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The presence of chronic inflammation is associated with increased nutrient availability during obesity 
or type 2 diabetes which contributes to the development of complications such as atherosclerosis, 
stroke and myocardial infarction. The link between increased nutrient availability and inflammatory 
response remains poorly understood. The functioning of monocytes, the primary instigators of the 
inflammatory response was assessed in response to obesity and increased glucose availability. 

Monocyte microRNA expression was assessed in obese individuals prior to and up to one year after 
bariatric surgery. A number of microRNAs were identified to be dysregulated in obesity, some of 
which have previously been linked to the regulation of monocyte inflammatory responses including 
the microRNAs 146a-5p and 424-5p. Weight loss in response to bariatric surgery lead to the reversal 
of microRNA changes towards control values. 

In vitro treatments of THP-1 monocytes with high concentrations of D-glucose resulted in decreased 
intracellular NAD+:NADH ratio, decreased SIRT1 deacetylase activity and increased P65 acetylation. 
However the increased osmotic concentration inhibited LPS induced inflammatory response and 
TNFα mRNA expression. 

In vitro treatment of primary human monocytes with increased concentrations of D-glucose resulted 
in increased secretion of a number of inflammatory cytokines and increased expression of TNFα 
mRNA. Treatment also resulted in decreased intracellular NAD+:NADH ratio and increased binding of 
acetylated P65 to the TNFα promoter region. In vitro treatments of primary monocytes also 
replicated the altered expression of the microRNAs 146a-5p and miR-424-5p, as seen in obese 
individuals. 

In conclusion a number of changes in monocyte function were observed in response to obesity and 
treatment with high concentrations of D-glucose. These may lead to the dysregulation of 
inflammatory responses contributing to the development of co-morbidities.  
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1 Introduction 
  

1.1 Metabolic diseases 

Metabolic disorders include a wide variety of conditions which lead to a disruption in normal 

metabolism. Many of these are inherited genetic disorders such as Wilson’s disease and 

phenylketonuria which are caused by genetic mutations of the ATP7B (Bull, Thomas et al. 1993) and 

phenylalanine hydroxylase (PAH) (DiLella, Kwok et al. 1986) genes respectively. Genetic mutations of 

the ATP7B gene results in ineffective biliary secretion of excess dietary copper leading to 

accumulation. Mutations in the PAH gene leads to reduced enzymatic activity resulting in decreased 

or inhibited conversion of phenylalanine to tyrosine which can cause a variety of neurological 

disorders. However, this thesis focused on acquired metabolic disorders. Acquired metabolic 

disorders describe conditions that mainly arise as a consequence of environment such as the viral 

destruction of the beta pancreatic cells in type 1 diabetes mellitus, or those that arise as a 

consequence of poor diet and/or lifestyle such as type 2 diabetes mellitus, obesity and metabolic 

syndrome. The development of acquired metabolic disorders is subject to many risk factors such as 

diet, lifestyle, genetics, increasing age and birth weight.  Prenatal nutritional availability is believed to 

influence the development of epigenetic marks leading to “foetal programming” which can increase 

the risk of developing metabolic diseases such as type 2 diabetes and metabolic syndrome (Godfrey, 

Sheppard et al. 2011, Brenseke, Prater et al. 2013). The Barker hypothesis, also known as the thrifty 

phenotype hypothesis, suggests that low foetal growth due to low maternal nutrition leads to an 

increased risk of developing disorders such as type 2 diabetes, hypertension, stroke and coronary 

heart disease (Hales and Barker 1992). Evidence of this effect was shown by the Dutch famine birth 

cohort studies. The Dutch famine occurred during World War 2 when food supplies were cut off from 

the populace by the occupying German army as punishment for Dutch opposition (Painter, de Rooij 

et al. 2006). Individuals born during this period had a low birth weight and were shown to have an 

increased risk of developing the aforementioned metabolic disorders later in life. Poor maternal 

nutrition during pregnancy experienced by the developing foetus is postulated to cause “foetal 

programming” resulting in the child having an adaption to a low nutrient environment (Hales and 

Barker 1992). Increased maternal nutritional availability has also been shown to result in an 

increased risk of developing metabolic syndrome and type 2 diabetes later in life (Boney, Verma et al. 

2005). These studies suggest that nutritional availability can have a profound effect on epigenetic 

modifications leading to increased risk of developing metabolic diseases.  
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1.1.1 Diabetes 

Diabetes is a metabolic disease characterised by prolonged elevation of blood glucose. The World 

Health Organisation defines type 2 (T2) diabetes as a fasting plasma glucose level of ≥7.0mmol/l or 

random venous plasma glucose concentration ≥ 11.1 mmol/l (WHO/ International Diabetes 

Federation (IDF),2006). In 2014 the number of worldwide cases of diabetes was estimated at 387 

million (IDF, 2014),90% of which were classified as type 2 diabetes (Shi and Hu 2014). Approximately 

6% of the UK population has been diagnosed with T2 diabetes (Gatineau Mary 2014). T2 diabetes is 

characterised either by reduced insulin secretion by pancreatic beta cells or cellular desensitisation 

to secreted insulin which neutralises its ability to regulate blood glucose concentration. A number of 

risk factors which contribute to the development of T2 diabetes have been identified. These include: 

increasing age; genetic makeup; high blood pressure; a dietary intake high in sugar and fat; being 

overweight and ethnicity. Due to high incidence of long term complications associated with diabetes, 

management of the condition is costly, with approximately 10% of the NHS annual budget spent on 

treatment of diabetes and its complications with this predicted to rise to 17% by 2035 (Hex, Bartlett 

et al. 2012). Diabetes can result in a number of debilitating complications including micro- and 

macro-vascular complications. Microvascular complications can include retinopathy, nephropathy 

and neuropathy which can result in blindness, renal failure and nerve damage. Macrovascular 

complications include coronary heart disease, stroke and peripheral vascular complications which 

can result in limb amputation and hypertension (Amos, McCarty et al. 1997). 

 

1.1.2 Management of type 2 diabetes  

T2 diabetes requires a multifaceted approach to management to monitor and avoid the development 

of further complications. This includes the patient implementing lifestyle changes such as reducing 

weight, increasing physical activity and lowering dietary intake of saturated fats. Blood glucose levels 

should be monitored and self-managed by the patient through implementation of the 

aforementioned lifestyle changes, and where appropriate, the use of medication in addition to this. 

Depending on the aetiology of the diabetes, the patient may be treated with insulin, insulin 

sensitising drugs (such as rosiglitazone) or metformin. Weight reduction through changing dietary 

intake, increasing levels of physical activity (Lim, Hollingsworth et al. 2011) and bariatric surgery have 

all been reported as effective methods of reversing obesity induced T2 diabetes (Brethauer, Aminian 

et al. 2013).    
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1.1.3 Obesity 

1.1.3.1 Epidemiology 

The WHO reports that currently worldwide 39% of adults over 18 are overweight and 13% obese 

(Shanthi Mendis and Cecile Mace 2014). The 2013 Health Survey for England (HSE) recorded that 

26% of men and 24% of women were obese (BMI > 30) and 41% of men and 33% women were 

overweight (BMI > 25) (Mindell 2014, NICE 2014). Obesity currently costs the NHS £6 billion annually 

in direct medical treatment, expected to rise to between 10 and 12 billion by 2030 (Richard Dobbs 

2014). Being obese or overweight is commonly considered a major risk factor for a number of non-

communicable diseases such as diabetes and CVD a number of studies have challenged this. A recent 

meta-analysis by Flegal, Kit et al. (2013) assessed data from 97 studies with a combined sample size 

of 2.88 million individuals including more than 270,000 deaths in order to establish the association 

between mortality and BMI. The meta-analysis found that individuals who were overweight (BMI: 25 

- < 30) or had grade one obesity (BMI: 30 - < 35) had either a lower risk or no increased risk of 

mortality when compared to normal weight individuals (BMI: 18.5 - < 25). Since its publication this 

paper has been criticised and several other papers published that refute its claims that being 

overweight or grade one obese results in no increase in mortality. The main criticism levelled against 

this paper is the inclusion of individuals who were smokers, frail due to old age or had chronic 

medical conditions associated with weight loss such as cancer into the normal weight group (Tobias 

and Hu 2013, Willett, Hu et al. 2013). Other publications that eliminated weight loss due to disease 

or smoking found all-cause mortality to increase with BMI and the optimum BMI to be between 20 – 

24.9 (Berrington de Gonzalez, Hartge et al. 2010, Wormser, Kaptoge et al. 2011). 

A number of studies have assessed the prevalence of obesity within families, mono- and di- zygotic 

twins. These studies have discovered obesity to have a high degree of heritability, between 40%-70% 

(Turula, Kaprio et al. 1990, Magnusson and Rasmussen 2002, Wardle, Carnell et al. 2008)  not 

observed in adopted individuals (Stunkard, Sorensen et al. 1986), suggesting a potential genetic 

background. In the years since these studies were published a number of genetic contributors of 

obesity have been identified including inherited mutations in a variety of genes. A number of these 

genes appear highly expressed in the CNS and the hypothalamus and play a role in appetite and 

satiety. Several mutations have been discovered that interfere with the leptin signalling pathway, 

leptin being a hormone responsible for stimulating the feeling of satiety in response to food, which 

affect either leptin production, secretion (Montague, Farooqi et al. 1997, Fischer-Posovszky, Funcke 

et al. 2015) or the leptin receptor (Clement, Vaisse et al. 1998). These mutations cause the individual 
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to feel constantly hungry which results in them eating more in an attempt to satisfy the hunger 

resulting in obesity. Another example of genetic mutations resulting in obesity can be observed in 

mutations within the MC4R receptor (Huszar, Lynch et al. 1997, Vaisse, Clement et al. 1998, Loos, 

Lindgren et al. 2008). The MC4R receptor is a G protein coupled receptor predominately expressed 

within the hypothalamus and the CNS which has a role in regulating appetite (Yang 2011). Several 

genome wide association studies have been undertaken identifying 97 individual loci to be 

associated with the development of obesity (Locke, Kahali et al. 2015).  

 

1.1.3.2 Obesity management 

Bariatric surgery is becoming a more commonly employed means of treating obesity. Bariatric 

surgery describes a range of surgical procedures performed on people with obesity with the aim of 

causing weight reduction. Bariatric surgery is believed to result in weight loss and increased 

glycaemic control through a variety of mechanisms.  Surgically restricting the size of the stomach or 

bypassing the duodenum and upper jejunum causes decreased calorie intake and increased weight 

loss. This restriction of calorie intake and weight loss leads to improved glucose control (Dixon, 

O'Brien et al. 2008, Isbell, Tamboli et al. 2010) and rapid improvements in hepatic insulin sensitivity 

followed by later improvements in insulin sensitivity of peripheral tissues (Bojsen-Moller, Dirksen et 

al. 2014).  

 

The evidence base in support of bariatric surgery as a treatment to aid weight loss has grown 

substantially in recent years, with it now being seen as an effective means of treating obesity and its 

associated co-morbidities, especially type 2 diabetes (Sjostrom, Narbro et al. 2007, Brethauer, 

Aminian et al. 2013). Bariatric surgery has also been shown to be more effective than conventional 

weight loss methods at reducing weight, improving mortality in addition to being more effective at 

improving glycaemic control during type 2 diabetes than currently prescribed medication (Mingrone, 

Panunzi et al. 2012, Schauer, Kashyap et al. 2012). Guidelines set out by NICE state that bariatric 

surgery should be available for individuals with a body mass index (BMI) greater than 35 who have 

failed to lose weight through medical weight loss programs (NICE 2014). Recent additions (November 

2014) to the NICE guidelines state that obese individuals (BMI > 30) with recently diagnosed type 2 

diabetes should receive expedited assessment for bariatric surgery. 

 

A study comparing patients prescribed medication to aid weight loss, (incretin analogues, anti-

hypertensive and lipid lowering medications) and given lifestyle advice and dietary adjustments with 

patients who received bariatric surgery in addition to the aforementioned treatment found that 
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those who received bariatric surgery lost significantly more weight and achieved greater glycaemic 

control (Schauer, Kashyap et al. 2012). These individuals’ homeostasis model assessment of insulin 

resistance (HOMO-IR) also improved significantly compared to individuals who did not receive 

bariatric surgery. Furthermore, participants who had bariatric surgery reduced the medication they 

took over the 12 month period since receiving surgery from an average of 2.5 diabetic medications to 

0.9, whereas those only receiving the intensive medical therapy started on an average of 2.8 diabetic 

medications which increased to 3.0 over the 12 month period (Schauer, Kashyap et al. 2012). The 

reduction in use of diabetic medications in those receiving bariatric surgery in addition to being 

beneficial to the patient is also beneficial to the healthcare service through the reduction in the cost 

of condition management which is cumulative. This is supported by a number of systematic reviews 

which concluded that bariatric surgery, whilst initially expensive, reduces healthcare spending over 

the long term due to reduced incidence of co-morbidities associated with obesity such as type 2 

diabetes and cardiovascular disease(Picot, Jones et al. 2009, Terranova, Busetto et al. 2012, 

Borisenko, Adam et al. 2015).  

