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Abstract

Several studies show that membrane transport mechanisms are regulated by signalling molecules.
Recently, genome-wide screen analyses in C.elegans have enabled scientists to identify novel
regulators in membrane trafficking and also signalling molecules which are found to couple with this
machinery. Fibroblast growth factor (FGF) via binding to fibroblast growth factor receptor (FGFR)
mediate signals which are essential in the development of an organism, patterning, cell migration and
tissue homeostasis. Impaired FGFR-mediated signalling has been associated with various
developmental, neoplastic, metabolic and neurological diseases and cancer. In this study, the
potential role of FGFR-mediated signalling pathway as a regulator of membrane trafficking was
investigated. The GFP-tagged yolk protein YP170-GFP trafficking was analysed in worms where 1)
FGFR signalling cascade components were depleted by RNAi and 2) in mutant animals. From these
results, it was found that the disruption of the genes egl-15 (FGFR), egl-17(FGF), let-756(FGF), sem-5,
let-60, lin-45, mek-2, mpk-1 and plc-3 lead to abnormal localization of YP170-GFP, suggesting that
signalling downstream of FGFR via activation of MAPK and PLC-y pathway is regulating membrane
transport. The route of trafficking was further investigated, to pinpoint which membrane step is
regulated by worm FGFR, by analysing a number of GFP-tagged intracellular membrane markers in the
intestine of Wild Type (WT) and FGFR mutant worms. FGFR mutant worms showed a significant
difference in the localisation of several endosomal membrane markers, suggesting its regulatory role
in early and recycling steps of endocytosis. Finally, the trafficking of transferrin in a mammalian
NIH/3T3 cell line was investigated to identify the conservation of these membrane trafficking
regulatory mechanisms between organisms. Results showed no significant changes in transferrin

trafficking upon FGFR stimulation or inhibition.
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1 INTRODUCTION

A protein which is produced within a cell has to reach its correct destined location not only for
proper cellular function but also to provide the impetus for cell growth and cell expansion
(Barlowe & Miller 2013). Some of these proteins are transported to a particular organelle
within the cell (intra-cellular) or to the cell surface for the transportation to another cell (inter-
cellular) (Figure 1.1). For example, transporter proteins and many hormone receptor proteins
have to be delivered to plasma membrane, water soluble enzymes such as RNA and DNA
polymerases must be targeted to the nucleus and some polypeptide signalling molecules and
digestive enzymes have to be directed to the cell surface for secretion from the cell. The
molecular mechanisms involved in membrane trafficking have been progressively elucidated
in the last few decades and the underlying machinery is complex including events like
membrane bending, fission, fusion, coating and sorting (M. C. S. Lee et al. 2004; Sallese et al.

2006)

Aston University

llustration removed for copyright restrictions

Figure 1.1: An overview of endocytic and secretory pathway (Tokarev et al. 2000) .
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1.1 Overview of secretory and endocytic pathways of protein sorting

1.1.1 Secretory Pathway:

Almost all eukaryotic cells use the same secretory pathway for protein sorting which include
the secreted proteins and the ones that reside inside the endoplasmic reticulum (ER), Golgi and
lysosomes. These are collectively referred to as secretory proteins. Secretory pathway consists
of three steps;

1. Protein synthesis and translocation across the ER membrane

2. Protein modification (folding and assembly) inside the ER.

3. Protein transport through budding and fusing of vesicles to Golgi, lysosomes or cell
surface.

Thus soluble and membrane proteins slated to function at the cell surface are delivered to their
final destination via secretory pathway (Figure 1.2).

The newly produced soluble and membrane proteins are translocated into the rough ER where
they are modified by the addition of N-linked carbohydrates and disulphide bonds (Lodish et
al. 2000). After folding they progress through the Golgi where they can still be modified for
example, by the addition of O-linked oligosaccharides (Alberts et al. 2002). The secretory
proteins are packaged into forward moving vesicles which fuse with each other to form a
flattened membrane bound compartment known as cis-Golgi cisterna. The new set of cargo
proteins mechanically move from the cis position (near to ER) to a trans position (farther to
ER) forming a medial-Golgi cisterna and then a trans-Golgi cisterna. This whole process is
called the cisternal maturation (Lodish et al. 2000). Eventually these secretory proteins reach a
complex network of membranes and vesicles termed as trans-Golgi network (TGN).

