) was removed from the feature 

identification list. Only features that showed zero conflicts were used for quantification. Data obtained 

from the alignment of LC-MS runs corresponding to single fractions were then pooled into a multi-

fraction experiment.  

 

2.7.4 Database search 

Mascot
®
 probability based search engine (Matrix Science, London, version 2.4.0) was used to perform 

protein identification tasks on MS data by interrogating SwissProt 2015-03 primary database [483]. 

The parameters of the software that were controlled to set up the searches method were: Taxonomy; 

Database; Fixed modifications; Variable modifications; Experimental mass values. Enzyme; Missed 

cleavages; Peptide Charge Peptide tolerance; Number of 13C; Data format; MS/MS tolerance; Peptide 

Charge; Error tolerant search; Instrument type; Data format; Quantitation; Experimental mass values. 
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2.8 Bioinformatics tools 

2.8.1 UCSF Chimera Molecular Modeling System 

The UCSF (University of California San Francisco) Chimera Molecular Modeling System software 

(http://www.cgl.ucsf.edu/chimera) was used to generate all the PTEN 3D structures images displayed 

in this thesis. The PTEN raw 3D structure was retrieved by searching the PDB (Protein Data Bank) for 

the PTEN protein ID (15DR), deposited by Lee et al. [383], and subsequently processed to highlight 

specific residues or protein domains.  

 

2.8.2 Expasy 

PTEN amino acid sequence was obtained by translating with Expasy translate software tool 

(http://web.expasy.org/translate/) the nucleotide sequence provided by Rudiger Woscholski’s Group at 

Imperial College London. Expasy ProtParam (http://web.expasy.org/protparam/) was used to predict 

PTEN and GST molecular weight, and extinction molar coefficient; Expasy PeptideCutter 

(http://web.expasy.org/peptide_cutter/) was used to predict protein fragmentation after enzymatic or 

chemical cleavage. The obtained sequence was then used to calculate the extinction coefficient using 

the Expasy ProtParam software. The extinction coefficient of 88130 M
-1

 cm
-1

 was used, assuming that 

all PTEN cysteine are reduced. 

 

http://www.cgl.ucsf.edu/chimera/
http://web.expasy.org/protparam/
http://web.expasy.org/peptide_cutter/
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3.1 Summary 

The oxidative action of reactive species causes important changes in protein function and can affect 

signaling networks and cellular pathways. Protein oxidative post-translational modifications (oxPTMs) 

are a promising class of biomarkers of inflammatory and age-related diseases including cancer, 

cardiovascular diseases and neurodegeneration, as well as a target for novel therapeutics.  

In the study presented in this chapter, a functional proteomics approach is used for the systematic 

oxPTMs mapping of the tumour suppressor phosphatase PTEN following oxidative treatment. A 

purified GST-tagged fusion PTEN was irreversibly oxidized with hypochlorous acid (HOCl) and its 

phosphatase activity and electrophoretic profile compared across the different HOCl concentrations 

used. Using mass spectrometry based label-free quantification, PTEN peptides carrying modified 

residues were identified, and the relative abundance of the oxPTMs was determined in HOCl-treated 

PTEN samples versus untreated control. 

A total of 13 high abundance oxPTMs that were significantly elevated upon HOCl treatment are 

described, including those taking place at amino acid residues important for PTEN phosphatase 

activity and protein-protein interactions such as Met35, Tyr155, Tyr240 and Tyr315. The 

modifications map outlines the patterns of oxPTMs linked to phosphatase inactivation and structural 

changes in response to in vitro oxidation. The systematic characterization of oxPTMs profiles can be 

used to gain deeper insight in the regulation of cellular pathways linked to inflammation and disease. 
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3.2 Introduction  

Hypochlorous acid (HOCl) is a powerful reactive molecule produced by the body to fight 

infections. The intracellular production of HOCl is triggered by pro-inflammatory stimuli such as 

those present in various pathophysiological states which activate phagocytic white blood cells such as 

macrophages and neutrophils [484-486]. Activated phagocytes kill pathogens such as bacteria either 

extracellularly or by ingesting them into intracellular compartments called phagosomes [487]. When 

ingested into phagosomes, the invader can be destroyed via mechanisms including the production of 

large quantities of superoxide via a membrane associated NADPH oxidase (Figure 3.1) [488]. The 

enzyme superoxide dismutase converts superoxide into H2O2, which is involved in the formation of 

secondary hydroxyl radicals that assist the destruction of pathogens [489]. In neutrophils, azurophilic 

granules can fuse with phagosomes and release myeloperoxidase (MPO), a haem-containing 

lysosomal peroxidase enzyme [490,491]. MPO oxidizes Cl
-
 ions in the presence of H2O2 producing 

HOCl, which functions as an efficient microbicide, and can also act as a natural adjuvant of adaptive 

immunity [492]. However, because of its significant oxidizing capacity, the production of HOCl can 

also result in oxidative damage to biomolecules of the host tissue including proteins.  

 

 

 

Figure 3.1 Phagocytosis and oxygen-dependent destruction of pathogens  

Pathogens such as bacteria are ingested by the neutrophil and kept in intracellular compartments called 

phagosomes. A membrane-associated NADPH oxidase generates superoxide, which is converted into 
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H2O2 by superoxide dismutases (SOD) inside the phagosome. Azurophilic granules that fuse with the 

phagosome release myeloperoxidase (MPO), which uses Cl
-
 to produce HOCl from H2O2. The 

oxidative action of HOCl and H2O2 kills the pathogen, which is further degraded by lysosomal 

hydrolases, and expelled by exocytosis into the extracellular environment. 

 

Protein oxidative damage due to the MPO/HOCl system can result in tissue injury, and has been 

associated with several conditions such as cancer, neurodegenerative disease and cardiovascular 

disease [493,494]. HOCl attacks mainly free amino groups (-NH2) and sulfhydryl groups (-SH) in 

proteins [51]. When oxidizing thiol groups, HOCl-mediated oxidation can cause the formation of 

reversible disulfide bonds that result in protein crosslinking and can result in complete inactivation 

[495], or other non-specific thiol oxidative products such as methionine sulfoxide and sulfone as well 

as cysteine sulfinic and sulfonic acid [485,496]. When reacting with the amino groups of proteins, 

HOCl damage results in the formation of unstable chloramines, which are rapidly reduced back to 

their unmodified form or broken down to aldehydes [496]. Both thiol oxidative products and 

chloramines are major products of HOCl-induced protein damage, but they are unlikely to be useful as 

biomarkers of HOCl production, as thiol oxidative products may be caused by a range of oxidants and 

are often reversible by the cellular antioxidant system, while chloramines are highly unstable and 

therefore difficult to detect. Aside from thiols and amine groups, HOCl also reacts with tyrosyl groups 

of proteins to form 3-chlorotyrosine and 3,5-dichlorotyrosine [497]. The reactions that result in 

tyrosine chlorination are less favored than those with amine groups and protein thiols; however, 

chlorinated tyrosine is a much more stable end product of HOCl oxidation than chloramines, and a 

more specific marker of HOCl-induced damage than thiol oxidative products [496]. In the past two 

decades, 3-chlorotyrosine and 3,5-dichlorotyrosine have emerged as reliable biomarkers of protein 

damage by myeloperoxidase, and have been identified in the clinical samples of patients affected by 

various inflammatory conditions [496,498,499]. It has also been reported that HOCl-induced oxidative 

damage can cause the irreversible formation of protein aggregates in vivo [227]. HOCl-induced protein 

aggregation has attracted interest as a possible factor contributing to the pathophysiology of certain 

conditions such as atherosclerosis [500], but the biochemical processes triggering the oxidation-

mediated formation of protein aggregates are not completely understood. It has been suggested that the 
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alteration of protein folding responsible for protein aggregation upon HOCl-induced oxidation could 

be due to strong, non-covalent interactions between protein chains, rather than intermolecular covalent 

cross-linking [500]. An alternative mechanism that has been proposed  involves intermolecular Schiff-

base formation and requires lysine residues modification to reactive carbonyl [501]. HOCl-modified 

proteins have been detected in different diseased tissue, including atherosclerotic tissue, [155] bowel 

tissue obtained from patients affected by inflammatory bowel disease [502], and in the glomeruli of 

patients affected by membranous glomerulonephritis [503]. 

Besides evidence showing an association between HOCl and molecular and cellular damage, an 

increasing number of studies indicates that HOCl is also involved in the modulation of redox-sensitive 

intracellular signaling pathways, though less attention has been given to this aspect [504]. For 

example, both MPO and HOCl have been implicated in the regulation of cancer-related cellular 

processes [504] and it has been reported that HOCl is involved in the selective elimination of 

transformed fibroblast through the induction of apoptosis [505]. Moreover, HOCl has been shown to 

promote the activation of several cellular pathways via the activation of key proteins such as the 

tumour suppressor p53 [506], members of the MAP kinase pathway [507] and the iron-regulatory 

protein 1 [504]. 

The identification of HOCl-specific modifications to proteins is, therefore, a critical task for the 

investigation into the effects of myeloperoxidase production on tissue damage as well as for the in-

depth analysis of HOCl-mediated regulation of cellular networks [485]. The cutting-edge analytical 

technique for the analysis of post-translational modifications such as oxPTMs (oxidative post-

translational modifications) is mass spectrometry [508]. Modern mass spectrometry instruments allow 

high levels of selectivity and reproducibility for the detection of oxPTMs such as tyrosine 

chlorination, and are now emerging as a powerful tool for the discovery and validation of clinical 

biomarkers. In identifying biomarkers of myeloperoxidase activity, many MS-based  studies  have 

reported the identification of free 3-chlorotyrosine in biological samples such as urine [238,241] and 

blood plasma [509,510].  However, the detection of free modified amino acids does not provide any 

information on the identity of the oxidized protein, which is essential for understanding the processes 

and mechanisms of signal transduction in response to oxidation. With growing interest in the signaling 

role of reactive species such as HOCl, obtaining information on the identity of oxidized proteins and 
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their oxidation sites has become increasingly essential to answer oxidation-related biological 

questions, in both clinical and in vitro settings. Using MS and MS/MS methods, the detection of 

protein bound 3-chlorotyrosine and the corresponding chlorination sites within the oxidized protein 

has been shown to be important for understanding the mechanisms of myeloperoxidase-related protein 

damage and alteration of protein folding status [511,512], and protein-bound chlorotyrosine has been 

found elevated in the biological samples of patients affected by several conditions, including 

inflammatory and cardiovascular disease [229-233].  

This PhD thesis focuses on the redox regulation of the dual specificity phosphatase (PTEN), which 

is a negative regulator of the PI3K/Akt pathway and is involved in a number of cellular processes, 

including metabolism, apoptosis, cell cycle regulation and cell proliferation and survival [445,455]. 

Much of the research into the oxPTMs of PTEN has been focused on the redox status of the Cys71 and 

Cys124 thiols in the active site of the phosphatase, which form a reversible disulfide bond upon low 

concentration H2O2-mediated oxidation [144,423,477] that inactivates the protein. However, no study 

to date has addressed the correlation between oxidation-induced inactivation and oxPTMs at PTEN 

amino acid residues other than the active site cysteines. As HOCl has been shown to form protein 

modifications other than reversible thiol oxidative products, it is likely that HOCl-specific 

modifications such as tyrosine chlorination are associated with a permanent alteration of PTEN 

phosphatase activity and folding status. 

This chapter describes the LC/MS-based quantitative mapping of HOCl-induced oxidative post-

translational modifications (oxPTMs) of PTEN. The GST-tagged purified protein was treated with 

increasing HOCl concentrations and its phosphatase activity measured by monitoring the hydrolysis of 

the fluorescent substrate 3-O-methylfluorescein phosphate. The effect of HOCl on the thiol/disulfide 

dynamics of PTEN active site was tested by comparing the phosphatase activity before and after 

incubating the HOCl-oxidized protein in reducing conditions, and the modification status of the 

protein was compared to the rate of inactivation and folding status upon HOCl oxidation. The 

functional proteomics approach identified HOCl-specific oxPTMs that were associated with 

irreversible PTEN inactivation and alteration of PTEN folding status. Specific residues were mapped 

onto the PTEN structure, and changes that could be important for understanding HOCl damaging and 
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signaling role in cells identified, thereby gaining potential insights into the molecular mechanisms of 

disease. 
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3.3 Materials and Methods 

3.3.1 HOCl concentration assay 

The sodium hypochlorite stock solution (Sigma-Aldrich Chemical Co., Poole, UK) was first 

assayed to determine its molar concentration. A Lambda 35 UV/Vis Spectrophotometer 

(PerkinElmer™ instruments, Seer Green, UK) fitted with a PTP-6 Peltier System was used to measure 

the absorbance at 292 nm of HOCl serial dilutions prepared in 0.1 mM NaOH against blank 0.1 mM 

NaOH and the concentration obtained using a molar extinction coefficient of 350 M
−1

 cm
−1

. HOCl 

stock solution was then diluted in 50 mM Phosphate buffer pH 7.4 to prepare the solutions for the 

oxidation experiment.  

3.3.2 Buffer exchange optimization 

Purified PTEN-GST was buffer exchanged using either Slide-A-Lyzer dialysis cassette 10,000 

MWCO (Thermo Fisher Scientific, Hemel Hempstead, UK) or Microcon® 10 kDa centrifugal filter 

unit (Millipore Ltd, Feltham UK), according to the manufacturer’s recommendations. The buffers of 

choice were tested using the Slide-A-Lyzer dialysis cassette were 50 mM phosphate buffer pH 7.4, 

prepared using sodium phosphate monobasic and dibasic (both obtained from Sigma-Aldrich 

Chemical Co., Poole, UK), and 20 mM diethylmalonic acid (Sigma-Aldrich Chemical Co., Poole, 

UK), pH 7.4, and dialysis was performed overnight at 4ºC. When using the centrifugal filter unit, 

PTEN was buffer-exchanged in 50 mM phosphate buffer, and all centrifugation steps were performed 

at 14,000xg in a 5417R Eppendorf microcentrifuge (Eppendorf UK Ltd, Stevenage, UK) for 10 min at 

4 ºC. All buffer exchange conditions were optimized testing 60 µg of buffer exchanged-protein with 

the OMFP phosphatase assay as described in Section 2.6.3. A Nanodrop c2000 UV-Vis 

Spectrophotometer (Thermo Fisher Scientific, Hemel Hempstead, UK) was used to determine the 

concentration of buffer-exchanged PTEN-GST using the absorbance at 280 nm. The field “protein 

type” was set to “other protein”, the predicted molecular weight was set at 73.5 kDa, and an extinction 

coefficient of 88,130 M
-1

 cm
-1

 was used, assuming that all PTEN cysteine are reduced. 
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3.3.3 Oxidation and activity assay 

Purified, buffer-exchanged PTEN-GST was oxidized with 0, 0.5, 1, 2, 5 and 10 mM HOCl for 1 

hour at room temperature. The HOCl to PTEN-GST molar ratios were 15:1 (0.5 mM HOCl), 30:1 (1 

mM HOCl), 60:1 (2 mM HOCl), 150:1 (5 mM HOCl), and 300:1 (10 mM HOCl). A 60 µg aliquot of 

each sample was incubated in 100 mM DTT for 15 min. Next, the phosphatase activity of PTEN was 

measured by assaying 60 µg of HOCl-oxidized and DTT-incubated HOCl-oxidized PTEN-GST with 

the OMFP phosphatase assay as described in Section 2.6.3.  

3.3.4 SDS-PAGE and protein in-gel digestion  

50 µg of HOCl-oxidized PTEN-GST samples were analyzed by SDS-PAGE as described in 

Section 2.6.1. The Coomassie-stained bands corresponding to the intact protein and the protein 

aggregates across the range of HOCl treatment were cut out from the polyacrylamide gel and digested 

as described in Section 2.7.1. 

3.3.5 Image processing 

Gel densitometry was performed with the Java-based image processing ImageJ [513]. For the full 

lane gel densitometry, the gel images were first imported into Microsoft Powerpoint
®
 and cropped so 

that white space was left between lanes corresponding to different experimental conditions. The 

images were saved as .png and opened in ImageJ. All images were converted to 8-bit, background 

subtracted using a rolling ball radius of 50 pixels and light background, and contrast enhanced by 

0.4% of saturated pixels. The stacking gel was included in the crop selection of the full lanes. For the 

densitometry analysis of the single PTEN band, the gel images were first imported into Microsoft 

Powerpoint
®
 and cropped so that white space was left between lanes corresponding to different 

experimental conditions. Next, the lanes were further cropped to include only the protein band at 

73kDa corresponding to PTEN, cropping the image along the edge of the gel band. The images were 

then saved as .png and opened in ImageJ. All images were converted to 8-bit, and no background 

subtraction or contrast enhancing was performed. 
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3.3.6 LC-MS 

Peptides were separated and analyzed as described in Section 2.7.2. 

3.3.7 Label-free quantification using Progenesis QI for Proteomics 

LC-MS runs obtained from the HOCl oxidation experiments were used to generate a total of 2 

separate Progenesis QI experiments, one for gel bands excised from the area corresponding to the 

intact PTEN-GST band, and one for the gel areas corresponding to protein aggregates. Each of the two 

Progenesis QI experiments was generated using a total of 18 LC-MS runs (three independent 

experiments across six different experimental conditions). The Progenesis analysis was performed as 

described in Section 2.7.3. The protein identification list was filtered to include only peptides 

corresponding to PTEN. To analyze PTEN modification, the conflicts between the detected modified 

peptides were handled as follows: firstly, the MS/MS fragmentation pattern of each conflicting peptide 

was analyzed by de novo sequencing. Where the de novo sequencing was not sufficient to resolve the 

conflicts, the peptide showing the highest Mascot Ion score among the conflicting detected peptides 

was selected. In the event of conflicting peptides showing equal Mascot Ion score, the peptide 

showing the highest number of hits was selected.  

3.3.8 Database Search 

Progenesis-generated .mgf files for both the intact PTEN-GST band and the protein aggregates LC-

MS runs were searched with Mascot. Variable modifications were searched for in groups of 3-5 

modifications at a time. Tyrosine chlorination and dichlorination, cysteine dioxidation and 

trioxidation, methionine oxidation and dioxidation, proline oxidation, tyrosine oxidation, lysine 

oxidation, tryptophan oxidation, and histidine oxidation were specifically searched for as variable 

modifications. Carbamidomethyl cysteine was used as a fixed modification. The peptide tolerance 

used was +/- 0.8 Da, peptide charges of 2+, 3+ and 4+ was used, MS/MS ion search was selected. 

Other parameters for the searches were as follows: Enzyme: Trypsin; Peptide tolerance: ±0.8 Da; 

MS/MS tolerance: ±0.8 Da; Peptide charge state: +2, +3 and +4; Max Missed cleavages: 1; #13C: 1; 
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Quantitation: None; Instrument: ESI-QUAD-TOF; Data format: Mascot Generic; Experimental mass 

values: Monoisotopic; Taxonomy Homo Sapiens (Human). 

3.3.9 Statistical analysis 

Graph Pad Prism was used for the statistical analysis performed on all data presented in this 

chapter. Activity, densitometry and modifications data were analyzed using one-way ANOVA with 

Dunnett’s multiple comparisons test, comparing the mean values of each treated sample to the mean of 

the untreated control. Correlation between activity and densitometry data was performed using 

Pearson’s correlation analysis. To compare retained activity between two treated samples before and 

after reducing wash, two-tailed unpaired Student’s t-test was used. P < 0.05 was considered 

significant. 

3.3.10 De novo peptide sequencing 

Tryptic peptides containing modified residues for which the relative modification abundance was 

significantly higher in the HOCl-treated samples than controls were manually sequenced by viewing 

the spectra in Peakview
®
 software (AB Sciex Ltd, Warrington, UK). For each modified peptide 

detected by Progenesis QI HOCl concentrations, the m/z, retention time and average normalized 

abundance in each sample treated with different HOCl to PTEN molar ratios were recorded from the 

peptide identification screen. Next, the LC-MS run containing the modified peptide showing the 

highest normalized abundance in comparing the samples treated with different HOCl to PTEN molar 

ratios was imported into Peakview
®
. The MS/MS spectrum of each modified peptide was retrieved 

searching the independent data acquisition (IDA) list for the precursor’s m/z and retention time. The 

mass difference between two product ions was used to calculate the mass of each amino acid 

composing the modified peptide backbone. Product ion series were sequenced by sequentially 

subtracting higher residue masses from an arginine (m/z 147.113) or lysine (m/z 175.119) y1 ion at the 

low end of the MS/MS spectrum. 
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3.3.11 NetSurfP 

The NetsurfP (ver. 1.1) server (http://www.cbs.dtu.dk/services/NetSurfP) was implemented to 

predict solvent accessibility of PTEN residues using the PTEN FASTA sequence obtained from 

Uniprot [514]. The software predicts relative solvent accessibility (RAS), absolute solvent 

accessibilIty (ASA) for each residue, and regions of the protein are divided between exposed and 

buried by using a cutoff of 25% exposed accessible surface area based on the ASAmax of each given 

amino acid [514]. The Z-score indicates the reliability of the prediction (data points with high Z-scores 

have lower predicted error compared to data points with low Z-scores) [514]. 
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3.4 Results  

3.4.1 Transformation of E. coli DH5α PTEN-GST 

The first stage of the project was the transformation of E. coli DH5α bacterial cells with the PGEX-

4T1 expression plasmid encoding PTEN-GST. The E. coli Bacterial strain (DH5α) was selected to 

produce the PTEN-GST fusion protein following the work of Dr. Karina Tveen Jensen at Aston 

University and Dr. Lok Hang Mak and Dr. John Mina at Imperial College London who previously 

tested three different E. coli bacterial strains, BL21, (BL21) DE3 and DH5α for PTEN-GST 

expression. IPTG-induction temperature (23°C) and incubation time (24 hours) were also chosen after 

testing a range of conditions in collaboration with Dr Karina Tveen Jensen (data not shown).  

Following transformation of Ca
2+

 generated competent E. coli DH5α the cell suspension was plated 

onto agar containing ampicillin as the selection antibiotic, and incubated at 37°C overnight. Bacterial 

colonies were observed on the agar plates the next day, indicating that the transformation was 

successful. Single isolated colonies were carefully picked from the edge of the plate, precultured in 

fresh LB medium, and further grown at 37 ºC until the optical density at 600 nm (OD600) reached 0.5-

0.6 OD, at which point IPTG was added to a final concentration of 1 mM to induce protein expression. 

3.4.2 PTEN-GST purification 

After IPTG-induced protein expression, harvesting and cell lysis, PTEN-GST was purified from the 

cell extract with a gravity flow column packed with Glutathione Sepharose beads. The cell lysate was 

loaded onto the column followed by a series of reducing saline wash buffers, and the beads were 

incubated overnight incubation at 4°C with the elution buffer. Aliquots of the first 10 mL elution 

buffer used for the elution of PTEN-GST were collected in 1 mL fractions, a small amount of which 

(20 µL) was loaded onto a SDS-PAGE gel along with samples representative of critical steps of the 

cell lysis (such as the centrifugation and filtration step), and the purification (such as the unbound 

flow-through and the wash), so that the overall efficiency of the procedure could be evaluated. An 

example of the Coomassie-stained gels displaying a representative PTEN-GST purification process is 
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shown in Figure 3.2. The SDS-PAGE analysis was useful to visually track the PTEN-GST purification 

process. The PTEN-GST protein band at ~70kDa became clearly visible from eluted fraction 3, and its 

intensity increased in the subsequent gel lanes. Samples aliquoted from an additional 10 mL of elution 

buffer added following the first elution step showed little or no visible PTEN-GST signal (data not 

shown), but were also pooled together with the first 10 mL and the protein concentrated using an 

Amicon® Ultra-15 centrifugal filter unit.  

 

 

Figure 3.2 SDS-PAGE tracking of the purification of PTEN-GST from the cell lysate of 

transformed E. coli DH5α 

Samples corresponding to critical steps of the purification of PTEN were analyzed by SDS-PAGE. 

These include: the total cell extract obtained from the lysis of PTEN-GST-overexpressing E. coli 

DH5α cells; the supernatant obtained from the centrifugation of the total lysate, before and after 

filtration; the unbound flow-through and the first wash flow-through; fractions of eluted PTEN-GST 

collected for each mL of elution buffer flowing through the Glutathione-Sepharose column, as 

annotated on the gels.  
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Following concentration by ultrafiltration of the eluted PTEN-GST, the protein concentration was 

measured using a Bradford protein assay. Indicative yields and concentrations for a medium (1 L) and 

large (6 L) prep are shown in Table 3.1. In general, a higher concentration of PTEN-GST was obtained 

after purification from larger starting culture volumes, with comparable protein yield per liter of 

culture. 

 

Table 3.1 PTEN-GST indicative purification yields 

Starting E. coli culture 

volume (mL) 

Purified PTEN-GST 

concentration (µg/mL) 

PTEN-GST Yield per 

liter of culture (µg) 

1500  313.75  2091 

6000 1288.88 2148 
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3.4.3 OMFP activity assay of the purified PTEN-GST 

An OMPF assay was performed to check the enzymatic activity of the purified and concentrated 

PTEN-GST in reducing conditions (elution buffer). An example of the data collected is shown in 

Figure 3.3. The positive increase in RFUs, after subtraction of the RFU values of the blank, shows that 

the expressed and purified PTEN-GST is active. The obtained specific activity values over different 

PTEN-GST preparation were in the 0.5-1 nmol OMF/min/mg protein range, in line with results 

obtained by other investigators (Lok Hang Mak, Karina Tveen Jensen, unpublished results).  

In most cases, repeated freeze-thawing was found to negatively affect protein activity, resulting in a 

poorly active or inactive protein. For this reason, the purified PTEN-GST was prepared in 50% 

glycerol and aliquoted out in single vials before storage at - 80°C so that each aliquot contained 

sufficient amount of protein for individual experimental use. 

 

 

 

Figure 3.3 Representative OMFP phosphatase activity assay of expressed and purified PTEN-

GST in reducing buffer conditions  

The mean Relative Fluorescence Units values are calculated after subtraction of the blank values and 

normalization of the curve to start at zero. The calculated specific activity for the OMFP substrate 

from this experiment was 0.66 ± 0.07 nmol/min/mg protein. Data are presented as mean ± SD of three 

technical replicates. 
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3.4.4 Optimization of PTEN buffer exchange  

Prior to any experimental use, the purified PTEN was buffer-exchanged in order to remove the 

cryoprotectant glycerol, which can interfere with assays used to measure protein concentration, as well 

as the reducing agents glutathione and DTT, which would interfere with the oxidation studies. 

Maintaining unaltered protein activity during the buffer exchange process was considered critical for 

the study, as if PTEN is significantly inactivated in non-reducing buffer conditions, the interpretation 

of any oxidation-related changes in activity may be more difficult.  

Initially, preliminary tests were carried out to assess the effect of different buffer exchange 

conditions on PTEN phosphatase activity. Three different buffer exchange conditions were tested with 

the OMFP phosphatase assay to identify the best method for preserving PTEN phosphatase activity 

before oxidation (Figure 3.4). Using the Slide-A-Lyzer dialysis cassette, PTEN specific activity 

dropped by approximately 69% when buffer-exchanging in 50 mM phosphate buffer pH 7.4, and by 

approximately 56% when buffer-exchanging in 20 mM diethylmalonic acid pH 7.4. On the other hand, 

using a Microcon centrifugal filter unit, PTEN specific phosphatase activity only dropped by 

approximately 10% in 50 mM phosphate buffer. Generally, the specific activity values of the buffer-

exchanged purified PTEN-GST was found to be in the 0.5-1 nmol OMF/min/mg protein range, and 

protein was considered fully active. These preliminary tests indicated the importance of monitoring the 

adverse effect of buffer-exchange methods on protein activity, and identified the centrifugal filter unit 

as the method of choice for protein buffer-exchange, and this device was therefore used to filter 

PTEN-GST before all oxidation experiments.  
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Device 

implemented 
Buffer of choice 

Specific activity of 

buffer-exchanged 

protein (nmol 

OMF/min/mg of 

protein) 

Specific activity 

of stock protein 

(nmol 

OMF/min/mg 

of protein) 

% specific 

activity loss 

due to buffer 

exchange 

Slide A-Lyzer 
50 mM Phosphate 

buffer 
0.20 ± 0.04 0.64 ± 0.02 -69 ± 3.12 

Slide A-Lyzer 
20 mM 

Diethylmalonic acid  
0.31 ± 0.03 0.71 ± 0.02 -56 ± 4.22 

Amicon YM-10 
50 mM Phosphate 

buffer 
0.61 ± 0.03 0.68 ± 0.02 -10 ± 2.94 
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Figure 3.4 Effect of different buffer exchange conditions on PTEN phosphatase activity  

The change in RFUs due to the OMF released by stock versus buffer-exchanged PTEN was monitored 

over 20 min with the OMFP phosphatase assay. (A) When PTEN is dialyzed in 50 mM phosphate 

buffer pH 7.4 using the Slide-A-Lyzer cassette dialysis device its activity drops significantly (-69%). 

(B) The experiment was also repeated with the same device, replacing the exchange buffer with 20 

mM diethylmalonic pH 7.4 with a minor improvement in retention of activity (-56%). (C) Following 

buffer exchange in 50 mM phosphate buffer pH 7.4 using the Amicon YM-10 centrifugal filter unit, 

the activity drop was drastically reduced (-10%). The Relative Fluorescence Units values are 

calculated after blank subtraction and normalization of the curve to start at zero. Data are presented as 

mean ± SD of three technical replicates.  
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3.4.5 Effect of HOCl oxidation on PTEN phosphatase activity  

Following buffer exchange in 50 mM phosphate buffer pH 7.4 with the centrifugal filter unit, 

PTEN-GST was treated for 1 hour with a 15:1, 30:1, 60:1, 150:1, or 300:1 molar ratios of HOCl to 

PTEN-GST. HOCl-oxidized samples and untreated control were assayed for phosphatase activity 

using the OMFP assay. Increasing molar ratios of HOCl to PTEN-GST were found to correlate with a 

decrease in PTEN phosphatase activity, as evident from Figure 3.5 (A). A 75% drop in PTEN activity 

was seen upon treatment with 60:1 molar ratio of HOCl to PTEN-GST, while a 150:1 or a 300:1 molar 

ratio of HOCl to PTEN-GST caused the phosphatase activity of PTEN to drop by > 90%. 15:1 or 30:1 

molar ratios of HOCl to PTEN-GST did not appear to cause significant protein inactivation. 

A second phosphatase activity assay was performed after incubation of the HOCl-treated and 

untreated PTEN-GST sample with 100 mM DTT for 15 min, to test recovery of activity following re-

reduction of the disulfide bond between Cys71 and Cys124 in the active site pocket of PTEN. For each 

molar ratio of HOCl to PTEN-GST, the activity following HOCl oxidation was compared to the 

activity after DTT incubation. The results of the OMFP activity assay, shown in Figure 3.5 (B), 

indicate that for each of the HOCl to PTEN-GST molar ratios tested, the DTT incubation was not able 

to significantly recover activity. This confirmed that the HOCl treatment caused modifications to the 

protein structure that resulted in irreversible inactivation of PTEN. 
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Figure 3.5 HOCl irreversibly inactivates PTEN.  

(A) The OMFP assay was used to monitor the effect of increasing HOCl to PTEN-GST molar ratios 

on PTEN specific activity. The results are presented as mean ± SD (N = 4). Statistical significance was 

assessed by one-way ANOVA followed by Dunnett’s correction for multiple comparisons (*** = p < 

0.001; **** = p < 0.0001; ns = not significant). PTEN specific activity is expressed in nmol 

OMF/min/mg protein. (B) The effect of DTT reduction on the phosphatase activity of HOCl-oxidized 

PTEN was evaluated by comparing the percentage activity retained by the HOCl oxidized versus 100 

mM DTT-incubated PTEN. The results are presented as mean ± SD (N = 3). Statistical significance 

was assessed by two-tailed unpaired Student’s t-test). Untr= untreated.  

3.4.6 SDS-PAGE and densitometry analysis of HOCl-oxidized PTEN 

Aliquots of HOCl-treated and control samples were analyzed by SDS-PAGE, and the resulting gels 

were Coomassie-stained to visualize the electrophoretic profile of the oxidized protein. After careful 

consideration, 50 µg of protein was considered the appropriate amount to load on SDS-PAGE gels to 

generate an interpretable electrophoretic profile of oxidized PTEN-GST without too significant 

overloading, and to obtain enough material for the MS analysis.  

Scans of the Coomassie-stained gels were imported into the software ImageJ to perform 

densitometry. Three gels obtained from the SDS-PAGE analysis of biological repeats of the HOCl 

treatment were used. The analysis was performed first by measuring the amount of protein signal 

corresponding to the PTEN-GST intact band across the different HOCl-treated samples. In addition, 

the analysis was performed on the full gel lane for each of the samples treated with oxidants, in order 

(A) (B) 
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to compare the level of total protein in each gel lane. The densitometry results for both the intact 

PTEN fusion band and the full gel lane were then plotted against the phosphatase activity data 

recorded with the OMFP assay (Figure 3.6 A). The percentage of signal intensity corresponding to the 

PTEN-GST main band dropped following a pattern similar to that of the percentage phosphatase 

activity relative to the untreated control. Densitometry analysis of the intact PTEN-GST band found 

statistically significant reduction in signal intensity for the sample treated with a 60:1 (-20%), 150:1 (-

80%) and 300:1 (-90%) molar ratio of HOCl to PTEN-GST. As expected, the full lane protein content 

dropped to a lesser extent due to the dose-dependent increase in aggregation counterbalancing the loss 

of protein in the main band, and is only significantly lower in the sample treated with a 300:1 molar 

ratio of HOCl to PTEN-GST, which shows a ~30% reduction in protein Coomassie-staining. 

Pearson’s correlation analysis was performed to measure the relationship between the protein signal 

on the gel and PTEN phosphatase activity (Figure 3.6 B). A strong positive correlation was found 

between the PTEN phosphatase activity and the PTEN-GST main band signal, which followed a 

similar trend of reduction with increasing HOCl to PTEN molar ratios (Pearson’s correlation 

coefficient r = 0.936; p-value = 0.006), while correlation between the PTEN phosphatase activity and 

the full lane protein content was non-statistically significant (Pearson’s correlation coefficient r = 

0.685; p-value = 0.133). In Figure 3.6 (C) is presented a Coomassie-stained gel image, representative 

of the three that were used for the densitometry analysis. The gel shows an increasing amount of 

protein signal at kDa > 100 with increasing PTEN-GST to HOCl molar ratios, while the intensity of 

the PTEN-GST intact band at ~70 kDa decreases. Samples treated with a 60:1 HOCl to PTEN-GST 

molar ratio generally showed reduced intact PTEN-GST band signal on the gels, while samples treated 

with a 150:1 and a 300:1 HOCl to PTEN-GST molar ratios showed little or no PTEN-GST band at all. 

The presence of protein aggregates at > 100 kDa is visible in both the resolving and the stacking gel 

and it is particularly evident in the gel lanes corresponding to the PTEN-GST samples treated with 

60:1, 150:1, and 300:1 PTEN-GST to HOCl molar ratios. The bands observable between 20 and 30 

kDa were most probably due to protein degradation products which had formed after the protein 

purification (as these bands were not visible in the original PTEN-GST preparation shown in Figure 

3.2, pg. 120), and that became prominent as the gel shown in Figure 3.6 (C) was overloaded with 

protein sample. As the PTEN specific activity assayed immediately after purification of the PTEN-
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GST protein was comparable to that of the protein samples used for the experiments (both 

approximately 0.7 nmol OMF/min/mg of protein), it is unlikely that the degradation products observed 

had a significant effect on protein stability. 

 

 

Figure 3.6 SDS-PAGE/densitometry analysis versus phosphatase activity of HOCl-oxidized 

PTEN-GST  

(A) The percentage signal intensity of the Coomassie-stained intact PTEN-GST band and the full gel 

lane analyzed by densitometry were plotted versus the percentage phosphatase activity. Statistical 

analysis was performed with one-way ANOVA followed by Dunnett’s multiple comparisons test 

before baseline correction. Densitometry data are presented as mean ± SD for N= 3 and activity data 

are presented as mean ± SD for N = 4 (a = not significant; b = p < 0.05; c = p < 0.01; d = p < .001; e = 

p < 0.0001). (B) Correlation between PTEN phosphatase activity and the protein signal on the gel 

corresponding to the PTEN-GST band or the full lane. The correlation coefficient r and the p-value 

were calculated using Pearson’s correlation analysis. (C) Representative Coomassie-stained gel of 
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HOCl-oxidized PTEN-GST. With increasing HOCl molarities, the percentage protein content of the 

main PTEN-GST bands at ~ 70 kDa drops and protein aggregation builds up in the top section of the 

gel (kDa > 100). Untr = untreated. MW = molecular weight. 

3.4.7 Identification and quantification of HOCl-oxidized PTEN peptides 

Following in-gel digestion of gel pieces obtained from the excision of the intact GST-fusion protein 

main band for each of the HOCl treatments, the extracted peptides were analyzed by mass 

spectrometry and the resulting LC-MS runs were imported onto the label-free quantification software 

Progenesis QI for Proteomics. Similarly, the gel pieces obtained from the excision of the areas of gel 

corresponding to protein aggregation (both in the resolving and the stacking gel) for each of the HOCl 

treatments were digested and the LC-MS runs acquired from the analysis of the extracted peptides 

were loaded on a separate Progenesis experiment. For the quantification of oxPTMs, the LC-MS runs 

of both main band and protein aggregates samples of HOCl-treated PTEN-GST were aligned against 

untreated controls for feature matching and peptide identification. The Mascot Database Searches 

were performed in multiple rounds on the aligned LC-MS runs searching for no more than 5 

modifications at a time. The protein of interest (PTEN) was identified with a high level of confidence 

in both Progenesis QI experiments created for the main band and the aggregates.  

The initial Mascot sequence coverage for PTEN was 81% for the intact band sample and 85% for 

the protein aggregates sample, and decreased to 67% and 66%, respectively, after peptide score 

thresholding. Figure 3.7 shows the PTEN amino acid sequence coverage obtained after Mascot 

database search of MS/MS data and peptide score thresholding for both PTEN intact band and 

aggregates, along with oxidation sites and modifications detected. In both intact band and aggregates 

samples many amino acid residues were missing from the final features dataset. No data was available 

for residues mapped in the PtdIns(4,5)P2-binding N-terminal module (PBM, amino acids 1-13), as 

residues 1-14 were not covered by any of the identified peptides. In the phosphatase domain, residues 

56-62 were not detected, while residues 63-66 were covered only in the intact band sample (in the 

aggregate sample the peptides containing these residues scored below the threshold used for 

identification). Residues 75-80 were detected in peptides scoring below the adopted threshold, while 
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residues 81-84 were not covered by any of the identified peptides. Moreover, residues 85-125 were 

part of a peptide scoring below the adopted identification threshold, amino acids 126-128 were not 

covered by any identified peptide, and residues 129-130 were detected in the intact band sample only. 

As a result of this, the PTEN catalytic WPD-loop (amino acids 88-98) was not covered, while the 

catalytic p-loop (amino acids 123-130) was only partially covered in the intact band sample and 

completely uncovered in the aggregates sample, resulting in the catalytic cysteine (Cys124) being 

excluded from the systematic modification mapping. Additionally, none of the identified peptides 

contained residues 143-144 or residues 160-172, which include residues mapping in the catalytic T1-

loop (amino acids 160-171). In the C2 domain, the PTEN sequence coverage for the intact band 

sample did not include any peptide that contained amino acid 222-234, while these residues were 

successfully detected in the aggregates sample. The CBR3-loop (amino acid 263-269) was only 

partially covered in the intact band sample (residues 261-267 were missing), and completely excluded 

from the analysis in the aggregates sample (residues 255- 260 and residues 267-269 were detected in 

peptides scoring below the identification threshold, while residues 261-267 were not detected at all). 

In addition, no data was available for the cα2 helix (amino acids 327-335), as none of the identified 

peptide contained amino acid residues 323-345. Finally, Val403 mapping in the PDZ-binding domain 

(amino acids 401-403) was identified in the intact band sample as part of a tryptic peptide miscleaved 

at Lys402. This peptide was not detected in the aggregates sample where only the non-miscleaved 

version (lacking the last residue Val403) was identified. 
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Figure 3.7 PTEN sequence coverage and oxidation sites identified from LC-MS/MS data  

For both intact band and aggregates samples, PTEN residues which were identified by Mascot 

database search of LC-MS/MS data are indicated in black, while missing residues are indicated in 

grey. The amino acid numbers are indicated on the left and the oxidation sites are highlighted in red. 

The position of each modification detected is indicated below each of the modified amino acid shown 

in red. The squared boxes highlight key structural and functional domains of the phosphatase. OX= 

oxidation; DIOX = dioxidation; TRIOX= chlorination; CHLOR = chlorination; DICHL = 

dichlorination. 
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Figure 3.8 shows representative 3D images displaying the cross-sample peak picking of the 

modified peptide AQEALDFYGEVR (m/z = 716.33, charge = +2), carrying a 3-chlorotyrosine 

modification at Tyr8, corresponding to PTEN Tyr155 chlorination. This peptide was detected in the 

HOCl-oxidized samples obtained from the digestion of both intact band and aggregates fractions. The 

Progenesis QI screen view shown in Figure 3.8 can be used to revise the results of the software peak 

picking, in order to obtain information about the quality of feature matching and differential 

quantification performed. The peptide abundance for the modified peptide AQEALDFYGEVR was 

highest in the sample treated with 300:1 HOCl to PTEN-GST molar ratio and showed a HOCl dose-

dependent trend in increase. A signal was also detected in the untreated sample, as a result of 

background noise falling within the borders of the peak picking area used for the peptide 

quantification. The peptide identification data were reviewed to resolve any conflicts and the raw data 

exported to a separate Excel worksheet to manually calculate the percentage relative modification. 

 

 

Figure 3.8 Representative 3D montage zoomed into the feature corresponding to the chlorinated 

peptide AQEALDFYGEVR matched across the HOCl-oxidized PTEN samples  

Following alignment of the elution profiles, the software matches the feature corresponding to the 

same ion across multiple samples, and performs the relative quantification after normalization. 

Highlighted in red is the peak picking area drawn by the software algorithm around the peaks 

corresponding to the peptide matched across the LC-MS runs aligned for quantification. The modified 

peptide abundance was highest in the protein sample treated with a 300:1 molar ratio of HOCl to 

PTEN-GST and lowest in the untreated PTEN-GST sample (maximum fold change = 17.7, ANOVA 

p-value < 0.0001). 
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3.4.8 Validation of HOCl-induced modifications by de novo sequencing of MS/MS data 

Following label-free quantification and identification, modified peptides were de novo sequenced 

so that the oxPTM(s) detected could be validated, and any conflicts could be resolved between same-

m/z peptides carrying different modified residues. An example of such process is displayed in Figure 

3.9, which shows the modified PTEN peptide AQEALDFYGEVR in being de novo sequenced to 

validate the 3-chlorotyrosine modification at Tyr8. As each peptide that is chlorinated when exposed 

to HOCl gains a chlorine atom (+35 atomic mass units) and loses one hydrogen (-1 atomic mass unit), 

chlorination events resulted in a +34 net increase in atomic mass unit [511]. For a doubly-charged ion 

as that shown in Figure 3.9, the net m/z increase relative to the native (unmodified) precursor was 34/2 

= 17 m/z (the modified peptide had a m/z of 716.33 and the corresponding native peptide had a m/z of 

699.35). The de novo sequencing procedure was repeated for all peptide features containing 

modifications that were found significantly more abundant in the HOCl-treated PTEN-GST versus 

untreated control. As a result of this, the accuracy of Mascot protein modification assignment could be 

evaluated. The peptide identification Mascot score cutoff that was adopted when filtering the peptide 

features identifications in Progenesis QI resulted in 0 false protein modifications assignments by 

Mascot. In the event of modified peptide conflicts that could not be resolved by de novo sequencing 

(e.g. both same-m/z peptides sequencable in the MS/MS spectrum), the modified peptide with higher 

Mascot Score was selected. Where the Ion Score was also equal between conflicting same-mass 

modified peptides, the modified peptide with the highest number of hits would be preferred. 
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Figure 3.9 MS/MS spectrum of the doubly-charged ion at m/z 716.33 identified as a chlorinated 

PTEN peptide  

The PTEN peptide AQEALDFYGEVR was identified in the aggregates fraction and was most 

abundant in the LC-MS run obtained from the analysis of the sample treated with a 300:1 molar ratio 

of HOCl to PTEN-GST. The tryptic peptide carried a chlorination at Tyr8, corresponding to Tyr155 in 

PTEN. The y1 ion observed at m/z 175 was established as the C-terminal residue R, and used to 

determine the remaining amino acid residues by calculating the mass difference of adjacent y-ions 

(labeled using red arrows in the software toolbar). By following the y-ion series residues Gln2-Arg12 

were sequenced, while Ala1 could not be determined from the above MS/MS spectrum. The 

chlorinated tyrosine (ClY) corresponded to a mass shift of 197 Da (163 Da for tyrosine + 34 Da due to 

the addition of one chlorine).  
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3.4.10 Quantitative mapping of HOCl-induced oxPTMs to PTEN 

For each modified residue detected, the abundances of all detected peptides containing the 

modification were added together. To calculate the relative modification, the summed up abundance of 

the modified peptide was divided by the summed up abundance of every other peptide containing the 

residue in question in the unmodified form (including peptides carrying other modifications). A total 

of 18 oxidatively modified amino acids were detected in the peptides generated from the intact PTEN-

GST bands and a total of 21 in the peptides extracted from the protein aggregation area of the gel, 

accounting for 19 different modified residues and 10 different types of identified oxPTMs: methionine 

sulfoxide and sulfone, cysteine sulfonic and sulfinic acid, 4-hydroxyproline, 5-hydroxytryptophan, 2-

oxo-histidine, 3,4-dihydroxyphenylalanine, 3-chlorotyrosine and 3,5-dichlorotyrosine. The percentage 

relative abundance data for each modification detected across the HOCl treatment used were analyzed 

using one way ANOVA with Dunnett’s multiple comparisons to determine statistical significance.  