 

1.1.4 Ageing as a risk factor of metabolic disease 

The process of ageing is associated with decreased glucose tolerance, insulin sensitivity and an 

increased risk of developing metabolic disorders such as type 2 diabetes, CVD and metabolic 

syndrome. Reaven, Gold et al. (1979) first demonstrated that aged rats had decreased β-cell insulin 

secretion in response to stimulation with glucose when compared to younger controls.  Rowe, 

Minaker et al. (1983), compared young (22-37 year olds) non obese participants with old (63-77 year 

olds) non-obese participants and found that the old participants had decreased insulin sensitivity, 

resulting in a reduced rate of glucose uptake by peripheral tissue. The study also showed that there 

was no impairment of secreted insulin’s ability to bind to the insulin receptor, suggesting that the 

decreased insulin sensitivity was due to a defect in the insulin signalling pathway downstream of 

receptor binding. Through assessing non-obese participants, the study demonstrated that increased 

age, independent of dietary intake or obesity, resulted in an increased risk of developing metabolic 

disease.  

Development of metabolic disease has also been attributed to accelerated ageing. Wang et al. 2006, 

showed that insulin resistance in diabetic mice models led to increased muscle atrophy. The authors 

found that this was due to decreased PI3K activity resulting in decreased inhibition of E3 ubiquitin 

conjugating enzymes, causing increased activation of the ubiquitin proteasome proteolytic pathway 

(UPP) which resulted in muscle protein degradation. Muscle wastage is a large contributing factor to 

age related frailty. The chronic inflammation associated with metabolic diseases is also believed to 
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contribute to accelerated ageing and insulin resistance (Shoelson, Lee et al. 2006, Franceschi, Capri 

et al. 2007).   

 

1.2 Insulin signalling and obesity induced resistance 

1.2.1 Insulin signalling 

Insulin is a peptide hormone, 51 amino acids in length, produced and secreted by the beta cells of 

the islets of Langerhans, the endocrine cells of the pancreas. Insulin is secreted in response to a 

number of stimuli including: free fatty acids; the amino acids arginine and leucine; the incretins 

glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP); cephalic stimulation in 

anticipation of food, and most importantly elevated blood glucose (Wilcox 2005). Insulin has many 

functions in the body although perhaps its most significant being in the maintenance of blood 

glucose and fatty acid concentrations. Elevated blood glucose results in increased glucose uptake by 

the beta cells of the pancreas which in turn stimulates the secretion of insulin. Secreted insulin 

causes many cellular metabolic and mitogenic changes, resulting in increased cell growth and division 

and causing a metabolic shift away from glycogen breakdown and glucose production to increased 

cellular glucose uptake and storage, thus restoring blood glucose to within normal range. Although 

many tissues respond to secreted insulin the majority of insulin’s systemic effects are mediated by 

the skeletal muscle, the liver and adipose tissues. The skeletal muscle is essential for insulin’s rapid 

effect on reducing blood glucose concentration, as it has the capacity to take up and store large 

quantities of glucose quickly. 

Insulin signalling begins at the plasma membrane when secreted insulin binds to the insulin receptor 

(IR). The IR is a heterotetrameric complex consisting of two extracellular alpha subunits responsible 

for ligand binding and two transmembrane beta subunits with intracellular tyrosine kinase activity, 

which upon ligand binding propagate the signal into the cell causing the associated cellular insulin 

response (figure 1.2.1). The beta subunits’ tyrosine kinase activity is repressed prior to ligand binding 

by the alpha subunit. Upon ligand binding, the alpha subunits’ imposed kinase repression is removed 

and the beta subunits auto-phosphorylate tyrosine residues located within their cytoplasmic tails. 

Auto-phosphorylation causes the beta subunits to undergo a conformational change resulting in 

increased kinase activity allowing tyrosine phosphorylation of intracellular substrates. The activated 

IR has been shown to phosphorylate a number of intracellular proteins including those belonging to 

the insulin receptor substrate (IRS) family of proteins (IRS I, II, III and IV), DOK 4/5, GAB1, Cbl, Shc and 

APS proteins. The phosphorylated substrate proteins form signalling complexes with effector 
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proteins via Src homology 2 (SH2) domains resulting in the activation of several signalling pathways 

(Avruch 1998, Taniguchi, Emanuelli et al. 2006).  

The majority of insulin’s effects result from the activation of the phosphatidylinositol 3-kinase (PI3K) 

and mitogen activated protein kinase (MAPK) pathways. The summation of these activated pathways 

is increased translocation of additional glucose transporters (GLUT) proteins to the cell membrane 

increasing glucose uptake. Insulin stimulates an increase in cellular storage of glucose as glycogen, 

decreased gluconeogenesis, increased breakdown of glucose by glycolysis and increased fatty acid 

synthesis and storage as triglycerides. This results in the cells switching from an energy usage 

metabolic state to an energy storage state (White 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.1: Insulin signalling pathways, 

 Adapted from Taniguchi, Emanuelli et al. (2006). Figure displays the critical nodes of the insulin signalling 
pathway. Critical nodes downstream of the insulin receptor are denoted by black arrows and downstream of 
the Insulin growth factor receptor in blue. Pathways activated by cytokines TNFα, IL-6 and by leptin interfere 
with the insulin signalling pathway (Red and orange lines). Three important nodes of insulin signalling are 
shown within this figure, the insulin receptor and insulin receptor substrates (light blue box), 
phosphatidylinositol 3-kinase signalling (light green box) and AKT/protein kinase B signalling (pink box). 
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1.2.2 Insulin resistance in obesity  

Insulin resistance is defined as a decrease in cellular response to beta cell secreted insulin which 

results in insufficient glucose uptake and storage, decreased suppression of hepatic glucose 

production, and increased lipolysis and free fatty acid (FFA) secretion by adipose tissue. The 

summation of this leads to dysregulation of glucose and lipid homeostasis, which the beta cells 

attempt to compensate for by increasing insulin secretion and eventually leads to beta cell death. 

The resulting elevated concentration of circulating glucose and lipids lead to gluco- and lipo-toxic 

effects and aid in progressing complications of diabetes such as atherosclerosis. It has long been 

established that a causal link exists between obesity and insulin resistance, with several potential 

mechanisms being identified (Kahn, Hull et al. 2006, Qatanani and Lazar 2007). A relationship 

between the ectopic deposit of lipids in insulin sensitive tissues and development of insulin 

resistance was first shown in studies by Randle, Garland et al. (1963). They established that when rat 

heart and diaphragm muscle were treated with fatty acids they showed a decreased uptake of 

glucose in response to insulin. Randle et al (1963) believed that the accumulation of these lipids 

within the muscle tissue decreased glycolysis thus decreasing glucose uptake. It has since been 

shown that lipid-induced insulin resistance in muscle cells is due to impaired insulin signalling and 

insulin-stimulated glucose uptake, rather than glycolysis. The increased accumulation of lipids within 

these tissues has been proposed to result in increased intracellular metabolites such as fatty acids, 

diacylglycerol (DAG), ceramides and acyl-CoAs; these metabolites have been shown to interfere with 

the insulin signalling pathway. Yu, Chen et al. (2002) observed that increased intracellular acyl-CoA 

and DAG resulted in activation of serine protein kinase C (PKC) which they showed to phosphorylate 

IRS1 preventing IRS1 activation of the PI3-kinase preventing induction of the normal insulin signalling 

pathway. 

Obesity has also been associated with systemic chronic low grade inflammation resulting from an 

increase in circulating inflammatory cytokines. The increased presence of inflammatory cytokines 

and markers such as TNFα, IL-6 and CRP has been found to predict development of insulin resistance 

and type 2 diabetes (Dandona, Aljada et al. 2004, Shoelson, Lee et al. 2006). It has been observed in 

both mice and humans that obesity results in the accumulation of macrophages to the stromal 

vascular fraction of white adipose tissue (Weisberg, McCann et al. 2003, Xu, Barnes et al. 2003). 

Studies have shown that the increased presence of inflammatory cytokines interferes with insulin 

signalling through activation of Jun kinase 1 (JNK1) and IκB kinase-β (IKKβ) which phosphorylates 

inhibitory serine residues on IRS1 disrupting the insulin signalling pathway (Kanety, Feinstein et al. 

1995, Yuan, Konstantopoulos et al. 2001, Gao, Zhang et al. 2004). Inhibition of macrophage 

recruitment to adipose tissue using MCP-1 and CCR2 knock out mice ameliorated insulin resistance 
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which occurred as a result of being fed a high fat diet (Kanda, Tateya et al. 2006, Weisberg, Hunter et 

al. 2006).  

 

1.3 Inflammatory signalling 

The Gram negative bacterial cell wall component, LPS, induces an inflammatory response through 

binding to the TLR4 receptor (Poltorak, He et al. 1998). When LPS is present it is bound by the LPS 

binding protein (LBP) which subsequently binds to the membrane protein CD14; together this 

complex binds to and activates signal transduction through TLR4. TLR4 signal transduction can be 

divided into either myeloid differentiation primary response gene 88  (MyD88) dependent or 

independent pathways observed to be responsible for activating gene expression of pro-

inflammatory cytokines (Kawai, Adachi et al. 1999) or interferons respectively (Kawai, Takeuchi et al. 

2001). Upon LPS recognition and binding, TLR4 recruits the adaptor protein MyD88 to its intracellular 

toll-interleukin-1 receptor (TIR) domain. MyD88 proceeds to recruit the proteins interleukin-1 

receptor-associated kinase 1 (IRAK-1) and IRAK-4 which it activates (Suzuki, Suzuki et al. 2002). IRAK-4 

subsequently activates IRAK-1 (Lye, Mirtsos et al. 2004).  Both IRAK-1 and IRAK-4 dissociate from the 

MyD88 protein and bind to TNF receptor-associated factor 6 (TRAF6) resulting in its ubiquitination. 

Ubiquitinated TRAF6 subsequently activates the protein transforming growth factor-β-activated 

kinase 1 (TAK1) which proceeds to phosphorylate and activate the kinases IKKβ and MAPK leading to 

activation of the NF-κB and MAPK pathways (Sato, Sanjo et al. 2005). 

The NF-κB pathway has been shown to play a key role in the induction of inflammation in response 

to a number of stimuli including bacterial antigens such as LPS and inflammatory cytokines such as 

TNFα and IL-1. The NF-κB protein family consists of five members, P65, P52, P50, RelB and c-Rel, the 

NF-κB complex is comprised of a dimer of these members.  Many variations of the NF-κB complex 

exist comprised of dimers of these subunits, however the P65:P50 complex is believed to be the 

primary mediator of the canonical NF-κB pathway. In the absence of an inflammatory stimulus NF-κB 

is sequestered in the cytoplasm where it is bound by IκB proteins resulting in functional inhibition. 

Upon the introduction of an inflammatory stimulus, a signalling cascade occurs that results in the 

activation of the IκB kinase (IKK). IKK phosphorylates the NF-κB bound IκB proteins which results in 

the IκB proteins being ubiquitinated by ubiquitin ligase and degraded by proteasome complexes. The 

unbound NF-κB translocates to the nucleus where it binds to target gene promoter regions resulting 

in transcription of inflammatory genes. This process of nuclear translocation is dependent on 

phosphorylation of the NF-κB complex by protein kinase A (PKA) and A kinase interacting kinase 1 

(AKIP1) at serine 276 (Zhong, Voll et al. 1998, Chen, Williams et al. 2005). Phosphorylation of serine 
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276 has been shown to promote and increase binding of the acetyltransferase protein p300 which 

results in acetylation of P65 at various sites. Acetylation of P65 has been shown to occur at a number 

of lysine residues modulating NF-κB transcriptional activity. Acetylation of lysine 221 has been 

reported to increase DNA binding and prevents newly expressed IκB binding to, and inhibiting NF-κB 

(Chen, Mu et al. 2002). Acetylation of P65 lysine-310 has been observed to be necessary for full 

transcriptional activity(Chen, Mu et al. 2002). 

A number of cytokines including IL-6 and IL-10 elicit their respective responses through the Janus 

Kinase (JAK) signal transducer and activator of transcription (STAT) pathway. The binding of the 

cytokine results in cell membrane receptor dimerisation leading to recruitment of JAK kinases which 

auto-phosphorylate and phosphorylate the receptor cytoplasmic tail. This allows the binding of 

proteins belonging to the STAT family which are subsequently phosphorylated by the recruited JAK 

kinases. Phosphorylation of STAT results in its dimerisation and translocation to the cell nucleus 

(Decker and Kovarik 2000). The transcriptional activity of STAT once translocated to the nucleus has 

been shown to be influenced by its acetylation status (Wieczorek, Ginter et al. 2012). The histone 

acetyltransferase proteins p300 and CREB-binding protein have been reported to acetylate STAT 

proteins at multiple lysine residues which results in increased DNA binding and STAT transcriptional 

activity (Wang, Cherukuri et al. 2005, Yuan, Guan et al. 2005). Histone deacetylase proteins including 

SIRT1 have been shown to deacetylate STAT proteins resulting in decreased STAT transcriptional 

activity and decreased translocation of STAT to the nucleus (Nie, Erion et al. 2009). 

 

1.4 Monocytes 

Monocytes form between 2% and 8% of the total leukocyte population and are mononuclear, with a 

characteristic kidney shaped nuclei. Monocyte cells are a type of leukocyte belonging to the innate 

immune system. They perform several roles in the body, primarily instigation of inflammation and 

recruitment of other immune cells to sites of infection or tissue damage. They are also phagocytic 

and antigen presenting so can digest invading pathogens at sites of infection and present the 

antigen, activating cells of the adaptive immune system. Monocytes also use their phagocytic activity 

to remove apoptotic and necrotic cells from the sites of infection and inflammation, aiding in the 

resolution of inflammation (Devitt and Gregory 2008). Monocytes also migrate to a variety of tissues 

replenishing resident macrophages and dendritic cells. 

