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Abstract 

 

Several studies show that membrane transport mechanisms are regulated by signalling molecules. 

Recently, genome-wide screen analyses in C.elegans have enabled scientists to identify novel 

regulators in membrane trafficking and also signalling molecules which are found to couple with this 

machinery. Fibroblast growth factor (FGF) via binding to fibroblast growth factor receptor (FGFR) 

mediate signals which are essential in the development of an organism, patterning, cell migration and 

tissue homeostasis. Impaired FGFR-mediated signalling has been associated with various 

developmental, neoplastic, metabolic and neurological diseases and cancer. In this study, the 

potential role of FGFR-mediated signalling pathway as a regulator of membrane trafficking was 

investigated.  The GFP-tagged yolk protein YP170-GFP trafficking was analysed in worms where 1) 

FGFR signalling cascade components were depleted by RNAi and 2) in mutant animals. From these 

results, it was found that the disruption of the genes egl-15 (FGFR), egl-17(FGF), let-756(FGF), sem-5, 

let-60, lin-45, mek-2, mpk-1 and plc-3 lead to abnormal localization of YP170-GFP, suggesting that 

signalling downstream of FGFR via activation of MAPK and PLC-γ pathway is regulating membrane 

transport.  The route of trafficking was further investigated, to pinpoint which membrane step is 

regulated by worm FGFR, by analysing a number of GFP-tagged intracellular membrane markers in the 

intestine of Wild Type (WT) and FGFR mutant worms. FGFR mutant worms showed a significant 

difference in the localisation of several endosomal membrane markers, suggesting its regulatory role 

in early and recycling steps of endocytosis. Finally, the trafficking of transferrin in a mammalian 

NIH/3T3 cell line was investigated to identify the conservation of these membrane trafficking 

regulatory mechanisms between organisms. Results showed no significant changes in transferrin 

trafficking upon FGFR stimulation or inhibition.  
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1 INTRODUCTION 

A protein which is produced within a cell has to reach its correct destined location not only for  

proper cellular function but also to provide the impetus for cell growth and cell expansion 

(Barlowe & Miller 2013). Some of these proteins are transported to a particular organelle 

within the cell (intra-cellular) or to the cell surface for the transportation to another cell (inter-

cellular) (Figure 1.1). For example, transporter proteins and many hormone receptor proteins 

have to be delivered to plasma membrane, water soluble enzymes such as RNA and DNA 

polymerases must be targeted to the nucleus and some polypeptide signalling molecules and 

digestive enzymes have to be directed to the cell surface for secretion from the cell. The 

molecular mechanisms involved in membrane trafficking have been progressively elucidated 

in the last few decades and the underlying machinery is complex including events like 

membrane bending, fission, fusion, coating and sorting (M. C. S. Lee et al. 2004; Sallese et al. 

2006)  

Figure 1.1: An overview of endocytic and secretory pathway (Tokarev et al. 2000) .  
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1.1 Overview of secretory and endocytic pathways of protein sorting 

1.1.1  Secretory Pathway: 

Almost all eukaryotic cells use the same secretory pathway for protein sorting which include 

the secreted proteins and the ones that reside inside the endoplasmic reticulum (ER), Golgi and 

lysosomes. These are collectively referred to as secretory proteins. Secretory pathway consists 

of three steps; 

1. Protein synthesis and translocation across the ER membrane 

2. Protein modification (folding and assembly) inside the ER. 

3. Protein transport through budding and fusing of vesicles to Golgi, lysosomes or cell 

surface. 

Thus soluble and membrane proteins slated to function at the cell surface are delivered to their 

final destination via secretory pathway (Figure 1.2). 

The newly produced soluble and membrane proteins are translocated into the rough ER where 

they are modified by the addition of N-linked carbohydrates and disulphide bonds (Lodish et 

al. 2000). After folding they progress through the Golgi where they can still be modified for 

example, by the addition of O-linked oligosaccharides (Alberts et al. 2002). The secretory 

proteins are packaged into forward moving vesicles which fuse with each other to form a 

flattened membrane bound compartment known as cis-Golgi cisterna. The new set of cargo 

proteins mechanically move from the cis position (near to ER) to a trans position (farther to 

ER) forming a medial-Golgi cisterna and then a trans-Golgi cisterna. This whole process is 

called the cisternal maturation (Lodish et al. 2000). Eventually these secretory proteins reach a 

complex network of membranes and vesicles termed as trans-Golgi network (TGN).  

The continuous flow of membranes from ER to the Golgi (anterograde transport) could result 

in depletion of ER membranes and extension of Golgi, therefore in order to maintain the 

balance of structural and functional identities of these endomembranes some protein and lipids 

are recycled back to the ER and this is commonly referred to as retrograde transport. 



21 | P a g e  
 

The components of the secretory pathway are universal and they are very similar from yeast to 

animals (J E Rothman & Orci 1992).  The cargo carrying vesicles are delivered to the plasma 

membrane either through the trans-Golgi network or through the recycling endosomes (Brooks 

et al. 2009). The Golgi is assembled into three functionally distinct regions namely the cis-

Golgi network (the entry face of the stack), the Golgi stack and the trans-Golgi network (the 

exit face of the stack). The cis and trans-Golgi are mainly involved in sorting and distribution. 

The proteins with different final destinations such as the lysosomes, endosomes and plasma 

membrane are sorted and arranged for their specific route in the TGN (James E. Rothman & 

Orci 1992; Griffiths & Simons 1986).  

Figure 1.2: Diagrammatic representation of exocytosis; release of neurotransmitter 

molecules into the extracellular space (Haucke et al. 2011).  
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The content inside the vesicles are typically membrane proteins routed to the cell surface or 

luminal contents destined to be secreted into the extracellular space or organelles, like 

lysosomes. The other cellular functions in which exoctyosis are involved are cell-cell 

communications, cell polarity, immune responses and neurotransmission (Brooks et al. 2009).  

After sorting at the TGN exocytosis pathway follows two different routes, the 

continuous delivery of membrane and cargo to the cell surface called constitutive secretion and 

the regulated secretion involving the redirection and of newly synthesised cargo in vesicles 

which are stored until they are triggered for a release by a signal (Stow et al. 2009).  

Following the synthesis and modification of secretory proteins, they become fully competent 

to be transported forward (anterograde) with different transport vesicles to their respective 

destinations (Barlowe & Miller 2013). COPII coat, like other coat protein complexes help in 

creating a spherical vesicle from ER donor membrane and populate it with cargoes (Barlowe 

1994). COPII also plays a major role in selective capture of cargoes in transport vesicles by 

recognizing specific sorting signals like simple acidic peptides (Malkus et al. 2002) to folded 

epitopes (Mancias & Goldberg 2007). The role of COPI is well established with the vesicles 

transported from Golgi to ER (retrograde trafficking). Similar to COPII, COPI assembly on the 

membrane is facilitated by small GTPase ARF1 which helps in membrane anchorage (Antonny 

et al. 1997).  

There are two major molecular complexes conserved in most exocytic events namely 

the exocyst and the soluble N-ethylmaleimide sensitive factor attachment protein receptor 

complex (SNARE) (With the aid of various effector molecules, these complexes coordinate 

tethering, docking and fusion of vesicles with the plasma membrane (Brooks et al. 2009).  

The attachment of secretory vesicles with target membranes is mediated by the exocyst 

complex (Pfeffer 1999; Guo et al. 2000). The exocyst is an evolutionary conserved octamer 

complex composed of Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84 (Liu & Guo 
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2012). The exocyst complex tethers secretory vesicles to plasma membrane via a direct 

association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) (Martin 2014). RAB 

GTPases such as RAB11, and several other GTPase proteins such as Rho3, Cdc42 or Tc10 

(orthologue of Cdc42 in mammals) mediate specific routing and tethering of vesicles to the 

plasma membrane through interactions with the exocyst  (Brooks et al.,2009). The exocyst 

complex is tightly regulated by integration of key regulators of membrane trafficking such as 

RAB and ARF GTPases (Guo et al. 1999).  

The second major complex involved in exocytosis is the SNARE complex. The SNARE 

complex was hypothesised in 1993 (Söllner et al. 1993). The SNARE complexes mediate 

membrane fusion along the secretory and endocytic pathways. There are two different SNARE 

groups namely the t-SNARE and the v-SNARE. All SNARE complexes contain approximately 

70 amino acids comprising heptad repeats (a structural motif that consists of a repeating pattern 

of seven amino acids) and function on both target membranes (t-SNAREs) and transport 

vesicles (v-SNAREs)(Hong & Lev 2014). The t-SNAREs such as syntaxin1 and Sec9 are found 

on the inner plasma membrane denote the target membrane and the v-SNARE which are found 

on different membrane compartments denote the vesicular membrane (Stow et al. 2006; Shorer 

et al. 2005; Brooks et al. 2009). The t-SNARE and the v-SNARE pair with each other to form 

a trans-SNARE complex also called SNAREpin which consists of four helix bundle that allows 

membranes to get closer to each other and facilitate membrane fusion (Brooks et al. 2009). 

Following membrane fusion, the remaining SNARE complexes called the cis-SNARE complex 

undergoes disassembly initiated by the ATPase N-ethylmaleimide-senstive fusion protein 

(NSF) and its co-factor soluble NSF attachment protein (SNAP) to recycle SNARE for a new 

fusion event (Olkkonen & Ikonen 2006; Hong & Lev 2014). The other classification of SNARE 

complexes was based on the crystal structure of synaptic SNARE complex [(Syntaxin [Stx] 

1A, synaptobrevin2 and Synaptosome associated protein (SNAP)-25B)]. The crystal structure 
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revealed that the central position of the four-helix bundle is comprised of an arginine 

contributed by synaptobrevin and three glutamine residues contributed by Stx1A and SNAP-

25. Thus, these structural revelations led to the further classification of SNAREs as R-SNARE 

and Q-SNARE (Pieren et al. 2010). Thus a functional SNARE complex constitutes three Q-

SNARE motifs and a single R-SNARE motif. R-SNAREs are generally related to v-SNAREs 

and Q-SNAREs related to t-SNAREs (Hong & Lev 2014).  

Sec1/Munc18 (SM) proteins and several tethering factors are involved in the regulation of 

exocyst and SNARE complexes. SM proteins are considered to be vital components of the 

fusion processes and they are found to accelerate SNARE mediated fusion and contribute to 

the specificity of various fusion events (Südhof & Rothman 2009)(Shen et al. 2007). The four 

major SM proteins identified in mammals are Sly1, Vps45, Vps33 and Munc18. A recent study 

on Vps33 suggest that SM proteins promote the opening of a fusion pore by triggering the 

SNARE complexes (Pieren et al. 2010).  

The tethering factors are a group of protein complexes that link the transport vesicles to their 

respective target membranes. Tethering factors are classified into two major categories such as 

homodimeric long coiled-coil proteins and multi-subunit tethering complexes (MTCs). Their 

function is based on the distance between two vesicles. The long coiled tethers interact with 

vesicles over a distance of 200nm whereas the multi-subunit tethering complexes interact with 

vesicles over a much shorter distance up to 30nm (Hong & Lev 2014) (Chia & Gleeson 2014).  

Thus these interactions between exocyst, SM proteins, tethering factors and SNARE 

complexes spatially and temporally organise fusion events at specific membrane compartments 

(Hong & Lev 2014).  
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1.1.2 Endocytic Pathway 

 

Endocytosis is the process by which vesicles bud inwards at the plasma membrane thereby 

bringing proteins inside the cell where they are either sorted to lysosomes via late endosomes 

or are recycled back to the cell surface (Hancock, 2005).  

Based on the material internalised, endocytosis can be broadly divided into two categories. 

Phagocytosis (cell eating) refers to internalisation of large molecules (>200nm) through an 

actin cytoskeleton based mechanism and Pinocytosis (cell drinking) is the internalisation of 

extracellular medium and occur via mechanisms such as clathrin-dependent endocytosis, 

caveolae-mediated endocytosis, macropinocytosis and dynamin–clathrin independent 

endocytosis (Seto et al. 2002). Cholesterol carried in LDL particles and iron atoms carried by 

the iron binding protein transferrin are examples of transmembrane cargo proteins that follow 

the endocytic pathway (Lodish et al. 2000). 

 

By far the best characterised route of internalization of various cell surface components and 

solutes is the clathrin-mediated endocytosis pathway. Clathrin dependent uptake takes place at 

specialized sites where complex coated pits are assembled in order to internalize surface 

proteins. The two major proteins involved in this coated pit assembly are clathrin and AP-2 

along with several other accessory proteins. The structure of clathrin (Figure 1.3), a triskelion 

involves three heavy chains and three light chains (Schmid 1997; Greene et al. 2000). The 

clathrin heavy chain has functionally distinct regions namely, an N terminal domain which 

interacts with a number of endocytic proteins such as AP-2, a curved region which divides the 

polypeptide into distal and proximal leg and the C terminal domain that forms trimerization 

(Liu et al. 1995).  Both the distal and proximal legs are essential to form closed basket structures 

and the proximal leg also facilitates the binding of clathrin light chains (Schmid 1997; 
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Kirchhausen 2000; Ybe et al. 1998). The clathrin light chains exist in two isoforms and  they 

are involved in regulating the assembly of clathrin triskelion (Ybe et al. 1998).  

 Clathrin-dependent endocytosis forms nascent vesicles using a clathrin coat (Seto, Bellen and 

Lloyd, 2002) and these clathrin coats (coated pits) are basket like structures around budding or 

invaginating membranes and vesicles (Robinson. 1994). Though these clathrin coats act as 

scaffolds they cannot bind directly to the membrane. This binding is mediated by clathrin 

adaptors which can bind directly to clathrin or lipid components of the membranes. So far six 

members of the clathrin adaptor complex have been identified in mammals. AP-1A, AP-2, AP-

3A, and AP-4 are widely expressed and AP-5 and AP-6 are cell specific isoforms of AP-1A 

and AP-3A (Ohno 2006). AP-2 is a large protein complex consisting of four subunits α, β2, µ2 

and δ2. α subunit is involved in driving AP-2 to the plasma membrane as well as make it 
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interact with other endocytic proteins. The binding sites on the β2 subunit facilitates the binding 

of AP-2 to clathrin (Rapoport et al. 1998) and the µ2 subunit contains a phosphoinositide 

binding site which helps in the recognition and sorting of cargo proteins (Rohde et al. 2002). 

The coated pits form at specific sites at the plasma membrane and these are called “coated pit 

zones” (Santini et al. 2002). The mechanisms and membrane factors that define these coated 

pit zones are not fully clear but phosphoinositides (PI) are found to play a major role (Vicinanza 

et al. 2008). PIs constitute less than 10% of total lipids yet they remain key regulators of 

membrane traffic and cell signalling (Haucke, 2005).  

 

Phosphoinositides: 

Phosphoinositides are phosphorylated intermediaries of phosphoinositol (PI) and is 

involved in several important cellular functions (Figure 1.4) including membrane trafficking 

(Vicinanza et al. 2008). All adaptor proteins that induce clathrin assembly are found to interact 

with phosphoinositides and especially PIP2 and PIP3 have been found to be important for both 

constitutive and regulated endocytosis (Mousavi et al. 2004). Plasma membrane PI(4,5)P2 is 

directly involved in  regulating clathrin mediated endocytosis and many of the clathin adaptors 

such as Epsin, AP180, Ent2p and AP-2 directly bind to PI(4,5)P2. After internalization, 

PI(4,5)P2 is rapidly dephosphorylated by lipid phosphatases (synaptojanin family) and this 

dephosphorylation is vital for the disassembly of clathrin coats at endocytic vesicles (Haffner 

et al. 2000). PI(4,5)P2 is also dephosphorylated by 5-phosphatase OCRL1 that localizes to early 

endosomes and golgi compartment (Loi, 2006).  
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Figure 1.4: Phosphoinositides regulation of membrane traffic. PI(4,5)P2 (blue) is essential 

for the formation of clathrin coated pits, macropninocytosis and fusion of secretory vesicles. 

PI(3)P (green) is localised in early endosomes and vesicles inside multivesicular bodies 

(MVB). PI(3)P is converted to PI(3,5)P2 at the boundary of MVB. PI(4)P is localised to golgi 

and TGN complex (Haucke, 2005).  

 

AP-2: 

The conventional view is that AP-2 regulates the localization of clathrin assembly at 

plasma membrane. AP-2 consists of two binding sites for phosphoinsositides at both the N 

terminal region of the α subunit and the other on µ2 subunit (Musacchio et al. 1999; Kelly 

1999). These two large subunits form the core domain of AP-2 and thus by associating with 

clathrin, accessory endocytic proteins, cargo receptors and membrane lipids they serve as the 

core protein recruitment hub during clathrin coated pit assembly (Praefcke et al. 2004). The 
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other accessory proteins such as AP180, epsins, Eps15, endophilins and amphyphysin function 

as adaptors (Figure 1.5) (Gallop & McMahon 2005). The current view of the coated pit 

formation is that the endocytic adaptors specify the location of clathrin assembly on the plasma 

membrane and they continue to recruit and promote clathrin polymerization (Shih et al. 1995).  

Targeting AP-2 to plasma membrane does not entirely rely on PI(4,5)P2 binding. Although 

PI(4,5)P2 is predominantly located at the plasma membrane, they are also found on the trans-

golgi network and therefore integral membrane proteins in addition to lipids may play a role in 

determining nucleation sites for clathrin assembly (Martin 2001). For example, surface 

receptors may recruit AP-2 and initiate the nucleation of clathrin coated pits (Iacopetta et al. 

1988). AP-1 localises to vesicles that bud from trans-Golgi network whereas AP-2, AP-3 and 

AP-4 localises to the vesicles at the plasma membrane and has the dual role of binding the 

clathrin coat to the membrane and also recruits cargo proteins into the pits (Smythe 2002; I S 

Trowbridge, J F Collawn 1993; Ohno 2006). These clathrin adaptor complexes are also found 

to regulate vesicular transport of cargo across different membranes (Ohno 2006).  
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Figure 1.5: Schematic diagram showing proteins involved in endocytosis and illustration of 

the recruitment role of AP-2. Amphiphysin, Epsin, Epsin15, Auxilin, and AP180 all bind to 

the same site on AP-2 α appendage domain in a regulatory manner at coated vesicle assembly 

(Pearse et al. 2000).  

 

Dynamin: 

Dynamin is another high molecular mass protein which plays a crucial role in 

endocytosis. They have an N terminal GTPase domain involved in binding and hydrolysis of 

GTP. The core central regions contains a pleckstrin homology domain (PH) which binds 

specifically to PI(4,5)P2 and the C terminal region consists of a coiled coil structure called 

GTPase effector domain. Following the GED domain is the PRD domain (proline-rich domain) 

which interacts with proteins containing SH3 domains such as amphiphysin, endophilin and 

actin-binding proteins. Dynamin is targeted to clathrin coated pits to form small spirals at the 

necks of coated pits and this achieved by SH3 binding domain within the PRD domain. 

Amphiphysin proteins containing SH3 domains link dynamin to the clathrin coated pits by 

binding both to the PRD domain of dynamin and to the adaptor protein AP-2 (Robinson. 1994).  

 

Coat Proteins: 

Coat proteins play a major role in regulation of endocytic traffic (Okamoto, 1998). 

Intracellular sorting of cargo, condensing cargo and their respective receptors into nascent 

vesicles, and targeting vesicles from donor compartment to recipient compartment are some of 

the functions of coat proteins (Okamoto, 1998). It is hypothesised that the tight regulation of 

cargos could be accomplished by specific classes of coat proteins that selectively inhibit or 

enhance specific vesicular trafficking steps. This hypothesis is further strengthened by the 

discovery of the coat protein β-NAP, a neuron specific vesicle coat protein which mediates 
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only apical transport in polarised cells (Lori S Newman, Matthew O McKeever, Hirotaka J 

Okano, 1995).  

Caveolae-mediated endocytosis is another process of endocytosis which is believed to 

aid in receptor-mediated endocytosis in many but not all cell types. Caveoli are small flask 

shaped structures enriched in cholesterol and sphingolipids (Seto, Bellen and Lloyd, 2002). 

Caveoli are covered by a single major coat protein called caveolin (Fra et al., 1995). The dual 

localization of caveolae as membrane invaginations at the plasma membrane and in the trans-

Golgi network suggest that they could aid in membrane trafficking both from the Golgi and 

from the plasma membrane (Patton, 1996).  

Macropinocytosis is the third type of endocytosis similar to phagocytosis where large 

vesicles are formed to engulf extracellular fluid. All three above mentioned processes of 

endocytosis are dynamin dependent. Yet, studies suggest that there is another route of 

endocytosis which is dynamin- and clathrin- independent (Seto, Bellen and Lloyd, 2002) 

(Sandvig, 1994) 

 

Sorting in the endosome: 

The first stop of compartmentalization of internalised components is the early 

endosomes. From here, the destinies of the components are determined depending on their 

utility. If they are to be reutilized, they are then recycled back to the plasma membrane whereas 

molecules that are to be degraded or down regulated are transported to the late endosomes and 

to the lysosomes (Cavalli, Corti and Gruenberg, 2001). Endosomes are tubulovesicular 

structures of various shapes and sizes (Schwartz 1995; Geuze et al. 1987; Geuze et al. 1983). 

Immediately following endocytosis, ligands encounter endosomes. According to their distinct 

functions and roles, several types of compartments have been identified such as early 

endosomes, late endosomes, recycling endosomes and lysosomes (Huotari & Helenius 2011). 
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Lysosomes are organelles that store hydrolases and are considered to be the final destination 

where proteolytic degradation takes place (Diering & Numata 2014).  

The regulation of endosomal pH is one of the important factors essential for the proper routing 

of molecules along the endocytic pathways. Studies suggest that early endosome maintain a 

pH of 6.5 followed by large endosomes with a pH of 5-5.5 and the more acidic lysosomes with 

a pH of 4.6 (Schwartz 1995). 

 The maturation model of endosomes state that they are transient and undergo defined 

stages as they mature along the endocytic pathway. The process of maturation is characterised 

by four changes, 1. An increase in number of intraluminal vesicles; 2. An increase in luminal 

acidification; 3. Movement in space from cell boundary to microtubule organising center 

(MTOC); and 4. Switching of different Rab proteins (Hu et al. 2015). Immediately after 

endocytosis, endocytic vesicles fuse into each other or pre-existing early endosomes with the 

help of  GTPase Rab5 (Laifenfeld et al. 2007). Early endosomes are mostly formed around the 

cell periphery with a slightly acidic intraluminal pH which helps in ligand receptor dissociation. 

Early endosomes play an important sorting by recycling ligands back to plasma membrane for 

reuse or to late endosomes and to lysosomes for degradation (Li & DiFiglia 2012; Peters et al. 

2001). As internal vesicles bud from the membrane of endosomes, the number of intraluminal 

vesicles increases and thereby maturing from early endosomes to late endosomes and thus 

create multivesicular bodies. The maturation from early to late endosomes is accompanied by 

the transition of Rab5 to Rab7 and this process is called Rab conversion (Poteryaev et al. 2010). 

Late endosomes or MVBs then finally fuse into lysosomes and intraluminal vesicles are 

degraded.  

On this endo-lysosomal network, the internalized cargo can be subjected to two 

opposing cargo sorting systems. 1. The internalized cargo is trafficked to late endosomes and 

routed to lysosomes for degradation via the ESCRT system or, 2. It is transported to TGN or 
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cell surface for reuse via the retromer system (Hu et al. 2015). In the pathway promoting 

degradation, cargo proteins are transported to lysosomes and this process is initiated by cargo 

sorting receptor ESCRT (Endosomal sorting complexes required for transport) in a signal 

dependent manner. These ESCRT complexes recognise and sort ubiquitinated endosomal 

proteins for degradation (Raiborg & Stenmark 2009). The ESCRT machinery consists of four 

distinct protein complexes namely ESCRT-0, I, II and III and these are named according to the 

order of recruitment and function in sorting ubiquitin dependent cargo into MVBs (Stuffers et 

al. 2009).  On the other hand, the primary function of retromer system is to conduct cargo 

sorting from the endosomes to TGN or to the plasma membrane via recycling pathways by 

various sorting receptors and SNAREs (Huotari & Helenius 2011). 
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Figure 1.6: Schematic representation of endosomal sorting pathways. Cargo in the 

endosome is sorted into their degradative pathway and eventually led into lysosomes for 

degradation or into a retrograde pathway for reuse. Components that are crucial in each of 

these pathways are listed (Burd & Cullen 2014). 

 

Role of ubiquitin in membrane trafficking 

Ligand induced activation of transmembrane receptors promotes activation of 

signalling cascades that control cellular processes such as cell migration, proliferation, 

differentiation and survival. Receptor signalling is well regulated and controlled to achieve the 
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best possible outcome. One such controlling mechanism is the ubiquitylation of  receptors that 

negatively regulate receptor signalling (Haglund & Dikic 2012).  

Ubiquitin is a small 8kDa protein which covalently attaches to the lysine residues of target 

protein through Ub ligases (E3 enzymes) (Mukhopadhyay & Riezman 2007). Ubiquitylation 

is more like a signal that is required for degradative receptor sorting into MVEs and lysosomal 

degradation (Katzmann et al. 2002; Raiborg et al. 2002; Raiborg & Stenmark 2009) and is 

supported by the evidence that ubiquitin fused to transferrin receptors prevented them from 

recycling back to the plasma membrane and instead routed them to degradative endosomal 

sorting (Raiborg et al. 2002). 

Following internalization by either clathrin independent or clathrin dependent, receptors are 

directed to early endosomes (Sorkin & von Zastrow 2009) and from here these receptors are 

recycled back to plasma membrane for further signalling activation or targeted to lysosomes 

for signal termination (Raiborg and Stenmark, 2009).  

Extensive studies in the last two decades have shown the importance of receptor ubiquitylation 

in regulating receptor endocytosis and degradative endosomal receptor sorting. Initially the 

role of ub in receptor endocytosis and endosomal receptor degradation was observed in 

saccharomyces cerevisiae where monoubiquitylation of the uracil permease alone induced 

endocytosis  (Galan & Haguenauer-Tsapis 1997). Later studies on mammalian cells showed 

that fusion of ubiquitin to different types of receptors can promote endocytosis and endosomal 

sorting for degradation. Ubiquitylation in receptor tyrosine kinases have also been extensively 

studied and one of the most well characterised RTK is the EGFR. Immediately after the ligand 

induced activation of RTKs at the plasma membrane, a large number of RTKs undergo 

ubiquitylation. Generally, internalization is mediated by several amino acid sequences within 

cytoplasmic domain and the tyrosine based motif YXXᴓ (O is an amino acid with a bulky 
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hydrophobic group and X is any amino acid) is involved in endocytosis of many 

transmembrane proteins (Owens and Evans, 1998).   

The distinct role of ubiquitination in receptors in mammalian cells was first identified in 

platelet-derived growth factor receptor and epidermal growth factor receptor, following which 

ubiquitination in other tyrosine receptors were found in a ligand dependent manner by the E3 

ligase Cbl (Mori et al. 1992; Galcheva-Gargova et al. 1995). Cbl is a major family of E 

ubiquitin ligases involved in ubiquitination of RTKs (Thien & Langdon 2001; Joazeiro et al. 

1999; Levkowitz et al. 1998; Levkowitz et al. 1999). E ubiquitin ligases bind to the specific 

phosphorylated residues in the cytoplasmic region of RTKs (Tyr1045 in EGFR) either directly 

via TKB domain or indirectly through interaction with GRB2 protein (de Melker et al. 2001; 

Jiang et al. 2003; Schmidt et al. 2003; Thien & Langdon 2001). With thorough investigations 

it’s found that the route of EGFR internalization and level of ubiquitylation is affected by ligand 

(EGF) concentration (Sigismund et al. 2005). Under low ligand doses, EGFR is more likely to 

undergo clathrin mediated endocytosis and are recycled back to plasma membrane whereas at 

higher doses, a significant level of EGFRs become ubiquitylated and undergo clathrin 

independent (lipid-raft dependent) intake and are targeted to lysosomes for degradation. This 

different intake routes was found to affect EGFR signalling as there was a prolonged EGFR 

signalling through the clathrin mediated endocytosis of EGFR whereas EGFR signalling was 

attenuated when ubiquitylated and degraded in the lysosomes (Sigismund et al. 2008). 

Overexpression of Cbl enhanced endocytosis whereas overexpression of dominant negative 

Cbl mutants or Cbl knock-down resulted in reduced endocytosis of EGFR and later studies 

showed that recruitment of c-Cbl resulted in endocytosis and sorting of EGFR to degradation 

in the lysosomes (Levkowitz et al. 1998). In case of FGFRs, outcome of ubiquitylation is 

slightly different. It is found that, ubiquitylation of FGFR results in intracellular sorting but not 

endocytosis (Cho et al. 2004). Following internalization, the FGF/FGFR complexes reach 
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sorting endosomes and from here, FGFRs (1-3) are routed to lysosomes for degradation 

whereas FGFR4 was found to be routed to recycling endosomes and from there recycled back 

to the plasma membrane. Subsequent studies on the levels of ubiquitylation on FGFRs showed 

that FGFR4 was less ubiquitinated compared to FGFRs(1-3) and these different levels of 

ubiquitylation was proposed to be a mechanism to regulate their sorting (Haugsten et al. 2005). 

FGFR ubiquitination happens by binding of c-Cbl ligase to FRS2 via Grb2. The FGF induced 

ternary complex formation of FRS2, Grb2 and Cbl results in ubiquitination and degradation of 

FRS2 and FGFR. Unlike EGFR which directly binds to Cbl via its SH2 domains, FGFRs bind 

to Cbl through Grb2 and FRS2. Grb2 binds to FRS2 through its SH2 domains and to Cbl via 

its two SH3 domains (Wong et al. 2002).   

 

1.2 Role of RAB proteins in membrane trafficking 

One of the key regulators of membrane trafficking are the RAB GTPases and they are a large 

family of proteins involved in secretory and endocytic pathways by coordinating several 

transport steps such as vesicle formation, docking, fusion and motility (Zerial & McBride 

2001). RAB proteins function by cycling between a GDP (Guanosine diphosphate)-bound 

(OFF state) cytosolic form to a GTP (Guanosine triphosphate)-bound (ON state) membrane 

form and are also known to modulate the v/t-SNARE complexes. The GDP/GTP exchange is 

catalysed by GEFs (Guanine-Nucleotide Exchange Factors). The GTP-bound RABs then 

interact with their effector proteins and GTP is hydrolysed back by GAPs (GTPase Activating 

Proteins) (Rothman 1994). Most of the RAB proteins are ubiquitous though their expression 

levels may vary according to the cell type. Some RABs are tissue specific such as RAB3A 

(Darchen et al. 1990) (Fischer von Mollard et al. 1990) which is found only in neurons and 

RAB17 found only in epithelial cells (Lütcke et al. 1993). Since RABs are highly 

compartmentalized in organelle membranes, they remain excellent markers for studying 
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organelle identity and transport specificity (Zerial & McBride 2001). More detailed function 

of RAB proteins are described in chapter 4.  