After statistical analysis, thirteen amino acid residues revealed a significant increase in the level of 

oxidative modification upon HOCl treatment in at least one HOCl to PTEN-GST molar ratio 

condition. Those residues were Met35, Met134, Cys136, Tyr155, Met205, Met239, Tyr240, Met270, 

His272, Trp274, Tyr315, Tyr377 and Tyr379. For most oxPTMs, significant results were found upon a 

60:1, 150:1 or 300:1 molar ratio of HOCl to PTEN-GST, while no significant increase in modification 

abundance was seen for the PTEN-GST samples treated with either a 15:1 or a 30:1 molar ratio of 

HOCl to PTEN-GST.  

Figure 3.10 shows the quantification of oxPTMs found in the intact PTEN-GST band (A) and in 

the protein aggregates (B) for which a statistical significant difference and a fold change ≥ 2 was seen 

in comparing against the untreated control the percentage modification abundance of at least one of 

the HOCl to PTEN-GST molar ratios used. The full dataset containing the PTEN peptide sequence 

carrying the modifications, the average relative abundance of all modifications detected in the treated 

samples, the fold change relative to untreated control and the p-value returned by one-way ANOVA 

with Dunnett’s multiple comparisons test is displayed in Table 3.2. Methionine residues were found 

extremely susceptible to HOCl-mediated oxidation to both methionine sulfoxide and sulfone, although 

in many cases a significant extent of high abundance methionine oxidation was also found in the 

untreated control. A significant increase in the modification level was observed for Met35, which was 
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found approximately 10% oxidized to methionine sulfone upon 150:1 and 300:1 molar ratios of HOCl 

to PTEN, in both intact band and aggregates. In the intact PTEN-GST band, methionine sulfoxide was 

also found significantly more abundant at Met134 and Met239 upon 60:1, 150:1 and 300:1 HOCl to 

PTEN-GST molar ratios, and at Met270 upon 150:1 and 300:1 HOCl to PTEN-GST molar ratios, with 

all residues reaching approximately a 70% level of percentage modification in the samples treated with 

the highest HOCl concentration. Approximately 10-20% level of methionine sulfoxide at Met134, Met 

239 and Met270 was found in the untreated control. Met205 was also found up to 38.4% oxidized to 

sulfoxide in the aggregated protein (but not in the intact PTEN-GST band) in high HOCl 

concentration, although the level of modification in the untreated control was also relatively high 

(22.7%). Cysteine was also found to be extensively oxidized. A 150:1 and a 300:1 molar ratio of 

HOCl to PTEN-GST caused a significant increase in the oxidation of Cys136, which was found 80% 

oxidized to sulfonic acid in the intact PTEN–GST band. In the aggregates the level of Cys136 sulfonic 

acid was close to 90% for all samples including untreated control. A significant increase in sulfinic 

acid was also detected at Cys136 in the intact band, although the maximum level of modification was 

very low (~2%). Cys250 was found significantly more oxidized to sulfonic acid in both intact band 

and aggregates upon 60:1, 150:1 and 300:1 HOCl to PTEN-GST molar ratios, with a peak 

modification level of approximately 60% in the intact band and of 50% in the protein aggregates. The 

active site Cys71 was also found oxidized to sulfonic acid in both intact band and aggregates, but none 

of the treated samples showed an increase in modification level that was statistically significant (Table 

3.8). Lastly, the HOCl treatment resulted in the chlorination of tyrosine residues in both PTEN-GST 

intact band and aggregates. A significant increase in the abundance of chlorination was found at 

Tyr155, for which a 10% level of 3-chlorotyrosine was seen in the intact band upon 150:1 and 300:1 

HOCl to PTEN-GST molar ratios, and a 15% in the aggregates upon 300:1 molar ratio of HOCl to 

PTEN-GST. A significant increase in chlorination level was also seen for Tyr 315 upon 60:1, 150:1 

and 300:1 HOCl to PTEN-GST molar ratios in the intact band (with a peak modification level of 

approximately 10%)  and upon 150:1 and 300:1 HOCl to PTEN-GST molar ratios in the aggregates 

fraction (with a peak modification level of approximately 5%). Moreover, Tyr 377 was found 

significantly more modified in peptides obtained from the aggregation build-up of HOCl treated 

samples, but not from the intact PTEN-GST band, showing a 15% level of chlorination upon 300:1 
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HOCl to PTEN-GST molar ratios, and a 5% and 10% of dichlorination upon 150:1 and 300:1 HOCl to 

PTEN-GST molar ratios, respectively. In the aggregates fraction, but not in the intact band, 

significantly higher levels of oxPTMs were seen that were due to hydroxylation of aromatic amino 

acids, including tyrosine, histidine and tryptophan. Tyrosine was found significantly more oxidized to 

3,4-dihydroxyphenylalanine upon 60:1, 150:1 and 300:1 HOCl to PTEN molar ratios compared to the 

untreated control, although the level of modification only peaked at approximately 6% in the sample 

treated with the highest HOCl concentration. Conversely, His272 and Trp274 which showed a 

significant increase in hydroxylation with either 150:1 or 300:1 HOCl to PTEN-GST molar ratios had 

a modification level equal or greater than 20% in the samples treated more aggressively.  

  



Chapter 3: Functional proteomics analysis of PTEN oxidative post-translational modifications 

 140   

 

Figure 3.10 Quantitative mapping of PTEN oxPTMs upon HOCl treatment  

The oxPTMs quantitative map was generated by MS-based label-free-quantitation of the in-gel digests 

obtained from the gel areas corresponding to the molecular weight of the intact GST-tagged protein 

(A) and the aggregation build-up area (B). The graph collages show modifications for which a 

statistical significant difference and a fold change ≥ 2 was seen in comparing against the untreated 

control the percentage modification abundance of at least one of the HOCl to PTEN-GST molar ratios 

used. Statistical analysis was performed by one-way ANOVA with Dunnett’s multiple comparison 
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test. Data are presented as mean ± SD (N = 3, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 

0.0001). OX= Oxidation. DIOX= Dioxidation; TRIOX= Trioxidation; CHLOR= Chlorination; 

DICHL= Dichlorination. Untr = untreated.   
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Table 3.2 Identification and quantification of PTEN oxidative modifications in the PTEN-GST intact 

band and aggregates following HOCl oxidizing treatment 

Peptide 
sequence

1
 Mod

2
 

Fraction 
detected

3
 

 

HOCl:PTEN-GST molar ratios 
15:1 30:1 60:1 150:1 300:1 

TVEEPSNPEAS
SSTSVTPDVSD
NEPDHYR 

Tyr377 
CHLOR* 

Aggregation 

FC 0 Infinity  Infinity Infinity Infinity 

p-value > 0.9999 > 0.9999 0.6843 0.9908 0.0417 

% 0.00 0.00 0.00 0.01 0.29 

FMYFEFPQPLP

VCGDIK 

Tyr240 
OX* 

Aggregation 

FC 10.06 47.11 84.95 323.25 1031.21 

p-value 0.9997 0.3521 0.0196 0.0001 < 0.0001 

% 0.07 0.60 1.20 2.27 7.24 

ADNDKEYLVLT

LTK 

Tyr315 
CHLOR* 

PTEN-GST 
band 

FC 1.22 4.82 25.45 88.76 156.24 

p-value > 0.9999 0.9568 0.0087 < 0.0001 < 0.0001 

%  0.07 0.27 1.44 5.03 8.85 

Aggregation 

FC 0.92 0.86 0.80 3.66 3.56 

p-value 0.9999 0.9985 0.9801 0.0131 0.0164 

%  1.39 1.21 2.06 5.52 5.38 

TVEEPSNPEAS
SSTSVTPDVSD
NEPDHYR 

Tyr377 
DICHL* 

Aggregation 

FC 6.31 9.78 15.99 41.92 71.31 

p-value 0.9916 0.6690 0.4131 0.0305 0.0006 

%  0.92 2.32 3.10 6.09 10.35 

FMYFEFPQPLP
VCGDIK 

Cys250 
TRIOX* 

PTEN-GST 
band 

FC 1.20 5.64 33.08 51.84 38.82 

p-value > 0.9999 0.9899 0.0449 0.0022 0.0176 

%  1.60 7.52 44.11 69.12 51.76 

Aggregation 

FC 1.77 2.26 3.66 13.20 16.48 

p-value 0.9674 0.2470 0.0020 < 0.0001 < 0.0001 

%  5.34 11.02 22.54 39.74 49.61 

YQEDGFDLDLT
YIYPNIIAMGFP

AER 

Met35 
DIOX* 

PTEN-GST 
band 

FC 1.05 1.07 1.98 14.78 20.67 

p-value > 0.9999 > 0.9999 0.9982 0.0059 0.0003 

%  0.36 0.37 0.69 5.12 7.16 

Aggregation  

FC 5.11 7.48 8.31 23.39 42.33 

p-value 0.7291 0.2585 0.1209 0.0003 < 0.0001 

%  1.13 1.84 2.24 5.18 9.37 

AQEALDFYGEV

R 

Tyr155 
CHLOR* 

PTEN-GST 
band 

FC 0.68 0.84 1.34 8.91 22.48 

p-value 0.9997 0.9999 0.9997 0.0035 < 0.0001 

%  0.32 0.39 0.62 4.14 10.45 

Aggregation 

FC 0.91 0.77 0.57 1.52 3.42 

p-value 0.9885 0.2165 0.2214 0.1095 < 0.0001 

%  4.70 2.94 2.96 7.91 17.75 

TGVMICAYLLH

R 

Cys136 
DIOX* 

PTEN-GST 
band 

FC 2.68 3.71 12.40 15.39 3.63 

p-value 0.9952 0.9628 0.1075 0.0352 0.9672 

%  0.45 0.62 2.06 2.56 0.60 

TGVMICAYLLH

R 

Cys136 
TRIOX* 

PTEN-GST 
band 

FC 0.87 2.31 5.75 8.41 7.85 

p-value 0.9999 0.6478 0.0040 0.0001 0.0002 

%  9.22 24.41 60.64 88.72 82.82 

Aggregation 

FC 1.00 1.01 1.04 1.11 1.12 

p-value > 0.9999 0.5898 0.6901 0.0064 0.0048 

%  87.18 90.42 90.05 97.07 97.46 

MFHFWVNTFFI

PGPEETSEK 

His272 
OX* 

Aggregation 

FC 1.46 1.68 1.68 4.13 5.47 

p-value 0.8268 0.5526 0.6474 0.0002 < 0.0001 

%  5.50 6.33 6.05 15.58 20.65 

TGVMICAYLLH

R 

Met134 
OX* 

PTEN-GST 
band 

FC 0.91 1.64 4.01 5.05 4.89 

p-value 0.9998 0.7326 0.0013 0.0001 0.0002 

 % 13.07 23.52 57.49 72.39 70.11 

Aggregation 

FC 1.03 1.07 1.00 1.10 1.19 

p-value 0.9779 > 0.9999 0.5731 0.2360 0.0138 

%  65.55 63.97 68.18 70.35 75.81 

MFHFWVNTFFI

PGPEETSEK 

Met270 
OX* 

PTEN-GST 
band 

FC 1.13 1.08 1.47 4.78 4.86 

p-value 0.9985 0.9997 0.7986 < 0.0001 < 0.0001 

%  17.90 17.09 23.27 75.51 76.89 

Aggregation 
FC 1.12 1.17 1.23 1.22 1.05 
p-value 0.3084 0.0172 0.0019 0.0227 0.8982 
%  58.51 64.31 68.59 63.78 55.06 

MFHFWVNTFFI

PGPEETSEK 

Trp274 
OX* 

Aggregation 
FC 1.16 1.20 1.04 2.63 4.86 

p-value 0.9926 0.9999 0.9997 0.0065 < 0.0001 

%  8.88 7.98 7.00 20.10 37.18 
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MMFETIPMFSG

GTCNPQFVVC
QLK 

Met205 
OX* 

PTEN-GST 
band 

FC 0.95 0.58 0.57 0.23 2.43 
p-value > 0.9999 0.9985 0.9985 0.9799 0.8160 
%  0.03 0.02 0.02 0.01 0.09 

Aggregation 
FC 2.02 2.64 2.72 3.41 3.22 
p-value 0.5278 0.1311 0.0493 0.0254 0.0398 

%  22.71 30.59 35.29 38.40 36.30 

FMYFEFPQPLP

VCGDIK 

Met239 
OX* 

PTEN-GST 
band 

FC 1.09 1.26 1.80 3.18 3.34 

p-value 0.9968 0.8082 0.0483 < 0.0001 < 0.0001 

% 23.06 26.67 38.17 67.24 70.65 

Aggregation 
FC 1.21 1.40 1.56 1.97 2.31 
p-value 0.6932 0.0457 0.0354 0.0010 < 0.0001 

% 35.0135 44.9442 45.7299 56.9346 66.5483 

YQEDGFDLDLT
YIYPNIIAMGFP

AER 

Met35 
OX* 

PTEN-GST 
band 

FC 1.05 0.99 1.34 1.80 1.74 
p-value 0.9942 0.9999 0.0950 0.0003 0.0006 

%  52.79 49.61 67.18 90.22 87.34 

Aggregation  
FC 0.92 0.99 1.06 1.11 1.24 
p-value 0.9433 0.9819 0.9998 0.8455 0.2735 
%  62.35 72.23 66.89 75.57 84.18 

IYNLCAER 
Cys71 
TRIOX 

PTEN-GST 
band 

FC 1.20 2.62 3.58 4.20 3.42 
p-value 0.9998 0.7290 0.3467 0.1874 0.4026 
%  10.43 22.85 31.23 36.62 29.79 

Aggregation  
FC 0.88 0.79 0.74 2.33 2.53 
p-value 0.9998 0.9971 0.9725 0.3804 0.2653 
%  3.72 3.14 2.37 9.84 10.70 

TGVMICAYLLH

R 
Met134 
DIOX 

PTEN-GST 
band 

FC 0.85 2.59 1.20 0.38 1.01 

p-value 0.9997 0.1617 0.9985 0.8523 > 0.9999 

%  13.07 23.52 57.49 72.39 70.11 

MMFETIPMFSG

GTCNPQFVVC
QLK 

Met198 
OX 

PTEN-GST 
band 

FC 0.96 1.32 1.27 1.09 1.36 
p-value 0.9999 0.8843 0.9388 0.9997 0.8426 
%  0.35 0.48 0.46 0.40 0.49 

Aggregation 
FC 1.53 1.82 1.70 2.00 1.93 
p-value 0.5635 0.3338 0.2112 0.1034 0.1328 
%  38.16 42.23 45.30 49.67 48.18 

MMFETIPMFSG

GTCNPQFVVC
QLK 

Met199 
OX 

PTEN-GST 
band 

FC 0.96 1.32 1.26 1.09 1.42 
p-value 0.9999 0.8920 0.9484 0.9989 0.7536 
%  0.35 0.48 0.46 0.40 0.52 

Aggregation 
FC 1.57 1.93 1.63 1.86 1.92 
p-value 0.5032 0.6319 0.1596 0.5086 0.4257 
%  30.82 31.98 33.18 36.44 37.67 

MMFETIPMFSG

GTCNPQFVVC
QLK 

Pro204 
OX 

PTEN-GST 
band 

FC 1.13 1.39 1.37 0.53 0.70 
p-value 0.9910 0.6105 0.6534 0.4490 0.7928 
%  33.36 41.09 40.49 15.50 20.54 

Aggregation 
FC 0.94 0.87 0.97 0.88 0.97 
p-value 0.9965 0.9998 0.9631 0.9543 0.9997 
%  29.24 30.40 34.63 27.57 30.16 

MMFETIPMFSG

GTCNPQFVVC
QLK 

Met205 
DIOX 

PTEN-GST 
band 

FC 1.10 0.63 0.37 0.39 0.85 
p-value 0.9998 0.9644 0.7835 0.8006 0.9996 
%  0.09 0.05 0.03 0.03 0.07 

VKIYSSNSGPT

R 
Tyr225 
CHLOR 

Aggregation 
FC 0.99 0.96 1.14 1.35 1.40 
p-value > 0.9999 0.8106 0.5871 0.1363 0.0780 
%  67.54 77.73 81.32 91.78 95.16 

MFHFWVNTFFI
PGPEETSEK 

Pro281 
OX 

PTEN-GST 
band 

FC 0.37 0.77 0.65 0.00 0.00 
p-value 0.8137 0.9960 0.9770 0.4673 0.4673 
%  0.12 0.25 0.21 0.00 0.00 

YSDTTDSDPEN

EPFDEDQHTQI
TK 

Tyr379 
CHLOR 

Aggregation 
FC 7.37 12.40 14.83 170.06 459.86 
p-value > 0.9999 0.9999 0.9107 0.8143 0.0944 
%  0.26 0.53 4.80 6.03 16.31 

1 
Peptide sequence obtained from the Mascot database search of LC-MS runs aligned on Progenesis 

QI, carrying the modified residue (in red) 
2 
Gel Fraction corresponding to the LC-MS run where the peptide was detected 

3 
Modification type and position within the protein amino acid sequence 

FC = fold change relative to untreated control; p-value was returned by one-way ANOVA with 

Dunnett’s multiple comparison test for each modification detected following relative quantification. % 

= average percentage abundance of the modification;  

Bold indicates more than 2-maximum fold change in abundance of the modification in at least one 

HOCl to PTEN-GST molar ratio used; * indicates modification with a statistically significant increase 

in abundance. Infinity indicates FC values obtained when the abundance of the modification in the 

untreated control was 0. 
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The data was obtained from the analysis of PTEN-GST intact band and protein aggregates features 

present in three independent HOCl oxidation experiments.  

Ranking of modifications with * is based on maximum FC, highlighted in bold blue. Ranking of other 

modification is based on their position within PTEN structure.  
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Next, the maximum fold change relative to untreated control was compared to the maximum 

average percentage modification recorded for each oxPTMs detected (in either intact PTEN-GST band 

or aggregates) that was significantly more abundant in the treated samples (Figure 3.11). For all 

oxPTMs detected, the highest level of average modification abundance and fold change relative to 

untreated control were seen after treatment with either a 150:1 or a 300:1 molar ratio of HOCl to 

PTEN-GST. In most cases, the maximum percentage modification abundance of residues which were 

found significantly more oxidized in the HOCl-treated samples depended on both the amino acid 

residue (shape-coded in Figure 3.11) and the type of modification involved (color-coded in Figure 

3.11). Methionine residues that were significantly more oxidized to sulfoxide upon HOCl treatment 

(Met35, Met134, Met205, Met239, and Met270) usually reached very high levels of maximum 

modification abundance (38.4-90.2%), but the maximum fold change relative to the untreated control 

was generally in the low range (1.8-5.0), due to high level of modification in the untreated control. 

However, the occurrence of methionine sulfone detected at Met35 showed a completely different 

trend, as a maximum abundance of only 9.3% was reported, while the maximum fold change relative 

to untreated control was 20.7 for the intact PTEN-GST band and 42.3 for the aggregation area. 

Conversely, all tyrosine modifications detected showed a similar fold change/abundance pattern. 

While the maximum detected modification abundance of tyrosine chlorination events (both 

chlorination and dichlorination) was relatively low (0.3-17.8%), their average fold changes relative to 

the untreated control are among the highest recorded across the map (22.5-Infinity). The level of 

hydroxylation at Tyr240 only reached 7.2% in the sample treated with a 300:1 molar ratio of HOCl to 

PTEN-GST, and the maximum fold change relative to untreated control was 1031.2. Quantification of 

hydroxylation at both His272 and Trp274 revealed a maximum fold change of only 5, while the 

percentage modification abundance was 20.7% for 2-oxohistidine and 37.3% for 5-

hydroxytryptophan. Cysteine residues were generally found to be extensively oxidized to cysteine 

sulfonic acid, showing very high level of modification (69.1-97.5%) as well as relatively high 

maximum fold change relative to the untreated control (8.4-51.8). Cysteine sulfinic acid was also 

detected with a high fold change (15.4), but the maximum level of modification abundance was below 

3% as most of it was further oxidized to the sulfonic form. 
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Figure 3.11 Comparison of maximum fold change and percentage modification abundance of 

HOCl-induced PTEN oxPTMs  

Different symbols in the scatterplot correspond to different residues: square: cysteine; rhombus: 

tyrosine; circle: methionine, up-pointing triangle: histidine; down-pointing triangle: tryptophan. 

Different colors in the scatterplot correspond to different oxPTMs: yellow: hydroxylation; light green: 

chlorination; dark green: dichlorination; blue: methionine sulfoxidation; pink: methionine sulfonation; 

brown: cysteine sulfinylation; red: cysteine sulfonylation. Chlorination of Tyr377 (Max F.C = Infinity, 

Max % abundance = 0.29) was excluded from the scatter plot. Data is presented as the mean of the % 

maximum relative abundance versus maximum average fold change from three independent 

experiments for each detected modification that was found significantly elevated in comparing HOCl-

treated samples with untreated control.  

Lastly, oxidation sites corresponding to the 13 PTEN amino acid residues showing a significant 

increase in oxPTMs levels were mapped on the PTEN 3D crystal structure obtained from the Protein 

Data Bank (PDB) ID 1D5R (Figure 3.12) using the UCSF Chimera Molecular Modeling software. The 

oxPTMs are highlighted with different colors on the PTEN 3D structure depending on whether they 

were detected exclusively in the intact PTEN-GST band (cyan), in the aggregates (green) or in both 

(red). Met134 sulfoxide and Cys136 sulfinic acid in the phosphatase domain were significantly more 
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abundant in the PTEN peptides analyzed in the intact PTEN-GST band, while Cys136 sulfonic was 

abundant in both intact band and aggregates. With the exception of Tyr377 3-chlorotyrosine and 3,5-

dichlorotyrosine which mapped in C-terminal tail, all remaining oxPTMs that were found exclusively 

in the PTEN aggregates (Met205 sulfoxide, His272 2-oxohistidine, Trp274 5-hydroxytryptophan and 

Tyr240 3,5-dihydroxyphenylalanine) mapped in the C2 domain.  

 

 

Figure 3.12 HOCl modified residues mapped on PTEN 3D structure 

The 3D structure map was generated using UCSF Chimera Molecular Modeling System software, 

highlighting oxidation sites corresponding to a significant increase in modification level for oxPTMs. 

Residues that were found significantly more modified upon HOCl treatment in both intact PTEN-GST 

and aggregates are highlighted in red. Met134, which was found to be significantly more oxidized 

only in the PTEN-GST intact band, is highlighted in cyan; Met205, Tyr240, His272, and Trp274, 

which only showed a significant increase modification levels in the aggregates fractions are 

highlighted in green. Tyr 377 was also found significantly more oxidized in the PTEN aggregates 

upon HOCl treatment, but is not visible in the 3D model as is yet to be crystallized. 

 

Solvent accessibility of PTEN residues was predicted with NetsurfP. Table 3.3 shows the solvent 

accessibility predicted for all modified residues that were found significantly more modified upon 
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HOCl treatment, including the uncrystallized residue Tyr377. Solvent accessibility data obtained for 

all 403 PTEN amino acids are reported in the Appendix (Section 8.3, Table 8.1). Based on their 

surface accessibility PTEN residues were predicted to be in two classes as either buried or exposed 

using a cut-off of 25% exposed accessible surface area for each given amino acid. The majority of the 

oxPTMs detected after HOCl treatment of PTEN mapped in residues that are buried in the protein 

interior in normal folding conditions (Table 3.3). These included Met134, which was found 

significantly more oxidized only in the intact PTEN-GST, His272 and Trp274, which were found 

significantly more oxidized only in the aggregates, and all remaining residues that were found 

significantly more modified in both intact and aggregates. However, Met205, Tyr240, and the 

uncrystallized Tyr377, which were detected exclusively in the aggregates fraction, mapped in regions 

of the proteins that were predicted to be solvent-exposed. 

 

Table 3.3 Surface accessibility of HOCl modified residues  

AA
1
 AA position

2
 RSA

3
 ASA

4
 Z-Score Class assignment

5
 

M 35 0.018 3.582 0.817 Buried 

M 134 0.022 4.422 1.041 Buried 

C 136 0.016 2.246 1.028 Buried 

Y 155 0.04 8.505 0.173 Buried 

M 205 0.339 67.874 ‐1.508 Exposed 

M 239 0.066 13.287 0.097 Buried 

Y 240 0.271 57.977 0.743 Exposed 

C 250 0.235 33.022 0.221 Buried 

M 270 0.03 6.003 0.395 Buried 

H 272 0.044 7.913 0.388 Buried 

W 274 0.022 5.219 1.212 Buried 

Y 315 0.177 37.932 0.048 Buried 

Y 377 0.325 69.41 ‐1.253 Exposed 
1
AA = Amino acid 

2
Amino acid position 

3
RSA = Relative Surface Accessibility 

4
ASA = Absolute Solvent Accessibility 

5
Class assignment was predicted using a threshold of 25 exposed accessible surface area, based on the 

ASAmax of a given amino acid. 

Residues that were found significantly more modified exclusively in the aggregates fraction are 

indicated in bold. 

Met134, which was found significantly more modified exclusively in the PTEN-GST intact band is 

indicated in italic. 
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3.5 Discussion 

The study presented in this chapter describes the effect of hypochlorous acid-induced oxidative 

damage to the activity and structure of the dual specificity phosphatase PTEN. A number of oxPTMs 

has been identified that appear to be related to the irreversible inactivation of PTEN caused by the 

HOCl treatment. 

Prior to any oxidation experiment, the purified PTEN was buffer-exchanged in order to remove 

reagents present in the elution buffer (such as the antioxidant glutathione and the reducing agent DTT) 

that would interfere with the controlled oxidation experiment and the cryoprotectant glycerol that 

interfered with the assays used to measure protein concentration. Maintaining unaltered protein 

activity during the buffer exchange process was challenging, but also considered critical for the study, 

as if the protein is inactivated in non-reducing buffer conditions, the interpretation of any oxidation-

related changes in activity may be more difficult or incomplete. For this reason some preliminary tests 

were carried out to compare PTEN-GST enzymatic activity before and after buffer exchange 

performed with different methods and buffers. The Slide-A-Lyzer dialysis cassette was unsuccessful 

in retaining PTEN activity after buffer exchange in 50 mM phosphate buffer pH 7.4, which resulted in 

approximately 69% drop in phosphatase activity. To test the hypothesis that the free phosphate present 

in phosphate buffers might interfere with the protein activity, the exchange buffer was replaced with 

20 mM diethylmalonic acid pH 7.4, but no substantial improvement was seen (-56% activity), 

suggesting that this dialysis method was not compatible with the protein of interest. The second device 

tested for dialysis was Microcon centrifugal filter units. Minimal activity losses (-10%) were seen 

when PTEN-GST was buffer-exchanged in 50 mM phosphate buffer pH 7.4 using this system, which 

was therefore used throughout the entire experimental described in this thesis. While such system was 

considered reliable in maintaining PTEN activity for the purpose of this study, care was taken while 

handling the PTEN-GST protein solutions in order to minimize spontaneous oxidation events (by 

using the protein immediately after buffer exchange) and loss of stability due to environmental factors 

such as temperature or contaminants. 
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The buffer-exchanged GST-tagged PTEN was treated with hypochlorous acid to mimic the effect 

of myeloperoxidase-induced damage on PTEN phosphatase activity and structure. The maximum level 

of HOCl concentration used to treat PTEN was chosen after evaluating: 1) the information available 

on the HOCl concentrations generated by inflammation-stimulated neutrophils in vivo (up to 5 mM 

HOCl) [493]; and 2) the HOCl concentration necessary to fragment proteins in vivo (10 mM HOCl) 

[515]. A maximum concentration of 10 mM HOCl (300:1 HOCl to PTEN-GST molar ratio) and a 

range of HOCl concentrations were eventually used, so that the protein modifications patterns could 

be correlated to various degrees of protein inactivation and structural changes due to oxidation. 

Exposing PTEN to increasing HOCl concentrations for 1 hour caused a relatively linear drop in PTEN 

activity, assayed by measuring the amount of fluorescent OMF released following hydrolysis of the 

artificial substrate OMFP. The phosphatase activity was significantly reduced when the phosphatase 

was treated with 60:1 (2 mM HOCl), 150:1 (5 mM HOCl), and 300:1 (10 mM HOCl) HOCl to PTEN-

GST molar ratios. As the reversible formation of a disulfide bond between Cys71 and Cys124 in the 

active site of PTEN has been previously associated to PTEN H2O2-induced inactivation [144,423], the 

hypothesis that the drop in activity could be reversible was tested by assaying the HOCl-treated 

protein activity after incubation for 15 min in reducing conditions (100 mM DTT). For all the HOCl 

concentrations tested, the OMFP assay showed no significant difference between the activity of the 

HOCl-oxidized protein before and after incubation with 100 mM DTT, suggesting that modifications 

other than the Cys71-Cys124 disulfide bond were responsible for the reduction in activity. However, 

the formation of the active site disulfide bond could not be ruled out, as HOCl was previously 

demonstrated to cause the formation of an intramolecular DTT-reversible disulfide bond [227] as well 

as intermolecular dimers containing  a disulfide cross-link [516] in other proteins. 

The effects of HOCl oxidation on PTEN structure were further evaluated by analyzing the 

electrophoretic profile of the oxidized protein. The decrease in PTEN-GST band intensity observed on 

the gel suggested that increasing HOCl concentrations altered PTEN protein structure substantially. 

High molecular mass aggregates were observed for all PTEN samples treated with HOCl (but were 

particularly evident in the samples treated with 60:1, 150:1, and 300:1 HOCl to PTEN-GST molar 

ratios), and increased following a dose-dependent pattern, in line with that reported for other proteins 

treated with HOCl in vitro [500,517]. The activity data previously recorded were compared to the 
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densitometry data performed on both the full gel lane and the intact PTEN-GST band visible on the 

SDS-PAGE used to analyze HOCl-treated PTEN samples. Similar reduction patterns were seen in 

comparing the protein intact band signal and the phosphatase activity, both of which dropped 

significantly with HOCl to PTEN-GST molar ratios higher than 60:1. Unsurprisingly, the total protein 

signal on the gel was unchanged from 15:1 to 150:1 molar ratios of HOCl to PTEN-GST, and dropped 

by 30% only when the protein was treated with a 300:1 molar ratio HOCl to PTEN-GST (likely due to 

fragmentation or to larger aggregates that could not enter the resolving gel). This was considered 

essential to rule out the possibility that less total protein content rather than oxidation-induced damage 

could be responsible for the reduction of the intact protein signal and for any protein activity loss. 

PTEN activity showed a strong positive correlation with data obtained from the densitometry of the 

intact PTEN-GST band (r = 0.936; p-value = 0.006), while data obtained from the densitometry of the 

entire gel lane did not correlate as well (r = 0.685; p-value = 0.133). These results suggest a link 

between PTEN activity and protein structure, which would lead to speculate that aggregates of PTEN 

are not active upon HOCl oxidation, as full phosphatase activity seems to be present only in the intact 

form (visible as the 73kDa PTEN-GST band on the gel).  

HOCl-induced oxPTMs for both intact band and aggregates were identified and quantified by MS-

based label-free quantification using Progenesis QI for Proteomics. The protein sequence coverage 

after peptide score thresholding was 67%, thereby excluding from the oxPTMs mapping many 

important amino acid residues, such as Cys124 in the catalytic p-loop, all residues in the catalytic 

WPD-loop and T1-loop, part of the CBR3-loop and all residues of the cα2 helix. 

After peptide quantification with Progenesis and identification with Mascot, the modified peptides 

were de novo sequenced to resolve same-m/z peptides conflicts and to validate the search engine 

results. The de novo sequencing procedure was time-consuming and laborious, but was found useful to 

gain confidence on the Mascot-identified modifications in peptides that were found significantly more 

modified in the HOCl-treated protein versus untreated control. However, the process did not reveal 

any Mascot false assignment, indicating that the score-based threshold was efficient in removing any 

ambiguous identification from the modified peptides list.  

For each of the oxPTMs detected, the relative abundance of each modified peptide(s) obtained 

from Progenesis QI and validated with de novo sequencing was used to calculate the percentage 
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relative modification accounting for the relative abundance of the corresponding unmodified 

peptide(s). Obtaining the oxPTMs amount directly from the abundance of each modified peptide was 

not considered accurate as the level of the peptide in its unmodified form also influenced the total 

amount of a given residue in each HOCl treated sample.  

Among the 19 modified residues that were mapped and quantified, 13 were found to carry 

oxidative modifications that were significantly more abundant upon HOCl treatment. These oxPTMs 

included methionine sulfoxide and sulfone, cysteine sulfinic and sulfonic acid, tyrosine hydroxylation, 

chlorination and dichlorination, histidine hydroxylation and tryptophan hydroxylation.  

Methionine sulfoxide was significantly higher at several methionine residues within PTEN, 

including Met 134, Met205, Met239, and Met270. These residues were expected to reach high level of 

modification upon HOCl treatment due to their well-known susceptibility to oxidation mediated by 

reactive species [518]. Instance of methionine sulfoxide was found elevated also in the untreated 

control for all the residues involved, suggesting that methionine residues underwent spontaneous 

oxidation regardless of the HOCl treatment. This explains the relatively low fold change range (3-5) 

that was seen for these modifications in comparing HOCl-treated samples with untreated control. 

Except for Met134 which was identified as a PTPs mutational hotspot [413], no study to date has 

investigated the role of Met205, Met239 or Met270 in PTEN structure and function.  

Another significant HOCl-induced oxPTM was methionine sulfone, which was found at Met35, a 

residue previously characterized as important for PTEN phosphatase activity [409]. In contrast to what 

was observed for methionine sulfoxide, this residue did not show high levels of modifications in the 

untreated control, and was 20-40 times more abundant in the sample treated with the highest HOCl 

concentration. Because Met35 was not found to be significantly more oxidized to sulfoxide, it is 

reasonable to assume that this residue specifically oxidizes to sulfone under strong oxidizing 

conditions causing inactivation of PTEN (such as high HOCl molarities), in line to previous studies 

demonstrating its role in maintaining PTEN catalytic activity [409]. As this residue was already 

extensively modified to sulfoxide in the untreated control, it is likely that that the HOCl oxidation 

resulted in “saturation” of the sulfoxide modification state. This caused further oxidation of sulfoxide 

to sulfone, which was, in fact, detected in substantial amount only in the sample treated with the 

highest HOCl concentration used, while the corresponding sulfoxide did not increase. In addition, 
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because methionine sulfone, but not sulfoxide, has been shown to be irreversible in vivo [519], these 

results suggest that HOCl-induced PTEN inactivation is also irreversible in cells.  

Additional significant changes were seen for the modification status of cysteine residues. Cysteine 

sulfinic and sulfonic acid modifications were seen upon HOCl treatment at Cys136, a PTEN residue 

that has been previously found mutated in Cowden’s disease [520]. However, only a small percentage 

of Cys136 was actually sulfinic acid (2%), while the level of sulfonic acid reached 82% in the sample 

treated with the highest HOCl concentration, as cysteine sulfinic acid easily oxidizes to the 

corresponding cysteine sulfonic acid under oxidizing conditions [521]. Interestingly, PTEN aggregates 

corresponding to all the different HOCl concentration used (including the untreated control) showed a 

level of Cys136 sulfonic acid close to 90%, suggesting a HOCl-induced saturation effect for this 

modification. High levels of sulfonic acid were also seen at Cys250 (69%), which was found 

significantly more oxidized upon HOCl treatment, with a max fold change of 52, the highest recorded 

among cysteine residues. A sulfonic acid modification was also detected at Cys71, which is known to 

form the reversible disulfide bond with Cys124 upon H2O2 treatment, resulting in the reversible 

inactivation of PTEN [144,423]. While the HOCl treatment did not result in a significant increase in 

sulfonic acid at Cys71, the modification status of this residue is important for investigating the redox 

status of PTEN active site upon HOCl treatment. A previous study has compared the effect of HOCl 

and H2O2 oxidation demonstrating that while HOCl can also induce disulfides, it preferentially 

oxidizes thiol groups of active site cysteines to sulfinic and sulfonic acid, in contrast to H2O2 which 

only generated an intermolecular disulfide bridge [516]. As high abundance irreversible sulfonic acid 

was detected at Cys71, it could be speculated that the HOCl treatment did not result in the formation 

of high abundant reversible disulfide bond in the active site of PTEN. Further evidence supporting this 

hypothesis is provided by activity assay results, which demonstrated the irreversibility of PTEN 

inactivation upon HOCl treatment, denoting the presence of irreversible modifications such as sulfonic 

acid in the active site essential cysteines [522]. However, as Cys124 was not detected, care should be 

taken when relying on this data to draw conclusions on the thiol/disulfide intramolecular dynamics of 

PTEN active site.   

One important group of significant oxPTMs included tyrosine chlorination states, which are a 

specific marker of myeloperoxidase-induced protein damage [231,523,524]. Among the chlorinated 
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amino acid was Tyr155, which has been shown by mutagenesis studies to be required for PTEN 

catalytic activity [409], as well as for the regulation of PTEN interaction with the E3 ubiquitin ligase 

WWP2, which mediates degradation of PTEN through a ubiquitination-dependent pathway [525]. 

Another significant increase in the level of chlorination was seen for Tyr315, for which mutagenesis 

studies have revealed a role in PTEN tumour suppressing function and phosphatase activity [426]. The 

in vitro HOCl oxidation of PTEN resulted in significantly higher levels of 3-chlorotyrosine at Tyr155 

(max FC = 22.5) and Tyr 315 (max FC = 156.2), the abundance of which increased with decreasing 

PTEN activity and increasing aggregation. 3-chlorotyrosine and 3,5-dichlorotyrosine were also found 

significantly more abundant at Tyr377, mapped in the C-terminal tail of PTEN, a region of the 

phosphatase that has been demonstrated to be required for protein stability [428,526]. Interestingly, 

Tyr377 was found excessively modified exclusively in the aggregate fractions of HOCl-treated PTEN, 

(with a fold change of Infinity for the chlorination and 71 for the dichlorination), suggesting that this 

residue might be important for the PTEN C-terminal tail role in maintaining protein stability, a 

function that could be compromised upon HOCl oxidation. 

The last group of significant oxPTMs was the hydroxylation of aromatic amino acids in the C2 

domain of PTEN. These included Tyr240, the mutation of which has been shown to decrease both 

PTEN tumour suppressing function and phosphatase activity [426] and Trp274, which has been 

identified as a cancer-related mutation site in PTEN [527]. High fold change (1031.2) was seen for 

3,4-dihydroxyphenylalanine at Tyr240 in the sample treated with the highest HOCl concentration, 

while a less marked increase in hydroxylation was observed at His272 (Max FC= 4.9) and Trp274 

(Max FC 5.5). Similarly to that observed for Tyr377, these oxPTMs were identified exclusively in the 

PTEN aggregates. As a stabilization role has also been proposed for the C2 domain of PTEN [528], it 

is possible that these residues are involved in maintaining protein stability and that their oxidation 

contributed to the increased PTEN aggregation observed upon treatment of the protein with high 

HOCl concentrations. 

Following identification and relative quantification, amino acids that were found significantly more 

modified upon HOCl treatment were mapped on the available PTEN 3D structure and their surface 

accessibility predicted using the PTEN FASTA sequence. The results of this analysis were useful to 

correlate the surface accessibility of the modified residue with whether the modification was 
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associated with the intact PTEN or the aggregated protein or both. The majority of the oxPTMs that 

were found significantly more abundant upon HOCl treatment were detected at residues buried within 

the protein, which are normally inaccessible to the surface and protected from oxidation [529]. Buried 

residues that carried oxPTMs were detected in the PTEN intact band only (Met136), and in the 

aggregates fraction only (His272 and Trp274), but the majority was detected in both and included 

Met35, Cys136, Tyr155, Met239, Cys250, Met270, and Tyr315. This results suggest that the HOCl 

treatment had destabilized the protein structure exposing more surface area, as HOCl has been 

previously shown to easily oxidize buried hydrophobic residues such as methionine, likely due to 

structure alterations caused by the oxidant [227,530]. Nonetheless, Met205, Tyr240, and the 

uncrystallized Tyr377, which mapped in regions of the protein predicted to be surface-accessible, were 

also found to be significantly more oxidized upon HOCl treatment. These surface-exposed modified 

residues were only detected in the aggregate samples, raising interesting questions about their 

correlation with the HOCl-induced aggregation. Hydroxylation of solvent-exposed Tyr, and oxidation 

of Met residues has been previously detected in oxidation-inducible protein aggregates, although is 

unclear whether these modification occur before or after the aggregates formation [531,532]. 

However, recent studies have shown evidence that oxidation of surface-exposed redox-sensitive amino 

acids is a primary event that promotes protein misfolding and aggregation [533,534]. It is possible that 

HOCl-induced modification of Met 205 and Tyr240 of PTEN could initiate a misfolding event by 

destabilizing nearby residues, therefore increasing the likelihood of secondary oxidative damage and 

aggregation-proneness. 

In conclusion, the study described in this chapter addressed the comprehensive characterization of 

the effect of HOCl-mediated damage on the structure and function of the phosphatase PTEN. HOCl 

concentrations of 2 mM, 5 mM, and 10 mM were found to be the most effective in causing significant 

levels of protein inactivation, protein aggregation and, ultimately, modification status. The LC-MS-

based quantitative mapping identified oxPTMs at residues important for PTEN activity and protein-

protein interactions as well as at residues for which a functional role has not yet been determined. 

However, as of today the functional profile of PTEN oxidative modifications patterns is far from being 

complete. The partial sequence coverage which excluded key amino acid residues from the proteomics 

analysis is one of the main challenges that still need to be overcome to correlate PTEN oxPTMs to 
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protein phosphatase activity and folding status. Nevertheless, the proteomics approach described holds 

a great potential for measuring the effects of oxidation on proteins and could be important for the 

characterization of oxPTMs biomarkers in inflammation and disease.  
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Chapter 4. The redox interactome of PTEN 

analyzed by affinity-capture and label-free 

MS quantitation  
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4.1 Summary 

Phosphatase and tensin homolog (PTEN) is a redox-sensitive, dual-specificity protein phosphatase 

that acts as a tumour suppressor by negatively regulating the PI3K/Akt pathway. While direct 

evidence of a redox regulation of PTEN downstream signaling has been reported, the effect of 

oxidation on the PTEN interactome is still poorly defined. Here we present a correlation between 

PTEN redox status and PTEN protein-protein interactions. 

PTEN-GST fusion protein was prepared in its reduced and H2O2-oxidized form and immobilized 

on a Glutathione Sepharose-based support. The immobilized protein was incubated with a HCT116 

cell lysate to capture interacting proteins. Captured proteins were eluted from the beads, analyzed by 

LC-MS/MS and comparatively quantified using label-free methods. 

Thirteen PTEN-interacting proteins were identified that showed a significantly increased 

interaction with oxidized over reduced PTEN. These included new PTEN interactors as well as the 

redox proteins Prdx1 (peroxiredoxin-1) and Trx (thioredoxin), which are known to be involved in the 

recycling of the PTEN disulfide bond. The results of this study suggest that the redox status of PTEN 

causes a functional variation in the PTEN interactome which is important for the cellular function of 

PTEN. The resin capture method developed had distinct advantages in that the redox status of PTEN 

could be directly controlled and measured.  
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4.2 Introduction 

The vast majority of cellular processes rely upon the ability of proteins to interact with each other 

and generate precise networks through which biological signals are transmitted within cells and 

understanding the dynamics and the functional significance of protein-protein interactions (PPIs) is of 

vital importance. PPIs have been shown to play a major role in the biological mechanism behind many 

human diseases and are currently considered a promising target for the discovery and development of 

new drugs [535,536]. 

This PhD thesis focuses on the  dual specificity tumour suppressor phosphatase PTEN, which is a 

negative regulator of PI3K/Akt pathway [374], but is also involved in other cellular networks, 

including the function of the actin cytoskeleton [537,538] as well as DNA damage repair and response 

pathways [441]. PTEN has been reported to be inactivated when treated with oxidizing agents in vitro, 

as well as in cells exposed to oxidative stress conditions [144,423,477]. Reversible inactivation of 

PTEN has been shown upon hydrogen peroxide oxidation, resulting from the formation of a disulfide 

bond between Cys71 and Cys124 in the N-terminal phosphatase domain of the protein [144]. It has 

been suggested that as well as affecting protein activity, the targeted oxidation of PTEN may possibly 

modulate its ability to interact with its binding partners, thereby controlling the downstream signaling 

[193]. However, very few studies to date have described the effect of altered redox conditions directly 

on the regulation of signaling pathways and the protein-protein interactions of PTEN. 