The continuous flow of membranes from ER to the Golgi (anterograde transport) could result
in depletion of ER membranes and extension of Golgi, therefore in order to maintain the
balance of structural and functional identities of these endomembranes some protein and lipids

are recycled back to the ER and this is commonly referred to as retrograde transport.
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The components of the secretory pathway are universal and they are very similar from yeast to
animals (J E Rothman & Orci 1992). The cargo carrying vesicles are delivered to the plasma
membrane either through the trans-Golgi network or through the recycling endosomes (Brooks
et al. 2009). The Golgi is assembled into three functionally distinct regions namely the cis-
Golgi network (the entry face of the stack), the Golgi stack and the trans-Golgi network (the
exit face of the stack). The cis and trans-Golgi are mainly involved in sorting and distribution.
The proteins with different final destinations such as the lysosomes, endosomes and plasma
membrane are sorted and arranged for their specific route in the TGN (James E. Rothman &

Orci 1992; Griffiths & Simons 1986).

Aston University

Nlustration removed for copyright restrictions

Figure 1.2: Diagrammatic representation of exocytosis; release of neurotransmitter

molecules into the extracellular space (Haucke et al. 2011).
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The content inside the vesicles are typically membrane proteins routed to the cell surface or
luminal contents destined to be secreted into the extracellular space or organelles, like
lysosomes. The other cellular functions in which exoctyosis are involved are cell-cell
communications, cell polarity, immune responses and neurotransmission (Brooks et al. 2009).

After sorting at the TGN exocytosis pathway follows two different routes, the
continuous delivery of membrane and cargo to the cell surface called constitutive secretion and
the regulated secretion involving the redirection and of newly synthesised cargo in vesicles
which are stored until they are triggered for a release by a signal (Stow et al. 2009).
Following the synthesis and modification of secretory proteins, they become fully competent
to be transported forward (anterograde) with different transport vesicles to their respective
destinations (Barlowe & Miller 2013). COPII coat, like other coat protein complexes help in
creating a spherical vesicle from ER donor membrane and populate it with cargoes (Barlowe
1994). COPII also plays a major role in selective capture of cargoes in transport vesicles by
recognizing specific sorting signals like simple acidic peptides (Malkus et al. 2002) to folded
epitopes (Mancias & Goldberg 2007). The role of COPI is well established with the vesicles
transported from Golgi to ER (retrograde trafficking). Similar to COPII, COPI assembly on the
membrane is facilitated by small GTPase ARF1 which helps in membrane anchorage (Antonny
et al. 1997).

There are two major molecular complexes conserved in most exocytic events namely
the exocyst and the soluble N-ethylmaleimide sensitive factor attachment protein receptor
complex (SNARE) (With the aid of various effector molecules, these complexes coordinate
tethering, docking and fusion of vesicles with the plasma membrane (Brooks et al. 2009).

The attachment of secretory vesicles with target membranes is mediated by the exocyst
complex (Pfeffer 1999; Guo et al. 2000). The exocyst is an evolutionary conserved octamer

complex composed of Sec3, Sec5, Sec6, Sec8, Secl0, Secl5, Exo70 and Exo084 (Liu & Guo
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2012). The exocyst complex tethers secretory vesicles to plasma membrane via a direct
association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) (Martin 2014). RAB
GTPases such as RAB11, and several other GTPase proteins such as Rho3, Cdc42 or Tcl0
(orthologue of Cdc42 in mammals) mediate specific routing and tethering of vesicles to the
plasma membrane through interactions with the exocyst (Brooks et al.,2009). The exocyst
complex is tightly regulated by integration of key regulators of membrane trafficking such as
RAB and ARF GTPases (Guo et al. 1999).

The second major complex involved in exocytosis is the SNARE complex. The SNARE
complex was hypothesised in 1993 (So6llner et al. 1993). The SNARE complexes mediate
membrane fusion along the secretory and endocytic pathways. There are two different SNARE
groups namely the t-SNARE and the v-SNARE. All SNARE complexes contain approximately
70 amino acids comprising heptad repeats (a structural motif that consists of a repeating pattern
of seven amino acids) and function on both target membranes (t-SNARESs) and transport
vesicles (v-SNAREs)(Hong & Lev 2014). The t-SNARES such as syntaxinl and Sec9 are found
on the inner plasma membrane denote the target membrane and the v-SNARE which are found
on different membrane compartments denote the vesicular membrane (Stow et al. 2006; Shorer
et al. 2005; Brooks et al. 2009). The t-SNARE and the v-SNARE pair with each other to form
a trans-SNARE complex also called SNAREpin which consists of four helix bundle that allows
membranes to get closer to each other and facilitate membrane fusion (Brooks et al. 2009).
Following membrane fusion, the remaining SNARE complexes called the cis-SNARE complex
undergoes disassembly initiated by the ATPase N-ethylmaleimide-senstive fusion protein
(NSF) and its co-factor soluble NSF attachment protein (SNAP) to recycle SNARE for a new
fusion event (Olkkonen & Ikonen 2006; Hong & Lev 2014). The other classification of SNARE
complexes was based on the crystal structure of synaptic SNARE complex [(Syntaxin [Stx]