Monocytes can be divided into several subpopulations depending on their expression of cell surface 

receptor proteins and their cytokine secretion profiles. The current belief is that monocytes can be 

divided into at least three subpopulations: a “classical” or “Mon 1” monocyte, a “non-classical” or 
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“Mon 3” monocytes and a third “intermediate” or “Mon 2” population (Shantsila, Wrigley et al. 

2011). In humans the total monocyte population consists of 80% - 90% Mon 1 classical monocytes, 

5% - 7% Mon 2 intermediate monocytes and 6% - 8% Mon 3 non-classical monocytes (Cros, Cagnard 

et al. 2010, Cornwell, Vega et al. 2013).  

Mon 1 monocytes are characterised by high cell surface expression of CD14 and negative expression 

of CD16 (CD14++, CD16-), Mon 2 monocytes express low levels of both CD14 and CD16 (CD14+, CD16+) 

and Mon 3 monocytes express low levels of CD14 and high levels of CD16 (CD14+, CD16++) (Ghattas, 

Griffiths et al. 2013). 

Recently the presence or absence of 6-sulfo LacNAc (SLAN) modified P-selectin glycoprotein ligand 1 

(PSGL-1) has been observed to allow further separation of the CD16 positive Mon 2 and Mon 3 sub-

populations (Hofer, Zawada et al. 2015). Whereby the Mon 2 monocytes are SLAN negative and the 

Mon 3 monocytes SLAN positive (Hofer, Zawada et al. 2015). The presence of the SLAN modification 

has been shown to block the recognition of PSGL-1 to P- and E- selectin thereby influencing the 

trafficking of the individual monocyte sub-populations (Schakel, Kannagi et al. 2002). The monocyte 

sub-populations mon 1, and at lower concentrations mon 2, have both been observed to express cell 

surface C-C chemokine receptor type 2 (CCR2) (Shantsila, Wrigley et al. 2011). This receptor 

recognises the chemokine MCP-1 which is secreted from a variety of tissues in response to 

inflammation or tissue damage. MCP-1 secreted from inflamed, infected or damaged tissues form a 

chemotactic gradient which CCR2 expressing monocyte populations can follow allowing trafficking 

and recruitment of these monocytes to the site of MCP-1 secretion (Maus, Henning et al. 2002).  

 

Several studies have attempted to further characterise each sub-population to identify the roles they 

perform within the context of innate immunity, inflammation and disease. These studies have 

identified each sub-population to display a unique gene expression profile, with the CD16 positive 

Mon 2 and Mon 3 populations having the more similar gene expression profile (Frankenberger, 

Sternsdorf et al. 1996, Belge, Dayyani et al. 2002, Wong, Tai et al. 2011). The results of the genome 

wide analysis on monocyte sup-populations by Wong, Tai et al. (2011) identified the classical Mon1 

monocytes to express genes related to angiogenesis and wound healing perhaps suggesting a role in 

tissue repair. The authors identified the Mon 2 intermediate sub-population to have increased 

expression of genes related to antigen presentation whilst the Mon 3 non-classical sub-population 

expressed genes related to cyto-skeletal rearrangement suggesting potential specialisations towards 

antigen presentation and phagocytosis respectively. The cytokine secretion profiles also differ 

between the monocyte sub-populations. CD16 positive Mon 2 and Mon 3 monocytes have been 
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observed in vitro to secrete higher concentrations of TNFα and IL-1β basally and upon stimulation 

with various TLR ligands, whereas Mon 1 monocytes secrete higher concentrations of IL-10, IL-6 and 

IL-8 (Frankenberger, Sternsdorf et al. 1996, Belge, Dayyani et al. 2002, Cros, Cagnard et al. 2010, 

Wong, Tai et al. 2011). These populations have been shown to shift during certain chronic 

inflammatory conditions such as rheumatoid arthritis and sepsis, both of which result in expansion of 

the CD16 positive Mon 2 population (Poehlmann, Schefold et al. 2009, Rossol, Kraus et al. 2012). 

These studies also showed that expression of these population markers vary within the 

subpopulations themselves producing a spectrum of expression between the groups, meaning that 

although it is convenient to divide monocyte populations into three distinct groups in reality it 

appears to less defined. 

Upon tissue recruitment monocytes differentiate into resident macrophages. Macrophages as a cell 

type are often classified into two individual subtypes, “M1” or “M2”. Although as with monocytes, 

macrophages exist as a spectrum of phenotypes dependent on the environment and cytokines they 

are exposed to rather than two individual well defined populations (Murray, Allen et al. 2014). 

Macrophages with a more M1 phenotype are described as “classically activated” and secrete high 

concentrations of inflammatory cytokines and reactive oxygen species. Macrophages with a more 

M2 phenotype direct inflammatory resolution and tissue repair (Verreck, de Boer et al. 2006). 

 

1.5 LPS induction of an inflammatory response through TLR4 

 

1.5.1 Toll-like receptors 

The Toll receptor was first discovered in Drosophila where it was identified to play a role in embryonic 

development (Hashimoto, Hudson et al. 1988) and activation of the innate immune system (Lemaitre, 

Nicolas et al. 1996). Since then a total of 13 Toll receptor homologues, Toll-like receptors, have been 

discovered, 10 of which are present in humans. Toll-like receptors are a family of proteins responsible 

for the recognition of invading pathogens and necrotic or apoptotic cells through recognition of 

conserved molecules entitled Pathogen-associated molecular patterns (PAMPs) or Danger-associated 

molecular patterns (DAMPs). Viral and bacterial components such as viral double stranded RNA, 

bacterial flagellum and cell wall components such as lipoteichoic acid (LTA) and lipopolysaccharide 

(LPS) are examples of PAMPs recognised by TLR-3 (Alexopoulou, Holt et al. 2001), TLR-5 (Hayashi, 

Smith et al. 2001), TLR-2 (Schwandner, Dziarski et al. 1999), and TLR4 (Poltorak, He et al. 1998) 

respectively. 
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1.5.2 TLR4 signalling 

LPS is a cell wall component found in gram negative bacteria that induces an inflammatory response 

through binding to the TLR4 receptor (Poltorak, He et al. 1998). When LPS is present it is bound by 

the LPS binding protein (LBP) which subsequently binds to the membrane protein CD14; together this 

complex binds to and activates signal transduction through TLR4. TLR4 signal transduction can be 

divided into either myeloid differentiation primary response gene 88 (MyD88) dependent or 

independent pathways, observed to be responsible for activating gene expression of pro-

inflammatory cytokines (Kawai, Adachi et al. 1999) or interferons respectively (Kawai, Takeuchi et al. 

2001). 

Upon LPS recognition, TLR4 recruits the adaptor protein MyD88 to its intracellular toll-interleukin-1 

receptor (TIR) domain. MyD88 proceeds to recruit the proteins interleukin-1 receptor-associated 

kinase 1 (IRAK-1) and IRAK-4, which it activates (Suzuki, Suzuki et al. 2002). IRAK-4 subsequently 

activates IRAK-1 (Lye, Mirtsos et al. 2004). Both IRAK-1 and IRAK-4 dissociate from the MyD88 protein 

and bind to TNF receptor-associated factor 6 (TRAF6) resulting in its ubiquitination. Ubiquitinated 

TRAF6 subsequently activates the protein transforming growth factor-b-activated kinase 1 (TAK1) 

which proceeds to phosphorylate and activate the kinases IKKβ and MAPK leading to activation of the 

NF-κB and MAPK pathways (Sato, Sanjo et al. 2005). 
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1.5.3 Monocyte recruitment and role in inflammatory response 

The recruitment of monocytes to sites of infection from the circulation can be divided into three 

stages: rolling, adhesion and transmigration. Typically, the first leukocytes to reach sites of infection 

and tissue damage are neutrophils; upon reaching the site they proceed to phagocytose invading 

pathogens and secrete pro-inflammatory cytokines and chemokines which in turn stimulates the 

adjacent endothelium to express adhesion molecules on their luminal surface and attract monocytes 

to the site of infection(Wantha, Alard et al. 2013). The inflamed endothelium displays increased 

luminal surface expression of the adhesion molecules P-selectin, E-selectin and L-selectin (Kansas 

1996). The first stage of monocyte transmigration, rolling, occurs when circulating monocytes 

Figure 1.5.1: MyD88 dependent and independent TLR4 signalling pathways 

Adapted from Lu, Yeh et al. (2008). Figure displays canonical MYD88 independent and dependent 

TLR4 signalling pathways. 
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approach the inflamed endothelium, upon which they bind to the endothelial expressed selectins via 

P-selectin glycoprotein ligand 1 (PSGL-1) (McEver and Cummings 1997). These interactions allow the 

monocytes to adhere to the inflamed endothelium.  

The inflamed endothelium also expresses integrins which are involved in slowing the rolling speed of 

the monocytes, allowing stronger adherence to the endothelium. The monocyte expressed integrin 

CD18 is integral to the rolling process, forming complexes with CD11a to form lymphocyte function 

associated antigen 1 (LFA1) and CD11b to form macrophage receptor 1 (MAC1) (Dunne, Ballantyne et 

al. 2002, Salas, Shimaoka et al. 2004). These both interact with endothelial expressed intercellular 

adhesion molecule 1 (ICAM-1) (Lo, Lee et al. 1991, Chesnutt, Smith et al. 2006). The binding of these 

integrins stops the monocytes rolling and provides a firm adherence to the endothelium allowing 

transmigration to the site of inflammation. The cells can pass through the endothelium via two 

routes, either the paracellular or transcellular route. The paracellular route involves cells passing 

through the inter-endothelial junctions and the transcellular route which involves the monocytes 

passing through the endothelial cells (Feng, Nagy et al. 1998). 

Upon recruitment to the site of inflammation the monocytes begin to phagocytose invading 

pathogens or apoptotic cells, engulfing them into phagosomes. Vesicles called lysosomes contain 

antimicrobial enzymes and have NADPH oxidase localised within their membranes, a protein capable 

of producing reactive oxygen species (ROS). These lysosomes migrate to the phagosome, fuse with it, 

and in the process secrete into the phagosome the antimicrobial enzymes and ROS. The result of this 

is the digestion of the engulfed pathogen. This allows the monocyte to display digested antigen on 

cell surface major histocompatibility complex class II (MHC-II) receptors.  The antigen presenting 

monocytes can pass into the lymphatic system, reaching lymph nodes where they can present the 

antigen engaging the adaptive immune response. During the process of phagocytosis, monocytes and 

resident macrophages secret pro-inflammatory cytokines and chemokines such as TNFα and 

monocyte chemoattractant protein-1 (MCP-1) and MCP-3 which propagate the inflammatory 

response and recruit additional cells of the immune system.  

Monocytes are one of the cell populations most responsible for propagating the inflammatory 

response in addition to playing a role in its resolution through the clearance of apoptotic cells. Upon 

apoptosis phosphatidylserine (PS) is externalised to the outer plasma membrane where it is 

recognised and bound by monocyte and macrophage CD14; this interaction allows the recognition 

and clearance of apoptotic cells (Devitt, Pierce et al. 2003). Co-culture of apoptotic lymphocytes and 

neutrophils with LPS stimulated monocytes inhibits the secretion of the pro-inflammatory cytokine 
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TNFα and stimulates the secretion of the anti-inflammatory cytokines interleukin 10 (IL-10) and 

transforming growth factor β1 (TGF-β1) (Voll, Herrmann et al. 1997). 

 

1.5.4 The effects of obesity and diabetes on monocyte function 

 

The hyperlipidaemic and hyperglycaemic environments found as a result of obesity and type 2 

diabetes have been observed to lead to aberrant monocyte and macrophage function, contributing 

to the development of these metabolic conditions and their complications. Elevated free fatty acids 

(Gordon 1960, Reaven, Hollenbeck et al. 1988) and oxidised LDL (Njajou, Kanaya et al. 2009, Kelly, 

Jacobs et al. 2010) present during obesity and type 2 diabetes contribute to the development of 

complications such as atherosclerosis through immuno-modulation of monocytes and macrophages. 

Oxidised LDL and free fatty acids have been observed to be recognised and internalised by 

monocytes and macrophages via recognition and interaction with a variety of scavenger receptors 

including CD36 and Macrophage Scavenger receptor 1 (MSR1). Both CD36 and MSR1 have been 

found to be the primary mediators of oxidised LDL and free fatty acid uptake and internalisation 

within monocytes and macrophages (Endemann, Stanton et al. 1993, Baillie, Coburn et al. 1996, 

Kunjathoor, Febbraio et al. 2002). The contribution of CD36 to lipid uptake, foam cell formation and 

plaque formation has been established in a number of CD36 knockout studies (Febbraio, Podrez et al. 

2000, Zhao, de Beer et al. 2005, Kuchibhotla, Vanegas et al. 2008). The MRS1 receptor has also been 

observed to contribute to the internalisation of both oxidised and acetylated LDL contributing to 

atherosclerotic plaque formation (Suzuki, Kurihara et al. 1997, Babaev, Gleaves et al. 2000). 