Several different techniques have been used to characterize the PTEN interactome over the last two 

decades, and have produced both high-throughput and low-throughput data [427,539-541]. An up-to-

date list of PTEN-interactions identified in the available published work is reported in the Appendix, 

Section 8.4 (Table 8.2). Research into the redox regulation of PTEN has shown that in mammalian 

cells treated with H2O2 the protein DJ-1 (also known as Parkinson disease 7, PARK7) binds more 

strongly to PTEN, causing a reduction in PTEN catalytic activity, and enhanced phosphorylation of 

Akt [481], resulting in increased cell proliferation and apoptosis. Similarly, a number of studies have 

identified a direct interaction between thioredoxin-1 and PTEN, which has been shown to be redox-

regulated [478]. Thioredoxin-1 plays an important role in the re-activation of PTEN in vivo after H2O2 
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treatment and has been demonstrated to be even more efficient than glutathione or glutaredoxin in the 

reduction of oxidized PTEN [423]. The signaling implications of the PTEN/Trx interaction are 

important for the tumour suppressing role of PTEN (Figure 4.1). In growth factor-stimulated non 

phagocytic cells, PI3K activates the transmembrane NADPH oxidase Nox4 (or Nox1) via the 

conversion of PtdIns(4,5)P2 to the signaling intermediate PtdIns(3,4,5)P3. Activated NOX results in 

the increase in intracellular H2O2 production [476], which causes the oxidative inactivation of PTEN, 

and consequent activation of Akt by PI3K due to PtdIns(3,4,5)P3 accumulation [144]. This signaling 

cascade is blocked by the action of Trx that reactivates PTEN with a thiol-disulfide exchange 

mechanism, therefore restoring the Akt  PTEN-mediated deactivation [423]. The reactivation of PTEN 

by Trx is assisted by the NADPH-dependent thioredoxin reductase (TrxR), which restores Trx thiols 

to its reduced form after the reduction of PTEN disulfide bond [246]. In addition, Trx regulates the 

cellular redox state by reducing the thioredoxin peroxidase peroxiredoxin-1, which acts as an 

antioxidant scavenger by reducing H2O2 to H2O [542]. A direct interaction between PTEN and 

peroxiredoxin-1 has also been proposed as a possible mechanism to protect PTEN from hydrogen 

peroxide-induced inactivation, thereby preserving its tumour suppressing function [479]. Generally, 

these studies suggest a correlation between cellular redox status and the regulation of specific PTEN 

protein-protein interactions. However, very little information on direct, redox-dependent interactions 

is available, and this relationship needs to be further investigated, as such mechanisms are likely to be 

involved in the modulation of tumorigenesis- or stress-related cellular processes.  
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Figure 4.1 Interplay between H2O2 signaling and PTEN reversible inactivation   

In growth-factor stimulated cells activated PI 3-kinase (PI3K) converts PtdIns(4,5)P2 to 

PtdIns(3,4,5)P3, which activates the NADPH oxidase (NOX) complex, resulting in the production of 

intracellular H2O2. Sufficient H2O2 concentrations inactivate PTEN, thereby promoting the activation 

of Akt due to accumulating PtdIns(4,5)P3. H2O2 is scavenged by peroxiredoxin-1, while the 

thioredoxin system (Trx and NADPH-dependent TrxR) restores PTEN activity and regulates the 

cellular redox state. 

 

Mass spectrometry (MS) methods used in combination with affinity capture-based experiments are 

a valuable and well-recognized tool to investigate protein-protein interactions [267]. The sensitivity of 

modern MS technologies is such that increasingly large number of proteins within a given sample can 

be identified with a high level of selectivity and accuracy. Along with data providing evidence of 

protein identity, accurate information on protein abundance is also required to generate high-

throughput protein-protein interaction datasets. Methodologies based on in vivo isotope labeling have 

been used extensively for this purpose and are currently among the top choices for absolute and 

relative quantification of protein-protein interaction data [543]. Label-based methods offer the 

advantage of minimal errors in the final quantification, which significantly lowers the risk of biased 

conclusions, but present a number of  significant limitations, including amenability of certain cell lines 
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to grow in modified media, labeling-induced artifacts, and limited availability of required reagents 

[306]. Recently, label-free methods have become more popular in the field of LC-MS-based 

interactomics [544]. These techniques do not require additional sample manipulation steps, and 

represent a fast, straightforward, and relatively cost-effective tool to detect and match peptides across 

multiple LC-MS runs, monitor protein expression levels in complex biological samples, and perform 

comparative analysis between different protein mixtures. New generation label-free in silico solutions 

rely on accurate feature-intensity-based quantification and are capable of processing large amount of 

high resolution data [324]. Over the past few years, complex proteome-wide data like those generated 

from biomarker discovery and protein-protein interactions studies have been analyzed by proteomics 

researchers using label-free quantification, with accurate and reliable results [545]. 

In the study described in this chapter it was hypothesized that oxidative-induced inactivation of 

PTEN would modulate the ability of the protein to bind its interacting partners, thus altering its 

interactome. To investigate this, a GST-tagged fusion PTEN was immobilized on a glutathione-

sepharose resin and challenged with HCT116 cell lysate for the affinity-capture of the interactions. 

Using label-free quantitative LC-MS/MS, the abundance of the binding proteins was compared 

between the reduced and oxidized PTEN. The method described identified a number of putative novel 

protein-protein interactions that can contribute to shed a light on the possible involvement of PTEN in 

several cellular process of current interest.  
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4.3 Materials and Methods 

4.3.1 Reagents 

Monoclonal antibodies against thioredoxin-1 (ab16965) and annexin A2 (ab54771) were purchased 

from Abcam (Cambridge, UK). Monoclonal antibodies against Prdx1 (D5G12), DDB1 (D4C8) and 

PTEN (26H9) were purchased from Cell Signaling Technology (New England Biolabs, Hitchin, UK). 

HRP-linked anti-mouse IgG secondary antibody was purchased from Santa-Cruz (sc-2031, Wembley, 

UK) and anti-rabbit IgG was from Cell Signaling Technology (7074S, New England Biolabs, Hitchin, 

UK). Enhanced chemiluminescence (ECL kit) was from Thermo Scientific (Thermo Fisher Scientific, 

Hemel Hempstead, UK).  

 

4.3.2 Cell culture 

Approximately 5x10
7
 HCT116 human colon cancer cells (cultured as described in Section 2.3.3) of 

passage 4 to 10 were harvested, washed twice with ice cold PBS pH 7.4 with centrifugation at 500xg 

for 10 minutes between washes, and lysed with ice cold 50 mM Tris pH 7.4 containing 150 mM NaCl, 

1 mM EDTA, 0.5% NP-40 (Sigma-Aldrich Chemical Co., Poole, UK) supplemented with EDTA-free 

protease inhibitor cocktail (Catalog no.11 873 580 001, Roche Diagnostics GmbH, Mannheim, 

Germany) by incubating for 45 minutes on ice with occasional mixing. The lysate was clarified by 

spinning at 20,000xg for 15 minutes at 4 ºC.  

 

4.3.3 Buffer exchange 

Prior to any downstream experiment, purified PTEN-GST was buffer-exchanged in 20 mM Tris pH 

7.4, 0.1 mM EDTA, 100 mM NaCl using a Microcon® 10kDa centrifugal filter unit (Millipore Ltd, 

Feltham UK), and all centrifugation steps were performed at 14,000xg in a 5417R Eppendorf 
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microcentrifuge (Eppendorf UK Ltd, Stevenage, UK) for 10 min at 4 ºC. Protein concentration was 

then determined using absorbance at 280 nm using a Nanodrop 2000c UV-Vis Spectrophotometer 

(Thermo Fisher Scientific, Hemel Hempstead, UK). 

4.3.4 PTEN oxidation and activity assay  

Purified buffer-exchanged PTEN-GST was treated with either 0 or 1 mM H2O2 for 1 hour at room 

temperature. The reaction was quenched by the addition of 5 mM methionine (Sigma-Aldrich 

Chemical Co., Poole, UK). An aliquot of the 1 mM H2O2 oxidized sample was subsequently incubated 

in 100 mM DTT for 15 min to assess the reversibility of the oxidation. 60 µg each of untreated, 

oxidized and DTT-incubated oxidized protein were assayed with the OMFP phosphatase assay as 

described in Section 2.6.3. Statistical analysis of activity data was performed using GraphPad Prism 

Software (GraphPad, San Diego, CA, USA) using one-way ANOVA followed by Tukey's multiple 

comparison test.  

4.3.5 Preparation of PTEN affinity-capture column and protein capture 

The untreated and oxidized/DTT-recovered samples of PTEN-GST (100 µg protein each) were 

diluted in 500 µL of wash buffer (20 mM Tris pH 7.4, 0.1 mM EDTA, 100 mM NaCl) supplemented 

with 100 mM DTT; the oxidized PTEN-GST (100 µg) and a GST control (100 µg) were diluted in 500 

µL of wash buffer without DTT. 100 µL of Glutathione Sepharose 4B slurry (GE Healthcare, Little 

Chalfont, UK) was sedimented by centrifugation at 500xg for 5 minutes. The Glutathione Sepharose 

beads were extensively washed with wash buffer and stored at 4ºC. The bait proteins (PTEN-GST) 

were immobilized on the Glutathione Sepharose beads by incubation with the protein solutions at 4ºC 

for 3 hours. The beads were then washed once with wash buffer, and then 1 mL of HCT116 cell lysate 

derived from approximately 5 x 10
7 
cells was incubated with each of the immobilized bait proteins and 

a control consisting of Glutathione Sepharose beads only, at 4ºC overnight on an end-over-end mixer 

(Dynabeads® MX1 Mixer, Life technologies, Paisley, UK). Subsequently, the beads were washed 

with 20 mM Tris pH 7.4, 0.1 mM EDTA, 300 mM NaCl, 0.5% NP-40 to remove non-bound proteins. 
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The bound proteins were then eluted by boiling in SDS-PAGE 2× Laemmli sample buffer Concentrate 

(Sigma-Aldrich Chemical Co., Poole, UK) and analyzed by SDS-polyacrylamide gel electrophoresis 

followed by staining with Coomassie Brilliant Blue as described in Section 2.6.1.  

4.3.6 Protein digestion 

The gel lanes corresponding to the bead control, the GST control, the untreated (reduced) PTEN-

GST and the oxidized PTEN-GST samples were each cut into 12 approximately equal slices, and the 

gel pieces digested as described in Section 2.7.1.  

4.3.7 LC-MS 

Peptides were separated and analyzed as described in Section 2.7.2. Peptide samples corresponding 

to same-molecular weight gel bands were acquired back-to-back. 

4.3.8 Label-free quantification with Progenesis QI for proteomics 

Comparative quantification was performed using the Progenesis QI for Protemics software (Non-

linear Dynamics, Newcastle upon Tyne, UK) as described in Section 2.7.3. A total of 12 experiments 

were created, one for gel bands excised from each lane of the Coomassie-stained gel at the same 

molecular weight. Any peptide showing a Mascot Ion Score below the threshold indicative of identity 

or extensive homology (p-value < 0.05) was removed from the feature identification list. Cytoskeletal 

keratin IDs were removed from the feature identification list. Only features that had zero protein 

conflicts were used for quantification. Data obtained from the alignment of LC-MS runs 

corresponding to single fractions were then pooled into a multi-fraction experiment. Statistical 

analysis was performed using Progenesis QI for Proteomics using a one-factor ANOVA. 

 



Chapter 4. The redox interactome of PTEN analyzed by affinity-capture and label-free MS quantitation  

 166   

4.3.9 Database Search 

The Mascot
®
 probability based search engine (Matrix Science, London, version 2.4.0) was used to 

interrogate the SwissProt 2015-03 primary database. For Mascot searches that was not automated 

through the Progenesis QI analysis, LC-MS .wiff file were converted into .mgf format using 

Peakview
®
 (AB SCIEX). The 12 .mgf files obtained the Progenesis analysis of each of the samples 

were searched for protein identification and for bait protein oxidative post-translational modifications 

(oxPTMs). For protein identification, a variable modification of methionine oxidation and a fixed 

modification carbamidomethyl cysteine were used. For the analysis of the oxPTMs of the bait, the 

variable modification lists included: methionine oxidation and dioxidation; cysteine oxidation, 

dioxidation and trioxidation, and tyrosine oxidation. Other parameters for the searches were as 

follows: Enzyme: Trypsin; Peptide tolerance: ± 0.8 Da; MS/MS tolerance: ± 0.8 Da; Peptide charge 

state: +2,+3 and +4; Max Missed cleavages: 1; #13C: 1; Quantitation: None; Instrument: ESI-QUAD-

TOF; Data format: Mascot Generic; Experimental mass values: Monoisotopic; Taxonomy Homo 

Sapiens (Human).  

 

4.3.10 Relative quantification of bait modification 

To calculate the relative abundance of a given modified residue, the individual abundance values of 

each detected peptides containing the amino acid in both its modified and unmodified form were 

added together. Next, the abundances of the detected peptides containing the residue solely in its 

modified form were summed up and divided by the total abundance value to obtain the relative 

abundance of the modification. Statistical analysis of modification data was performed with GraphPad 

Prism Software (GraphPad, San Diego, CA, USA) using two-tailed unpaired Student’s t test (for 

multiple comparisons). P < 0.05 was considered significant.  
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4.3.11 Western Blotting  

Proteins resolved by SDS-PAGE were transferred onto PVDF membrane (Immobilion-P, Millipore 

Ltd, Feltham UK) in 25 mM Tris, 192 mM glycine, 10% methanol pH 8.3 applying 30V overnight at 

4ºC. The membrane was blocked in Tris buffered saline (TBS)-Tveen blocking buffer (20 mM Tris pH 

7.6, 137 mM NaCl 0.05% Tveen-20), supplemented with 5% BSA (Bovine Serum Albumin, Sigma-

Aldrich Chemical Co., Poole, UK) for 1 hour, incubated in blocking buffer with monoclonal primary 

antibodies for Trx, Prdx1, Anxa2, or DDB1 at the working dilution of 1:1000 overnight at 4ºC, 

washed extensively for 30 minutes (3 washes of 10 minutes each) with Tris buffered saline (TBS)-

Tween (20 mM Tris pH 7.6,), 137 mM NaCl, 0.05% Tween-20) and incubated with either HRP-linked 

anti-mouse or HRP-linked anti-rabbit secondary antibodies (working dilution 1:1000) for 1 hour at 

room temperature. The membrane was washed again as described above and HRP-linked anti-mouse 

or HRP-linked anti-rabbit were detected using enhanced chemiluminescence (ECL kit, Thermo Fisher 

Scientific, Hemel Hempstead, UK) according to the manufacturer's instructions. The membrane was 

scanned using a G:BOX system (Syngene, Cambridge, UK) running the GeneSys software (Syngene, 

Cambridge, UK). Next, the membrane was stripped in Restore Plus Stripping buffer (Thermo Fisher 

Scientific, Hemel Hempstead, UK) for 15 minutes, washed as described above and reblocked in TBS-

Tween plus 5% BSA. The monoclonal primary antibodies for PTEN was incubated with the stripped 

membrane in blocking buffer at the working dilution of 1:2500 for 1 hour at room temperature, the 

membrane washed, and incubated with HRP-linked secondary antibody for 1 hour at room 

temperature at the working dilution of 1:2500. After washing, HRP-linked antibody detection and 

scanning procedures were repeated as described above. 
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4.4 Results 

4.4.1 Buffer exchange of PTEN-GST  

As described in the previous chapter, before any oxidation experiment the purified PTEN-GST was 

buffer-exchanged in order to remove reagents in the storing buffer that could interfere with 

concentration assays (glycerol) and oxidation experiments (glutathione and DTT) using a Microcon 

Centrifugal Filter unit (Section 3.4.4). Purified PTEN was buffer exchanged into 20 mM Tris pH 7.4, 

0.1 mM EDTA, 100 mM NaCl, which was the buffer of choice for PTEN oxidation and protein 

interactions capture. PTEN activity before and after buffer exchange was monitored using the OMFP 

phosphatase assay (Figure 4.2). The phosphatase retained full activity following buffer exchange. 

 

 

Figure 4.2 Effect of buffer exchange on purified PTEN phosphatase activity  

The activity of the stock protein in elution buffer (50 mM Tris pH 7.4, 20 mM reduced L-Glutathione, 

250 mM NaCl, 2 mM DTT in 50% glycerol) was compared to the activity of the untreated protein 

following buffer exchange in 20 mM Tris pH 7.4, 0.1 mM EDTA, 100 mM NaCl, in order to assess 

whether activity loss had taken place before the oxidative treatment. The results are presented as mean 

± SD (N= 3) of PTEN specific activity. No significant difference was found in the specific activity of 

the protein before and after buffer exchange (two-tailed unpaired Student’s t test, p = 0.4745). The 

calculated specific activity values are: 0.5184 ± 0.0424 nmol OMF/min/mg protein for the stock 

PTEN-GST and 0.5881 ± 0.1473 nmol OMF/min/mg protein for the buffer-exchanged PTEN-GST. 
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4.4.2 Reversible oxidation of PTEN after H2O2 treatment 

Initially, the effect of 1 mM H2O2 in vitro oxidation on PTEN activity was monitored using the 

OMFP phosphatase assay immediately before the immobilization of the reduced and oxidized PTEN-

GST protein onto the Glutathione Sepharose beads. When PTEN was treated with 1 mM H2O2 for 1 

hour, the phosphatase activity dropped dramatically (Figure 4.3). Treatment with 1 mM H2O2 causes a 

loss of catalytic activity mainly through the formation of a intramolecular disulfide bond between the 

catalytic cysteine Cys124 and regulatory cysteine Cys71 in the active site of the enzyme [423]. 

Because no significant activity loss was detected following buffer exchange in non-reducing buffer 

conditions, it can be reasonably assumed that the oxidizing treatment is the only event responsible for 

the inactivation of PTEN. After the treatment, the protein activity was restored to its original values by 

incubating the 1 mM H2O2-oxidized protein in reducing conditions (100 mM DTT), thereby 

suggesting the presence of the disulfide bond between Cys71 and Cys124 in the active site of the 

inactivated PTEN. 

 

 

Figure 4.3 Effect of 1 mM H2O2 oxidation on PTEN-GST phosphatase activity  

The untreated, oxidized and DTT-incubated PTEN-GST were assayed for phosphatase activity using 

the O-methyl fluorescein phosphate assay, immediately before the immobilization step. The results are 

presented as mean ± SD (N= 3) of PTEN specific activity. Statistical significance was assessed by 

one-way ANOVA followed by Tukey's multiple comparison test. The enzymatic activity of PTEN-

GST following 1 mM H2O2 oxidation is significantly different to that of the untreated PTEN-GST (p =  

0.0002). The enzymatic activity of the untreated protein is not significantly different to that obtained 
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following incubation of the oxidized PTEN-GST with 100 mM DTT (p = 0.0861). The calculated 

specific activity values are: 0.5720 ± 0.0917 nmol OMF/min/mg protein
 
for the untreated PTEN-GST;  

0.0206 ± 0.0031 nmol OMF/min/mg protein
 
for the H2O2-oxidized PTEN-GST and  0.7249 ± 0.0819 

nmol OMF/min/mg protein
 
for the PTEN-GST following 15 minutes incubation with 100 mM DTT. 

*** = p < 0.001; ns = not significant 

4.4.3 GSH affinity enrichment affinity-captured PTEN-interacting proteins 

HCT116 (wild-type) were chosen as a source of prey proteins for the affinity-capture because this 

cell line has been previously used to study the protein-protein interactions of PTEN [546,547]. In 

addition, the HCT116 cell line contains two wild-type alleles for PTEN and has been used as an in 

vivo model to study ROS cellular levels and activation of protein signaling pathways related to the loss 

of the PTEN phenotype [548,549].  

The untreated PTEN bait protein was maintained in constant reducing conditions (100 mM DTT) 

during the immobilization step to prevent any spontaneously occurring oxidation, and to avoid any 

inter and intramolecular disulfide bonds. Such conditions were considered necessary to ensure direct 

correlation between PTEN redox status (reduced versus oxidized) and the results of the protein 

interaction analysis. However, no reducing agent was added to the HCT116 cell lysate used for the 

affinity-capture, in order to avoid further alteration of the redox dynamics between the immobilized 

proteins and their interactors. Care was taken to keep the amount of immobilized proteins consistent 

across the different baits used. Proteins captured by the reduced and oxidized PTEN-GST bait were 

analyzed by SDS-PAGE against GST control (Figure 4.4). The Glutathione Sepharose beads were also 

incubated with HCT116 lysate as a negative control. Comparing the observed gel bands, unique bands 

were detected in the oxidized PTEN-GST sample (Lane 4) over reduced PTEN-GST (Lane 3), as well 

as over GST (Lane 2) and beads controls (Lane 1). The wash buffer after bait immobilization was also 

analyzed in order to assess the binding efficiency of the reduced and the oxidized PTEN-GST to the 

Glutathione Sepharose beads. The results shown in Figure 4.4 suggest that the resin was fully 

saturated for the affinity-capture, as traces of PTEN-GST are still visible in the gel lanes loaded with 
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the supernatant obtained after the immobilization of both reduced PTEN-GST (Lane 5) and oxidized 

PTEN-GST (Lane 6).  

 

 

Figure 4.4 Representative Coomassie-stained gel showing isolation of putative PTEN-GST 

binding proteins by GSH-affinity enrichment following 1 mM H2O2 oxidation  

The Glutathione Sepharose beads resin was tested for non-specific binding by eluting the bound 

proteins after incubation with HCT116 cell extract. The observable gel bands were compared after 

elution of the bound proteins following incubation of HCT116 cell extract with the bait proteins 

Glutathione-S-Transferase, untreated PTEN-GST and PTEN-GST treated with 1 mM H2O2. The 

binding efficiency of the PTEN-GST baits to the Glutathione Sepharose beads was tested by loading 

15 µL of the wash buffer after the immobilization step of the control PTEN-GST and the PTEN-GST 

treated with 1 mM H2O2. 
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4.4.4 MS-based quantitative analysis of PTEN affinity-captured interactions 

4.4.4.1 Overview of the identified PTEN-interacting proteins 

The peptides obtained from the in-gel digestion of the gel fractions cut from the lanes loaded with 

the beads, the GST, the reduced and oxidized PTEN-GST were analyzed by mass spectrometry. For 

the MS-based label-free quantification, the LC-MS runs corresponding to the tryptic digest of the 

proteins bound to the reduced and the oxidized PTEN-GST samples were used.  

The Mascot database search engine (v. 2.4.0) and Progenesis QI for proteomics software were used 

to identify and quantify the putative PTEN-interacting proteins detected after LC-MS/MS analysis of 

the tryptic peptides. A total of 237 different proteins were identified after Mascot database search of 

each of the aligned LC-MS runs processed by Progenesis and pooled in the multi-fraction experiment. 

Initially, identified proteins that were also detected in the beads and GST controls were removed from 

the list. Of the remaining proteins, 97 proteins showed a confidence score above 50 and a number of 

unique peptides greater than or equal to 2. Of those 97, 27 proteins had q-values < 0.05 for the 

quantification (Table 4.2). Section 8.5 in the Appendix reports the remaining 70 proteins showing a q-

value > 0.05 (Table 8.3), proteins that were below the cutoff criteria of confidence score and 

abundance (Table 8.4) and proteins that were also found in the beads and GST controls (Table 8.5).  

The bait protein PTEN and its Glutathione-Transferase protein tag were identified with a high level 

of confidence in both reduced and oxidized fractions. A relatively substantial portion of the putative 

PTEN interactors detected are highly abundant within cells and may have bound non-specifically to 

the Glutathione Sepharose beads, despite not being detected in the controls. However, these proteins 

included elongation factors, tubulin, myosins, histones, 60S and 40S ribosomal proteins, and heat-

shock proteins, all of which have been reported in previous proteomics studies of PTEN interacting 

proteins [550,551].  
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Table 4.1 Identification and LC-MS based label-free quantification of the binding partners that 

interact differently with reduced and oxidized PTEN-GST 

Accession1 
Peptide 

count2 

Confidence 

score3 
p-value4 q-value4 

Fold 

change4 

Highest 

mean 

condition 

Protein Description 

PDIP2_HUMAN 4 (4) 190.31 <0.0001 0.0005 10.8 Oxidized 
Polymerase delta-

interacting protein 2 * 

PELO_HUMAN 2 (2) 110.35 0.0018 0.0212 2.7 Oxidized 
Protein pelota 

homolog *  

RS2_HUMAN 2 (2) 97.3 0.0021 0.0212 1.9 Oxidized 
40S ribosomal protein 

S2 ‡ 

RL10A_HUMAN 2 (2) 71.19 0.0014 0.0212 5.3 Reduced 
60S ribosomal protein 

L10a ‡ 

RLA0_HUMAN 3 (3) 159.13 0.0052 0.0261 2.4 Oxidized 
60S acidic ribosomal 

protein P0 ‡  

THIO_HUMAN 2 (2) 150.69 0.0065 0.0299 6.2 Oxidized Thioredoxin  

SSRD_HUMAN 2 (2) 153.39 0.0075 0.0301 1.7 Reduced 
Translocon-associated 

protein subunit delta *  

ANXA2_HUMAN 3 (3) 195.41 0.0118 0.0374 6.8 Oxidized Annexin A2  

FAS_HUMAN 3 (3) 163.01 0.0144 0.0387 1.7 Oxidized Fatty acid synthase * 

AKA12_HUMAN 4 (4) 180.42 0.0181 0.0415 1.3 Oxidized 
A-kinase anchor 

protein 12 *  

DREB_HUMAN 2 (2) 83.3 0.018 0.0415 4.9 Oxidized Drebrin  

PRDX1_HUMAN 6 (5) 316.76 0.0233 0.0437 4.1 Oxidized Peroxiredoxin-1  

DESP_HUMAN 4 (4) 165.62 0.0221 0.0437 1.6 Oxidized Desmoplakin *  

NDKA_HUMAN 3 (3) 131.93 0.026 0.0448 1.5 Oxidized 
Nucleoside diphosphate 

kinase A *  

DHB8_HUMAN 2 (2) 110.35 0.0258 0.0448 6.4 Oxidized 
Estradiol 17-beta-

dehydrogenase 8 *  

UTRO_HUMAN 2 (2) 101.72 0.0306 0.0454 2.2 Oxidized Utrophin *  

SPTN1_HUMAN 4 (4) 188.58 0.0361 0.0456 2.9 Oxidized 
Spectrin alpha chain, 

non-erythrocytic 1 *  

RS9_HUMAN 4 (4) 172.02 0.0331 0.0456 1.5 Oxidized 
40S ribosomal protein 

S9 ‡ 

RL38_HUMAN 5 (5) 405.89 0.0389 0.0463 1.6 Oxidized 
60S ribosomal protein 

L38 ‡ 

GNAI1_HUMAN 6 (4) 343.46 0.0462 0.0463 3.6 Oxidized 

Guanine nucleotide-

binding protein G(i) 

subunit alpha-1 *  

GNAI2_HUMAN 5 (2) 300.5 0.0488 0.0463 6.9 Oxidized 

Guanine nucleotide-

binding protein G(i) 

subunit alpha-2 * 

MPRIP_HUMAN 4 (4) 164.53 0.0423 0.0463 2.1 Oxidized 

Myosin phosphatase 

Rho-interacting protein 

* 

RS15A_HUMAN 3 (2) 135.35 0.0449 0.0463 0.7 Oxidized 
40S ribosomal protein 

S15a ‡ 

GSTM2_HUMAN 2 (2) 130.8 0.0495 0.0463 1.4 Reduced 
Glutathione S-

transferase Mu 2 *  

SKP1_HUMAN 2 (2) 112.83 0.0413 0.0463 8.6 Oxidized 
S-phase kinase-

associated protein 1  

HSP7C_HUMAN 2 (2) 107.77 0.0413 0.0463 3.0 Oxidized 
Heat shock cognate 71 

kDa protein  

EF2_HUMAN 2 (2) 101.61 0.0428 0.0463 1.3 Oxidized Elongation factor 2 ‡ 
1
Accession = SwissProt Protein ID 

2
Peptide count = the number of detected peptides (the number of unique peptides) used for 

quantification 
3
The protein confidence score was generated using Mascot as described in the experimental. 

4
The p-value, q-value and fold change were generated by Progenesis QI for proteomics as described in 

the experimental. 
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Bold indicates more than 2.5-fold change in abundance depending on PTEN redox status. 

* indicates proteins not previously identified as PTEN interactors. 
‡  indicates proteins that appeared to be PTEN interactors (i.e. were not found in controls) but have also 

been found as common non-specific interactors in bead-based affinity enrichments. 

The data were obtained from the analysis of three independent GSH-affinity experiments. The list was 

restricted to the protein hits showing a confidence score ≥ 50, a number of unique peptides ≥ 2 and a 

q-value < 0.05. Ranking is based on q-values. 

 

 

4.4.4.2 Putative novel PTEN interactors 

The majority of the proteins detected corresponded to previously unidentified PTEN-binding 

proteins and are indicated by a * in Table 4.1. Other interacting proteins that were not previously 

identified but are commonly associated with beads are indicated by 
‡
 in Table 4.1. While no direct 

interaction with PTEN has been shown to date, a number of the identified putative novel interactors 

have been linked with cellular pathways in which PTEN is involved. These proteins include: the multi-

enzyme fatty acid synthase (FAS), A-kinase anchor protein 12 (AKAP12) and guanine nucleotide-

binding protein G (i) subunit α and/or β (GNAIα/β). In addition, there are proteins involved in DNA 

replication and DNA repair such as protein pelota homolog (Pelo), and Polymerase delta-interacting 

protein 2 (PDIP2 or PolDIP2) as well as proteins associated with cytoskeleton structure and regulation 

such as spectrin α-chain (Spta1), myosin phosphatase Rho-interacting protein (MPRIP) and 

desmoplakin (Dsp). 

4.4.4.3 PTEN-interacting proteins showing a significant change 

Of the 27 significantly changing proteins reported in Table 4.1, 14 showed significant fold change 

differences upon oxidative inactivation of the PTEN-GST bait (fold change greater than 2.5), and are 

indicated in bold. All differentially binding proteins were manually validated to confirm the quality of 

the identification and between-sample quantification. Significantly changing proteins included 

previously identified PTEN-binding proteins such as annexin A2 (Anxa2, F.C 6.8, p-value = 0.0118), 

and the actin-binding protein drebrin (Dreb, FC = 4.8, p-value = 0.0180) as well as potential novel 

interactors such as Poldip2 (F.C=10.8, p-value < 0.0001), which also showed increased abundance in 

the interaction with the oxidized PTEN-GST. 

Two interesting proteins that showed a significant change were the redox proteins peroxiredoxin-1 

(Prdx1) and thioredoxin-1 (Trx). Peroxiredoxin-1 (Prdx1) is a non-seleno peroxidase that is known to 

catalyze the reduction of H2O2, protecting the cells from oxidative damage to DNA, lipids and proteins 
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[552]. A total of 6 Prdx1 peptides were detected, of which 5 unique peptides were used for 

quantification. Prdx1 was found significantly more abundant in the sample eluted from the oxidized 

PTEN-GST than in the sample eluted from the reduced PTEN-GST (FC=4.1, p-value=0.0233). 

Another identified redox protein was the antioxidant protein thioredoxin-1 (Trx), which is believed to 

play a major role in the recycling of PTEN disulfide [423]. 2 unique thioredoxin-1 peptides were 

detected, and the protein was found significantly more abundant (FC = 6.2, p-value = 0.0065) in the 

protein fraction eluted from the oxidized PTEN-GST. Using the Progenesis software we were able to 

verify the presence of the peptide features corresponding to the identified proteins listed in Table 1. 

Figure 4.5 shows the three-dimensional maps zoomed into the features corresponding to the Prdx1 and 

the Trx peptides detected following elution of the proteins bound to the oxidized and reduced PTEN-

GST.  

 

 

Figure 4.5 Representative 3D montages of the comparative MS-based label-free quantification 

for the peroxiredoxin-1 peptide TIAQDYGVLK and the thioredoxin-1 peptide 

TAFQEALDAAGDK detected following elution of the proteins bound to the reduced and 

oxidized PTEN-GST   

The montages are representative of three independent experiments. (A) The Prdx1 peptide  

TIAQDYGVLK (m/z = 554.30, 2+; RT = 22.24 min)  was found to be 4.23 times more abundant in 
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the sample obtained from the oxidized PTEN GST than in the sample obtained from the reduced 

PTEN-GST (one-factor ANOVA, p-value = 0.0358, n= 3). (B) The Trx peptide TAFQEALDAAGDK 

(m/z = 668.83, 2+; RT = 24.45 min) was found to be 7.33 times more abundant in the sample obtained 

from the oxidized PTEN GST than in the sample obtained from the reduced PTEN-GST (one-factor 

ANOVA, p-value = 0.0107, n= 3). 

4.4.5 Validation of selected interactions with Western Blotting  

Following screening of the identified proteins and their abundance profile between the sample 

eluted from the reduced and oxidized bait, a number of interactors were selected to be taken forward 

onto a Western Blot-based validation. This analysis was considered essential to confirm the validity of 

the interactors identification as well as the between reduced versus oxidized PTEN-GST. The GSH 

affinity-capture was performed with the DTT-recovered oxidized PTEN-GST as additional control for 

the interactors validation. The selection of the proteins for validation was mainly based upon their 

quantitative profile between the reduced and oxidized PTEN-GST as well as upon their relevance to 

the present study. Ultimately, Prdx1, Trx, Anxa2 and DDB1 were chosen among the identified 

interactors, and their levels compared across the protein samples eluted from the reduced, oxidized and 

DTT-recovered PTEN-GST against PTEN loading control (Figure 4.6). For all the proteins selected, 

the Western blot results were in agreement with the proteomics data and confirmed the comparative 

quantitative analysis between the oxidized and reduced sample. As expected, the interacting protein 

levels were comparable between reduced (untreated) and DTT- recovered samples. The levels of 

Prdx1 (Figure 4.6 A), Trx (Figure 4.6 B) and Anxa2 (Figure 4.6 C) were visibly increased in the 

sample eluted from the H2O2-oxidized PTEN. Little or no signal was observed for those proteins in the 

samples corresponding to the reduced (untreated) and DTT-recovered PTEN, confirming, at a 

qualitative level, the significant difference observed by MS-based label-free quantitation. No 

significant change in the levels of DDB1 were observed on the blot shown in (Figure 4.6 D), again in 

agreement with the proteomics-based analysis. None of the chosen interaction was detected in the 

samples eluted neither from the immobilized GST control nor from the Glutathione Sepharose beads 

alone.   
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Figure 4.6 Western blots showing validation of proteomics data in comparing selected affinity-

captured PTEN interactions across the samples eluted from untreated, oxidized and DTT-

recovered PTEN-GST   

Each panel shows: PTEN-GST loading control; expression of selected PTEN-interactor in the H2O2-

treated, untreated and recovered PTEN-GST pull down compared to the sample eluted from GST and 

beads alone; whether the bait PTEN-GST protein was treated with 1 mM H2O2 and/or incubated with 

100 mM DTT. Both untreated and recovered samples were kept in constant reducing conditions (100 

mM DTT incubation) during the bait immobilization and showed similar interaction profiles. The 

H2O2-treated PTEN-GST pull down showed increased level of Prdx1 (A), Trx (B) and Anxa2 (C) and 

comparable levels of DDB1 (D) when compared to the reduced controls. The results are representative 

of two replicate experiments for each interactor shown. The uncropped Western blots used to generate 

this figure are shown in the Appendix (Sect. 8.6.1). 
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4.4.6 Relative quantification of the oxPTMs revealed extent of Met oxidation in the 

oxidized PTEN-GST bait 

After quantification and validation of the affinity-captured interactors, a Mascot Database search 

was performed on the aligned LC-MS runs to check for any oxidative post-translational modifications 

(oxPTMs) that occurred to the PTEN-GST bait following oxidation with hydrogen peroxide. Given the 

concentration of hydrogen peroxide used to inactivate PTEN (1 mM), we did not expect the oxidation 

event to generate major modifications other than the Cys71-Cys124 disulfide bond. The aligned 

features identified as PTEN and GST peptides across three independent GSH-affinity enrichment 

experiments were searched for: methionine oxidation and dioxidation, cysteine oxidation, dioxidation 

and trioxidation, and tyrosine oxidation. A total of 4 PTEN peptides and a total of 6 GST oxidatively 

modified peptides were found in both untreated and 1 mM H2O2 oxidized sample (Table 4.2). PTEN 

was found oxidatively modified at Met35, Met134, Cys136 and Met239, while GST was found 

oxidatively modified at Met1, Tyr4, Met20, Cys48 and Met92. All of the identified features shown in 

Table 4.2 were matched to high Mascot score PTEN and GST peptides. Interestingly, Met134 of 

PTEN was substantially oxidized (more than 30%) in both untreated and oxidized PTEN-GST, but 

there was no significant difference between the two. Met20 and Met92 of GST also showed significant 

extent of oxidation in both samples, but again no significant difference was observed in comparing the 

untreated and oxidized PTEN-GST. The only significant change in oxidation was seen for Met35 in 

the PTEN peptide YQEDGFDLDLTYIYPNIIAMGFPAE, which oxidized to approximately 14% 

methionine sulfoxide upon H2O2 treatment. Overall, these results are indicative of the fact that while 

generating the intramolecular disulfide bond between Cys71 and Cys124 in the active site, the 

oxidative treatment caused minimal additional oxidative modifications to the immobilized PTEN-

GST.   
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Table 4.2 Identification and quantification of PTEN and GST oxidative modifications in comparing 

untreated versus 1 mM oxidized PTEN-GST following GSH-affinity enrichment 

Protein Peptide 

Sequence1 

Fraction 

detected2 

m/z (charge) Modifications3 p-value4 % Relative modification 

Reduced Oxidized 

PTEN YQEDGFDL

DLTYIYPNII

AMGFPAER 

5 1023.2028 (3) Met 35 OX 0.0004 1.01 ± 1.74 14.48 ± 1.28 

PTEN TGVMICAY

LLHR 

3 470.2714 (3) Cys 136 DIOX 0.4207 2.31 ± 0.60 1.63 ± 1.17 

PTEN TGVMICAY

LLHR 

2,3,4 483.9500 (3) Met 134 OX 0.6963 34.05 ±  3.61 30.64 ± 13.64 

PTEN FMYFEFPQP

LPVCGDIK 

3 1052.5630 (2) Met 239 OX 0.9593 1.76 ± 3.05 1.65 ± 1.61 

GST MLLADQGQ

SWK 

6,7,8,9,10,11 646.8266 (2) Met 20 OX 0.0333 24.59 ± 3.69 17.79 ± 0.19 

GST MLLADQGQ

SWK 

7,10 431.5445 (3) Met 20 OX 0.0487 24.33 ± 2.01 21.00 ± 0.46 

GST MLLADQGQ

SWK 

7 654.8150 (2) Met 20 DIOX 0.0681 0.39 ± 0.12 0.21 ± 0.03 

GST ASCLYGQL

PK 

7 556.2746 (2) Cys 48 DIOX 0.0705 1.80 ± 0.69 0.65 ± 0.44 

GST ASCLYGQL

PK 

7 564.2732 (2) Cys 48 TRIOX 0.2220 0.89 ± 0.42 1.59 ± 0.73 

GST PPYTVVYFP

VR 

7 677.3622 (2) Tyr 4 OX 0.2590 0.76 ± 0.26 0.55 ± 0.05 

GST DQQEAALV

DMVNDGVE

DLR 

7,8,9,10 1067.0113 (2) Met 92 OX 0.3008 30.14 ±11.34 22.27 ± 1.78 

GST MLLADQGQ

SWKEEVVT

VETWQEGS

LK 

10 752.6226 (4) Met 20 OX 0.5333 13.07 ± 3.68 14.88 ± 2.78 

GST MLLADQGQ

SWKEEVVT

VETWQEGS

LK 

9,10 1003.1702 (3) Met 20 OX 0.5981 18.41 ± 1.64 19.83 ± 3.96 

GST DQQEAALV

DMVNDGVE

DLR 

7,8,9,10 711.6659 (3) Met 92 OX 0.6981 26.70 ± 6.68 25.03 ± 1.97 

GST MPPYTVVY

FPVR 

7 495.5891 (3) Met 1 OX 0.7441 19.89 ± 4.56 18.93 ± 1.39 

GST DQQEAALV

DMVNDGVE

DLR 

7 533.9936 (4) Met 92 OX 0.9933 44.85 ± 21.58 44.97 ± 9.42 

1
Peptide sequence obtained from the Mascot database search of LC-MS runs aligned on Progenesis QI, 

carrying the modified amino acid (in red) 
2
Gel slice Fraction(s) corresponding to the LC-MS run where the peptide was detected 

3
Modification type and position within the protein amino acid sequence 

4
p-value returned by two-tailed unpaired Student’s t test, following relative quantification of the 

modifications (significant p-values are indicated in bold) 

The data was obtained from the analysis of PTEN and GST peptide features present in three 

independent GSH-affinity experiments. Ranking is based on p-values returned by Two-tailed unpaired 

Student’s t test. 
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4.5 Discussion 

The study presented in this chapter describes for the first time a correlation between the targeted 

oxidative inactivation of the tumour suppressor phosphatase PTEN and changes in its binding proteins. 

Several proteins were detected whose interaction with PTEN changes upon H2O2 treatment of PTEN, 

and a number of novel PTEN interactions has also been discovered. 

As the aim of the study was to compare the interactions captured by an active versus inactive bait 

protein, the oxidative treatment was designed to promote the formation of the regulatory disulfide 

bond between Cys71 and Cys124 in the active site of PTEN while minimizing other oxidations. The 

observed level of oxidative-induced inactivation of the bait protein was in agreement with previous 

studies reporting the effect of 1 mM H2O2 on PTEN phosphatase activity [477]. The DTT-induced 

reversibility of the inhibitory effect was considered satisfactory evidence of the involvement of the 

regulatory disulfide in PTEN-GST inactivation, as previously shown by Lee et al [423]. The oxidant 

type and concentration were chosen to maximize the generation of the regulatory disulfide bond 

between Cys71 and Cys124 while reducing the risk of significant oxidation of other amino acids. 

Treatment with 1 mM H2O2 caused little change in the modification status of PTEN or GST, except 

for Met35 of PTEN which was found 13% more oxidized to sulfoxide in the oxidized PTEN-GST 

sample. Given the fact that the activity of the oxidized protein was fully restored upon DTT 

incubation, it is reasonable to assume that the modification at Met35 of PTEN was not responsible for 

major protein function loss. Whether this modification had a significant effect on the observed 

changes in PTEN interacting proteins is not completely clear at this stage, and additional studies 

would be necessary to address this question. However, this hypothesis also seems unlikely, as the 

observed changes in interactions were reversible by DTT, as shown by the Western-blotting based 

validation. 

One significant finding reported in this study is the significant increase in the abundance of the 

redox proteins peroxiredoxin-1 (Prdx1, FC=4.1, p-value = 0.0437) and thioredoxin-1 (Thio, FC = 6.2, 

p-value = 0.0065) interacting with the oxidized (inactive) PTEN-GST. A study published by Cao et al. 

showed that Prdx1 fully restores PTEN activity in the presence of hydrogen peroxide [479]. Prdx1 
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seems to bind PTEN through interaction with its C2 domain (amino acids 190-350), although the exact 

amino acid residues where the binding occurs have not been established yet [479]. Interestingly, the 

authors have shown a decreased binding of Prdx1 to PTEN by co-immunoprecipitation when cells 

were treated with high concentration of H2O2 [479]. However, it has been proposed that the oxidative 

damage to Cys51 in Prdx1 is responsible for the dissociation of PTEN/Prdx1 complex, as this residue 

may be exposed to further oxidation when Prdx1 interacts with PTEN [480]. Besides, the experimental 

system described in this study did not involve direct oxidative damage to Prdx1, but rather the targeted 

in vitro inactivation of PTEN, which suggests that the Prdx1/PTEN was unlikely to dissociate once 

formed in the conditions described. A second significant increase was seen for the antioxidant 

thioredoxin-1. It is generally accepted that Trx is responsible for the reactivation of PTEN via 

reduction of the disulfide bond between Cys71 and Cys124 of PTEN with a thiol-disulfide exchange 

mechanism [144,423,553]. The increased abundance of Trx affinity captured with the oxidized PTEN-

GST bait suggests that the formation of the PTEN:Trx complex is strictly dependent on the redox 

status of PTEN. On the other hand, another study showed that the redox status of Trx is also important 

in the PTEN/Trx interaction. The authors showed that reduced Trx, but not oxidized Trx, binds the C2 

domain of PTEN via a disulfide bond with PTEN Cys212 causing inhibition of the phosphatase 

resulting in increased tumorigenesis [478]. Overall, these findings imply that the redox status of Trx is 

an important factor in the regulation of the interaction and additional studies would be required to fully 

understand the dynamics of Trx-mediated PTEN reactivation in vivo.  

The results observed in this study suggest that both Prdx1 and Trx are involved in the recycling of 

PTEN active site when the protein is targetedly oxidized with H2O2. It could be speculated that PTEN 

reactivation requires the binding of both proteins at the C2 domain of PTEN, consistent with other 

published work [423,479,480]. In this model, Prdx1 is responsible for scavenging H2O2 molecules in 

the proximity of oxidized PTEN molecules, whilst Trx restores the protein to its active form by 

reducing the Cys71-Cys124 disulfide back to the reduced (free thiol) form (Figure 4.7). However, 

numerous questions remain unresolved though, and further studies are required to elucidate the 

relationship between ROS-signaling and the PTEN/Prdx1/Trx system. For example, it is not clear 

whether Trx and Prdx1 bind PTEN at the same time, exclusively or independently following PTEN 

inactivation. It is likely that the oxidation-generated disulfide bond in the PTEN active site triggers the 
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increased binding of Prdx1 and Trx, but the exact sequence of events that leads to the reactivation of 

the phosphatase remains unclear. It is also possible that Trx and Prdx1 became trapped to oxidized 

PTEN via intermolecular disulfide bonds which remains during the capture, thereby explaining their 

increased binding to the H2O2-oxidized purified PTEN compared to the untreated and recovered 

samples which were in the thiols form. Most importantly, the studies conducted to date imply that the 

mechanism by which the PTEN/Prdx1 and PTEN/Trx interactions are modulated by oxidative stress in 

vivo is not dependent solely on the inactivation of PTEN, and that other oxidative stress-induced 

events might be involved.  