 

1.3 Cell Signalling 

Cell signalling has become one of the most important aspects of modern biochemistry and 

molecular cell biology. In any multicellular organism all cells are bombarded by signals in 

many forms in a continuous manner and in most cases the cells have to respond to them for 

their survival. Cells must have the ability to detect the extracellular signalling molecules and 

conditions and must also be able to instigate a series of intracellular responses. The principles 

of signalling mechanisms are very similar across the diverse range of organisms; fungi, 

bacteria, animals and plants. Researchers often use their understanding of signalling 

mechanisms in one species and discover an analogous mechanism in a completely different 

species. Cell signalling not only helps in understanding the functioning of a normal cell but 

also to understand an aberrant cell. For example, the discovery of oncogenes has made 

breakthroughs in understanding cancer while the discovery of cytokines promises to be a cure 

for a variety of diseases (e.g. Alzheimer’s disease) (Hancock., 2005). 

The signalling medium could be chemical, electrical, light photons etc and in most cases signals 

arrive at, and are perceived at, the plasma membrane. Based on the distance and molecules 

involved, cell signalling can be classed into five types (Table 1.1). 
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Table 1.1: Types of signalling (Hancock, 2005) 

Most signalling molecules are too hydrophilic and too large to penetrate through the plasma 

membrane and hence these bind to the cell surface receptors which are integrated in the plasma 

membrane. The vast majority of receptors are activated by binding of membrane-bound or 

secreted molecules such as hormones, growth factors, neurotransmitters and pheromones. 

Changes in the concentration of a metabolite (e.g. nutrients, oxygen) or by physical stimuli 

(e.g. light, touch, heat) can also activate receptors. The signalling molecule acts as the ligand 

which binds to its specific extracellular domains of the receptor. This binding causes a 

conformational change in the receptor which is transmitted through the cytosol causing further 

binding and activation of downstream signalling proteins. Thus the overall process of 

converting extracellular signals into intracellular responses is called as signal transduction 

(Lodish et al., 2000). In all eukaryotes there are only a few dozens of signal-transduction 

pathways and their terminology is mostly based on the class of receptor involved (e.g. G 

protein-coupled receptors, receptor tyrosine kinases), class of ligand (e.g.TGFβ, Wnt, 

Hedgehog) or a key intracellular component such as NF-kB. The activation of cell surface 
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receptors results in the activation of protein kinases, which add phosphate groups to proteins 

leading to protein phosphorylation (Lodish et al., 2000).  

Membrane trafficking and signal transduction were once considered as unrelated 

disciplines of cell biology but recent advancements in research have suggested that these two 

are closely coupled and work in concert for a system regulation. Signalling pathways have 

found to be interacting and regulating membrane trafficking machinery (Seto et al., 2002).    

Endocytosis is thought to play a critical role in morphogen gradient formation. Hedgehog, 

Wingless and Notch signalling is found to be activated by endocytosis. Many studies have 

reported that membrane trafficking regulates signalling but signalling may also regulate the 

membrane trafficking machinery providing a mechanism through which signalling pathways 

modulate themselves and other pathways. One of the major signalling pathway investigated in 

this aspect is the Receptor Tyrosine Kinase signalling pathway (Seto et al., 2002).  

 

1.4 Receptor Tyrosine Kinases  

Receptor Tyrosine Kinases (RTK) is one of the major classes of cell surface receptors which 

regulate critical aspects of cell function such as cell proliferation, differentiation, survival and 

metabolism. The signalling molecules that activate RTKs are membrane bound and soluble 

proteins which are usually called growth factors. These RTK ligands include fibroblast growth 

factor (FGF), nerve growth factor (NGF), platelet derived growth factor (PDGF) and epidermal 

growth factor (EGF) (Lodish et al., 2000). RTKs can be split into 14 groups based on their 

structural patterns. RTKs possess an extracellular ligand binding domain, a single 

transmembrane α helix domain and a cytoplasmic domain which contains the kinase activity 

(Hancock., 2005). All RTKs are monomeric with the exception of insulin receptor (IR). Ligand 

binding induces dimerization of the receptors resulting in autophosphorylation of their 

cytoplasmic domains whereas the members of IR family of RTKs form disulphide linked 



41 | P a g e  
 

dimers of two polypeptide chains forming an α2β2 heterodimer (Van Obberghen., 1994). 

Irrespective of the mechanism by which a ligand binds and locks an RTK into a functional 

dimeric state they all follow a universal phosphorylation step. In an inactive state, the kinase 

activity of an RTK is very low and the binding of ligands to their specific receptors make the 

latter into a dimeric state where the kinase in one subunit phosphorylates the tyrosine residues 

of the other subunit inducing a conformational change that facilitates the binding of secondary 

messengers such as ATP in some receptors (e.g. insulin receptor) (Lodish et al., 2000). 

Autophosphorylation is common in RTKs and it may be intramolecular where the polypeptide 

chain phosphorylates itself or intermolecular where one polypeptide in a dimer phosphorylates 

the other. These RTKs catalyse the transfer of γ phosphate of ATP to hydroxyl groups of 

tyrosines on target proteins (Hunter., 1998). All RTKs induce signal transduction via the Ras 

(GTPase)/mitogen-activated protein kinase (MAPK) pathway (Ras/MAPK) . Activated RTKs 

cannot directly activate Ras and they need a link in the form of growth factor receptor bound 

protein 2 (GRB2) and a guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS). 

SOS is a GEF  which helps in the conversion of inactive GDP-bound Ras to active GTP-bound 

Ras. GRB2 is an adapter protein and it contains SH2 (Src homology 2) domains which bind to 

specific phophotyrosine residues of the RTK and also SH3 domains which bind and activate 

SOS (Grant & Sato 2006).   

 

1.5 Fibroblast Growth Factors 

The Fibroblast Growth Factors (FGFs) and their receptors (FGFRs) play a vital role in tightly 

regulating metazoan development, cell proliferation, survival, migration and differentiation 

during development and adult life. Deregulation of FGFR signalling has resulted in many 

human diseases especially different types of human cancer. 
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The human FGF family consists of 22 ligands which bind to four homologous high affinity 

FGFRs (FGFR1 – FGFR4). Each FGFR binds to and is activated by unique sets of FGFs. These 

genes are found in several multicellular organisms ranging from C.elegans to humans but not 

found in unicellular organisms. The only two FGFs found in C.elegans compared to 22 FGFs 

found in mice and humans shows the expansion of FGF gene families during the process of 

evolution. This diversity has also led to diverse functionalities within the system (Itoh & Ornitz 

2004). The origin of FGF signalling field started in 1939 when the bovine brain extracts showed 

proliferation of fibroblast cells in vitro and characterization of this mitogenic activity was later 

found to be due to a 15kDa molecule named basic FGF (bFGF) based on its high isoelectric 

point and subsequently a second molecule possessing FGF activity was found from brain 

extracts and named aFGF (acidic FGF) based on its low isoelectric point.  A highly sulphated 

glycosaminoglycan (Heparin) was later found to mediate this mitogenic activity by binding to 

FGFs (Mohammadi et al. 2005). Although FGFs size vary from 17-34 kDa they all share a 

conserved sequence of 120 amino acids with 16-65% sequence homology (Eswarakumar et al. 

2005). A generic FGF protein contains a signal sequence, a core region containing the binding 

sites for HSPG and receptors (Figure 1.7).  

 

1.6 Structure of Fibroblast Growth Factor Receptors 

The FGFRs have a structure very similar to most RTKs and they consist of a single-pass 

transmembrane protein that consists of an extracellular part that binds FGF ligands, a 

transmembrane domain and an intracellular tyrosine kinase domain that transmits signal to the 

interior of the cell (Haugsten EM, Wiedlocha A, Olsnes S et al. 2010) (Figure 1.3).  There are 

three Ig like domains (designated as D1, D2 and D3) within the extracellular ligand binding of 

FGFR. Between D1 and D2 is a stretch of acidic residues called the acid box and a conserved 

positively charged region in D2 that serves as the binding site for heparin (Eswarakumar et al. 
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2005) . Alternate splicing of the transcribed receptor results in a variety of different receptor 

isoform domains such as Ig-like I, Ig-like II, Ig-like III. The first Ig-like domain is thought to 

play a role in receptor autoinhibition whereas second and third Ig-like domains of the receptors 

are necessary for ligand binding (Haugsten et al., 2010). The alternative forms that arise due 

to alternate splicing result in different ligand binding characteristics. For example, FGFR2b 

binds FGF7 and FGF10 whereas FGFR2c binds FGF2 and FGF18 (Eswarakumar et al. 2005).  

 

 

Figure 1.7. Domain structure of generic FGF and FGFR proteins: A) Main structural 

components of FGF. B).Main structural components of FGFR (Böttcher & Niehrs 2005). 

 

1.7 FGF/FGFR binding and signalling 

The binding of FGF ligands to FGFRs have been widely studied. It was initially shown that 

each cell type expresses low and high affinity receptors for FGF. The two binding sites differed 

on the basis of ionic strength and buffer condition. Tyrosine phosphorylation of high affinity 

receptor was found to occur within 30 sec of FGF exposure. Shortly after, the first FGFR was 

purified from chicken embryo. The other FGFRs were soon discovered by homology based 

PCR (Mohammadi et al. 2005). The FGFs bind to distinct FGFRs and also to heparan sulphate 
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proteoglycans (HSPG) thereby forming a dimeric FGF-FGFR-HSPG ternary complex. 

Following FGF stimulation, signalling proteins bind to the tyrosine phosphorylation sites of 

the activated receptor via closely linked docking proteins. 

  

The active FGFRs have been shown to phosphorylate multiple intracellular adaptor proteins 

such as factor receptor substrate 2 (FRS2), GRB2, SOS1, SHC1, SH2B1, GAB1 and PTPN11 

(Ong et al. 2001; Hadari et al. 1998; Kanai et al. 1997). These complexes in turn activate 

different signal modules (transduction pathways that act downstream of activated FGFR) such 

as MAPK (RAS-RAF-MEK-MAPK) pathway, AKT (PI3K-PDK-1-PKB/AKT) pathway, and 

PLC (PLC-γ/PLC-ε-PIP2-IP3/DAG-PKC) pathway (Knights & Cook 2010) (Figure 1.8). The 

other pathways found to be associated with activated FGFR are STAT (Li et al. 1999), and NF-

kB (Raju et al. 2014; Chang et al. 2014), however the mechanisms by which FGFR regulates 

these signal modules are still unclear (Klint & Claesson-Welsh 1999). In mammalian models, 

the adaptor protein FRS2 acts a hub linking several signalling pathways to the activated FGFRs. 

By binding to FRS2, GRB2 recruits the RAS Guanine nucleotide exchange factor SOS which 

in turn leads to the activation of RAS dependent signal modules (MAPK, PLC, PI3K/AKT). 

GRB2 also acts as link between FRS2 and GAB1 to activate PI3K/AKT in a RAS independent 

manner (Ong et al. 2000).  

PLC pathway is regulated by FGFR by two different ways. 1. PLC- binds directly to FGFR 

(Mohammadi et al., 1991) or by the interaction of PLC-ε with RAS (Vázquez-Manrique et al. 

2008), which results in hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) 

producing two second messengers diacylglycerol (DAG) and inositol (1,4,5)-trisphosphate 

(Ins(1,4,5)P3). PLC- activity is so crucial in regulating calcium channels present in the 

membranes of intracellular calcium stores (Knights & Cook 2010).   

 



45 | P a g e  
 

 

Figure 1.8. FGF/FGFR signalling cascade activation: The complex formation of FGFs and 

heparin sulphate chains and FGFRs causes dimerization and trans-phosphorylation of many 

tyrosine residues thereby activating several downstream signalling cascades MAPK, 

PI3K/AKT kinase and PLC-/PKC. In addition to these pathways FGFR is thought to activate 

transcription factor STAT (Knights & Cook 2010) 
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So far seven autophosphorylation sites (Y-463, Y-583, Y-585, Y-653, Y-654, Y-730 and Y766) 

have been mapped on FGFR1 and their roles in various FGFR1 mediated cellular responses 

have been studied but it is often not clear exactly which signal transduction pathways are 

involved. So far only PLC- has been shown to associate with the activated FGFR in cell 

mitogenesis. It has been demonstrated that autophosphorylation on Tyr766 in the carboxy 

terminal tail of FGFR1 creates a specific binding site for the SH2 domain of PLC-  (Haugsten 

EM, Wiedlocha A, Olsnes S et al. 2010; Mohammadi et al. 1996). Finally, signal attenuation 

is achieved by ubiquitin ligase Cbl (Figure 1.9). Cbl binds to activated FRS2 and mediate FGFR 

ubiquitination that acts as a signal for receptor degradation. The signal from FGF-FGFR 

complex is then efficiently terminated by internalization and degradation in lysosomes by 

endocytosis. After endocytosis, the ubiquitinated receptors are sorted into endosomal sorting 

complex required for transport and further transported to lysosomes for degradation (Wesche 

et al., 2011). A more detailed description of FGFR mediated signalling pathways are described 

in chapter 4.  
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Figure 1.9. FGF/FGFR signal attenuation:  FGFR activation results in trans-

phosphorylation and activation of downstream signal transduction pathways. Active receptor 

signalling can be terminated through RTK dephosphorylation by protein tyrosine 

phosphatases. This is achieved by CLR-1 phosphatase in C.elegans. Receptor activation can 

also be terminated through endocytosis of active receptor complex into endosomes and then 

either targeted to lysosomes for degradation or recycled back to cell surface (Knights & Cook 

2010).  

 

Thus the vesicle mediated membrane trafficking is characterised by cell signalling from the 

cell surface to the cytoplasm via infinite number of protein-protein interactions and second 

messengers and any mutations affecting RTK/Ras/MAPK signalling may cause many human 

syndromes and diseases including cancers (Seaman et al., 1996).  
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1.8 Impaired FGF/FGFR signalling and associated diseases 

FGF/FGFR mediated signalling has been associated with various developmental, neoplastic, 

metabolic and neurological diseases and also the different types of cancers.  Despite 

advancement of technologies and disease diagnosis and treatments, lung cancer is one of the 

leading causes of cancer death worldwide. The dependency of exogenous growth factors is 

often lost or altered when there is an over production of endogenous growth factors or abnormal 

expression and mutation in receptor molecules leading to uncontrolled, autocrine growth 

stimulation. Several drugs have been designed against such complications [e.g. the 

antiangiogenic vascular endothelial growth factor (VEGF) antibody bevacizumab and the 

epidermal growth factor receptor (EGFR) small-molecule inhibitor erlotinib have both been 

approved for treatment of advanced non-small cell lung cancer (NSCLC)] and these drugs have 

been targeted against growth factors and their RTKs. However it is later found that cancer cells 

can still evade anticancer effects by activating alternative growth and survival pathways. 

Recent evidences have suggested that members of FGF family along with their four 

transmembrane tyrosine kinase receptors might act as autocrine as well as paracrine signalling 

in many solid tumour types. Fischer et al., (2008) have shown that blocking FGFR1 signalling 

by dnFGFR1 (protein kinase truncated dominant negative FGFR1) and small molecules 

(SU5402) have an anti-proliferative effect on the investigated NSCLC cells. Also, mutations 

in the transmembrane helix of human FGFR3 causes dimerization and subsequent activation 

of tyrosine kinase domain affecting the extracellular part of two individual receptors to form 

disulphide bonds between them and this intermolecular bond forces dimerization in the absence 

of ligand resulting in a ligand- independent constitutive signalling. This defect is often found 

in bladder cancers. Mutations in kinase domain of FGFR (e.g.FGFR4) can change the 

conformation of the domain and cause permanent active kinases leading to diseases (e.g. 
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mutation at kinase domain of FGFR4 results in autophosphorylation and constitutive signalling 

which is often found in childhood sarcoma (Rhabdomyosarcoma) (Wesche et al., 2011) 

In prostate cancer, several FGFs (FGF1, FGF2, FGF6, FGF7, FGF8, FGF9) are up regulated 

which have a tumour promoting effect on the neighbouring epithelial cells which cause 

epithelial transformation and formation of differentiated prostate carcinomas (Memarzadeh et 

al., 2007). Multiple myeloma is another example of disease caused by deregulated FGF/FGFR 

signalling. It is a plasma cell malignancy which is characterized by accumulation of clonal 

plasma cells in bone marrow and bones. Evidences suggest that there is an overexpression of 

FGFR3 as a consequence of chromosomal translocation t(4;14)(p16.3;q32) and it has been 

recognized as a potent oncogene (Wesche et al., 2011) 

 

1.9 Membrane Trafficking Deregulation and Diseases 

In the last several years, different human diseases have been associated with different genes 

involved in intracellular sorting machinery regulating selective trafficking of secretory and 

endocytic pathways. Trafficking defects at each step of transport at specialized compartments 

such as ER, Golgi, Endosomes and Lysosomes have several disease implications. (Table 1.2) 

(Aridor & Hannan 2000) 

The first transport step in the secretory pathway is at the ER. Properly assembled and matured 

proteins are exported from the ER to the Golgi. Proteins which fail to achieve functionality are 

identified by ER signalling receptors and degraded to prevent their accumulation.  

In response to accumulation of non-matured and misfolded proteins, ER signalling pathways 

are activated to induce the expression of folding and transport machinery proteins to increase 

the transport/degradation load. In case where this up-regulation cannot eliminate the defective 

cargo, ER signalling responds by inducing cellular apoptosis thus eliminating the affected cell 

in order to preserve tissue functionality (Aridor & Hannan 2000).  
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The ER related diseases are classified into three categories:  

1. Cargo retention and degradation- Mutated cargo that fails to achieve transport-

competent conformation is eliminated by the degradation machinery. This loss of cargo 

function leads to diseases  

2. Cargo accumulation and ER stress – Cargo is not efficiently degraded and accumulated 

in the ER 

3. Defects in transport machinery from ER to Golgi 

Similar to ER related diseases, there are diseases that affect other compartments like Golgi, 

TGN and endocytic systems mainly due to defects in machinery required for transport. 

Defective endosomal RABs have also been associated with several diseases (Puertallano, 

2004). RAB GTPases function as membrane organisers and mediate directionality and 

specificity of vesicle delivery. For example, RAB5 is found to mediate endocytosis and 

homotypic fusion between early endosomes, RAB4 and RAB11 in endocytic recycling, and 

RAB7 and RAB9 associated with trafficking through late endosomes (Aridor & Hannan 2000). 

Below is a table that shows different trafficking defects and their associated diseases.  

Table 1.2. Different membrane trafficking defects and their associated diseases  

Trafficking 

Defect 

Disease 

Associated 

Phenotype and Cellular Pathology 

Cargo retention 

and degradation 

Cystic Fibrosis 

 

 

 

 

 

 

 

 

 

Mutations in this chloride conductance channel 

(CFTR) lead to the retention and degradation of the 

protein in the ER. The disease results from loss of 

chloride regulation in CFTR-expressing epithelia 

of secreting organs. Deletion of Phe at position 508 

in CFTR accounts for more than 70% of all cases. 

Interestingly, this CFTRh F508 mutant retains 

partial activity and can be stabilized for transport 

and surface expression with chemical chaperones 
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Diabetes Mellitus Class 2 mutations in insulin receptor impair its 

transport from the ER, markedly reducing its 

surface expression leading to insulin resistance. 

Cargo 

accumulation 

and ER stress 

Congenital 

Hypothyroidism 

 

 

 

Charcot–Marie– 

Tooth syndrome 

Mutated thyroglobulin (Tg) accumulates in the ER 

leading to ER signalling and expansion of the 

compartment and this increase in biosynthetic 

activity of ER results in Goitre in some patients. 

 

Mutant protein accumulates in the endoplasmic 

reticulum. Signalling from the ER may contribute 

to abnormal growth and differentiation. 

Transport 

machinery from 

ER to Golgi 

Combined Factors 

V and VIII 

deficiency 

This mannose-binding lectin cycles in the early 

secretory pathway and serves as a cargo receptor 

for incorporation of a specific cargo protein into 

COPII vesicles. Lack of ERGIC53, due to mis-

sense mutations, leads to a secretion block of 

coagulation factors V and VIII and development of 

the bleeding disorder 

Lysosomal 

Trafficking  

Mucolipidosis type 

II 

An allelic disease caused by deficiency in uridine 

diphospho (UDP)-N-acetylglucosamine: N-

acetylglucosaminyl-1-phosphotransferase, an 

enzyme that mediates the addition of mannose 6 

phosphate to lysosomal hydrolases within the 

Golgi. In patients with Mucolipidosis type II 

disease, the inability of addition of mannose 6 

phosphate residues prevents the transport of 

lysosomal hydrolases to reach the lysosomes. 

Diseases 

affecting antigen 

presentation 

Bare lymphocyte 

syndrome 

Lymphocytes from patients with bare lymphocyte 

syndrome show no surface expression of either 

MHC class I (defects in TAP1 and TAP2), or MHC 

class II (defects in CIITA and RFX-B), and 

therefore defective antigen presentation.  
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Defects in lipid 

transport 

Niemann Pick C NPC1 is a sterol sensing protein required for 

transport of cholesteryl ester (and potentially fluid 

phase constituents) from the late 

endosome/lysosome to other organelles. Defects 

result in an accumulation of lipid in lysosomes 

Diseases 

affecting 

cytoskeleton and 

motor proteins 

Usher’s syndrome Myosin 7 is thought to be required for transport 

from the Golgi to specific polarized regions of the 

cell. Lack of functional Myosin 7 leads to deafness 

and hearing loss in these patients 

Defective 

endosomal 

RABs 

RAB27a 

Griscelli 

Syndrome 

A rare autosomal recessive disease caused by 

absence of RAB27a. Absence of RAB27a causes 

poor trafficking of melanosomes leading to 

accumulation of melanosomes in the central region 

of melanocytes resulting in defects in hair and skin 

pigmentation and partial albinism 

Defective  

RAB7 

Charcot-Marie-

Tooth Type-2 

Mutations that result in loss of RAB7 function 

result in severe sensory and motor neurons 

impairment, muscle weakness and foot ulcers 

Defective RAB5 

and RAB7 

Thyroid 

autonomous 

adenomas (AA) 

A type of benign thyroid tumour. Overexpression 

of RAB5 and RAB7 has been associated with 

(AA). An overexpression of RAB5 and RAB7 

leads to an increased association with endosomes 

resulting in high production of thyroglobulin and 

thyroid hormone production 

Defective 

RAB25 

Prostate Cancer Over expression of RAB25 is found in Prostate 

cancer cell lines 

Defective RAB4 Cardiomyopathy Upregulated levels of endosomal RAB4 
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1.10 Concept of signalling endosomes 

Signal termination via degradation of activated receptor complexes was thought to be carried 

out by the process of endocytosis. Endocytosis was considered to be a mere ‘sink’ of signalling 

complexes. It has now become evident that the output of a signalling process depends not only 

on activation of a particular set of signalling molecules but also on where and how long the 

signal is emitted. New findings in this research have suggested that signalling machinery can 

be highly regulated by exploiting the functional and compartmentalisation specialisation of 

endocytic pathway beyond its cargo degradation. The most common view that signalling occurs 

only at the plasma membrane was challenged in early 90s when majority of EGFRs and their 

downstream signalling factors such as Shc, Grb2 and SOS were localised to the early 

endosomes rather than the plasma membrane shortly after ligand addition. Similar findings in 

nerve growth factors (NGF) bound to its activated receptor TrKA and PLC-1 in endocytic 

organelles led to the hypothesis of signalling endosomes. It was also found that signal 

transduction can continue even after endocytosis when EGFR was found to interact with Grb2 

at endosomes  (Miaczynska et al., 2004).  

Signalling endosomes might govern three important factors 

1. Temporal regulation (varying duration of signalling result in differential biological 

outcomes) 

2. Spatial Regulation – Non-specific cross-talk between different pathways prevented by 

restricting signalling cascades in space 

3. Targeting signalling complexes to their site of action (Miaczynska et al. 2004) 

Alternatively, recent studies suggest that at least in some RTKs signalling primarily occurs 

immediately following ligand binding prior to endocytosis (Auciello et al. 2013).  

It is also found that many cytosolic proteins function in both membranes trafficking and 

signalling. E.g. β arrestin which binds activated GPCRs and terminates their interaction with 
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heteromeric G proteins also binds to clathrin, the clathrin adaptor protein AP-2 and membrane 

phosphoinositides thus functioning in the assembly of coated pits and coupling of GPCR 

activation to their endocytosis and then they finally β-arrestin binds Src and components of 

MAPK pathway and function as an activator of this MAPK pathway (Di Fiore & De Camilli., 

2001). Recent investigations in many systems have implicated nearly every membrane 

trafficking event as a potential site for regulation by signalling pathways (Seto et al., 2002). 

Receptor tyrosine kinase activity seems to regulate receptor internalization through 

phosphorylation of downstream target proteins. E.g. Eps15, which is recruited to clathrin-

coated pits in response to EGFR activation and EGFR-mediated phosphorylation of Eps15 has 

been shown to be specifically required for ligand-induced internalization of EGFR 

(Confalonieri et al., 2000). In addition, many downstream targets of RTK signalling directly 

regulate membrane trafficking. For example, Src (tyrosine kinase) phosphorylates clathrin 

heavy chain, stimulating clathrin coated pit formation and its SH3 domain binds and activates 

dynamin. Corresponding to these findings, overexpression of Src stimulates EGFR 

endocytosis. RTK signalling is also found to play a dual role (activation and deactivation) of 

RAB5 thus having both positive and negative effects on its endocytosis (Seto et al., 2002).  In 

another study, the role of all human kinases in regulating the clathrin-dependent and caveolae-

dependent endocytic pathways was described by Pelkmans et al., (2005) using an RNAi-based 

screen. They used viruses that infect cells via endocytic uptake in this assay. Simian virus 40 

(SV40) uses caveolae/raft-mediated endocytosis for host cell infection and vesicular stomatitis 

virus (VSV) enters cells via the clathrin-mediated pathway. By systematically knocking down 

each human kinase and monitoring the changes in viral infection rates in HeLa cells provided 

new evidences into endocytic regulation. The rate of viral infection corresponded to the level 

of endocytic regulation. Lower rates of viral infection suggested a reduced uptake of trafficking 

of viral particles whereas an increased infection rate suggested enhanced uptake of trafficking 
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of virus (Pelkmans et al. 2005). Thus it elucidated the significance of understanding membrane 

trafficking pathways via the compartmentalisation of signalling pathways (Farhan and 

RABouille, 2011).  

Genome-wide screens in different organisms have helped scientists to identify novel regulators 

of membrane trafficking and cell signalling especially at FGF/FGFR signalling pathway. Even 

though membrane trafficking associated with cell signalling has gained immense significance 

in the recent years, the network of FGF signalling in mammals where FGFs interact with 

several FGFRs is more complicated. Hence scientists have identified other model organisms 

where they could analyse a similar process. The number of FGFs in invertebrates such as 

Drosophila melanogaster  is only three and in Caenorhabditis elegans, only two (Birnbaum et 

al., 2005).  

 

1.11 Caenorhabditis elegans as a model organism 

The comprehension of FGF-stimulated signalling pathways has been greatly simplified by the 

aid of model organisms like Caenorhabditis elegans and Drosophila melanogaster. The 

complexity of understanding the biology of higher organisms was a limiting step in pacing up 

research breakthroughs until Dr. Brenner made significant contributions using C.elegans as a 

model organism for the investigation of development biology for which he also won a Nobel 

Prize in 2002. C.elegans, a free-living soil nematode became one of the model organisms since 

it shares many of the essential biological characteristics with human biology. They have a 

conserved mode of development, neuronal function, signalling, apoptosis and aging. They are 

usually 1mm long and in the lab generally grown on small petri plates seeded with bacteria.  



56 | P a g e  
 

 

Figure 1.10: Overview of C.elegans life cycle (Altun & Hall, 2002) www.wormatlas.org 

 

They have a simple anatomy with less than 1000 somatic cells of its transparent body all visible 

through a microscope. They have a quick development (egg to adult in less than three days) 

and an average life span of 2-3 weeks (Figure 1.10). In addition to its simple anatomy (Figure 

1.11), they also serve as a simple yet powerful genetic model comprising of 5 autosomes and 

1 sex chromosome. The completion of its whole genome sequencing made this organism a very 

suitable choice for the study of various genes homologous to humans (J. Lee et al. 2004). 
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Figure 1.11: Overview of C.elegans anatomy (Altun & Hall, 2002) www.wormatlas.org 

 

1.12 RNA – Mediated Interference: 

RNA-mediated interference (RNAi) is one of the most straightforward methods to inhibit the 

function of specific genes. This was first observed in C.elegans and is now used as a favourite 

method of knocking down gene function in various other species. The ability of double stranded 

RNA to block the expression of its corresponding single stranded mRNA is the principle of 

RNAi. The RNA endonuclease that catalyses this reaction is known as Dicer and is found in 

all metazoans except few simpler eukaryotes such as yeast (Lodish et al., 2000).  There are 

four ways to perform RNAi in C.elegans.  

1. Microinjecting dsRNA into animals and observe the effects in their progeny 

2. Feeding worms with bacteria expressing dsRNA of interest 

3. Soaking the worms in dsRNA solution  

4. shRNA (Paddison et al. 2002) 

A remarkable feature of dsRNA triggered genetic interference processes in C.elegans is the 

ability of interference to spread to cells that are some distance from the initial site of dsRNA 
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delivery. This spreading effect was first observed when dsRNA was microinjected into the 

body cavity of injected animal and later it was also found in animals which were fed with food 

containing dsRNA or after soaking animals in dsRNA (Timmons et al., 2001). From biological 

and technical perspectives, the mechanism by which an organism responds to nucleic acid 

encountered in food has gained more interest. The paramount component of the C.elegans diet 

in the laboratory is bacteria; therefore RNAi in C.elegans has involved the introduction of 

engineered bacteria to produce dsRNA (Timmons & Fire, 1998).  With the completion of 

C.elegans genome project, it became possible to use RNAi at the genome-wide level. Several 

labs have constructed a library of RNAi bacteria (Ex. Ahringer lab holds a library of roughly 

86% of the total open reading frames (Kamath and Ahringer., 2003). According to a published 

data, the efficiency of RNAi is about 50% and a recent analysis of RNAi efficiency in rrf-3 

mutant background (rrf-3 is a mutation that causes sensitivity to RNAi) showed more 

phenotypes for genes that did not show any phenotype in wild-type backgrounds (Simmer et 

al. 2002).  