Exposure of primary human monocytes to oxidised LDL has recently been observed to result in 

epigenetic reprogramming to induce long term changes in the expression of proatherogenic genes 

(Bekkering, Quintin et al. 2014). The authors treated primary human monocytes with oxidised LDL for 

24 hours followed by a six day washout period. The treated monocytes were shown to have 

increased histone H3K4 trimethylation (a marker of active transcription) in specific promoter regions 

resulting in increased expression of a number of proatherogenic genes including TNFα, IL-6, IL-8, 

MCP-1, MMP2, MMP9, CD36 and MSR1 (Bekkering, Quintin et al. 2014).    

 

Oxidised LDL has been observed to be an activator of PPARγ mediated gene expression  (Nagy, 

Tontonoz et al. 1998) which has been shown in turn to promote the differentiation of monocytes to 

macrophages (Tontonoz, Nagy et al. 1998). This increase in PPARγ activation has also been observed 

to upregulate the expression of cell surface CD36 which in turn increases uptake of oxidised LDL 

(Han, Hajjar et al. 1997, Feng, Han et al. 2000). Increased expression of CD36 has itself been shown to 



37 
 

induce inflammation through the formation of a TLR4-TLR6 heterodimer through which lipids are 

proposed to cause an inflammatory response leading to increased secretion of inflammatory 

cytokines (Stewart, Stuart et al. 2010). The culmination of this process is the continued recruitment 

of additional monocytes to the inflamed endothelium, differentiation of these cells into macrophages 

and foam cells and the formation of an atherosclerotic plaque. 

 

The increased availability of glucose during diabetes has also been shown to have an immuno-

modulatory effect on monocytes, increasing pro-inflammatory cytokine secretion and monocyte 

recruitment to the endothelium and adipose tissue. Primary monocytes isolated from individuals 

with either type 1 or type 2 diabetes had higher expression of TNFα, IL-6, IL-1α and IL-8 mRNA 

compared to control participants (Giulietti, van Etten et al. 2007). This has also been observed in 

vitro after treatment of THP-1 monocytes with high concentrations of glucose over a 72 hour period 

(Shanmugam, Reddy et al. 2003). The authors observed increased mRNA expression of a number of 

inflammatory cytokines and chemokines including TNFα IL-1β and MCP-1. The increased secretion of 

inflammatory cytokines has been found to disrupt insulin signalling pathways through increased 

activation of the JNK1 and IKKB kinases which phosphorylate IRS1 leading to its inhibition 

attenuating, insulin signalling pathways (Kanety, Feinstein et al. 1995, Yuan, Konstantopoulos et al. 

2001, Gao, Zhang et al. 2004). Mouse models lacking the IKKB protein were protected from high fat 

diet and age induced insulin resistance (Arkan, Hevener et al. 2005). The importance of inflammatory 

cytokines, particularly TNFα, in the development of insulin resistance has been highlighted in a 

number of studies. Rodent models of obesity including mice and Zucker rats either genetically lacking 

the gene for TNFα or treated with infliximab, an anti-TNFα antibody, show increased insulin 

sensitivity in response to obesity (Cheung, Ree et al. 1998, Cheung, Wang et al. 2000, Qin, Qiu et al. 

2007). Patients suffering from chronic inflammatory conditions such as rheumatoid arthritis and 

psoriasis, both of which are associated with insulin resistance, displayed improved insulin sensitivity 

upon treatment with anti-TNFα antibodies  (Gonzalez-Gay, De Matias et al. 2006, Pina, Armesto et al. 

2015). Treatment of the THP-1 monocytic cell line and primary monocytes with high concentrations 

of glucose over a 72 hour period has been shown to increase cell surface expression of TLR2 and 

TLR4 as well as NF-κB signalling (Dasu, Devaraj et al. 2008). The same research group also noted this 

effect was increased when the cells were co-incubated with increased concentrations of glucose and 

the fatty acid palmitate (Dasu and Jialal 2011). Increased expression of TLR2 and TLR4 has been 

observed to contribute to and be associated with increased insulin resistance in a variety of cell types 

(Song, Kim et al. 2006, Caricilli, Nascimento et al. 2008). Under hyperglycaemic conditions monocyte 

adhesion and transmigration through a number of cell types (Meng, Park et al. 2010, Nandy, 
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Janardhanan et al. 2011) has been observed to increase due to increased endothelial expression of 

the adhesion molecules ICAM-1 and vascular cell adhesion molecule (VCAM-1) (Manduteanu, Voinea 

et al. 1999). Increased recruitment of monocytes to the endothelium is a significant contributing 

factor to the development of atherosclerosis. Several studies have observed increased monocyte 

recruitment to the adipose tissue occurring during obesity and diabetes (Lumeng, Deyoung et al. 

2007, Oh, Morinaga et al. 2012). A recent study introduced hyperglycaemic conditions in human 

participants over a three hour period via a hyperglycaemic clamp which resulted in increased 

recruitment of monocytes to the subcutaneous abdominal adipose tissue (Tencerova, Kracmerova et 

al. 2015). The increased recruitment of monocytes and differentiated macrophages to the adipose 

tissue has been observed to reduce insulin sensitivity and glucose uptake in adipocytes through 

inflammatory cytokine mediated suppression of IRS-1 and GLUT4 (Lumeng, Deyoung et al. 2007). The 

authors observed that decreased IRS-1 expression resulted in decreased Atk phosphorylation leading 

to reduced insulin induced GLUT4 translocation to the membrane (Lumeng, Deyoung et al. 2007). 

This results in disruption of insulin signalling and impairment of glucose uptake. 

 

1.6 Epigenetic modifications and micro RNAs 

The meaning of Epigenetics has undergone many changes since the term was coined by Waddington 

(1942). Originally Waddington used the term to explain differentiation of cells from a totipotent state 

to a defined one. The definition of epigenetics has since undergone several iterations, being defined 

as: 

 "…the study of mitotically and/or meiotically heritable changes in gene function that cannot be 

explained by changes in DNA sequence” by Arther Riggs (Bird 2007) or as "stably heritable phenotype 

resulting from changes in a chromosome without alterations in the DNA sequence" (Berger, 

Kouzarides et al. 2009).  

These definitions stipulate that the epigenetic changes must be heritable and stable, which would 

exclude several modifications currently classed as changes to the epigenome such as histone 

modifications. Other definitions take this into account; Adrian Bird (2007) defined epigenetics as: 

 "…the structural adaptation of chromosomal regions so as to register, signal or perpetuate altered 

activity states."  

and the definition given by the NIH "Roadmap Epigenomics Project," which described epigenetics as: 
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 "…epigenetics refers to both heritable changes in gene activity and expression (in the progeny of cells 

or of individuals) and also stable, long-term alterations in the transcriptional potential of a cell that 

are not necessarily heritable." 

The latter definitions consider epigenetics to be modifications which result in altered cellular gene 

expression independent of gene sequence, which may or may not be heritable.  Considering the 

broader definitions of epigenetics, many types of modifications can fall under this classification. 

Epigenetic modifications generally fall under three broad groups: DNA methylation, Histone 

modifications and microRNAs. 

 

1.6.1 DNA methylation 

The DNA of higher organisms, especially of vertebrates, is subject to the addition of methyl groups by 

DNA methyltransferases (DnMT) to the 5’ carbon of cytosine residues existing as part of cytosine-

phosphate-guanine (CpG) di-nucleotides. DNA methylation is essential in development, playing a 

fundamental role in developmental processes such as X-chromosome inactivation and genomic 

imprinting (Ideraabdullah, Vigneau et al. 2008, Panning 2008). Addition of methyl groups is primarily 

carried out by proteins belonging to the DnMT family, and can be described as “maintenance” 

methylation or “de novo” methylation. Maintenance methylation is the process by which existing 

methylation is copied onto newly replicated DNA and is performed by the DnMT1 methyltransferase. 

De novo methylation is performed by the methyltransferases DnMT3a and DnMT3b and is the 

addition of methyl groups to previously unmodified DNA. Regions of the genome containing a high 

concentration of CpG residues called CpG islands exist in the promoter regions of approximately 70% 

of genes; these regions are inherently unmethylated, although can be methylated altering gene 

expression (Illingworth and Bird 2009). How DNA methylation alters gene expression is still the focus 

of ongoing research. Current belief is that proteins capable of binding to methylated cytosine, such 

as the protein MeCP1, bind to the methylated CpG islands and in doing so either block the promoter 

region from being bound to by polymerases, preventing gene transcription, or form a complex with 

proteins that have histone deacetylase activity altering the chromatin conformation, restricting gene 

expression (Nan, Campoy et al. 1997). Methylation of cytosine nucleotides was believed to increase 

the chance of spontaneous deamination occurring converting the cytosine to a thymine nucleotide 

(Bird 1980). This is believed to explain the discrepancy between the observed and expected 

frequency of CpG nucleotides within the genome (Salser 1978, Bird 1980). Although it is now 

believed that the process of deamination of 5-methylcytosine to thymine is mediated by the 

deaminase enzymes (activation-induced cytidine deaminase) AID (Morgan, Dean et al. 2004) and 
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(apolipoprotein B mRNA editing enzyme, catalytic polypeptide) APOBEC (Guo, Su et al. 2011, 

Wijesinghe and Bhagwat 2012) and plays a role in the removal of methylation modifications to 

restore gene expression. Deamination of 5-methylcytosine to thymine produces a T-G mismatch 

which results in DNA repair proteins removing and replacing the segment of DNA (Rai, Huggins et al. 

2008). 

 

 

1.6.2 Histone modifications 

Nucleosomes, the functional units of chromatin, are formed from genomic DNA wrapped around 

histone core protein complexes. The core histone protein complexes are octomers made up of pairs 

of proteins belonging to four distinct histone protein families: H2A, H2B, H3 and H4. Each of the 

histone proteins has a pair of N-Terminal tails which act as the primary site for histone post 

translational modifications. The structuring of genomic DNA in this way is advantageous for a 

number of reasons: the core histone protein complexes provide structural support, facilitating DNA 

replication; wrapping the genomic DNA around the histone protein complexes compacts the DNA 

allowing it to fit within the cell nucleus and the histone protein complexes being modifiable also 

provides an additional level of gene regulation. 

There are several distinct types of histone modifications which have been shown to alter chromatin 

confirmation and gene expression which include methylation, acetylation, phosphorylation, 

ubiquitination, SUMOylation, citrullination and ADP- Ribosylation.  

 

1.6.2.1 Histone acetylation  

Histone acetylation is the addition of acetyl groups to lysine residues located within the histone 

proteins N-terminal tails, a process which has been shown to regulate gene expression. The acetyl 

groups are covalently bonded to the histone proteins by histone acetyltransferase (HAT) proteins 

which utilise acetyl-coenzyme A as a source of acetyl groups. The antagonistic process deacetylation 

is performed by histone deacetylase (HDAC) proteins which remove the acetyl groups which are 

subsequently transferred to coenzyme A. Histone acetylation is thus a dynamic and reversible 

process with acetyl addition mediated by HAT enzymes, and acetyl removal by HDAC enzymes 

allowing the cell to alter gene expression to changing conditions. Histone acetylation is generally 

considered to result in gene activation and deacetylation to result in gene silencing.  
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The mechanism by which histone acetylation results in altered gene expression has not yet been fully 

elucidated although there have been several suggestions as to how this occurs. One of the more 

basic proposed mechanisms is that acetylation alters the interaction between the DNA and the 

histone proteins. Acetylation neutralises the lysine residues positive charge, weakening the 

interaction between these positively charged residues and the negatively charged phosphate 

backbone of the DNA (Zentner and Henikoff 2013). This relaxes the tight chromatin structure 

exposing the gene promoter to RNA polymerases allowing gene transcription and aiding in 

elongation.  It has also been suggested that proteins containing bromo-domains, a domain with 

acetyl-lysine recognition and binding ability binds to the acetylated residues and subsequently 

recruits additional chromatin remodelling proteins (Chen, Ghazawi et al. 2010).   

 

1.6.2.2 Histone deacetylase enzymes and the regulation of histone and protein acetylation  

Histone deacetylase (HDAC) enzymes like HAT enzymes are also believed to be highly conserved 

between mammals and yeast.  At the time of writing, at least 18 HDAC enzymes have been 

discovered and separated into four distinct classes based on their homology to yeast HDAC proteins. 

HDACS belonging to class I, II (a and b) and IV are all closely related and have zinc dependant catalytic 

sites, whereas class III HDACs do not. Class III HDACs contain the sirtuin family of deacetylase 

proteins which are nicotinamide adenine dinucleotide (NAD+) dependent and share homology with 

the yeast silent information regulator 2 (Sir2) deacetylase protein (Dokmanovic, Clarke et al. 2007).  

The yeast Sir2 histone deacetylase protein was first discovered to have a role in regulating the ageing 

process by Sinclair and Guarente (1997). Overexpression of Sir2 in yeast results in an approximate 

30% increase in budding yeast cellular lifespan whereas Sir2 knockout yeast cells showed a 50% 

decrease in cellular lifespan. Yeast cells subjected to reduced glucose availability (caloric restriction) 

also experienced increased cellular lifespan via upregulation of the Sir2 protein. Calorie restriction 

has also been shown to increase lifespan in worm, fly and mice models via invertebrate and 

mammalian Sir2 homologs  (Weindruch, Walford et al. 1986, Lakowski and Hekimi 1998, Lipman, 

Smith et al. 1998, Lin, Kaeberlein et al. 2002). The mammalian homologs of yeast Sir2 belong to the 

sirtuin family of proteins which contains 7 proteins (SIRT1 – 7). SIRT1 is the most closely related of 

the sirtuins to sir2. SIRT1 is a NAD+ dependent deacetylase protein which recognises and 

deacetylases both histones and several other proteins and transcription factors (Haigis and Sinclair 

2010).  
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As SIRT1 is NAD+ dependent, intracellular NAD+ availability is a deacetylation rate limiting factor. 