1A, synaptobrevin2 and Synaptosome associated protein (SNAP)-25B)]. The crystal structure
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revealed that the central position of the four-helix bundle is comprised of an arginine
contributed by synaptobrevin and three glutamine residues contributed by Stx1A and SNAP-
25. Thus, these structural revelations led to the further classification of SNAREs as R-SNARE
and Q-SNARE (Pieren et al. 2010). Thus a functional SNARE complex constitutes three Q-
SNARE motifs and a single R-SNARE motif. R-SNAREs are generally related to v-SNAREs
and Q-SNAREs related to t-SNAREs (Hong & Lev 2014).

Secl/Muncl8 (SM) proteins and several tethering factors are involved in the regulation of
exocyst and SNARE complexes. SM proteins are considered to be vital components of the
fusion processes and they are found to accelerate SNARE mediated fusion and contribute to
the specificity of various fusion events (Stidhof & Rothman 2009)(Shen et al. 2007). The four
major SM proteins identified in mammals are Sly1, Vps45, Vps33 and Munc18. A recent study
on Vps33 suggest that SM proteins promote the opening of a fusion pore by triggering the
SNARE complexes (Pieren et al. 2010).

The tethering factors are a group of protein complexes that link the transport vesicles to their
respective target membranes. Tethering factors are classified into two major categories such as
homodimeric long coiled-coil proteins and multi-subunit tethering complexes (MTCs). Their
function is based on the distance between two vesicles. The long coiled tethers interact with
vesicles over a distance of 200nm whereas the multi-subunit tethering complexes interact with
vesicles over a much shorter distance up to 30nm (Hong & Lev 2014) (Chia & Gleeson 2014).
Thus these interactions between exocyst, SM proteins, tethering factors and SNARE
complexes spatially and temporally organise fusion events at specific membrane compartments

(Hong & Lev 2014).
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1.1.2 Endocytic Pathway

Endocytosis is the process by which vesicles bud inwards at the plasma membrane thereby
bringing proteins inside the cell where they are either sorted to lysosomes via late endosomes
or are recycled back to the cell surface (Hancock, 2005).

Based on the material internalised, endocytosis can be broadly divided into two categories.
Phagocytosis (cell eating) refers to internalisation of large molecules (>200nm) through an
actin cytoskeleton based mechanism and Pinocytosis (cell drinking) is the internalisation of
extracellular medium and occur via mechanisms such as clathrin-dependent endocytosis,
caveolae-mediated endocytosis, macropinocytosis and dynamin—clathrin independent
endocytosis (Seto et al. 2002). Cholesterol carried in LDL particles and iron atoms carried by
the iron binding protein transferrin are examples of transmembrane cargo proteins that follow

the endocytic pathway (Lodish et al. 2000).

By far the best characterised route of internalization of various cell surface components and
solutes is the clathrin-mediated endocytosis pathway. Clathrin dependent uptake takes place at
specialized sites where complex coated pits are assembled in order to internalize surface
proteins. The two major proteins involved in this coated pit assembly are clathrin and AP-2
along with several other accessory proteins. The structure of clathrin (Figure 1.3), a triskelion
involves three heavy chains and three light chains (Schmid 1997; Greene et al. 2000). The
clathrin heavy chain has functionally distinct regions namely, an N terminal domain which
interacts with a number of endocytic proteins such as AP-2, a curved region which divides the
polypeptide into distal and proximal leg and the C terminal domain that forms trimerization
(Liuetal. 1995). Both the distal and proximal legs are essential to form closed basket structures

and the proximal leg also facilitates the binding of clathrin light chains (Schmid 1997;
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Kirchhausen 2000; Ybe et al. 1998). The clathrin light chains exist in two isoforms and they

are involved in regulating the assembly of clathrin triskelion (Ybe et al. 1998).
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Clathrin-dependent endocytosis forms nascent vesicles using a clathrin coat (Seto, Bellen and
Lloyd, 2002) and these clathrin coats (coated pits) are bask