 

1.13 YP170-GFP Assay: 

The most widely used assay to investigate membrane trafficking in C.elegans is the YP170-

GFP assay and the application of RNAi together with this assay has gained valuable insights 

in understanding the membrane transport-signalling process in vivo. Yolk uptake by growing 

oocytes is an excellent example of the receptor mediated endocytosis. Yolk is a lipoprotein 

comprising of lipids and lipid binding proteins called vitellogenins. These vitellogenins are 

most abundantly found in developing embryos as they provide nutrients to support the rapid 

development of the embryo. C.elegans yolk is secreted from the intestine into the 

pseudocoelomic space (body cavity) and is taken up into vesicles within the growing oocytes 

by receptor mediated endocytosis following binding to the yolk receptor. Yolk transport uses 
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a similar route in vertebrates, from liver to bloodstream to ovum (Shen et al., 1993). There are 

six vitellogenins in C.elegans genome. vit-1, vit-2, vit-3, vit-4, and vit-5  all contribute to the 

pool of major yolk protein YP170 whereas vit-6 encode a protein which is processed into YP88 

and YP115 (DePina et al. 2011). YP170, YP115 and YP88 are homologous with vertebrate 

vitellogenin ApoB-100 found in mammals (Spieth et al.,1991). Endocytosis of yolk particles 

into membrane bound vesicles of the oocytes is mediated by LDL receptor RME-2 in 

C.elegans. The vitellogenin YP170 was tagged with Green Fluorescent Protein (GFP) to 

visualize the transport of yolk in oocytes of C.elegans (Grant & Hirsh 1999). The YP170-GFP 

fusion protein like endogenous YP170 is synthesised in the intestine and secreted into the body 

cavity from where it is endocytosed into oocytes by the receptor mediated endocytosis. Yolk 

receptor RME-2 is expressed in oocytes and endocytos yolk in an adaptor complex AP-2 and 

clathrin-dependent manner. The fluorescent YP170-GFP fusion is transported like endogenous 

yolk from intestine to oocyte, allowing in vivo analysis of secretion and endocytosis by 

fluorescence microscopy (Grant & Hirsh., 1999). The successful development of YP170-GFP 

assay further led Hirsh research group to identify novel membrane transport regulators and 

identify their  homologues in vertebrates (B Grant & Hirsh, 1999). 

 

 It is found that in Wild-type (WT) worms, YP170-GFP was visible in the intestine where it is 

expressed, in the oocytes that take it up and in the developing embryos that are formed by 

fertilization of the oocytes. Blocking endocytosis by RNAi results in abnormal accumulation 

of YP170-GFP in the body cavity, whereas a block in secretion leads to increased accumulation 

of YP170-GFP in the intestine (Figure 1.12). 
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Figure 1.12. YP170-GFP Assay. Wild Type:  A high accumulation of YP170-GFP in oocytes 

and embryos and low accumulation in body cavity and intestine. Endocytosis defect: High 

accumulation of YP170-GFP in the body cavity and low accumulation in oocytes and embryos. 

Secretory defect: High accumulation of YP170-GFP in the intestine.  

 

This assay has helped to identify numerous genes involved in receptor mediated endocytosis 

(RME) and secretion (Balklava et al. 2007). From a genome-wide analysis using an RNAi-

based approach on 16,300 predicted genes, 657 showed defects in YP170-GFP localization 

signifying their roles in endocytosis, secretion or germ line development (Balklava et al., 

2007). The pathways used in C.elegans are strikingly similar to those used in mammalian cells 

(Fares & Barth Grant, 2002) and this functional analysis in the worm should provide insights 

into human gene function (Kamath et al., 2003). 

 

1.14 FGF/FGFR Signalling pathway in C.elegans 

The nematode worm C.elegans is a model system with reduced cellular and anatomical 

complexity compared with mammals. The complexity of FGF/FGFR network is also much 

reduced in this animal. The two FGFs in C.elegans are EGL-17 and LET-756 and only one 

FGFR, EGL-15 (Popovici et al., 2008). The EGL-15 is structurally very similar to mammalian 
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FGFR and have the highest level of sequence conservation found within the intracellular 

tyrosine kinase domain and the three extracellular immunoglobin (Ig) domains (Figure 1.13) 

(Lo et al., 2010).  By sequence homology, 4 out 7 autophosphorylation sites (Y463, Y653, 

Y654 and Y730)  were found to be well conserved  between human FGFR and  EGL-15 

(Borland et al. 2001). The egl-15 gene located on chromosome X encodes two receptor 

isoforms EGL-15(5A) and EGL-15(5B) (Birnbaum et al., 2005) and they result from the 

alternate splicing of exon 5 encoding a specific insert between IgL1 and IgL2 and have also 

reported that this insert could be the site of binding for EGL-17 and LET-756 and thus EGL-

15(5A) acts as a receptor for EGL-17 and EGL-15(5B) acts as the receptor for LET-756 

(Goodman et al., 2003). Like its mammalian orthologues, EGL-15 is involved in a variety of 

functions such as cell migration guidance, muscle protein degradation, terminal axon 

morphology control and fluid homeostasis. EGL-15 is negatively regulated by a receptor 

tyrosine phosphatase, CLR-1 resulting in the build-up of clear fluid in the pseudocoelom (Clear 

phenotype) (Lo et al., 2010). It is also discovered that a partial loss- of-function of LET-

756/FGF could interfere with EGL-15 activation and not allow proper sex myoblast positioning 

or progeny formation and also make the worms grow slowly during larval stages. Thus the 

functionality of these ligands may constitute alone or in cooperation with other diffusible 

ligands and this coordination may well have some effects on downstream signalling effectors 

(Popovici et al., 2008). 
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Figure 1.13: Schematic representation of FGF ligand and receptor system in C.elegans. 

(Birnbaum et al., 2005) 

The intracellular signal transduction cascades activated by EGL-15 are relatively well 

characterized and share a high degree of conservation with mammalian FGFRs (Polanska et 

al., 2009), however, it has been recently found that fibroblast growth factor receptor signalling 

can act independently of rog-1 (FRS2 like gene in C.elegans). The Ras gene in C.elegans is 

called let-60 which acts downstream of at least two RTKs such as LET-23 (related to EGFR) 

and EGL-15 (related to FGFR) (Han & Sternberg., 1990). The Src homology 2 (SH2)/SH3 

adaptor protein SEM-5 function downstream of EGL-15 (Polanska et al., 2009). The LET-60 

Ras is known to stimulate the MAPK signalling cascade consisting of kinases MEK-2, LIN-45 

and MPK-1 (Sundaram, 2006). In addition to MAPK pathway, EGL-15 also regulates PLC-γ 

and PI3K/AKT pathways.  Similar to mammalian FGFRs, the extracellular domain of EGL-15 

consists of three Ig (Immunoglobulin) repeats. Specificity and ligand binding is mediated by 

region between second and third Ig repeats and this region shows the highest degree of 

extracellular homology between human FGFRs and EGL-15. Out of the seven 

autophosphorylation sites identified in human FGFRs, EGL-15 shares four namely Y653, 

Y654, Y463 and Y730. (Borland et al. 2001).  
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1.15 FGFR signalling system – a candidate to study membrane trafficking in 

C.elegans: 

With the growing number of diseases associated with impaired vesicular trafficking and cell 

signalling, it is becoming increasingly critical to analyse the mechanisms that couple these two 

processes together. There is  mounting evidence that signalling can be regulated by 

endocytosis, and signalling molecules also play a role in vesicular transport (Miaczynska et al., 

2004).    

A genome-wide RNA mediated interference screen by Balklava et al., 2007 in C.elegans found 

several regulators of membrane traffic. Out of 16300 genes tested, 657 showed defects in 

endocytosis, secretion and germ line development including many known genes particularly 

associated with endocytosis and secretion. Genes that have direct link to functions such cell 

cycle, transcription, translation or other metabolism and indirectly associated with membrane 

trafficking were excluded. The final candidate transport regulators were found to be 268 of 

which 80% have human homologues. Among the positives from the screen, some of the FGF-

FGFR signalling pathway components including egl-15, sem-5, sos-1 and let-60 also appeared 

to participate in membrane trafficking thus making the whole signalling pathway an excellent 

candidate to study membrane trafficking.   

Through the application of reverse genetics by analysing Yolk-GFP trafficking in FGF-FGFR 

knocked down/ knocked out worms, it is possible to identify the combined machinery of 

membrane trafficking and cell signalling. Therefore, in this study the whole of FGF-FGFR 

signalling pathway was investigated to see how they regulate membrane traffic and also to find 

which transport steps are affected in case of a trafficking defect.   
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2 MATERIALS AND METHODS 

2.1 Methods used in C.elegans work 

All C.elegans strains were derived originally from the wild-type Bristol strain N2. Worm 

cultures, C.elegans husbandry and genetic crosses were performed according to standard 

protocols described by Brenner (1974). A complete list of strains used in this study can be 

found in tables 2.2 and 2.3. Temperature sensitive strains were grown at 15oC and other strains 

were generally grown at 20oC.  

Table 2.1: List of all solutions and buffers used for C.elegans growth and maintenance 

Solution/Buffer Composition Quantity 

NGM Agar, 500ml NaCl  

Agar  

Bacto peptone  

H2O  

Autoclave the above 

1M CaCl2  

1M MgSO4  

1M KPO4, pH 6.0  

Cholesterol 5mg/ml in Ethanol 

Nystatin 10mg/ml in DMSO  

1.5g 

8.5g 

1.25g 

487.5ml 

 

0.5ml 

0.5ml 

12.5ml 

0.5ml 

0.5ml 

NGM Agar Lite, 500ml NaCl  

Agar  

Bacto Tryptone 

KH2PO4  

K2HPO4  

Autoclave the above 

1M CaCl2  

1M MgSO4  

Cholesterol 5mg/ml in EtOH 

1M IPTG  

0.75g 

10g 

2g 

1.5g 

0.25g 

 

0.5ml 

0.5ml 

0.5ml 

1ml 
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Carbenicillin 50 mg/ml  

Nystatin 10mg/ml in DMSO 

0.5ml 

0.5ml 

M9 Buffer, 500ml KH2PO4  

Na2HPO4  

NaCl  

dH2O  

Autoclave the above 

1M MgSO4  

1.5g 

3g 

2.5g 

500ml 

 

0.5ml 

1M KPO4 (pH 6.0), 500ml KH2PO4 

K2HPO4 

dH2O  

Autoclave 

17.8g 

54.15g 

500ml 

1M CaCl2, 500ml CaCl2  

H2O  

Autoclave 

27.75g 

500ml 

1M MgSO4, 500ml MgSO4  

H2O  

Autoclave 

60.2g 

500ml 

Worm Freezing solution, 150ml NaCl  

KH2PO4  

Glycerol  

1M NaOH  

Autoclave the above 

1M MgSO4  

2.9g 

3.4g 

147ml 

2.8ml 

 

0.15ml 

Worm Bleach Solution Sodium hypochlorite 

10N NaOH 

dH2O 

0.25ml 

0.03ml 

0.23ml 

 

2.2 Nematode Growth Media 

NGM Agar was poured into 6cm Petridishes and allowed to set. The plates were then seeded 

with 200 l of overnight (O/N) culture of a uracil auxotroph strain of E.coli (OP50) as a source 
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of food for the worms. The use of uracil auxotroph strain of E.coli prevents the overgrowth of 

the bacterial lawn (Stiernagle 2006) facilitating a thin layer that helps to visualize worms 

distinctly. The NGM Lite medium was poured into 3cm Petri dishes. 

 

2.3  Worm Freezing: 

Worms of the desired strain were grown on two 10cm plates seeded with 1 ml of OP50. The 

worms were ready to be frozen when the plate had little or no food left, plenty of L1s and L2s, 

few eggs and no contamination. Worms were washed off the plate with 2ml of M9 buffer and 

transferred to a 2 ml eppendorf tube and centrifuged for 1 minute at 2000 rpm. The supernatant 

was removed and the pellet was washed with 2 ml of M9 buffer. 1 ml of M9 buffer was removed 

and an equal amount of freezing solution was added. The mix was then aliquoted into 4 

cryovials labelled with the strain name and date of freezing and stored in a -80oC freezer. After 

24 h, one cryovial was test thawed to see if the worms recover and can be cultured.  

 

2.4 Worm thawing: 

Cryovials from the freezer were allowed to thaw at room temperature.  Once all the ice had 

melted, they were immediately transferred to 6cm plates seeded with OP50. After 24h, live 

worms were transferred to fresh OP50 seeded plates.  

 

2.5 Worm Bleaching: 

To decontaminate worm strains a 10µl of freshly prepared bleach mix was spotted near the side 

of a 6cm plate. 20 gravid adult worms were picked and transferred into the bleach mix. The 

bleach solution kills all the contaminants and dissolves the worms whereas eggs are protected 
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by eggshell. Plates were then incubated at 20oC for 24 hours and the newly hatched L1s were 

carefully transferred to fresh non-contaminated plates.  

 

2.6 Generation of males: 

Males for genetic crosses were generated by either heat shock or using him-17 RNAi. 15-20 

L4 hermaphrodites were transferred to NGM plates seeded with OP50 and incubated for 6 h at 

30oC. After 6h, the plates were moved to 25oC and few males were obtained in their F1 

progeny. Temperature sensitive strains were grown on 10 cm NGM lite plates containing him-

17 dsRNA bacteria and males were obtained in subsequent generations.  

 

2.7 Freezing RNAi bacteria: 

A single colony of RNAi clone was grown in 3 ml LB media containing 100µg/ml ampicillin 

and 12.5µg/ml tetracycline and incubated for 12-16 hours at 37oC while shaking. A 920µl of 

this culture was transferred to a polypropylene eppendorf tube and 80µl of sterile glycerol 

solution was added. The culture was mixed and stored at -80oC.  

 

2.8 RNA-mediated interference: 

RNAi by feeding is an easy, convenient yet an effective tool in determining the loss-of-function 

phenotype of a specific gene (Kamath 2003). A corresponding dsRNA for each of the gene was 

expressed in E.coli by inserting a segment of coding region into a plasmid vector L4440 

(pPD129.36), a cloning vector which contains two convergent T7 polymerase promoters in 

opposite orientation. (Timmons et al., 2001, Timmons & Fire 1998).   

The bacterial clones were stored at -80ºC and were streaked on Luria Broth (LB)-agar plates 

with 100µg/ml ampicillin and 12.5µg/ml tetracycline before experiments. A 3ml LB culture 
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with 100µg/ml ampicillin was inoculated with a single colony of appropriate RNAi clone and 

grown in a shaker incubator at 37°C overnight. 100µl of the grown cultures were then seeded 

on 3cm NGM Lite agar medium plates and induced overnight at room temperature. Next day 

worms were transferred to the induced plates and incubated for indicated times. In all of the 

experiments, a negative control (L4440 empty vector) and a positive control (L4440-rme-1) 

were used. The rme-1 mutants have a defective yolk uptake as they cannot efficiently recycle 

yolk receptor RME-2 thus producing a RME phenotype (Grant & Sato 2006).  

 

2.9 YP170-GFP Assay: 

The YP170-GFP (Yolk-GFP) assay was used to visualize yolk trafficking in C.elegans in vivo. 

Transgenic C.elegans strains expressing a YP170-GFP fusion protein are used to visualize the 

basolateral secretion of yolk by the intestine and receptor mediated endocytosis of yolk in the 

oocytes in adult hermaphrodites (Grant & Hirsh 1999). A typical wild type worm displays high 

accumulation of YP170-GFP in its oocytes and also in the developing embryos that are formed 

by the fertilization of oocytes and low accumulation of YP170-GFP in the intestine and body 

cavity. From the previous studies, it has been shown that impaired endocytosis results in 

increased accumulation of YP170-GFP in pseudocoelom whereas an impaired secretion leads 

to increased YP170-GFP accumulation in the intestine (Grant & Hirsh 1999) (Balklava et al., 

2007) (Figure 2.1). Hermaphrodite worms were subjected to three different exposure periods 

to RNAi such as short (egg to P0 adult), medium (L4 to F1 adult) and long (egg to F1 adult). 

P0 are the parent worms and F1 is the first generation of P0. In the short RNAi exposure 

experiments, the adult worms were placed onto induced dsRNA expressing bacterial lawns and 

allowed to lay eggs for 6h and then the adult worms were removed. After 72h, the synchronised 

P0 adult worms were scored for localization of YP170-GFP. In the medium RNAi exposure 

experiments, L4 P0 worms were placed onto induced dsRNA expressing bacterial lawns and 
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allowed to reach adulthood and lay eggs for 24h. The laid eggs were transferred to a new set 

of plates containing the same RNAi bacterial clone and allowed to grow and F1 adults were 

scored for YP170-GFP localisation after 72h. In the long RNAi exposure experiments, worms 

were grown from the egg stage to P0 adults (72h) and the eggs of these adult worms were 

transferred to fresh RNAi containing plates and again grown for 72h and those F1 adult 

hermaphrodites were scored for YP170-GFP localization. Clones that showed Secretory defect 

(SEC) or Receptor Mediated Endocytosis defect (RME) defects were identified and assigned 

as positives and clones which didn’t show any abnormal YP170-GFP localisation were 

assigned negatives. As a general rule, a gene was found to be positive for a given phenotype if 

it is observed in at least 2 of every 3 (67%) worms at least in two different independent 

experiments (Kamath et al. 2001). Experiments were repeated thrice. 
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Figure 2.1: YP170-GFP assay and RNAi a).Schematic representation of YP170-GFP 

trafficking b).Growth dsRNA expressing E.coli and set-up of RNAi experiment c). Phenotypes 

observed after RNAi. WT, ENDO and SEC representing no defects, block in endocytosis and 

block in secretion, respectively. Arrows point to the intestine, filled arrow heads indicate 

oocytes and embryos and empty arrow heads indicate accumulation of GFP signal in the body 

cavity indicating reduced yolk endocytosis (Balklava et al., 2007). 
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2.10 RME-2-GFP Assay: 

The defects in endocytosis and secretion as observed in YP170-GFP assay was further 

examined by the RME-2-GFP assay. The expression and localisation of the yolk receptor 

RME-2 can be visualised by using RME-2-GFP reporter. The RME-2-GFP transgenic strain 

used in RNAi experiments was the RT408, homozygous for an [pwls116 (rme2::GFP] 

transgene insertion. Endocytosis defects in oocytes results in either a steady state accumulation 

of RME-2-GFP at the plasma membrane and cortex of oocytes or a delayed degradation of 

RME-2-GFP in embryos. Secretory defects result in accumulation of RME-2-GFP in the 

endoplasmic reticulum or mini stacks of Golgi, or other secretory vesicles dispersed throughout 

the cytoplasm of the oocytes (Balklava et al., 2007). The corresponding bacterial clones for 

each gene of interest were fed to the RME-2-GFP animals as described previously. In all of the 

experiments, a negative control (L4440 empty vector) and a positive control (L4440-p115) 

were used. p115 is a tethering factor which facilitates Golgi biogenesis and membrane traffic 

in cells and it has been showed that depletion of p115 by RNAi in C.elegans results in retention 

of yolk receptor RME-2 in the ER and Golgi within oocytes (Grabski et al. 2012). Clones that 

showed SEC or RME defects were identified and assigned as positives and clones which didn’t 

show any significant phenotype were assigned negatives. Experiments were repeated thrice. 

 

2.11 Analysis of mutant worm strains for yolk trafficking defects: 

The role of FGFR downstream signalling pathway components in the regulation of membrane 

transport was analysed by crossing a YP170-GFP transgene into mutant worms to analyse 

whether they phenotypically copy the results observed in RNAi experiments. The complete list 

mutant strains analysed is given below in table 2.2. 
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Table 2.2: List of all mutant and resulting transgenic strains used for analysis of YP170-

GFP trafficking 

Mutant 
Gene(Allele) 

Transgene (strain RT130) Strain Analysed 
 

egl-15(n1477) pwIs23 (vit-2::GFP) egl-15(n1477); pwls23 

egl-17(e1313) pwIs23 (vit-2::GFP) egl-17(e1313); pwls23 

let-756 (s2613) unc-32(e189) pwIs23 (vit-2::GFP) let-756 (s2613) unc-32(e189); 
pwls23 

sem-5(cs15) pwIs23 (vit-2::GFP) sem-5(cs15); pwls23 

sos-1 (cs41) pwIs23 (vit-2::GFP) sos-1(cs41); pwls23 

let-60(n1700) pwIs23 (vit-2::GFP) let-60(n1700); pwls23 

lin-45(n2018) dpy-20(e1282) pwIs23 (vit-2::GFP) lin-45(n2018); pwls23 

unc-79(e1068) mpk-1(n2521); 
pwls23 

pwIs23 (vit-2::GFP) unc-79(e1068) mpk-1(n2521); 
pwls23 

akt-1(mg144) pwIs23 (vit-2::GFP) akt-1(mg144); pwls23 

akt-2(ok393) pwIs23 (vit-2::GFP) akt-2(ok393); pwls23 

pdk-1(sa709) pwIs23 (vit-2::GFP) pdk-1(sa709); pwls23 

age-1 (hx546) pwIs23 (vit-2::GFP) age-1 (hx546); pwls23 

pkc-2(ok328) pwIs23 (vit-2::GFP) pkc-2(ok328); pwls23 

itr-1(sa73) pwIs23 (vit-2::GFP) itr-1(sa73); pwls23 

 

2.11.1 General procedure for setting up crosses: 

A highly concentrated E.coli OP50 culture was obtained by centrifuging 1 ml of OP50 O/N 

culture for 30 sec at 12000 rpm. The supernatant was discarded and the concentrated bacterial 

pellet about 10µl was seeded on NGM agar medium plates and allowed to dry. The bacterial 

lawn is kept small to attract worms, and thus increase the chances of mating. Every mating 

plate was age matched and maintained in a male:hermaphrodite ratio of 5:2, respectively . For 

example, the reporter strain males carrying YP170-GFP transgene were crossed into a mutant 
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strain and a successful crossing was verified initially with a high incidence of males. The L4 

F1 progeny were transferred into a new plate and allowed to grow for 24 hours. After 24 h, 6-

8 gravid F1 adult hermaphrodites showing GFP signal were transferred to a fresh plate and 

allowed to lay eggs. 12 F2 adults displaying the mutant phenotype and GFP signal were 

transferred to individual seeded plates and scored for GFP signal in F3 adults. Plates where all 

F3 adults had GFP signal were identified and kept for further analysis by microscopy, (Figure 

2.2) 

 

 

 

Figure 2.2: Overview of crossing YP170-GFP transgene into mutant worm strains. 

 

Most C.elegans mutants with anatomic or behavioural defects are viable and can thus 

reproduce as homozygous hermaphrodites by self-fertilization and therefore can be maintained 

as stable stocks. However, some mutations that eliminate the activity of essential genes lead to 

a sterile or lethal phenotype. In such cases a balancer is used to maintain such detrimental 

mutations as heterozygotes by using a wild type allele of the affected gene. A balancer is a 

tightly linked marker in trans to the mutation (I.A.Hope, 2005). In some scenarios, especially 
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when studying a desired gene of interest it becomes difficult to identify a mutation if they don’t 

have an obvious phenotype. For example, an egl-15 mutation produces an egg laying defective 

(egl) phenotype and therefore it is easy to pick worms that carry egl-15 mutation as they have 

difficulty in laying eggs and these eggs hatch within the worm. This is often called as “bag of 

worms” (Tyagi, 2009). In some cases, the mutations do not produce a distinct phenotype 

themselves and therefore it becomes difficult to differentiate between wild type and mutant 

worms. In such cases, a balancer strain which has a marker gene tightly linked to the gene of 

interest can be used in the crossing scheme. Below is an example that shows the crossing of 

GFP-CHC-1 transgene into pkc-2 mutant worms via a dpy-6 balancer (Figure 2.3).  

 

 

 

 

Figure 2.3: Overview of crossing GFP-CHC-1 transgene into pkc-2 mutant worm via 

balancer dpy-6  
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2.12 Microscopy: 

For imaging of live worms, glass slides with agarose pads were prepared. 1g of agarose was 

dissolved in M9 buffer by boiling. . Two layers of lab tape length wise was put on 2 glass 

slides. The two taped slides were put on a flat surface and a clean slide was placed between 

them. A drop of melted agarose was put in the centre of a clean slide and quickly covered with 

another clean slide placed on top of the three slides in a perpendicular fashion; Top glass slide 

was gently pressed until the agarose drop was flattened to a circle about 0.5 mm thick (the 

thickness of the tape spacers). When agarose had solidified, the two blank slides were separated 

by sliding one relative to the other with the agarose pad usually sticking to one of the slides. 2-

4µl of 0.1M tetramisole was placed into the centre of the agarose pad and live worms were 

transferred into the tetramisole drop and overlaid by a coverslip. Live imaging was done using 

a Leica AF6000 fluorescence microscope and Leica SP5 TCSII DMI6000 confocal microscope 

using LAS (Leica Application Suite) AF software.  

 

2.13 Analysis and Quantification of Membrane Markers: 

Membrane markers labelling specific membrane compartments such as the endosomes, 

lysosomes, plasma membrane, endoplasmic reticulum (ER), Golgi,  and intestine were 

analysed to identify the role of egl-15 in membrane trafficking. The list of transgenic lines with 

membrane markers used in this study is given in table 2.3. 
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Table 2.3: List of all transgenic strains used to study localization of membrane markers 

Membrane Marker /Transgene Mutant 

Gene/Allele 

Strain Analysed 

 

dkIs8(vha-6::chc-1::GFP) egl-15(n1477) egl-15(n1477); dkIs8 

pwIs481[vha-6::mans::GFP] egl-15(n1477) egl-15(n1477); pwIs481 

pwIs446[vha-6::ph::GFP] egl-15(n1477) egl-15(n1477); pwIs446 

pwIs506[vha-6::sp12::GFP] egl-15(n1477) egl-15(n1477); pwIs506 

pwIs601[vha-6::arf-6::GFP] egl-15(n1477) egl-15(n1477); pwIs601 

pwIs87[vha-6::rme-1::GFP] egl-15(n1477) egl-15(n1477); pwIs87 

pwIs717[vha-::GFPC65THTFRshort] egl-15(n1477) egl-15(n1477); pwIs717 

pwIs112[vha-6::hTAC::GFP] egl-15(n1477) egl-15(n1477); pwIs112 

pwIs72[vha6::GFP::rab-5] egl-15(n1477) egl-15(n1477); pwIs72 

pwIs170[vha-6::rab-7::GFP] egl-15(n1477) egl-15(n1477); pwIs170 

pwIs206[vha6-p::rab-10::GFP]. egl-15(n1477) egl-15(n1477); pwIs206 

pwIs69[vha-6::rab-11::GFP] egl-15(n1477) egl-15(n1477); pwIs69 

pwIs355[vha-6::rab-35minigene::GFP] egl-15(n1477) egl-15(n1477); pwIs355 

dkIs8(vha-6::chc-1::GFP) sem-5(cs15) sem-5(cs15);dkls8 

pwIs72[vha6::rab-5::GFP] sem-5(cs15) sem-5(cs15);pwls72 

pwIs170[vha-6::rab-7::GFP] sem-5(cs15) sem-5(cs15);pwls170 

dkIs8(vha-6::chc-1::GFP) let-60(n1700) let-60(n1700);dkls8 

pwIs72[vha6::rab-5::GFP] let-60(n1700) let-60(n1700);pwls72 

pwIs170[vha-6::rab-7::GFP] let-60(n1700) let-60(n1700);pwls170 

 

 Intracellular localization of GFP-CHC-1, MANS-GFP, GFP-hTFR, GFP-hTAC was 

quantified by counting the number of puncta within a unit area of 400µm2 in the intestine. GFP-

ARF-6, RME-1-GFP, GFP-RAB-5, GFP-RAB-7, GFP-RAB-10, GFP-RAB-11, and GFP-

RAB-35 were quantified by determining the number of labelled punctate and tubular structures 

within a unit area of 400µm2 in the intestine. Five different areas were chosen in each animal 

at adult stage and 8 animals were scored for each strain. For PH-GFP, the size of the labelled 

vacuoles was measured in each animal at adult stage within a unit area of 500µm2. For GFP-
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SP12, the average total fluorescence intensity per unit area of 1µm2 was quantified in 10 

different areas in each animal at adult stage and 6 animals were scored. All of the above 

quantification was done using ImageJ software. Statistical analysis was carried out by Student’s 

two-tailed unpaired t-test using the software Graph Pad.  

 

2.14  Antibodies:  

Table 2.4: The antibodies used in C.elegans study  

Primary Antibodies – Western Blotting 

Name of Antibody Host Source Dilution 

GFP Rabbit Cell Signalling  1 in 2000  

Actin Mouse Developmental 

Studies Hybridoma 

Bank 

 

1 in 500  

Secondary Antibodies – Western Blotting 

Anti-Rabbit HRP Goat Cell Signalling 1 in 3000  

Anti-Mouse HRP Horse Cell Signalling 1 in 3000  

 

2.15 SDS-polyacrylamideGel Electrophoresis: 

Polyacrylamide gels are prepared by the free radical polymerization of acrylamide and the cross 

linking agent N N’ methylene bis acrylamide. The reaction was initiated by 10% Ammonium 

persulfate (APS) and catalysed by Tetramethylethylenediamine (TEMED).  

Both 8% and 15% running gels were used for western blotting depending on the size of the 

protein that is being detected and prepared with chemicals as shown. Higher the protein size, 



79 | P a g e  
 

lower the resolving gel percentage and vice versa. A 3% stacking gel was used in all 

experiments (Table 2.5). 