NAD+ availability is believed to be increased during low nutrient availability due to increased flux 

through the NAD+ salvage pathway. The NAD+ salvage pathway consists of the proteins nicotinamide 

phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase 

(NMNAT). NAMPT converts nicotinamide (NAM), the product of NAD+ dependent deacetylation, to 

nicotinamide mononucleotide (NMN) which is subsequently converted to NAD+ by NMNAT. Thus 

SIRT1 deacetylase activity is limited by cellular NAD+ availability and the activity of the enzymes 

involved in the NAD+ salvage pathway; NAD+ availability providing a link between metabolism and 

histone, protein deacetylation. In contrast with this, increased glycolysis due to increased nutrient 

availability is believed to result in increased pyruvate and subsequently increased intracellular acetyl-

CoA, a substrate necessary for acetylation, thus increased nutrient availability results in increased 

acetyl-CoA substrate for histone acetylation increasing acetylation frequency (Haigis and Sinclair 

2010). 

SIRT1 has many targets (figure 1.6.1) which it recognises and deacetylates such as histone proteins as 

well as several other proteins and transcription factors. SIRT1 deacetylases the histone proteins H3 

and H4 at lysine residues K9 and K16 respectively as well as several proteins and transcription factors 

including: the peroxisome proliferator gamma co-activator 1 alpha (PGC-1α) (Rodgers, Lerin et al. 

2005); the NF-κB subunit P65 (Yeung, Hoberg et al. 2004); the FOXO proteins FOXO1 and FOXO3 

(Brunet, Sweeney et al. 2004), P53 (Vaziri, Dessain et al. 2001); protein tyrosine phosphatase 1B 

(PTP1B) (Sun, Zhang et al. 2007) and the insulin receptor substrate IRS2 (Zhang 2007). PGC-1a is a 

transcription co-activator that interacts with several different transcription factors increasing glucose 

and fatty acid metabolism and mitochondrial biogenesis. SIRT1 deacetylates PGC-1a at specific lysine 

residues increasing PGC-1a activity. PGC-1a activation causes increased gluconeogenesis and 

glycolysis in liver cells as well as increased fat mobilisation in white adipose tissue. SIRT1 has also 

been identified as a suppressor of inflammation in several tissue types by inhibiting the NF-κB 

pathway. Upon activation the NF-κB complex translocates to the cell nucleus where it is acetylated 

by the protein acetyltransferase p300 and activated causing transcription of several genes 

responsible for the inflammatory response such as cytokine secretion. SIRT1 deacetylates and binds 

to the P65 subunit of the NF-κB complex preventing acetylation and activation (Yeung, Hoberg et al. 

2004). SIRT1 deacetylates and inhibits the PTP1B enzyme, a negative regulator of the insulin 

signalling pathway, thereby increasing insulin sensitivity (Sun, Zhang et al. 2007). 

SIRT1 has also been observed to inhibit mammalian target of rapamycin (mTOR) signalling through 

interacting with its upstream regulators. The mTOR protein is a serine/threonine kinase shown to 
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respond to intracellular nutrient availability regulating protein synthesis, adipogenesis, autophagy 

and senescence (Laplante and Sabatini 2012). It has been demonstrated to become dysregulated in 

obesity increasing adiposgenesis (Gagnon, Lau et al. 2001, Zhang, Huang et al. 2009) and plays a role 

in cellular ageing and senescence. Mice treated with the mTOR inhibitor, rapamycin have been 

observed to have increased longevity (Harrison, Strong et al. 2009) and remain lean when fed a high 

fat diet (Polak, Cybulski et al. 2008). SIRT1 deacetylates the upstream activator of mTOR signalling 

liver kinase B1 (LKB1) which promotes its ubiquitination and subsequent degradation (Zu, Liu et al. 

2010). SIRT1 has also been shown to interact with TSC2 component of the TSC1-TSC2 mTOR inhibitor 

complex promoting its inhibition of the mTOR activator the GTPase Rheb resulting in mTOR signalling 

inhibition (Ghosh, McBurney et al. 2010).  

By acting in response to cellular nutrient availability and subsequently altering biological processes 

such as inflammatory response, fatty acid and glucose metabolism, mitochondrial biogenesis, DNA 

repair pathways and cellular ageing, SIRT1 may form a potential link between metabolism, 

inflammation and cell ageing. 
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Figure 1.6.1: Sirtuin 1 Interactions and Functions, 

Adapted from Bao and Sack (2010). Figure displays a summary of the known targets of SIRT1 deacetylase activity in a 

variety of different tissue types and the resulting consequence of SIRT1 mediated protein deacetylation. 

 

1.6.3 MicroRNAs  

MicroRNAs are small non-coding single stranded RNA molecules between 18 to 23 nucleotides in size 

that were first discovered in Caenorhabditis elegans  by Lee, Feinbaum et al. (1993). Since their 

discovery, miRNAs have been the focus of much scrutiny due to their ability to regulate post 

translational gene expression through binding to messenger RNAs leading to their degradation or by 

inhibiting their translation. Their binding to mRNA does not require perfect complementarity, which 

potentially allows a single miRNA to target multiple mRNAs (Lim, Lau et al. 2005).  

 

1.6.3.1 MicroRNA biogenesis  

The biogenesis of microRNAs is a complex process, with the initial miRNA called the primary miRNA 

(pri-miRNA) going through several stages before becoming functional mature miRNA (figure 1.6.2). 

The process of miRNA biogenesis begins in the nucleus with transcription by either RNA polymerase 

II (Pol II) or RNA polymerase III (Pol III) to produce the pri-miRNA transcript. Although miRNAs can be 
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transcribed by both RNA Pol II and Pol III, the majority are transcribed by RNA Pol II receiving 5’ 

methylated caps and 3’ polyadenylated tails (Lee, Kim et al. 2004, Borchert, Lanier et al. 2006). Pri-

miRNA transcripts consist of a hairpin stem, a terminal loop and two single stranded flanking regions 

upstream and downstream of the hairpin. The pri-miRNA transcripts are cleaved within the nucleus 

by a protein complex consisting of the proteins Drosha and DiGeorge critical region 8 (DGCR8) 

together termed the Microprocessor complex (Lee, Ahn et al. 2003, Han, Lee et al. 2004, Landthaler, 

Yalcin et al. 2004). The double-stranded stem and the unpaired flanking regions of the pri-miRNA are 

essential for DGCR8 binding and Drosha RNase cleavage. The microprocessor complex cleaves the 

pri-miRNA approximately 11 nucleotides from the hairpin base, removing the flanking single 

stranded regions leaving a 2 nucleotide overhang at the hairpin stems 3’ end (Lee, Ahn et al. 2003, 

Han, Lee et al. 2004). The resulting hairpin stem transcript is now termed precursor miRNA (pre-

miRNA) and is exported from the nucleus to the cytoplasm by a complex of Exportin-5 and Ran-GTP 

(Yi, Qin et al. 2003). Exportin-5 binds preferentially to pre-miRNA transcripts with a double stranded 

stem region within a defined length and the presence of the 3’ two nucleotide overhang; in this way 

Exportin-5 only transports pre-miRNA transcripts which have undergone correct cleavage by the 

microprocessor complex (Zeng and Cullen 2004, Lund and Dahlberg 2006). The exported pre-miRNA 

undergoes further cleavage in the cytoplasm by the RNase III enzyme Dicer. The Dicer protein is 

characterised as having a helicase, a PAZ dsRNA binding and two RNase III domains. The PAZ dsRNA 

binding domain has been shown to bind to the pre-miRNA 3’ two nucleotide overhang (Ma, Ye et al. 

2004). The Dicer protein forms a complex with the protein TAR RNA-binding protein (TRBP) which 

aids in stabilising Dicer’s binding to the pre-miRNA transcripts (Koscianska, Starega-Roslan et al. 

2011). The Dicer RNase cleaves the pre-miRNA transcript removing the terminal loop leaving a 

miRNA duplex of approximately 22 nucleotides in length; cleavage leaves a two nucleotide overhang 

at both 3’ ends of the miRNA duplex. The Dicer-TRBP complex dissociates from the miRNA duplex 

which is then bound by a complex of proteins called the RNA-induced silencing complex (RISC) which 

consists of Dicer, TRBP and Argonaute (AGO) (Rana 2007). When bound to the RISC complex the 

miRNA duplex is unwound by a helicase and the guide strand. The strand of the miRNA duplex with 

gene inhibitory activity is bound to the RISC complex whilst the other strand of the duplex, the 

passenger strand, is degraded. The RISC complex bound guide strand allows the RISC complex to 

recognise its target mRNA whereby the AGO protein can cleave the mRNA strand or engage cofactor 

proteins to stimulate mRNA transcript de-adenylation to encourage mRNA degradation (Meister, 

Landthaler et al. 2004, Pillai, Artus et al. 2004). 

Micro RNAs are proposed to direct the RISC complex to its target mRNAs via complementarity 

binding between its “seed sequence”, the sequence between the 2nd and 8th nucleotides of the 5’ 
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extremity and regions of the target mRNA (Lewis, Burge et al. 2005). The miRNAs bind via this seed 

sequence to target mRNAs at either 3’ untranslated regions (UTR), 5’UTR sequences or coding 

regions (Lim, Lau et al. 2005, Lytle, Yario et al. 2007, Fang and Rajewsky 2011). Micro RNA mediated 

translational repression has been shown to occur via a variety of mechanisms. These include the 

promotion of mRNA degradation via induction of mRNA 3’ deadenylation and 5’ decapping or by 

interference with mRNA transcription (Mathonnet, Fabian et al. 2007, Boutet, Cheung et al. 2012). 

MicroRNAs interfere with mRNA transcription by causing ribosomal dissociation and by causing 

premature termination of mRNA transcription (Chendrimada, Finn et al. 2007, Fabian, Sonenberg et 

al. 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6.3.2 MicroRNAs in immune function, inflammation and metabolic disease 

Dysregulation of miRNA expression has been shown to result from a number of diseases as well as 

being causal for their pathogenesis. The first observed example of miRNA dysregulation resulting in a 

disease was the dysregulation of miR-15 and miR-16 which resulted in development of chronic 

Figure 1.6.2: MicroRNA biogenesis 

Adapted from Winter, Jung et al. (2009). This figure displays the canonical mechanism of mature miRNA biogenesis. 

This includes the transcription of the primary (pri-) miRNA by either RNA polymerase II or III. The cleavage of the 

transcribed pri-miRNA to pre-miRNA by the microprocessor Drosha-DGCR8 complex. The cleaved pre-miRNA is 

exported from the nucleus to the cytoplasm via the Exportin-5-Ran-GTP transporter. The exported pre-miRNA is further 

cleaved by the Dicer-TRBP complex to remove the stem loop leaving the double stranded miRNA duplex. The functional 

strand of the miRNA duplex interacts with the Ago2 protein to form the RNA-induced silencing complex (RISC). The 

functional strand directs the RISC complex to its target mRNA resulting in its translational silencing. 
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lymphocytic leukaemia (Calin, Dumitru et al. 2002). Since this discovery miRNAs have been shown to 

have a role in a number of diseases including many types of cancers, where the majority of research 

has focused, heart disease and obesity as well as a role in the inflammatory response. Many specific 

miRNAs have been identified to regulate the function and differentiation of cells belonging to both 

the adaptive and innate immune systems. B-cell proliferation and survival has been shown to be 

promoted by increased expression of the miR-17-92 cluster (Xiao, Srinivasan et al. 2008) whereas 

expression of miR-150 has been observed to impair B-cell differentiation and responses (Zhou, Wang 

et al. 2007). The miRNA, miR-181a is required for T-cell development of tolerance whereby inhibition 

of miR-181a expression results in decreased sensitivity of the T-cell receptor (Li, Chau et al. 2007). 

Several miRNAs have been identified as playing a regulatory role in the inflammatory response of 

cells belonging to the innate immune system, specifically monocytes and macrophages. Target 

prediction analysis of 613 genes involved in regulation of innate immunity found that potentially 285 

genes were under direct regulation of miRNAs (Asirvatham, Gregorie et al. 2008). Screening of 

miRNA expression in cells belonging to the THP-1 monocytic cell line treated with the TLR4 ligand LPS 

identified increased expression of three miRNAs, miR-146a, miR-155 and miR-132 (Taganov, Boldin et 

al. 2006). The miRNA 146a has been found to directly interact with the mRNA of TRAF6 and IRAK1, 

two key molecules belonging to the TLR4 signalling pathway (Gao, Wang et al. 2015, Lu, Cao et al. 

2015). It is believed that miR-146a expression results in a negative feedback response, limiting TLR4 

signalling and inflammatory response. Dysregulation of miR-146a expression has been shown to 

contribute to a number of diseases including T2DM (Balasubramanyam, Aravind et al. 2011) 

(Baldeon, Weigelt et al. 2014) and chronic obstructive pulmonary disease (COPD) (Sato, Liu et al. 