 

 

Figure 4.7 Proposed model for PTEN reactivation through interaction with peroxiredoxin-1 and 

thioredoxin-1  

When PTEN is exposed to hydrogen peroxide, the Cys124 and Cys71 thiols are oxidized to form a 

disulfide bond (through the formation of a cysteine sulfenic acid intermediate). This series of events, 

in combination with the ROS-mediated signal transduction, is likely responsible for the increased 

Prdx1 and Trx binding to the oxidized PTEN. Prdx1 scavenges H2O2 molecules around PTEN, 

protecting the phosphatase from oxidative damage. Trx converts PTEN back to the active (reduced) 

form in a thiol-disulfide exchange-like mechanism. 
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An interesting group of proteins among the PTEN interactors detected were those associated with 

the control of the actin cytoskeleton pathway, for which PTEN phosphatase activity was identified as a 

key regulator [537,538]. One actin-binding proteins detected in this study was the actin-binding 

protein Drebrin (Dreb), which was found significantly more associated to the oxidized PTEN-GST 

bait (FC=4.9, p-value=0.0180), and has been identified as PTEN interactor in a previous study [554]. 

PTEN has been proposed as a negative regulator of the phosphorylation of Dreb at Ser647, and the 

formation of the complex PTEN:Dreb seems to be inversely correlated to neuronal activity [554]. 

Nonetheless, a relationship between the redox status of PTEN and the molecular dynamics of the 

PTEN:Dreb complex has not yet been studied, and the mechanism by which PTEN binds Dreb seems 

to be independent of PI3K signaling. Another actin-binding protein identified among the PTEN-

binding partners was annexin A2 (Anxa2), which appeared to bind more strongly to the oxidized 

PTEN-GST (FC=6.8, p-value=0.0118), and which was also previously described as a PTEN binding 

protein [541]. Anxa2 has been recently implicated as a redox-sensitive protein, as it contains a reactive 

cysteine residue (Cys8) which is susceptible to oxidation and is reduced by the thioredoxin system in 

vitro [555]. Anxa2 depleted cells have shown increased levels of ROS, ROS-induced pro-apoptotic 

kinases, and increased susceptibility, suggesting the involvement of Anxa2 in the cellular response to 

oxidative stress associated with tumorigenesis [555,556]. Overexpression of annexin A2 has been 

associated with cancer metastasis [557] and there is evidence of a PI3K-dependent regulation of the 

interaction between Anxa2 and the Na,K-ATPase β1-subunit (Na,K-β), involved in the suppression of 

cell motility [558]. Interestingly, it has been shown that PTEN co-localizes on the apical surface of 

polarized cells along with Anxa2 and the small GTPase Cdc42 and plays a role in regulating epithelial 

morphogenesis [559]. The authors also showed that Anxa2 binds PtdIns(4,5)P2 at the apical surface, 

assuming the involvement of PTEN in the depletion of PtdIns(4,5)P2 from PtdIns(3,4,5)P3. However, 

this conclusion requires further investigation, as the PtdIns(4,5)P2 is in large excess and generally 

converted into PtdIns(3,4,5)P3 by PI3 kinases [560]. The exact molecular mechanism responsible for 

the PTEN/PtdIns(4,5)P2/Anxa2 network is therefore still unclear and may involve a direct association 

between annexin A2 and PTEN in the apical domain for the recruitment of PtdIns(4,5)P2 to the apical 

surface. Another actin-binding protein detected among the PTEN interactors was spectrin alpha chain 

(non-erythrocytic 1, Spta1), which is a putative novel PTEN interactors that was also found to bind 
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more intensely to oxPTEN (FC=2.9, p-value=0.0361). Spta1 is a cytoskeletal protein that act as 

scaffold protein stabilizing the plasma membrane and organizing intracellular organelles [561]. Other 

actin-binding proteins identified as novel PTEN interactors were myosin phosphatase Rho-interacting 

protein (MPRIP), involved in shuttling myosin phosphatase to the actin cytoskeleton [562], and 

Utrophin (Utro), which plays an important role in the cytoskeleton during neuromuscular junction 

formation [563]. Only a slight difference in binding was detected in comparing oxidized and reduced 

PTEN-GST for binding to MPRIP (FC=2.1, p-value= 0.0423) or Utro (FC = 2.2, p-value= 0.0306). 

Another key group of PTEN-interacting proteins were those involved in DNA repair, chromosomal 

segregation and genomic stability. Among those, one potential novel PTEN interactor was Polymerase 

delta-interacting protein 2 (PDIP2 or Poldip2), which showed stronger association with oxidized 

PTEN (FC=10.8, p-value <0.0001). Poldip2  has been shown to interact with DNA polymerase delta 

(p50) and is involved in DNA repair, cell cycle regulation and chromosomal replication [564]. In 

addition, Poldip2 might have a signaling role in the oxidative inactivation of PTEN as it was reported 

to increase the activity of the transmembrane protein Nox4 (or Nox1), a NADPH oxidase that has been 

identified as the main source of H2O2 production in non-phagocytic cells [476,565]. Nox4 has been 

shown to be activated by PtdIns(3,4,5)P3, which triggers the increased generation of H2O2 resulting in 

the oxidation of PTEN [144]. Interestingly, this study has shown a 10.8 fold increase in binding of 

Poldip2 to the oxidized PTEN-GST, suggesting that this protein might be involved in the ROS-

mediated signaling cascade responsible for PTEN inactivation. Protein pelota homolog (PELO), a 

protein required for cell cycle control, chromosomal segregation and meiotic cell division [566], was 

also identified as novel PTEN interactor and showed significantly increased binding to oxidized PTEN 

(FC=2.7, p-value=0.0018). Pelo has also been shown to control the HER2 (human epidermal growth 

factor receptor 2) signaling through the PI3K/Akt pathway [567]. DNA-damage binding protein1 

(DDB1), a protein involved in DNA repair [568], was also identified as a putative novel PTEN 

interactor. No significant change was found in comparing the abundance of DDB1 captured from the 

reduced and the oxidized PTEN-GST (FC=1.0, p-value=0.8942). The interplay between the PI3K/Akt 

pathway and the excision nucleotide pathway, of which DDB1 is a member, has been shown in human 

epithelial cells [569]. Moreover, a role in DNA damage repair and response has also been proposed for 

PTEN, although the knowledge of the molecular mechanism is currently limited [441]. 
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Some other interesting proteins were also identified as putative novel PTEN interactors. Among 

those was the multi-enzyme fatty acid synthase (FAS). Because of its demonstrated link to the 

PI3K/Akt pathway, fatty acid synthase (FAS) can also be considered as putative PTEN direct 

interaction. A close correlation has been demonstrated between the overexpression of FAS and the 

loss of PTEN in HCC tissue [544], and PTEN seems involved in the regulation of FAS through the 

inhibition of Akt [570]. Neither of the mentioned studies investigated the effect of PTEN oxidative 

inactivation on FAS regulation. However, only a little variation in abundance was detected when 

comparing the levels of FAS in the sample eluted from the reduced to the oxidized PTEN-GST 

(FC=1.7, p-value=0.0144). Two other putative novel PTEN interactors proteins that were found to 

bind oxPTEN significantly more strongly were Guanine nucleotide-binding protein G (i) subunit 

alpha1 (GNAI1, FC=3.6, -p-value = 0.0462) and alpha-2 (GNAI2, FC= 6.9, p-value=0.0488). These 

are members of the Gαi family, and are adenylate cyclase inhibitors that are involved in the control of 

cellular proliferation and differentiation [571], processes in which PTEN also plays an important role 

[572]. Another interesting new interaction was A-kinase anchor protein-12 (AKA12 orAKAP12) a 

tumour suppressing scaffold protein involved in the regulation of PKA (Protein Kinase A) and PKC 

(Protein Kinase C) in G-protein coupled receptor signaling [573,574]. The interaction of AKA12 with 

PTEN-GST did not appear to be redox-sensitive (FC = 1.3, p-value= 0.0181), there is evidence of a 

cross-talk between the PTEN-mediated inhibition of the PI3/Akt pathway and AKAP12 in the  

suppression of prostate cancer (CaP) progression [574]. 

Protein-protein interactions (PPIs) have been shown to play a major role in the biological 

mechanism behind many human diseases and are currently considered a promising target for the 

discovery and development of new drugs [535,536]. The data presented in this study showed that the 

oxidative treatment had influenced the ability of PTEN to capture proteins from the cell lysate, which 

might be important to understand how the oxidative-induced inactivation affects PTEN protein-protein 

interactions. The in vitro affinity-capture of proteins from cell lysates by reduced and oxidized PTEN 

in combination with label-free quantitative mass spectrometry has provided a valuable tool for 

studying PTEN signaling networks under oxidative stress and for the discovery of novel protein-

protein interactions. This method can be usefully implemented to measure the protein levels in 
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complex biological mixtures in order to accurately interpret MS-based proteomics datasets and has 

identified a new mechanism by which protein-protein interactions are regulated. 

 

 

 



 

 187   

 

Chapter 5. Validation and profiling of PTEN 

protein-protein interactions under cellular 

oxidative stress  



Chapter 5. Validation and profiling of PTEN protein-protein interactons under cellular oxidative stress 

 188   

5.1 Summary 

Oxidative stress caused by reactive oxygen species is a common feature of many diseases and 

results in oxidative damage toward cellular biomolecules such as proteins, DNA and lipids. One of the 

biological mechanisms by which cells respond to oxidative stress involves the activation of signaling 

pathways linked to cell survival and apoptosis. These pathways are controlled by intracellular redox-

sensing proteins such as the phosphatase PTEN, the function of which can be regulated by specific 

protein-protein interactions that can be activated in response to oxidative stress.  

In the study presented in this chapter, PTEN-interacting proteins that showed a differential 

abundance profile upon targeted inactivation of purified PTEN were validated with an in vivo method. 

PTEN was overexpressed as an EGFP-tagged fusion protein by transfection in HCT116 cells, and 

PTEN-interactors were captured by Co-IP, identified by LC-MS, and matched against PTEN 

interactions data generated previously with the in vitro method. HCT116 cell survival following 

treatment with 1 and 5 mM H2O2 was monitored by XTT viability assay and four preselected PTEN 

interactions (Prdx1, Trx, Anxa2 and DDB1) were quantitatively analyzed by immunoblotting 

following Co-IP from untreated versus oxidized PTEN-EGFP transfected cells. 

33 PTEN-interactors identified by LC-MS were found to be common between the in vitro and in 

vivo datasets, and three out of four preselected proteins were validated by immunoblotting. A H2O2 

concentration of 5 mM, but not of 1 mM, induced a significant increase in the association of selected 

interactors to PTEN, and both treatments affected HCT116 cell survival to a similar degree. The study 

presented confirms the importance of validation procedures in complex proteome-wide datasets and 

highlights the complexity of protein dynamics in redox-sensitive signaling pathways. 
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5.2 Introduction 

Free radicals and other reactive molecules that are generated intracellularly as a result of normal 

cell metabolism or enter the body from the environment can overwhelm the cellular antioxidant 

defenses and cause oxidative stress. Cellular redox imbalance has been linked to many diseases, 

including neurodegeneration, cancer, inflammatory diseases, and cardiovascular diseases 

[56,120,153,165,361,575].  

Healthy cells are equipped with powerful antioxidant defenses that control the removal of reactive 

molecules such as ROS (Reactive oxygen species) and can prevent damage to proteins, DNA and 

other biomolecules. However, in pathological conditions, the antioxidant systems can be overwhelmed 

by the action of ROS, resulting in cell and tissue injury which may cause important damage to cellular 

biomolecules. Based on their mechanism of action, cellular antioxidants can be divided between 

enzymatic and non-enzymatic. The major cellular enzymatic antioxidants include superoxide 

dismutases (SOD), Glutathione Peroxidase (GSH-Px), and catalase. SODs in the cell exist in three 

main forms (CuZn-SOD, Mn-SOD, and EC-SOD), all of which catalyze the reduction of superoxide 

anion (O2
−.) to hydrogen peroxide (H2O2) [576]. This is particularly important for the cellular 

antioxidant defense as superoxide is the primary ROS produced within the mitochondria [576], and if 

not removed may accumulate and be converted into highly toxic species such as hydroxyl radicals 

[577]. H2O2 produced by SODs or generated by the mitochondria during the respiratory burst can be 

converted into water by the action of catalases and GSH-Px, which are both dependent on NAPDH for 

their function [578]. Additionally, a number of thiol-containing redox-sensing proteins such as 

thioredoxin, thioredoxin reductase, thioredoxin peroxidase (also known as peroxiredoxins) and 

glutaredoxin are involved in scavenging of H2O2 and have an important role in determining peroxide 

response signals [579]. Non-enzymatic antioxidants are also involved in maintaining cellular redox 

balance and include low molecular weight compounds such as the tripeptide glutathione (GSH), 

vitamins (vitamins A, C and E), and uric acid, among others [576]. 

While initially regarded as toxic metabolites, ROS are now considered important signaling 

intermediate that play a central role in cell proliferation and survival, although the exact mechanism 
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through which ROS interact with signaling molecules is unclear [580,581]. Many of the enzymatic 

antioxidants involved in detoxifying the cells by ROS scavenging are also involved in ROS-sensing 

and ROS homeostasis through oxido-reductase systems such as those based on thiol-disulfide 

exchange mechanisms [580]. These proteins include thioredoxins, peroxiredoxins, and protein tyrosine 

phosphatases such as PTEN, all which are central regulatory element of cellular networks linked to 

disease such as the PI3K/Akt Pathway [144,445,479].  

One of the most commonly used approaches in cell biology to investigate the molecular 

mechanisms regulating signaling pathways is by analyzing protein-protein interactions. As shown in 

the previous chapter, studying the redox interactome of PTEN is important to identify molecular 

mechanisms that regulate PTEN function and activity under oxidative stress. By coupling affinity-

capture methods with mass spectrometry, a number of PTEN-interacting proteins were identified that 

are modulated upon reversible H2O2-induced oxidation of purified PTEN-GST, including thioredoxin 

(Trx), peroxiredoxin-1 (Prdx1) and annexin A2 (Anxa2). These proteins were found to associate more 

strongly with the oxidized PTEN-GST immobilized onto a GSH-based resin, suggesting a role for 

these proteins in the regulation of the ROS-mediated signaling associated with the downstream 

pathways of PTEN, most notably the PI3/Akt pathway. However, the redox interactome generated in 

Chapter 4 is not a good indicator of the PTEN protein-protein interactions dynamics under 

physiological oxidative stress, since the oxidation-induced changes observed in PTEN-interacting 

proteins were only due to the targeted oxidation of PTEN, which is unlikely to take place in cells. It 

was therefore considered important to further investigate the redox interactome of PTEN by analyzing 

PTEN protein-protein interactions in H2O2-oxidized versus untreated cells overexpressing PTEN. In 

this fashion, the entire set of PTEN-interacting “prey” proteins, rather than just the PTEN “bait” are 

exposed to the oxidizing action of H2O2, therefore the molecular dynamics involved in the intracellular 

ROS-regulation of PTEN downstream signaling pathways can be studied.  

The in vivo study presented in this chapter represents an attempt to validate the in vitro findings 

reported in Chapter 4 with a complementary approach and to further investigate the difference in 

abundance in the association of binding proteins with PTEN in oxidizing versus normal cellular redox 

conditions. A PTEN interactome generated analyzing with MS the proteins captured by the 

overexpressed recombinant PTEN was matched against the dataset obtained from the in vitro study 
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and identified 33 common proteins, including Prdx1 and Anxa2, which were previously described as 

PTEN interactors and showed an increased abundance in the presence of oxidized PTEN. Preselected 

PTEN interactors Anxa2, Prdx1 and Trx were detected by immunoblotting and their association with 

PTEN quantitatively compared between oxidized versus untreated cells. The results of this study 

showed that the cellular redox dynamics that regulate PTEN protein-protein interactions are complex 

and opened different perspectives on the molecular mechanisms of interplay between ROS signaling 

and oxidative stress. 

 

 

   



Chapter 5. Validation and profiling of PTEN protein-protein interactons under cellular oxidative stress 

 192   

5.3 Materials and methods 

5.3.1 Optimization of transfection conditions 

Confluent HCT116 cells were cultured as described in Section 2.3.3 and 0.4, 0.6, 0.8 and 1 x 10
5 

cells/mL were seeded in a tissue-culture treated 24-well plate with DMEM) supplemented with 10% 

FBS. Transfection conditions were optimized by testing GeneJuice (Novagen, Millipore Ltd, Feltham 

UK) and Lipofectamine 2000 (Life technologies, Paisley, UK) reagents. For GeneJuice, the 

transfection reagent was diluted in serum-free DMEM according to the manufacturer’s instructions. 

The plasmid DNA with the vector containing PTEN-EGFP (prepared as described in Section 2.4.6) 

was mixed with the GeneJuice solution (3 μL GeneJuice reagent per 1 μg DNA), allowed to sit at 

room temperature for 15 min, and then added drop-wise to each well of the 24-well plate containing 

0.4, 0.6, 0.8 and 1 x 10
5 
HCT116 cells/mL. For Lipofectamine 2000, both the transfection reagent and 

the PEGFP-C1 plasmid DNA containing PTEN-EGFP were diluted in Opti-MEM® I Reduced Serum 

Medium (31985-062, Life technologies, Paisley, UK) in two separate tubes according to the 

manufacturer’s instructions. The two solutions were then mixed in a 1:1 ratio and allowed to sit at 

room temperature for 20 min. Next, the DNA-Lipofectamine complex was added to each well of the 

24-well plate containing 0.4, 0.6, 0.8 and 1 x 10
5 

HCT116 cells/mL. 24-well plates containing 

transfected HCT-116 cells were placed at 37C°, 5% CO2 and observed under the Olympus CK2 

inverted microscope after 4-6 hours to check cell viability, and placed back at 37C°, 5% CO2 in the 

controlled incubator for a total of 24, 48 or 72 hours as required.  

Fluorescent cells were observed under an inverted Fluorescence microscope (DMI400B, Leica 

Microsystems), controlled using the Leica Application suite software. Transfection efficiency (% 

GFP-positive cells) and fluorescence intensity were measured using ImageJ. Transfection efficiency 

was determined by manually counting GFP-positive and total bright-field cells using the Cell Counter 

plugin in Image J. Fluorescence intensity was determined by selecting single cells and background 

areas from images of transfected cells, and calculating the corrected total cell fluorescence (CTCF) 

using the formula: CTCF = Integrated Density - (Area of selected cell X Mean fluorescence of 

background). 
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5.3.2 Transfection of HCT116 cells and protein capture 

Approximately 30 million HCT116 confluent cells were transfected with the PEGFP-C1 vector 

containing PTEN-EGFP using Lipofectamine 2000 as described in the previous section. Tissue culture 

flasks containing PTEN-EGFP transfected HCT-116 cells were incubated at 37C°, 5% CO2 for a total 

of 48 hours. HCT116 PTEN-EGFP transfected cells were harvested, washed twice with ice cold PBS 

pH 7.4 by spinning at 500g for 10 minutes at 4°C in an Eppendorf 5810R (Eppendorf UK Ltd, 

Stevenage, UK), and lysed for 30 min on ice with ice-cold 10 mM Tris pH 7.5, 150 mM NaCl, 0.5 

mM EDTA, 0.5% NP-40 (GFP trap kit, Chromotek, Martinsried, Germany) with occasional shaking. 

GFP trap magnetic beads (Chromotek, Martinsried, Germany) were used for the co-

immunoprecipitation of PTEN interacting proteins. The bead slurry was briefly vortexed and 30 μL 

were diluted in 500 μL of ice-cold mM Tris pH 7.5, 150 mM NaCl, 0.5 mM EDTA (GFP trap kit, 

Chromotek, Martinsried, Germany). Beads were magnetically separated by placing micro-centrifuge 

tubes in a magnetic separation rack for 1-2 minutes (Millipore Ltd, Feltham UK), until the supernatant 

was clear. The supernatant was removed and the wash was repeated twice. The entire volume of cell 

lysate of 30 million cells from above was added to micro-centrifuge tubes containing the GFP-Trap 

beads, and rotated horizontally using a Dynabeads® MX1 Mixer (Life technologies, Paisley, UK), 

overnight at 4⁰C. The beads were isolated by placing the tube in a magnetic separation rack for 1-2 

minutes, a 30 μL aliquot of the supernatant from both a control and oxidized micro-centrifuge tube 

was saved for the SDS-PAGE, and the rest of the supernatant was discarded. The beads were re-

suspended in 500 μL dilution buffer, and magnetically separated three times to wash away any non-

specifically bound proteins. The beads were then re-suspended in 50 μL of 2x SDS-sample buffer and 

the mixture was heated for 10 minutes at 95⁰C. 25 µL of the supernatant were loaded on a SDS-

PAGE, and electrophoretic run was performed as described in Section 2.6.1. 

5.3.3 Protein digestion 

The gel lane corresponding to the protein eluted from the GFP antibody after incubation with 

PTEN-EGFP transfected HCT116 cells were each cut into 12 approximately equal slices, and the gel 

pieces digested as described in Section 2.7.1.  
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5.3.4 LC-MS 

Peptides were separated and analyzed as described in Section 2.7.2.  

5.3.5 MS-based proteomics analysis 

A total of 12 experiments were created, one for gel bands excised from each lane of the Coomassie-

stained gel at the same molecular weight. Any peptide showing a Mascot Ion Score below the 

threshold indicative of identity or extensive homology (p value < 0.05) was removed from the feature 

identification list. Cytoskeletal keratin IDs were removed from the feature identification list. Only 

features that had zero protein conflicts were used for quantification. Data obtained from the alignment 

of LC-MS runs corresponding to single fractions were then pooled into a multi-fraction experiment 

5.3.6 Oxidation and XTT assay 

Confluent HCT116 human colon cancer cells (cultured as described in Section 2.3.3) of passage 4 

to 10 were harvested, washed twice with ice PBS pH 7.4 by spinning at 500g for 10 minutes and 100 

µL contained approximately 100,000 cells were added to each well of a tissue-culture treated 96 well 

plate (Appleton Woods, Birmingham, UK). 100 µL growth medium was added as negative control. 

The 96-well plate was incubated overnight at 37°C, 5% CO2 in the controlled incubator Sanyo MCO-

18AIC (Sanyo, UK). Next, the electron coupling solution and the XTT detection solutions (XTT assay 

kit, New England Biolabs, Hitchin, UK) were thawed, mixed in a 1:50 volume ratio, and added to 

each well of the 96-well plate. To induce oxidative stress 150 µL H2O2 was added to each well in a 

row to a final concentration of 0, 1, 2, or 5 mM. Cell viability was checked by monitoring the 

absorbance at 450 nm in a BioTek® plate reader (Biotek, Potton, UK) every hour.  

5.3.7 Oxidation treatment 

Oxidative stress was induced in PTEN-EGFP overexpressing HCT116 cells after 48 hours 

transfection with the DNA-Lipofectamine complex by adding 0, 1, 2 or 5 mM H2O2 in DMEM 
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medium supplemented with 10% FBS, and incubating for 1 hour at 37C°, 5% CO2 in the controlled 

incubator.  

5.3.8 Western blotting 

The Western blotting analysis was performed as described in Section 4.3.11 

5.3.9 Image processing and protein quantification 

Gel densitometry was performed with the Java-based image processing ImageJ [513]. Images of 

Western blot scans were first imported into Microsoft Powerpoint
®
 and cropped so that white space 

was left between lanes corresponding to different replicates and/or experimental conditions. Next, the 

lanes were further cropped to include only the protein band corresponding to PTEN-EGFP, Anxa2, 

Prdx1 or Trx, cropping the image along the edge of the gel band. The images were then saved as .png 

and opened in ImageJ. All images were converted to 8-bit, and no background subtraction or contrast 

enhancing was performed. Relative proteins levels for Anxa2, Prdx1 and Trx were normalized against 

PTEN-EGFP densitometry and plotted as fold change relative to PTEN-EGFP loading control. 
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5.4 Results 

5.4.1 Optimization of transfection conditions and comparison of different transfection 

reagents 

To achieve optimum levels of PTEN overexpression in HCT116 cells, two available transfection 

reagents, GeneJuice and Lipofectamine 2000, were tested for transfection efficiency of the PTEN-

EGFP plasmid DNA. For both reagents used, the fluorescence emitted by the PTEN-EGFP- 

transfected HCT116 cells was evaluated using a fluorescence microscope (ARCHA microscope 

facility at Aston University). The GFP-positive cells and the total cells were manually counted from 

representative images acquired from the microscope software using the Cell Counter function in 

ImageJ to determine the transfection efficiency. For each of the two reagents, a range of different cell 

densities (0.4, 0.6, 0.8 and 1.0 x 10
5
 cells/mL) and transfection times (24, 48 and 72 hours) were tested 

in order to identify the conditions that were associated with best transfection rates  For a 24-well plate, 

a cell density of 0.6 or 0.8 x 10
5
 HCT116 cells/mL and a transfection time of 48 hours were found to 

be associated with the highest number of GFP-positive cells with minimum cell death. Figure 5.1 (A) 

shows representative fluorescent and corresponding bright-field images comparing the GFP-positive 

and total cells after transfection of HCT116 cells with the PEGFP-C1-PTEN-EGFP plasmid DNA 

with GeneJuice and Lipofectamine 2000 reagents. The images were acquired from wells containing 

PTEN-EGFP transfected HCT116 cells which were seeded at an initial cell density of 0.6 x 10
5
 

cells/mL and incubated with the DNA-reagent complex for 48 hours. As evident from the images, 

Lipofectamine2000 clearly outperformed GeneJuice for number of viable GFP-positive cells when 

HCT116 are transfected with the PTEN-EGFP plasmid DNA. The average percentage transfection 

efficiency after 48 hours of incubation with the DNA-reagent complex was 11% for GeneJuice and 

73% for Lipofectamine 2000. The intensity of the fluorescent signals corresponding to the GFP-

positive cells transfected with Lipofectamine 2000 was also higher (+25%) than that detected after 

transfection with GeneJuice. Generally, the number of live cells observed using bright field 

illumination was comparable between the two transfection reagents. 
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Figure 5.1 Transfection efficiency comparison of GeneJuice versus Lipofectamine 2000 on 

HCT116 cells with the PEGFP-C1 PTEN-EGFP vector.   

(A) HCT116 cells were visualized by Leica fluorescence microscope following 48h incubation with 

the DNA-reagent complex The GFP fluorescence images captured after transfection with each of the 

two reagents are shown with the corresponding bright-field image. The number of observable GFP –

positive cells after transfection with Lipofectamine 2000 was significantly higher than that detected 

after transfection with GeneJuice, while the number of live cells observable under bright-field 

illumination was similar (B) GFP positive (%) cells and fluorescence intensity were compared 

between GeneJuice and Lipofectamine. The percentage of GFP positive cells was calculated from the 

ratio of fluorescent cells to total bright-field cells and was approximately 11% using GeneJuice and 
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approximately 73% using Lipofectamine2000. The fluorescence intensity corresponds to the 

background-corrected measurement of single GFP-positive cells for each transfection reagent used. 

The results are presented of mean ± SD of three independent transfection experiments performed on 

HCT116 cells seeded at the same initial cell density (0.6 x 10
5 
cells/ mL). 

5.4.2 Immunoprecipitation of PTEN from HCT116 transfected cells 

After transfection with the PTEN-EGFP plasmid DNA, HCT116 cells were grown for the required 

length of time, harvested, lysed, and the cell extract was incubated with the anti-GFP antibody 

immobilized onto the GFP trap magnetic particles. Proteins eluted from the GFP-trap beads were 

loaded on a SDS-PAGE gel along with a small sample of the cell lysate retained after incubation with 

the GFP trap beads and cell lysate from untransfected HCT116 cells (used as a negative control). The 

proteins were then transferred onto a PVDF membrane, which was probed with an anti- PTEN 

antibody to confirm PTEN immunoprecipitation from the PTEN-EGFP overexpressing-HCT116 cells. 

The Western blot results are shown in Figure 5.2 (A). A strong signal that corresponded to PTEN-

EGFP was detected in the sample corresponding to the proteins immunoprecipitated from the PTEN-

EGFP- transfected HCT116 cells. A PTEN-EGFP band was also detected in the unbound cell lysate, 

although the signal was not as intense as in the immunoprecipitation sample. As expected, no signal 

for the fusion protein PTEN-EGFP was detected in the negative control. In addition, a protein band 

likely corresponding to the endogenous PTEN was also detectable in all samples, and the signal was 

higher in the negative control than in the IP and the input sample.  

In a parallel experiment, proteins eluted from the GFP trap were once again loaded onto an SDS-

PAGE, and the gel was stained with Coomassie brilliant blue (Figure 5.2 B). Protein bands were 

observed in the gel that corresponded to PTEN-EGFP fusion protein (at around 80 kDa) and putative 

interacting partners co-immunoprecipitated from the HCT116 transfected cells. The entire resolving 

gel lane was cut into 12 equally sized slices, which were digested with trypsin and the peptides 

extracted were analyzed by LC-MS. 
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Figure 5.2 Co-immunoprecipitation of PTEN from PTEN-EGFP transfected HCT116 cells   

(A) Following incubation with the HCT116 cell lysate, 25 µL of proteins eluted from the GFP trap 

magnetic beads were loaded on a SDS-PAGE and transferred onto a PVDF membrane along 20 µL of 

supernatant collected after incubation with the GFP trap beads (referred to as “Unbound”) and 20 µL 

of whole cell lysate from untransfected HCT116 cells (referred to as negative control, “NC”). The 

Western blot results confirmed the immunoprecipitation of PTEN-EGFP fusion protein from 

transfected HCT116 cells as a strong band is visible that corresponded to the fusion protein in the IP 

sample. Endogenous PTEN was also detected in all samples and appeared to be more intense in the 

negative control. The uncropped Western blot used to generate this figure is shown in the Appendix 

(sect. 8.6.2, Figure 8.7). In a parallel experiment, the PTEN IP sample was loaded on the SDS-PAGE 

gel and Coomassie-stained. The protein bands visualized included bands corresponding to the 

molecular weight of the fusion protein PTEN-EGFP (around 80 kDa) as well as additional signals 

corresponding to putative PTEN-interacting proteins co-immunoprecipitated from the HCT116 cell 

lysate.  

 

 

5.4.3 MS-based validation of PTEN-interacting proteins  

The first part of the validation of potential PTEN interactors addressed the MS-based identification 

of PTEN-interacting proteins after co-immunoprecipitation of PTEN from PTEN-EGFP 
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overexpressing HCT-116 cells under normal redox conditions. This experiment was performed so that 

the resulting PTEN MS-generated interactome could be matched against the interactome generated 

with the in vitro study previously described in Chapter 4 in order to identify any common proteins. 

LC-MS runs obtained from the “bottom-up” MS analysis of peptides extracted from each of the 12 gel 

slices were loaded onto Progenesis QI for proteomics as 12 separate experiments, and the software 

was used in combination with Mascot dataset search engine to obtain protein identification and 

quantification data. Once the analysis was completed, the individual experiments corresponding to 

each of the 12 LC-MS runs were pooled into a multi-fraction experiment. A total of 371 putative 

PTEN interacting proteins were detected by the MS-based analysis. Of these 371 proteins, 214 showed 

confidence score above 50 and a number of unique peptides greater than or equal to 2. Table 5.1 

shows 33 proteins among these 214 that had been detected also in the in vitro interactome generated 

by GSH-affinity enrichment as described in Chapter 4. In the Appendix (Section 8.5) are reported all 

214 identified proteins (Table 8.6) and the remaining 157 that were below the cutoff criteria (Table 

8.7). Protein IDs in the in vivo interactome that matched those found in the in vitro interactome 

described in Chapter 4 included peroxiredoxin-1 (Prdx1), annexin A2 (Anxa2), pyruvate kinase PKM 

(Kpym or Pkm), L-lactate dehydrogenase B chain, ATP synthase subunit alpha (mitochondrial, AtpA), 

and nucleoside diphosphate kinase A (NdkA). Proteins that were assumed to be non-specific 

interactors included 40S and 60S ribosomal proteins, heat shock proteins, tubulin, histones and 

elongation factors, although all of these have been reported in previous PTEN interactors data sets 

[541]. PTEN peptides that belonged to the PTEN-EGFP fusion protein bait were identified in the IP 

sample with a high confidence score (1253) and 16 unique peptides among those were used for 

quantification. Neither thioredoxin-1 (Trx) nor DNA-damage binding protein 1 (DDB1) were detected 

among the PTEN interacting proteins identified by MS in combination with the GFP-trap-based 

affinity-capture from the in vivo experiment.  
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Table 5.1 Identification and LC-MS based label-free quantification of PTEN-binding proteins affinity-

captured by Co-IP from HCT116 cell lysate matching proteins detected in the in vitro interactome 

generated as described in Chapter 4   

Accession1 Peptides  

count2 

Confidence 

Score3 

Description Average 

Normalized 

Abundance4 

HS90B_HUMAN 20 (9) 1440.25 Heat shock protein HSP 90-beta  12200 

PTEN_HUMAN (bait) 16 (16) 1252.96 Phosphatidylinositol 3,4,5-

trisphosphate 3-phosphatase and dual-

specificity protein phosphatase PTEN  

233000 

TBB5_HUMAN 16 (2) 1045.15 Tubulin beta chain  7057.32 

CH60_HUMAN 13 (13) 1016.71 60 kDa heat shock protein, 

mitochondrial  

18800 

HSP7C_HUMAN 13 (11) 809.93 Heat shock cognate 71 kDa protein  9336.89 

RS4X_HUMAN 11 (11) 625.81 40S ribosomal protein S4, X isoform  8836.6 

RS3_HUMAN 12 (12) 542.64 40S ribosomal protein S3  9871.58 

RS2_HUMAN 10 (10) 462.57 40S ribosomal protein S2  6503.36 

LDHB_HUMAN 6 (4) 392.69 L-lactate dehydrogenase B chain  2189.7 

KPYM_HUMAN 6 (6) 390.12 Pyruvate kinase PKM  9366.31 

RS13_HUMAN 5 (5) 343.18 40S ribosomal protein S13  11200 

ANXA2_HUMAN 6 (6) 320.89 Annexin A2  5482.44 

ATPA_HUMAN 3 (3) 237.85 ATP synthase subunit alpha, 

mitochondrial  

1023.53 

RL31_HUMAN 4 (4) 235.43 60S ribosomal protein L31 1 8672.43 

RL22L_HUMAN 2 (2) 225.37 60S ribosomal protein L22-like 1  2308.21 

RS27_HUMAN 4 (4) 213.66 40S ribosomal protein S27  2608.79 

NDKA_HUMAN 4 (4) 203.91 Nucleoside diphosphate kinase A  2765.63 

RS9_HUMAN 5 (5) 198.54 40S ribosomal protein S9  6700.77 

RL12_HUMAN 3 (3) 192.92 60S ribosomal protein L12  3199.86 

RLA0_HUMAN 4 (4) 181.26 60S acidic ribosomal protein P0  3571.97 

RL23_HUMAN 2 (2) 180.3 60S ribosomal protein L23  2284.74 

RS15A_HUMAN 4 (4) 180.29 40S ribosomal protein S15a  12000 

PRDX1_HUMAN 4 (4) 173.27 Peroxiredoxin-1  3012.07 

RL13_HUMAN 2 (2) 170.55 60S ribosomal protein L13  2201.69 

RS25_HUMAN 3 (3) 160.46 40S ribosomal protein S25  5004.7 

RS17L_HUMAN 3 (3) 158.9 40S ribosomal protein S17-like  3100.06 

RS6_HUMAN 2 (2) 152.91 40S ribosomal protein S6  2371.51 

EFTU_HUMAN 2 (2) 123.01 Elongation factor Tu, mitochondrial  1190.6 

RL7_HUMAN 3 (3) 121.45 60S ribosomal protein L7  2622.87 

RS26_HUMAN 2 (2) 116.95 40S ribosomal protein S26  2290.79 

EF2_HUMAN 2 (2) 104.32 Elongation factor 2  125.38 

RL13A_HUMAN 2 (2) 99.28 60S ribosomal protein L13a  1881.3 

H2A1B_HUMAN 2 (2) 95.17 Histone H2A type 1-B/E  2908.23 

RL27_HUMAN 2 (2) 89.54 60S ribosomal protein L27  1182 

1
Accession = SwissProt Protein ID 

2
Peptide count = the number of detected peptides (the number of unique peptides) used for 

quantification 
3
The protein confidence score was generated using Mascot as described in the experimental. 

4
Average normalized abundance of the protein

 
calculated by label-free quantification  

Ranking is based on Confidence score. 
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5.4.4 Effect of oxidation on cell viability 

Following MS-identification of PTEN protein-protein interactions under normal redox conditions, 

HCT116 cells were treated with different concentrations of H2O2 for the analysis of the PTEN 

interaction profile under oxidative stress. The effect of oxidative stress on HCT116 cells was 

investigated by monitoring the cell viability of H2O2-oxidized cells using the XTT colorimetric assay 

to identify the highest concentration that could be used while still maintaining a sufficient number of 

viable cells. Confluent HCT116 cells were seeded in a 96-well plate, treated with 1 mM H2O2 to 

induce oxidative stress and incubated with the XTT reagent mix to measure cell viability. 

Metabolically active cells cleave the XTT by reducing it to a formazan dye that can be measured by its 

absorbance at 450 nm in a plate reader [582]. Figure 5.1 (A) shows the absorbance curves for HCT116 

cells treated with either 0 or 1 mM H2O2 over 5 hours of incubation time. As evident from the graph, a 

concentration of 1 mM H2O2 resulted in a significant reduction in cell viability after 1 hour of 

incubation with H2O2, and the effect was also observed for longer peroxide incubation times. In 

addition, the absorbance of H2O2-oxidized cells increased at a slower rate than untreated cells over 

time. The effect of higher peroxide concentrations on cell viability was also tested with the XTT assay 

following treatment of HCT116 with 1, 2 and 5 mM and monitoring the absorbance at 450 nm with 

the XTT reagents, plotted as percentage of cell survival relative to untreated control in Figure 5.2. No 

significant difference was seen in comparing HCT116 cell viability between the three different 

peroxide concentrations used, and the percentage cell survival seemed to decrease at similar rates. In 

general, after 1 hour of incubation with H2O2, the number of metabolically active cells decreased by 

approximately 20% for all peroxide concentration used. However, further peroxide incubation time did 

not result in additional viability loss as the percentage cell survival relative to untreated control 

decreased at a much slower rate over time. Concentrations higher than 5 mM H2O2 could not be tested 

with this viability assay method, as reproducible absorbance values could not be obtained due to 

possible interference of high oxidant concentrations with the XTT reagents. Because of this, it is also 

likely that the viability level observed upon 5 mM H2O2 treatment could have been overestimated by 

the XTT assay. 
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Figure 5.3 Effect of hydrogen peroxide oxidation on HCT116 cells    

HCT116 cells were oxidized with 0, 1, 2 or 5 mM H2O2 and the cell viability monitored 

spectrophotometrically with the XTT assay by measuring the absorbance at 450 nm every hour for 4 

hours. (A) The absorbance corresponding to the 1 mM H2O2 oxidized cells increases at a slower rate 

and is significantly lower than the absorbance corresponding to the untreated cells for each time point 

of the XTT assay (Two tailed unpaired Student’s t test, N=6). Data are presented as mean ± SD (N=6). 

(B) The % cell survival relative to untreated control for HCT116 cells treated with 1, 2 and 5 mM was 

plotted against peroxide incubation time. No significant difference was seen in comparing the effect of 

the peroxide concentration tested on the cell survival for each of the assay time points shown. (Two-

way ANOVA followed by Tukey’s multiple comparisons test, N=3). Data are presented as mean ± SD 

(N=3).   

(B) 

(A) 
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5.4.5 Validation and redox profiling of interacting proteins 

In the light of the viability assay results, a 1 mM and a 5 mM final concentration of hydrogen 

peroxide and an incubation time of 1 hour were eventually chosen as the treatment conditions to 

oxidatively stress the cells for the Co-IP of PTEN interacting proteins.  

Given the fact that the MS-generated PTEN in vivo interactome was found to be significantly 

different from the in vitro dataset (as described in Section 5.4.3), a MS-based proteomics approach 

was not undertaken at this stage to cross-validate the proteins redox profiles reported in the previous 

chapter. Instead, the same four PTEN interacting proteins (Prdx1, Trx, Anxa2 and DDB1) that were 

originally selected to validate the in vitro data (as described in Section 4.4.7) were validated in in vivo 

experiment. Following 1 mM and 5 mM H2O2 oxidative treatment, PTEN-interacting proteins were 

co-immunoprecipitated as described in Section 5.4.2. Proteins eluted from the GFP trap magnetic 

beads following incubation with the cell lysate of control and H2O2-oxidized cells were loaded onto a 

SDS-PAGE and transferred on a PVDF membrane, which was probed with primary monoclonal 

antibodies recognizing the four proteins selected along the PTEN-EGFP. Secondary antibodies 

detected by ECL confirmed the presence of specific protein bands for Anxa2, Prdx1 as well as Trx 

(which could not be detected by LC-MS). DDB1 did not produce a reproducible signal on the Western 

blot scans, and several non-specific bands were observed upon ECL detection due to antibody cross-

reactivity. Consequently, the redox profile for this protein could not be analyzed by Western blotting 

at this stage. Signals on the Western blots membrane were quantified by densitometry using ImageJ, 

and relative protein quantification was calculated as ratio to PTEN-EGFP. The Western blot images 

and quantification results for the three proteins co-immunoprecipitated after 1 mM and 5 mM H2O2 

treatment in HCT116 cells are shown in Figure 5.4. When HCT116 cells were treated with 1 mM 

H2O2, no significant difference was observed when comparing the signal intensity for Anxa1, Prdx1 or 

Trx between the untreated and oxidized sample. These results showed a different profile from that 

described in Chapter 4 where a concentration of 1 mM H2O2 was found to induce a significant change 

in PTEN interactions in vitro. However, increasing the H2O2 concentration to 5 mM resulted in a 

significant difference in the levels of all three PTEN-interacting proteins, which were found elevated 

after co-IP from oxidized cells. This effect was particularly evident for Trx, which was found to 
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associate with PTEN approximately 4 times more strongly when HCT116 treated with 5 mM H2O2, 

while Anxa2 and Prdx1 levels were less than doubled.  

 

 

Figure 5.4 Validation of selected PTEN-interacting proteins following Co-IP from control versus 

peroxide-oxidized cells   

HCT116 were treated with either 1 or 5 mM hydrogen peroxide for 1 hour, and PTEN interacting 

partners were captured by Co-IP using the GFP trap magnetic beads. Anxa2, Prdx1, and Trx were 

detected by Western blotting and their relative intensity corrected against the loading control PTEN-

EGFP. Representative Western Blots and data analysis are shown for Anxa2, Prdx1, and Trx captured 

by Co-IP upon treatment of HCT116 cells with 1 mM hydrogen peroxide (A and B, top panel) and 5 

mM hydrogen peroxide (C and D, bottom panel) versus untreated control. Treating the cells with 1 

mM did not result in a significant change in protein level for the three selected interactors, while upon 

treatment with 5 mM H2O2 all proteins showed a statistical trend toward an increase compared to 

untreated control (Two tailed Unpaired Student’s t test, * = p < 0.01, ** = p < 0.001). The uncropped 
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Western blots used to generate this figure are shown in the Appendix (Sect. 8.6.2, Figures 8.8, 8.9, and 

8.10).  
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5.5 Discussion 

The study presented in this chapter addressed the in vivo validation and redox profiling of the 

PTEN protein-protein interactions that were previously studied upon targeted PTEN inactivation as 

described in Chapter 4.  

Before investigating the interaction profiles, overexpression of PTEN in HCT116 cells was induced 

by transfecting the cells with the PEGFP-C1 plasmid vector containing the PTEN-EGFP, which 

resulted in the expression of recombinant PTEN as EGFP-tagged fusion protein. The transfection 

conditions were optimized by testing two different available reagents (GeneJuice and 

Lipofectamine2000) for transfection efficiency post transfection in HCT116 cells. While the two 

reagents generally were associated with comparable levels of live cells and GFP fluorescence 

intensity, Lipofectamine2000 delivered the PTEN-EGFP Plasmid DNA with transfection efficiency ~7 

times higher than GeneJuice. It seems unlikely that this substantial difference in transfection efficiency 

could be a result of the intrinsic nature of the reagents (as both reagents rely on cationic lipids  for 

DNA delivery), and it would rather be related to the HCT116 cell line used, which may or may not be 

compatible with specific transfection formulations.  

The first part of the validation process was focused on the determination of PTEN- protein-protein 

interaction by Co-IP and LC-MS under normal redox conditions, in order to match the results against 

the interaction dataset generated with the same method in the in vitro study described in Chapter 4. 