Table 2.5: Composition of Gels used in SDS-PAGE Analysis: 

Resolving gel  8% 15% 

 H2O (ml) 4.94 3.05 

Tris (ml) 1.7 1.7 

60% (w/v) Sucrose (ml) 1.1 1.1 

10% (w/v) SDS (µl) 67 67 

40% (w/v) Acrylamide (ml) 1.35 2.7 

10% (w/v) APS (µl) 50 50 

TEMED (µl) 6 6 

 

 

Table 2.6: List of all solutions and buffers used in SDS-PAGE: 

Name of Solution/Buffer Composition Quantity 

10X Laemmli Buffer (1L) Tris  

Glycine  

SDS  

dH2O  

30g 

144g 

10g 

1L 

5X Laemmli loading dye Glycerol 10% (v/v) 

SDS 2%  

Tris HCl 1.5M (pH 6.8)  

β-mercaptoethanol 5%(v/v) 

Bromophenol blue 1% (v/v) 

10ml 

2g 

4 ml 

5 ml 

1 ml 

10X Running Buffer, 1L 

(pH 8.3) 

Tris  

Glycine 

SDS 

dH2O  

30g 

144g 

10g 

1L 

Stacking Gel 3% 6% 

 H2O (ml) 1.725 1.6 

Tris (ml) 0.8 0.8 

10% (w/v)SDS (µl) 33 33 

40% (w/v)Acrylamide (ml) 0.375 0.5 

10% (w/v) APS (µl) 20 20 

TEMED (µl) 3.3 3.3 
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10% (w/v) APS  Ammonium Persulfate  

dH2O  

1g 

10ml 

10% (w/v) SDS, 100 ml Sodium Dodecyl Sulfate  

distilled H2O  

10g 

100ml 

10X Electroblot Transfer Buffer  

(pH 8.3), 1L 

Tris Base 

Glycine  

dH2O 

30.25g 

144g 

1L 

1X Electroblot Transfer Buffer, 1L 

 

10x Electroblot Transfer Buffer  

Methanol  

dH2O  

100ml 

200ml 

700ml 

10X PBS, 500ml NaCl  

KCl  

Na2HPO4-7H2O  

H2O  

40g 

1g 

13.4g 

500ml 

PBS-Tween20, 1L 10X TBS 

Tween 20 

dH2O 

100ml 

0.5ml 

1L 

10X TBS, 1L 

pH 8.0 

Tris 

NaCl 

1M HCl 

dH2O 

60.6g 

87.6g 

 

1L 

ECL- Electrochemiluminescence 

Detection Mix 

1M Tris pH 8.5 

90mM Coumaric acid 

250mM Luminol 

37% H2O2 

dH2O 

1ml 

0.02ml 

0.05ml 

0.003ml 

9ml 

 

2.16 Worm lysis for SDS PAGE: 

Exactly 30 worms of each strain of interest were transferred to separate microfuge tubes 

containing 15µl of M9 buffer. The worms were homogenised in 4X laemmli buffer by boiling 

them for 5min and stored at -20oC until use. 
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2.16.1 Gel Preparation: 

The Biorad mini gel apparatus was assembled and the resolving gel solution was added 

carefully to avoid creating air bubbles. The stacking gel was poured immediately and the comb 

was inserted ensuring that there are no air bubbles. The gel was allowed to solidify for 45 

minutes.  

2.16.2 Electrophoresis: 

The gel tank was set up as per the manufacturer instructions.. The running buffer was poured 

into the chamber submerging the gel completely and the comb was removed. The samples 

(15µl) and protein ladder (5µl) were then loaded into the wells and the power supply was 

connected. The gel was initially run on low voltage (60V) for 20 minutes following by higher 

voltage (140V) for 60 minutes. 

2.16.3 Electrotransfer: 

The gel was carefully retrieved after the run from the glass plates and assembled in a sandwich 

containing equal sized whatman filter sheets, nitrocellulose membrane, and sponges. The 

sponge, filter sheets, and nitrocellulose were soaked in transfer buffer. A sandwich was made 

as follows; sponge, 2 filter sheets, gel, nitrocellulose membrane, 2 filter sheets and sponge. The 

sandwich was then placed in the transfer apparatus and an icepack was placed on the sides of 

the chamber. The transfer buffer was added to the apparatus and ensured that the sandwich was 

fully covered with buffer.  The whole apparatus was then placed in thermofoam box covered 

with ice. The transfer was carried out for 90 minutes at 200mAmp. 

2.16.4 Blocking and Antibody incubation: 

The nitrocellulose membrane was carefully removed from the transfer apparatus and blocked 

with 5% (w/v) skimmed milk in 1X PBS for 1 hour. The membrane was then incubated with 
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the primary antibody overnight at 4oC on a shaker. The membrane was then washed with 1X 

PBS for 10 minutes thrice and was incubated with the secondary antibody for 1 hour at room 

temperature. The membrane was washed again with 1X PBS for 10 minutes thrice. The ECL 

mix was then added to the blot and the results were visualized in the dark room.  
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2.17 Methods used in Mammalian Cell Model  

2.17.1 Materials 

DMEM (Dulbecco’s Modified Eagle Complete Medium, high glucose), PBS (Phosphate 

Buffered Saline, pH 7.2), and Alexa Fluor488 transferrin conjugate from human serum were 

from Life Technologies, Invitrogen, UK. Tryspin-EDTA, Fibronectin (from bovine plasma), 

SU5402 (FGFR inhibitor), PD157890 (EGFR inhibitor), and Phosphatase inhibitor cocktail II 

were from Sigma-Aldrich, UK. Recombinant mouse FGF-1 was from CellGS, Cambridge, UK. 

FBS (Fetal Bovine Serum, SA Origin) and Penicillin-Streptomycin were from Lonza, UK. 

Primary antibodies - FGFR1 (rabbit), Phospho-FGFR1 (mouse), α-Tubulin(mouse) and 

Secondary antibodies – HRP-conjugated anti-mouse IgG and HRP-conjugated anti-rabbit IgG 

were from Cell Signalling Technology, USA.  

 

2.18 Cell Culture 

NIH/3T3 cells were propagated in DMEM supplemented with 10% (v/v) foetal bovine serum, 

100 U/ml pencillin and 100 U/ml streptomycin in a humidified atmosphere with 5% CO2 and 

95% air at 37oC.  

 

2.19 Passaging cells: 

In order to maintain a healthy stock of cells, cells were grown in above mentioned conditions 

until they reached approximately 80% confluency. The media was then removed from the flask 

and the cells were rinsed with 1X PBS prior to incubation at 37oC with 1X trypsin EDTA 

solution for few minutes. Following cell detachment, trypsin action was stopped by adding 

serum complemented DMEM. Cells were then collected into a 15 ml centrifuge tube and 

centrifuged at 4000 rpm for 5 minutes at room temperature. The supernatant was removed and 
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fresh media was added to the tube depending on the size of the pellet. If necessary, cells were 

counted using a haemocytometer.  A 20ul aliquot of cell suspension was applied to a 

haemocytometer chamber and cells were counted in 4 individual square fields using a phase 

contrast microscope. Desired number of cells was then seeded into flasks or dishes containing 

fresh media.  

 

2.20 Freezing cells: 

Freshly centrifuged cells after passage were suspended in a freezing mixture. About 1-1.5ml 

of cells in freezing mixture consisting of 90%(v/v) Fetal Bovine Serum (FBS) and 10%(v/v) 

Dimethyl Sulphoxide (DMSO) were taken into cryovials. The cryovials were initially placed 

into -20oC freezer for an hour before being transferred to -80oC freezer. For long term storage 

cells were transferred to liquid nitrogen.   

 

2.21 Thawing cells: 

The vials containing cells were removed from -80oC and were quickly thawed by dipping into 

warm water bath and very gently agitated until fully thawed. The cell suspension was then 

transferred into T25 cm flasks containing serum complemented DMEM and incubated at 37oC 

in a humidified atmosphere with 5% CO2 and 95% air for 12 hours before changing the medium 

when cells had attached.  

 

2.22 Cell Homogenisation for SDS-PAGE Analysis 

50,000 to 100,000 cells were seeded into 6cm or 10cm tissue culture dishes and allowed to 

grow until 70 – 80% confluent. Cells were then washed with 1X PBS twice. After aspirating 

the PBS, 100 µl of homogenising buffer consisting of 0.25M Sucrose, 2mM EDTA, 5mM tris-
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HCl pH 7.4 and 200mM Phenylmethylsulfonyl Fluoride (PMSF)  was added to the dishes and 

the cells were quickly scraped using sterile cell scrapers and collected in a 1.5ml eppendorf 

tube. The cells were then sonicated on ice at 6-9 amps for 10 sec twice. Of the 100 µl of protein 

sample, 10µl of sample was collected for protein quantification (using the nanodrop) and the 

remaining 90µl aliquot was stored in -20oC for later use. On the day of running the gel protein 

samples were mixed with 5X protein loading dye and loaded onto the gel. 

 

2.23 FGFR1 Expression Assay 

To analyse the expression of FGFR1 in NIH/3T3 cells, cells were harvested 48 hours after 

seeding on 10 cm plates with 5x105 cells/plate. Whole cell lysates were prepared by scraping 

the cells using the homogenising buffer. The obtained cells were sonicated on ice at 6-9 amps 

for 10 sec twice and protein concentrations were determined using the Nanodrop as per 

manufacturer’s instructions. 50 µg of protein of each sample was separated on 8% SDS 

polyacrylamide gels and transferred onto nitrocellulose membranes. FGFR expression levels 

were detected using anti-FGFR1 antibody as described in methods section 2.15.  

 

2.24 FGFR1 Phosphorylation Assay 

NIH/3T3 cells were harvested 48 hours after seeding on 10 cm plates with 5x105 cells/plate. 

On the day of the experiment, cells were serum starved for 30 minutes and further induced with 

FGF1 or inhibited with increasing amounts of SU5402 (2µM, 20µM and 40µM) (FGFR 

inhibitor)  for another 30 minutes. PD157890 (EGFR inhibitor) at 20µM was used as a negative 

control. Whole cell lysates were prepared by scraping the cells using the homogenising buffer 

with a phosphatase inhibitor cocktail. The obtained cells were sonicated on ice at 6-9 amps for 

10 sec twice and protein concentrations were determined using the nanodrop. 50 µg protein 

sample of each condition was separated in 8% SDS polyacrylamide gels and transferred onto 
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nitrocellulose membranes. Phospho-FGFR1 levels were detected by western blot as described 

in methods section 2.15.  

 

Table 2.7: The antibody dilutions used in mammalian model study  

Primary Antibodies – Western Blotting 

Name of Antibody Host Source Dilution 

FGFR1 Rabbit Cell Signalling  1 in 2000  

Phospho-

FGFR(Tyr653/654) 

Mouse Cell Signalling 1 in 2000  

α-Tubulin Mouse Sigma 1 in 2000  

Secondary Antibodies – Western Blotting 

Anti-Rabbit HRP Goat Cell Signalling 1 in 3000  

Anti-Mouse HRP Horse Cell Signalling 1 in 3000  

 

2.25 Measurement of Transferrin Uptake and Recycling using Fluorescence 

Microscopy 

NIH/3T3 cells were seeded on fibronectin coated cover slips at a density of 20,000 cells/well 

in a 24 well plate and incubated in a 5% CO2 atmosphere at 37oC for 24 hours prior to the 

experiment. On the day of experiment, the cells were serum starved for 30 minutes to deplete 

endogenous transferrin and growth factors and further induced with FGF1 (100ng/ml) or 

inhibited with SU5402 (20µM) (FGFR inhibitor) for another 30 minutes. To measure the 

transferrin uptake, cells were incubated with 5 µg/ml Alexa Fluor488-conjugated transferrin 

for 30 min in a 5% CO2 atmosphere at 37oC. Cells were then washed twice with ice- cold PBS 

followed by an acid wash (0.5% acetic acid, 0.5M NaCl, pH 3.0) and another three washes with 

ice-cold PBS to remove unbound transferrin. Cells were then fixed using 3.7% (v/v) 
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paraformaldehyde in PBS for 30 minutes at room temperature. After fixation, the cover slips 

were washed once with PBS and mounted on slides and the total cell fluorescence was imaged 

using a fluorescence microscope.  

To measure transferrin recycling, cells were seeded and grown as above. On the day of 

experiment, the cells were serum starved for 30 minutes to deplete endogenous transferrin and 

growth factors and further induced with FGF1 or inhibited with SU5402 (FGFR inhibitor) for 

another 30 minutes. Cells were then incubated with 5µg/ml of Alexa Fluor488 transferrin for 

30 minutes in a 5% CO2 atmosphere at 37oC. At the end of internalization, surface bound and 

unbound transferrin was removed as above and the cells were incubated in a complete medium 

for 30 minutes. The cells were then washed once in ice-cold PBS and fixed in 3.7% (v/v) 

paraformaldehyde in PBS for 30 minutes at room temperature. The coverslips were mounted 

and imaged using a fluorescence microscope. Images of at least 50 cells per condition from 

random different fields of the cover slip were imaged and the total cell fluorescence was 

quantified using the Image J software.  

 

2.26 Quantification Analysis: 

In order to measure the Tf uptake and recycling, random cells located on the coverslips were 

imaged at fixed intensity settings and conditions. Alexa Fluor488 transferrin intensity in the 

cells was calculated for each condition (Control, FGF-1 induced and FGFR inhibited) at 

specific time point (at 30 min uptake and at 30 min recycling) using Image J software. Cells to 

be analysed were selected and a free shape was drawn around the membrane of the cell. The 

image was then first converted to a 32 bit and further converted to an 8 bit. A histogram was 

then obtained for the cell with individual pixel intensity. The minimum pixel intensity of the 

background was also obtained. The sum of all pixel intensities of the selected cell was 
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calculated based on the background value. 50 cells were analysed for each condition and thus 

the total cell fluorescence were compared between conditions and at varying time points.  

 

2.27 Measurement of Transferrin Uptake and Recycling using Flow 

Cytometry 

Transferrin uptake and recycling was also measured using the flow cytometry. NIH/3T3 cells 

were seeded at a density of 1X105 cells in 6 cm tissue culture plates and incubated in a 5% 

CO2 atmosphere at 37oC for 24 hours prior to the experiment. On the day of experiment, the 

cells were serum starved for 30 minutes to deplete endogenous transferrin and growth factors 

and further induced with FGF1 (100ng/ml) or inhibited with SU5402 (20µM) for another 30 

minutes. To measure the transferrin uptake, cells were incubated with 5 µg/ml Alexa Fluor488 

transferrin at varying intervals of time such as 10, 20 and 30 min in a 5% CO2 atmosphere at 

37oC. At the end of internalization cells were then washed twice with ice- cold PBS followed 

by an acid wash (stripping buffer 0.5% acetic acid, 0.5M NaCl, pH 3.0) and another three 

washes with ice-cold PBS to remove unbound transferrin. The cells were then 

trypsinised,pelleted by centrifugation, and resuspended in how much? PBS. The samples were 

then analysed using the flow cytometer (10,000 events). The mean fluorescence for each time 

point was calculated.  

To measure transferrin recycling using the flow cytometer, after internalisation of Alexa488-

transferrin for 30 minutes, cells were washed with ice-cold PBS and surface bound transferrin 

was removed by an acid wash. The cells were then incubated in complete medium at varying 

time points 10, 20 and 30 minutes. After incubation the cells were trypsinized and resuspended 

in PBS and analysed using the flow cytometer. The mean fluorescence for each time point was 

calculated.  
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2.28 Statistical Analysis: 

Statistical Analyses were performed using statistical software package GraphPad Prism 5. The 

total fluorescence intensity data are expressed as the mean ± s.e.m of 50 cells per condition. 

One way analysis of variance (ANOVA) and the Dunnet test were used to compare data 

between 3 or more groups. P value ≤0.05 were considered statistically significant.  
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AIMS AND OBJECTIVES 

 

To investigate how membrane trafficking is regulated by Fibroblast Growth Factor Receptor 

(FGFR) mediated cell signalling using C.elegans as a model organism: 

 By establishing gene depletion by RNAi and analyse the trafficking of YP170-GFP 

 By analysing YP170-GFP trafficking in FGFR mutant worm strains 

 

To analyse the localization and morphology of various membrane markers in worm intestine 

and to pinpoint which membrane transport step is regulated by worm FGFR 

 By crossing GFP-tagged intracellular membrane marker into FGFR mutant strain and 

analyse the resulting phenotype by confocal microsopy 

 

To analyze whether regulation of membrane traffic by FGFR is conserved in mammalian 

cells by 

 By using of FGFR inhibitors and FGF1 stimulation and analyse transferrin uptake and 

recycling using Flow Cytometry and  Confocal Microscopy 
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3 WORM FGFR (egl-15) REGULATES MEMBRANE TRAFFICKING 

VIA MAPK AND PLC-γ PATHWAYS  

3.1 Introduction 

C.elegans was the first multicellular organism whose genome was completely sequenced. Since 

sequencing, the concept of reverse genetics has greatly helped scientists to identify and 

characterise different genes on a large scale (Anon 1998). The network of FGF-FGFR 

signalling in mammals is difficult to define as each FGF binds to several FGFRs and vice versa. 

Whereas in invertebrates such as Drosophila melanogaster and C.elegans only three FGFs and 

two FGFs have been identified so far, respectively (Birnbaum et al. 2005). With just two FGFs 

egl-17 and let-756 and the lone FGFR egl-15, the complexity of FGF-FGFR network is reduced 

in C.elegans. One of the reasons hypothesised for such complexity in mammals is due to the 

large scale duplication in a chordate ancestor that led to the large scale increase in the number 

of genes (Ohno, 1970). The C.elegans FGFR is found to be the orthologue of vertebrate FGFRs 

1-4. The FGFRs show a high degree of sequence conservation between vertebrates and 

invertebrates (Figure 3.1 & Table 3.1) and FGFRs in worms and flies appear to regulate cellular 

responses such as proliferation, differentiation, and migration similar to those FGFRs regulated 

in mammalian cell culture systems (Popovici et al. 1999).  

 

Table 3.1: FGF-FGFR signalling components in C.elegans and mammals 

Component C.elegans genes Mammalian genes 

 

FGF 

 

egl-17, let-756 FGFs (1-22) 

 

FGFR 

 

egl-15 FGFRs (1-4) 
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Ras activating complex 

 

sem-5 Grb2 

  

sos-1 Sos 

 

MAPK Pathway 

 

let-60 Ras 

  

lin-45 Raf 

 

mek-2 Mek 

 

mpk-1 Mpk 

 

AKT Kinase Pathway 

 

age-1 PI3K 

  

pdk-1 PDPK-1 

 

akt-1 Akt 

 

akt-2 Akt 

 

PLC- Pathway 

 

plc-3 PLC- 

 itr-1 

Itpr-1 
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pkc-2 

PKC-α 

 

 

 

Figure 3.1: FGF-FGFR signalling pathways between mammals and C.elegans. The 

signalling components of C.elegans coded in green and mammalians in blue. 

 

Reverse genetics has been widely used in C.elegans since 1998 when it was found that the 

introduction of double stranded RNA resulted in the inactivation of endogenous genes (Fire et 

al. 1998). This technique called the RNA-mediated interference or RNAi has become the 

common tool to study genes in C.elegans because it is rapid and simple in identifying gene 

function on a large scale. The early use of this technique involved the injection of dsRNA into 
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the head or tail of the adult hermaphrodites as it produced robust interference even across 

cellular boundaries but other alternate methods that were found in subsequent studies showed 

that RNAi could be performed by simply soaking worms in dsRNA solution (Tabara et al. 

1998) or by feeding the worms with E.coli expressing target gene dsRNA (Timmons & Fire 

1998). Of all the three RNAi methods (injecting, soaking and feeding), RNAi by feeding is 

found to have more advantages than the others namely, it’s less complicated and less laborious 

and it is comparatively cheaper than the other methods. There are bacterial libraries available 

for scientists that contains almost all of the predicted genes in C.elegans (Fraser et al. 2000) 

(Kamath et al. 2003). 

 Thus initially in this study, bacterial clones containing the dsRNA were used to target the 

desired C.elegans FGFR signalling pathway components and the RNAi by feeding approach 

was combined with the YP170-GFP and RME-2-GFP assays as described in the Materials and  

Methods. The transgenic C.elegans strain RT130 [unc-119(ed3); pwls23 [vit-2::GFP; unc-

119] that expresses major yolk protein YP170 fused to GFP was used to analyse the basolateral 

secretion of yolk by the intestine and receptor mediated endocytosis of yolk by oocytes in adult 

hermaphrodites thereby elucidating the role of worm FGFR in membrane transport. The Yolk-

GFP assay combined with RNAi was carried out by knocking down the expression of target 

genes such as FGFR egl-15, both FGFs egl-17 and let-756, downstream RAS activating 

complex components  sem-5,sos-1, and let-60, MAPK pathway components lin-45, mek-2, and 

mpk-1, AKT kinase pathway components  akt-1, akt-2, pdk-1, and age-1 and PLC- pathway 

component plc-3 by feeding worms with their respective dsRNA expressing bacterial clones. 

The other two components of plc-3 pathway, pkc-2 and itr-1 couldn’t be analysed by RNAi 

since they weren’t available from the library during the time of analysis. The rme-1 RNAi was 

used as positive control, as it gives a strong RME phenotype and the negative control L4440 

(an empty vector) were used in all experiments.  
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For every gene of FGFR pathway, at least 80% of the worms showed a strong yolk trafficking 

defect. All experiments were repeated thrice and below results show a representative of 

observed phenotypes.  

 

3.2 RESULTS 

3.3 Analysis of YP170-GFP trafficking in FGF-FGFR signalling pathway 

components by RNAi.  

Depletion of FGF-FGFR upstream signalling pathway components by RNAi  

From the initial analysis of FGF-FGFR signalling components by RNAi, an impaired 

localization of Yolk-GFP was observed in animals where egl-15 and sem-5 were depleted and 

a WT phenotype was observed in egl-17, let-756, sos-1 and let-60 depleted animals suggesting 

the significance of egl-15 and sem-5 as positive regulators of membrane transport (Figure 3.2). 

At first, worms were exposed to dsRNA at their L4 stage and their progeny at adult 

hermaphrodite stage were analysed. Worms that were depleted of egl-15 and sem-5 including 

the positive control rme-1 showed a very strong Yolk-GFP trafficking defect whereas worms 

that were depleted of egl-17, let-756, sos-1 and let-60 showed a wild type phenotype.  Though 

egl-15 showed a high accumulation of Yolk-GFP in the intestine suggesting a secretory defect, 

more Yolk-GFP were also found in the body cavity. Those worms that didn’t show a phenotype 

were exposed to dsRNA for a longer time from egg to P0 adult hermaphrodites and those 

hermaphrodites were allowed to lay eggs again and their progeny were analysed. sos-1 and let-

60 showed a weak Yolk-GFP trafficking defect on long dsRNA exposures whereas egl-17 and 

let-756 still showed a wild type phenotype. The worms subjected to RNAi displayed specific 

phenotypes which served as positives to analyse gene knock down. For example, egl-15, egl-
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17, sem-5 knock-down worms by RNAi show an egg laying defective phenotype. sos-1 shows 

a weak egl and clumpy phenotype. let-756 and let-60 show a weak and scrawny phenotype.  

 

 

Figure 3.2: Analysis of FGF-FGFR upstream signalling pathway components for defects 

in membrane trafficking by RNAi. Yolk-GFP in oocytes and embryos indicated by normal 

arrows. Notched arrows indicate body cavity and arrow heads indicate intestine.  Localization 

of Yolk-GFP in control RNAi L4440 (empty vector) showing a WT phenotype with high Yolk-

GFP in oocytes and embryos and low in intestine and body cavity. rme-1 RNAi was used as a 

positive control showing an endocytosis defect with a very high accumulation of Yolk-GFP in 

body cavity and less accumulation in intestine, oocytes and embryos as indicated by notched 

arrows. egl-15 knock-down worms showing an increased Yolk-GFP accumulation in the 

intestine (indicated by arrow heads)  and pseudocoelom and less accumulation in oocytes and 
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embryos. sem-5 knock-down worms showing an endocytosis defect. let-756, egl-17, let-60, sos-

1 showing a WT phenotype. N=3. Scale bar, 25µm. 

 

Depletion of MAPK signalling pathway components by RNAi  

Yolk-GFP trafficking in signalling components of MAPK (lin-45, mek-2 and mpk-1) signalling 

pathway were analysed by RNAi.  MAPK components are essential for the development of the 

worm and hence these worms were exposed to dsRNA starting at L3-L4 stage and were 

analysed at their adult stage. lin-45, mek-2 and mpk-1 animals show a scrawny weak phenotype 

when compared to wild type.  It was found that the animals treated with dsRNA for lin-45, 

mek-2 and mpk-1 showed a strong endocytosis defect demonstrated by the increased presence 

of Yolk-GFP in pseudocoelom and low in oocytes, embryos and intestine suggesting the role 

of MAPK pathway in regulation of membrane trafficking (Figure 3.3). 

 

 

Figure 3.3: Analysis of MAPK signalling pathway components for defects in membrane 

trafficking by RNAi: Yolk-GFP in oocytes and embryos indicated by normal arrows. Notched 
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arrows indicate body cavity and arrow heads indicate intestine. Localization of Yolk-GFP in 

control RNAi L4440 (empty vector) showing a WT phenotype with high Yolk-GFP in oocytes 

and embryos and low in intestine and body cavity. mek-2, lin-45 and mpk-1 knock-down worms 

showing  an endocytosis defect with a very high accumulation of Yolk-GFP in pseudocoelom 

and reduced/little accumulation in intestine, oocytes and embryos. N=3, Scale bar, 25µm. 

 

 Depletion of phosphatidyinositol-3-kinase/AKT kinase signalling pathway 

components by RNAi  

The downstream signalling events in C.elegans mediated through the AKT kinase pathway and 

their candidate genes akt-1, akt-2, pdk-1 and age-1 were investigated. Animals subjected to 

akt-1, akt-2 and age-1 RNAi bacteria show a weak egl phenotype and pdk-1 show an egl and 

often display a bag of eggs phenotype. The RNAi results from this study showed that all these 

animals produced a WT phenotype (Figure 3.4). Worms were exposed to dsRNA at their L4 

stage and their progeny at adult hermaphrodite stage were analysed. All the worms showed a 

complete wild type phenotype. Next worms were exposed to dsRNA for a longer time (egg to 

adult P0 hermaphrodites to egg to adult F1 hermaphrodite), but even with an extended exposure 

to RNAi worms did not display any yolk trafficking defects, suggesting that PI3K/AKT 

signalling pathway might not be involved in membrane trafficking. 
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Figure 3.4: Analysis of phosphatidyinositol -3-kinase/AKT kinase pathway components 

for defects in membrane trafficking by RNAi:  Yolk-GFP in oocytes and embryos indicated 

by normal arrows. Localization of Yolk-GFP in control RNAi L4440 (empty vector) showing a 

WT phenotype with high Yolk-GFP in oocytes and embryos and low in intestine and body 

cavity. akt-1, akt-2, pdk-1, age-1 animals showing a WT phenotype. N=3. Scale bar, 25µm 
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Depletion of PLC signalling pathway components by RNAi  

The downstream signalling events in C.elegans mediated through the PLC-3 were analysed by 

RNAi. A high accumulation of Yolk-GFP was found in the body cavity and to some extent in 

intestine compared to Yolk-GFP in oocytes and embryos. The other components of PLC-3 

signalling pathway such as itr-1 and pkc-2 couldn’t be analysed by RNAi due to unavailability 

of dsRNA clones from the library during the time of experiments. This RNAi result suggested 

that plc-3 (PLC-) could have a role in membrane transport however; it couldn’t be concluded 

without the analysis of other genes in the pathway at this stage. (Figure 3.5) 

 

 

Figure 3.5: Analysis of PLC-3 for defects in membrane trafficking by RNAi: Yolk-GFP in 

oocytes and embryos indicated by normal arrows and notched arrows indicate body cavity. 

Localization of Yolk-GFP in control RNAi L4440 (empty vector) showing a WT phenotype with 

high Yolk-GFP in oocytes and embryos and low in intestine and body cavity.  plc-3 knock--

down worms showing a strong endocytosis defective phenotype with high accumulation of 

Yolk-GFP in body cavity. Scale bar, 50µm. 

Hence from the initial RNAi experiments, it was found that the worm FGF-FGFR pathway 

regulates membrane transport via the MAPK and PLC-3 pathway and not through the AKT 
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Kinase pathway. Further to these experiments, it was necessary to investigate yolk trafficking 

in mutant (knock-out) worms to see if they phenocopy the same as observed in RNAi (knock-

down) worms.  

 

3.4 Analysis of Yolk-GFP trafficking in mutant worms of the FGF-FGFR 

signalling pathway. 

3.4.1 FGFs and FGFR are involved in regulation of membrane trafficking in C.elegans 

 In order to analyse Yolk-GFP trafficking in the mutant worms of FGF-FGFR signalling 

pathway, the Yolk-GFP transgene [unc-119(ed3); pwls23 [vit-2::GFP; unc-119] was 

introduced into the mutant animals (as shown in table 2.3 in methods) by crossing. Firstly, the 

Yolk-GFP trafficking in FGF mutants (egl-17 and let-756) and the FGFR mutant (egl-15) 

worms was analysed.  

 

egl-15 (FGFR) 

The egl-15 mutant strain MT3456 – [egl-15(n1477)] was crossed with the Yolk-GFP strain 

RT130 [unc-119(ed3); pwls23 [vit-2::GFP; unc-119]. The resulting F2 progeny that were 

homozygous for Yolk-GFP and egl-15 mutation (with egg laying defective phenotype) were 

picked and analysed. It was found that a strong accumulation of Yolk-GFP fusion protein was 

observed in the body cavity and prominent vacuolated structures in the intestine and less in the 

oocytes and embryos of egl-15 mutant worms suggesting a combination of both a secretory 

and an endocytosis defects (Figure 3.6). This defective Yolk-GFP trafficking in egl-15 mutants 

was similar to that observed in egl-15 RNAi experiment supporting the role of egl-15 in 

regulation of membrane trafficking.  
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egl-17 (FGF): 

The egl-17 mutant strain, CB1313- [egl-17(e1313)] was used for the analysis of Yolk-GFP 

trafficking and was crossed with RT130 [unc-119(ed3); pwls23 [vit-2::GFP; unc-119] strain. 

The resulting F2 progeny that contained the GFP and were homozygous for egl-17 (with egg 

laying defective phenotype) were picked and analysed (Figure 3.6). egl-17 mutants showed a 

strong accumulation of Yolk-GFP both in the intestine and also in the body cavity suggesting 

that the ligand egl-17 is important for efficient yolk trafficking.  