2010). Fibroblast samples taken from patients with COPD were shown to have reduced expression of 

miR-146a compared to healthy controls, this was shown to contribute to the inflammatory nature of 

COPD by increasing production of prostaglandin E2. The authors were also able to directly correlate 

reduced expression of miR-146a to increased severity of the COPD (Sato, Liu et al. 2010). A number 

of inflammatory conditions have also been associated with increased expression of miR-146a 

including psoriasis(Sonkoly, Wei et al. 2007), diabetic nephropathy (Alipour, Khamaneh et al. 2013) 

and rheumatoid arthritis (Pauley, Satoh et al. 2008). However it is not known whether this increase in 

expression is contributing to these disease states or is a protective measure in an attempt to limit the 

inflammatory response.   

Dysregulation of several miRNAs have been observed to contribute to the development of metabolic 

diseases such as obesity and T2DM. As previously stated, miR-146a expression has been observed to 

be dysregulated in type two diabetes (Balasubramanyam, Aravind et al. 2011). The authors observed 
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that PBMCs taken from participants with T2DM expressed significantly lower levels of miR-146a 

compared to healthy controls. The authors were also able to negatively correlate miR-146a 

expression with insulin resistance, glycated haemoglobin, TRAF6 and NFΚB mRNA expression and 

circulating levels of TNFα and IL-6 cytokines (Balasubramanyam, Aravind et al. 2011). Patients with 

type two diabetes were observed to overexpress the miRNA miR-199a compared to healthy controls 

(Yan, Li et al. 2014). The microRNA miR-199a was shown to target GLUT4 mRNA reducing GLUT4 

expression; the authors suggested this may contribute to the development of type two diabetes(Yan, 

Li et al. 2014). Obese individuals were observed to have decreased expression of miR-26a compared 

to lean controls(Fu, Dong et al. 2015). The authors also showed that obese mice models developed 

decreased insulin sensitivity which was restored in response to miR-26a restoring insulin sensitivity. 

A large amount of evidence currently exists for the role of these miRNAs, along with several others, 

in the regulation of immune cell development and function, inflammatory response and in the 

development of metabolic diseases and their associated complications making miRNAs viable targets 

for intervention of, or as biomarkers of diseases. 

Dysregulation of several miRNAs have been observed to contribute to the development of metabolic 

diseases such as obesity and T2DM. The miR-146a-5p expression is dysregulated in type two 

diabetes, (T2DM) (Balasubramanyam, Aravind et al. 2011). These authors observed that PBMCs taken 

from participants with T2DM expressed significantly lower levels of miR-146a-5p compared to 

healthy controls. The authors also found a negative correlation between miR-146a-5p expression 

with insulin resistance, glycated haemoglobin, TRAF6 and NF-κB mRNA expression and circulating 

levels of TNFα and IL-6 cytokines (Balasubramanyam, Aravind et al. 2011). The miR-146a-5p has been 

shown to directly interact with the mRNA of TRAF6 and IRAK1, two key molecules belonging to the 

TLR4 signalling pathway (Gao, Wang et al. 2015, Lu, Cao et al. 2015). It is believed that miR-146a-5p 

expression results in a negative feedback response, limiting TLR4 signalling and inflammatory 

response. Dysregulation of miR-146a-5p expression has been shown to contribute to a number of 

diseases including T2DM (Balasubramanyam, Aravind et al. 2011, Baldeon, Weigelt et al. 2014) and 

chronic obstructive pulmonary disease (COPD) (Sato, Liu et al. 2010). 
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1.7 Research aims  

The overarching aim of the work presented in this thesis was to assess the effects of increased 

nutritional availability present in obesity and diabetes on monocyte inflammatory response.   The 

specific aims of each chapter are as follows: 

1.7.1 Chapter three: 

Currently only a small number of studies have assessed microRNA dysregulation occurring as a result 

of obesity and type 2 diabetes (Baldeon, Weigelt et al. 2015, Li, Zhou et al. 2015). Between these few 

studies a number of dissimilarities in the results exist highlighting the need for more research in this 

area. In addition to this only a few studies have assessed the effect of bariatric surgery on obesity 

induced microRNA dysregulation. As of writing the current literature has assessed changes in miRNA 

content in serum of obese human and mice models pre- and post- bariatric surgery, however the 

literature is yet to assess the effects of weight reduction surgery on miRNA expression within primary 

human monocytes (Lirun, Sewe et al. 2015, Wu, Li et al. 2015). Monocytes play a key role in the 

chronic inflammation present during obesity which leads to the development and propagation of a 

number of related co-morbidities such as atherosclerosis. For this reason, assessing the impact of 

bariatric surgery on monocyte miRNA expression is of a high importance due to a potential role of 

miRNA dysregulation as a contributor to the chronic inflammation present in obesity. 

1.7.1.1 Chapter three aims: 

i. To assess the effects of obesity and type 2 diabetes on the expression of microRNAs relevant to 

monocyte function. 

ii. To identify how changes in microRNA expression may relate to inflammatory response, disease 

progression and the development of co-morbidities. 

iii. To assess the effectiveness of bariatric surgery as a weight loss measure to reverse obesity and 

diabetes induced changes in microRNA expression towards healthy control values. 

1.7.2 Chapters four and five: 

Although a great deal is known about the adverse effects of chronic exposure to high concentrations 

of glucose much less is known about the effects of elevated glucose over acute time periods. 

Exposure to high concentrations of D-glucose over acute time periods is of relevance to pre-diabetes 

whereby due to decreased insulin sensitivity and glucose tolerance much larger shifts in post-

prandial glucose concentration can occur over shorter time periods. Increased glucose availability has 

been reported to activate the polyol pathway in a variety of tissues including in monocytes. 

Activation of this pathway results in the conversion of glucose to sorbitol and subsequently fructose, 
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this process depletes intracellular NAD+, reducing its availability for other intracellular processes. 

Sirtuin 1, an NAD+ dependent protein deacetylase and homolog of the yeast sir2 protein, has been 

observed to regulate a number of intracellular processes. Increasing deacetylase activity of SIRT1 has 

been shown to reduce inflammatory response through the deacetylation of the P65 subunit of the 

NF-κB complex. Increased glucose availability may result in increased NAD+ reduction to NADH 

reducing its availability for SIRT1. This may lead to increased acetylation of the P65 subunit of the NF-

κB complex resulting in increased NF-κB mediated gene transcription and an increased inflammatory 

response. Decreased intracellular NAD+ availability and SIRT1 deacetylase activity may provide a link 

between increased glucose availability and Inflammatory response in monocytes. 

1.7.2.1 Chapters four and five, aims: 

i. To assess whether acute increases in glucose availability would result in increased monocyte 

inflammatory response either independently in response to glucose, or in response to an 

inflammatory stimulus such as LPS. 

ii. To assess whether the increased concentrations of glucose would disrupt the balance of 

intracellular NAD+: NADH resulting in altered SIRT1 deacetylase activity, and whether this 

could provide a link between increased glucose availability and the increased inflammation 

observed in hyperglycaemia. 

iii. To assess whether the leukemic THP-1 monocytic cell line responds differently to treatment 

with high concentrations of glucose then primary human monocytes.  
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2 Materials and methods 

 

2.1 Cell culture 

 

2.1.1 Cell Culture materials and reagents 

The THP-1 human monocytic cell line was obtained from the European Collection of Authenticated 

Cell Cultures (ECACC) part of the Public Health England culture collections. The THP-1 cell line was 

cultured in Roswell Park Memorial Institute medium (RPMI 1640) supplemented with 10%v/v foetal 

calf serum and 1% v/v Penicillin (100 µg/ml)/ (100 µg/ml) streptomycin solution.    

 

2.1.2 Cell line background 

The human monocytic THP-1 cell line is derived from the peripheral blood of a 1 year old male with 

acute monocytic leukaemia. Since its establishment the cell line has become well characterised. THP-

1 monocytes express both Fc and C3b receptors but lack surface and cytoplasmic immunoglobulins, 

they stain positive for alpha-napthhyl butyrate esterase and are phagocytic against both latex and 

sensitised erythrocytes. THP-1 cells can also be differentiated into macrophages by incubation with 

either vitamin D3 or PMA (Tsuchiya, Yamabe et al. 1980, Tsuchiya, Kobayashi et al. 1982, Schwende, 

Fitzke et al. 1996). Undifferentiated THP-1 monocytes have been observed to express cell surface 

CD14 albeit at lower concentrations than primary human monocytes and have been reported to be 

CD16 negative (Fleit and Kobasiuk 1991, Antal-Szalmas, Strijp et al. 1997). Differentiation with either 

PMA or vitamin D3 has been shown to increase cell surface expression of both CD14 and CD16 (Fleit 

and Kobasiuk 1991, Antal-Szalmas, Strijp et al. 1997). 

 

 

2.1.3 Cell culture protocol 

The THP-1 monocytes were cultured in RPMI 1640 media with stable glutamine supplemented with 

foetal calf serum (FCS) up to a final concentration of 10 % v/v and penicillin (100 µg/ml)/ 

streptomycin (100 µg/ml) solution to a 1% v/v final concentration. The THP-1 monocytes were 

routinely cultured in 75cm2 flasks (Appleton woods, UK) with vented caps incubated in a humidified 

environment at 37°C with 5% carbon dioxide. The THP-1 cells were seeded at 3 x 105 cells/ml in 
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30ml’s of media and incubated until reaching 1x106 cells/ml at which point they were passaged in a 

lamina flow hood under sterile conditions. The passaging required the cells to be harvested by 

centrifuging at 500xg for 8 minutes and resuspended into fresh warm RPMI media (10% FCS, 1% 

pen/strep) prior to being counted by trypan blue staining on a Neubauer haemocytometer and 

diluted to the desired cell density. 

 

 

2.2 Trypan blue exclusion staining 

 

2.2.1 Trypan blue exclusion materials and reagents 

Trypan blue reagent and a Neubauer haemocytometer, cover slides 

 

2.2.2 Cell counting by trypan blue exclusion  

Trypan blue is a diazo dye which due to its inability to cross intact cell membranes allows selective 

staining of dead or dying cells, allowing distinction from live cells (Tennant 1964, Schanne, Kane et al. 

1979). Dead or dying cells have increased membrane permeability which allows the trypan blue to 

pass through the membrane, bind to intracellular proteins staining them blue whereby live cells 

appear clear.  

Cell suspensions were diluted at a 1:2 ratio with trypan blue and incubated for 1 minute at room 

temperature. The cells were then mixed by pipetting before loading 10µl of the cell suspension onto 

a Neubauer haemocytometer and counted. Cells on all 25 squares of the grid were counted and the 

number of cells/ml calculated using the following formula; Average of cells counted x dilution factor x 

10,000. For each sample four repeat counts were performed, from each the number of viable/dead 

and total number of cells recorded. 
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2.3 Measurement of cellular viability by MTT assay 

 

2.3.1 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay materials and 

reagents  

The assay reagent was prepared by dissolving (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide in PBS at 12mM (5mg/ml). SDS cellular lysis buffer consisted of 0.7M SDS dissolved in 50% 

v/v dimethyl formamide (DMF), the solution was adjusted to pH 4.7 with glacial acetic acid.  

 

2.3.2 MTT assay  

The MTT assay is a microplate colourimetric assay used to determine cellular viability first described 

by Mosmann (1983). The principle of the assay is that (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT), a yellow tetrazolium salt is reduced to insoluble purple 

formazan crystals. The MTT salt is reduced by oxidoreductase enzymes such as succinate 

dehydrogenase and by intracellular NADH in several cellular compartments such as the 

mitochondria, exosomes and the cytoplasm. The resulting colour change is measured to give an 

indication of cellular metabolic activity itself an indicator of cellular viability. 

 

2.3.3 MTT assay protocol 

Cell suspensions (100µl) were taken 4 hours before the treatment endpoint and transferred to a 96 

well plate. The cells were mixed with 25µl MTT solution (5mg/ml in PBS) and subsequently placed in 

a cell incubator (37°C, 5% CO2, humidified) in the dark for the remaining 4 hours of the treatment. 

The cells were subsequently lysed with 200µl SDS cell lysis buffer and incubated overnight. 

Absorbance was read at a wavelength of 570nm on a microplate reader. As a negative control, 

cellular suspensions were treated with the mitochondrial uncoupling agent carbonyl cyanide 4-

(trifluoromethoxy) phenylhydrazone (FCCP); by inhibiting mitochondrial function FCCP prevents MTT 

reduction. Cellular viability was expressed as a percentage of control cells.   
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2.4 Determination of protein concentration by BCA assay 

 

2.4.1 BCA assay materials and reagents 

The assay requires a bicinchoninic acid solution (containing, bicinchoninic acid, sodium carbonate, 

sodium tartrate and sodium bicarbonate at pH 11.25), copper(II) sulphate pentahydrate (4% w/v) 

solution and BSA (1mg/ml) protein standard solution all purchased from sigma-aldrich. 

 

2.4.2 BCA assay  

The protein content of lysed cells was determined using the bicinchoninic acid assay (BCA) (Smith, 

Krohn et al. 1985). The BCA assay relies upon the conversion of Cu2+ to Cu+ under alkaline conditions 

resulting in a purple colouration change from green which can be detected colourimetrically by 

measuring absorbance on a spectrophotometer at 570nm. The Cu2+ reduction to Cu+ has been shown 

to be dependent on the presence of protein peptide bonds as well as the amino acids cysteine, 

cystine, tryptophan, and tyrosine (Wiechelman, Braun et al. 1988). The amount of Cu2+ reduction 

although proportional to the amount of protein present is dependent on the amino acid composition 

of the protein.  