The LC-MS results identified 214 proteins above the cutoff criteria, of which only 33 proteins were 

common between the two datasets. These results are in some ways unsurprising, since the two 

methods differed greatly in the affinity-capture system used, one using a GST-tagged purified protein 

immobilized onto a GSH-based resin and the other based on a GFP antibody used to 

immunoprecipitate an overexpressed EGFP-tagged protein in vivo.  However, while thioredoxin-1 

(Trx) was absent in the proteomics dataset generated by LC-MS (Section 5.4.3, Table 5.1), it did show 

a band on the Western blotting (Section 5.3.7, Figure 5.4), indicating that Trx was, in fact, co-

immunoprecipitated from the cells with the affinity-capture method, but was not detected by the MS. 

This suggests that although the “bottom-up” LC-MS approach using data dependent acquisition is a 
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powerful discovery tool in proteomics, it still often lacks the sensitivity required to identify low 

abundance proteins in complex datasets (as only the most abundant precursor ions are selected for the 

analysis). It also highlights the importance of using targeted or antibody-based techniques to validate 

MS-based protein identifications, and even as a complementary discovery tool to increase the power 

of the analysis. Among the 33 PTEN-interacting proteins common between the two datasets were 

peroxiredoxin-1 (Prdx1) and annexin A2 (Anxa2), both of which were identified with a high 

confidence score and number of unique peptides using the Co-IP method described in this chapter. 

However, the majority of the remaining protein IDs that were identified in both studies corresponded 

to proteins such as tubulin, elongation factors, heat shock proteins and ribosomal proteins, which have 

commonly been found as non-specific interactors in other bead-based affinity datasets [541]. While 

these proteins cannot be ruled as false positives (especially as being present in two separate 

interactomes generated with complementary affinity-capture techniques), are commonly regarded as 

contaminants that routinely bind to matrixes used for affinity-capture [583]. 

The second part of the validation involved studying the effect of H2O2 oxidation of HCT116 on 

selected PTEN interactors. One key experiment performed in this direction was the XTT viability 

assay that was used to test the effect of H2O2 concentrations on HCT116 cells viability. When 

choosing the H2O2 concentrations, the aim of the study was to achieve partial cell damage that could 

induce a change in the association levels of PTEN with its interacting partner, without causing 

complete cytotoxicity. Equally important for the purpose of the validation was to treat the cells with a 

final concentration of H2O2 that was likely to result in significant inactivation of the PTEN-EGFP due 

to disulfide bond formation in the active site of PTEN, for direct comparison with the in vitro study 

described in Chapter 4, where the inactive (disulfide) form of PTEN showed significant changes in the 

level of association of key PTEN-interacting proteins in comparison with the active (reduced) PTEN. 

Previous studies reporting inactivation of PTEN upon H2O2 treatment in mammalian cells were also 

considered when identifying the ideal H2O2 concentration to induce PTEN inactivation and modulation 

of downstream signaling pathways. Leslie et al. described the reversible inactivation of both 

endogenous and recombinant PTEN upon 1 mM H2O2 oxidation in cells, which in turn resulted in the 

activation of the PI3K/Akt pathway [477]. Based on this, a concentration of 1 mM H2O2 was initially 

used to test the cell survival response in HCT116. 1 mM H2O2 was found to cause approximately 20% 



Chapter 5. Validation and profiling of PTEN protein-protein interactons under cellular oxidative stress 

 209   

significant decrease in cell viability after 1 hour of treatment, in agreement with previous studies 

[584]. In addition, HCT116 were also treated with 2 and 5 mM H2O2 to see if a higher peroxide 

concentration would result in higher cytotoxicity. Interestingly, the cell survival after 1h-incubation 

with 2 or 5 mM H2O2 was not significantly different to that observed after 1h-incubation with 1 mM 

H2O2.  However, these results could be misleading due to a cross-reaction between the XTT reagents 

and the H2O2 which was clearly observed at higher H2O2 concentrations. Hence, a 1 mM and a 5 mM 

H2O2 treatment for 1 hour were eventually chosen to induce oxidative stress in HCT116 cells for the 

affinity-capture of PTEN-interacting proteins.  

The redox interaction profile of the PTEN-interacting proteins Prdx1, Anxa2 and Trx was analyzed 

by Western blotting following 1 mM and 5 mM H2O2 treatment in HCT116 cells and affinity-capture 

with the GFP trap magnetic beads. These three proteins were selected for this validation study as they 

were found to associate more strongly with oxidized purified PTEN-GST upon targeted 1 mM H2O2 

treatment as described in Chapter 4. The abundance of the selected PTEN interactors was determined 

by densitometry and normalized against the levels of PTEN-EGFP loading control. No significant 

difference was seen in comparing the levels of PTEN associated Anxa2, Prdx1 and Trx between 

untreated and 1 mM H2O2-oxidized cells. Interestingly, treatment with 5 mM resulted in a significant 

change in the levels of Trx, which associated with PTEN, with 4 times more in the sample 

immunoprecipitated from oxidized cells versus untreated cells. A statistically significant increase was 

also seen for Anxa2 and Prdx1, but the fold change in abundance of oxidized versus control was less 

than 2 for these proteins.  

In order to interpret these data it is important to consider the redox dynamics of the different 

proteins that associate with PTEN, especially Prdx1 and Trx. Prdx1 has been shown to act as a H2O2 

scavenger, and is believed to protect PTEN from oxidative induced inactivation via a direct interaction 

with PTEN [479,480]. High peroxide concentrations such as those used in this validation study have 

been previously reported to induce dissociation of the PTEN/Prdx1 complex because of oxidative 

damage to Prdx1 Cys51, which forms a disulfide bond with the resolving cysteine Cys172 and is 

required for the H2O2-mediated regulation of the PTEN/Prdx1 interaction [479,480]. However, it has 

also been proposed that Trx acts as an electron donor to Prdx1 and reduces the oxidized Cys51 in 

Prdx1 back to its thiol form under hyper-oxidizing conditions [479,585]. In addition, it has been 
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recently demonstrated that the hyper-oxidation and consequent inactivation of Prdx1 is required to 

allow Trx to act on other substrates to effect the repair of oxidized proteins and cell survival following 

exposure to toxic levels of hydrogen peroxide [585]. This could, in fact, result in the restoring of the 

PTEN/Prdx1 interaction by Trx under severe oxidative stress, and would also explain the increase in 

PTEN/Trx interaction upon 5 mM H2O2 treatment (as more Trx would be required to reduce a more 

oxidized Prdx1), as well as the presence of PTEN/Prdx1 complex under high peroxide concentrations 

(in order to maintain Prdx1 H2O2-scavenging activity and its protective effect against oxidative 

induced PTEN inactivation). Nonetheless, the exact sequence of events for the Trx-mediated 

protection of the Prdx1/PTEN interaction upon oxidation is not clear and further studies would be 

required to address this question. Another important point to consider is the levels of PTEN/Prdx1 and 

PTEN/Trx interactions under normal (reducing) conditions. Very low levels of interactions with Trx 

and Prdx1 were seen for the untreated and DTT-recovered purified PTEN-GST in vitro (Section 

4.4.7), while both proteins were found to bind PTEN-EGFP in control (untreated) cells in the in vivo 

experiment. This suggests that PTEN constantly binds Prdx1 and Trx under homeostatic redox 

conditions so that the phosphatase is protected from physiological levels of oxidation that naturally 

occur as a result of cellular respiration. Therefore, it is possible that under relatively mild oxidative 

stress (1 mM H2O2) in vivo, PTEN reactivation does not require an increase in the level of these 

interactions. Conversely, in the in vitro experiments in Chapter 4 PTEN-GST was not protected by the 

interaction with Trx or Prdx1, so the treatment with 1 mM H2O2 caused oxidative damage to the 

unprotected protein that triggered the increased binding of both of the two redox proteins. This would 

explain why treating PTEN-GST with 1 mM H2O2 in the in vitro study caused a significant increase in 

both PTEN/Prdx1 and PTEN/Trx interactions, while in cells treated with 1 mM H2O2 the levels of 

PTEN/Prdx1 and PTEN/Trx were unchanged, and a modulation in the interactions could only be seen 

by increasing the H2O2 concentration.  

Finally, the present study suggests that the PTEN/Anxa2 interaction might also be regulated by 

H2O2 oxidation in vivo, as a 5 mM H2O2 treatment resulted in a moderate increase in the levels of 

association between PTEN-EGFP and Anxa2. PTEN and Anxa2 exhibit common characteristics that 

suggest that these two proteins could act synergically to protect the cells from oxidative damage by 

regulating the cellular pathways involved in oxidative stress response. Similarly to PTEN, Anxa2 is a 
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redox-sensitive protein, as it contains a reactive cysteine which is target for oxidation by H2O2 

oxidation and appears to be reduced by the thioredoxin system [556]. In addition, it has been shown 

that Anxa2 depleted cells exhibit higher levels of ROS, increased Akt activation, and increased 

susceptibility to ROS-induced cell death, suggesting that Anxa2 is also a redox-regulatory protein 

involved in ROS signaling [555,556]. Previous studies have shown that up-regulation of the reduced 

form of Anxa2 is associated with protection of oxidative stress responsive signaling proteins from 

H2O2-induced damage in cancer cells [556]. Hence, it could be speculated that Anxa2 associates to 

PTEN more strongly under oxidative stress in order to protect PTEN from inactivation caused by 

H2O2. In the in vitro study presented in Chapter 4, the inactivation of PTEN due to targeted 1 mM 

H2O2 oxidation was associated with a 6.8-fold increase in the PTEN/Anxa2 interaction, whereas in the 

present in vivo study the PTEN/Anxa2 association levels were unchanged upon 1 mM H2O2 treatment 

of HCT116 cells, and only moderately increased (< 2 fold change) upon 5 mM H2O2. This suggests 

that the H2O2 treatment of the cells resulted in more Anxa2 present in the oxidized form, which led to a 

less marked oxidation-induced increase in the PTEN/Anxa2 interaction compared to the in vitro 

experiments, where Anxa2 was likely in the reduced form (as the cell lysate used for the affinity-

capture was not treated with H2O2). Generally, these data indicate that the redox status of both PTEN 

and Anxa2 are important in regulating the association between PTEN and Anxa2 in vivo and, 

consequently, in the ROS-mediated signaling response involving this interaction under oxidative 

stress. 

Overall, these results suggest that while a 1 mM H2O2 was sufficient to induce a significant 

reduction in cell survival, and inactivation of PTEN as shown by previous studies [144,477], the 

reversible disulfide bond that is presumably formed between Cys71 and Cys124 in PTEN active site 

upon 1 mM H2O2 treatment in cells would not be directly involved in the modulation of the selected 

PTEN-interacting proteins. This would implicate that other molecular mechanisms that are susceptible 

to peroxide concentrations higher than 1 mM H2O2 (such as 5 mM) could be responsible for the redox-

sensitive regulation of the selected PTEN interactions in vivo. These regulatory mechanisms of 

interaction regulation could involve other structural or modification status changes to PTEN or to its 

binding proteins that would be required to induce a redox-sensitive modulation of PTEN protein-

protein interactions and a corresponding signaling response in cells. Alternatively, it is also possible 
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that while a PTEN-related signaling response was, in fact, induced by 1 mM H2O2 and potentially 

caused by the disulfide bond in PTEN active site, it could not be measured by analyzing the three 

interactors selected and that other PTEN-interacting proteins are involved.  

In conclusion, the study presented in this chapter validated the PTEN interactors described 

previously and opened interesting perspectives on the cellular redox dynamics that affect PTEN 

interactions networks and signaling pathways. Proteins that were detected with the in vitro method 

were confirmed in vivo by MS-based identification and immunoblotting after affinity-capture using a 

Co-IP based method. A final concentration of 5 mM, but not 1 mM H2O2, was associated with 

significant increase in the association of PTEN to selected PTEN interactors, especially with respect to 

Trx, although both treatments induced a similar significant reduction in HCT116 cell viability. The 

findings reported in this study highlight the importance of validation procedures in MS-based 

proteomics data and contributed to gain deeper insight into the redox regulation of PTEN and its 

association with redox-sensitive interacting proteins.  
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6.1 Introduction 

The research work presented in this PhD thesis has aimed to further the knowledge of the effect of 

oxidation and redox regulation of PTEN, using a combination of functional assays, mass spectrometry 

and software-based analysis.  The research aimed to answer the following questions: 

 

1) What happens to PTEN structure when the protein is exposed to ROS? 

2) In which way is PTEN modification status correlated to PTEN phosphatase activity? 

3) Does the reversible oxidation of PTEN affect PTEN protein-protein interactions? 

4) Is the cellular redox status important in determining PTEN association with its binding 

proteins? 

 

The three proteomics studies presented in the thesis approached the investigation of PTEN 

“redoxomics” from different angles, leading to a body of research work that produced interconnected 

results, with respect to both PTEN modification status and interactome. In this chapter, the research 

findings reported in the different studies are brought together along with the challenges and limitations 

of the approaches described. Moreover, a model for the dynamics of the PTEN interactions with Prdx1 

and Trx under oxidative stress based on the results presented in this thesis is discussed.  
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6.2 General discussion 

6.2.1 Oxidation of PTEN in vitro 

One recurring theme in this PhD thesis was the analysis of the effect of oxidation on PTEN 

phosphatase activity, monitored with the OMFP phosphatase assay after treating purified PTEN-GST 

with either HOCl (Chapter 3, Section 3.4.3) or H2O2 (Chapter 4, Section 4.4.2).  

The activity assay results obtained varied greatly depending on which oxidant was used to treat 

PTEN-GST. When treating PTEN-GST with 1 mM H2O2, its phosphatase activity dropped 

dramatically, most probably due to the formation of a reversible disulfide bond between the essential 

cysteines Cys124 and Cys71 in the active site pocket of PTEN. This intramolecular disulfide bond was 

likely responsible for the full inactivation of the protein, as the protein activity was fully restored by 

DTT incubation, in line with previous studies on H2O2-oxidized PTEN [477]. Surprisingly, a 1 mM 

concentration of HOCl, a biological oxidant generated by myeloperoxidase under inflammatory 

conditions [155], did not cause a reduction in PTEN-GST phosphatase activity. Higher concentrations 

(>2 mM) were required to induce significant protein inactivation, despite HOCl generally being 

considered a more aggressive oxidizing agent than H2O2 both in vivo and in vitro [586]. While no study 

to date has previously reported the phosphatase activity of PTEN following HOCl treatment, it could 

be speculated that the HOCl oxidation did not induce the formation of the disulfide bond in PTEN 

active site as readily as H2O2 treatment; this is supported by both the activity and modification data as 

described in Chapter 3. Firstly, when treating PTEN with HOCl PTEN phosphatase activity was not 

recoverable by DTT, unlike for H2O2 treatment [144,423]. Secondly, the MS-based modification 

mapping revealed that the essential cysteine Cys71 was found abundantly modified to sulfonic acid 

upon treatment with HOCl although the increase in oxidation was not statistically significant, whereas 

treatment with H2O2 did not result in any observable oxPTMS at Cys71. This result is in agreement 

with previous studies that have reported when the essential active site cysteines of protein tyrosine 

phosphatases are oxidized to sulfonic acid the catalytic activity is irreversibly inhibited [522,587,588], 

and that HOCl, but not H2O2 oxidizes active site cysteines of proteins to sulfonic acid [516]. However, 
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as Cys124 could not be detected by LC-MS in either of the two studies, definitive conclusions cannot 

be drawn at this stage about the redox state of the PTEN active site catalytic cysteine upon oxidative 

treatment.  

Another important aspect of the studies addressing the oxidation of purified PTEN-GST was the 

overall modification status of the protein determined by LC-MS/MS, and its correlation with PTEN 

phosphatase activity. The HOCl treatment resulted in a much more extensive range of oxidation than 

H2O2, producing 13 different oxPTMs distributed at different sites within the protein, while the only 

one significant oxPTM that was associated with H2O2 oxidation was at Met35 (excluding the active 

site disulfide bond). Because the H2O2 treatment caused complete protein inactivation at a 

concentration of 1 mM due to the active site disulfide bond, it is difficult to evaluate the contribution 

of the modified Met35 to the drop in activity, and further studies would be required to address this 

question. However, this result clearly indicates that the overall extent of protein post-translational 

modification does not correlate directly with PTEN enzymatic activity, and that specific oxPTMs 

rather than number of oxPTMs are associated with oxidation-induced protein inactivation. That being 

said, the vast majority of HOCl-induced oxPTMs detected increased in abundance with increasing 

HOCl concentrations and decreasing phosphatase activity, suggesting that a correlation exists between 

the level of modification of individual residues and enzyme activity. Nonetheless, assessing the 

contribution of each HOCl-modified residue to PTEN activity would be challenging, especially 

because the occurrence of certain oxPTMs could be dependent on other oxidative events that act as 

initiator for secondary oxidative damage [533]. 

6.2.2 Methods of Protein-protein interactions identification 

In Chapter 4 and 5, the same LC-MS label-free-based method was combined with two different 

affinity-capture methods for the identification and quantification of PTEN protein interactions 

(Section 4.4.6 and Section 5.4.3), one in vitro the other in vivo. The two studies were conducted using 

two different PTEN fusions proteins as bait for the affinity-capture, one purified in vitro and the other 

overexpressed in vivo. Both affinity-capture methods had advantages and disadvantages and 

complemented one another for the detection of PTEN interacting proteins. In the study presented in 
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Chapter 4, the purified PTEN-GST was immobilized onto a GSH-based resin and challenged with 

HCT116 cell lysate for the capture. While this system is fast, inexpensive and had the advantage in 

that the enzymatic activity and oxidation status of the bait protein can be directly measured, it can only 

“simulate” the protein-protein interaction environment that exists physiologically. In the validation 

study presented in Chapter 5, the fusion protein PTEN-EGFP was overexpressed in HCT116 cells and 

co-immunoprecipitated with its interacting proteins using a GFP antibody pre-immobilized onto a 

resin. With this method, the overexpressed PTEN-EGFP binds its interacting partners while still under 

what is hoped to be close to physiological conditions; therefore, the captured proteins should be 

generally representative of the protein interaction dynamics present inside the cell. However, this 

method presents a number of significant limitations such as possible cross-reactivity and poor 

performance of antibodies used for the Co-IP giving low yields of material. In addition, it is likely that 

the overexpression of PTEN-EGFP could, in fact, modify the normal cellular environment and 

significantly alter the interactome. The in vitro experiment will also decouple the effect of PTEN 

oxidation form other effects of cellular oxidation, such as altered PTM or oxidative status of 

interacting proteins, which should allow the direct effects of PTEN oxidation on the interactome to be 

identified.  

Another important point to discuss with regards to the methods of protein-protein interactions 

analysis is the LC-MS-based proteomics approach used for the interactions identification. Both studies 

generated a PTEN interactome with a “shotgun” (or discovery) proteomics approach. As explained in 

detail in Section 1.3.4, this method presents limitations inherent to the process of precursor ion 

selection, which is automatically performed by the mass spectrometer and limited to the most intense 

ions of the spectrum. When the LC-MS runs that are acquired using these settings are analyzed by the 

quantification software (Progenesis QI for Proteomics), the peak-picking algorithm will only analyze 

the features corresponding to the preselected set of precursor ions, therefore limiting the number of 

identified peptides to those exhibiting similar abundance values in the spectrum. Consequently, as the 

number of proteins in affinity-enriched samples, such as those analyzed in Chapter 4 and 5, may 

exceed the maximum number of selectable precursor ions in the more congested parts of the 

chromatogram, the analysis can be biased toward the most abundant proteins in the samples, and can 

exclude biologically significant changes relevant to non-abundant proteins, and also make it difficult 



Chapter 6. Conclusion 

 

 218   

to identify PTMs in the interacting proteins. The maximum number of ions that mass spectrometer can 

be controlled by the user and was set at 10 for all the LC-MS analysis performed in this thesis. Further 

increasing the amount of selected precursor ion could have increased the power of the analysis (and, 

theoretically, the number of identified proteins), but the necessarily decreased acquisition times 

usually results in lower quality fragmentation spectra which would have likely resulted in a higher 

number of false negatives or lower scoring peptide matches [483]. However, as the LC-MS analysis in 

both studies was performed on fractionated samples (separated by SDS-PAGE, and each gel lane 

sliced in 12 slices), the protein identification and quantification performance were maximized. The 

two LC-MS generated PTEN interactomes described in the two studies contained a similar number of 

total proteins (234 proteins for GSH-based affinity capture, and 214 for the Co-IP-based method), but 

were largely different, with only 33 proteins in common. This indicates that the affinity-capture 

method used had a great impact on the proteins captured, and possibly that the two techniques are 

complementary and can be used together to increase the power of the protein-protein interactions 

discovery, but that they might not be appropriate to validate each other. However, because of the 

limitations of the proteomics approach discussed above, it is also likely that the two interactomes had, 

in fact, many more proteins in common which were not detected because of low abundance in either of 

the two affinity-enriched samples. This was the case for Trx, which was detected by LC-MS and 

immunoblotting in the study presented in Chapter 4, but only by immunoblotting in the study 

presented in Chapter 5. Overall, these results highlighted the importance of a validation-oriented 

approach both within and between studies when exploring complex proteomics datasets such as 

interactomes. While immunoblotting would not be feasibile to screen all protein-interactions with a 

discovery approach, it can be more sensitive than shotgun MS-based approaches for the detection of 

low abundant proteins in complex samples, hence can be used both as a validation method and as a 

method of detection of target proteins with prior knowledge of a direct interaction.  

Alternatively, other MS-based identification and quantification methods that can be used in 

directed proteomics approaches could have been implemented in combination with the shotgun 

approach described to increase the power of the analysis. Among those, the T3PQ (Top 3 Protein 

Quantification), is ideally suited for protein identification and absolute quantification in complex 

mixtures such as the affinity-enriched lysates that have been analyzed in this thesis [589]. This method 
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uses the average MS signal response of the three most intense precursor ions to calculate the 

abundance of each identified protein [590], and can be used to fragment pre-selected precursor ions 

obtained from a LC-MS run analyzed with a shotgun approach. As the number of ion detections is 

restricted to the three best ionizing peptides for each identified protein, the instrument can be set to 

acquire a higher number of precursors in the first LC-MS run, allowing for the identification of a 

larger number of proteins with high sequence coverage and accuracy with the second LC-MS run 

[589,590]. However, T3PQ is based on the assumption that for each protein identified by at least three 

peptides, the average of the three most intensive precursor ions directly correlates with the protein 

abundance in the sample, therefore excluding the contribution of any additional peptides 

corresponding to the protein (even those that are only marginally less abundant than the selected 

three). Moreover, the method can still limit protein identification outputs to the most abundant proteins 

in the sample, as all proteins identified by less than three peptides will be excluded a priori from the 

analysis [591]. 

6.2.3 Model for PTEN/Prdx1 and PTEN/Trx interactions under oxidative stress 

The effect of altered redox conditions on PTEN protein interactions was investigated in Chapter 4 

by analyzing the redox interactome of the oxidized versus untreated protein in vitro and in Chapter 5 

by validating selected interactions in vivo under cellular oxidative stress.  

The results overall showed that the redox status of both purified PTEN and cells influences the 

ability of PTEN to bind its interacting proteins. In the in vitro study presented in Chapter 4, 13 

proteins were detected that bound significantly more strongly to the 1 mM oxidized PTEN-GST than 

to the untreated control. Among those 13, the redox proteins Trx and Prdx1, the phospholipid-binding 

protein Anxa2 and the DNA binding protein DDB1 were selected for further investigation and their 

association with PTEN studied in oxidized cells in Chapter 5, and except for DDB1 (for which a 

reproducible signal could not be detected by immunoblotting in the in vivo study) were found to 

associate more strongly to the overexpressed PTEN-EGFP when HCT116 cells were treated with 5 

mM H2O2 (but not with 1 mM H2O2). Particularly interesting for the research questions addressed in 

this PhD thesis were the PTEN/Prdx1 and PTEN/Trx interactions and the interplay between them 
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under oxidative stress. It is worth bearing in mind that the nature of the interactions has not been 

demonstrated, and this may be non-covalent, or possibly could be covalent by formation of mixed 

disulfides between the proteins. The latter has already been proposed as a potential mechanism for 

interaction between Trx and PTEN [478]. However, given that the formation of the interactions is 

selective for the 13 proteins described, and many interactors show no differential binding, if mixed 

disulfide formation is the cause then it is a selective process and still has validity and interest. 

Based on the results described in Chapter 4 and 5 and on previous studies on the redox regulation 

of PTEN, it is possible to propose a model for the protein interactions dynamics between PTEN, Prdx1 

and Trx, and their modulation under mild and severe oxidative stress (Figure 6.1). Both Trx and Prdx1 

are required to maintain PTEN phosphatase activity, and interact with overexpressed PTEN-EGFP in 

normal (reducing) redox conditions as shown in the immunoblotting results presented in Chapter 5 

(Section 5.4.6). In mild oxidizing conditions (1 mM H2O2), a disulfide bond is formed in the active site 

of PTEN between Cys71 and Cys124 and PTEN is inactivated [423], and Prdx1 scavenges H2O2 

molecules from around PTEN protecting it from further oxidative damage, while Trx reduces PTEN 

active site disulfide back to the thiols form, as also previously proposed by Lee et al [423]. While 

Prdx1 is scavenging H2O2 during mild oxidative stress, Cys51 in Prdx1 might also be oxidized to a 

sulfenic intermediate (not shown in the model), which is also reduced by Trx via the formation of a 

mixed disulfide intermediate [585]. In severe oxidative stress conditions (e.g. 5 mM H2O2), most 

Prdx1 is inactivated and dissociates from PTEN due to the intermolecular disulfide bond formation 

between Cys51 and the Cys172 of a neighboring Prdx1 molecule [479,585]. As a result of this, higher 

levels of Trx are required for the reduction of Prdx1, in agreement with previous studies showing that 

the over-oxidation of Prdx1 is associated with a corresponding increase in cellular Trx upon H2O2-

induced oxidative stress [585,592]. In addition, it has been shown that oxidative stress induces the 

gene expression of Trx, via binding of the Nrf2/small Maf complex to antioxidant responsive elements 

(AREs) in the upstream promoter region of the Trx gene [593,594]. Therefore, the increased Trx 

activity due to oxidative stress and Prdx1 inactivation is likely responsible for maintaining the 

PTEN/Prdx1 interaction under severe oxidative stress, as shown in the immunoblotting results 

presented in Chapter 5 (Section 5.4.6). Consequently, according to this model, the increased binding 

of Trx to inactive PTEN could be also due to the increased activity of Trx as a result of the 
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inactivation of Prdx1 and temporary dissociation of PTEN/Prdx1 interaction under severe oxidative 

stress, which has been previously shown to lead to even higher levels of cellular Trx [594]. In both 

mild and severe oxidative stress conditions, oxidized Trx is formed due to oxidoreductase activity of 

Trx on both PTEN and Prdx1 and results in the temporary dissociation of the PTEN:Trx complex. The 

disulfide between Cys32 and Cys35 in active site of oxidized Trx is reduced by the NADPH-

dependent thioredoxin reductase (TrxR), which is essential to maintain the antioxidant capacity of the 

thioredoxin system under oxidative stress [595]. 

 

 

Figure 6.1 Proposed model for the regulation of PTEN/Prdx1 and PTEN/Trx interaction under 

oxidative stress  

In normal redox conditions such as those found in healthy cells, Prdx1 and Trx interact with PTEN 

protecting it from physiological levels of free radicals and ROS. In mild oxidative stress, Trx readily 

reduces the disulfide bond in PTEN active site thereby reactivating the phosphatase, while Prdx1 

scavenges H2O2 molecules protecting PTEN from further oxidative damage. In severe oxidative stress 

conditions, such as those found in disease states, Prdx1 dissociates from PTEN due to oxidative 

damage to Cys51 in Prdx1 which forms an intermolecular disulfide bond with the Cys172 of another 
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Prdx1 molecule. More Trx supply is required to reduce Prdx1 and restore the PTEN/Prdx1 interaction, 

and thus an increased amount of Trx binds the inactive PTEN in order to reactivate the phosphatase 

via reduction of the active site disulfide in PTEN active site. The disulfide bond between the catalytic 

cysteines Cys32 and Cys35 in Trx is reduced by the NADPH-dependent TrxR, which restores Trx 

oxidoreductase activity. 

 

  



Chapter 6. Conclusion 

 

 223   

6.3 Future directions 

The research presented here has highlighted the importance of analyzing the structure and protein 

interactions of PTEN to gain further insight in the role of ROS signaling in the pathophysiology of 

ageing and disease. However, there still remains much to be studied about the mechanisms of PTEN 

redox regulation.  

The incomplete PTEN sequence coverage detected by LC-MS represents a major challenge to 

overcome in order to obtain detailed information on the modification status of Cys124 in the active 

site of PTEN, as well as of other residues which were also excluded. Promising results are currently 

being generated to tackle this issue on both native and HOCl-oxidized PTEN by implementing an 

alternative peptide digestion method based on the in-gel digestion with the endoproteinase Lys-C, in 

line to that previously reported by Lee et al, which successfully detected the active site of PTEN using 

this enzyme with an in-solution digestion protocol [423]. Other methods for increasing sequence 

coverage are also considered for this purpose, and include the implementation of multienzymatic and 

limited proteolytic digestions (MELD), which use a combination of different proteases (such as 

Trypsin and Lys-C) to digest proteins under strictly controlled incubation conditions [596,597]. These 

methods can generate in a single digestion experiment many overlapping miscleaved peptides (due to 

the combinatory action of the different proteases cleaving at different sites of the same protein), 

therefore increasing the chance of obtaining the complete sequence coverage for a given protein. In 

addition to MELD methods, “top-down” approaches (in which intact proteins are analyzed by MS 

without previous proteolytic digestion) are also considered as a possible future alternative and/or 

complementary technique to the “bottom-up” approach for improving the analysis of PTEN oxPTMs. 

Top down approaches have the advantage in that the full protein sequence coverage is obtained and 

the protein primary structure is usually preserved, leading to the in-depth characterization of 

modification patterns, including labile oxPTMs [270,275,598]. It is hoped that by uncovering the 

active site cysteine and other important residues by implementing the above described methods, the 

intramolecular dynamics of PTEN upon oxidative stress both in vivo and in vitro can be correlated to 
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PTEN phosphatase activity and secondary structure, to better understand the role of specific amino 

acids residues in PTEN redox regulation and ROS-mediated signaling. 

Interesting perspectives have also been opened by the analysis of PTEN redox interactome. Work 

is currently underway to assess using non-reducing SDS-PAGE whether redox-sensing PTEN-

interacting proteins such as Trx and Prdx1 associate to oxidized PTEN by trapping via intermolecular 

disulfide bonds during both in vitro and in vivo affinity-capture, or bind PTEN as a result of other 

molecular mechanisms. In this fashion, the exact molecular mechanisms involved in the regulation of 

these PTEN interactions and their dynamic interplay under oxidative stress can be determined.  

Much of the future work on the analysis of PTEN redox interactome also includes further design of 

the in vivo methodologies aiming to determine the correlation between cellular oxidative stress and the 

ROS-mediated signaling networks involving PTEN and its binding partners. Firstly, it might be 

important to test a broader range of H2O2 concentrations for the cellular oxidation, with the purpose of 

further characterizing the role of severe oxidative stress on PTEN interactions dynamics and to 

identify the H2O2 concentrations at which the PTEN interactions may be disrupted (due to the level of 

ROS exceeding the cellular antioxidant capacity). This would help determining the effect of over-

oxidation on the redox-sensing mechanisms that regulate the PTEN/Trx/Prdx1 system as well as other 

redox-regulated PTEN interactions, and can contribute to gain further insight into the cellular 

pathways involved in oxidative stress response. Another important point to bear in mind is that the 

overexpressed PTEN-EGFP levels likely exceed the endogenous levels of PTEN-interacting proteins, 

and thus any ROS-induced increase in the cellular expression of these proteins translates in their 

increased interaction with PTEN-EGFP, affecting the levels of interaction detected in the affinity-

capture. Based on this, for each PTEN interactor studied under H2O2-induced cellular oxidative stress, 

the protein levels in the total and unbound lysates could be compared across the different H2O2 

concentrations used and against the corresponding levels observed in the affinity-capture. With this 

adjustment, it would be possible to assess the contribution of ROS-induced changes in protein 

expression (or ROS-induced protein damage) to the variation observed in the levels of association of 

these proteins with PTEN-EGFP. In addition, further analyses that will be incorporated in the in vivo 

study include the MS-based identification of the proteins captured by the overexpressed EGFP tag 

(following transfection of HCT116 cells with an empty PEGFP-C1 vector) and by the GFP-trap resin 



Chapter 6. Conclusion 

 

 225   

alone, in order to filter EGFP-binding proteins out of the PTEN interactome, to characterize non-

specifically bound proteins, and to detect possible contaminants that could interfere with the LC-MS 

analysis. 

Finally, additional experiments involving mutagenesis approaches are also considered as part of the 

follow-up work on the research presented in this thesis. The study of PTEN mutants could be crucial 

in clarifying the role of key amino acid residues in determining the oxidation-mediated effects on 

PTEN function, structure and protein-protein interactions described in this work. PTEN fusion 

proteins carrying mutations in either one or both of the two the active site cysteines (Cys71 and 

Cys124) can be used in the various experimental systems described to block the disulfide bond 

formation upon oxidation of PTEN. This would be important to investigate whether the disulfide bond 

in the active site of wild-type PTEN contributes to: 1) the HOCl-induced drop in PTEN phosphatase 

activity; 2) the significant changes observed in the levels of PTEN-interacting proteins upon H2O2 

oxidation in vitro; 3) the redox-regulation of PTEN-interacting proteins upon cellular oxidation, 

especially with regards to the PTEN/Prdx1 and the PTEN/Trx interactions. The mutations of other 

PTEN amino acids for which a functional role has been proposed in this thesis would also be decisive 

to gain further insight into PTEN redox-regulation. These include Met35, which was the only residue 

that was found significantly more modified upon H2O2 treatment of purified PTEN-GST, and that 

previous mutagenesis studies described as essential for PTEN phosphatase activity [409]. Met35 

mutants could be used for the interactions capture (both in vitro and in vivo) to assess whether this 

residue plays a significant role in modulating the levels of PTEN binding proteins, and, ultimately, the 

redox-regulated networks involving PTEN protein-protein interactions. Along these lines, PTEN-

EGFP carrying mutations at Met205, Tyr240, His272, Trp274 orTyr377 (all of which were found 

significantly more modified exclusively in HOCl-induced PTEN-GST aggregates) could be used to 

confirm the role of these residues in the oxidation-mediated PTEN aggregation (e.g. by live cell 

imaging studies using HOCl-treated cells).  

Exciting prospects are also offered by PTEN-deficient mammalian cell lines for the analysis of the 

cellular signals and phenotypes associated with the oxidative sensitive PTEN-interactions that were 

identified in this thesis, especially those involved in the processes of disease (such as cytoskeleton 

control and DNA damage). In parallel workflows, mammalian cell lines genetically engineered to 
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express mutant forms of PTEN that carry mutations in oxidative-sensitive residues could be used to 

further characterize the molecular systems regulating PTEN function in altered redox conditions. 

These experiments would result in the identification of the exact molecular mechanisms responsible 

for protein-specific, cellular and phenotypic changes under oxidative stress, and could be important for 

the development of novel therapeutics. 

In summary, the work presented in this thesis has contributed to the current knowledge of PTEN 

“redoxomics”, opening new perspectives on its redox regulation and interaction dynamics under 

oxidative stress. Amino acid modifications associated with functional loss and structural alteration 

have been determined, and it has been demonstrated that PTEN interacts differently with its binding 

partners depending on the redox conditions in which it is challenged. While much work is still needed 

to fully characterize the molecular mechanism of PTEN redox regulation, the research presented in 

this thesis is an important and original contribution toward a more complete understanding of the 

signaling role of reactive molecules in the processes of ageing and disease. 
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8.1 Plasmid Constructs 

8.1.1 PGEX4-T1–PTEN-GST plasmid DNA sequence 

The GST tag encoding sequence is in italic, the PTEN encoding sequence is in bold. The construct 

includes a thrombin cleavage linker (sequence underlined). 

 

AATGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAAC

AATTTCACACAGGAAACAGTATTCATGTCCCCTATACTAGGTTATTGGAAAATTAAGGGCCTT

GTGCAACCCACTCGACTTCTTTTGGAATATCTTGAAGAAAAATATGAAGAGCATTTGTATGAGCG

CGATGAAGGTGATAAATGGCGAAACAAAAAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCTT

ATTATATTGATGGTGATGTTAAATTAACACAGTCTATGGCCATCATACGTTATATAGCTGACAAGC

ACAACATGTTGGGTGGTTGTCCAAAAGAGCGTGCAGAGATTTCAATGCTTGAAGGAGCGGTTTT

GGATATTAGATACGGTGTTTCGAGAATTGCATATAGTAAAGACTTTGAAACTCTCAAAGTTGATTT

TCTTAGCAAGCTACCTGAAATGCTGAAAATGTTCGAAGATCGTTTATGTCATAAAACATATTTAAA

TGGTGATCATGTAACCCATCCTGACTTCATGTTGTATGACGCTCTTGATGTTGTTTTATACATGGA

CCCAATGTGCCTGGATGCGTTCCCAAAATTAGTTTGTTTTAAAAAACGTATTGAAGCTATCCCAC

AAATTGATAAGTACTTGAAATCCAGCAAGTATATAGCATGGCCTTTGCAGGGCTGGCAAGCCAC

GTTTGGTGGTGGCGACCATCCTCCAAAATCGGATCTGGTTCCGCGTGGATCCCCGGAATTCA

CAGCCATCATCAAAGAGATCGTTAGCAGAAACAAAAGGAGATATCAAGAGGATGGA

TTCGACTTAGACTTGACCTATATTTATCCAAACATTATTGCTATGGGATTTCCTGCAG

AAAGACTTGAAGGCGTATACAGGAACAATATTGATGATGTAGTAAGGTTTTTGGATT

CAAAGCATAAAAACCATTACAAGATATACAATCTTTGTGCTGAAAGACATTATGACA

CCGCCAAATTTAATTGCAGAGTTGCACAATATCCTTTTGAAGACCATAACCCACCAC

AGCTAGAACTTATCAAACCCTTTTGTGAAGATCTTGACCAATGGCTAAGTGAAGATG

ACAATCATGTTGCAGCAATTCACTGTAAAGCTGGAAAGGGACGAACTGGTGTAATG

ATATGTGCATATTTATTACATCGGGGCAAATTTTTAAAGGCACAAGAGGCCCTAGAT

TTCTATGGGGAAGTAAGGACCAGAGACAAAAAGGGAGTAACTATTCCCAGTCAGAG

GCGCTATGTGTATTATTATAGCTACCTGTTAAAGAATCATCTGGATTATAGACCAGT
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GGCACTGTTGTTTCACAAGATGATGTTTGAAACTATTCCAATGTTCAGTGGCGGAAC

TTGCAATCCTCAGTTTGTGGTCTGCCAGCTAAAGGTGAAGATATATTCCTCCAATTC

AGGACCCACACGACGGGAAGACAAGTTCATGTACTTTGAGTTCCCTCAGCCGTTACC

TGTGTGTGGTGATATCAAAGTAGAGTTCTTCCACAAACAGAACAAGATGCTAAAAAA

GGACAAAATGTTTCACTTTTGGGTAAATACATTCTTCATACCAGGACCAGAGGAAAC

CTCAGAAAAAGTAGAAAATGGAAGTCTATGTGATCAAGAAATCGATAGCATTTGCAG

TATAGAGCGTGCAGATAATGACAAGGAATATCTAGTACTTACTTTAACAAAAAATGA

TCTTGACAAAGCAAATAAAGACAAAGCCAACCGATACTTTTCTCCAAATTTTAAGGT

GAAGCTGTACTTCACAAAAACAGTAGAGGAGCCGTCAAATCCAGAGGCTAGCAGTT

CAACTTCTGTAACACCAGATGTTAGTGACAATGAACCTGATCATTATAGATATTCTG

ACACCACTGACTCTGATCCAGAGAATGAACCTTTTGATGAAGATCAGCATACACAAA

TTACAAAAGTCTGACTCGAGCGGCCGCATCGTGACTGACTGACGATCTGCCTCGCGCGTT

TCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTC

TGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGG

TGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATAATTCTTGAAGA

CGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTT

AGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTA

AATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATA

TTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCG

GCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAA

GATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTT

GAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTG

GCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATT

CTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGA

CAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTAC

TTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATC

ATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAG

CGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGA

ACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGC
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AGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCC

GGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGT

ATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGAT

CGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATA

TATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTT

TTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACC

CCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTT

GCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAA

CTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGT

GTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCT

GCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGA

CTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCA

CACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTA

TGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAG

GGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATA

GTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGG

GCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTG

GCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCG

CCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTG

AGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATT

TCACACCGCATAAATTCCGACACCATCGAATGGTGCAAAACCTTTCGCGGTATGGCATGA

TAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGA

TGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAG

CCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTACA

TTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCA

CCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCG

ATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGT

AAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCG

CTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTTC
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TTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTACGCG

ACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCC

ATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAAT

CAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACA

AACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCA

GATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATAT

CTCGGTAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCAC

CATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTC

TCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAA

CCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGC

AGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGT

GAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTG

TGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGGA

TTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAAT

CGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGAT

CGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCA

CCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTC

GTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAACGTAACCTAT

CCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCA

CATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGATGGCG

TTGGAATTACGTTATCGACTGCACGGTGCACCAATGCTTCTGGCGTCAGGCAGCCATCGG

AAGCTGTGGTATGGCTGTGCAGGTCGTAAATCACTGCATAATTCGTGTCGCTCAAGGCGC

ACTCCCGTTCTGGATAATGTTTTTTGCGCCGACATCATAACGGTTCTGGCAAATATTCTGA 
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8.1.2 PEGFP-C1-PTEN-EGFP Plasmid DNA sequence 

The EGGP tag encoding sequence is in italic, the PTEN encoding sequence is in bold. 

 

TTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTG

ACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGT

GAACCGTCAGATCCGCTAGCGCTACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGT

TCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGC

GTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCAC

CACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGT

GCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAG

GCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGG

TGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAG

GACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATG

GCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGC

AGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCT

GCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCG

ATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGT

ACAAGTCCGGACTCAGATCTCGAGCTCAAGCTTCGAATTCTGCAGTCGACGGTACCGCGG

GCCCGGGATCCATGACAGCCATCATCAAAGAGATCGTTAGCAGAAACAAAAGGAGAT

ATCAAGAGGATGGATTCGACTTAGACTTGACCTATATTTATCCAAACATTATTGCTA

TGGGATTTCCTGCAGAAAGACTTGAAGGCGTATACAGGAACAATATTGATGATGTAG

TAAGGTTTTTGGATTCAAAGCATAAAAACCATTACAAGATATACAATCTTTGTGCTG

AAAGACATTATGACACCGCCAAATTTAATTGCAGAGTTGCACAATATCCTTTTGAAG

ACCATAACCCACCACAGCTAGAACTTATCAAACCCTTTTGTGAAGATCTTGACCAAT

GGCTAAGTGAAGATGACAATCATGTTGCAGCAATTCACTGTAAAGCTGGAAAGGGA

CGAACTGGTGTAATGATATGTGCATATTTATTACATCGGGGCAAATTTTTAAAGGCA

CAAGAGGCCCTAGATTTCTATGGGGAAGTAAGGACCAGAGACAAAAAGGGAGTAAC

TATTCCCAGTCAGAGGCGCTATGTGTATTATTATAGCTACCTGTTAAAGAATCATCT

GGATTATAGACCAGTGGCACTGTTGTTTCACAAGATGATGTTTGAAACTATTCCAAT
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GTTCAGTGGCGGAACTTGCAATCCTCAGTTTGTGGTCTGCCAGCTAAAGGTGAAGAT

ATATTCCTCCAATTCAGGACCCACACGACGGGAAGACAAGTTCATGTACTTTGAGTT

CCCTCAGCCGTTACCTGTGTGTGGTGATATCAAAGTAGAGTTCTTCCACAAACAGAA

CAAGATGCTAAAAAAGGACAAAATGTTTCACTTTTGGGTAAATACATTCTTCATACC

AGGACCAGAGGAAACCTCAGAAAAAGTAGAAAATGGAAGTCTATGTGATCAAGAAA

TCGATAGCATTTGCAGTATAGAGCGTGCAGATAATGACAAGGAATATCTAGTACTTA

CTTTAACAAAAAATGATCTTGACAAAGCAAATAAAGACAAAGCCAACCGATACTTTT

CTCCAAATTTTAAGGTGAAGCTGTACTTCACAAAAACAGTAGAGGAGCCGTCAAATC

CAGAGGCTAGCAGTTCAACTTCTGTAACACCAGATGTTAGTGACAATGAACCTGATC

ATTATAGATATTCTGACACCACTGACTCTGATCCAGAGAATGAACCTTTTGATGAAG

ATCAGCATACACAAATTACAAAAGTCTGAGAGGGATCCACCGGATCTAGATAACTGAT

CATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTC

CCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTT

ATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCAC

TGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAACGCGTAAATTGTAAGCG

TTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAG

GCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGT

TGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCG

AAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTT

GGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAG

CTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGC

GGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCG

CGCTTAATGCGCCGCTACAGGGCGCGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAA

CCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACC

CTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTCCTGAGGCGGAAAGAACCAGCT

GTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTAT

GCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGC

AGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAAC

TCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTA
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ATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGT

GAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAGATCGATCAAGAGACAGGATGAGG

ATCGTTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGA

GAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTT

CCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCT

GAATGAACTGCAAGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTT

GCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAA

GTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATG

GCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAA

GCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGA

TGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGG

CGAGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATA

TCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGG

ACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAAT

GGGCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTT

CTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGAAATGACCGACCAA

GCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTG

GGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATG

CTGGAGTTCTTCGCCCACCCTAGGGGGAGGCTAACTGAAACACGGAAGGAGACAATACC

GGAAGGAACCCGCGCTATGACGGCAATAAAAAGACAGAATAAAACGCACGGTGTTGGGT

CGTTTGTTCATAAACGCGGGGTTCGGTCCCAGGGCTGGCACTCTGTCGATACCCCACCGA

GACCCCATTGGGGCCAATACGCCCGCGTTTCTTCCTTTTCCCCACCCCACCCCCCAAGTTC

GGGTGAAGGCCCAGGGCTCGCAGCCAACGTCGGGGCGGCAGGCCCTGCCATAGCCTCAG

GTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGT

GAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGA

GCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTA

ATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAA

GAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACT

GTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACAT
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ACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTAC

CGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGG

GTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGC

GTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTA

AGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGT

ATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTC

GTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGC

CTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACC

GTATTACCGCCATGCATTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCC

CATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCA

ACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGA

CTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATC

AAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCT

GGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATT

AGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCG

GTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAG 
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8.1.3 Plasmid maps 

Plasmid maps were generated using Plasmapper (http://wishart.biology.ualberta.ca/PlasMapper) 

using the DNA sequences reported in sect. 8.1.1 and 8.1.2. 