 

let-756 (FGF): 

The let-756 mutant strain used in this experiment was FF628 [let-756(s2613) unc-32(e189)]III 

displaying an Unc (uncoordinated) phenotype and was crossed with RT130 [unc-119(ed3); 

pwls23 [vit-2::GFP;unc-119] strain. The gene variation of let-756(s2613) is located in cis- to 

unc-32(e189) which serves as a marker and hence the F2 progeny that displayed an Unc 

phenotype were picked and analysed (Figure 3.6). A high accumulation of Yolk-GFP was 

found in the body cavity and intestine and less in the oocytes and embryos suggesting that let-

756 is important in regulation of membrane trafficking.  
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Figure 3.6: Yolk-GFP trafficking in FGF-FGFR mutant worms. The worm FGFs egl-17 

and let-756 and the worm FGFR egl-15 are required for efficient trafficking of Yolk-GFP in 

C.elegans. Arrowheads indicate the worm intestine. The N2 and unc-32 control worms showing 

a WT phenotype with high accumulation of Yolk-GFP in embryos and oocytes and little 

accumulation of Yolk-GFP in intestine. egl-15 and let-756 mutants showing an abnormal 

accumulation of Yolk-GFP in the intestine (arrowheads) and reduced accumulation  in oocytes 

and embryos. egl-17 mutants showing abnormal accumulation of Yolk-GFP in the intestine 

(arrowheads) and body cavity and  reduced accumulation in oocytes and embryos. Scale bar, 

25µm 

 

                

3.4.2 RAS activating complex is essential for proper Yolk-GFP trafficking 

 

sem-5: 

The Ras activating complex consisting of sem-5 and sos-1 was analysed. The sem-5 mutant 

strain used in for analysis was UP148 – [sem-5(cs15)]. Yolk-GFP was introduced into sem-5 

mutant worms by crossing the Yolk-GFP strain RT130 [unc-119(ed3); pwls23 [vit-2::GFP; 

unc-119] with UP148 – [sem-5(cs15) strain. The worms that were homozygous for Yolk-GFP 

and Egl phenotype were picked and analysed. sem-5 mutants showed an increased 

accumulation and prominent vacuolated structures positive for Yolk-GFP in intestine and body 

cavity and reduced accumulation in oocytes and embryos suggesting the role of sem-5 in 

regulation of yolk trafficking (Figure 3.7). 

 

sos-1:  

The mutant strain of sos-1 used for analysis was a temperature sensitive strain UP604 [sos-

1(cs41)]. Yolk-GFP was introduced into sos-1 mutant worms by crossing the Yolk-GFP strain 
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RT130 [unc-119(ed3); pwls23 [vit-2::GFP; unc-119] with [sos-1(cs41)] strain. The resulting 

transgenic mutant strain ZIB24 - [let-60(n1700); pwls23)] was grown at 25°C to induce 

mutation and was imaged (Figure 3.7). sos-1 mutant worms displayed a normal accumulation 

in oocytes and embryos but there was still an increased accumulation in body cavity.  

 

let-60: 

The let-60 mutant strain used in this experiment was MT4698- [let-60(n1700)] and was crossed 

with RT130 [unc-119(ed3); pwls23 [vit-2::GFP; unc-119] strain. let-60 loss of function 

mutants are not viable or get arrested at larval stage, therefore let-60 gain of function mutation 

strains were used in this analysis. Gain of function mutation in let-60 produces a multivulva 

(Muv) phenotype which serves as a marker and hence the F2 progeny that displayed a Muv 

phenotype and positive for Yolk-GFP were picked and analysed. let-60 mutant worms 

displayed an endocytosis defect with a high accumulation of Yolk-GFP in the pseudocoelom 

and reduced in oocytes and embryos (Figure 3.7).  



107 | P a g e  
 

 

 

Figure 3.7. Analysis of Yolk-GFP trafficking in RAS activating complex: The control N2 

worms showing a WT phenotype with high accumulation of Yolk-GFP in embryos and oocytes 

and little accumulation of Yolk-GFP in intestine. sem-5 mutants showing abnormal 

accumulation of Yolk-GFP signal in the body cavity and intestine and reduced accumulation 

in oocytes and embryos. sos-1 mutants displaying a weak endocytosis phenotype with slightly 

increased accumulation  of Yolk-GFP in body cavity (indicated by notched arrows). let-60 

mutant worm displaying a strong endocytosis defective phenotype with high  accumulation of 

Yolk-GFP in body cavity. Scale bar, 25µm.  
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3.4.3  MAPK signalling cascade affects membrane trafficking 

lin-45: 

The lin-45 mutant strain used in this experiment was WU48 [lin-45(n2018) dpy-20(e1282)]. 

The strain was crossed with RT130 [unc-119(ed3); pwls23 [vit2::GFP; unc-119] strain. The 

allele of lin-45(n2018) is positioned in cis to dpy-20(e1282) which acts as a marker mutation 

to precisely identify worms that are homozygous to lin-45. The F2 progeny that displayed a 

‘dumpy’ phenotype and were positive for Yolk-GFP were picked and analysed. lin-45 mutants 

showed a strong accumulation of Yolk-GFP fusion protein in the body cavity suggesting that 

they are required for proper membrane trafficking (Figure 3.8). 

 

mpk-1: 

The mpk-1 mutant strain analysed was SD184- [unc-79(e1068) mpk-1(n2521]. The strain was 

crossed with RT130 [unc-119(ed3); pwls23 [vit2::GFP; unc-119] strain. The allele mpk-

1(n2521) is positioned in cis to unc-79(e1068) which acts as a marker mutation to precisely 

identify worms that are homozygous to mpk-1. The F2 progeny that displayed an Unc 

(uncoordinated) phenotype and were positive for Yolk-GFP were picked and analysed. The 

mpk-1 mutant worm displayed a high accumulation of Yolk-GFP in the body cavity suggesting 

a strong endocytosis defect (Figure 3.8). 
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Figure 3.8: Analysis of YP170-GFP trafficking in MAPK signalling pathway mutant 

worms.  The control N2 worms showing a WT phenotype with high accumulation of Yolk-GFP 

in embryos and oocytes and little accumulation in intestine (indicated by arrowheads). Both, 

lin-45 and mpk-1 mutant worms displaying a strong endocytosis defective phenotype with high 

accumulation of Yolk-GFP in body cavity (indicated by notched arrows). Scale bar, 25µm 
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3.4.4 PI3K/AKTsignalling cascade is not involved in regulation of membrane 

trafficking 

 age-1: 

The age-1 mutant strain used in this analysis was TJ1052-[age-1 (hx546)]. age-1 mutants are 

difficult to differentiate from wild type animals and therefore, a balancer strain dpy-10 was 

used. The dpy-10 balancer strain has GFP in its pharynx. The Yolk-GFP strain RT130 [unc-

119(ed3); pwls23 [vit2::GFP; unc-119] was first crossed into the balancer dpy-10 and the 

resulting F2 progeny homozygous for Yolk-GFP and dpy-10 (dumpy phenotype with GFP in 

its pharynx) were crossed with male age-1 mutants. The resulting F1 progeny has dpy-10 

positioned trans to age-1 and therefore from self fertilization the worms that are homozygous 

for Yolk-GFP and age-1 with a wild type phenotype lacking GFP in the pharynx are picked 

and analysed. Thus age-1 mutant worms positive for Yolk-GFP were picked and analysed. 

From the analyses, it was found that age-1 mutants showed a WT phenotype with low Yolk-

GFP in intestine and body cavity and normal Yolk-GFP presence in oocytes and embryos 

suggesting that they might not be required as a signalling component for regulation/control of 

membrane trafficking (Figure 3.9). 

 

pdk-1: 

The pdk-1 mutant strain used in the analysis was GR1318-[pdk-1(mg142); pwls23]. Since pdk-

1 mutants don’t have a distinct marker phenotype themselves, they had to be identified by using 

a balancer. The Yolk-GFP strain RT130 [unc-119(ed3); pwls23 [vit2::GFP; unc-119] was first 

crossed into a balancer dpy-3 and the resulting F2 progeny homozygous for Yolk-GFP and 

dpy-3 (dumpy phenotype) were crossed into pdk-1 mutants. Dpy-3 is positioned trans to pdk-1 

and therefore from self fertilization they produce worms homozygous for Yolk-GFP and pdk-

1 with a wild type phenotype. Thus pdk-1 mutant worms positive for Yolk-GFP were picked 
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and analysed. From the analyses, it was found that pdk-1 mutant worms do not show any defects 

in Yolk-GFP localization and were found to display a WT phenotype suggesting that they 

might not have a role in regulation of membrane trafficking. (Figure 3.9) 

 

akt-1 and akt-2: 

The akt-1 and akt-2 mutant strains used in this analysis were JT573-[akt-1(sa573)] and VC204 

– [akt-2(ok393)] respectively. In order to isolate akt-1 and akt-2 mutants from wild type 

worms, genetic balancers unc-42 and unc-3 respectively were used. The Yolk-GFP strain 

RT130 [unc-119(ed3); pwls23 [vit2::GFP; unc-119] was first crossed into the balancer strain 

carrying unc-42 and the resulting F2 progeny homozygous for Yolk-GFP and unc-42 (unc 

phenotype) were crossed with akt-1 mutant (males). The resulting F1 progeny gets unc-42 

positioned trans to akt-1 and therefore from self fertilization the worms that are homozygous 

for Yolk-GFP and akt-1 with a wild type phenotype were carefully picked and analysed. A 

similar approach was taken in identifying akt-2 mutants using unc-3 balancer strain. From the 

analysis, both, akt-1 and akt-2 mutants showed a WT phenotype with low levels of Yolk-GFP 

in intestine and body cavity and normal Yolk-GFP presence in oocytes and embryos suggesting 

that they might not be required as a signalling component for regulation of membrane 

trafficking (Figure 3.9). Thus from this analysis of the AKT Kinase signalling pathway for 

Yolk-GFP trafficking, it is evident that AKT kinase pathway might not have any significant 

role in regulation of membrane trafficking.  
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Figure 3.9: Analysis of YP170-GFP trafficking in PI3K/AKT signalling pathway mutant 

worms.  Control N2 worms and age-1, pdk-1, akt-1 and akt-2 mutant worms showed a WT 

phenotype with low levels of Yolk-GFP signal in intestine and body cavity and normal presence 

in oocytes and embryos. Scale bar, 25µm.  
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3.4.5 PLC (PLC-3) signalling cascade is involved in regulation of membrane 

trafficking 

itr-1 

The itr-1 mutant strains used in this analysis were JT73-[itr-1(sa73)]-loss of function (lf) and 

PS2582-[itr-1(sy290) unc-24(e138)]-gain of function (gf). The itr-1 gain of function strain 

carries unc-24 which is positioned in cis to itr-1 and therefore shows an unc phenotype. This 

unc phenotype serves as a marker when identifying itr-1 gf mutants from wild type animals. 

The Yolk-GFP strain RT130 [unc-119(ed3); pwls23 [vit2::GFP; unc-119] was directly 

crossed into itr-1 gf mutants and the resulting F2 progeny homozygous for [itr-1(sy290) unc-

24(e138)] and Yolk-GFP showing an unc phenotype were picked and analysed.  

The itr-1 loss of function mutant strain doesn’t carry a marker phenotype and therefore they 

were identified by using unc-24 strain as a genetic balancer. The Yolk-GFP strain RT130 [unc-

119(ed3); pwls23 [vit2::GFP; unc-119] was first crossed into the balancer strain carrying unc-

24 and the resulting F2 progeny homozygous for Yolk-GFP and unc-24 (unc phenotype) were 

crossed with itr-1 (lf) mutant (males). The resulting F1 progeny gets unc-24 positioned trans 

to itr-1 and therefore from self fertilization the worms that are homozygous for Yolk-GFP and 

itr-1 with a wild type phenotype were carefully picked and analysed 

 itr-1(sa73) is a loss of function mutant is viable at 20oC but behaves as a near null at 25oC (H. 

a. Baylis & Vázquez-Manrique 2012). It was found that itr-1(sa73) mutant showed a strong 

yolk-GFP trafficking defect with high accumulation of YP170-GFP in body cavity suggesting 

their role in regulation of membrane trafficking whereas itr-1(sy290) gain of function mutant 

showed a wild type phenotype (Figure 3.10). 
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pkc-2 

The pkc-2 mutant strain analysed was VC127 [pkc-2(ok328)]. Pkc-2 mutants are difficult to 

differentiate from wild type animals and therefore, a balancer strain dpy-6 was used.  

The Yolk-GFP strain RT130 [unc-119(ed3); pwls23 [vit2::GFP; unc-119] was first crossed 

into the balancer dpy-6 and the resulting F2 progeny homozygous for Yolk-GFP and dpy-6 

(dumpy phenotype) were crossed with male pkc-2 mutants. The resulting F1 progeny has dpy-

6 positioned trans to pkc-2 and therefore from self fertilization the worms that are homozygous 

for Yolk-GFP and pkc-2 with a wild type phenotype were picked and analysed. 

From the analysis it was found that pkc-2 mutants showed a high accumulation of Yolk-GFP 

in the pseudocoelom and reduced accumulation in intestine and embryos indicating a strong 

endocytosis defect (Figure 3.10). Thus from this analysis of the PLC/PKC-2 signalling pathway 

for Yolk-GFP trafficking, it is evident that the signalling components of PLC-γ pathway are 

essential for proper regulation of membrane transport. 
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Figure 3.10: Analysis of Yolk-GFP trafficking in PLC-3 signalling pathway mutant 

worms.  The control N2 worms showing a WT phenotype with high accumulation of Yolk-GFP 

in embryos and oocytes and little accumulation of Yolk-GFP in intestine. itr-1(sa73) mutant 

worms showing a high accumulation of Yolk-GFP in the body cavity. itr-1(sy290) and pkc-2 

(ok328) showing a WT phenotype. Scale bar, 25µm.  
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3.5  Discussion 

From previous studies it was found that the worm FGFR egl-15 and some of the downstream 

components of FGF-FGFR signalling pathway such as sem-5, sos-1 and let-60 could possibly 

regulate membrane trafficking (Balklava et al. 2007). Here in this study, the role of FGF-FGFR 

signalling pathway in membrane traffic was analysed. YP170-GFP assay is one of the widely 

used method to analyse membrane trafficking as it shows the common membrane trafficking 

defects in endocytosis and secretion. The components of FGF-FGFR signalling pathway were 

knocked-down (using RNAi) or knocked-out (using mutants) and trafficking of Yolk-GFP was 

analysed. From the initial RNAi experiments it was found that the worm FGFR egl-15, 

component of Ras activating complex sem-5, MAPK components including lin-45, mek-2, 

mpk-1 and PLC-3 pathway component plc-3 all showed a strong Yolk-GFP trafficking defects. 

Surprisingly the ligands of egl-15 such as egl-17 and let-756 showed a WT phenotype whereas 

the key activators of downstream transduction pathways such as sos-1 and let-60 showed a 

weak Yolk-GFP trafficking defect. It was also found that the members of AKT kinase pathway 

showed a WT phenotype. These positives obtained from Yolk-GFP assay were also tested with 

the RME-2-GFP assay. The FGF-FGFR signalling components which showed a Yolk-GFP 

trafficking defect also showed a poor trafficking of RME-2-GFP (results not shown). Though 

RNAi is one of the robust tools in silencing genes, it has its drawbacks and one needs to be 

careful when interpreting results. The possible interpretations from this initial RNAi results 

where that some of the genes that showed a WT phenotype either didn’t respond to RNAi 

cnock-down or alternatively they don’t regulate membrane trafficking. The reasons known to 

affect RNAi efficiency are 1. Endogeneous genes that inhibit RNAi silencing 2. Tissue 

specificity (Timmons 2004). In some cases, genes are thought to possess intrinsic RNAi 

resistance but the reasons are not yet fully understood (Cutter et al. 2003). Genes such as eri-

1, lin-15 and rrf-3 are known to strongly reduce RNAi effectiveness and this is the reason why 
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some RNAi experiments are carried out in either eri-1 or rrf-3 mutant backgrounds. In one of 

the studies, RNAi against GFP in C.elegans showed decreased levels of GFP in all tissues 

except the neurons and it is believed that neuronal cells might express a protein that interferes 

with RNAi mechanism. RNAi efficiency also varies depending on temperature and protein 

half-life. Therefore in order to verify the yolk trafficking defective phenotypes, FGF-FGFR 

signalling pathway mutants were used. Most of the mutants displayed a similar phenotype as 

observed in RNAi experiments however this time the genes such as egl-17, let-756, sos-1 and 

let-60 showed a Yolk-GFP trafficking defect. The loss of function mutation in let-60 would 

result in lethality and are not viable and hence gain-of-function let-60 mutational strain was 

used in this study. The gain-of-function mutation produced an endocytosis defect.  

The loss of let-60 functionality by RNAi produced no distinct phenotype unlike the previous 

study by Balklava et al., 2007 of let-60 RNAi on a sensitive background (rrf-3) which produced 

an endocytosis defect. From this it can be inferred that the background sensitivity could be a 

factor inducing trafficking defects in case of RNAi and either the loss or gain of function 

mutation affects trafficking since a balanced and optimum level of signalling could be required 

to regulate trafficking. Underactivating or overactivating the FGFR signalling might result in 

trafficking defects. One of the ways to confirm this hypothesis would be to use gain of function 

mutation strains for all FGFR signalling components.  

 

The signalling components from the AKT kinase still showed a WT phenotype in mutant 

worms suggesting that they may not be involved in membrane trafficking. PLC-γ pathway 

components including itr-1 and pkc-2 which were not analysed in RNAi experiments were 

investigated as mutants. itr-1 (loss of function) mutation showed a strong Yolk-GFP trafficking 

defect whereas pkc-2 showed a WT phenotype.   
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Previous studies have proved that plc-3 and itr-1 act through IP3 pathway to regulate defecation 

in C.elegans. A similar assumption can be made here that plc-3 and itr-1 to function through 

IP3 to regulate membrane trafficking. Though it is interesting to find pkc-2 showing a wild 

type phenotype, it is possible that it could be due to redundancy. There are four genes that 

encode PKC namely tpa-1, pkc-1, pkc-2 and pkc-3 in which pkc-2 alone encodes six PKC 

isoforms (H. A. Baylis & Vázquez-Manrique 2012). Previous studies have shown that PKC-2 

executes an isoform specific physiological function (Tabuse 2002). Therefore one can say that 

a loss of function mutation could have been compensated by other components associated with 

the IP3 signalling pathway. Taking all these into consideration, egl-15, the worm FGFR is 

found to regulate membrane trafficking via MAPK and PLC-γ signalling pathways.  
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4 WORM FGFR egl-15 REGULATES SEVERAL STEPS OF 

ENDOCYTOSIS. 

4.1 Introduction 

The precise steps at which membrane trafficking is affected can be identified by studying 

specific membrane markers that are enriched on different compartments. Different 

compartments are used in trafficking of different cargo proteins. The internalised cargo is 

transported to early endosomes where they are sorted to be either delivered to trans-Golgi 

network or recycled to plasma membrane or degraded by the lysosomes (Chen et al. 2010). 

The C.elegans intestine is a one cell layer thick polarized epithelial tube (Leung et al. 1999). 

Epithelial cells are polarized and have an apical and basolateral plasma membrane (Altschuler 

et al. 1999). The apical membrane faces the lumen and helps in the uptake of nutrients from 

the environment and the basolateral membrane faces the body cavity and helps in exchange of 

molecules between the intestine and body cavity (Shi et al. 2012).  They are both different in 

composition and functions. The clathrin-mediated endocytosis at the basolateral membrane is 

similar to that of constitutive endocytosis at the plasma membrane of non-polarised cells 

whereas, the clathrin-mediated endocytosis at the apical membrane is too slow about one fifth 

compared to that of endocytosis at the basolateral membrane (Altschuler et al. 1999).  

 Different membrane markers and cargo proteins are used in studying different trafficking 

defects based on their function, localization, distribution and their own trafficking.  

The RAB protein markers tagged to GFP are commonly used to study the membrane 

trafficking.  RABs selectively regulate the transport of vesicles and help in the fusion of these 

vesicles with appropriate donor membranes. They have been primarily associated with vesicle 

docking and it is assumed that RABs initiate transport vesicle budding from the donor 

compartment and fuses it with the acceptor? compartment by docking and is finally recycled 
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back to the donor compartment (P Novick & Zerial 1997). The RAB proteins are generally 

maintained in their GDP bound inactive form by the RAB GDP dissociation inhibitor (RAB 

GDI) (Garrett et al. 1994). It is found that the association of RAB GDI with RAB proteins are 

disrupted by factors like RAB effectors and thus facilitate the binding of RAB to the membrane. 

Following this, a GDP/GTP nucleotide exchange occurs which results in the activation of RAB 

proteins which renders RAB resistant to removal by RAB GDI (Ullrich et al., 1994; Soldati et 

al., 1994). The active RABs now come in contact with effector proteins that facilitate 

trafficking in the destined pathway. The GTPase-activating proteins (GAPs) then hydrolyse 

RABs (GTP bound-ON form) which reverts them back to inactive GDP-bound OFF form 

(Pfeffer 2001). This exchange reaction between GDP/GTP is catalysed by GEF (Guanine 

Exchange Factors). The inactive RAB is then extracted by RAB GDI from the membrane. The 

RAB which is now bound to GDI is reattached from a membrane and continue the cycle again 

(Collins 2003). The role of GEFs and GAPs are also important as they determine which 

nucleotide is bound to RAB proteins on the membrane and regulate the association of RAB 

proteins to RAB GDI (Fukui et al. 1997). In order to bind to membranes, RAB proteins must 

be prenylated which is facilitated by the catalysing enzyme RAB geranylgeranyltransferase 

(GGTase). Thus, all these factors maintain RAB proteins in an equilibrium between the 

membrane and the cytosol (Peter Novick & Zerial 1997). Different RAB proteins are involved 

in each step of vesicular transport and this finding was initially seen from studies in yeast. For 

example, the yeast RAB GTPase Sec4p, a key regulator of exocytosis in yeast helps in the 

transport of Golgi-derived secretory vesicles to the plasma membrane (Salminen & Novick 

1987).  The association of RABs with specific effector proteins play a major role in vesicle 

formation, tethering, cargo selection, vesicle movement and fusion.  

The recruitment of effectors by RABs is essential for vesicle movement along actin or 

microtubule-based cytoskeletal structures. For example, in mammalian cells, RAB11 regulates 
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plasma membrane recycling by interacting with myosin Vb through its effector protein RAB11 

family interacting protein 2 (RAB11-FIP2) (Hales et al. 2002). RABs have also been found to 

interact with microtubule based motor proteins such as kinesin (plus end motors) and dynein 

(minus end motors) to carry out vesicle movement. Some RABs can also function in both the 

endocytic (retrograde) and exocytic (anterograde) pathways. For example, RAB6 which has 

been found to be localised with Golgi regulates a retrograde traffic between endosomes, Golgi 

and ER but recently studies also show that they regulate an exocytic traffic to the plasma 

membrane (Dejgaard et al. 2008; Girod et al. 1999; Grigoriev et al. 2007; White et al. 1999). 

Thus the association of RAB proteins to different membranes and their role in formation, 

docking and fusion between different compartments make them excellent markers to precisely 

study exactly which transport step is affected. Below is a table showing some of the RAB 

markers that are used to identify the defects in transport steps.  

Table 4.1. RAB proteins, their localisation and function 

Protein Localisation  Function 

RAB1A,  

RAB1B 

RAB2 

Golgi intermediate compartment 

cis Golgi network (CGN) 

ER to Golgi transport 

(Saraste et al. 1995) 

(Tisdale et al. 1992) 

RAB4A,  

RAB4B 

Early endosomes Recycling from early endosome 

to plasma membrane (van der Sluijs et al. 

1992) 

RAB5 Plasma membrane,  

Clathrin coated vesicles 

Early endosomes 

Plasma membrane to early endosome 

transport 

(Gorvel et al. 1991) 

RAB7 Late endosomes Early to late endosome transport (Papini 

et al. 1997) 
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RAB9 TGN, late endosomes Late endosome to TGN transport 

(Lombardi et al. 1993) 

RAB10 Early endosomes 

Golgi and post Golgi 

vesicles 

Endocytic recycling (Shi et al. 2012) 

RAB11 TGN, recycling endosome, Post-

Golgi complexes 

Transport through recycling 

Endosomes (Ullrich et al. 1996) 

RAB35 Plasma membrane, early 

Endosomes, clathrin coated pits 

(CCP) 

 

Controls fast recycling to 

Plasma membrane (Kouranti et al. 2006) 

 

Along with RABs, another small GTPases which have been implicated in membrane trafficking 

are the ADP ribosylation factors (ARFs) (Chavrier & Goud 1999). Arf proteins have been 

found to be involved in regulation of both endocytic and exocytic pathways by maintaining the 

organelle integrity, assembly of coat proteins (Boman & Kahn 1995), vesicle formation, 

tethering and docking (Chavrier & Goud 1999). Arf proteins were first identified as cofactors 

for cholera toxin and are grouped under the members of Ras superfamily of GTP proteins 

(Kahn & Gilman 1984) (Kahn & Gilman 1986). So far, six mammalian ARF proteins have 

been found and they are classified into three classes based on their primary structure. ARFs 1, 

2, and 3 are in Class I, ARFs 4, and 5 are in Class II and ARF6 is in Class III. 

Among these ARF proteins, ARF1 and ARF6 are the most extensively studied and are often 

used as representative members of the family (Moss & Vaughan 1998) (Randazzo et al. 2000). 

ARF1 has been associated with trafficking from ER to Golgi and transport from the trans Golgi 

network, whereas ARF6 has been associated with endocytosis, receptor recycling, and 
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phagocytosis. ARFs have also been found to activate Phospholipase D and also involved in 

lipid metabolism which helps in the maintaining the integrity of organelle structure and their 

transport. The molecular basis underlying ARF regulation of membrane trafficking has been 

well established in ARF1 compared to that of ARF6 and vesicle coat proteins such as COPI 

and the AP1-clathrin complex play a major role in this regulation. They help in formation of 

vesicles and sorting and transport of cargoes between membrane bound organelles. Similar to 

RABs, ARFs also cycle between GTP-bound (active) and GDP-bound (inactive) states.  The 

GTP/GDP cycle and the activity of GEFs and GAPs are essential to complete the sequence of 

events comprising of sorting, transporting and formation of vesicles.  

In this study, we used ARF6 as the representative in C.elegans. ARF6 is localised to the cell 

periphery and based on their nucleotide status they cycle between the plasma membrane and 

the intracellular endosomal compartment (D’Souza-Schorey et al. 1995). Peters et al(1995) 

have shown one of the roles of ARF6 in membrane trafficking. They took two mutant forms of 

ARF6, ARF6 which is defective in GTP hydrolysis and hence remains active in GTP bound 

conformation (constitutively active) and the other mutant which is in the GDP bound 

conformation (dominant negative or inactive). They found that the GTP-bound ARF6 was 

localised exclusively to the plasma membrane which resulted in a decreased rate of transferrin 

uptake whereas, the GDP-bound ARF6 was localised in intracellular compartments and 

resulted in an intracellular accumulation of transferrin receptors and inhibition of recycling of 

ligands back to the cell surface suggesting that ARF6 could be involved in recycling rather than 

uptake. Later studies showed that ARF6 is localised to a recycling compartment and could 

regulate the outward flow of recycling membrane (D’Souza-Schorey et al. 1998).  

Alpha mannosidase II-GFP, a specific Golgi marker (Rolls et al. 2002) along the secretory 

pathway was used in this study to analyse the distribution and localisation of GFP-MANS in 

the egl-15 mutant worms. The C.elegans contain many small Golgi stacks unlike the 
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vertebrates that contain one large Golgi stack near the nucleus (Shi et al. 2012). Shi et al (2012) 

have also reported recently that GFP-MANS colocalise with RAB-10 significantly in the trans-

Golgi network and apical recycling endosomes which shows that MANS along with RAB-10 

performs its functions in the secretory pathway.Similar to GFP-MANS, SP12 (Signal peptidase 

12), a 12 kDa endoplasmic reticulum marker was used to identify if transport steps along the 

ER was affected. The distribution and localisation of GFP-SP12 in the egl-15 mutant worms 

was analysed.  

The amount of information available on the sorting and recycling of molecules from the 

endosomes to the plasma membrane is less compared to the information available on the 

transport events of internalisation. Recent studies have shown that RME-1 is a novel protein 

which is found to be involved in endocytic recycling. In C.elegans, the amount of yolk uptake 

is dependent on the efficiency of yolk receptor recycling and it has been shown that RME-1 is 

essential in yolk receptor recycling (Grant et al. 2001). Loss of RME-1 function results in 

endocytic defects in most cell types and it has been found that RME-1 is expressed 

predominantly in the plasma membrane and recycling endosomes and particularly in 

basolateral recycling endosomes in the intestine of C.elegans. RME-1 mutants also show 

enlarged endosomes filled with endocytic fluid in the intestine thereby showing its role in 

endocytic recycling (Grant & Caplan 2008). Thus, the marker GFP-RME-1 has been used in 

this study to see if the loss of egl-15 function would have any impact on endocytic recycling.  

In this study we also investigated some of the transmembrane cargo proteins to see their 

trafficking with the loss of egl-15 function.  The human transferrin receptor (hTFR)-) and the 

α-chain of the human interleukin 2 receptor (hTAC) were expressed as GFP fusions in the 

C.elegans intestine and the localisation and distribution of these were compared between wild 

type and egl-15 mutant animals. The hTFR undergoes a clathrin-dependent endocytosis to the 

early endosomal system and gets recycled back to plasma membrane through the Endosomal 
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Recycling Compartment (ERC) whereas hTAC undergo a clathrin-independent endocytosis via 

non-coated invaginations like caveolae (Kurzchalia & Parton 1999) and are recycled back to 

the plasma membrane through a distinct tubular endosomal compartment (Radhakrishna & 

Donaldson 1997; Caplan et al. 2002).  

The initial study to understand the role of FGFR signalling pathway components in membrane 

trafficking using YP170-GFP and RME-2-GFP assays suggested that FGFR affects membrane 

transport via the MAPK and PLC- pathways. We observed defects of both endocytosis and 

secretion with the disruption of FGFR pathway components. The next focus of study was to 

pinpoint exactly which transport step was affected. The different membrane compartments 

such as endosomes (early/late/recycling), lysosomes, Golgi, ER and their respective marker 

proteins (Figure 4.1) were analysed in the intestine of worms. The expression of these 

membrane markers in the intestine was achieved from the intestine- specific vha-6 promoter. 