 

2.4.3 BCA assay protocol 

Prior to lysis the cells were collected by centrifugation at 500xg for 5 minutes and washed with sterile 

PBS to prevent media constituents such as FCS or high concentrations of glucose interfering with the 

BCA assay (Smith, Krohn et al. 1985). The cells were lysed as described previously in methods section 

2.7. The cell lysates were diluted at a 1:5 ratio and 10µl loaded onto a clear, flat bottomed 96 well 

plate in triplicate. Assay standards were made by diluting 1mg/ml BSA solution aliquots (Sigma, UK) 

to 1mg/ml, 0.8mg/ml, 0.6mg/ml, 0.4mg/ml, 0.2mg/ml and a BSA negative. The BCA solution was 

mixed in a 50:1 ratio with copper (II) sulphate solution and 200µl added to each standard and sample 

well. The plate was incubated at 37°C for 30 minutes prior to measurement of absorbance at 570nm 

on an absorbance microplate reader. 
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2.5 Enzyme-linked immunosorbent assays (ELISA) for the detection of TNFα and 

HMGB1 

 

2.5.1 ELISA materials and reagents 

Human TNFα and HMGB1 ELISAs were purchased from Peprotech, UK and Antibodies Online, US 

respectively, o-phenylenediamine (OPD), NUNC-Immuno Maxi Sorp 96 well plates, hydrogen 

peroxide, BSA, citrate phosphate buffer (50mM citric acid, 100mM sodium phosphate), 2N Sulphuric 

acid and Tween-20 were all purchased from Sigma-Aldrich, UK.  

 

2.5.2 ELISA background  

Both the TNFα and HMGB1 ELISAs are examples of a sandwich ELISA method. The sandwich ELISA 

method consists of coating the base of wells of 96 well microplates with a capture antibody specific 

for an analyte of interest. The plate is then incubated with a sample containing the analyte of 

interest, after which a biotin-conjugated detection antibody and subsequently a streptavidin-

conjugated horseradish peroxidase (HRP) enzyme is added. If the analyte being assessed is present in 

the sample then it will have been bound by the capture antibody allowing the further binding of the 

detection antibody and the HRP enzyme. A HRP enzyme chromogenic substrate such as OPD is then 

added which the HRP enzyme using H2O2 as an oxidising agent oxidises resulting in a colourimetric 

change measurable using a spectrophotometer. The resulting absorbance values are compared to 

known standards in order to quantify the analyte of interest. 

 

2.5.3 TNFα ELISA protocol   

The supplied anti-TNFα capture antibody was diluted to 100µg/ml in sterile water and 100µl added 

to each well on a Nunc-ImmunoSorb 96 well plate, the plate was incubated overnight at room 

temperature. The following day the plate was washed using a prepared wash buffer (PBS, 0.05% v/v 

Tween-20) 4 times and dried on blotting paper after which 300µl of block buffer (PBS, 1% w/v BSA) 

was added to the wells. The plate was incubated for 1 hour to block any non-specific antibody 

binding. The wells were washed and dried as previously described and 100µl of prepared standards 

(0 – 2ng/ml TNFα) and the samples were added to respective wells, the plate was incubated for 2 

hours at room temperature. The plate was again washed and wells incubated with 100µl of biotin 

conjugated detection antibody (100µg/ml) for 2 hours at room temperature. The plate was washed 

again and 100µl of streptavidin-HRP added to each well and incubated for 45 minutes at room 
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temperature. The plate was washed again and 100µl of o-phenylenediamine (OPD) HRP substrate 

dissolved in 30ml citrate phosphate buffer with 10µl hydrogen peroxide added to each well. The 

plate was covered and incubated until sufficiently developed approximately 15 - 20 minutes. To stop 

colour development 100µl of 2N sulphuric acid was added to each well, absorbance was read on a 

microplate reader at 460nm. 

 

2.5.4 HMGB1 ELISA protocol 

HMGB1 secretion by glucose treated primary monocytes was measured by HMGB1 ELISA purchased 

from Antibodies online, UK. The purchased ELISA kit provided a 96 well plate pre-coated with anti-

HMGB1 antibody, lyophilised HMGB1 standard, detection reagent, avidin-conjugated HRP solution, 

tetramethylbenzidine (TMB) ELISA substrate, standard and assay diluent, wash buffer and stop 

solution. The lyophilised standards were reconstituted in 1ml standard diluent and added to the 

ELISA plate (0 - 4000pg/ml). The samples (100µl) were added to the plate and subsequently sealed 

and incubated at 37°C for 2 hours. The liquid was removed from the wells by inverting the plate and 

blotting onto absorbent paper. To each well 100µl of provided detection reagent was added and the 

plate sealed and incubated for 1 hour at 37°C.  The plate was inverted to remove the well contents 

and 350µL of wash buffer added to each well; the plate was incubated for 3 minutes and the wash 

buffer removed, this was repeated a further two times. The plate was dried by blotting onto 

absorbent paper and 100µl of provided avidin-conjugated HRP solution added to each well. The plate 

was incubated for 30 minutes at 37°C. The plate was washed as described previously 5 times and 

90µL of the provided TMB substrate solution added to each well. The plate was incubated at 37°C for 

approximately 20 minutes until adequate colorimetric development had occurred after which 50µl of 

a provided stop solution was added to halt the development. Absorbance was measured on a 

microplate reader at 450nm. 

 

2.6 Quantification of glucose uptake 

 

2.6.1 Materials and reagents 

Glucose (hexokinase) quantification assay purchased from Sigma Aldrich (UK) includes: glucose 

standard (10mg/ml) and a lyophilised glucose assay reagent 
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2.6.2 Background 

Glucose removal from the media over a period of time was measured using a hexokinase glucose 

assay adapted for use on a 96 well plate. The concentration of glucose removed by the cells was 

calculated by subtracting the final glucose concentration of the media from the initial concentration. 

The assay consists of a sterile glucose standard solution and an assay reagent containing NAD+, ATP, 

hexokinase and glucose-6-phosphate dehydrogenase. Glucose in the sample and ATP are converted 

by the hexokinase enzyme to glucose-6-phosphate and ADP, the glucose-6-phosphate with NAD+ is 

subsequently converted to 6-phosphogluconate and NADH by glucose-6-phosphate dehydrogenase. 

The NADH concentration increases as glucose is converted to 6-phosphogluconate, NADH 

concentration is measured by reading absorbance at 340nm allowing an indirect quantification of 

glucose concentration. 

 

 

 

 

 

 

 

 

2.6.3 Protocol 

The lyophilised glucose assay buffer was reconstituted with 20ml of distilled water. Glucose 

standards (0.05mg/ml – 5mg/ml) and samples (50µl) were added to a 96 well plate. The 

reconstituted glucose assay buffer (100µl) was added to each well. The plate was incubated for 15 

minutes at room temperature prior to measuring absorbance at 340nm on a microplate reader. 

 

 

Figure 2.6.1: Explanation of the Hexokinase glucose quantification assay. 

Hexokinase catalyses the phosphorylation of glucose to glucose- 6-phosphate utilising available ATP. Glucose-6-

phosphate dehydrogenase catalyses the oxidation of glucose-6-phosphate to 6-phosphogluconate a process that 

results in oxidised NAD+ being reduced to NADH. The resulting NADH is measured by an increase in absorbance 

at 340nm. 
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2.7 Cell lysis 

2.7.1 Materials and reagents  

Radioimmunoprecipitation assay (RIPA) buffer (150 mM sodium chloride, 1.0% triton-X, 0.5% sodium 

deoxycholate, 0.1% SDS, 50mM Tris, pH 8.0), protease inhibitor cocktail (Sigma-Aldrich, UK), 21 

gauge needle, 1ml syringes (Appleton woods, UK)  

 

2.7.2 Protocol  

Treated cells were harvested by centrifugation at 1000xg for 5 minutes and washed with ice cold PBS 

and centrifuged. The pellet was lysed in 50µl RIPA buffer supplemented with 0.5µl protease inhibitor 

cocktail before lysis and incubated for 30 minutes on ice. The DNA in the lysate was then sheared 

using a 21 gauge needle attached to a syringe and centrifuged at 16,000xg for 30 minutes at 4°C to 

remove cellular debris. 

 

 

2.8 SDS polyacrylamide gel electrophoresis 

 

2.8.1 Materials and reagents 

Buffer 1 (1.5M Tris-Base, 0.4%w/v SDS in distilled water, adjusted to pH 8.4), Buffer 2 (0.5M Tris-

base, 0.4%w/v SDS in distilled water, adjusted to pH 6.8), SDS-Polyacrylamide gel electrophoresis 

(PAGE) running buffer (24.8mM Tris-base, 191.3mM glycine, and 3.5mM SDS), 

tetramethylethylenediamine (TEMED), 10%w/v ammonium persulphate (APS) in distilled water, 30% 

w/v acrylamide solution, Laemmli buffer (Sigma-Aldrich, UK), precision plus protein standards (Bio-

Rad, UK), gel electrophoresis tank, gel casting system. 

 

2.8.2 SDS gel electrophoresis background 

SDS polyacrylamide gel electrophoresis (SDS PAGE) is a technique employed to separate proteins by 

their molecular weight (Davis and Ornstein 1959, Raymond and Weintraub 1959). The proteins to be 

separated need to be first boiled in Laemmli buffer, which contains 2-mercaptoethanol that reduces 

the protein di-sulphide bonds to sulphhydryl groups, so linearising the protein. This allows the SDS in 

the Laemmli buffer to uniformly bind to the linear protein, providing it with a negative charge.  
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The separating gel contains acrylamide which when polymerised forms pores which provide 

resistance to the migrating proteins. The higher the acrylamide content, the smaller the pore size 

providing greater resistance to the migrating protein and greater separation. The linearised proteins 

are loaded onto the acrylamide gels. An electrical field is applied across the gel causing the negatively 

charged proteins to migrate from the negative (cathode) electrode towards the positive (anode) 

electrode. This causes the proteins to separate based on their size which is relative to the molecular 

weight, therefore larger proteins migrate slower and smaller proteins quicker.  

 

2.8.3 SDS gel electrophoresis protocol 

The gels were cast in two parts, the first larger part being the resolving gel this being topped with the 

stacking gel. The resolving gel was made by mixing 4.4ml water, 3ml Buffer 1 and 4.4ml acrylamide 

solution. When ready to be cast, 45µl of APS solution was added with 5µl TEMED which facilitates 

acrylamide polymerisation. The resolving gel solution was transferred to the gel casting system and 

overlaid with methanol to prevent the gel drying whilst it sets. The stacking gel solution was made by 

mixing 4.87ml water, 1.87ml buffer 2, 750µl acrylamide solution, 75µl APS solution and 10µl TEMED. 

After the resolving gel had set, the methanol was poured off and remaining methanol removed using 

blotting paper. To the set resolving gel the stacking gel solution was poured and a 10 well comb 

inserted. Subsequent to the stacking gel setting the gel was transferred to an electrophoresis tank 

containing running buffer. The comb was removed from the gel to allow samples to be transferred 

into the wells. A protein standard (5µl) was loaded onto the first and last well on the gel. Subsequent 

to cell lysis and protein concentration determination, the lysates were boiled in Laemmli buffer in a 

1:1 ratio for 10 minutes at 95°C. 35µl of the prepared lysates were loaded into the wells of the SDS 

gel. The loaded protein standard and prepared samples were separated by electrophoresis at 115V 

for 1 hour 45 minutes. 

 

2.9 Western blot 

 

2.9.1 Materials and regents  

Electrophoresis protein transfer tank, Ice pack, gel holder cassette, foam pads, blotting paper, 

polyvinylidene difluoride (PVDF) membrane (GE healthcare, UK), methanol , western blot protein 

transfer buffer (Tris-base 24.8mM, glycine 192mM, 20%v/v (300ml) methanol, with 1200ml distilled 

H2O) and Tris buffered saline (TBS; 200mM sodium chloride, 50mM Tris-base, pH adjusted to 7.4). 
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2.9.2 Background 

After cell lysate protein has been separated by SDS-PAGE electrophoresis, the proteins can be 

transferred to a solid state membrane allowing antibody staining and assessment of specific proteins. 

Several different types of membranes are used, the most common being comprised of either 

nitrocellulose or PVDF. Both of these membranes are porous with pore sizes ranging from 0.05 to 

10µm in diameter, the smaller the pore size the larger the protein binding surface and the greater 

the protein binding capacity. PVDF membrane was used because of its greater durability which 

allows the membrane to be stripped and re-probed. It also has greater protein binding capacity, 

although this can also result in PVDF membranes giving greater background signal compared to 

nitrocellulose membranes. The PVDF membrane is placed on top of the acrylamide gel and held in 

place with blotting paper and foam pads in a cassette. The cassette is placed in an electrophoresis 

tank, with the acrylamide gel facing towards the cathode (negative) electrode and the PVDF 

membrane towards the anode (positive) electrode. As the protein is negatively charged the proteins 

migrate laterally towards the anode electrode where they become embedded in the PVDF 

membrane. The PVDF membrane can now be stained with antibodies to determine the presence of 

specific proteins in the lysate. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9.1: Electrophoresis transfer of proteins to PVDF membranes 

This figure displays the arrangement of the protein containing acrylamide gel with the PVDF membrane in 

a blotting cassette in addition to describing the procedure of an application of a charge to induce protein 

transfer to the PVDF membrane. 
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2.9.3 Protocol 

 

The components required for transfer, the gel foam holders and blotting paper are soaked in the 

transfer buffer prior to being placed onto the gel holder cassette as shown in figure 2.9.2. The 

acrylamide gel containing the separated protein is removed from the glass plates used during SDS-

PAGE transfer and placed on top of the blotting paper towards the negative side of the cassette. The 

PVDF membrane is cut to the required size and soaked in methanol for 30 seconds prior to use, as 

the membrane is very hydrophobic soaking in methanol is required to allow binding of the protein. 