 

 

Figure 8.1 Map of the PGEX-4T1 expression plasmid.   

The gene encoding the GST tagged protein is ligated to the GST tag at ORF 1. The lac operon is 

sensitive to IPTG-induction. 
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The PEGFP-C1-PTEN expression plasmid was a gift by Dr. Rudiger Woscholski’s group, Imperial 

College London. The plasmid map shown in fig.8. 

 

  

 

Figure 8.2 Map of the PEGFP-C1 expression plasmid.  

PTEN was cloned after PCR amplification of its DNA and insertion into the BamHI site of the vector 

in the multiple cloning side of the plasmid (not visible in the picture). 
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8.2 PTEN fusion proteins sequence 

PTEN-GST and PTEN-EGFP amino acid sequence were obtained by translating with the software 

tool Expasy translate (http://web.expasy.org/translate/) the nucleotide sequences provided by Rudiger 

Woscholski’s Group at Imperial College London, which supplied the plasmid DNAs.  

 

8.2.1 PTEN-GST 

The PTEN sequence is in bold, the GST tag is in italic. The thrombin cleavage site is underlined. 

 
MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGDVKLT

QSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKVDFLSKLPEMLKMF

EDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAIPQIDKYLKSSKYI

AWPLQGWQATFGGGDHPPKSDLVPRGSPEFTAIIKEIVSRNKRRYQEDGFDLDLTYIYPNIIA

MGFPAERLEGVYRNNIDDVVRFLDSKHKNHYKIYNLCAERHYDTAKFNCRVAQYPFED

HNPPQLELIKPFCEDLDQWLSEDDNHVAAIHCKAGKGRTGVMICAYLLHRGKFLKAQE

ALDFYGEVRTRDKKGVTIPSQRRYVYYYSYLLKNHLDYRPVALLFHKMMFETIPMFSG

GTCNPQFVVCQLKVKIYSSNSGPTRREDKFMYFEFPQPLPVCGDIKVEFFHKQNKMLKK

DKMFHFWVNTFFIPGPEETSEKVENGSLCDQEIDSICSIERADNDKEYLVLTLTKNDLDK

ANKDKANRYFSPNFKVKLYFTKTVEEPSNPEASSSTSVTPDVSDNEPDHYRYSDTTDSDP

ENEPFDEDQHTQITKV 

 

 

8.2.2 PTEN-EGFP 

The PTEN sequence is in bold, the EGFP tag is in italic. 

 

MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLT

YGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDF

KEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLP

DNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKSGLRSRAQASNSAVDGTAGPGS

MTAIIKEIVSRNKRRYQEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKH

KNHYKIYNLCAERHYDTAKFNCRVAQYPFEDHNPPQLELIKPFCEDLDQWLSEDDNHV

AAIHCKAGKGRTGVMICAYLLHRGKFLKAQEALDFYGEVRTRDKKGVTIPSQRRYVYY

YSYLLKNHLDYRPVALLFHKMMFETIPMFSGGTCNPQFVVCQLKVKIYSSNSGPTRRED

KFMYFEFPQPLPVCGDIKVEFFHKQNKMLKKDKMFHFWVNTFFIPGPEETSEKVENGSL

CDQEIDSICSIERADNDKEYLVLTLTKNDLDKANKDKANRYFSPNFKVKLYFTKTVEEPS

NPEASSSTSVTPDVSDNEPDHYRYSDTTDSDPENEPFDEDQHTQITKV 
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8.3 PTEN surface accessibility 

Surface accessibility was calculated using NetsurfP (Ver. 1.1), submitting the FASTA sequence of 

PTEN obtained from Uniprot (P60484). 

 

Table 8.1 Surface accessibility of PTEN residues 

AA
1
 AA position

2
 RSA

3
 ASA

4
 Z-Score Class assignment

5
 

M 1 0.625 125.143 ‐2.026 Exposed 

T 2 0.425 58.892 ‐0.289 Exposed 

A 3 0.495 54.582 ‐0.833 Exposed 

I 4 0.307 56.832 0.949 Exposed 

I 5 0.162 30.062 ‐0.631 Buried 

K 6 0.274 56.465 0.904 Buried 

E 7 0.421 73.619 0.447 Exposed 

I 8 0.103 19.073 0.663 Buried 

V 9 0.098 15.124 ‐0.324 Buried 

S 10 0.416 48.708 ‐0.458 Exposed 

R 11 0.494 113.24 0.467 Exposed 

N 12 0.345 50.523 0.018 Exposed 

K 13 0.441 90.631 ‐0.405 Exposed 

R 14 0.416 95.15 ‐0.242 Exposed 

R 15 0.281 64.257 0.876 Exposed 

Y 16 0.119 25.473 0.362 Buried 

Q 17 0.306 54.634 0.19 Exposed 

E 18 0.449 78.405 ‐0.320 Exposed 

D 19 0.435 62.727 0.059 Exposed 

G 20 0.25 19.644 ‐1.291 Buried 

F 21 0.363 72.894 ‐0.588 Exposed 

D 22 0.382 55.118 ‐1.393 Exposed 

L 23 0.066 12.121 0.185 Buried 

D 24 0.097 13.963 ‐0.955 Buried 

L 25 0.029 5.273 0.814 Buried 

T 26 0.032 4.411 ‐0.864 Buried 

Y 27 0.051 10.835 1.207 Buried 

I 28 0.025 4.588 0.588 Buried 

Y 29 0.046 9.787 1.126 Buried 

P 30 0.343 48.615 0.128 Exposed 

N 31 0.253 36.995 ‐0.061 Exposed 

I 32 0.023 4.181 0.695 Buried 

I 33 0.032 5.865 ‐0.344 Buried 

A 34 0.021 2.303 ‐0.491 Buried 

M 35 0.018 3.582 0.817 Buried 

G 36 0.033 2.581 ‐1.095 Buried 
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F 37 0.086 17.3 ‐0.711 Buried 

P 38 0.063 8.883 ‐0.979 Buried 

A 39 0.167 18.392 ‐1.790 Buried 

E 40 0.226 39.482 ‐1.333 Exposed 

R 41 0.208 47.609 ‐0.664 Buried 

L 42 0.115 21.111 ‐0.256 Buried 

E 43 0.211 36.897 ‐0.668 Buried 

G 44 0.435 34.258 ‐0.976 Exposed 

V 45 0.194 29.818 ‐1.347 Buried 

Y 46 0.119 25.516 0.047 Buried 

R 47 0.338 77.448 ‐0.346 Exposed 

N 48 0.286 41.797 ‐0.618 Exposed 

N 49 0.302 44.169 ‐0.000 Exposed 

I 50 0.041 7.529 ‐0.352 Buried 

D 51 0.551 79.385 1.023 Exposed 

D 52 0.376 54.182 0.847 Exposed 

V 53 0.022 3.366 0.954 Buried 

V 54 0.093 14.34 0.842 Buried 

R 55 0.495 113.263 1.819 Exposed 

F 56 0.125 25.027 0.912 Buried 

L 57 0.021 3.882 0.984 Buried 

D 58 0.504 72.698 0.999 Exposed 

S 59 0.536 62.866 ‐0.793 Exposed 

K 60 0.423 87.052 ‐0.181 Exposed 

H 61 0.25 45.493 ‐0.154 Buried 

K 62 0.548 112.826 ‐0.826 Exposed 

N 63 0.642 94.047 ‐1.668 Exposed 

H 64 0.278 50.641 ‐0.665 Buried 

Y 65 0.151 32.226 ‐0.694 Buried 

K 66 0.193 39.762 0.008 Buried 

I 67 0.094 17.427 ‐1.580 Buried 

Y 68 0.154 32.995 ‐1.207 Buried 

N 69 0.29 42.412 ‐1.428 Exposed 

L 70 0.202 37.023 ‐0.235 Buried 

C 71 0.539 75.69 ‐1.460 Exposed 

A 72 0.508 55.949 ‐1.715 Exposed 

E 73 0.389 67.941 ‐0.816 Exposed 

R 74 0.375 85.967 ‐0.642 Exposed 

H 75 0.504 91.605 ‐1.172 Exposed 

Y 76 0.15 32.034 0.429 Buried 

D 77 0.387 55.839 0.12 Exposed 

T 78 0.384 53.247 ‐0.892 Exposed 

A 79 0.596 65.668 ‐1.023 Exposed 

K 80 0.434 89.294 1.213 Exposed 

F 81 0.121 24.285 ‐0.499 Buried 

N 82 0.519 75.952 ‐0.247 Exposed 

C 83 0.4 56.104 ‐1.125 Exposed 
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R 84 0.406 93.02 0.854 Exposed 

V 85 0.129 19.827 ‐0.134 Buried 

A 86 0.114 12.574 1.133 Buried 

Q 87 0.359 64.1 ‐0.593 Exposed 

Y 88 0.045 9.552 0.947 Buried 

P 89 0.112 15.921 ‐1.405 Buried 

F 90 0.064 12.805 1.065 Buried 

E 91 0.411 71.802 0.339 Exposed 

D 92 0.263 37.913 ‐2.105 Buried 

H 93 0.269 49.004 ‐1.246 Buried 

N 94 0.323 47.273 ‐1.140 Exposed 

P 95 0.064 9.053 ‐0.810 Buried 

P 96 0.038 5.449 ‐0.233 Buried 

Q 97 0.231 41.185 0.261 Exposed 

L 98 0.11 20.178 ‐0.121 Buried 

E 99 0.507 88.503 0.077 Exposed 

L 100 0.161 29.479 0.454 Buried 

I 101 0.009 1.721 1.847 Buried 

K 102 0.222 45.707 1.277 Buried 

P 103 0.442 62.791 1.768 Exposed 

F 104 0.028 5.579 0.532 Buried 

C 105 0.019 2.696 1.209 Buried 

E 106 0.433 75.663 1.69 Exposed 

D 107 0.214 30.881 1.398 Buried 

L 108 0.016 2.948 1.449 Buried 

D 109 0.244 35.16 0.875 Buried 

Q 110 0.437 78.102 1.554 Exposed 

W 111 0.083 19.865 0.913 Buried 

L 112 0.051 9.32 0.353 Buried 

S 113 0.569 66.71 0.818 Exposed 

E 114 0.635 110.917 0.475 Exposed 

D 115 0.443 63.836 ‐0.226 Exposed 

D 116 0.598 86.172 ‐0.312 Exposed 

N 117 0.609 89.143 0.671 Exposed 

H 118 0.137 24.92 0.395 Buried 

V 119 0.039 6.025 0.374 Buried 

A 120 0.018 2.017 1.131 Buried 

A 121 0.018 1.951 1.198 Buried 

I 122 0.013 2.497 1.538 Buried 

H 123 0.034 6.239 0.722 Buried 

C 124 0.02 2.836 0.917 Buried 

K 125 0.274 56.28 0.85 Exposed 

A 126 0.34 37.446 ‐1.113 Exposed 

G 127 0.353 27.757 ‐1.242 Exposed 

K 128 0.165 34.002 0.335 Buried 

G 129 0.197 15.496 ‐0.515 Buried 

R 130 0.062 14.267 0.326 Buried 
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T 131 0.035 4.799 ‐0.436 Buried 

G 132 0.028 2.235 0.05 Buried 

V 133 0.028 4.365 0.008 Buried 

M 134 0.022 4.422 1.041 Buried 

I 135 0.021 3.885 0.488 Buried 

C 136 0.016 2.246 1.028 Buried 

A 137 0.021 2.336 0.532 Buried 

Y 138 0.048 10.322 0.19 Buried 

L 139 0.019 3.479 1.157 Buried 

L 140 0.042 7.69 0.329 Buried 

H 141 0.164 29.777 ‐0.503 Buried 

R 142 0.095 21.847 ‐0.797 Buried 

G 143 0.375 29.489 ‐1.335 Exposed 

K 144 0.413 84.975 ‐0.639 Exposed 

F 145 0.203 40.722 ‐1.043 Buried 

L 146 0.387 70.933 ‐0.941 Exposed 

K 147 0.476 97.995 0.66 Exposed 

A 148 0.122 13.411 ‐0.268 Buried 

Q 149 0.576 102.909 0.386 Exposed 

E 150 0.332 58.035 1.148 Exposed 

A 151 0.016 1.719 0.972 Buried 

L 152 0.076 13.989 0.677 Buried 

D 153 0.44 63.418 1.415 Exposed 

F 154 0.146 29.382 1.392 Buried 

Y 155 0.04 8.505 0.173 Buried 

G 156 0.176 13.859 ‐0.117 Buried 

E 157 0.402 70.194 0.385 Exposed 

V 158 0.178 27.374 0.443 Buried 

R 159 0.125 28.648 ‐0.485 Buried 

T 160 0.442 61.25 ‐0.552 Exposed 

R 161 0.411 94.188 ‐0.413 Exposed 

D 162 0.557 80.264 ‐1.413 Exposed 

K 163 0.567 116.694 ‐2.772 Exposed 

K 164 0.498 102.418 ‐1.227 Exposed 

G 165 0.15 11.797 ‐2.231 Buried 

V 166 0.069 10.682 ‐1.895 Buried 

T 167 0.176 24.411 ‐1.551 Buried 

I 168 0.217 40.163 ‐0.485 Buried 

P 169 0.253 35.943 ‐0.971 Buried 

S 170 0.182 21.33 ‐1.223 Buried 

Q 171 0.039 6.983 ‐0.611 Buried 

R 172 0.185 42.479 0.308 Buried 

R 173 0.346 79.257 1.077 Exposed 

Y 174 0.033 6.988 0.194 Buried 

V 175 0.029 4.473 0.323 Buried 

Y 176 0.364 77.744 0.786 Exposed 

Y 177 0.225 48.104 0.736 Buried 
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Y 178 0.038 8.099 0.555 Buried 

S 179 0.173 20.276 0.343 Buried 

Y 180 0.439 93.836 0.652 Exposed 

L 181 0.135 24.755 0.378 Buried 

L 182 0.078 14.19 ‐0.591 Buried 

K 183 0.486 100.032 0.306 Exposed 

N 184 0.631 92.364 ‐1.050 Exposed 

H 185 0.59 107.376 ‐1.731 Exposed 

L 186 0.241 44.127 ‐0.923 Buried 

D 187 0.579 83.434 ‐0.639 Exposed 

Y 188 0.223 47.676 ‐1.054 Buried 

R 189 0.347 79.555 ‐0.619 Exposed 

P 190 0.527 74.71 ‐1.057 Exposed 

V 191 0.329 50.613 0.21 Exposed 

A 192 0.196 21.654 0.052 Buried 

L 193 0.055 10.034 0.372 Buried 

L 194 0.183 33.526 0.908 Buried 

F 195 0.037 7.386 ‐0.257 Buried 

H 196 0.127 23.101 0.369 Buried 

K 197 0.075 15.386 ‐0.164 Buried 

M 198 0.02 3.922 0.933 Buried 

M 199 0.111 22.251 0.584 Buried 

F 200 0.019 3.833 0.653 Buried 

E 201 0.247 43.168 0.311 Buried 

T 202 0.197 27.352 ‐1.939 Buried 

I 203 0.061 11.266 0.424 Buried 

P 204 0.167 23.726 ‐2.065 Buried 

M 205 0.339 67.874 ‐1.508 Exposed 

F 206 0.138 27.777 ‐1.078 Buried 

S 207 0.509 59.69 ‐1.128 Exposed 

G 208 0.607 47.795 ‐2.216 Exposed 

G 209 0.504 39.649 ‐3.440 Exposed 

T 210 0.383 53.15 ‐2.272 Exposed 

C 211 0.109 15.261 ‐2.207 Buried 

N 212 0.271 39.689 1.025 Exposed 

P 213 0.054 7.62 ‐1.200 Buried 

Q 214 0.133 23.772 0.118 Buried 

F 215 0.03 6.101 ‐0.250 Buried 

V 216 0.166 25.453 0.961 Buried 

V 217 0.017 2.644 0.573 Buried 

C 218 0.15 21.102 ‐0.463 Buried 

Q 219 0.297 53.08 ‐0.767 Buried 

L 220 0.425 77.781 ‐1.070 Exposed 

K 221 0.599 123.153 ‐0.861 Exposed 

V 222 0.514 79.048 ‐0.163 Exposed 

K 223 0.39 80.223 0.441 Exposed 

I 224 0.183 33.947 ‐0.761 Buried 
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Y 225 0.137 29.234 0.133 Buried 

S 226 0.356 41.7 ‐1.263 Exposed 

S 227 0.19 22.256 ‐2.194 Buried 

N 228 0.433 63.377 ‐1.438 Exposed 

S 229 0.528 61.882 ‐0.241 Exposed 

G 230 0.445 34.998 ‐1.077 Exposed 

P 231 0.455 64.593 ‐1.553 Exposed 

T 232 0.378 52.387 ‐0.593 Exposed 

R 233 0.484 110.928 ‐0.206 Exposed 

R 234 0.47 107.584 ‐0.403 Exposed 

E 235 0.62 108.314 ‐1.391 Exposed 

D 236 0.581 83.722 ‐0.316 Exposed 

K 237 0.386 79.318 ‐0.270 Exposed 

F 238 0.308 61.775 ‐0.048 Exposed 

M 239 0.066 13.287 0.097 Buried 

Y 240 0.271 57.977 0.743 Exposed 

F 241 0.026 5.278 0.062 Buried 

E 242 0.391 68.238 0.555 Exposed 

F 243 0.038 7.586 ‐0.489 Buried 

P 244 0.71 100.721 0.376 Exposed 

Q 245 0.521 93.051 ‐0.953 Exposed 

P 246 0.52 73.717 ‐1.316 Exposed 

L 247 0.101 18.475 0.363 Buried 

P 248 0.302 42.911 1.237 Exposed 

V 249 0.034 5.287 ‐0.204 Buried 

C 250 0.235 33.022 0.221 Buried 

G 251 0.117 9.192 ‐1.585 Buried 

D 252 0.128 18.416 ‐0.761 Buried 

I 253 0.025 4.68 0.762 Buried 

K 254 0.125 25.815 1.257 Buried 

V 255 0.017 2.628 1.63 Buried 

E 256 0.146 25.471 1.811 Buried 

F 257 0.015 3.111 1.464 Buried 

F 258 0.114 22.9 0.728 Buried 

H 259 0.073 13.351 ‐0.322 Buried 

K 260 0.235 48.36 0.254 Buried 

Q 261 0.653 116.662 ‐0.716 Exposed 

N 262 0.403 58.999 ‐0.936 Exposed 

K 263 0.639 131.381 ‐2.104 Exposed 

M 264 0.476 95.228 ‐0.889 Exposed 

L 265 0.486 89.06 ‐1.037 Exposed 

K 266 0.362 74.443 ‐0.646 Exposed 

K 267 0.473 97.337 ‐0.978 Exposed 

D 268 0.283 40.737 0.06 Exposed 

K 269 0.057 11.663 0.641 Buried 

M 270 0.03 6.003 0.395 Buried 

F 271 0.015 2.93 1.063 Buried 
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H 272 0.044 7.913 0.388 Buried 

F 273 0.011 2.248 1.61 Buried 

W 274 0.022 5.219 1.212 Buried 

V 275 0.017 2.567 1.265 Buried 

N 276 0.027 3.938 0.733 Buried 

T 277 0.021 2.927 0.807 Buried 

F 278 0.039 7.807 ‐0.861 Buried 

F 279 0.033 6.623 ‐0.187 Buried 

I 280 0.029 5.273 0.243 Buried 

P 281 0.202 28.65 0.358 Buried 

G 282 0.252 19.801 ‐0.668 Buried 

P 283 0.481 68.254 ‐1.226 Exposed 

E 284 0.381 66.526 ‐0.625 Exposed 

E 285 0.283 49.475 ‐1.564 Buried 

T 286 0.271 37.574 ‐1.179 Buried 

S 287 0.246 28.784 ‐2.017 Buried 

E 288 0.422 73.758 ‐0.941 Exposed 

K 289 0.361 74.299 ‐0.743 Exposed 

V 290 0.273 42.006 ‐1.324 Buried 

E 291 0.446 77.934 ‐1.337 Exposed 

N 292 0.405 59.233 ‐1.190 Exposed 

G 293 0.381 29.993 ‐1.583 Exposed 

S 294 0.418 48.99 ‐1.657 Exposed 

L 295 0.291 53.282 ‐1.967 Buried 

C 296 0.376 52.79 ‐0.861 Exposed 

D 297 0.45 64.787 ‐1.138 Exposed 

Q 298 0.434 77.602 ‐1.540 Exposed 

E 299 0.342 59.782 ‐1.389 Exposed 

I 300 0.379 70.041 ‐1.626 Exposed 

D 301 0.504 72.612 ‐1.939 Exposed 

S 302 0.47 55.072 ‐1.830 Exposed 

I 303 0.306 56.573 ‐1.850 Buried 

C 304 0.266 37.389 ‐2.119 Buried 

S 305 0.39 45.767 ‐1.386 Exposed 

I 306 0.4 74.056 ‐1.400 Exposed 

E 307 0.37 64.569 ‐1.629 Exposed 

R 308 0.463 106.142 ‐1.041 Exposed 

A 309 0.341 37.534 ‐1.415 Exposed 

D 310 0.424 61.026 ‐1.278 Exposed 

N 311 0.44 64.401 ‐2.283 Exposed 

D 312 0.369 53.216 ‐2.157 Exposed 

K 313 0.277 56.897 ‐1.363 Buried 

E 314 0.316 55.258 ‐1.470 Exposed 

Y 315 0.177 37.932 0.048 Buried 

L 316 0.092 16.809 ‐0.174 Buried 

V 317 0.097 14.863 0.417 Buried 

L 318 0.041 7.58 ‐0.148 Buried 
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T 319 0.273 37.851 0.733 Exposed 

L 320 0.031 5.694 0.612 Buried 

T 321 0.403 55.868 0.548 Exposed 

K 322 0.227 46.714 0.052 Buried 

N 323 0.517 75.689 ‐0.953 Exposed 

D 324 0.391 56.386 ‐0.797 Exposed 

L 325 0.098 17.999 ‐0.515 Buried 

D 326 0.193 27.811 ‐0.911 Buried 

K 327 0.62 127.616 ‐0.058 Exposed 

A 328 0.316 34.867 ‐1.196 Exposed 

N 329 0.274 40.172 ‐0.312 Buried 

K 330 0.555 114.122 ‐0.170 Exposed 

D 331 0.508 73.26 ‐0.896 Exposed 

K 332 0.59 121.363 0.184 Exposed 

A 333 0.546 60.202 0.237 Exposed 

N 334 0.309 45.238 0.043 Exposed 

R 335 0.682 156.178 0.613 Exposed 

Y 336 0.332 71.034 0.663 Exposed 

F 337 0.061 12.323 0.919 Buried 

S 338 0.319 37.363 0.887 Exposed 

P 339 0.758 107.503 ‐0.106 Exposed 

N 340 0.63 92.217 0.415 Exposed 

F 341 0.043 8.59 ‐0.172 Buried 

K 342 0.427 87.875 1.712 Exposed 

V 343 0.052 7.962 0.22 Buried 

K 344 0.192 39.556 0.917 Buried 

L 345 0.066 12.14 0.321 Buried 

Y 346 0.16 34.256 0.832 Buried 

F 347 0.043 8.65 ‐0.603 Buried 

T 348 0.333 46.187 0.269 Exposed 

K 349 0.555 114.225 0.06 Exposed 

T 350 0.209 29.058 0.074 Buried 

V 351 0.433 66.475 ‐0.384 Exposed 

E 352 0.563 98.286 ‐0.035 Exposed 

E 353 0.622 108.646 0.17 Exposed 

P 354 0.262 37.22 ‐0.597 Exposed 

S 355 0.67 78.524 0.089 Exposed 

N 356 0.578 84.605 ‐0.571 Exposed 

P 357 0.491 69.687 ‐1.625 Exposed 

E 358 0.708 123.757 ‐0.558 Exposed 

A 359 0.272 29.93 ‐0.330 Buried 

S 360 0.536 62.772 ‐0.547 Exposed 

S 361 0.62 72.711 ‐1.781 Exposed 

S 362 0.462 54.1 ‐0.984 Exposed 

T 363 0.543 75.342 ‐0.723 Exposed 

S 364 0.615 72.031 ‐0.832 Exposed 

V 365 0.276 42.452 ‐0.380 Exposed 
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T 366 0.484 67.089 ‐0.052 Exposed 

P 367 0.405 57.498 ‐1.305 Exposed 

D 368 0.566 81.546 ‐1.095 Exposed 

V 369 0.324 49.799 ‐0.405 Exposed 

S 370 0.37 43.329 ‐0.989 Exposed 

D 371 0.625 90.077 ‐1.035 Exposed 

N 372 0.623 91.163 ‐1.923 Exposed 

E 373 0.534 93.22 ‐0.386 Exposed 

P 374 0.287 40.754 ‐1.197 Buried 

D 375 0.54 77.785 ‐1.074 Exposed 

H 376 0.345 62.701 ‐0.945 Exposed 

Y 377 0.325 69.41 ‐1.253 Exposed 

R 378 0.612 140.217 ‐0.378 Exposed 

Y 379 0.419 89.626 ‐1.669 Exposed 

S 380 0.434 50.877 ‐1.696 Exposed 

D 381 0.652 93.939 ‐1.746 Exposed 

T 382 0.386 53.483 ‐0.547 Exposed 

T 383 0.484 67.145 ‐2.135 Exposed 

D 384 0.651 93.751 ‐1.375 Exposed 

S 385 0.577 67.624 ‐1.643 Exposed 

D 386 0.411 59.153 ‐0.394 Exposed 

P 387 0.446 63.231 ‐0.994 Exposed 

E 388 0.595 103.859 ‐0.758 Exposed 

N 389 0.644 94.34 ‐0.928 Exposed 

E 390 0.422 73.776 ‐0.732 Exposed 

P 391 0.604 85.651 ‐1.141 Exposed 

F 392 0.368 73.898 ‐1.544 Exposed 

D 393 0.403 58.043 ‐0.967 Exposed 

E 394 0.475 82.948 ‐2.052 Exposed 

D 395 0.472 68.087 ‐1.271 Exposed 

Q 396 0.289 51.633 ‐0.103 Buried 

H 397 0.241 43.82 0.088 Buried 

T 398 0.166 23.094 ‐0.150 Buried 

Q 399 0.452 80.799 0.882 Exposed 

I 400 0.129 23.958 ‐0.236 Buried 

T 401 0.479 66.465 0.851 Exposed 

K 402 0.562 115.645 0.516 Exposed 

V 403 0.68 104.455 ‐0.634 Exposed 
1 
AA=Amino acid 

2
Amino acid position 

3
RSA= Relative Surface Accessibility 

4
ASA= Absolute Solvent Accessibility 

5
Class assignment was predicted using a thresohold 25% surface exposure, based on the ASAmax of a 

given amino acid 
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8.4 PTEN known interactors summary 

The table below was generated through database search performed with BioGRID (Biological 

General Repository for Interaction Datasets): http://thebiogrid.org/ 

 

Table 8.2 Known PTEN interactors determined with both high throughput and low throughput 

experimental systems 

Interactor  Role  Organism Experimental Evidence Code  Dataset  Throughput  

AKT1  HIT H. sapiens Affinity Capture-Western  Mistafa O (2010) Low Throughput 

AMHR2  HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

ANAPC4  HIT H. sapiens Affinity Capture-MS  Song MS (2011) Low Throughput 

ANAPC4  HIT H. sapiens Affinity Capture-Western  Song MS (2011) Low Throughput 

ANAPC5  HIT H. sapiens Affinity Capture-MS  Song MS (2011) Low Throughput 

ANAPC5  HIT H. sapiens Affinity Capture-Western  Song MS (2011) Low Throughput 

ANAPC7  HIT H. sapiens Affinity Capture-MS  Song MS (2011) Low Throughput 

ANAPC7  HIT H. sapiens Affinity Capture-Western  Song MS (2011) Low Throughput 

ANG  HIT H. sapiens Two-hybrid  Stelzl U (2005) High Throughput 

ARHGAP26 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

AR  HIT H. sapiens Affinity Capture-Western  Lin HK (2004) Low Throughput 

AR  HIT H. sapiens Reconstituted Complex  Lin HK (2004) Low Throughput 

BAP1 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

BMI1 HIT H. sapiens Affinity Capture-Western  Fan C (2009) Low Throughput 

BMI1 BAIT H. sapiens Affinity Capture-Western  Fan C (2009) Low Throughput 

CASP8 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

CASP8 HIT H. sapiens Affinity Capture-Western  Crockett DK (2005) Low Throughput 

CAV1  HIT H. sapiens Affinity Capture-Western  Caselli A (2002) Low Throughput 

CBL BAIT H. sapiens Affinity Capture-Western  Rodriguez S (2013) Low Throughput 

CBL HIT H. sapiens Affinity Capture-Western  Rodriguez S (2013) Low Throughput 

CCNE2  HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

CCNE2  HIT H. sapiens Affinity Capture-Western  Crockett DK (2005) Low Throughput 

CDC27 HIT H. sapiens Affinity Capture-MS  Song MS (2011) Low Throughput 

CDC27 HIT H. sapiens Affinity Capture-Western  Song MS (2011) Low Throughput 

CDC27 BAIT H. sapiens Affinity Capture-Western  Song MS (2011) Low Throughput 

CDC27 HIT H. sapiens Reconstituted Complex  Song MS (2011) Low Throughput 

CDH1  HIT H. sapiens Affinity Capture-Western  Choi BH (2014) Low Throughput 

CENPC HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

CHGB  HIT H. sapiens Two-hybrid  Stelzl U (2005) High Throughput 

COPS6 HIT H. sapiens Two-hybrid  Stelzl U (2005) High Throughput 

CRKL HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

CSNK2A1  HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

CSNK2A1  BAIT H. sapiens Biochemical Activity  Miller SJ (2002) Low Throughput 

CSNK2A1  HIT H. sapiens Reconstituted Complex  Miller SJ (2002) Low Throughput 

http://thebiogrid.org/
javascript:changeSort(%20'table',%20'interaction-body',%20'interactor'%20)
javascript:changeSort(%20'table',%20'interaction-body',%20'role'%20)
javascript:changeSort(%20'table',%20'interaction-body',%20'organism'%20)
javascript:changeSort(%20'table',%20'interaction-body',%20'system'%20)
javascript:changeSort(%20'table',%20'interaction-body',%20'publication'%20)
javascript:changeSort(%20'table',%20'interaction-body',%20'throughput'%20)
http://thebiogrid.org/106710/table/homo-sapiens/akt1.html?sort=official
http://thebiogrid.org/127777/publication/purinergic-receptor-mediated-rapid-depletion-of-nuclear-phosphorylated-akt-depends-on-pleckstrin-homology-domain-leucine-rich-repeat-phosphatase-calcineurin-protein-phosphatase-2a-and-pten-phosphatases.html
http://thebiogrid.org/106766/table/homo-sapiens/amhr2.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/118982/table/homo-sapiens/anapc4.html?sort=official
http://thebiogrid.org/151286/publication/nuclear-pten-regulates-the-apc-cdh1-tumor-suppressive-complex-in-a-phosphatase-independent-manner.html
http://thebiogrid.org/118982/table/homo-sapiens/anapc4.html?sort=official
http://thebiogrid.org/151286/publication/nuclear-pten-regulates-the-apc-cdh1-tumor-suppressive-complex-in-a-phosphatase-independent-manner.html
http://thebiogrid.org/119537/table/homo-sapiens/anapc5.html?sort=official
http://thebiogrid.org/151286/publication/nuclear-pten-regulates-the-apc-cdh1-tumor-suppressive-complex-in-a-phosphatase-independent-manner.html
http://thebiogrid.org/119537/table/homo-sapiens/anapc5.html?sort=official
http://thebiogrid.org/151286/publication/nuclear-pten-regulates-the-apc-cdh1-tumor-suppressive-complex-in-a-phosphatase-independent-manner.html
http://thebiogrid.org/119538/table/homo-sapiens/anapc7.html?sort=official
http://thebiogrid.org/151286/publication/nuclear-pten-regulates-the-apc-cdh1-tumor-suppressive-complex-in-a-phosphatase-independent-manner.html
http://thebiogrid.org/119538/table/homo-sapiens/anapc7.html?sort=official
http://thebiogrid.org/151286/publication/nuclear-pten-regulates-the-apc-cdh1-tumor-suppressive-complex-in-a-phosphatase-independent-manner.html
http://thebiogrid.org/106780/table/homo-sapiens/ang.html?sort=official
http://thebiogrid.org/77183/publication/a-human-protein-protein-interaction-network-a-resource-for-annotating-the-proteome.html
http://thebiogrid.org/116720/table/homo-sapiens/arhgap26.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/106862/table/homo-sapiens/ar.html?sort=official
http://thebiogrid.org/74130/publication/regulation-of-androgen-receptor-signaling-by-pten-phosphatase-and-tensin-homolog-deleted-on-chromosome-10-tumor-suppressor-through-distinct-mechanisms-in-prostate-cancer-cells.html
http://thebiogrid.org/106862/table/homo-sapiens/ar.html?sort=official
http://thebiogrid.org/74130/publication/regulation-of-androgen-receptor-signaling-by-pten-phosphatase-and-tensin-homolog-deleted-on-chromosome-10-tumor-suppressor-through-distinct-mechanisms-in-prostate-cancer-cells.html
http://thebiogrid.org/113911/table/homo-sapiens/bap1.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/107116/table/homo-sapiens/bmi1.html?sort=official
http://thebiogrid.org/143455/publication/pten-inhibits-bmi1-function-independently-of-its-phosphatase-activity.html
http://thebiogrid.org/107116/table/homo-sapiens/bmi1.html?sort=official
http://thebiogrid.org/143455/publication/pten-inhibits-bmi1-function-independently-of-its-phosphatase-activity.html
http://thebiogrid.org/107291/table/homo-sapiens/casp8.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/107291/table/homo-sapiens/casp8.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/107305/table/homo-sapiens/cav1.html?sort=official
http://thebiogrid.org/6642/publication/some-protein-tyrosine-phosphatases-target-in-part-to-lipid-rafts-and-interact-with-caveolin-1.html
http://thebiogrid.org/107315/table/homo-sapiens/cbl.html?sort=official
http://thebiogrid.org/156140/publication/phosphatase-and-tensin-homolog-regulates-stability-and-activity-of-ephb1-receptor.html
http://thebiogrid.org/107315/table/homo-sapiens/cbl.html?sort=official
http://thebiogrid.org/156140/publication/phosphatase-and-tensin-homolog-regulates-stability-and-activity-of-ephb1-receptor.html
http://thebiogrid.org/114582/table/homo-sapiens/ccne2.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/114582/table/homo-sapiens/ccne2.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/107431/table/homo-sapiens/cdc27.html?sort=official
http://thebiogrid.org/151286/publication/nuclear-pten-regulates-the-apc-cdh1-tumor-suppressive-complex-in-a-phosphatase-independent-manner.html
http://thebiogrid.org/107431/table/homo-sapiens/cdc27.html?sort=official
http://thebiogrid.org/151286/publication/nuclear-pten-regulates-the-apc-cdh1-tumor-suppressive-complex-in-a-phosphatase-independent-manner.html
http://thebiogrid.org/107431/table/homo-sapiens/cdc27.html?sort=official
http://thebiogrid.org/151286/publication/nuclear-pten-regulates-the-apc-cdh1-tumor-suppressive-complex-in-a-phosphatase-independent-manner.html
http://thebiogrid.org/107431/table/homo-sapiens/cdc27.html?sort=official
http://thebiogrid.org/151286/publication/nuclear-pten-regulates-the-apc-cdh1-tumor-suppressive-complex-in-a-phosphatase-independent-manner.html
http://thebiogrid.org/107434/table/homo-sapiens/cdh1.html?sort=official
http://thebiogrid.org/164653/publication/cdh1-a-substrate-recruiting-component-of-apcc-ubiquitin-e3-ligase-specifically-interacts-with-pten-and-promotes-its-removal-from-chromatin.html
http://thebiogrid.org/107489/table/homo-sapiens/cenpc.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/107539/table/homo-sapiens/chgb.html?sort=official
http://thebiogrid.org/77183/publication/a-human-protein-protein-interaction-network-a-resource-for-annotating-the-proteome.html
http://thebiogrid.org/116176/table/homo-sapiens/cops6.html?sort=official
http://thebiogrid.org/77183/publication/a-human-protein-protein-interaction-network-a-resource-for-annotating-the-proteome.html
http://thebiogrid.org/107789/table/homo-sapiens/crkl.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/107841/table/homo-sapiens/csnk2a1.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/107841/table/homo-sapiens/csnk2a1.html?sort=official
http://thebiogrid.org/1535/publication/direct-identification-of-pten-phosphorylation-sites.html
http://thebiogrid.org/107841/table/homo-sapiens/csnk2a1.html?sort=official
http://thebiogrid.org/1535/publication/direct-identification-of-pten-phosphorylation-sites.html


Chapter 8. Appendix 

 282   

CSNK2A2  BAIT H. sapiens Biochemical Activity  Miller SJ (2002) Low Throughput 

CSNK2A2  HIT H. sapiens Reconstituted Complex  Miller SJ (2002) Low Throughput 

CTNNB1  HIT H. sapiens Affinity Capture-Western  Li A (2010) Low Throughput 

CTNNB1  BAIT H. sapiens Affinity Capture-Western  Li A (2010) Low Throughput 

DBF4B HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

EEF1A2  HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

EGR1  BAIT H. sapiens Affinity Capture-Western  Lu D (2011) Low Throughput 

ELAVL1  BAIT H. sapiens Affinity Capture-RNA  Abdelmohsen K (2009) High Throughput 

EPHB1 HIT H. sapiens Affinity Capture-Western  Rodriguez S (2013) Low Throughput 

EPHB1 BAIT H. sapiens Affinity Capture-Western  Rodriguez S (2013) Low Throughput 

ESR1 HIT H. sapiens Reconstituted Complex  Lin HK (2004) Low Throughput 

FBN2 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

FBXW7 BAIT H. sapiens Affinity Capture-Western  Yang C (2013) Low Throughput 

FBXW7 HIT H. sapiens Affinity Capture-Western  Yang C (2013) Low Throughput 

FRK HIT H. sapiens Affinity Capture-MS  Yim EK (2009) Low Throughput 

FRK HIT H. sapiens Affinity Capture-Western  Yim EK (2009) Low Throughput 

FRK BAIT H. sapiens Affinity Capture-Western  Yim EK (2009) Low Throughput 

FZR1 BAIT H. sapiens Affinity Capture-Western  Song MS (2011) Low Throughput 

FZR1 BAIT H. sapiens Affinity Capture-Western  Choi BH (2014) Low Throughput 

FZR1 HIT H. sapiens Reconstituted Complex  Song MS (2011) Low Throughput 

G3BP2 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

GFRA2  HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

GPR113 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

HBA1  HIT H. sapiens Two-hybrid  Stelzl U (2005) High Throughput 

HDAC4  BAIT H. sapiens Negative Genetic  Lin YY (2012) High Throughput 

INHBE HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

IRS4 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

IRS4 HIT H. sapiens Affinity Capture-Western  Crockett DK (2005) Low Throughput 

KAT2B  HIT H. sapiens Affinity Capture-Western  Okumura K (2006) Low Throughput 

KAT2B  BAIT H. sapiens Affinity Capture-Western  Okumura K (2006) Low Throughput 

KRT14  HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

LATS1  BAIT H. sapiens Biochemical Activity  Chiyoda T (2012) Low Throughput 

MAGI3  HIT H. sapiens Affinity Capture-Western  Wu Y (2000) Low Throughput 

MAGI3  BAIT H. sapiens Reconstituted Complex  Wu Y (2000) Low Throughput 

MAGI3  BAIT H. sapiens Two-hybrid  Wu Y (2000) Low Throughput 

MAP2K6 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

MED12 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

MVP HIT H. sapiens Affinity Capture-Western  Yu Z (2002) Low Throughput 

MVP BAIT H. sapiens Reconstituted Complex  Yu Z (2002) Low Throughput 

MVP HIT H. sapiens Two-hybrid  Yu Z (2002) Low Throughput 

NCOA3  BAIT H. sapiens Affinity Capture-Western  Yang C (2013) Low Throughput 

NCOA3  HIT H. sapiens Affinity Capture-Western  Yang C (2013) Low Throughput 

NDFIP1 BAIT H. sapiens Affinity Capture-Western  Mund T (2010) Low Throughput 

NDFIP1 BAIT H. sapiens Affinity Capture-Western  Howitt J (2012) Low Throughput 

NDFIP1 HIT H. sapiens Affinity Capture-Western  Howitt J (2012) Low Throughput 

NDFIP1 HIT H. sapiens PCA  Li Y (2014) Low Throughput 

NDFIP2 BAIT H. sapiens Affinity Capture-Western  Mund T (2010) Low Throughput 

NEDD4  HIT H. sapiens Affinity Capture-Western  Yim EK (2009) Low Throughput 

NEDD4  HIT H. sapiens Affinity Capture-Western  Wu Y (2013) Low Throughput 

NEDD4  BAIT H. sapiens Biochemical Activity  Wang X (2008) Low Throughput 
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http://thebiogrid.org/3643/publication/interaction-of-the-tumor-suppressor-ptenmmac-with-a-pdz-domain-of-magi3-a-novel-membrane-associated-guanylate-kinase.html
http://thebiogrid.org/111594/table/homo-sapiens/map2k6.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/115293/table/homo-sapiens/med12.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/115286/table/homo-sapiens/mvp.html?sort=official
http://thebiogrid.org/10682/publication/pten-associates-with-the-vault-particles-in-hela-cells.html
http://thebiogrid.org/115286/table/homo-sapiens/mvp.html?sort=official
http://thebiogrid.org/10682/publication/pten-associates-with-the-vault-particles-in-hela-cells.html
http://thebiogrid.org/115286/table/homo-sapiens/mvp.html?sort=official
http://thebiogrid.org/10682/publication/pten-associates-with-the-vault-particles-in-hela-cells.html
http://thebiogrid.org/113841/table/homo-sapiens/ncoa3.html?sort=official
http://thebiogrid.org/154805/publication/pten-suppresses-the-oncogenic-function-of-aib1-through-decreasing-its-protein-stability-via-mechanism-involving-fbw7-alpha.html
http://thebiogrid.org/113841/table/homo-sapiens/ncoa3.html?sort=official
http://thebiogrid.org/154805/publication/pten-suppresses-the-oncogenic-function-of-aib1-through-decreasing-its-protein-stability-via-mechanism-involving-fbw7-alpha.html
http://thebiogrid.org/123296/table/homo-sapiens/ndfip1.html?sort=official
http://thebiogrid.org/124962/publication/regulation-of-ptenakt-and-map-kinase-signaling-pathways-by-the-ubiquitin-ligase-activators-ndfip1-and-ndfip2.html
http://thebiogrid.org/123296/table/homo-sapiens/ndfip1.html?sort=official
http://thebiogrid.org/127372/publication/ndfip1-regulates-nuclear-pten-import-in-vivo-to-promote-neuronal-survival-following-cerebral-ischemia.html
http://thebiogrid.org/123296/table/homo-sapiens/ndfip1.html?sort=official
http://thebiogrid.org/127372/publication/ndfip1-regulates-nuclear-pten-import-in-vivo-to-promote-neuronal-survival-following-cerebral-ischemia.html
http://thebiogrid.org/123296/table/homo-sapiens/ndfip1.html?sort=official
http://thebiogrid.org/164661/publication/rab5-and-ndfip1-are-involved-in-pten-ubiquitination-and-nuclear-trafficking.html
http://thebiogrid.org/120074/table/homo-sapiens/ndfip2.html?sort=official
http://thebiogrid.org/124962/publication/regulation-of-ptenakt-and-map-kinase-signaling-pathways-by-the-ubiquitin-ligase-activators-ndfip1-and-ndfip2.html
http://thebiogrid.org/110811/table/homo-sapiens/nedd4.html?sort=official
http://thebiogrid.org/125297/publication/rak-functions-as-a-tumor-suppressor-by-regulating-pten-protein-stability-and-function.html
http://thebiogrid.org/110811/table/homo-sapiens/nedd4.html?sort=official
http://thebiogrid.org/159675/publication/pten-phosphorylation-and-nuclear-export-mediate-free-fatty-acid-induced-oxidative-stress.html
http://thebiogrid.org/110811/table/homo-sapiens/nedd4.html?sort=official
http://thebiogrid.org/86365/publication/crucial-role-of-the-c-terminus-of-pten-in-antagonizing-nedd4-1-mediated-pten-ubiquitination-and-degradation.html
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NEDD4  BAIT H. sapiens Biochemical Activity  Chung S (2011) Low Throughput 