The distribution, localization, morphology and expression levels of these membrane markers 

were compared and analysed between wild type and egl-15 mutant worms. 
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Figure 4.1: Overview of membrane trafficking pathways, compartments and membrane 

markers.  

 

Table 4.2: Membrane compartments and their respective membrane markers 

Membrane Marker Compartment 

RAB-5 Early/late endosomes 

RAB-7 Early/late endosomes and early lysosomes 

RAB-10 Basolateral early endosomes, Golgi and apical recycling endosomes 

RAB-11 Basolateral early endosomes, Golgi and apical recycling endosomes 

RAB-35 Early recycling endosomes 

MANS Golgi 

Y Y Y 
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SP-12 Endoplasmic Reticulum 

RME-1 Basolateral recycling endosomes 

CHC-1 Clathrin Coated Pits (Plasma membrane) 

hTAC  Clathrin-independent cargo   

hTFR Clathrin-dependent cargo  

PH domain of PLC Plasma membrane, recycling endosomes  
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4.2 RESULTS 

4.3 egl-15 mutation affects clathrin-mediated endocytosis 

 Analysis of GFP-CHC-1 distribution  

CHC-1, a marker for clathrin-coated pits and vesicles was analysed. The CHC-1 strain GK35 

[unc-119(ed3); pwls72 [vha-6p::GFP::chc-1;unc-119] and the egl-15 mutant strain MT3456 

[egl-15(n1477)] were used in this analysis. The GK35 strain was crossed into egl-15 mutant 

animals and were analysed. Clathrin-coated vesicles are formed at the plasma membrane and 

are actively involved in endocytosis. They are also found at the trans-Golgi network but their 

precise function at this organelle is still unclear (Robinson & Pimpl 2014). In this study, GFP-

CHC-1 labelled a very large number of punctate structures throughout the cytoplasm likely 

representing Clathrin Coated Pits (CCPs) and Clathrin Coated Vesicles (CCVs) at the PM and 

TGN in the wild-type intestine. However, in egl-15 mutants, a significantly reduced number of 

these punctate structures were observed (Figure 4.1).  

A reduced accumulation of GFP-CHC-1 could indicate a decreased number of clathrin- coated 

pits or decreased clathrin expression. Either way, this phenotype could indicate impairment in 

clathrin-mediated uptake from the plasma membrane. Previous studies in mammalian cells 

have shown that FGFR activation increases clathrin spots on the plasma membrane and 

promotes clathrin-mediated endocytosis and FGFR itself is internalised through a clathrin-

dependent endocytosis (Auciello et al. 2013). The decreased accumulation of CHC-1 in 

C.elegans intestine from this study could also suggest that the worm FGFR egl-15 could be 

associated with the clathrin-dependent pathway. Clathrin is also found to localise at the TGN. 

Taken together, this result suggests that the functions of the clathrin along the 

endocytic/sercretory pathway and may be even the recycling could be affected in worms 

lacking FGFR function.  
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Figure 4.2: Confocal images displaying GFP-CHC-1 in the intestine of WT and egl-15 

mutants. A high number of punctate structures observed in the intestine of wild-type worms 

(A) and a significantly reduced number of puncta observed in the intestine of egl-15 mutants 

(B).Arrows indicate puncta (endosomes). Quantification of endosome number as visualised 

shown in (C). Error bars represent standard deviation of the mean (n=30 each, 6 animals 

sampled in 5 different regions of each intestine). Asterisks indicate a significant difference in 

the two-tailed Student’s t test between control and egl-15 mutant animals. ** P<0.05. Scale 

bar=10 µm 

 

(A)WT (B) egl-15 

(C) 
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4.4 egl-15 mutants show early to late endosome trafficking defect 

Analysis of GFP-RAB-5 distribution  

The distribution of various endolysosomal proteins in egl-15 mutants was examined. GFP-

RAB-5 is associated with the early endosomes (Grant et al., 2006). The GFP-RAB-5 strain 

RT327 [unc-119(ed3); pwls72 [vha-6p::GFP::RAB-5;unc-119] and the egl-15 mutant strain 

MT3456 [egl-15(n1477)] was used in this analysis. The RT327 strain was crossed into egl-15 

mutant animals and the resulting mutant transgenic worms were analysed. GFP-RAB-5 

labelled a very small number of punctate structures and many ring like vesicles in wild- type 

intestine which likely represent early and late endosomes respectively. In egl-15 mutants, 

however, GFP-RAB-5 labelled more of punctate structures and significantly fewer ring-like 

vesicles suggesting that the early to late endosome step transport step is affected (Figure 4.3).   

           

 

(A)WT (B) egl-15 
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Figure 4.3: Confocal images displaying GFP-RAB-5 in the intestine of WT and egl-15 

mutants. A high number of ring like vesicles (late endosomes) and  less number of puncta (early 

endosomes) observed in the intestine of wild-type worms (A) and on the contrary a reduced 

number of vesicles and high number of puncta observed in the intestine of egl-15 mutants (B). 

Arrows indicate puncta (early endosomes) and arrow heads indicate vesicles (late endosomes). 

Quantification of endosome number as visualised shown in C and D. Error bars represent 

standard deviation from the mean (n=30 each, 6 animals sampled in 5 different regions of each 

intestine). Asterisks indicate a significant difference in the two-tailed Student’s t test between 

control and egl-15 mutant animals. ** P<0.05. Scale bar=10 µm 

 

Analysis of GFP-RAB-7 distribution  

RAB-7, a marker for early/late endosomes and early lysosomes was analysed (Grant et al., 

2006). The GFP-RAB-7 strain RT476 [unc-119(ed3); pwls170 [vha-6p::GFP::RAB-7;unc-

119] and the egl-15 mutant strain MT3456 [egl-15(n1477)] was used in this analysis. The 

RT476 strain was crossed into egl-15 mutant animals and the resulting mutant transgenic 

worms were analysed. It was found that, GFP-RAB-7 animals labelled distinct ring like 

vesicles which represent the late endosomes in wild-type intestine. However, in egl-15 mutant 

animals, there was a significant reduction in these ring-like vesicles but with few aggregates of 

(D) (C) 
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punctate structures (rarely seen in wild-type animals) likely to represent early endosomes 

(Figure 4.4). This result suggests that the transport step from early to late endosomes is affected 

in egl-15 mutants.  

      

      

  

 

Figure 4.4: Confocal microscopy images displaying GFP-RAB-7 in the intestine of WT and 

egl-15 mutants. A high number of ring like vesicles (late endosomes) and small number of 

puncta (early endosomes) observed in the intestine of WT worms (A) and on the contrary a 

reduced number of vesicles and high number of puncta observed in the intestine of egl-15 

mutants (B). Arrows indicate puncta (early endosomes) and arrow heads indicate vesicles (late 

endosomes). Quantification of endosome number as visualised shown in C and D. Error bars 

(C) (D) 

(A)wt (B) egl-15 
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represent standard deviation from the mean (n=30 each, 6 animals sampled in 5 different 

regions of each intestine). Asterisks indicate a significant difference in the two-tailed Student’s 

t test between control and egl-15 mutant animals. ** P<0.05. Scale bar=10 µm 

 

Analysis of GFP-RAB-10 distribution  

RAB-10 associates predominantly with early endosomes, some apical recycling endosomes 

and the Golgi (Grant et al., 2006). The GFP-RAB-10 strain RT525 [unc-119(ed3); pwls206 

[vha6p::GFP::RAB-10;unc-119] and the egl-15 mutant strain MT3456 [egl-15(n1477)] was 

used in this analysis. The RT525 strains were crossed into egl-15 mutant animals and the 

resulting mutant transgenic worms were analysed. It was observed that GFP-RAB-10 displayed 

both a punctate staining pattern and ring like vesicles in the wild-type intestine.  Although not 

significantly different, a slightly higher number of GFP-RAB-10 punctate structures and 

vesicles were observed in egl-15 mutants (Figure 4.5).  

          

 

 

 

 

(A)wt (B) egl-15 
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Figure 4.5: Confocal microscopy images displaying GFP-RAB-10 in the intestine of WT and 

egl-15 mutants. Arrows indicate puncta (early endosomes) and arrow heads indicate vesicles 

(endosomes). No significant difference was observed in the puncta or the vesicle number 

between the wild-type (A) and egl-15 mutants (B). Quantification of endosome number as 

visualised shown in C and D. Error bars represent standard deviation from the mean (n=30 

each, 6 animals sampled in 5 different regions of each intestine). Scale bar=10 µm 

 

4.5 egl-15 mutations affect recycling endosomes 

 Analysis of GFP-RAB-35 distribution  

RAB-35 is associated with early recycling endosomes (Sato et al., 2008). The GFP-RAB-35 

strain RT910 [unc-119(ed3); pwls355 [vha6p::GFP::RAB-35] and the egl-15 mutant strain 

MT3456 [egl-15(n1477)] were used in this analysis. The RT910 strains were crossed into egl-

15 mutant background animals and the resulting mutant transgenic worms were analysed. GFP-

RAB-35 labelled distinct small ring-like vesicles which represent the recycling endosomes in 

wild-type intestine.  However, in egl-15 mutant animals, there was a significant reduction in 

these ring-like vesicles (Figure 4.6) suggesting that RAB-35-positive recycling endosomes are 

affected.  

(C) (D) 
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Figure 4.6: Confocal microscopy images displaying GFP-RAB-35 in the intestine of wild-

type and egl-15 mutants. A significant difference was observed in the vesicle size and number 

between the WT (A) and egl-15 mutants (B). Arrowheads indicate ring like vesicles (recycling 

endosomes). Quantification of endosome number as visualised shown in C. Error bars represent 

standard deviation from the mean (n=30 each, 6 animals sampled in 5 different regions of each 

intestine). Asterisks indicate a significant difference in the two-tailed Student’s t test between 

control and egl-15 mutant animals. ** P<0.05. Scale bar=10 µm 

 

 

 

(A)WT (B) egl-15 

(C) 
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Analysis of RME1-GFP distribution  

RME-1 is associated with basolateral recycling endosomes in worm intestine (Grant et al., 

2006). The GFP-RME-1 strain RT348 [unc-119(ed3); pwls87 [vha-6p::GFP::rme-1] and the 

egl-15 mutant strain MT3456 [egl-15(n1477)] was used in this analysis. The RT348 strain was 

crossed into egl-15 mutant animals and the resulting mutant transgenic worms were analysed. 

GFP-RME-1 labelled a mesh-like tubular-vesicular  staining pattern, recycling endosomes 

(Grant et al., 2006) along the basolateral membranes in the wild-type intestine However, in 

egl-15 mutants, there was significantly reduced  labelling of  GFP-RME-1 puncta at both the 

apical and basolateral membranes suggesting a trafficking defect of endosomes (Figure 4.7) 

      

 

(A)WT (B) egl-15 

(C) 
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Figure 4.7: Confocal images displaying GFP-RME-1 in the intestine of WT and egl-15 

mutants. A significant difference was observed in the vesicle number between the WT (A) and 

egl-15 mutants (B). Arrows indicate punctate structures (recycling endosomes) in the 

basolateral compartments. Quantification of recycling endosome number as visualised shown 

in C. Error bars represent standard deviation from the mean (n=20 each, 4 animals sampled 

in 5 different regions of each intestine). Asterisks indicate a significant difference in the two-

tailed Student’s t test between control and egl-15 mutant animals. ** P<0.05. Scale bar=10 

µm 

Thus, from these investigations to it was found that endocytic trafficking through early 

endosomes is affected in egl-15 mutants leading to disruption of recycling and late endosomes. 

The next focus was to study some of the cargo proteins such as hTfR and hTAC to see if their 

trafficking was affected in the mutant worm intestines. 

 

4.6 Loss of egl-15 function affects affect cargo protein transport 

Analysis of GFP-hTFR distribution   

hTFR, the human transferrin receptor is a cargo protein that is clathrin-dependent for its uptake 

and is normally transported to recycling endosomes or directly to plasma membrane from early 

endosomes following internalization (Lin et al., 2001). GFP-hTFR has been previously shown 

to label basolateral membranes in wild-type worm intestine with localization to plasma 

membrane and proximal small endosomal vesicles and tubules (Chen et al., 2006). The GFP-

hTFR strain RT1970 [unc-119(ed3); pwls717 [vha-6p::GFP::c65ThTFRshort] was crossed 

into egl-15 mutant worms and the resulting mutant transgenic worms were used for analysis. 

GFP-hTFR labelled several punctate structures likely representing early/recycling endosomes 

in the worm intestine. Quantification results showed a significantly reduced number of GFP-
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hTFR positive punctuate in egl-15 mutants compared to wild type worms suggesting a cargo 

trafficking defect (Figure 4.8). 

 

                

 

Figure 4.8: Confocal images displaying GFP-hTFR in the intestine of WT and egl-15 

mutants. A significant difference was observed in the puncta number between the wild-type (A) 

and egl-15 mutants (B). Arrows indicate punctate structures (endosomes). Quantification of 

endosome number (C) Error bars represent standard deviation from the mean (n=30 each, 6 

animals sampled in 5 different regions of each intestine). Asterisks indicate a significant 

difference in the two-tailed Student’s t test between control and egl-15 mutant animals. ** 

P<0.05. Scale bar=10 µm 

(C) 

(A)WT (B) egl-15 
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Analysis of GFP-hTAC  

hTAC, the α chain of the human interleukin-2 receptor is a transmembrane cargo protein 

similar to hTFR but is internalised via clathrin-independent route (Caplan et al., 2002). Like 

hTFR, hTAC has been primarily known to label basolateral membranes in wild-type worm 

intestine with localization to plasma membrane and proximal small endosomal vesicles and 

tubules (Grant et al., 2006). The GFP-hTAC strain RT393 [unc-119(ed3); pwls112 

[vha6p::GFP::hTAC;unc-119] was crossed into egl-15 mutant worms and were used for 

analysis. It was found that GFP-hTAC labelled the apical and basolateral membranes in the 

wild-type worms however, they labelled weakly them in egl-15 mutants. Also, the GFP-hTAC 

labelled puncta was not so visible and appeared quite diffused in egl-15 mutants which made 

it difficult to quantify.  Also, GFP-hTAC labelled abnormal big vacuoles in few worms. These 

results suggest that hTAC trafficking is compromised by loss of egl-15 function (Figure 4.9).  

             

 

 

Figure 4.9: Confocal images displaying GFP-hTAC in the intestine of wild-type and egl-15 

mutants. Arrows indicate GFP-hTAC-puncta labelled more significantly along the membranes 

(A)WT (B) egl-15 
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in the intestine of wild-type animals (A) to that of egl-15 mutants (B). Arrow heads indicate 

large abnormal vacuoles observed in egl-15 mutants (B). Scale bar=10 µm.  

 

Analysis of ARF-6-GFP: 

ARFs are a group of GTPases that are involved in membrane traffic. For example, in polarised 

cells MDCK (Madin-Darby Canine Kidney) cells, ARF-6 is thought to regulate clathrin-

mediated endocytosis at the apical plasma membrane (Altschuler et al. 1999). In CHO cells 

ARF6 is found to be involved in endosomal recycling and in Hela cells ARF6 was found to be 

affecting the clathrin-independent cargo and not clathrin-dependent (Shi et al. 2012). Thus 

ARF6s function varies depending on the cell type.  

For a long time, ARF-6 was known to localize only at the plasma membrane and intracellular 

endosomal compartments (D’Souza-Schorey et al. 1998) (Shi et al., 2013) but studies in the 

last decade have shown that ARF-6 is localised to a recycling compartment and hence could 

also be involved in regulating the outward flow of recycling membrane (D’Souza-Schorey et 

al. 1998). For this study, the GFP-ARF-6 strain RT1579 [unc-119(ed3); pwls601 [vha-

6p::GFP::arf-6;unc-119] was crossed into egl-15 mutant animals and the resulting mutant 

transgenic worms were used for analysis. GFP-ARF-6 labelled the apical membrane to a higher 

degree than the basolateral membrane and a slightly diffused mesh like vesicles and punctate 

structures throughout the cytoplasm in the intestine of wild-type animals (Figure 4.10). In egl-

15 mutants, GFP-ARF-6 marked the apical membrane to the same extent as observed in wild-

type however in the cytoplasm, enlarged vesicles positive for ARF-6-GFP were found. 

Moreover there was a significant reduction in number of GFP-ARF-6 labelled vesicles in egl-

15 mutants compared to wild type worms.   

These vesicles likely represent enlarged early endosomes suggesting a transport defect from 

the early to recycling or late endosomes.  
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Figure 4.10: Confocal images displaying GFP-ARF-6 in the intestine of WT and egl-15 

mutants. Arrows indicate ring-like vesicles (early/recycling endosomes) in the wild-type (A) 

and egl-15 mutant animals (B). Arrowheads indicate enlarged abnormal endosomes in the 

intestine of  egl-15 mutants only (B). Asterisks indicate a significant difference in the two-tailed 

Student’s t test between control and egl-15 mutant animals. ** P<0.05. Scale bar=10 µm 

Analysis of PI(4,5)P 2 (PH domain of PLC): 

Plekstrin Homology domain of PLC is a marker for the PI(4,5)P2 which is mainly localized 

at the plasma membrane. The PH-GFP strain RT1120 [unc-119(ed3); pwls446 [vha-

(A)WT (B) egl-15 



143 | P a g e  
 

6p::GFP::PH;Cbunc-119] was crossed into egl-15 mutant animals and the resulting mutant 

transgenic worms were used for analysis. It was found that PH-GFP labelled the basolateral 

and apical membranes in the wild-type intestine. Strikingly in egl-15 mutants, GFP-PH labelled 

abnormally big vacuoles in the cytoplasm likely representing enlarged endosomes (Figure 

4.11) 

   

 

Figure 4.11: Confocal images displaying PH-GFP in the intestine of WT and egl-15 mutants. 

Arrows indicate punctate structures (endosomes) in both wild-type (A) and egl-15 (B) mutant 

animals and arrowheads indicate large abnormal endosomes only in egl-15 mutants (B). A 

significant difference was observed in the puncta number between the wild-type and egl-15 

(A)WT (B) egl-15 

(C) 
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mutants. Quantification of endosome number as visualised shown in C. Error bars represent 

standard deviation from the mean (n=30 each, 6 animals sampled in 5 different regions of each 

intestine). Asterisks indicate a significant difference in the two-tailed Student’s t test between 

control and egl-15 mutant animals. ** P<0.05. Scale bar=10 µm 

 

Thus, from these analyses of distribution of endolysosomal marker proteins and trafficking of 

transmembrane cargo proteins, it was evident that egl-15 affects endocytic trafficking through 

the early endosomes leading to disruption to recycling and late endo/lysosomes. The next focus 

was to examine the exocytic membrane markers to see if the loss-of-function of egl-15 affects 

exocytosis.  

 

4.7 Loss of egl-15 function doesn’t impair exocytic trafficking 

Analysis of GFP-SP12: 

To understand the role of egl-15 in exocytosis, it was important to study the membrane 

compartments such as ER and Golgi along the secretory pathway. The GFP fusion to the ER-

resident signal peptidase SP12 has been a widely used marker to study the ER in C.elegans 

oocytes, embryos and intestine (GRABski et al., 2011). The GFP-SP12 strain RT1369 [unc-

119(ed3); pwls526 [vha6p::GFP::sp-12;unc-119] was crossed into egl-15 mutant animals and 

the resulting mutant transgenic worms were used for analysis. The GFP-SP12 was found to be 

much diffused in the intestine of both the wild-type and egl-15 mutant animals. The 

quantification of fluorescence intensity showed no difference between the wild type and egl-

15 mutant animals (Figure 4.12) suggesting that the loss of egl-15 function might not impact 

secretion. 
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Figure 4.12: Confocal images displaying GFP-SP-12 labelling in the intestine of WT and 

egl-15 mutants. A diffused pattern of GFP-SP-12 staining was observed in both wild-type (A) 

and egl-15 (B) mutant animals and no difference was found in the fluorescence intensity. 

Quantification of fluorescence intensity as visualised shown in C. Error bars represent 

standard deviation from the mean (n=30 each, 6 animals sampled in 5 different regions of each 

intestine). Scale bar=10 µm. 

 

 

 

(A)WT (B) egl-15 

(C) 
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Analysis of MANS-GFP: 

MANS-GFP (α mannosidase II-GFP) is a marker used to study the Golgi compartment in 

C.elegans. Unlike the mammalian cells that contain only one large juxtanuclear Golgi stack, 

C.elegans have several ‘mini-stacks’ dispersed throughout the cytoplasm (Grant et al., 2012). 

The MANS-GFP strain RT1242 [unc-119(ed3); pwls481 [vha-6p::GFP::MANS;unc-119] was 

crossed into egl-15 mutants and the resulting mutant transgenic worms were used for analysis. 

Consistent with previous studies it was found that GFP-MANS labelled several ‘Golgi mini-

stacks’ in the wild-type intestine and egl-15 mutants displayed a similar number of Golgi mini 

stacks throughout the cytoplasm (Figure 4.13) suggesting that egl-15 might not be affecting the 

transport steps along the secretory pathway.       

   

 

(A)WT (B) egl-15 

(C) 
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Figure 4.13: Confocal images displaying GFP-MANS labelling in the intestine of WT and 

egl-15 mutants. Arrows indicate puncta (Golgi mini-stacks). A high number of Golgi-positive 

punctate structures were observed in the intestines of wild-type worms (A) and egl-15 mutants 

animals (B). Quantification of puncta number as visualised shown in (C). Error bars represent 

standard deviation from the mean (n=30 each, 6 animals sampled in 5 different regions of each 

intestine). Scale bar=10 µm. 

 

4.8 Protein expression levels of membrane markers unaffected in egl-15 

mutants 

In identifying the precise membrane transport steps affected by the loss of egl-15 function by 

analysing the localisation and distribution of membrane markers in C.elegans intestine, it was 

found that egl-15 mutants often showed a less or decreased accumulation or distribution of 

these markers. Hence it was important to know if egl-15 regulates only the localisation or does 

it affect even the protein expression of these markers. Of all membrane markers which were 

significantly different in egl-15 mutants to that of wild type worms, GFP-CHC-1 and GFP-

RAB-35 showed the strongest phenotypical difference. Hence the protein expression levels of 

these two membrane markers were investigated using western blot analysis. It was found that 

there is no difference in protein expression level in both these markers between the wild type 

and egl-15 mutants (Figure 4.14).  

 



148 | P a g e  
 

 

 Figure 4.14: Protein expression levels of membrane markers in WT and egl-15 mutants. 

Worm lysates were subjected to SDS-PAGE and Immunoblotting as described in materials and 

methods. Equal amount of protein (30µg of each sample) was loaded onto each well. GFP-

CHC-1 (218kDa) and GFP-RAB-35 (50kDa) showed no difference in expression levels 

between wild type and egl-15 mutants.  
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4.9 Discussion  

Protein transport between compartments is coordinated by a complex system involving 

vesicles, intracellular organelles like Golgi, ER, lysosomes, endosomes and autophagosomes. 

This transport is mediated by various events such as transport of vesicles, organelle fusion or 

fission, maturation which changes these organelle identities based on the requirements of the 

cell, combined work of coat proteins, cytoskeletal proteins, motor proteins etc. Amidst of such 

a complex network, it becomes important to identify exactly which transport steps are affected 

in case of a failure in membrane trafficking. In this study, the distribution and localisation of 

well characterised membrane markers enriched in specific compartments and transport routes 

of cargo proteins were used to identify the transport steps affected by loss of egl-15 function. 

Clathrin is an important protein whose structure is well characterised.   

Clathrin coated vesicles are either plasma membrane/golgi derived or endosome derived. 

Endosome derived CCVs are differentiated from plasma membrane derived by size, lack of the 

adapter protein complex AP-2 and continuity with endosomes. Proteins carried by plasma 

membrane derived CCVs are first delivered to sorting endosomes from where they are 

transported to TGN, lysosomes or recycling endosomes. The two major structural units of 

clathrin in C.elegans are CHC-1 (Clathrin Heavy Chain) and CLIC-1 (Clathrin light chain). 

Several studies have shown that CHC-1 is essential for endocytosis and viability in C.elegans 

and serves as a marker for CCVs. From the analysis of distribution and localisation of CHC-1 

between wild type and egl-15 mutants, results suggests that egl-15 might affect early endocytic 

as well as retrograde steps from the TGN within the cell.  

Clathrin as such do not bind directly to cargo or membranes but mediated by special clathrin 

adaptors like the heterotetrameric AP-2 adaptor complex, APM-2, Epsin, DAB-1 (a PTB 

domain of disabled protein family) and dynamin. Many such clathrin adaptors bind to lipid 

domains like PI(4,5)P2 for plasma membrane recruitment. This structural binding is achieved 
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by special domain architectures depending on the binding component, for example plekstrin 

homology (PH) domain in case of dynamin. In this study, the localisation and distribution of 

PI(4,5)P2 marker GFP-PH(PLCδ) was analysed in C.elegans intestine. Similar to previous 

reports, wild type worms labelled GFP-PH(PLCδ) along the apical and basolateral plasma 

membrane as well as internal puncta and tubules (Shi et al. 2012) however,  in egl-15 mutants, 

very large vacuolated structures positive for GFP-PH(PLCδ) were found throughout the 

intestine. It was also found that GFP-ARF-6 labelled similar enlarged structures in the intestine 

of egl-15 mutants. Shi et al (2012) have recently reported that these internal puncta and tubules 

positive for GFP-PH(PLCδ) are actually endosomes and they colocalise and extensively 

overlap with ARF-6 along the basolateral recycling pathway and ARF-6 regulates endosomal  

PI(4,5)P2. Though colocalisation of GFP-PH(PLCδ) and ARF-6 weren’t carried out in this 

study, the previous findings of association of ARF-6 with PI(4,5)P2, and display of similar 

defective phenotype (enlarged endosomes) positive for ARF-6 and PI(4,5)P2 in the intestine of 

egl-15 mutants only suggests that that loss of egl-15 function could affect membrane trafficking 

along the basolateral recycling pathway. This assumption is further strengthened from the 

analysis of distribution and localisation of GFP-RME-1 in C.elegans intestine. In wild type 

worms, GFP-RME-1 strongly labels tubule-vesicular endosomes along the basolateral 

membrane and also weakly labels structures near the apical membrane (Chen et al. 2006) 

however in egl-15 mutants, there was a significantly weaker labelling of  GFP-RME-1 positive 

recycling endosomes along basolateral membranes.  

 

RAB proteins are known to be key regulators of membrane traffic. Different RABs are required 

for different trafficking events including endocytosis, recycling and exocytosis. The regulation, 

localisation and distribution of some of the RAB GTPases were analysed in this study with the 

loss of egl-15 function. From the analysis of GFP-RAB-5 and GFP-RAB-7, it can be said that 
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the transport step from early to late endosomes is affected by the loss of egl-15 function. RAB-

5 and RAB-7 are key components of early and late endosomes respectively. Rink et al (2005) 

have shown the association of RAB-5 in smaller early endosomes which progresses into larger 

late endosomes where RAB-5 is replaced with RAB-7. The high accumulation of puncta (early 

endosomes) and less of the ring like vesicles (late endosomes) positive for GFP-RAB-5 and 

also less number of ring like vesicles (late endosomes) positive for GFP-RAB-7 in egl-15 

mutants compared to wild type worms suggest that early endosomes have failed to mature into 

late endosomes and transport step from early to late endosomes is affected. A similar 

interpretation can be made from the analysis of recycling endosome marker GFP-RAB-35 

where the number of recycling endosomes is significantly reduced in egl-15 mutants compared 

to wild type worms suggesting that transport steps via endocytic recycling could be affected.  

 

Given these results, RAB-10, which is known to regulate endocytic recycling in C.elegans 

intestine (Chen et al. 2006) was analysed. Previous studies have shown that GFP-RAB-10 mark 

extensively at the early endosomes especially near the basal plasma membrane in the top focal 

plane and also localise Golgi associated structures at the medial plane. They are also known to 

weakly label late endosomes or apical recycling endosomes (Chen et al. 2006). Thus, RAB-10 

functions in multiple compartments in C.elegans intestine and is thought to be involved in 

basolateral recycling, apical recycling, secretion (Chen et al. 2006) and is even thought to 

promote maturation of early endosomes to recycling endosomes (Shi et al. 2012). Surprisingly, 

in this study no significant difference was found in GFP-RAB-10 positive puncta between wild 

type and egl-15 mutants. One could assume two possibilities that either egl-15 doesn’t involve 

RAB-10 in endocytic recycling or due to its association with multiple compartments there 

could be a RAB-10 functional redundancy.  
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Since early and recycling endosomes are affected in egl-15 mutants, cargo proteins such as 

hTFR and hTAC were investigated to see if their transport was affected by the loss of egl-15 

function. As hypothesised, the trafficking of both these cargo proteins was compromised in 

egl-15 mutants. There was a significant reduction in GFP-hTFR puncta in egl-15 mutants 

compared to wild type worms. This reduction in GFP-hTFR could be due to an early 

endocytic/uptake defect where intestinal cells are unable to uptake hTFR. The recyling of 

hTFR, hTAC are RAB-10 and RME-1 dependent in C.elegans intestine. Loss of egl-15 

function was found to affect several RABs (RAB-5, RAB-7 and RAB-35) including the 

regulation of ARF-6 and RME-1. These proteins are key in trafficking of different cargo 

proteins; therefore it is not surprising to see the trafficking of cargo proteins such as hTFR and 

hTAC compromised in egl-15 mutants.  

The role of egl-15 in the secretory pathway was also investigated by analysing the Golgi and 

ER membrane markers such as GFP-MANS and GFP-SP-12. No significant difference was 

found in the localisation or distribution of these markers between wild type and egl-15 mutants 

suggesting that egl-15 might not affect secretory pathway. 

From all these analyses, though the reduced accumulation or distribution of membrane markers 

suggest particular transport steps being defective, it was important to investigate whether egl-

15 was affecting the protein expression levels of any of these markers. Therefore, the protein 

expression levels of membrane markers such as GFP-CHC-1 and GFP-RAB-35 that showed 

the strongest phenotypical difference between wild type and egl-15 mutants were analysed by 

western blot. Results showed no difference in protein expression levels between the wild type 

and egl-15 mutant animals.  

Taken together, these results suggest that egl-15 could affect membrane trafficking at different 

endocytosis events such as early uptake, early to late endosomes or recycling. The results also 

indicate that egl-15 might not be affecting the secretory pathway atleast in C.elegans intestine. 
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Also egl-15 doesn’t seem to affect the protein expression of the two membrane markers 

analysed (CHC-1 and RAB-35). Thus from these results it was evident that egl-15 affects 

membrane trafficking in C.elegans intestine. The next step of investigation was to identify how 

egl-15 regulates membrane trafficking in the intestine. In other words, experiments were 

conducted to identify which signalling modules were involved in membrane trafficking in 

C.elegans intestine.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



154 | P a g e  
 

 

 

 

 

 

 

 

CHAPTER 5: egl-15 AFFECTS 
MEMBRANE TRAFFICKING VIA PLC-γ 

PATHWAY IN C.elegans INTESTINE 

 

 

 

 

 



155 | P a g e  
 

5 egl-15 AFFECTS MEMBRANE TRAFFICKING VIA PLC-γ 

PATHWAY IN C.ELEGANS INTESTINE    

5.1 Introduction 

As described in previous two chapters, egl-15 affected Yolk-GFP trafficking via MAPK and 

PLC-γ signalling pathway in C.elegans. From the analysis of membrane markers in the 

C.elegans intestine, it was found that loss of egl-15 function affects different endocytosis steps 

like uptake and endocytic recycling. In this chapter, some of the membrane markers found to 

be regulated by egl-15 in the worm intestine were investigated if they were regulated via 

MAPK or PLC-γ pathway.  

 

 The small GTPase let-60/Ras is one of the key players in transducing signalling through many 

downstream pathways, such as MAPK, PI3K/AKT and PLC-γ. One of the most conserved 

pathways via the let-60 is the MAPK kinase pathway. In C.elegans, EGF and FGF are the two 

main signalling pathways which are found to signal clearly through let-60. They account to 

most biological functions involving let-60 and studies in C.elegans were the first to show that 

sem-5/GRB2 (Clark et al. 1992) acts upstream of let-60 and lin-45/Raf (Han et al. 1993) acts 

downstream of let-60. The association of egl-15 with MAPK via let-60 is known to regulate 

essential biological functions in C.elegans such as germline developments, hypodermal fluid 

homeostasis, oocyte growth and differentiation, aging, sex muscle differentiation and body 

muscle maintenance (Château et al. 2010; Lee et al. 2007; Okuyama et al. 2010). 

 

On the other hand, PLC-γ signalling pathway is essential for the regulation of 

intracellular calcium signals which in turn regulate several other cellular responses (Foskett et 

al. 2007). PLC-γ signalling is initiated by hydrolysis of PI(4,5)P2 which is catalysed by PLC-. 
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So far, six isoforms of PLCs have been identified such as PLC-β, PLC-, PLC-δ, PLC-ε, PLC-

ζ, and PLC-η. In C.elegans, five PLC genes encoding four of the six families have been 

identified. plc-2 and egl-8 (PLC-β), plc-3 (PLC-), plc-4 (PLC- δ) and plc-1(PLC-ε) (Gower et 

al. 2005). Although these isoforms share common motifs, they initiate varied cellular responses 

based on family specific regulatory domains (Vázquez-Manrique et al. 2008).  

Therefore in this chapter, these two signalling pathways (MAPK and PLC-γ) were put 

to test to see how they regulated membrane trafficking in C.elegans intestine. Hence the 

regulation of membrane markers that showed the strongest phenotypical difference between 

wild type and egl-15 mutant worms from earlier findings was chosen in this analysis.  The 

regulation of these membrane markers via the RAS-MAPK activating complex including sem-

5 and let-60 and the components of PLC-γ pathway including plc-3, itr-1 and pkc-2 were 

analysed.  

 

 

 

 

 

 

 

 

 

 

 

 

 



157 | P a g e  
 

5.2 RESULTS 

5.3 let-60/Ras does not affect membrane trafficking in C.elegans intestine 

Analysis of GFP-CHC-1 localization in sem-5 and let-60 mutants 

CHC-1, a marker for clathrin-coated pit was analysed. The GFP-CHC-1 strain GK35 [unc-

119(ed3); pwls72 [vha-6p::GFP::chc-1;unc-119]  was crossed into sem-5 and let-60 mutant 

strains such as [UP148- sem-5(cs14)] and [MT4698-let60(n1700)] respectively and were 

analysed. It was found that let-60 showed no difference in puncta number however, sem-5 

mutants showed a significant reduction in the number of puncta compared to wild type worms 

(Figure 5.1). It was interesting to observe that let-60, a key player of MAPK signalling pathway 

showing no difference in GFP-CHC-1 phenotype especially when they showed a Yolk-GFP 

trafficking defect in previous studies. In case of sem-5 mutants, the significant reduction in 

puncta number can be associated to its role in receptor-mediated endocytosis. In the analysis 

of Yolk-GFP trafficking by FGF-FGFR signalling pathway components, sem-5 was found to 

be one of the positive regulators which showed a strong endocytosis defect and therefore it’s 

not surprising to see sem-5 mutants affecting the localisation of GFP-CHC-1. In addition to 

GFP-CHC-1, endosomal markers GFP-RAB-5 and GFP-RAB-7 were also analysed in sem-5 

and let-60 mutants (Images not shown) (Figure 5.2). No difference was found between wild 

type and sem-5 and let-60 mutants. Here, it is important to note that let-60, a major component 

to transduce signalling via MAPK showed no difference in morphology, localisation and 

distribution of the above analysed membrane markers suggesting that MAPK signalling 

pathway does not regulate membrane trafficking at least in intestine.        
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Figure 5.1: Confocal images displaying GFP-CHC-1 in the intestine of WT, sem-5 and let-

60 mutants. A high number of punctate structures observed in the intestine of wild-type (A) 

and let-60 mutants (C) and a significantly reduced number of puncta observed in the intestine 

of sem-5 mutants (B).Arrows indicate puncta (endosomes). Quantification of endosome number 

as visualised shown in (D). Error bars represent standard deviation of the mean (n=30 each, 

6 animals sampled in 5 different regions of each intestine). Asterisks indicate a significant 

difference in the two-tailed Student’s t test between control and sem-5 mutant animals. * 

P<0.05. Scale bar=10 µm 

 

Analysis of GFP-RAB-5 and GFP-RAB-7 distribution in sem-5 and let-60 mutants 

 

 Figure 5.2: Comparison of GFP-RAB-5 and GFP-RAB-7 between WT, sem-5 and let-60 

mutants in C.elegans intestine. No difference in localisation and distribution of GFP-RAB-5 

and GFP-RAB-7 between wild type and sem-5, let-60 mutants. Quantification of endosome 

number of GFP-RAB-5 (A) and GFP-RAB-7 (B). Error bars represent standard deviation of 

the mean (n=30 each, 6 animals sampled in 5 different regions of each intestine).  

 

The other study which involved the knock down of plc-3 by RNAi showed a strong Yolk-GFP 

trafficking defect (chapter 4). plc-3 which encodes PLC in C.elegans is a key component of 

IP3 signalling pathway. Also the analysis of membrane marker GFP-PH (domain of PLC) 

(A) 

(B) 
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showed enlarged endosomes likely indicating a recycling defect in egl-15 mutants.  These 

results suggested a strong case for the role of IP3 signalling pathway in membrane traffic. 

Therefore, it was important to investigate how PLC-γ signalling pathway regulates different 

steps of membrane transport in C.elegans intestine.    

The two key components of PLC-γ signalling pathway are the IP3 receptor (IP3R) ITR-1 and 

protein kinase C (PKC). ITR-1 is the only known IP3 receptor in C.elegans. IP3R is located 

within the ER and is involved in calcium release in response to IP3 production. The IP3 

signalling is also found to be essential for functions like spermatheca dilation, ovulation 

(Clandinin et al. 1998; Bui & Sternberg 2002), embryonic development and morphogenesis 

(Yin et al. 2004). In this study, the role PLC-γ signalling pathway affecting the different 

membrane transport steps in C.elegans intestine was analysed.  

 

5.4 Loss of PLC-γ signalling pathway components affect early endocytosis 

and recycling    

In order to see how PLC-γ signalling pathway affects different transport steps in C.elegans 

intestine, membrane markers such as CHC-1, ARF-6, Plekstrin homology domain PH and 

RAB-35 were analysed. These membrane markers were chosen based on their significant 

difference in localisation and distribution between wild type and egl-15 mutants.  

 

Analysis of GFP-CHC-1 localization in plc-3 RNAi-depleted animals 

The distribution of CHC-1, a marker for clathrin-coated pits and vesicles was analysed in plc-

3 RNAi-depleted animals. The GFP-CHC-1 strain GK35 [unc-119(ed3); pwls72 [vha-

6p::GFP::chc-1;unc-119] was used in this analysis. CHC-1-GFP labelled a very large number 

of punctate structures throughout the cytoplasm in the intestine of wild-type animals. However, 
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in plc-3 depleted animals, a significantly smaller number of these punctate structures were 

observed (Figure 5.3). As previous described, a reduced accumulation of GFP-CHC-1 could 

indicate a decreased number of clathrin coated pits or decreased clathrin expression. Either 

way, this phenotype could indicate impairment in clathrin-mediated uptake, secretion or 

recycling.  
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Figure 5.3: Confocal images displaying GFP-CHC-1- in the intestine of WT and plc-3 

knock--down animals. A high number of punctate structures observed in the intestine of wild-

type worms (A) and a significantly reduced number of puncta observed in the intestine of plc-

3 knocked-down animals (B). Arrows indicate puncta (endosomes). Quantification of 

(A) Control (B) plc-3 

(C) 
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endosome number as visualised shown in C. Error bars represent standard deviation from the 

mean (n=30 each, 6 animals sampled in 5 different regions of each intestine). Asterisks indicate 

a significant difference in the two-tailed Student’s t test between control and plc-3 mutant 

animals. * P<0.05. Scale bar=10 µm 

 

Analysis of GFP-RAB-35 localization in plc-3 knock-down animals 

GFP-RAB-35 is associated with recycling endosomes (Sato et al., 2008). The GFP-RAB-35 

strain RT910 [unc-119(ed3); pwls355 [vha-6p::GFP::rab-35minigene] was used in this 

analysis. GFP-RAB-35 animals labelled distinct small ring-like vesicles which represent the 

recycling endosomes in wild-type intestine.  However, in plc-3 knock- down animals, there 

was a significant reduction in these ring-like vesicles (Figure 5.4) suggesting that RAB-35 

positive recycling endosomes are affected.  

 

   

(A) Control (B) plc-3 
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Figure 5.4: Confocal images displaying GFP-RAB35-GFP in the intestine of WT and plc-3 

knock-down animals. A significantly higher number of ring-like vesicle structures observed in 

the intestine of wild-type worms (A) compared to the intestine of plc-3 knock-down animals 

(B). Arrows indicate ring-like vesicles (recycling endosomes). Quantification of endosome 

number as visualised shown in C. Error bars represent standard deviation from the mean 

(n=30 each, 6 animals sampled in 5 different regions of each intestine). Asterisks indicate a 

significant difference in the two-tailed Student’s t test between control and plc-3 mutant 

animals. * P<0.05. Scale bar=10 µm 

 

Analysis of GFP-ARF-6 localization in plc-3 knock-down animals 

In polarized cells such as the worm intestine, it is proposed that ARF-6 mediates apical uptake 

of clathrin-dependent cargo (Altschuler et al., 1999). ARF-6 is known to localize along the 

cytoplasmic face of the plasma membrane (Peters et al. 1995). The GFP-ARF-6 strain RT1579 

[unc-119(ed3); pwls601 [vha6p::GFP::arf-6;unc-119] was used in the analysis. It was found 

that, GFP-ARF-6 labelled the apical more than the basolateral membrane and appeared slightly 

diffused with mesh-like vesicles and punctate structures throughout the cytoplasm in the 

(C) 
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intestine of wild-type animals (Figure 5.5). Quantification of GFP-ARF-6 labelled vesciles 

showed no significant difference between control and plc-3 depleted worms. 

 

               

 

Figure 5.5: Confocal images displaying GFP-ARF-6 in the intestine of WT and plc-3 knock-

down animals. No difference was observed in GFP-ARF-6 labelled structures between wild-

type worms (A) and plc-3 knock-down worms (B). Quantification of vesicle number as 

visualised shown in C. Arrows indicate diffused mesh-like vesicles (endosomes). Error bars 

represent standard deviation from the mean (n=30 each, 6 animals sampled in 5 different 

regions of each intestine). N=3 Scale bar, 10µm 
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Analysis of GFP-PH distribution and localization in plc-3 knock-down animals:  

Plekstrin Homology domain of PLC- (GFP-PH) strain RT1120 [unc-119(ed3); pwls446 [vha-

6p::GFP::PH;Cbunc-119] was used in the analysis. It was found that GFP-PH labelled the 

basolateral and apical membranes in the wild-type intestine (Figure 5.6). Strikingly, in some 

of the plc-3 knocked-down animals, PH-GFP labelled several abnormally big vesicles in the 

cytoplasm likely representing enlarged endosomes. The number of vesicles per unit area was 

also found to be reduced in plc-3 knock-down animals compared to wild type. This was a 

similar phenotype observed in egl-15 mutants suggesting that an impaired plc-3 might affect 

membrane trafficking.  . 

 

                  

 

Control plc-3 B A 

(C) 
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Figure 5.6: Confocal images displaying GFP-PH localization in the intestine of WT and plc-

3 knock-down animals. No significant difference was observed in PH-GFP labelled structures 

between wild-type worms (A) and plc-3 knocked-down worms (B). Arrows indicate enlarged 

vesicles in plc-3 depleted animals. Quantification of endosome number as visualised shown in 

C. Error bars represent standard deviation from the mean (n=30 each, 6 animals sampled in 

5 different regions of each intestine). N=3, Scale bar, 10µm 

 

5.5  PLC-γ signalling pathway mutants show similar localisation, 

distribution and morphology of membrane markers as observed in plc-3 

RNAi-depleted animals  

Following the analysis of PLC-γ signalling pathway components by RNAi, mutants were 

analysed to see if they phenocopy the same.    

Analysis of GFP-CHC-1 distribution in PLC signalling pathway mutants:  

CHC-1, a marker for clathrin-coated pits and vesicles was analysed. The GFP-CHC-1 strain 

GK35 [unc-119(ed3); pwls72 [vha-6p::GFP::chc-1;unc-119], VC127[pkc-2(ok328)],and 

JT73[itr-1(sa73)] were used in this analysis. GFP-CHC-1 strain was crossed into itr-1, and 

pkc-2 mutant animals and the resulting mutant transgenic animals were analysed. It was found 

that the GFP-CHC-1 labelled a very large number of punctate structures throughout the 

cytoplasm in the wild-type intestine. However, in itr-1 and pkc-2 mutants, a significantly 

reduced number of these punctate structures were observed (Figure 5.7). This was a similar 

phenotype observed in plc-3 knock-down animals by RNAi. Also, reduced number of GFP-

CHC-1 puncta in itr-1 and pkc-2 mutants suggest that these downstream components of PLC-

γ pathways do play a significant role in regulation of membrane traffic.  
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Figure 5.7: Confocal images displaying GFP-CHC-1 in the intestine of wt,  itr-1, and pkc-2 

mutants. A high number of punctate structures observed in the intestine of wild-type worms 

(A) whereas a significantly reduced number of puncta observed in the intestine of itr-1(B), and 

pkc-2 (C). Arrows indicate puncta (endosomes).Quantification of endosome number as 

visualised shown in C. Error bars represent standard deviation from the mean (n=30 each, 6 

animals sampled in 5 different regions of each intestine). Asterisks indicate a significant 

difference in the two-tailed Student’s t test between control, sem-5 and pkc-2 mutant animals. 

**** P<0.0001. Scale bar=10 µm. 

 

Analysis of GFP-RAB-35 distribution in PLC signalling pathway mutants:  

GFP-RAB-35 is associated with recycling endosomes (Sato et al., 2008). The GFP-RAB-35 

strain RT910 [unc-119(ed3); pwls355 [vha-6p::GFP::rab-35minigene], JT73[itr-1(sa73)](lf), 

, and PS2582 [itr-1 (sy290) unc-24(e138)](gf) were used in this analysis. The RT910 strains 

were crossed into itr-1 (lf),and itr-1 (gf) mutant animals and the resulting mutant transgenic 

animals were analysed. GFP-RAB-35 labelled distinct small ring-like vesicles which represent 

the recycling endosomes in wild-type intestine.  However, in itr-1 (lf) mutant animals, there 

was a significant reduction in these ring-like vesicles whereas itr-1(gf) mutant animals showed 

a wild type phenotype with no difference with the control. (Figure 5.8) This result suggests that 

RAB-35-positive recycling endosomes could be affected with loss of itr-1 function in PLC-γ 

pathway.   
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Figure 5.8: Confocal images displaying GFP-RAB-35 in the intestine of WT, itr-1 (loss of 

function), and itr-1 (gain of function) mutants. A high number of ring-like vesicles observed 

in the intestine of wild-type worms (A) and  itr-1 (gf) (C) mutants whereas a significantly 

reduced number of vesicles observed in the intestine of itr-1(B). Arrows indicate ring-like 

vesicles (recycling endosomes). Quantification of endosome number as visualised shown in C. 

Error bars represent standard deviation from the mean (n=30 each, 6 animals sampled in 5 

different regions of each intestine. Asterisks indicate a significant difference in the two-tailed 

Student’s t test between control and itr-1 (lf) mutant animals.  **** P<0.0001. Scale bar=10 

µm. 
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5.6 Discussion 

From the analysis of membrane markers in the C.elegans, results indicate that membrane 

trafficking, at least in the intestine is regulated via PLC-γ signalling pathway rather than MAPK 

kinase pathway.  From earlier investigations it was found that Yolk-GFP trafficking was 

affected by loss of egl-15 function both via MAPK and PLC signalling pathways. With this 

understanding, studies were carried out to understand the different membrane transport steps 

that could be affected via this pathway. let-60/Ras which regulates Yolk-GFP trafficking in the 

germline does not seem to affect membrane trafficking in the intestine. There could be many 

factors behind this differential regulation of MAPK in C.elegans. One of the reasons could be 

that, the C.elegans intestine is a polarised epithelium. Polarised cells normally maintain distinct 

basolateral and apical membrane domains with different lipid and compositions (Grant & Sato 

2006). Much of our understanding so far about endocytosis and exocytosis dynamics are from 

studies of non-polarized cells. What makes polarized cells different from non-polarized cells 

is the difference in distribution of endosomal compartments. Polarized cells have two types of 

endosomes such as apical endosomes and basolateral endosomes. Some studies suggest that 

basolateral endosomes are thought to regulate uptake and recycling of receptors and ligands 

which are normally involved in cell maintenance (Kelly 1993) while apical endosomes are 

thought to be involved in cell type specific processes such as trancytosis (Barroso & Sztul 

1994) however, other studies have shown that no specialised apical  endosomal compartments 

exists (Apodaca et al. 1994).  Recent studies on transferrin internalisation have shown that 

some of the endosomes near the apical membrane failed to label internalised transferrin 

whereas basolateral endosomes were enriched (Knight et al. 1995; Hughson & Hopkins 1990). 

Also, studies on neurons (polarized cells) show the existence of different endosomal 

populations where basolateral endosomes regulate housekeeping functions whereas apical 

endosomes located near the axons are involved in recycling of synaptic vesicle proteins (Parton 
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et al. 1989; Mundigl et al. 1993; Bonzelius et al. 1994). All these studies make it clear that 

polarized cells contain distinct endosomal compartments that differ functionally and 

biochemically (Wilson & Colton 1997). With these two different plasma membranes in 

polarized cells, there is a need for proteins to be transported to the appropriate target membrane. 

Proteins can be targeted to from TGN to either of the membranes or can be first sent to one 

surface and later transcytosed to the other (Mostov & Cardone 1995). For a long time, it was 

thought that basolateral transport was spontaneous and would occur by default. But studies 

have shown that specialized signals are required to target apical and basolateral proteins to 

appropriate domains (Lipschutz et al. 2001). Thus there is a possibility that MAPK signal 

transduction could be target specific in polarized cells such as intestine and non-polarized cells 

such as oocytes.  

 

The other factor to consider is the role of let-60/Ras and how it regulates MAPK signalling 

pathway. In general, it has been proposed that Ras acts upstream of Raf and activation of Ras 

results in phosphorylation of Raf, which in turn phosphorylates and activates MEK and MEK 

activates MAPK. MAPK finally carries the signal into the nucleus where they phosphorylate 

transcription factors and yield the appropriate cellular function. MAPK pathway is not always 

Ras dependent. Studies show that MAPK signal transduction can be induced even via a Ras 

independent mechanism (Büscher et al. 1995). Also, in another study, despite the loss of Ras 

and Raf, High density lipoprotein (HDL) induced MAPK phosphorylation by a possible 

involvement of PKC (Rentero et al. 2006).   

Therefore, the membrane markers such as CHC-1, RAB-5 and RAB-7 that failed to show a 

significant difference in localization and distribution between wild type and let-60 mutants 

suggest three possibilities. 1) MAPK pathway may not be involved in regulation of membrane 

trafficking in C.elegans intestine. 2) MAPK signal transduction might be Ras independent in 
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C.elegans intestine and 3) Loss of Ras and Raf activity could be compensated by PKC as found 

in other studies.  

From the analysis of PLC-γ sigalling pathway components, it was found that loss of itr-1 or 

pkc-2 resulted in a significant difference in localization and distribution of membrane markers 

such as CHC-1 and RAB-35. Taking all these into consideration, it is very likely (not 

conclusive) that egl-15 might regulate membrane trafficking via PLC-γ signalling pathway in 

the intestine and there is a possibility that PKC might compensate an impaired Ras activating 

complex thereby still phosphorylating the MAPK pathway.  
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6 FGF-FGFR SIGNALLING AND MEMBRANE TRAFFICKING IN 

MAMMALIAN SYSTEMS 

6.1 Introduction 

FGFR signalling pathways and membrane trafficking in mammalian cells are complicated 

compared to that of invertebrates like C.elegans and D.melanogaster. The results obtained from 

the investigations conducted on C.elegans membrane trafficking and FGFR signalling were to 

be tested on mammalian cells in order to compare the underlying molecular machinery. In this 

chapter, the role of FGFR signalling pathway in membrane trafficking is analysed in 

mammalian cells. The FGF signalling events are complex by the sheer number of ligands and 

receptors. The mammals have four FGFRs (FGFR1, FGFR2, FGFR3 and FGFR3) and each 

receptor has its own alternative spliced isoforms (Burke et al. 1998). This broad range of 

ligands and receptors with their diverse functions and genetic redundancy makes it difficult to 

characterise their signalling properties and their impact on cells (Klint & Claesson-Welsh 

1999). The major downstream signal transduction pathways associated with activated FGFRs 

are the well-established Ras-MAPK cascade, PI3 Kinase/PDK/Akt pathways and PLC-γ 

pathways (Boilly et al. 2000) (Coleman et al. 2014).  

Activation of FGFRs can trigger a diverse cellular responses including proliferation, migration, 

differentiation and membrane trafficking (Auciello et al. 2013) whereas a deregulation could 

lead to several developmental defects and other pathological conditions (Aridor & Hannan 

2000).  Many different pathways have been associated with RTK endocytosis but recently it 

has been found that FGFR internalisation as such is dynamin-dependent and clathrin-mediated 

(Auciello et al. 2013).  

The FGF-FGFR interactions are quite complicated as each receptor can bind to multiple 

different ligands with the same affinity and this binding of FGFs to FGFRs is stabilised by 
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heparin sulphate proteoglycans (Haugsten et al. 2005). In terms of tissue distribution in normal 

adult tissues, it is found that the ligands FGF1 and FGF2  and the receptors FGFR1 and FGFR2 

are most widely expressed (Hughes & Hall 1993) (Hughes 1997).  

From phylogenetic tree analysis, it was found that the most conserved human homologue to 

C.elegans FGFR egl-15 was the FGFR1. Therefore, in this study, NIH/3T3 swiss mouse 

fibroblast cell line was chosen to study FGFR signalling and membrane trafficking as they 

express detectable levels of FGFR1 (Zhen et al. 2007). The FGFR inhibitor SU5402 was used 

to inhibit the function of FGFR and the trafficking of transmembrane cargo protein transferrin 

tagged to a flurophore was analysed. In previous studies it has been found that SU5402 a potent 

FGFR inhibitor can specifically inhibit the autophosphorylation of FGFR1 kinase in NIH/3T3 

cells thereby blocking the receptor tyrosine kinase signalling properties (Mohammadi 1997).  

 

6.1.1 Transport routes of different cargo proteins (Tf, LDL) 

Transferrin (Tf) is a widely studied cargo protein used in the analysis of membrane trafficking. 

It is an 80kDa clathrin-dependent glycoprotein distributes iron to tissues. Tf helps in the uptake 

of iron in cells by binding to iron molecules. Such iron binding Tf is also called as holo 

transferrin and the iron unbound called apo-transferrin. At neutral pH, transferrin binds ferric 

ions with high affinity whereas in acidic conditions transferrin binds with a low affinity (Bleil 

& Bretscher 1982). Tf binds to its receptor (TfR) and enters cells through clathrin-mediated 

endocytosis (Pearse & Robinson 1990). Once endocytosed, Tf is sorted along the trafficking 

pathway into three different endosomal systems such as early endosomes, late endosomes and 

recycling endosomes. Recent studies have shown that there are two distinct early endosomes 

with different maturation kinetics; dynamic endosomes and static endosomes and the sorting 

of Tf ligands begins at the cell surface into any of these endosomes. The early endosomes that 

mature faster into late endosomes are classified as dynamic endosomes and the slower maturing 
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endosomes are classified as static endosomes (Lakadamyali et al. 2006). Cargo proteins such 

as LDL (low density lipoprotein) are found to be preferentially taken into dynamic endosomes 

and further transported to lysosomes for degradation whereas, Tf follows the recycling pathway 

and remains enriched in the static population of early endosomes (Figure 6.1). There is 

eventually a second sorting process where the tubular formations in early endosomes sort the 

cargo either directly back to the cell surface (fast recycling) or to the perinuclear endocytic 

recycling compartment (slow recycling) (Schweitzer et al. 2011). The Tf trafficking pathway 

is extensively studied and well established. The core components involved in the internalisation 

of Tf are clathrin, adaptor proteins, and dynamin (Marsh & McMahon 1999) (Grant & 

Donaldson 2009) (Conner & Schmid 2003). The clathrin complex (three heavy chains and three 

light chains) create the initial invaginations at the plasma membrane followed by the adaptor 

proteins such as AP-2 that recruit cargo and clathrin to ligands and finally dynamin which 

completes the vesicle formation and scission from the cell surface.  

The other major regulators of Tf trafficking are the RAB GTPases. In one study, it was found 

that Tf became increasingly transported to recycling endosomes when Rab4 was over 

expressed (van der Sluijs et al. 1992). There is also evidence that Rab35 plays a major role in 

trafficking Tf via the fast recycling pathway (Kouranti et al. 2006) and Rab8 via the perinuclear 

endocytic recycling compartment (slow recycling pathway) (Hattula et al. 2006). 
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Figure 6.1: An overview of Transferrin and LDL trafficking. Both transferrin and LDL are 

internalised via clathrin-mediated endocytosis. After uncoating, LDL is preferentially taken 

into dynamic endosomes where it follows the degradation pathway into lysosomes whereas Tf 

is taken into both dynamic and static population of endosomes. A faster recycling route takes 

transferrin directly to the plasma membrane and a slow recycling route takes Tf first to the 

endocytic recycling compartment before it is trafficked back to the cell surface (Mayle et al. 

2012).   
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Therefore in order to understand the role of FGFR in membrane trafficking in mammalian cells, 

the FGFR in fibroblast cell line NIH/3T3 was stimulated with FGF or inhibited using a potent 

chemical FGFR inhibitor SU5402 and trafficking of fluorophore-tagged Transferrin was 

analysed and compared to that of a control using confocal microscopy and flow cytometry.   
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6.2 RESULTS 

6.3  Endogenous FGFR highly expressed in NIH/3T3 cells 

In order to study FGFR signalling in mammalian cells, the choice of cell line was important. It 

was vital to study FGFR signalling in cells that are known to express FGFRs. The NIH/3T3 

cells are mouse embryonic fibroblast cells. 3T3 refers to 3 day transfer inoculum of 3x105 cells. 

The expression of FGFR1 in NIH/3T3 cells was first confirmed by western blot analysis. 

NIH/3T3 cells showed detectable levels of FGFR1. As shown in Figure 6.2, FGFR1 was 

expressed in the NIH/3T3 cells as proteins with molecular mass of approximately 120 kDa. 

This result confirmed the expression of endogenous FGFR1 in NIH/3T3 cells consistent with 

previous reports from (Zhen et al. 2007)  

         FGFR1 

 

α-Tubulin (Loading Control) 

 

Figure 6.2: Expression of FGFR1 protein in NIH/3T3 cells. NIH/3T3 cell lysates were 

prepared and subjected to SDS-PAGE and Immunoblotting as described in materials and 

methods. Lanes 1 and 2 represent duplicates. α-Tubulin was used as the loading control.  
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6.4  SU5402, an FGFR antagonist, inhibits the phosphorylation of FGFR  

The ability of SU5402 to inhibit the protein tyrosine kinase activity of FGFR1 was investigated 

in NIH/3T3 cells. The cells were serum starved for 30 minutes and treated with SU5402 for 30 

minutes at 37oC. Cells were then lysed and the protein expression levels of FGFR1 were 

identified using FGFR1 and phospho-FGFR1 antibodies as described in Materials and 

Methods. It was found that the phosphorylation of FGFR1 was inhibited between 10-20µM of 

SU5402 which is consistent with a previous study by Mohammadi et al., 1997. It was also 

found that SU5402 completely inhibited FGFR1 phosphorylation at 40µM. 

As a control, EGFR inhibitor was also used to test whether EGFR inhibitors affect FGFR 

phosphorylation. It was found that the drug didn’t have any noticeable inhibitory effect on the 

tyrosine kinase phosphorylation of FGFR (Mohammadi 1997). Also, the stimulation of FGFR1 

with FGF-1 didn’t show any significantly increase in Phospho-FGFR band (Figure 6.3). From 

these results it was evident that SU5402 inhibits the phosphorylation of FGFR1 in NIH/3T3 

cells and a 20µM concentration of SU5402 was used in all subsequent experiments.  
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Figure 6.3: SU5402 inhibits phosphorylation of FGFR in NIH/3T3 cells: NIH/3T3 cells 

were serum starved for 30 minutes and incubated further with increasing amounts of SU5402 

or with FGF-1 or EGFR inhibitor for 30 minutes. After washing with ice-cold PBS, cells were 

lysed and subjected to SDS-PAGE and immunoblotting as described in Materials and Methods. 