NEDD4  BAIT H. sapiens Biochemical Activity  Hong SW (2013) Low Throughput 

NEDD4  HIT H. sapiens Reconstituted Complex  Wang X (2008) Low Throughput 

NEDD4  HIT H. sapiens Reconstituted Complex  Hong SW (2013) Low Throughput 

P3H4 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

PARK7  BAIT H. sapiens Affinity Capture-Western  Das F (2011) Low Throughput 

PARK7  HIT H. sapiens Affinity Capture-Western  Das F (2011) Low Throughput 

PARK7  BAIT H. sapiens Affinity Capture-Western  Kim YC (2009) Low Throughput 

PARK7  BAIT H. sapiens Reconstituted Complex  Kim YC (2009) Low Throughput 

PDGFRA HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

PINK1 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

PKN2 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

PPP1CA BAIT H. sapiens Affinity Capture-Western  Flores-Delgado G (2007) High Throughput 

PPP2R4 HIT H. sapiens Affinity Capture-Western  Crockett DK (2005) Low Throughput 

PPP3CA BAIT H. sapiens Affinity Capture-Western  Mistafa O (2010) Low Throughput 

PTK2B HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

PTK2 HIT H. sapiens Affinity Capture-Western  Tamura M (1999) Low Throughput 

PTK2 HIT H. sapiens Affinity Capture-Western  Haier J (2002) Low Throughput 

PTK2 HIT H. sapiens Affinity Capture-Western  Crockett DK (2005) Low Throughput 

PTPN14 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

PXN HIT H. sapiens Affinity Capture-Western  Haier J (2002) Low Throughput 

QRFPR HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

RPL14 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

SHARPIN BAIT H. sapiens Affinity Capture-Western  He L (2010) Low Throughput 

SHARPIN HIT H. sapiens Affinity Capture-Western  He L (2010) Low Throughput 

SHARPIN HIT H. sapiens Affinity Capture-Western  De Melo J (2014) Low Throughput 

SHARPIN BAIT H. sapiens Affinity Capture-Western  De Melo J (2014) Low Throughput 

SLC9A3R1  HIT H. sapiens Affinity Capture-Western  Yang L (2011) Low Throughput 

SLC9A3R1  BAIT H. sapiens Affinity Capture-Western  Rodriguez S (2013) Low Throughput 

SLC9A3R1  HIT O. cuniculus Reconstituted Complex  Yang L (2011) Low Throughput 

SLC9A3R1  HIT H. sapiens Reconstituted Complex  Yang L (2011) Low Throughput 

SMTN HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

SMURF2 BAIT M. musculus Affinity Capture-Luminescence  Narimatsu M (2009) Low Throughput 

STUB1  HIT H. sapiens Affinity Capture-Western  Ahmed SF (2012) Low Throughput 

STUB1  BAIT H. sapiens Affinity Capture-Western  Ahmed SF (2012) Low Throughput 

STUB1  HIT H. sapiens Reconstituted Complex  Ahmed SF (2012) Low Throughput 

SUMO1 HIT H. sapiens Affinity Capture-Western  Da Silva-Ferrada E (2013) Low Throughput 

SUMO1 BAIT H. sapiens Affinity Capture-Western  Huang J (2012) Low Throughput 

SUMO3 HIT H. sapiens Affinity Capture-Western  Da Silva-Ferrada E (2013) Low Throughput 

TCEB3C HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

TP53 HIT H. sapiens Affinity Capture-Western  Freeman DJ (2003) Low Throughput 

TP53 BAIT H. sapiens Affinity Capture-Western  Freeman DJ (2003) Low Throughput 

TP53 HIT H. sapiens Affinity Capture-Western  Zhou M (2003) Low Throughput 

TP53 BAIT H. sapiens Affinity Capture-Western  Zhou M (2003) Low Throughput 

TP53 HIT H. sapiens Reconstituted Complex  Hong SW (2013) Low Throughput 

TTBK2  HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

UBC BAIT H. sapiens Affinity Capture-Western  Wu W (2003) Low Throughput 

UBC BAIT H. sapiens Affinity Capture-Western  Mund T (2010) Low Throughput 

UBC HIT H. sapiens Affinity Capture-Western  Maddika S (2011) Low Throughput 

UBC HIT H. sapiens Affinity Capture-Western  Yim EK (2009) Low Throughput 

http://thebiogrid.org/110811/table/homo-sapiens/nedd4.html?sort=official
http://thebiogrid.org/144018/publication/possible-involvement-of-nedd4-in-keloid-formation-its-critical-role-in-fibroblast-proliferation-and-collagen-production.html
http://thebiogrid.org/110811/table/homo-sapiens/nedd4.html?sort=official
http://thebiogrid.org/161542/publication/p34-is-a-novel-regulator-of-the-oncogenic-behavior-of-nedd4-1-and-pten.html
http://thebiogrid.org/110811/table/homo-sapiens/nedd4.html?sort=official
http://thebiogrid.org/86365/publication/crucial-role-of-the-c-terminus-of-pten-in-antagonizing-nedd4-1-mediated-pten-ubiquitination-and-degradation.html
http://thebiogrid.org/110811/table/homo-sapiens/nedd4.html?sort=official
http://thebiogrid.org/161542/publication/p34-is-a-novel-regulator-of-the-oncogenic-behavior-of-nedd4-1-and-pten.html
http://thebiogrid.org/115855/table/homo-sapiens/p3h4.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/116446/table/homo-sapiens/park7.html?sort=official
http://thebiogrid.org/148052/publication/high-glucose-upregulation-of-early-onset-parkinsons-disease-protein-dj-1-integrates-the-pras40torc1-axis-to-mesangial-cell-hypertrophy.html
http://thebiogrid.org/116446/table/homo-sapiens/park7.html?sort=official
http://thebiogrid.org/148052/publication/high-glucose-upregulation-of-early-onset-parkinsons-disease-protein-dj-1-integrates-the-pras40torc1-axis-to-mesangial-cell-hypertrophy.html
http://thebiogrid.org/116446/table/homo-sapiens/park7.html?sort=official
http://thebiogrid.org/148630/publication/oxidation-of-dj-1-dependent-cell-transformation-through-direct-binding-of-dj-1-to-pten.html
http://thebiogrid.org/116446/table/homo-sapiens/park7.html?sort=official
http://thebiogrid.org/148630/publication/oxidation-of-dj-1-dependent-cell-transformation-through-direct-binding-of-dj-1-to-pten.html
http://thebiogrid.org/111182/table/homo-sapiens/pdgfra.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/122376/table/homo-sapiens/pink1.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/111572/table/homo-sapiens/pkn2.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/111493/table/homo-sapiens/ppp1ca.html?sort=official
http://thebiogrid.org/140627/publication/a-limited-screen-for-protein-interactions-reveals-new-roles-for-protein-phosphatase-1-in-cell-cycle-control-and-apoptosis.html
http://thebiogrid.org/111516/table/homo-sapiens/ppp2r4.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/111522/table/homo-sapiens/ppp3ca.html?sort=official
http://thebiogrid.org/127777/publication/purinergic-receptor-mediated-rapid-depletion-of-nuclear-phosphorylated-akt-depends-on-pleckstrin-homology-domain-leucine-rich-repeat-phosphatase-calcineurin-protein-phosphatase-2a-and-pten-phosphatases.html
http://thebiogrid.org/108480/table/homo-sapiens/ptk2b.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/111719/table/homo-sapiens/ptk2.html?sort=official
http://thebiogrid.org/9728/publication/pten-interactions-with-focal-adhesion-kinase-and-suppression-of-the-extracellular-matrix-dependent-phosphatidylinositol-3-kinaseakt-cell-survival-pathway.html
http://thebiogrid.org/111719/table/homo-sapiens/ptk2.html?sort=official
http://thebiogrid.org/10680/publication/pten-regulates-tumor-cell-adhesion-of-colon-carcinoma-cells-under-dynamic-conditions-of-fluid-flow.html
http://thebiogrid.org/111719/table/homo-sapiens/ptk2.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/111748/table/homo-sapiens/ptpn14.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/111787/table/homo-sapiens/pxn.html?sort=official
http://thebiogrid.org/10680/publication/pten-regulates-tumor-cell-adhesion-of-colon-carcinoma-cells-under-dynamic-conditions-of-fluid-flow.html
http://thebiogrid.org/123897/table/homo-sapiens/qrfpr.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/114507/table/homo-sapiens/rpl14.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/123608/table/homo-sapiens/sharpin.html?sort=official
http://thebiogrid.org/140779/publication/shank-interacting-protein-like-1-promotes-tumorigenesis-via-pten-inhibition-in-human-tumor-cells.html
http://thebiogrid.org/123608/table/homo-sapiens/sharpin.html?sort=official
http://thebiogrid.org/140779/publication/shank-interacting-protein-like-1-promotes-tumorigenesis-via-pten-inhibition-in-human-tumor-cells.html
http://thebiogrid.org/123608/table/homo-sapiens/sharpin.html?sort=official
http://thebiogrid.org/168488/publication/sipl1-facilitated-pten-ubiquitination-contributes-to-its-association-with-pten.html
http://thebiogrid.org/123608/table/homo-sapiens/sharpin.html?sort=official
http://thebiogrid.org/168488/publication/sipl1-facilitated-pten-ubiquitination-contributes-to-its-association-with-pten.html
http://thebiogrid.org/114769/table/homo-sapiens/slc9a3r1.html?sort=official
http://thebiogrid.org/125231/publication/nah-exchanger-regulatory-factor-1-nherf1-is-required-for-the-estradiol--dependent-increase-of-phosphatase-and-tensin-homolog-pten-protein-expression.html
http://thebiogrid.org/114769/table/homo-sapiens/slc9a3r1.html?sort=official
http://thebiogrid.org/156140/publication/phosphatase-and-tensin-homolog-regulates-stability-and-activity-of-ephb1-receptor.html
http://thebiogrid.org/1172218/table/oryctolagus-cuniculus/slc9a3r1.html?sort=official
http://thebiogrid.org/125231/publication/nah-exchanger-regulatory-factor-1-nherf1-is-required-for-the-estradiol--dependent-increase-of-phosphatase-and-tensin-homolog-pten-protein-expression.html
http://thebiogrid.org/114769/table/homo-sapiens/slc9a3r1.html?sort=official
http://thebiogrid.org/125231/publication/nah-exchanger-regulatory-factor-1-nherf1-is-required-for-the-estradiol--dependent-increase-of-phosphatase-and-tensin-homolog-pten-protein-expression.html
http://thebiogrid.org/112416/table/homo-sapiens/smtn.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/211376/table/mus-musculus/smurf2.html?sort=official
http://thebiogrid.org/151589/publication/regulation-of-planar-cell-polarity-by-smurf-ubiquitin-ligases.html
http://thebiogrid.org/115563/table/homo-sapiens/stub1.html?sort=official
http://thebiogrid.org/131486/publication/the-chaperone-assisted-e3-ligase-c-terminus-of-hsc70-interacting-protein-chip-targets-pten-for-proteasomal-degradation.html
http://thebiogrid.org/115563/table/homo-sapiens/stub1.html?sort=official
http://thebiogrid.org/131486/publication/the-chaperone-assisted-e3-ligase-c-terminus-of-hsc70-interacting-protein-chip-targets-pten-for-proteasomal-degradation.html
http://thebiogrid.org/115563/table/homo-sapiens/stub1.html?sort=official
http://thebiogrid.org/131486/publication/the-chaperone-assisted-e3-ligase-c-terminus-of-hsc70-interacting-protein-chip-targets-pten-for-proteasomal-degradation.html
http://thebiogrid.org/113188/table/homo-sapiens/sumo1.html?sort=official
http://thebiogrid.org/154766/publication/analysis-of-sumoylated-proteins-using-sumo-traps.html
http://thebiogrid.org/113188/table/homo-sapiens/sumo1.html?sort=official
http://thebiogrid.org/167465/publication/sumo1-modification-of-pten-regulates-tumorigenesis-by-controlling-its-association-with-the-plasma-membrane.html
http://thebiogrid.org/112496/table/homo-sapiens/sumo3.html?sort=official
http://thebiogrid.org/154766/publication/analysis-of-sumoylated-proteins-using-sumo-traps.html
http://thebiogrid.org/127829/table/homo-sapiens/tceb3c.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/113010/table/homo-sapiens/tp53.html?sort=official
http://thebiogrid.org/8133/publication/pten-tumor-suppressor-regulates-p53-protein-levels-and-activity-through-phosphatase-dependent-and--independent-mechanisms.html
http://thebiogrid.org/113010/table/homo-sapiens/tp53.html?sort=official
http://thebiogrid.org/8133/publication/pten-tumor-suppressor-regulates-p53-protein-levels-and-activity-through-phosphatase-dependent-and--independent-mechanisms.html
http://thebiogrid.org/113010/table/homo-sapiens/tp53.html?sort=official
http://thebiogrid.org/146418/publication/pten-reverses-mdm2-mediated-chemotherapy-resistance-by-interacting-with-p53-in-acute-lymphoblastic-leukemia-cells.html
http://thebiogrid.org/113010/table/homo-sapiens/tp53.html?sort=official
http://thebiogrid.org/146418/publication/pten-reverses-mdm2-mediated-chemotherapy-resistance-by-interacting-with-p53-in-acute-lymphoblastic-leukemia-cells.html
http://thebiogrid.org/113010/table/homo-sapiens/tp53.html?sort=official
http://thebiogrid.org/161542/publication/p34-is-a-novel-regulator-of-the-oncogenic-behavior-of-nedd4-1-and-pten.html
http://thebiogrid.org/126962/table/homo-sapiens/ttbk2.html?sort=official
http://thebiogrid.org/126258/publication/analysis-of-phosphatase-and-tensin-homolog-tumor-suppressor-interacting-proteins-by-in-vitro-and-in-silico-proteomics.html
http://thebiogrid.org/113164/table/homo-sapiens/ubc.html?sort=official
http://thebiogrid.org/112065/publication/zinc-induced-pten-protein-degradation-through-the-proteasome-pathway-in-human-airway-epithelial-cells.html
http://thebiogrid.org/113164/table/homo-sapiens/ubc.html?sort=official
http://thebiogrid.org/124962/publication/regulation-of-ptenakt-and-map-kinase-signaling-pathways-by-the-ubiquitin-ligase-activators-ndfip1-and-ndfip2.html
http://thebiogrid.org/113164/table/homo-sapiens/ubc.html?sort=official
http://thebiogrid.org/126054/publication/wwp2-is-an-e3-ubiquitin-ligase-for-pten.html
http://thebiogrid.org/113164/table/homo-sapiens/ubc.html?sort=official
http://thebiogrid.org/125297/publication/rak-functions-as-a-tumor-suppressor-by-regulating-pten-protein-stability-and-function.html
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UBC BAIT H. sapiens Affinity Capture-Western  Howitt J (2012) Low Throughput 

UBC HIT H. sapiens Affinity Capture-Western  Mistafa O (2010) Low Throughput 

UBC HIT H. sapiens Affinity Capture-Western  Yang L (2011) Low Throughput 

UBC HIT H. sapiens Affinity Capture-Western  Ahmed SF (2012) Low Throughput 

UBC BAIT H. sapiens Affinity Capture-Western  Ahmed SF (2012) Low Throughput 

UBC HIT H. sapiens Affinity Capture-Western  Morotti A (2013) Low Throughput 

UBC HIT H. sapiens Affinity Capture-Western  Zhang J (2013) Low Throughput 

UBC HIT H. sapiens Affinity Capture-Western  Hong SW (2013) Low Throughput 

UBC BAIT H. sapiens Affinity Capture-Western  Li Y (2014) Low Throughput 

UBC HIT H. sapiens Affinity Capture-Western  Choi BH (2014) Low Throughput 

UBC BAIT H. sapiens Affinity Capture-Western  Choi BH (2014) Low Throughput 

UBC BAIT H. sapiens Affinity Capture-Western  Maehama T (2014) Low Throughput 

UBC HIT H. sapiens Affinity Capture-Western  Aronchik I (2014) Low Throughput 

UBC HIT H. sapiens Affinity Capture-Western  De Melo J (2014) Low Throughput 

UBC HIT H. sapiens Affinity Capture-Western  Wang X (2008) Low Throughput 

UBC HIT H. sapiens PCA  Li Y (2014) Low Throughput 

UBE2I HIT H. sapiens Affinity Capture-Western  Waite KA (2003) Low Throughput 

UBE2I BAIT H. sapiens Affinity Capture-Western  Huang J (2012) Low Throughput 

UBE2L3  HIT H. sapiens Affinity Capture-Western  Waite KA (2003) Low Throughput 

USP4 HIT H. sapiens Affinity Capture-MS  Zhang J (2013) Low Throughput 

USP7 HIT H. sapiens Affinity Capture-MS  Zhang J (2013) Low Throughput 

USP7 HIT H. sapiens Affinity Capture-Western  Wu Y (2013) Low Throughput 

USP7 BAIT H. sapiens Affinity Capture-Western  Zhang J (2013) Low Throughput 

USP8 HIT H. sapiens Affinity Capture-MS  Zhang J (2013) Low Throughput 

USP8 BAIT H. sapiens Affinity Capture-Western  Zhang J (2013) Low Throughput 

USP10 HIT H. sapiens Affinity Capture-MS  Zhang J (2013) Low Throughput 

USP10 BAIT H. sapiens Affinity Capture-Western  Zhang J (2013) Low Throughput 

USP13 HIT H. sapiens Affinity Capture-MS  Zhang J (2013) Low Throughput 

USP13 BAIT H. sapiens Affinity Capture-Western  Zhang J (2013) Low Throughput 

USP13 BAIT H. sapiens Biochemical Activity  Zhang J (2013) Low Throughput 

USP13 HIT H. sapiens Reconstituted Complex  Zhang J (2013) Low Throughput 

USP39 HIT H. sapiens Affinity Capture-MS  Zhang J (2013) Low Throughput 

UTP14A HIT H. sapiens Two-hybrid  Stelzl U (2005) High Throughput 

WNT4  HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

WWP1 HIT H. sapiens Affinity Capture-Western  Maddika S (2011) Low Throughput 

WWP1 HIT H. sapiens Reconstituted Complex  Maddika S (2011) Low Throughput 

WWP2 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 

WWP2 HIT H. sapiens Affinity Capture-Western  Ahmed SF (2012) Low Throughput 

WWP2 HIT H. sapiens Affinity Capture-Western  Wu Y (2013) Low Throughput 

XIAP  HIT H. sapiens Affinity Capture-Western  Van Themsche C (2009) Low Throughput 

XIAP  BAIT H. sapiens Affinity Capture-Western  Van Themsche C (2009) Low Throughput 

XIAP  HIT H. sapiens Affinity Capture-Western  Ahmed SF (2012) Low Throughput 

XIAP  BAIT H. sapiens Biochemical Activity  Van Themsche C (2009) Low Throughput 

ZNF787 HIT H. sapiens Affinity Capture-MS  Crockett DK (2005) Low Throughput 
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8.5 All identified PTEN-interacting proteins 

Table 8.3 Identification and LC-MS based label-free quantification of the binding partners of reduced 

and 1 mM H2O2 oxidized PTEN following GSH affinity enrichment showing the protein hits with 

confidence score >50 and 2 unique peptides but q-values for quantification below 0.05 

Accession1 
Peptide 

count2 

Confidence 

score3 
p-value4 q-value4 

Fold 

change4 

Highest 

mean 

condition 

Protein 

Description 

GBB4_HUMAN 3 (2) 162.86 0.0562 0.0507 4.6 Oxidized 

Guanine 

nucleotide-

binding protein 

subunit beta-4  

RL27_HUMAN 3 (3) 152.87 0.0609 0.0527 1.3 Oxidized 
60S ribosomal 

protein L27  

SSFA2_HUMAN 3 (3) 148.17 0.0678 0.0561 3.0 Oxidized 
Sperm-specific 

antigen 2  

DNJA1_HUMAN 2 (2) 130.48 0.0667 0.0561 1.5 Oxidized 

DnaJ homolog 

subfamily A 

member 1  

SPTB2_HUMAN 2 (2) 105.4 0.072 0.057 2.2 Oxidized 

Spectrin beta 

chain, non-

erythrocytic 1  

LIMA1_HUMAN 5 (5) 316.93 0.0881 0.0627 3.0 Oxidized 

LIM domain 

and actin-

binding protein 

1  

RL22L_HUMAN 2 (2) 195.95 0.0848 0.0627 1.5 Reduced 

60S ribosomal 

protein L22-like 

1  

RLA2_HUMAN 3 (3) 157.14 0.0936 0.0657 1.6 Reduced 

60S acidic 

ribosomal 

protein P2  

RL27A_HUMAN 3 (3) 172.46 0.0993 0.0662 1.7 Oxidized 
60S ribosomal 

protein L27a 

FLNB_HUMAN 2 (2) 79.65 0.0984 0.0662 2.2 Oxidized Filamin-B  

MYO1D_HUMAN 2 (2) 72.78 0.1039 0.0682 1.9 Oxidized 
Unconventional 

myosin-Id  

TBB5_HUMAN 22 (2) 1494.03 0.1187 0.0732 2.6 Reduced 
Tubulin beta 

chain  

PLEC_HUMAN 16 (15) 780.03 0.1183 0.0732 1.7 Oxidized Plectin  

MTDC_HUMAN 3 (3) 183.16 0.1174 0.0732 2.4 Oxidized 

Bifunctional 

methylenetetrah

ydrofolate 

dehydrogenase/

cyclohydrolase, 

mitochondrial  

LDHB_HUMAN 3 (3) 134.03 0.1212 0.0732 1.6 Oxidized 

L-lactate 

dehydrogenase 

B chain  

RS17L_HUMAN 2 (2) 94.73 0.1227 0.0732 2.3 Oxidized 
40S ribosomal 

protein S17-like  

SDC1_HUMAN 2 (2) 160.1 0.1339 0.0749 1.4 Reduced Syndecan-1  

RS25_HUMAN 2 (2) 126.99 0.1339 0.0749 2.4 Oxidized 
40S ribosomal 

protein S25  

COF1_HUMAN 2 (2) 122.11 0.1308 0.0749 6.6 Oxidized Cofilin-1  
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RCC2_HUMAN 4 (4) 186.66 0.1421 0.078 8.3 Oxidized Protein RCC2  

MYOF_HUMAN 2 (2) 75.41 0.1525 0.0794 1.7 Oxidized Myoferlin  

RS6_HUMAN 2 (2) 119.95 0.1619 0.0818 1.5 Oxidized 
40S ribosomal 

protein S6  

GPC1_HUMAN 4 (4) 276.71 0.1723 0.0853 1.8 Oxidized Glypican-1  

RL7_HUMAN 3 (2) 130.63 0.1782 0.0874 1.4 Oxidized 
60S ribosomal 

protein L7  

TBA1B_HUMAN 8 (8) 612.08 0.1847 0.088 2.0 Reduced 
Tubulin alpha-

1B chain  

ATPG_HUMAN 2 (2) 76.67 0.1842 0.088 1.1 Oxidized 

ATP synthase 

subunit gamma, 

mitochondrial  

PLAK_HUMAN 2 (2) 97.41 0.1902 0.0892 1.9 Oxidized 
Junction 

plakoglobin  

ARF4_HUMAN 4 (3) 211.29 0.1993 0.0907 1.3 Reduced 

ADP-

ribosylation 

factor 4  

PEPL_HUMAN 2 (2) 74.53 0.1993 0.0907 2.4 Oxidized Periplakin  

RL13A_HUMAN 2 (2) 77.83 0.2067 0.0932 1.2 Reduced 
60S ribosomal 

protein L13a  

RL23_HUMAN 7 (7) 848.54 0.2187 0.0969 1.3 Oxidized 
60S ribosomal 

protein L23  

NCF1_HUMAN 2 (2) 260.51 0.2238 0.0975 3.4 Reduced 
Neutrophil 

cytosol factor  

RS20_HUMAN 2 (2) 238.72 0.2392 0.1017 3.5 Oxidized 
40S ribosomal 

protein S20  

GPC4_HUMAN 2 (2) 113.55 0.2396 0.1017 1.3 Oxidized Glypican-4  

RS27_HUMAN 4 (2) 438.84 0.2545 0.1071 1.7 Oxidized 
40S ribosomal 

protein S27  

EFTU_HUMAN 6 (6) 357.5 0.2645 0.1095 2.2 Oxidized 

Elongation 

factor Tu, 

mitochondrial  

H2A1B_HUMAN 2 (2) 110.47 0.2833 0.1138 1.8 Reduced 
Histone H2A 

type 1-B/E  

S10A8_HUMAN 2 (2) 81.02 0.2903 0.1141 1.6 Reduced 
Protein S100-

A8  

MYH10_HUMAN 3 (2) 137.31 0.306 0.1171 1.5 Oxidized Myosin-10  

CH60_HUMAN 2 (2) 172.34 0.3299 0.1211 1.7 Reduced 

60 kDa heat 

shock protein, 

mitochondrial  

RL14_HUMAN 2 (2) 111.65 0.3332 0.1211 1.4 Oxidized 
60S ribosomal 

protein L14  

ATPA_HUMAN 5 (5) 274.87 0.3643 0.1243 3.6 Reduced 

ATP synthase 

subunit alpha, 

mitochondrial  

KBTB4_HUMAN 3 (3) 209.58 0.3589 0.1243 4.2 Oxidized 

Kelch repeat 

and BTB 

domain-

containing 

protein 4  

KPYM_HUMAN 2 (2) 68.52 0.3532 0.1243 1.7 Oxidized 
Pyruvate kinase 

PKM  

RS4X_HUMAN 5 (5) 258.56 0.4035 0.1282 1.2 Reduced 

40S ribosomal 

protein S4, X 

isoform  

ADT2_HUMAN 3 (3) 124.64 0.4005 0.1282 1.2 Oxidized 
ADP/ATP 

translocase 2  

DCA11_HUMAN 10 (10) 690.54 0.4611 0.1387 1.8 Oxidized 

DDB1- and 

CUL4-

associated 

factor 11 
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S10A9_HUMAN 3 (3) 163.19 0.5196 0.1535 5.7 Reduced 
Protein S100-

A9  

TBB4B_HUMAN 20 (2) 1338.36 0.5478 0.1581 26.2 Reduced 
Tubulin beta-4B 

chain  

RL12_HUMAN 3 (3) 179.33 0.5588 0.1595 1.1 Oxidized 
60S ribosomal 

protein L12  

LEG1_HUMAN 3 (3) 110.7 0.5663 0.1607 1.4 Oxidized Galectin-1  

MYO1B_HUMAN 9 (9) 609.46 0.573 0.1617 1.2 Oxidized 
Unconventional 

myosin-Ib  

RS3_HUMAN 4 (4) 184.78 0.5865 0.1637 1.7 Oxidized 
40S ribosomal 

protein S3  

SDC4_HUMAN 3 (3) 232.89 0.6254 0.1717 1.1 Reduced Syndecan-4  

RS13_HUMAN 2 (2) 99.46 0.6379 0.1722 1.0 Reduced 
40S ribosomal 

protein S13  

ML12A_HUMAN 3 (3) 197.71 0.656 0.1741 1.1 Oxidized 

Myosin 

regulatory light 

chain 12A  

HS90B_HUMAN 4 (2) 277.94 0.7047 0.1825 1.1 Oxidized 

Heat shock 

protein HSP 90-

beta  

CALM_HUMAN 4 (4) 250.24 0.7046 0.1825 1.1 Reduced Calmodulin  

MPCP_HUMAN 2 (2) 104.89 0.7018 0.1825 1.1 Reduced 

Phosphate 

carrier protein, 

mitochondrial  

RL31_HUMAN 3 (3) 177.71 0.7252 0.186 1.1 Reduced 
60S ribosomal 

protein L31  

SNTB2_HUMAN 2 (2) 133.42 0.7512 0.1888 1.2 Oxidized 
Beta-2-

syntrophin  

MYO1C_HUMAN 11 (11) 776.71 0.7577 0.1889 1.1 Oxidized 
Unconventional 

myosin-Ic  

SETX_HUMAN 2 (2) 71.6 0.7684 0.1889 1.0 Oxidized 

Probable 

helicase 

senataxin  

RL13_HUMAN 4 (4) 176.14 0.7832 0.1906 1.0 Oxidized 
60S ribosomal 

protein L13  

RS26_HUMAN 2 (2) 84.7 0.785 0.1906 1.1 Reduced 
40S ribosomal 

protein S26  

RS27A_HUMAN 2 (2) 89.07 0.798 0.192 1.0 Reduced 

Ubiquitin-40S 

ribosomal 

protein S27a  

CP013_HUMAN 2 (2) 196.28 0.8487 0.197 1.0 Reduced 

UPF0585 

protein 

C16orf13  

YES_HUMAN 2 (2) 97.43 0.8488 0.197 1.9 Oxidized 

Tyrosine-

protein kinase 

Yes  

DDB1_HUMAN 7 (7) 347.08 0.8942 0.2017 1.0 Oxidized 

DNA damage-

binding protein 

1  

SDCB1_HUMAN 2 (2) 68.67 0.948 0.211 1.0 Oxidized Syntenin-1 
1
Accession = SwissProt Protein ID 

2
Peptide count = the number of detected peptides (the number of unique peptides) used for 

quantification 
3
The protein confidence score was generated using Mascot as described in the experimental. 

4
The p-value, q-value and fold change were generated by Progenesis QI for proteomics as described in 

the experimental. 

The data was obtained from the analysis of three independent GSH-affinity experiments. The list was 

restricted to the protein hits showing a confidence score ≥ 50, a number of unique peptides ≥ 2 and a q 

value >0.05. Ranking is based on q-values. 
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Table 8.4 Identification and LC-MS based label-free quantification of the binding partners of reduced 

and 1mM H2O2 oxidized PTEN following GSH affinity enrichment showing the protein hits for which 

the number of unique peptides used for quantification was below 2 

Accession1 
Peptide 

count2 

Confidence 

score3 

p-

value4 

q-

value4 

Fold 

change4 

Highest 

mean 

condition 

Protein Description 

FBX3_HUMAN 1 (1) 49.67 
< 

0.0001 
0.0001 3206.7 Oxidized F-box only protein 3  

1433T_HUMAN 3 (1) 175.01 0.0026 0.0215 Infinity Oxidized 14-3-3 protein theta 

RL29_HUMAN 1 (1) 36.25 0.0034 0.0246 6.6 Oxidized 60S ribosomal protein L29  

HNRPF_HUMAN 1 (1) 65.45 0.0042 0.0261 2.4 Oxidized 
Heterogeneous nuclear 

ribonucleoprotein F  

RL15_HUMAN 1 (1) 50.24 0.0050 0.0261 4.7 Reduced 60S ribosomal protein L15  

NDUA4_HUMAN 1 (1) 54.94 0.0083 0.0301 2.2 Reduced 

NADH dehydrogenase 

[ubiquinone] 1 alpha 

subcomplex subunit 4  

CD109_HUMAN 1 (1) 54.14 0.0100 0.0337 1.6 Oxidized CD109 antigen  

DSG2_HUMAN 1 (1) 58.22 0.0151 0.0387 5.7 Oxidized Desmoglein-2  

HEM6_HUMAN 1 (1) 56.15 0.0139 0.0387 23.2 Oxidized 
Coproporphyrinogen-III 

oxidase, mitochondrial  

PYR1_HUMAN 1 (1) 39.34 0.0153 0.0387 1.5 Oxidized CAD protein  

GNAI3_HUMAN 4(1) 202.98 0.0219 0.0437 8.5 Oxidized 
Guanine nucleotide-binding 

protein G(k) subunit alpha  

CD44_HUMAN 1 (1) 113.75 0.0200 0.0437 1.7 Reduced CD44 antigen 

ECHB_HUMAN 1 (1) 36.19 0.0227 0.0437 1.2 Oxidized 
Trifunctional enzyme subunit 

beta, mitochondrial  

RL7A_HUMAN 1 (1) 74.01 0.0280 0.0448 1.9 Oxidized 60S ribosomal protein L7a  

DEST_HUMAN 1 (1) 44.55 0.0278 0.0448 9.7 Oxidized Destrin  

PCBP2_HUMAN 1 (1) 67.8 0.0302 0.0454 3.7 Oxidized Poly(rC)-binding protein 2  

GBB1_HUMAN 2 (1) 128.85 0.0335 0.0456 5.4 Oxidized 

Guanine nucleotide-binding 

protein G(I)/G(S)/G(T) subunit 

beta-1  

SSBP_HUMAN 1 (1) 53.32 0.0353 0.0456 6.8 Oxidized 
Single-stranded DNA-binding 

protein, mitochondrial  

CRF_HUMAN 1 (1) 32.66 0.0344 0.0456 5.0 Reduced Corticoliberin 1 

RS23_HUMAN 1 (1) 73.79 0.0490 0.0463 2.3 Oxidized 40S ribosomal protein S23  

CTND1_HUMAN 1 (1) 63.34 0.0486 0.0463 6.8 Oxidized Catenin delta-1  

RL35_HUMAN 1 (1) 60.03 0.0458 0.0463 1.7 Oxidized 60S ribosomal protein L35  

RS12_HUMAN 1 (1) 42.03 0.0488 0.0463 3.1 Oxidized 40S ribosomal protein S12  

HID1_HUMAN 1 (1) 41.84 0.0412 0.0463 4.4 Reduced Protein HID1  

XRCC5_HUMAN 1 (1) 37.8 0.0556 0.0507 Infinity Oxidized 
X-ray repair cross-

complementing protein 5  

MCM3_HUMAN 1 (1) 34.21 0.0577 0.0511 1.8 Oxidized 
DNA replication licensing 

factor MCM3 

S10A7_HUMAN 1 (1) 38.55 0.0615 0.0527 6.4 Reduced Protein S100-A7  

RL5_HUMAN 1 (1) 47.31 0.0695 0.0566 3.3 Oxidized 60S ribosomal protein L5  

RL11_HUMAN 1 (1) 70.16 0.0722 0.0570 1.3 Oxidized 60S ribosomal protein L11  

ACTN4_HUMAN 1 (1) 39.87 0.0744 0.0577 2.0 Oxidized Alpha-actinin-4  

RS5_HUMAN 1 (1) 35.36 0.0754 0.0577 2.5 Reduced 40S ribosomal protein S5  

MAGI1_HUMAN 1 (1) 42.61 0.0822 0.0620 1.9 Oxidized 

Membrane-associated 

guanylate kinase, WW and 

PDZ domain-containing 

protein 1  

SMD3_HUMAN 1 (1) 68.52 0.0872 0.0627 1.6 Oxidized 
Small nuclear 

ribonucleoprotein Sm D3  

CMYA5_HUMAN 1 (1) 35.33 0.0871 0.0627 1.8 Oxidized 
Cardiomyopathy-associated 

protein 5  

HORN_HUMAN 1 (1) 50.25 0.0996 0.0662 11.1 Reduced Hornerin  

MYO5B_HUMAN 1 (1) 32.57 0.0970 0.0662 2.1 Oxidized Unconventional myosin-Vb  

RS3A_HUMAN 1 (1) 36.31 0.1225 0.0732 4.7 Oxidized 40S ribosomal protein S3a  

RS15_HUMAN 1 (1) 35.11 0.1231 0.0732 1.5 Oxidized 40S ribosomal protein S15  

RL32_HUMAN 1 (1) 42.67 0.1325 0.0749 6.5 Oxidized 60S ribosomal protein L32  

EPCAM_HUMAN 1 (1) 34.34 0.1295 0.0749 2.9 Oxidized 
Epithelial cell adhesion 

molecule  

PSMD2_HUMAN 1 (1) 53.25 0.1470 0.0794 2.0 Oxidized 
26S proteasome non-ATPase 

regulatory subunit 2  
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AGRIN_HUMAN 1 (1) 48.65 0.1513 0.0794 1.7 Oxidized Agrin  

RL8_HUMAN 1 (1) 71.31 0.1586 0.0809 1.2 Oxidized 60S ribosomal protein L8  

PGAP1_HUMAN 1 (1) 40.02 0.1582 0.0809 2.4 Reduced GPI inositol-deacylase  

RS7_HUMAN 1 (1) 42.34 0.1645 0.0823 3.5 Reduced 40S ribosomal protein S7  

H2B1J_HUMAN 1 (1) 43.08 0.1805 0.0877 1.2 Reduced Histone H2B type 1-J  

RS24_HUMAN 1 (1) 41.38 0.1925 0.0892 6.3 Oxidized 40S ribosomal protein S24  

RUVB2_HUMAN 1 (1) 35.86 0.1925 0.0892 2.2 Oxidized RuvB-like 2 

HSPB1_HUMAN 1 (1) 63.42 0.2085 0.0932 3.9 Reduced Heat shock protein beta-1  

RL10L_HUMAN 1 (1) 42.32 0.2208 0.0970 3.5 Oxidized 
60S ribosomal protein L10-

like  

ARF1_HUMAN 2 (1) 88.51 0.2270 0.0980 1.3 Reduced ADP-ribosylation factor 1  

P5CR1_HUMAN 1 (1) 51.34 0.2617 0.1093 1.8 Oxidized 
Pyrroline-5-carboxylate 

reductase 1, mitochondrial  

1433Z_HUMAN 3 (1) 184.23 0.2747 0.1128 2.5 Oxidized 14-3-3 protein zeta/delta 

TBB3_HUMAN 16 (1) 1067.14 0.2807 0.1138 2.6 Reduced Tubulin beta-3 chain 

RL18_HUMAN 1 (1) 76.6 0.2849 0.1138 1.5 Oxidized 60S ribosomal protein L18  

PKP2_HUMAN 1 (1) 56.03 0.2861 0.1138 2.5 Oxidized Plakophilin-2  

SERA_HUMAN 1 (1) 45.18 0.2914 0.1141 2.2 Reduced 
D-3-phosphoglycerate 

dehydrogenase 

RS27L_HUMAN 3 (1) 298.09 0.3058 0.1171 1.6 Oxidized 40S ribosomal protein S27-like 

MIF_HUMAN 1 (1) 44.15 0.3155 0.1198 1.2 Oxidized 
Macrophage migration 

inhibitory factor 

GBG12_HUMAN 1 (1) 110.3 0.3184 0.1199 2.4 Oxidized 

Guanine nucleotide-binding 

protein G(I)/G(S)/G(O) 

subunit gamma-12 

C2TA_HUMAN 1 (1) 32.32 0.3204 0.1199 1.5 Oxidized MHC class II transactivator  

RALA_HUMAN 1 (1) 50.68 0.3272 0.1211 1.4 Oxidized Ras-related protein Ral-A  

LEG7_HUMAN 1 (1) 40.9 0.3315 0.1211 3.6 Reduced Galectin-7  

TIM50_HUMAN 1 (1) 42.37 0.3372 0.1215 1.3 Oxidized 

Mitochondrial import inner 

membrane translocase subunit 

TIM50  

APOD_HUMAN 1 (1) 36.11 0.3483 0.1239 2.9 Oxidized Apolipoprotein D 

RL6_HUMAN 1 (1) 60.07 0.3705 0.1243 1.1 Oxidized 60S ribosomal protein L6  

ARL1_HUMAN 1 (1) 58.27 0.3706 0.1243 1.2 Oxidized 
ADP-ribosylation factor-like 

protein 1  

IGHG1_HUMAN 1 (1) 51.63 0.3640 0.1243 4.2 Reduced Ig gamma-1 chain C region  

RFA3_HUMAN 1 (1) 51.1 0.3545 0.1243 37.2 Oxidized 
Replication protein A 14 kDa 

subunit  

CECR1_HUMAN 1 (1) 48.1 0.3739 0.1243 Infinity Oxidized Adenosine deaminase CECR1  

TCPH_HUMAN 1 (1) 40.07 0.3739 0.1243 Infinity Oxidized 
T-complex protein 1 subunit 

eta  

IGKC_HUMAN 1 (1) 32.28 0.3739 0.1243 Infinity Reduced Ig kappa chain C region  

PGBM_HUMAN 4 (4) 200.74 0.3856 0.1248 1.1 Oxidized 

Basement membrane-specific 

heparan sulfate proteoglycan 

core protein 

HNRH1_HUMAN 1 (1) 77.91 0.3851 0.1248 1.6 Reduced 
Heterogeneous nuclear 

ribonucleoprotein H  

FABP5_HUMAN 1 (1) 40.66 0.3816 0.1248 5.2 Reduced 
Fatty acid-binding protein, 

epidermal 

OR7G3_HUMAN 1 (1) 35.2 0.4021 0.1282 1.2 Oxidized Olfactory receptor 7G3  

1433S_HUMAN 2 (1) 121.66 0.4272 0.1344 118.0 Reduced 14-3-3 protein sigma  

PDP1_HUMAN 1 (1) 42.99 0.4310 0.1344 1.3 Oxidized 

[Pyruvate dehydrogenase 

[acetyl-transferring]]-

phosphatase 1, mitochondrial  

ARHGH_HUMAN 1 (1) 40.09 0.4285 0.1344 1.1 Reduced 
Rho guanine nucleotide 

exchange factor 17  

HS90A_HUMAN 3 (1) 189.32 0.4363 0.1352 1.3 Oxidized 
Heat shock protein HSP 90-

alpha 

PCNA_HUMAN 1 (1) 34.34 0.4537 0.1381 1.1 Oxidized 
Proliferating cell nuclear 

antigen  

SMD2_HUMAN 1 (1) 50.52 0.4576 0.1384 1.2 Oxidized 
Small nuclear 

ribonucleoprotein Sm D2  

RS8_HUMAN 1 (1) 40.69 0.4985 0.1490 1.1 Reduced 40S ribosomal protein S8  

FA47A_HUMAN 1 (1) 33.85 0.5030 0.1495 1.2 Oxidized Protein FAM47A  

RL23A_HUMAN 1 (1) 35.01 0.5337 0.1558 1.1 Oxidized 60S ribosomal protein L23a  

PIP_HUMAN 1 (1) 60.36 0.5464 0.1581 30.6 Reduced Prolactin-inducible protein  

TBB6_HUMAN 7 (1) 347.18 0.5571 0.1595 10.4 Reduced Tubulin beta-6 chain  
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HS71L_HUMAN 3 (1) 162.95 0.5833 0.1637 4.5 Oxidized 
Heat shock 70 kDa protein 1-

like 

GFAP_HUMAN 1 (1) 79.58 0.6410 0.1722 1.2 Oxidized Glial fibrillary acidic protein  

ZA2G_HUMAN 1 (1) 51.28 0.6326 0.1722 1.1 Oxidized Zinc-alpha-2-glycoprotein  

RL26L_HUMAN 1 (1) 36.71 0.6404 0.1722 1.1 Reduced 
60S ribosomal protein L26-

like 1  

A16L2_HUMAN 1 (1) 36.12 0.6567 0.1741 1.0 Reduced 
Autophagy-related protein 16-

2  

AL1A2_HUMAN 1 (1) 49.13 0.6959 0.1825 1.0 Reduced Retinal dehydrogenase 2  

ZN630_HUMAN 1 (1) 35.87 0.7144 0.1841 1.1 Oxidized Zinc finger protein 630  

USMG5_HUMAN 2 (1) 106.05 0.7307 0.1862 1.4 Oxidized 
Up-regulated during skeletal 

muscle growth protein 5  

RAE1_HUMAN 1 (1) 35 0.7335 0.1862 1.4 Reduced 

Rab proteins 

geranylgeranyltransferase 

component A 1  

PPIA_HUMAN 1 (1) 48.93 0.7455 0.1883 1.1 Oxidized 
Peptidyl-prolyl cis-trans 

isomerase A 

RLA1_HUMAN 1 (1) 50.17 0.7633 0.1889 1.1 Oxidized 
60S acidic ribosomal protein 

P1  

RS11_HUMAN 1 (1) 41.87 0.7702 0.1889 1.1 Oxidized 40S ribosomal protein S11  

SUCA_HUMAN 1 (1) 36.88 0.7661 0.1889 1.1 Reduced 

Succinyl-CoA ligase 

[ADP/GDP-forming] subunit 

alpha, mitochondrial  

DTNA_HUMAN 1 (1) 53.11 0.8038 0.1924 1.2 Oxidized Dystrobrevin alpha  

GSTA1_HUMAN 1 (1) 35.16 0.8160 0.1944 1.0 Oxidized Glutathione S-transferase A1  

MED23_HUMAN 1 (1) 34.9 0.8283 0.1955 2.1 Oxidized 
Mediator of RNA polymerase 

II transcription subunit 23  

RL22_HUMAN 1 (1) 66.32 0.8379 0.1969 1.1 Oxidized 60S ribosomal protein L22  

RL36_HUMAN 1 (1) 48.57 0.8646 0.1994 1.1 Reduced 60S ribosomal protein L36  

HSP71_HUMAN 3 (1) 199.56 0.8825 0.2010 1.3 Oxidized 
Heat shock 70 kDa protein 

1A/1B 

A16L1_HUMAN 1 (1) 35.3 0.8786 0.2010 1.3 Oxidized 
Autophagy-related protein 16-

1  

MAP6_HUMAN 1 (1) 35.02 0.8835 0.2010 1.0 Oxidized 
Microtubule-associated protein 

6 

UBE2O_HUMAN 1 (1) 34.08 0.8898 0.2016 1.0 Reduced 
Ubiquitin-conjugating enzyme 

E2 O  

PHLA2_HUMAN 1 (1) 43.4 0.9245 0.2066 1.0 Oxidized 
Pleckstrin homology-like 

domain family A member 2  

RL4_HUMAN 1 (1) 38.89 0.9728 0.2146 2.3 Reduced 60S ribosomal protein L4  

1
Accession = SwissProt Protein ID 

2
Peptide count = the number of detected peptides (the number of unique peptides) used for 

quantification 
3
The protein confidence score was generated using Mascot as described in the experimental 

4
The p-value, q-value and fold change were generated by Progenesis QI for proteomics as described in 

the experimental 

The data was obtained from the analysis of three independent GSH-affinity experiments. The list was 

restricted to the protein hits showing a number of unique peptides < 2. Ranking is based on q-values. 
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Table 8.5 Identification and LC-MS based label-free quantification of the proteins bound to the 

untreated and oxidized PTEN-GST that were also identified in the sample eluted from the GST control 

and the GSH beads alone 

Accession1 
Peptide 

count2 

Confidence 

score3 

p-

value4 

q-

value4 

Fold 

change4 

Highest 

mean 

condition 

Protein Description 

LANC1_HUMAN 2 (2) 79.89 0.0081 0.0301 2.4 Oxidized LanC-like protein 1  

ACTB_HUMAN 9 (9) 594.1 0.0284 0.0448 2.6 Oxidized Actin, cytoplasmic 1  

EF1A2_HUMAN 4 (4) 243.3 0.0358 0.0456 1.9 Oxidized 
Elongation factor 1-alpha 

2  

EF1G_HUMAN 6 (6) 445.16 0.1063 0.0689 1.7 Oxidized 
Elongation factor 1-

gamma  

H4_HUMAN 1 (1) 45.39 0.1349 0.0749 1.3 Reduced Histone H4  

GSTP1_HUMAN 15 (15) 2461.58 0.1502 0.0794 1.8 Reduced 
Glutathione S-transferase 

P  

ALBU_HUMAN 9 (9) 736.39 0.1525 0.0794 1.6 Reduced Serum albumin  

PTEN_HUMAN 26 (25)  2441.14 0.2968 0.1153 1.5 Oxidized 

Phosphatidylinositol 

3,4,5-trisphosphate 3-

phosphatase and dual-

specificity protein 

phosphatase PTEN  

MYH9_HUMAN 7 (5) 425.51 0.3393 0.1215 1.3 Oxidized Myosin-9  

CCD87_HUMAN 1 (1) 63.52 0.3838 0.1248 1.5 Oxidized 
Coiled-coil domain-

containing protein 87  

RS16_HUMAN 6 (5) 386.86 0.4464 0.1375 2.2 Oxidized 
40S ribosomal protein 

S16  

GEMI4_HUMAN 2 (1) 76.32 0.4504 0.1379 1.5 Oxidized Gem-associated protein 4 

MYL6_HUMAN 3 (3) 200.09 0.5325 0.1558 1.3 Oxidized 
Myosin light polypeptide 

6  

DCD_HUMAN 3 (3) 315.14 0.6082 0.1688 1.1 Reduced Dermcidin  

EF1B_HUMAN 4 (4)  369.47 0.6140 0.1695 1.3 Reduced Elongation factor 1-beta  

EF1A1_HUMAN 4 (2) 224.11 0.6584 0.1741 1.2 Oxidized 
Elongation factor 1-alpha 

1  

XRCC6_HUMAN 3 (3) 237.83 0.7982 0.1920 1.9 Oxidized 
X-ray repair cross-

complementing protein 6  

RS14_HUMAN 3 (3) 223.82 0.8222 0.1950 1.1 Oxidized 
40S ribosomal protein 

S14  

RS10_HUMAN 3 (3) 176.74 0.8503 0.1970 1.0 Oxidized 
40S ribosomal protein 

S10  

RS18_HUMAN 5 (5) 305.06 0.9218 0.2066 1.1 Reduced 
40S ribosomal protein 

S18  
1
Accession = SwissProt Protein ID 

2
Peptide count = the number of detected peptides (the number of unique peptides) used for 

quantification 
3
The protein confidence score was generated using Mascot as described in the experimental 

4
The p-value, q-value and fold change were generated by Progenesis QI for proteomics as described in 

the experimental. 

The data was obtained from the analysis of three independent GSH-affinity experiments. Ranking is 

based on q-values. 
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Table 8.6 Identification and LC-MS based label-free quantification of PTEN-EGFP binding proteins 

affinity-captured by Co-IP from HCT116 cell lysate showing the protein hits with more than 2 unique 

peptides 

Accession1 Peptides2 Score3 Description 
Average Normalized 

Abundances4 

NONO_HUMAN 37 (36) 3733.64 
Non-POU domain-containing octamer-binding 

protein  
546000 

SFPQ_HUMAN 33 (32) 3136.4 Splicing factor, proline- and glutamine-rich  112000 

PABP1_HUMAN 31 (19) 2663.77 Polyadenylate-binding protein 1  201000 

PABP4_HUMAN 26 (14) 2067.69 Polyadenylate-binding protein 4  39100 

EWS_HUMAN 14 (13) 1968.61 RNA-binding protein EWS  1030000 

RBM14_HUMAN 20 (20) 1749.49 RNA-binding protein 14  162000 

ACTB_HUMAN 16 (11) 1606.03 Actin, cytoplasmic 1  61800 

HNRPM_HUMAN 23 (22) 1580.56 Heterogeneous nuclear ribonucleoprotein M  50900 

ROA2_HUMAN 15 (12) 1480.19 Heterogeneous nuclear ribonucleoproteins A2/B1  71400 

HS90B_HUMAN 20 (9) 1440.25 Heat shock protein HSP 90-beta  12200 

NUFP2_HUMAN 16 (16) 1398.64 
Nuclear fragile X mental retardation-interacting 

protein 2  
28500 

PTEN_HUMAN 16 (16) 1252.96 

Phosphatidylinositol 3,4,5-trisphosphate 3-

phosphatase and dual-specificity protein 

phosphatase PTEN  

233000 

G3BP1_HUMAN 15 (13) 1250.77 Ras GTPase-activating protein-binding protein 1  69900 

FUS_HUMAN 12 (10) 1247.09 RNA-binding protein FUS  129000 

IF2B2_HUMAN 17 (13) 1186.93 
Insulin-like growth factor 2 mRNA-binding 

protein 2  
14700 

HS90A_HUMAN 17 (6) 1164.28 Heat shock protein HSP 90-alpha  5278.25 

LAP2A_HUMAN 14 (14) 1159.21 Lamina-associated polypeptide 2, isoform alpha  28700 

PTBP1_HUMAN 11 (10) 1149.35 Polypyrimidine tract-binding protein 1  21800 

G3BP2_HUMAN 14 (11) 1115.7 Ras GTPase-activating protein-binding protein 2  32200 

RTCB_HUMAN 16 (16) 1087.16 tRNA-splicing ligase RtcB homolog  35300 

DDX1_HUMAN 19 (19) 1056.89 ATP-dependent RNA helicase DDX1  27200 

WDR82_HUMAN 14 (14) 1054.63 WD repeat-containing protein 82  50700 

TBB5_HUMAN 16 (2) 1045.15 Tubulin beta chain  7057.32 

CH60_HUMAN 13 (13) 1016.71 60 kDa heat shock protein, mitochondrial  18800 

HNRPK_HUMAN 14 (14) 964.34 Heterogeneous nuclear ribonucleoprotein K  18600 

TOX4_HUMAN 12 (12) 963.19 TOX high mobility group box family member 4  63400 

PP1A_HUMAN 10 (4) 907.32 
Serine/threonine-protein phosphatase PP1-alpha 

catalytic subunit  
26800 

YBOX1_HUMAN 10 (9) 868.78 Nuclease-sensitive element-binding protein 1  15200 

ROA1_HUMAN 9 (5) 868.23 Heterogeneous nuclear ribonucleoprotein A1  16800 
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FXR1_HUMAN 13 (12) 861.41 
Fragile X mental retardation syndrome-related 

protein 1  
13400 

IF2B3_HUMAN 12 (9) 830.68 
Insulin-like growth factor 2 mRNA-binding 

protein 3  
9327.45 

ACTC_HUMAN 10 (2) 829.97 Actin, alpha cardiac muscle 1  952.84 

HSP7C_HUMAN 13 (11) 809.93 Heat shock cognate 71 kDa protein  9336.89 

PP1B_HUMAN 8 (3) 801.35 
Serine/threonine-protein phosphatase PP1-beta 

catalytic subunit  
6561.29 

CAPR1_HUMAN 11 (11) 787.7 Caprin-1  48200 

PSPC1_HUMAN 10 (10) 744.37 Paraspeckle component 1  23300 

ALBU_HUMAN 11 (11) 712.88 Serum albumin  71400 

ENOA_HUMAN 11 (8) 676.74 Alpha-enolase  8437.81 

TBA1A_HUMAN 10 (10) 676.11 Tubulin alpha-1A chain  22100 

RS18_HUMAN 10 (10) 675.69 40S ribosomal protein S18  36600 

ELAV1_HUMAN 7 (7) 667.51 ELAV-like protein 1  18100 

HNRH1_HUMAN 7 (3) 665.39 Heterogeneous nuclear ribonucleoprotein H  2594.4 

EF1A1_HUMAN 10 (10) 645.25 Elongation factor 1-alpha 1  57700 

ROA3_HUMAN 8 (6) 635.15 Heterogeneous nuclear ribonucleoprotein A3  4215.62 

RS4X_HUMAN 11 (11) 625.81 40S ribosomal protein S4, X isoform  8836.6 

PP1RA_HUMAN 12 (12) 612.77 
Serine/threonine-protein phosphatase 1 regulatory 

subunit 10  
16200 

FA98A_HUMAN 6 (6) 605.38 Protein FAM98A  12000 

TRAF3_HUMAN 10 (8) 602.59 TNF receptor-associated factor 3  8877.83 

CPSF5_HUMAN 8 (8) 594.47 
Cleavage and polyadenylation specificity factor 

subunit 5  
23300 

G3P_HUMAN 9 (9) 586.96 Glyceraldehyde-3-phosphate dehydrogenase  26400 

GRP78_HUMAN 10 (8) 577.61 78 kDa glucose-regulated protein  4156.06 

RS3_HUMAN 12 (12) 542.64 40S ribosomal protein S3  9871.58 

ATX2L_HUMAN 9 (9) 540.04 Ataxin-2-like protein  6964.24 

DDX17_HUMAN 9 (7) 522.73 Probable ATP-dependent RNA helicase DDX17  6588.78 

DDX5_HUMAN 9 (7) 520.88 Probable ATP-dependent RNA helicase DDX5  16800 

LDHA_HUMAN 9 (7) 500.74 L-lactate dehydrogenase A chain  5675.55 

ALDOA_HUMAN 8 (8) 488.84 Fructose-bisphosphate aldolase A  10700 

FXR2_HUMAN 7 (6) 484.17 
Fragile X mental retardation syndrome-related 

protein 2  
1889.51 

RS3A_HUMAN 9 (9) 483.39 40S ribosomal protein S3a  16300 

CPSF6_HUMAN 6 (6) 471.3 
Cleavage and polyadenylation specificity factor 

subunit 6  
8978.42 

CN166_HUMAN 8 (8) 464.72 UPF0568 protein C14orf166  8573.82 

RS2_HUMAN 10 (10) 462.57 40S ribosomal protein S2  6503.36 

HNRPF_HUMAN 6 (4) 451.49 Heterogeneous nuclear ribonucleoprotein F  4354.05 
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RS19_HUMAN 7 (7) 447.67 40S ribosomal protein S19  15600 

1433Z_HUMAN 6 (5) 404.01 14-3-3 protein zeta/delta  3038.04 

LDHB_HUMAN 6 (4) 392.69 L-lactate dehydrogenase B chain  2189.7 

KPYM_HUMAN 6 (6) 390.12 Pyruvate kinase PKM  9366.31 

PDIA1_HUMAN 5 (5) 373.86 Protein disulfide-isomerase  2129.2 

HSP71_HUMAN 6 (2) 348.07 Heat shock 70 kDa protein 1A/1B  752.57 

RS14_HUMAN 5 (5) 347.56 40S ribosomal protein S14  12600 

RS16_HUMAN 6 (6) 343.87 40S ribosomal protein S16  22500 

RS13_HUMAN 5 (5) 343.18 40S ribosomal protein S13  11200 

H4_HUMAN 5 (5) 341.44 Histone H4  19300 

EZRI_HUMAN 6 (6) 338.63 Ezrin  3617.36 

ODB2_HUMAN 6 (5) 321.92 

Lipoamide acyltransferase component of 

branched-chain alpha-keto acid dehydrogenase 

complex, mitochondrial  

2972.01 

ANXA2_HUMAN 6 (6) 320.89 Annexin A2  5482.44 

RS8_HUMAN 5 (5) 317.28 40S ribosomal protein S8  7365.08 

ROA0_HUMAN 5 (3) 306.56 Heterogeneous nuclear ribonucleoprotein A0  1627.76 

TERF2_HUMAN 5 (5) 290.93 Telomeric repeat-binding factor 2  6372.84 

RL26_HUMAN 5 (5) 289.56 60S ribosomal protein L26  7321.72 

ILF2_HUMAN 5 (5) 281.64 Interleukin enhancer-binding factor 2  2023.3 

RBMX_HUMAN 4 (4) 280.68 RNA-binding motif protein, X chromosome  6944.56 

PGK1_HUMAN 5 (5) 280.26 Phosphoglycerate kinase 1  3479.27 

SSBP_HUMAN 4 (4) 273.25 
Single-stranded DNA-binding protein, 

mitochondrial  
14100 

ATX2_HUMAN 4 (4) 266.34 Ataxin-2  37.48 

TCP4_HUMAN 4 (4) 263 
Activated RNA polymerase II transcriptional 

coactivator p15  
2449.55 

HNRL1_HUMAN 5 (4) 262.77 
Heterogeneous nuclear ribonucleoprotein U-like 

protein 1  
1198.33 

RS11_HUMAN 5 (5) 260.03 40S ribosomal protein S11 OS 8592.37 

IF4A3_HUMAN 5 (4) 252.89 Eukaryotic initiation factor 4A-III  11900 

RL8_HUMAN 4 (4) 250.56 60S ribosomal protein L8  3000.68 

CTF8A_HUMAN 4 (4) 249.73 
Chromosome transmission fidelity protein 8 

homolog isoform 2  
529.59 

XRCC6_HUMAN 4 (4) 247 X-ray repair cross-complementing protein 6  2457.96 

HNRPQ_HUMAN 4 (4) 243.26 Heterogeneous nuclear ribonucleoprotein Q  4158.69 

ATPA_HUMAN 3 (3) 237.85 ATP synthase subunit alpha, mitochondrial  1023.53 

RL23A_HUMAN 3 (3) 236.89 60S ribosomal protein L23a  12600 

RL31_HUMAN 4 (4) 235.43 60S ribosomal protein L31 1 8672.43 

DDX3X_HUMAN 4 (4) 235.08 ATP-dependent RNA helicase DDX3X  1984.26 
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GRP75_HUMAN 4 (3) 231.34 Stress-70 protein, mitochondrial  1090.02 

FUBP3_HUMAN 5 (4) 231.1 Far upstream element-binding protein 3  1298.86 

FMR1_HUMAN 3 (2) 230.5 Fragile X mental retardation protein 1  496.76 

RL22L_HUMAN 2 (2) 225.37 60S ribosomal protein L22-like 1  2308.21 

RL18_HUMAN 3 (3) 221.47 60S ribosomal protein L18  1513.43 

CPSF7_HUMAN 3 (3) 219.58 
Cleavage and polyadenylation specificity factor 

subunit  
1328.44 

RL7A_HUMAN 4 (4) 217.16 60S ribosomal protein L7a  1820.11 

RS27_HUMAN 4 (4) 213.66 40S ribosomal protein S27  2608.79 

MOV10_HUMAN 3 (3) 213.21 Putative helicase MOV-10  400.88 

RS7_HUMAN 5 (5) 211.75 40S ribosomal protein S7  8403.72 

VDAC1_HUMAN 3 (2) 210.89 
Voltage-dependent anion-selective channel 

protein 1  
191.46 

TE2IP_HUMAN 3 (3) 205.14 
Telomeric repeat-binding factor 2-interacting 

protein 1  
3541.28 

NDKA_HUMAN 4 (4) 203.91 Nucleoside diphosphate kinase A  2765.63 

DCD_HUMAN 2 (2) 203.9 Dermcidin  40500 

THOC4_HUMAN 2 (2) 200.5 THO complex subunit 4  2962.22 

LSM12_HUMAN 3 (3) 199.11 Protein LSM12 homolog  8904.1 

RS9_HUMAN 5 (5) 198.54 40S ribosomal protein S9  6700.77 

RS10_HUMAN 3 (3) 197.36 40S ribosomal protein S10  5380.03 

NUCL_HUMAN 4 (4) 194.83 Nucleolin  1237.99 

RL10_HUMAN 3 (3) 192.94 60S ribosomal protein L10  3265.33 

RL12_HUMAN 3 (3) 192.92 60S ribosomal protein L12  3199.86 

RS15_HUMAN 3 (3) 192.89 40S ribosomal protein S15  4127.64 

RL17_HUMAN 3 (3) 189.6 60S ribosomal protein L17  8023.17 

ANXA1_HUMAN 2 (2) 184.77 Annexin A1  348.36 

RBM8A_HUMAN 3 (3) 182.28 RNA-binding protein 8A  930.43 

RLA0_HUMAN 4 (4) 181.26 60S acidic ribosomal protein P0  3571.97 

TRI25_HUMAN 4 (4) 181.02 E3 ubiquitin/ISG15 ligase TRIM25  1569.3 

RL23_HUMAN 2 (2) 180.3 60S ribosomal protein L23  2284.74 

RS15A_HUMAN 4 (4) 180.29 40S ribosomal protein S15a  12000 

TCPQ_HUMAN 3 (3) 179.53 T-complex protein 1 subunit theta  856.81 

IF4A1_HUMAN 3 (2) 177.05 Eukaryotic initiation factor 4A-I  258.23 

TPIS_HUMAN 3 (3) 176.45 Triosephosphate isomerase  553.56 

LASP1_HUMAN 3 (3) 174.98 LIM and SH3 domain protein 1  1261.95 

PRDX1_HUMAN 4 (4) 173.27 Peroxiredoxin-1  3012.07 

RL13_HUMAN 2 (2) 170.55 60S ribosomal protein L13  2201.69 

TIAR_HUMAN 3 (3) 170.3 Nucleolysin TIAR  1696.6 
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1433G_HUMAN 3 (2) 169.91 14-3-3 protein gamma  239.88 

HNRPD_HUMAN 3 (3) 169.8 Heterogeneous nuclear ribonucleoprotein D0  3063.46 

YTHD2_HUMAN 3 (3) 166.86 YTH domain family protein 2  1961.4 

RS25_HUMAN 3 (3) 160.46 40S ribosomal protein S25  5004.7 

RL22_HUMAN 2 (2) 160.01 60S ribosomal protein L22  3897.91 

PURB_HUMAN 3 (2) 159.62 Transcriptional activator protein Pur-beta  147.53 

RS17L_HUMAN 3 (3) 158.9 40S ribosomal protein S17-like  3100.06 

BCKD_HUMAN 3 (3) 156.37 
[3-methyl-2-oxobutanoate dehydrogenase 

[lipoamide]] kinase, mitochondrial  
2220.07 

PDIA3_HUMAN 3 (3) 155.37 Protein disulfide-isomerase A3  1118.81 

G6PI_HUMAN 3 (3) 155.28 Glucose-6-phosphate isomerase  567.04 

RS6_HUMAN 2 (2) 152.91 40S ribosomal protein S6  2371.51 

H2B1L_HUMAN 2 (2) 152.33 Histone H2B type 1-L  2083.43 

TCPB_HUMAN 3 (2) 152.11 T-complex protein 1 subunit beta  365.5 

HNRPC_HUMAN 3 (3) 150.42 Heterogeneous nuclear ribonucleoproteins C1/C2 4683.06 

PPIA_HUMAN 3 (3) 149.59 Peptidyl-prolyl cis-trans isomerase A  1984.15 

RL11_HUMAN 2 (2) 149.3 60S ribosomal protein L11  6584.62 

ATPB_HUMAN 3 (3) 148.48 ATP synthase subunit beta, mitochondrial  976.72 

PGAM5_HUMAN 3 (3) 143.29 
Serine/threonine-protein phosphatase PGAM5, 

mitochondrial  
1314.32 

KHDR1_HUMAN 3 (3) 142.98 
KH domain-containing, RNA-binding, signal 

transduction-associated protein 1  
5694.65 

THIL_HUMAN 2 (2) 141.03 Acetyl-CoA acetyltransferase, mitochondrial  167.19 

PCBP1_HUMAN 2 (2) 138.87 Poly(rC)-binding protein 1  684.04 

VDAC2_HUMAN 2 (2) 138.41 
Voltage-dependent anion-selective channel 

protein 2  
1095.65 

CIRBP_HUMAN 2 (2) 132.57 Cold-inducible RNA-binding protein  969.66 

RL19_HUMAN 2 (2) 131.63 60S ribosomal protein L19  537.15 

HSPB1_HUMAN 2 (2) 130.74 Heat shock protein beta-1 2 2017.14 

DHX15_HUMAN 3 (3) 130.55 
Putative pre-mRNA-splicing factor ATP-

dependent RNA helicase DHX15  
1591.68 

UBP10_HUMAN 3 (3) 130.53 Ubiquitin carboxyl-terminal hydrolase 10  1137.74 

PROF1_HUMAN 2 (2) 129.17 Profilin-1  1322.26 

RAB1B_HUMAN 3 (3) 126.3 Ras-related protein Rab-1B  879.2 

SMD2_HUMAN 3 (3) 126.03 Small nuclear ribonucleoprotein Sm D2  1232.19 

PCNA_HUMAN 3 (3) 126.02 Proliferating cell nuclear antigen  512.16 

RB11A_HUMAN 3 (2) 125.18 Ras-related protein Rab-11A  521.65 

EFTU_HUMAN 2 (2) 123.01 Elongation factor Tu, mitochondrial  1190.6 

MSI2H_HUMAN 2 (2) 122.35 RNA-binding protein Musashi homolog 2  828.59 
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RL7_HUMAN 3 (3) 121.45 60S ribosomal protein L7  2622.87 

RS5_HUMAN 3 (3) 120.46 40S ribosomal protein S5  3132.03 

CH10_HUMAN 2 (2) 120.25 10 kDa heat shock protein, mitochondrial  664.46 

TRAF4_HUMAN 2 (2) 117.22 TNF receptor-associated factor 4  296.79 

RS26_HUMAN 2 (2) 116.95 40S ribosomal protein S26  2290.79 

SRSF9_HUMAN 2 (2) 115.35 Serine/arginine-rich splicing factor 9  473 

RFA2_HUMAN 2 (2) 114.57 Replication protein A 32 kDa subunit  1928.12 

EF1D_HUMAN 2 (2) 112.88 Elongation factor 1-delta  144.2 

TMEDA_HUMAN 2 (2) 107.14 
Transmembrane emp24 domain-containing 

protein 10  
1535.22 

H31T_HUMAN 2 (2) 105.38 Histone H3.1t  10900 

EF2_HUMAN 2 (2) 104.32 Elongation factor 2  125.38 

FUBP2_HUMAN 2 (2) 100.96 Far upstream element-binding protein 2  378.37 

CASPE_HUMAN 2 (2) 100.85 Caspase-14  1171.88 

EMD_HUMAN 2 (2) 100.65 Emerin  362.35 

RL13A_HUMAN 2 (2) 99.28 60S ribosomal protein L13a  1881.3 

FKBP4_HUMAN 2 (2) 98.96 Peptidyl-prolyl cis-trans isomerase FKBP4  549.77 

PA2G4_HUMAN 2 (2) 97.82 Proliferation-associated protein 2G4  1315.58 

PCBP2_HUMAN 2 (2) 96.35 Poly(rC)-binding protein 2  929 

RENT1_HUMAN 2 (2) 96.28 Regulator of nonsense transcripts 1  556.83 

U2AF2_HUMAN 2 (2) 95.89 Splicing factor U2AF 65 kDa subunit  1251.54 

RAN_HUMAN 2 (2) 95.84 GTP-binding nuclear protein Ran  1849.87 

H2A1B_HUMAN 2 (2) 95.17 Histone H2A type 1-B/E  2908.23 

MDHM_HUMAN 2 (2) 94.92 Malate dehydrogenase, mitochondrial  350.27 

CALR_HUMAN 2 (2) 93.89 Calreticulin  272.61 

ALDOC_HUMAN 2 (2) 93.49 Fructose-bisphosphate aldolase C  583.51 

ZC3H4_HUMAN 2 (2) 92.33 Zinc finger CCCH domain-containing protein 4  627.54 

AGO2_HUMAN 2 (2) 91.58 Protein argonaute-2  131.94 

RFA1_HUMAN 2 (2) 91.29 
Replication protein A 70 kDa DNA-binding 

subunit  
1962.12 

SRSF1_HUMAN 2 (2) 91.29 Serine/arginine-rich splicing factor 1  2102.53 

TFAM_HUMAN 2 (2) 90.7 Transcription factor A, mitochondrial  516.49 

HNRH3_HUMAN 2 (2) 90.35 Heterogeneous nuclear ribonucleoprotein H3  612.3 

RL27_HUMAN 2 (2) 89.54 60S ribosomal protein L27  1182 

PARK7_HUMAN 2 (2) 87.02 Protein DJ-1  201.31 

TMED9_HUMAN 2 (2) 86.55 
Transmembrane emp24 domain-containing 

protein 9  
1134.77 

RL9_HUMAN 2 (2) 77.52 60S ribosomal protein L9  1136.15 

PGAM1_HUMAN 2 (2) 77.44 Phosphoglycerate mutase 1  778.04 

DEF1_HUMAN 2 (2) 77.42 Neutrophil defensin 1  52.18 



Chapter 8. Appendix 

 298   

ABC3F_HUMAN 2 (2) 77.35 DNA dC->dU-editing enzyme APOBEC-3F  1268.22 

DEFM_HUMAN 2 (2) 77.03 Peptide deformylase, mitochondrial  1501.04 

XRCC5_HUMAN 2 (2) 76.07 X-ray repair cross-complementing protein 5  1987.86 

RL28_HUMAN 2 (2) 76.06 60S ribosomal protein L28  624.03 

PSB5_HUMAN 2 (2) 74.96 Proteasome subunit beta type-5  87.99 

PHB_HUMAN 2 (2) 74.75 Prohibitin  99.47 

PKP3_HUMAN 2 (2) 72.92 Plakophilin-3  545.32 

RSMN_HUMAN 2 (2) 72.64 
Small nuclear ribonucleoprotein-associated 

protein N  
952.79 

SBSN_HUMAN 2 (2) 72.09 Suprabasin  746.66 

NSUN4_HUMAN 2 (2) 70.17 
5-methylcytosine rRNA methyltransferase 

NSUN4  
5655.63 

1
Accession = SwissProt Protein ID 

2
Peptide count = the number of detected peptides (the number of unique peptides) used for 

quantification 
3
The protein confidence score was generated using Mascot as described in the experimental. 

4
Average normalized abundance of the protein

 
calculated by label-free quantification. 

Ranking is based on Confidence score. 
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Table 8.7 Identification and LC-MS based label-free quantification of PTEN-EGFP binding proteins 

affinity-captured by Co-IP from HCT116 cell lysate showing the protein hits with less than 2 unique 

peptides 

Accession1 Peptides2 Score3 Description 
Average Normalized 

Abundance4 

TBB4B_HUMAN 17 (1) 1040.73 Tubulin beta-4B chain  1992.29 

TBB4A_HUMAN 14 (0) 848.64 Tubulin beta-4A chain  0 

TBB2A_HUMAN 13 (0) 794.9 Tubulin beta-2A chain  0 

PP1G_HUMAN 8 (1) 753.57 
Serine/threonine-protein phosphatase PP1-

gamma catalytic subunit  
4357.34 

TBB3_HUMAN 10 (0) 710.23 Tubulin beta-3 chain  0 

HNRH2_HUMAN 4 (1) 508.27 Heterogeneous nuclear ribonucleoprotein H2  59.33 

YBOX3_HUMAN 4 (1) 361.03 Y-box-binding protein 3  797.79 

HS71L_HUMAN 5 (0) 306.99 Heat shock 70 kDa protein 1-like  0 

TBB6_HUMAN 6 (0) 301.08 Tubulin beta-6 chain  0 

RBP56_HUMAN 3 (1) 257.03 TATA-binding protein-associated factor 2N  3596.86 

MAGB2_HUMAN 1 (1) 178.83 Melanoma-associated antigen B2  547.58 

ENOG_HUMAN 2 (0) 178 Gamma-enolase  0 

RS20_HUMAN 1 (1) 146.03 40S ribosomal protein S20  3920.28 

PAP1M_HUMAN 2 (0) 127.48 Polyadenylate-binding protein 1-like 2  0 

IF4E_HUMAN 1 (1) 120.67 Eukaryotic translation initiation factor 4E  2804.52 

VDAC3_HUMAN 2 (1) 114.71 
Voltage-dependent anion-selective channel 

protein 3  
37.53 

CPNS1_HUMAN 1 (1) 103.02 Calpain small subunit 1  195.69 

S10A9_HUMAN 1 (1) 102.68 Protein S100-A9  3545.53 

RS29_HUMAN 1 (1) 101.88 40S ribosomal protein S29  3013.03 

1433B_HUMAN 2 (1) 101.35 14-3-3 protein beta/alpha  429.28 

TCPA_HUMAN 2 (1) 97.29 T-complex protein 1 subunit alpha  223.89 

TRY3_HUMAN 1 (1) 94.79 Trypsin-3  817.83 

RL21_HUMAN 1 (1) 89.79 60S ribosomal protein L21  1839.78 

PURA_HUMAN 2 (1) 87.17 Transcriptional activator protein Pur-alpha  1442.04 

SC61B_HUMAN 1 (1) 86.94 Protein transport protein Sec61 subunit beta  365.15 

RS23_HUMAN 1 (1) 84.65 40S ribosomal protein S23  829.21 

RAB5C_HUMAN 1 (1) 84.52 Ras-related protein Rab-5C  247.53 

TFCP2_HUMAN 1 (1) 84.41 Alpha-globin transcription factor CP2  1260.22 

PSA3_HUMAN 1 (1) 82.65 Proteasome subunit alpha type-3  122.89 

FILA2_HUMAN 1 (1) 79.56 Filaggrin-2  233.88 

SMD3_HUMAN 1 (1) 79.03 Small nuclear ribonucleoprotein Sm D3  687.63 

TRIP6_HUMAN 2 (1) 78.87 Thyroid receptor-interacting protein 6  1656.89 

ZAGL1_HUMAN 1 (1) 78.8 Putative zinc-alpha-2-glycoprotein-like 1  927.93 

1433S_HUMAN 2 (1) 78.51 14-3-3 protein sigma  97.36 

MIF_HUMAN 1 (1) 77.83 Macrophage migration inhibitory factor  655.62 

RS24_HUMAN 1 (1) 77.01 40S ribosomal protein S24  1508.15 

DAZP1_HUMAN 1 (1) 76.61 DAZ-associated protein 1  279.28 

RU1C_HUMAN 1 (1) 76.22 U1 small nuclear ribonucleoprotein C  431.29 

CYB5B_HUMAN 1 (1) 76.06 Cytochrome b5 type B  147.04 

1433E_HUMAN 2 (1) 75.72 14-3-3 protein epsilon  330.08 

RL27A_HUMAN 1 (1) 75.69 60S ribosomal protein L27a  2669.13 
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C1QBP_HUMAN 1 (1) 75.4 
Complement component 1 Q subcomponent-

binding protein, mitochondrial  
199.12 

S10A8_HUMAN 1 (1) 73.8 Protein S100-A8  525.2 

UBE2N_HUMAN 1 (1) 72.88 Ubiquitin-conjugating enzyme E2 N  132.77 

MGN_HUMAN 1 (1) 72.35 Protein mago nashi homolog  420.71 

EF1G_HUMAN 1 (1) 71.15 Elongation factor 1-gamma  1086.59 

TOM22_HUMAN 1 (1) 69.93 
Mitochondrial import receptor subunit TOM22 

homolog  
48.26 

SRSF3_HUMAN 1 (1) 68.84 Serine/arginine-rich splicing factor 3  1440.7 

ROAA_HUMAN 1 (1) 68.81 Heterogeneous nuclear ribonucleoprotein A/B  144.66 

RL29_HUMAN 1 (1) 68.72 60S ribosomal protein L29  565.93 

HNRPL_HUMAN 1 (1) 67.73 Heterogeneous nuclear ribonucleoprotein L  265.11 

GLU2B_HUMAN 1 (1) 67.28 Glucosidase 2 subunit beta  9.29 

HELZ_HUMAN 1 (0) 65.68 Probable helicase with zinc finger domain  0 

PSA5_HUMAN 1 (1) 62.69 Proteasome subunit alpha type-5  179.69 

RL24_HUMAN 1 (1) 62.42 60S ribosomal protein L24  249.71 

SMN_HUMAN 1 (1) 61.24 Survival motor neuron protein  155.29 

SMD1_HUMAN 1 (1) 60.42 Small nuclear ribonucleoprotein Sm D1  119.05 

RL35_HUMAN 1 (1) 59.67 60S ribosomal protein L35  1183.18 

COF1_HUMAN 1 (1) 59.14 Cofilin-1  939.69 

PNKP_HUMAN 1 (1) 58.85 Bifunctional polynucleotide phosphatase/kinase  168.05 

AIFM2_HUMAN 1 (0) 58.3 Apoptosis-inducing factor 2  0 

SAHH_HUMAN 1 (1) 58.12 Adenosylhomocysteinase  201.19 

RUXF_HUMAN 1 (1) 57.58 Small nuclear ribonucleoprotein F  3.21 

PHB2_HUMAN 1 (1) 57.44 Prohibitin-2  174.98 

HNRDL_HUMAN 1 (1) 56.58 
Heterogeneous nuclear ribonucleoprotein D-

like  
430.04 

DRG1_HUMAN 1 (1) 56.27 
Developmentally-regulated GTP-binding 

protein 1  
167.9 

RL15_HUMAN 1 (1) 55.83 60S ribosomal protein L15  635.15 

MDHC_HUMAN 1 (1) 55.46 Malate dehydrogenase, cytoplasmic  35.71 

TFG_HUMAN 1 (1) 55.11 Protein TFG  1369.61 

TBP_HUMAN 1 (1) 53.01 TATA-box-binding protein  700.48 

ILF3_HUMAN 1 (0) 52.69 Interleukin enhancer-binding factor 3  0 

SET_HUMAN 1 (1) 51.91 Protein SET  112.79 

IDHP_HUMAN 1 (1) 51.63 
Isocitrate dehydrogenase [NADP], 

mitochondrial  
103.71 

CLIC1_HUMAN 1 (1) 51.61 Chloride intracellular channel protein 1  54.02 

DHSO_HUMAN 1 (1) 51.2 Sorbitol dehydrogenase  218.78 

RT07_HUMAN 1 (1) 50.67 28S ribosomal protein S7, mitochondrial  110 

LMNA_HUMAN 1 (1) 50.64 Prelamin-A/C  214.76 

FEN1_HUMAN 1 (1) 49.83 Flap endonuclease 1  86.84 

T2FB_HUMAN 1 (1) 49.81 General transcription factor IIF subunit 2  190.01 

RL38_HUMAN 1 (1) 49.73 60S ribosomal protein L38  10400 

ERH_HUMAN 1 (1) 48.89 Enhancer of rudimentary homolog  472.72 

PSA6_HUMAN 1 (1) 48.61 Proteasome subunit alpha type-6  85.81 

MPCP_HUMAN 1 (1) 48.46 Phosphate carrier protein, mitochondrial  91.38 

GRSF1_HUMAN 1 (1) 47.96 G-rich sequence factor 1  298.5 

RANG_HUMAN 1 (1) 47.52 Ran-specific GTPase-activating protein  120 

CDC37_HUMAN 1 (1) 47.29 Hsp90 co-chaperone Cdc37  27.07 
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RLA1_HUMAN 1 (1) 47.13 60S acidic ribosomal protein P1  1296.3 

SRP14_HUMAN 1 (1) 46.93 Signal recognition particle 14 kDa protein  549.54 

F195A_HUMAN 1 (1) 46.31 Protein FAM195A  0 

PDCD6_HUMAN 1 (1) 46.05 Programmed cell death protein 6  325.48 

HMGA1_HUMAN 1 (1) 45.97 High mobility group protein HMG-I/HMG-Y  505.11 

PRDX3_HUMAN 1 (1) 45.78 
Thioredoxin-dependent peroxide reductase, 

mitochondrial  
50.93 

RLA2_HUMAN 1 (1) 45.53 60S acidic ribosomal protein P2  534.58 

S10A6_HUMAN 1 (1) 45.46 Protein S100-A6  70.59 

PRKRA_HUMAN 1 (1) 45.44 
Interferon-inducible double stranded RNA-

dependent protein kinase activator A  
224.79 

TCPZ_HUMAN 1 (1) 45.14 T-complex protein 1 subunit zeta  208.59 

BAF_HUMAN 1 (1) 45.03 Barrier-to-autointegration factor  356.67 

BASI_HUMAN 1 (1) 44.85 Basigin  704.93 

RS12_HUMAN 1 (1) 44.38 40S ribosomal protein S12  948.56 

NPM_HUMAN 1 (1) 44 Nucleophosmin  356.12 

LAT1_HUMAN 1 (1) 43.69 
Large neutral amino acids transporter small 

subunit 1  
189.41 

NOLC1_HUMAN 1 (1) 43.66 Nucleolar and coiled-body phosphoprotein 1  223.89 

CSK2B_HUMAN 1 (1) 43.09 Casein kinase II subunit beta  73.7 

GBLP_HUMAN 1 (1) 42.78 
Guanine nucleotide-binding protein subunit 

beta-2-like 1  
168.56 

PEBP1_HUMAN 1 (1) 42.69 Phosphatidylethanolamine-binding protein 1 3 89.43 

RSSA_HUMAN 1 (1) 42.39 40S ribosomal protein SA  897.73 

SPAT7_HUMAN 1 (1) 42.38 Spermatogenesis-associated protein 7  253.46 

PEBB_HUMAN 1 (1) 41.95 Core-binding factor subunit beta  312.74 

RUXE_HUMAN 1 (1) 41.83 Small nuclear ribonucleoprotein E  557.41 

TADBP_HUMAN 1 (1) 41.62 TAR DNA-binding protein 43  584.43 

MYL6_HUMAN 1 (1) 41.59 Myosin light polypeptide 6  99.77 

STAU2_HUMAN 1 (1) 41.44 
Double-stranded RNA-binding protein Staufen 

homolog 2  
398.36 

LRC59_HUMAN 1 (1) 41.39 Leucine-rich repeat-containing protein 59  379.93 

HEM6_HUMAN 1 (1) 41.17 Coproporphyrinogen-III oxidase, mitochondrial  78.35 

PEX1_HUMAN 1 (1) 41.16 Peroxisome biogenesis factor 1  54.99 

NC2B_HUMAN 1 (1) 41.06 Protein Dr1  158.2 

RAB10_HUMAN 1 (1) 40.75 Ras-related protein Rab-10  134.63 

STAU1_HUMAN 1 (1) 40.43 
Double-stranded RNA-binding protein Staufen 

homolog 1  
189.77 

SLBP_HUMAN 1 (1) 39.85 Histone RNA hairpin-binding protein  65.97 

ADT2_HUMAN 1 (1) 39.76 ADP/ATP translocase 2  296000 

TMED2_HUMAN 1 (1) 39.61 
Transmembrane emp24 domain-containing 

protein 2  
268.5 

ADT1_HUMAN 1 (1) 39.08 ADP/ATP translocase 1  41.13 

SPTN5_HUMAN 1 (1) 39.02 Spectrin beta chain, non-erythrocytic 5  366.57 

DHX30_HUMAN 1 (1) 38.93 Putative ATP-dependent RNA helicase DHX30  69.72 

RL36_HUMAN 1 (1) 38.85 60S ribosomal protein L36  164.81 

CDC20_HUMAN 1 (1) 38.81 Cell division cycle protein 20 homolog  59.46 

RUVB2_HUMAN 1 (1) 38.77 RuvB-like 2  155.57 

RL18A_HUMAN 1 (1) 38.22 60S ribosomal protein L18a  394.02 

PM14_HUMAN 1 (1) 37.94 Pre-mRNA branch site protein p14  191.92 

ARF5_HUMAN 1 (1) 37.84 ADP-ribosylation factor 5  88800 
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KCRB_HUMAN 1 (1) 37.8 Creatine kinase B-type  223.07 

LPIN2_HUMAN 1 (0) 37.38 Phosphatidate phosphatase LPIN2  0 

ARF1_HUMAN 1 (1) 37.14 ADP-ribosylation factor 1  209.35 

SPB4_HUMAN 1 (1) 37.06 Serpin B4  243.67 

HS74L_HUMAN 1 (1) 36.9 Heat shock 70 kDa protein 4L  783.48 

LS14A_HUMAN 1 (1) 36.68 Protein LSM14 homolog A  545.87 

LEKR1_HUMAN 1 (1) 36.45 Leucine-, glutamate- and lysine-rich protein 1  51.2 

GAR1_HUMAN 1 (1) 36.29 H/ACA ribonucleoprotein complex subunit 1  692.14 

RL10A_HUMAN 1 (1) 36.09 60S ribosomal protein L10a  3118.37 

CYTA_HUMAN 1 (1) 35.87 Cystatin-A  563.08 

RAB21_HUMAN 1 (1) 35.8 Ras-related protein Rab-21  54.87 

TAGL2_HUMAN 1 (1) 35.62 Transgelin-2  64.6 

BUB3_HUMAN 1 (1) 35.57 Mitotic checkpoint protein BUB3  349.19 

PLAK_HUMAN 1 (1) 35.43 Junction plakoglobin  56.92 

ISG15_HUMAN 1 (1) 35.38 Ubiquitin-like protein ISG15  21.61 

PRDX2_HUMAN 1 (1) 35.38 Peroxiredoxin-2  13700 

ARHGH_HUMAN 1 (1) 35.21 Rho guanine nucleotide exchange factor 17  5844.16 

TSN10_HUMAN 1 (0) 35.02 Tetraspanin-10  0 

RL3_HUMAN 1 (1) 34.82 60S ribosomal protein L3  288.86 

PAIRB_HUMAN 1 (1) 34.76 
Plasminogen activator inhibitor 1 RNA-binding 

protein  
313.65 

FBRL_HUMAN 1 (1) 34.66 rRNA 2'-O-methyltransferase fibrillarin  239.72 

ATPO_HUMAN 1 (1) 33.48 ATP synthase subunit O, mitochondrial  36.08 

MIO_HUMAN 1 (1) 33.43 WD repeat-containing protein mio  1401.25 

RL36A_HUMAN 1 (1) 33.17 60S ribosomal protein L36a  127.58 

RS27A_HUMAN 1 (1) 32.95 Ubiquitin-40S ribosomal protein S27a  319.89 

SF01_HUMAN 1 (1) 32.64 Splicing factor 1  422.06 

CLP1_HUMAN 1 (1) 32.15 Polyribonucleotide 5'-hydroxyl-kinase Clp1  51.96 
1
Accession = SwissProt Protein ID 

2
Peptide count = the number of detected peptides (the number of unique peptides) used for 

quantification 
3
The protein confidence score was generated using Mascot as described in the experimental 

4
Average normalized abundance of the protein

 
calculated by label-free quantification  

Ranking is based on Confidence score. 
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8.6 Uncropped Western blot scans 

For all the uncropped Western blot scans shown in this section, the dashed red boxes mark the 

borders of cropped area used to generate the corresponding figure shown in the main body of the 

thesis. The molecular weight markers are shown on the left. The detected protein is indicated on the 

right, and the antibody used is indicated at the bottom. 

8.6.1 Uncropped scans of Western blots presented in Figure 4.6 

Along the top of each Western blot scan shown are indicated the bait protein(s) and any oxidizing 

and/or reducing treatments performed on the PTEN-GST bait. 



Chapter 8. Appendix 

 304   

 

Figure 8.3 Uncropped scans of the Western Blots presented in Figure 4.6 (A). 
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Figure 8.4 Uncropped scans of the Western Blots presented in Figure 4.6 (B). 
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Figure 8.5 Uncropped scans of the Western Blots presented in Figure 4.6 (C). 
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Figure 8.6 Uncropped scans of the Western Blots presented in Figure 4.6 (D). 
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8.6.2 Uncropped scans of Western blots presented in Figure 5.2 and Figure 5.4 

Along the top of each Western blot scan shown are indicated the sample type and any oxidizing 

and/or reducing treatments performed on the HCT116 cells. 

 

 

Figure 8.7 Uncropped scan of the Western blot presented in Figure 5.2.  

IP = immunoprecipitation. NC = negative control. 
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Figure 8.8 Uncropped scans of Western blots presented in Figure 5.4 (A). 
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Figure 8.9 Uncropped scans of Western blots presented in Figure 5.4 (B). 
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Figure 8.10 Uncropped scans of Western blots presented in Figure 5.4 (B, continued). 

 