Lane 1 (non-treated), lane 2 (EGFR inhibited 20µM, -ve control), lane 3 (FGF-1 induced) and 

lanes 4,5, and 6 represent increasing amounts of SU5402  2µM, 20µM and 40µM respectively.  

 

 

 

 

 

 



183 | P a g e  
 

6.5  Knock-down of FGFR signalling does not affect transferrin trafficking 

To test the relevance of FGFR inhibition in the process of membrane trafficking, the uptake 

and recycling of Alexa Fluor488-conjugated transferrin was investigated using both the 

confocal microscopy and flow cytometry. The NIH/3T3 cells were either induced or inhibited 

using FGF-1 and SU5402 respectively and the trafficking of Alexa Fluor488-conjugated 

transferrin was analysed. The uptake of transferrin was analysed at 30 minutes after incubation 

with Alexa488-transferrin. It was found that there was no difference in the transferrin uptake 

or recycling with either FGF1 induction or FGFR inhibition (Figure 6.4a and 6.4b).  

 

Figure 6.4: Transferrin uptake and recycling in NIH/3T3 fibroblasts. 

               Non-treated    FGF-1 Induced    FGFR-Inhibited 
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Figure 6.4: Analysis of Transferrin uptake and recycling by confocal microscopy in 

NIH/3T3 fibroblasts: 

NIH/3T3 cells expressing endogenous FGFR1 were either induced with FGF-1 or inhibited 

with FGFR1 inhibitor SU5402 for 30 minutes and incubated with Alexa Fluor488- transferrin 

for 30 minutes (uptake). Following transferrin internalization, cells were incubated in 

complete medium for a further 30 minutes (recycling) at 37oC and cells were rinsed, fixed and 

C 

D 
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analysed by fluorescence microscopy. (A). Transferrin localisation and distribution after 30 

min uptake and 30 min recycling (B).  

 

Quantification of Tf fluorescence intensity as visualised shown in (C) and (D). Error bars 

represent standard deviation of the mean (n=50 cells per condition). ‘NS’ indicate no 

significant difference in the two-tailed Student’s t test between control and FGF-1 

stimulated/FGFR inhibited cells. P>0.05. Scale bar=25 µm 
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Figure 6.5: Analysis of Transferrin uptake and recycling by flow cytometry in NIH/3T3 

fibroblasts: Tf uptake and recycling unaffected by FGF-1 stimulation or FGFR1 inhibition. 

NIH/3T3 cells expressing endogenous FGFR1 were either induced with FGF-1 or inhibited 

with FGFR1 inhibitor SU5402 for 30 minutes and incubated with Alexa Fluor488 transferrin 

at varying time intervals 10 min, 20 min and 30 min. Mean Tf fluorescence intensity at each 

point was measured using flow cytometry. For recycling assays after transferrin 

internalization, cells were washed with ice-cold PBS and stripping buffer and incubated in 

complete medium at varying time intervals 10 min, 20 min and 30 min at 37oC . Mean Tf 

fluorescence intensity at each point was measured using flow cytometry 
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6 Discussion 

Transferrin is a widely used cargo protein to study membrane trafficking. The transport routes 

are very well characterised which makes it conducive to the researcher to identify any 

impairment in trafficking. As mentioned earlier, transferrin is a key component in bringing iron 

into the cells. Transferrin binds to transferrin receptors at the cell surface which then forms a 

dimer and internalises two iron molecules. Ligand sorting happens at cell surface and 

transported along the early endosomes, late endosomes and recycling endosomes thus making 

it an excellent candidate to study both uptake and recycling membrane trafficking pathways. 

Studies have also shown how GTPases such as RABs, ARFs and proteins such as clathrin, 

dynamin, actin and phosphoinositides (PIP2) (Shi & Grant 2013) affect membrane trafficking 

. Thus analysis of transferrin trafficking also helps to identify some of its key regulators. 

Therefore, in this study it was hypothesised that inhibiting or enhancing the function of FGFR 

would affect transferrin trafficking in mammalian cells. Similar to previous studies, this study 

also shows that NIH/3T3 cells expressed detectable levels of FGFR and inhibition of FGFR by 

SU5402 (FGFR inhibitor) reduces the phosphorylation of FGFR. However, from the FGFR 

phosphorylation assay it was found that the addition of FGF did not trigger a strong FGFR 

phosphorylation compared to that of control thereby making it inconclusive whether transferrin 

trafficking was actually affected by modulating FGFR signalling in this study.  

One possibility could be that the serum deprivation of cells for 30 minutes might not have been 

sufficient and subjecting them to a longer overnight serum starvation might induce a stronger 

FGFR phosphorylation with addition of FGF ligands. 

 

Though the results from this study are inconclusive, similar studies on transferrin trafficking 

and FGFR signalling in Hela cells have shown that transferrin trafficking is unaffected by 

modulating FGFR signalling.  
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It was found that in Hela cells, FGFR inhibition or stimulation didn’t affect transferrin uptake 

though it affected clathrin spots (Auciello et al. 2013). Regulation of membrane traffic by 

FGFR signalling is found to be clathrin mediated and dynamin dependent (Auciello et al. 

2013). Transferrin internalisation is also a clathrin-mediated endosytosis. Therefore, the 

increased number of clathrin spots however with no difference in transferrin uptake suggests 

that FGFR signalling could be cargo specific (Auciello et al. 2013). The other possibility is the 

role of adaptor proteins which could yield differential trafficking of transferrin. For example, 

DAB2 (Disabled Protein-2), an adaptor protein involved in erythroid differentiation in 

hematopoietic cells regulates transferrin transport differently. While DAF2 inhibition affects 

transferrin internalization in human K562 erythroleukemic cells, a similar transferrin defect is 

not found in Hela cells. More importantly, it’s found that transferrin trafficking could also vary 

with different culture conditions (Chu et al. 2014). 

Taking all these into considerations, it could be said that though FGFR signalling may show 

cargo specificity, other factors such as adaptor proteins, cell specificity  and varying cellular 

conditions could also affect transferrin trafficking, but from this study it is still inconclusive 

how FGFR signalling affect transferrin trafficking. Though inhibition of FGFR signalling 

showed no change in transferrin transport, inducing FGFR signalling with ligands such as FGF-

1, FGF-2 also did not produce any strong FGFR phosphorylation response and hence with no 

ligand dependent activation of FGFR it’s still not conclusive that FGFR signalling does not 

impact on Tfr uptake and recycling.  
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7 GENERAL DISCUSSION 

The FGFR pathway is known to regulate cell function via three known signalling pathways 

MAPK, AKT and PLC-γ (Eswarakumar et al. 2005). Recently, from a genome-wide analysis,  

Balklava et al., 2007  found several candidate genes in the FGFR downstream signalling 

pathway that could be involved in regulation of membrane trafficking. This study was focused 

on how these FGFR signalling components regulate membrane trafficking, the key transport 

steps affected and finally to compare the FGFR signalling and membrane trafficking events 

between C.elegans and mammalian cells.   

The role of egl-15 as a signalling component has been associated with different functions 

within the C.elegans. One of the well-established functions is the role egl-15 in sex myoblast 

migration. The loss of egl-15 functionality leads to animals with missing or mispositioned sex 

muscles causing Egl (egg laying defect )  phenotype (DeVore et al. 1995). An increased egl-

15 signalling leads to fluid accumulation resulting in a clear (Clr) phenotype while a decreased 

signalling leads to Scr (Scrawny) or Let (Lethal) phenotypes (Huang & Stern 2004), but how 

FGFR signalling affects membrane trafficking is not well established yet and this work shows 

some insights on how FGFR signalling could co-ordinate membrane trafficking.  The YP170-

GFP assay combined with RNAi used in this study initially showed that FGFR signalling 

regulates membrane trafficking via the MAPK and PLC-γ pathways but not the AKT Kinase 

pathway. The efficiency of gene knock-down in C.elegans using RNAi is known to be usually 

high. Previous studies have reported that even small amounts of dsRNA are enough to silence 

genes. This was observed when just 2 molecules of dsRNA inactivated abundant UNC-22 

mRNAs in C.elegans (Timmons & Fire 1998; Alder 2003). One possible explanation is that 

the RNAi signal is replicated and amplified into new dsRNA and these amplified dsRNAs can 

move between cells (Alder 2003). Analysing the upstream and downstream components of the 

whole FGFR system, it was found that genes such as egl-15, sem-5, let-60, mpk-1, mek-2, plc-
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3, itr-1 all showed a strong yolk-GFP trafficking defect whereas genes such as egl-17, let-756, 

lin-45, and sos-1 showed somewhat a milder phenotype and showed a stronger defective yolk 

trafficking phenotype only after extended time on RNAi. This could be due to number of factors 

like endogenous inhibitors of RNAi like eri-1 and rrf-3, tissue specificity, half-life of protein 

and even external factors such as temperature. It should be noted that much of the genome-

wide analysis have been done in rrf-3 mutant worms, as the rrf-3 mutation enhances sensitivity 

to RNAi. This was well established in C.elegans neurons where there was a clear loss of GFP 

expression in rrf-3 background however not in wild-type worms (Simmer et al. 2002). The 

RNAi in C.elegans is heritable and can be maintained for three or more generations (Grishok 

2005) but RNAi in progeny spread less efficiently unless genes expressed in the germline are 

targeted (Grishok et al. 2000). Therefore, a longer exposure to dsRNA increases RNAi 

efficiency even in subsequent progenies. But even with longer exposure for more generations, 

the signalling components of AKT pathway did not show any phenotype. Thus from these 

initial results, it was concluded that the AKT pathway might not have any role in regulation of 

membrane trafficking compared to the MAPK and PLC pathways. Though RNAi is 

revolutionary and easy, they do have some practical limitations such as intrinsic factors within 

the gene itself which make silence RNAi mechanism, RNAi antagonizing pathways, the lack 

of heritability beyond F1 generation of RNAi targeting somatic genes and chromatin factors 

(Grishok 2005). To circumvent these issues and to see if the same phenotypes are mimicked in 

mutant strains, mutant worms were used in the analysis. As predicted, the yolk trafficking 

phenotypes observed in RNAi experiments was observed in mutants, too. This time, the genes 

that showed milder phenotypes with RNAi such as egl-17, let-756, lin-45, sos-1 showed a 

strong yolk trafficking defective phenotype in mutants. Thus, this display of variation in 

phenotype strength between RNAi (knock-down) and mutant (knock-out) could only be 

attributed to RNAi insensitivity, specificity or factors such as temperature and protein half life. 
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Thus these results show the significance of the full functionality of the FGFR signalling 

components and how an impairment in signalling would affect membrane trafficking.  

 

RTKs are an intricate network of signalling pathways comprising various multi protein 

complexes that assemble at different intracellular locations for a timely and specific biological 

response.  MAPK is one of the most widely studied pathways associated with RTKs. Generally, 

dimerization of RTKs leads to receptor activation and autophosphorylation. The RTK 

intracellular domains have specific binding sites for proteins that contain Src-homology 2 

(SH2) and PTB domains. The activated RTKs then recruit various proteins to its sites such as 

Src, PLC, Shp-2, PI3K and adaptor proteins such as Grb2, SHC and docking proteins such as 

IRS, FRS. (McKay & Morrison 2007).  

This study shows the signal transduction pathways downstream of egl-15 is required for proper 

membrane trafficking. From this study, it is found that the FGF-FGFR signalling pathway 

regulating membrane trafficking follows two signal transduction pathways. One is the well-

established Ras/MAPK cascade via the sem-5/Grb2 adaptor protein (Lo et al. 2010) and the 

other is the PLC-γ signalling pathway. The trafficking defects observed with the complete loss 

of either egl-17 or let-756 suggests the common understanding that the ligand is crucial for 

receptor activation. Interestingly, with RNAi experiments on egl-17 and let-756, no yolk-

trafficking defect was observed however in egl-17 and let-756 mutants there was strong Yolk-

GFP trafficking defect. This result from RNAi experiments suggests that egl-17 and let-756 

could be RNAi insensitive.  

 The Ras/MAPK cascade has been previously well studied in C.elegans and been shown to be 

essential for fluid homeostasis chemoattraction (Lo et al. 2010) and protein degradation 

(Szewczyk & Jacobson 2003) and once again from this study, it is evident that this egl-15 is 
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essential for membrane trafficking. The subsequent signalling effector genes such as sem-5, 

sos-1 and let-60 showed differential trafficking defects.  

Of all the yolk trafficking defects observed, the defects observed in egl-15 mutants showed 

accumulation of Yolk-GFP in the intestine as well as the body cavity whereas, the sem-5 

mutants showed a severe endocytosis defect with high accumulation of yolk in the body cavity. 

This difference in Yolk-GFP trafficking showing both an endocytosis as well as a secretory 

defect via the same signal transduction pathway could be due to many reasons.  The different 

isoforms of egl-15 could possibly explain such a scenario. Different isoforms of egl-15 and 

their functionalities change based on differences in their structure. It was found that the two 

isoforms of EGL-15, EGL-15(5A) and EGL-15(5B) mediate opposing mechanisms when 

regulating sex myoblasts where EGL-15 (A) is required for SM chemoattraction while EGL-

15 (5B) is required for SM chemorepulsion to maintain SM migration in balance (Lo et al. 

2008). A similar mechanism could be applied by egl-15 in maintaining membrane trafficking. 

 

The strength and duration of signalling can also have contrasting biological responses. For 

example, the activation of MAPK yields to different biological outcomes. In PC12 cells, EGF 

stimulates a transient MAPK activation which leads to cell proliferation however, when EGF 

receptors were overexpressed the MAPK activation became sustained and this resulted in cell 

differentiation (Gotoh et al. 1990; Nguyen et al. 1993; Traverse et al. 1994). Thus a transient 

and sustained MAPK activation can trigger different cellular responses (Ebisuya et al. 2005). 

The magnitude of signalling can also produce contrasting cellular responses. For example, 

during cell cycle, moderate levels of MAPK activity result in accumulation of CDK (Cyclin 

Dependent Kinase) complexes whereas high levels of MAPK activity stimulate CDK inhibitor 

p21 which reduces CDK accumulation causing G1 arrest (Sewing et al. 1997; Woods et al. 
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1997; Roovers & Assoian 2000) . Therefore, loss of egl-15 function might relate to regulate 

endocytosis defect and also an opposite secretory defect. 

Tyrosine autophosphorylation of RTKs is crucial for recruiting several other signalling 

proteins. The auto phosphorylation sites are located in the non-catalytic sides of the FGFR and 

signalling proteins with SH2 and PTB domains binding to these sites. The PLC pathway was 

the other pathway that was found to be regulating membrane trafficking. Upon the activation 

of FGFR, PLC is rapidly recruited to the activated FGFR through the binding of its SH2 

domains to pTyr sites in receptor molecule. An activated PLC hydrolyses its substrate 

PI(4,5)P2 to DAG and IP3. IP3 stimulates the release of Calcium which in turn activates a 

family of calmodulin-dependent protein kinases.  

From this study, it was found that plc-3,  itr-1 and pkc-2 showed trafficking defects similar to 

the ones observed in egl-15 mutants. However, the key MAPK signalling pathway components 

sem-5 and let-60 which was found to regulate Yolk-GFP trafficking didn’t show any 

differences in the localisation and distribution of some of the membrane markers in intestine. 

As mentioned previously, this could be due to the fact that the C.elegans intestine is a polarized 

epithelium having different plasma membranes (apical and basolateral) and different 

endosomal compartments. Protein transport via these different endosomal compartments 

require specific signals and hence this could probably be a reason that MAPK having a 

differential regulation. The other possibility could be that PKC might compensate an impaired 

function of Ras and Raf and therefore membrane trafficking in C.elegans intestine could be 

PKC dependent MAPK phosphorylation.  

 

The difference in vesicle number, size and localisation in egl-15 mutants suggest that egl-15 

might play a major role in endocytic sorting. Previously, (Wilde et al. 1999) have demonstrated 

that EGFR receptor signalling upon ligand activation stimulates modification and recruitment 
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of clathrin, and also activation of other RTKs could cause an increase in the number of clathrin-

coated pits. Very recently, (Auciello et al. 2013) showed that FGFR activation in Hela cells 

increased both the number of CCPs and the events of clathrin-mediated endocytosis. In this 

current study, it was found that egl-15 mutants showed a reduced number of CHC-1-GFP 

positive puncta compared to the wild type worms. This shows that egl-15 could affect number 

of endocytosis events in a cell. 

 

The distribution of various endolysosomal proteins were examined in egl-15 mutants. The 

GFP-RAB-5, a marker for early endosomes and GFP-RAB-7, marker for late endosomes (Chen 

et al. 2010) showed a similar pattern of distribution and localization with a high number of ring 

like vesicles (late endosomes) and  less number of puncta (early endosomes) observed in the 

intestine of wild-type worms and on the contrary a reduced number of vesicles and high number 

of puncta observed in the intestine of egl-15 mutants. These results suggest that early to late 

endosome transport is affected.  

GFP-RAB-35, a recycling endosome marker (Sato et al. 2008), demonstrated a 

reduction in the ring-like vesicles representing recycling endosomes in egl-15 mutants when 

compared to wild type worms suggesting that egl-15 was involved in regulation of the recycling 

step of membrane trafficking. . It is also found that RAB-35 accumulates on early endosomes 

and functions in a direct recycling route from early endosomes to the plasma membrane in 

C.elegans (Kouranti et al. 2006). It is also reported that from the kinetic studies in mammalian 

cells RAB35 is involved in rapid recycling of transferrin from early endosomes.  

With the Golgi, apical and basolateral recycling endosome marker, GFP-RAB-10 (Shi et al. 

2012), although not significantly different, a slightly higher number of GFP-RAB-10 punctate 

structures and vesicles observed in egl-15 mutants compared to wild type worms supporting 

the role of egl-15 in regulation of endocytic recycling. With GFP-RAB-35 showing a 
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significant difference in endosome number compared to GFP-RAB10, this result might point 

that egl-15 could work preferentially on a faster recycling route. 

The reduced number of GFP-hTFR labelled puncta and enlarged endosomes positive for 

hTAC-GFP in egl-15 mutants also suggest a cargo trafficking defect. Enlarged intestinal 

endosome phenotypes have been previously described for rme-1 and rab-10 mutants  (Zhang 

et al. 2001). But the RME-1-GFP localization and distribution in egl-15 mutants in this study 

didn’t show abnormal enlarged vesicles but rather poorly labelled RME-1-GFP along the apical 

and basolateral membranes in egl-15 mutants compared to the wild type animals. The RME-1-

GFP labelling in egl-15 mutants in this study is similar to that of RME-1-GFP labelling in tat-

1 and chat-1 mutants where the punctate staining pattern of GFP-RME-1 along the basolateral 

membranes was significantly reduced in egl-15 mutants and GFP-RME-1 either formed large 

aggregates in the cytoplasm or became diffusive (Chen et al. 2010) indicating that RME-1-

positive recycling endosomes are disrupted with loss of egl-15 function. These results indicate 

that egl-15 might likely be involved in transport of cargo via recycling endosomes in an rme-1 

dependent manner. Thus from the analysis of all these membrane markers, it can be said that 

egl-15 affects endosomes along the endocytic uptake and recycling pathways and the loss of 

egl-15 function could affect trafficking of cargo proteins. 

To find out how well membrane trafficking via FGFR signalling is conserved between 

mammals and C.elegans, a mouse fibroblast cell line (NIH/3T3) was used and transferrin 

trafficking was analysed after stimulating or inhibiting FGFR. 

Transferrin is transported in most cells through a well characterised uptake and recycling 

pathways. Diferric transferrin binds to transferrin receptor at the cell surface and is internalised 

and delivered to sorting endosomes. The mild acidic pH of the sorting endosome dissociates 

iron from the protein and the transferrin receptor together with apo-transferrin is recycled 

directly to the plasma membrane or routed to the recycling endosomes, from which they are 
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delivered to the cell surface (Maxfield & McGraw, 2004). In this study, the uptake and 

recycling of transferrin (Alexa Fluor488 transferrin) in NIH/3T3 was analysed. The transferrin 

trafficking was compared between control (normal conditions), FGF-1 stimulated and FGFR 

inhibited cells. The tyrosine kinase activity of FGFR was blocked by using an FGFR inhibitor 

SU5402. Analysis was carried out using two different methods - a flow cytometry and 

fluorescence microscopy.  

The results from this analysis are inconclusive. Addition of FGF ligands to enhance FGFR 

signalling did not show any significant difference in FGFR phosphorylation compared to that 

of control. There was no significant difference in both transferrin uptake and recycling between 

control, FGFR inhibited and FGFR enhanced conditions. More than the transferrin trafficking 

itself, it’s not clear why addition of FGF ligands failed to produce a stronger FGFR 

phosphorylation. One possibility could be that the cells serum deprivation of 30 minutes might 

not have been sufficient and subjecting them to a longer overnight serum starvation might 

induce a stronger FGFR phosphorylation with addition of FGF ligands.  

 

Recently, Auciello et al., 2013 reported that neither the FGF treatment nor the SU5402 

inhibition had any impact on the transferrin entry in Hela cells suggesting that FGFR signalling 

could be cargo specific. In addition to cargo specificity, cell specificity, adaptor proteins, and 

varying cellular conditions could also affect transferrin trafficking (Chu et al. 2014).   

SU5402, the FGFR inhibitor directly interacts with the catalytic domain of FGFRs 

(Mohammadi 1997). SU5402 is also known to block the FGF-1 induced tyrosine 

autophosphorylation of MAP kinases (ERK1 and ERK2) (Mohammadi 1997). MAP kinase 

activation is dependent on the intracellular kinase activity of FGFR1 and to find that transferrin 

uptake or recycling unaffected by SU5402 further suggests that the FGFR and its well 
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established downstream signalling cascade MAP kinase might not be  involved in transferring 

trafficking is NIH/3T3 cells.  

Another possible explanation would be that specific phosphorylation sites in FGFR would be 

key in regulation of membrane traffic.  Though SU5402 blocks the autophosphorylation of 

major tyrosine residues at tyr-653 and tyr-654 which is essential for major biological responses 

including MAP kinase activation, the other phosphorylation residues go unblocked.  For 

example, as discussed in the results, membrane trafficking is found to be regulated by FGFR 

activation of MAP kinase or PLC, but it has been found that PLC- activation of FGFR 

requires autophosphorylation at tyr-766 which then leads to influx of Ca2+ and activation of 

protein kinase C. It has been found that Tyr 653 and 654 are conserved in all known members 

of FGF receptor family and tyrosines 463, 583 and 585 are conserved among human, mouse, 

chicken Drosophila, Xenopus and C.elegans. Therefore, it would be interesting to study all the 

possible autophoshorylation sites in egl-15 and to find the residues which are inhibited upon 

egl-15 knock-down.  

 

Thus using C.elegans as a model organism to analyse how FGF-FGFR signalling pathway 

regulates membrane trafficking, it was found that 

1. egl-15 (worm FGFR) affects Yolk-GFP trafficking via MAPK and PLC-γ signalling 

pathway and not via AKT pathway 

2. egl-15 regulates membrane trafficking via PLC-γ pathway at least in the intestine.  

3. egl-15 might affect different endocytic/recycling transport steps by impairing early, late 

and recycling endosomes in the C.elegans intestine.  

4. egl-15 might not be involved in secretory pathway at least in C.elegans intestine 
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These results open the window to further characterise the relation between FGF-FGFR 

signalling pathway and membrane trafficking. Future studies could involve the analysis of 

more membrane markers to precisely conclude the exact transport steps that could be affected. 

Also, by immunostaining the dissected intestines of egl-15 mutant worms expressing YP170-

GFP with antibodies against molecular markers of secretory/endocytosis compartments would 

help us understand how Yolk-GFP is regulated in C.elegans. Co-localisation studies on 

membrane markers such as RABs could be done by staining them with anti-RAB antibodies to 

see how they overlap between wild type and egl-15 mutants. This could help us understand 

probably FGFR mediated defects in RAB maturation and how it impairs membrane trafficking. 

It would also be interesting to study the FGFR phosphorylation sites that are activated or 

inactivated during membrane trafficking using mass spectrometry. Like transferrin, other cargo 

proteins such as MHC-1 can be analysed in mammalian cell models to better understand how 

well FGFR signalling and membrane trafficking are conserved in mammalian models. It would 

also be interesting to identify the downstream transcription factors activated by FGF-FGFR 

signalling pathway during membrane trafficking. Thus, this study once again shows how cell 

signalling and membrane trafficking are intertwined and how the former regulates the latter. 

Understanding this relationship further would help us to identify several membrane trafficking 

diseases caused by deregulated signalling pathways and thus would help to serve as a 

therapeutic target.   
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APENNDIX 

List of all strains used in this work 

Strain Name Genotype 

RT130 unc-119 (ed3);pwIs23 [VIT-2::GFP] 

MT3456 egl-15(n1477)X. 

MT1079 egl-15(n484)X. 

ZIB107 egl-15(n484); pwls23 

ZIB20 egl-15(n1477); pwls23 

FF628 let-756 (s2613) unc-32(e189) III. 

CB1313 egl-17(e1313)X. 

MT3188 egl-17(n1377). 

NH2192 egl-17(ay8) X. 

NH2103 egl-17(ay6) X. 

ZIB35 egl-17(e1313); pwls23 

ZIB109 egl-17(ay6); pwls23 

ZIB108 egl-17(n1377); pwls23 

ZIB110 egl-17(ay8); pwls23 

MT4698 let-60(n1700)  

MT2124 let-60(n1046)  

ZIB112 let-60(n1046); pwls23 

ZIB24 let-60(n1700); pwls23 

UP604 sos-1(cs41) 

RT1222 sos-1(cs41); bls1 

ZIB78 sos-1(cs41); pwls23 

MT4185 sem-5(n1779)  

UP148 sem-5(cs15)  
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ZIB2 sem-5(cs15); pwls23 

ZIB118 sem-5(n1779); pwls23 

MT7052 lin-45(sy96) unc-24(e138) 

WU48 lin-45(n2018) dpy-20(e1282) 

WU49 lin-45(n2506) unc-24(e138) 

ZIB115 lin-45(sy96) unc-24(e138); pwls23 

ZIB116 lin-45(n2506) unc-24(e138); pwls23 

ZIB111 lin-45(n2018) dpy-20(e1282); pwls23 

CB1068 unc-79(e1068) mpk-1(n2521) 

SD939 mpk-1(ga111)unc-79(e1068) 

MH37 mpk-1(ku1)unc-(e189) 

ZIB100 unc-79(e1068) mpk-1(n2521); pwls23 

ZIB113 mpk-1(ku1)unc-(e189); pwls23 

ZIB114 mpk-1(ga111)unc-79(e1068); pwls23 

BQ1 akt-1(mg306) 

RB759 akt-1(RB759); 

GR1310 akt-1(mg144) 

JT573 akt-1(sa573) 

ZIB80 akt-1(mg306); pwls23 

ZIB81 akt-1(mg144); pwls23 

ZIB73 akt-1(ok525);pwls23 

ZIB119 akt-1(sa573); pwls23 

VC204 akt-2(ok393) 

ZIB31 akt-2(ok393); pwls23 

JT709 pdk-1(sa709) 

GR1318 pdk-1(mg142) 
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ZIB79 pdk-1(sa709); pwls23 

ZIB117 pdk-1(mg142); pwls23 

VC127 pkc-2(ok328) 

JT73 itr-1(sa73) 

PS2582 itr-1(sy290) unc-24(e138) IV 

ZIB217 itr-1(sa73); pwls23 

ZIB211 itr-1(sy290) unc-24(e138) IV; pwls23 

 

List of strains used in the analysis of membrane markers 

Strain Name Genotype 

GK35 dkIs8(vha-6-GFP-CHC) 

ZIB16 egl-15(n1477); dkIs8(vha-6-GFP-CHC) 

RT1242 pwIs481[vha-6-MANS-GFP-E] 

ZIB9 egl-15(n1477) X; pwIs481[vha-6-MANS-GFP-E] 

RT1120 unc119(ed3); pwIs446[vha6-PH-GFP Cbunc119]F 

ZIB17 egl-15(n1477); unc119(ed3); pwIs446[vha6-PH-GFP Cbunc119]F 

RT1323 unc-119 (ed3); pwIs506[vha-6-SP-12-GFP] 

ZIB25 egl-15(n1477); unc-119 (ed3); pwIs506[vha-6-SP-12-GFP] 

RT1579 pwIs601[vha-6-ARF-6-GFP] 

 egl-15(n1477); pwIs601[vha-6-ARF-6-GFP] 

RT348 unc-119(ed3); pwIs87[vha6-GFP RME-1] 

ZIB54 egl-15(n1477); unc-119(ed3); pwIs87[vha6-GFP RME-1] 

RT1970 pwIs717[vha6-gfp(Asp718)c65THTFRshort] 

ZIB11 egl-15(n1477); pwIs717[vha6-gfp(Asp718)c65THTFRshort] 

RT393 unc-119(ed3); pwIs112[vha-6 GFP Cb unc-119 hTAC] 

ZIB12 egl-15(n1477); unc-119(ed3); pwIs112[vha-6 GFP Cb unc-119 hTAC] 
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RT327 unc-119(ed3); pIs72[vha6-GFP::RAB5; unc-119(+) D1] 

ZIB18 egl-15(n1477); unc-119(ed3); pIs72[vha-6::GFP::rab-5; unc-119(+) D1] 

RT476 pwIs170[vha6 GFP CE RAB-7 Cb unc-119(+)] 

ZIB52 egl-15(n1477); pwIs170[vha6 GFP CE RAB-7 Cb unc-119(+)] 

RT525 unc-119(ed3)III; pwIs206[vha6p::GFP::RAB-10 + Cb unc-119(+)]. 

ZIB130 egl-15(n1477); unc-119(ed3)III; pwIs206[vha6p::GFP::RAB-10 + Cb unc-119(+)]. 

RT311 unc-119(ed3); pwIs69[vha6-GFP::RAB-11; unc-119(+)] 

RT910 unc119; pwIs355[vha6::GFP::RAB35minigene] 

ZIB138 egl-15(n1477); unc119; pwIs355[vha6::GFP::RAB35minigene] 

 

 

 