The membrane is never handled directly, being handled with tweezers to prevent unwanted protein 

being absorbed from skin or gloves. The membrane is then soaked in transfer buffer for 5 minutes to 

equilibrate it and place the membrane on top of the acrylamide gel. Pressure is placed onto the 

membrane to hold it in place and a roller used to remove any air bubbles between the membrane 

and gel. The blotting paper and gel foam pad is placed on top of the membrane, the cassette closed 

and placed in the electrophoresis tank. The tank is filled with transfer buffer and an ice pack to keep 

the buffer cold to prevent overheating during electrophoresis. The transfer conditions used were a 

constant current of 115 milliamps for 1 hour 45 minutes. After this the membrane was washed in TBS 

containing 0.05%v/v Tween-20 (TBST) every 5 minutes for 30 minutes (total of six washes) to remove 

any residual transfer buffer. The membrane could then be stained with antibodies for the proteins of 

interest.    

 

 

2.10 Assessment of intracellular NAD+:NADH ratio 

The NAD+:NADH ratio was assessed using an NAD+:NADH quantification kit purchased from Abcam, 

UK (ab65348). Treated cells were collected by centrifugation at 500xg and washed with ice cold 

sterile PBS. The cells were centrifuged again and the pellet lysed in 400µl of kit supplied extraction 

buffer. The lysate was freeze-thawed twice to aid cellular lysis. The cell lysates were centrifuged 

through a 19kDa filter in order to remove proteins from the lysate which may utilise the NAD+. To 

measure total NAD+ and NADH 50µl of the lysate was loaded directly to a 96 well plate. To measure 

NADH 200µl of the filtered lysate was heated for 30 minutes at 60°C and 50µl transferred to the 96 

well plate; 100µl of assay buffer was added to each sample and standard well. The plate was 

incubated at room temperature for 5 minutes before the addition of a developer solution. The 

developer solution produced a measurable colorimetric response to NAD+. The total NAD+ and NADH 

were quantified by measuring the absorbance at 450nm on a microplate reader. To determine the 



63 
 

quantity of available NAD+ in the lysate the measured NADH was subtracted from the total NAD and 

NADH. The determined NAD+ was then divided by the NADH to determine the NAD+:NADH ratio. 

  

 

2.11 Sirtuin 1 deacetylase activity assay 

 

2.11.1 Materials and reagents 

SIRT1 deacetylase activity assay (Sigma-Aldrich, UK), nuclear lysis buffer A (10mM HEPES, 1.5mM 

MgCl2, 10mM KCl, 0.5mM DTT and 0.05% v/v Triton X-100, adjusted to pH 7.9), nuclear lysis buffer B 

(5mM HEPES, 1.5mM MgCl2, 0.2mM EDTA, 0. 5mM DTT and 26% v/v glycerol, adjusted to pH 7.9), 

protease inhibitor cocktail (Sigma-Aldrich, UK) 

 

2.11.2 Cell lysis and nuclear fraction collection 

The treated monocytes were collected by centrifuging at 500xg for 5 minutes and washed with ice 

cold PBS. The cell pellet was resuspended in 500µl of nuclear lysis buffer A (10mM HEPES, 1.5mM 

MgCl2, 10mM KCl, 0.5mM DTT and 0.05% v/v Triton X-100, adjusted to pH 7.9) supplemented with 

5µl protease inhibitor cocktail to lyse the cells leaving the nucleus intact. The lysate was kept on ice 

for 10 minutes followed by the centrifugation at 800xg for 10 minutes at 4°C to pellet the intact 

nuclei. The pellet was resuspended in 374µl nuclear lysis buffer B (5mM HEPES, 1.5mM MgCl2, 

0.2mM EDTA, 0. 5mM DTT and 26% v/v glycerol, adjusted to pH 7.9) supplemented with 4µl protease 

inhibitor cocktail and 26µl 4.6M NaCl. The lysate was homogenised and the DNA sheared by passing 

through a 25-gauge needle and incubated on ice for 30 minutes. The cell lysates were centrifuged at 

16,000xg for 30 minutes at 4°C to remove cellular debris. The supernatants were retained for 

quantification by BCA assay and for the SIRT1 deacetylase assay. 

 

2.11.3 SIRT1 deacetylase activity assay 

Sirtuin 1 (SIRT1) deacetylase activity was measured with a SIRT1 activity assay purchased from Sigma-

Aldrich (CS1040). The kit supplies a SIRT1 specific substrate, an acetylated lysine residue conjugated 

to a fluorophore, upon deacetylation by SIRT1 the substrate is cleaved by a developer solution 

causing the release of a highly fluorescent group. Treated THP-1 monocytic cells were lysed and the 

nuclear fraction extracted. The protein content of the nuclear lysate was quantified by BCA assay as 
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previously described. Nuclear lysate containing 15µg of protein was assessed using the activity assay 

with fluorescence being measured by excitation at 340-380nm and emission 430-460nm. 

 

2.12 Measurement of mitochondrial reactive oxygen species using mitoSOX red 

superoxide stain 

 

2.12.1 Materials and reagents  

MitoSOX red reagent (Invitrogen, UK), DMSO (Sigma-Aldrich, UK), PBS solution, flow cytometer 

 

2.12.2 Background 

The mitochondria generate energy primarily through the electron transport chain. This process can 

result in the generation of superoxide anions. MitoSOX red a derivative of dihydroethidium localises 

to the mitochondria where it can be oxidised to 2-hydroxyethidium in response to superoxide anions. 

The produced 2-hydroxyethidium produces fluorescence at an excitation peak at ~400nm which can 

be measured at ~590nm in order to determine relative generation of superoxide anions.   

 

2.12.3 Protocol 

The MitoSOX reagent was dissolved in DMSO to a final concentration of 5mM (50µg MitoSOX reagent 

dissolved in 13µl DMSO). Treated THP-1 monocytes were harvested by centrifuging at 500xg for 5 

minutes and washed with PBS. The cells were again pelleted by centrifugation, resuspended in PBS 

and incubated at 37°C for 5 minutes prior to addition of 2.5µM MitoSOX reagent. The cells were 

covered with foil and incubated for 30 minutes at 37°C and subsequently analysed by flow 

cytometry.  

 

 

 

 



65 
 

2.13 Isolation of primary monocytes 

 

2.13.1 Isolation of primary monocytes materials and reagents 

Lymphoprep (Axis Shield, UK), Sigmacote silicanizing agent (Sigma-Aldrich, UK), monocyte isolation 

buffer (Ca2+ and Mg2+ free PBS containing 0.1%w/v BSA and 2mM EDTA), Dynabeads untouched 

human monocyte kit (Invitrogen, UK). 

 

2.13.2 Background 

The isolation of primary monocytes from whole blood can be separated into two individual 

processes, first the isolation of the peripheral blood mononuclear cells (PBMCs) from the blood 

followed by the isolation of the monocytes from the PBMC population. 

The PBMCs population, which consists of monocytes and leukocytes were isolated by density 

gradient centrifugation by layering the diluted whole blood onto a commercially available isosmotic 

media called Lymphoprep (Boyum 1968). The principle is that the Lymphoprep solution has a density 

of 1.077g/ml which is higher than the vast majority of mononuclear cells, whereas erythrocytes and 

polymorphonuclear (PMN) cells have a greater density. This result of this is that upon centrifugation 

the erythrocytes and PMN cells pass through the Lymphoprep solution and form a pellet whereas the 

PBMCs form a “buffy coat” layer on top of the media from which they can be collected.  

The monocytes were then negatively isolated from the collected PBMCs. A negative isolation 

consists of removing all other contaminating cells leaving only the monocyte population. The isolated 

PBMC population is incubated with magnetic beads conjugated to antibodies specific against the 

contaminating cells, therefore the unwanted cells will be bound to the beads and removed leaving 

only the monocytes. A negative isolation method was chosen to reduce the possibility of activating 

the monocytes through direct interaction with membrane surface proteins.   

 

2.13.3 Isolation of primary monocytes protocol  

2.13.3.1 Isolation of peripheral blood mononuclear cells 

30ml whole blood was collected from healthy, consenting volunteers into evacuated EDTA collection 

tubes by venepuncture from the median cubital vein. The EDTA in the collection tubes chelates 

calcium ions preventing the coagulation of the blood. The collected whole blood was then diluted in 
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a 1:1 ratio with sterile PBS (0.1% w/v BSA). The diluted blood is then layered onto 11ml of 

Lymphoprep solution in a 50ml conical centrifuge tube. After layering the whole blood the solution is 

centrifuged at room temperature at 180xg for 20 minutes with the deceleration removed to prevent 

the layers mixing upon the centrifugation ending. The upper 5ml of plasma was then removed using 

a Pasteur pipette to remove the platelets. The solution was again centrifuged at 380xg for 20 

minutes, again with deceleration removed, to form the “buffy coat” the PBMC layer at the interface 

between the Lymphoprep solution and the plasma. This layer was collected using a Pasteur pipette 

with care taken to avoid disturbing the Lymphoprep solution. The isolated PBMCs were then washed 

in sterile PBS (0.1% w/v BSA) three times. For the first wash, the PBMC suspension was centrifuged at 

500xg for 8 minutes with the subsequent washes being centrifuged at 350xg again for 8 minutes. The 

initial wash was centrifuged at a greater speed to take into account the possibility of any 

Lymphoprep being present in the cell suspension which may interfere with the formation of a cell 

pellet. The cell pellet was then re-suspended in isolation buffer (magnesium/ calcium ion free PBS 

containing 0.1% w/v BSA, 2mM EDTA) and the number and viability of the isolated PBMCs 

determined by the trypan blue exclusion method as previously described.  

 

2.13.3.2 Isolation of primary monocytes from PBMC population 

The monocytes were isolated from the PBMC population by negative isolation using a Dynal 

Untouched Human Monocyte isolation kit (Life Technologies). The kit contains magnetic beads which 

are conjugated to a mixture of antibodies for specific markers of the unwanted cells (ie. B-cells, T-

cells, NK cells etc.) so they can be isolated and removed leaving the CD14 positive, CD16 negative 

Mon 1, monocyte population. On average 10ml of whole blood would supply approximately 1x107 

PBMCs from which approximately 1x106 primary monocytes could be isolated. 

The PBMCs were adjusted to 5x107 cells in 500µL of isolation buffer, and to this 100µl of 

blocking buffer (aggregated gamma globulin in 0.9% NaCl, which blocks the monocyte Fc receptors) 

was added. The solution was incubated for 2 minutes at room temperature prior to 100µL of 

antibody mixture (biotinylated IgG specific for CD3, CD7, CD16, CD19, CD56, CDw123 and CD235a) 

added. The solution was mixed well by pipetting and incubated for 20 minutes at 4°C prior to being 

washed by the addition of 4ml of isolation buffer and centrifuged at 350xg for 8 minutes. The 

supernatant was discarded and the pellet resuspended in 500µL isolation buffer. Prior to use the 

magnetic beads were washed. The beads were vortexed for at least 30 seconds to resuspend them 

and 500µL transferred to 1ml of isolation buffer in a 1.5ml microcentrifuge tube. The tube was then 

left for at least 1 minute on a magnetic rack, the supernatant removed and the beads were 
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resuspended in 500µL of isolation buffer. The 500µL washed magnetic beads were then added to the 

cell suspension and incubated for 15 minutes at 4°C on a tube rotator. The PBMC and magnetic bead 

suspension was diluted with 4ml of ice cold isolation buffer to give a total volume of 5ml, which was 

transferred to 5 x 1.5ml microcentrifuge tubes (1ml in each). Each tube was left on a magnetic rack 

on ice for 2 minutes and the supernatants retained and transferred to fresh 1.5ml tubes. The 

magnetic beads were resuspended again in isolation buffer and left on the magnetic rack for a 

further 2 minutes and the supernatant collected into fresh 1.5ml tubes. The collected supernatants 

were again left on the magnetic rack for 2 minutes in order to remove any contaminating magnetic 

beads. The supernatants were pooled together and centrifuged at 350xg for 8 minutes and 

resuspended in RPMI 1640 media. Whilst optimising this procedure the purity of the monocyte 

isolation was determined by flow cytometry. Both the collected PBMC fraction and the subsequently 

negatively isolated primary monocytes were stained with fluorescently conjugated antibodies against 

CD3 and CD14 to determine the presence of CD3 positive T cells and CD14 positive monocytes 

respectively. The percentage of CD14 positive monocytes to CD3 positive T cells was determined pre 

and post monocyte isolation to determine an approximate monocyte purity. Using this method, the 

extracted monocyte purity was shown to be approximately 95%. Viability and monocyte number was 

determined by trypan blue exclusion. This protocol is scalable depending on the number of cells 

available ie. the PBMCs number can be adjusted to 2.5x107 cells in 250µL which would require 50µL 

of blocking solution and 50µL of antibody mixture. All plasticware; the tubes, Pasteur pipettes and 

pipette tips, used in the PBMC and monocyte isolation were coated with Sigmacote siliconising agent 

prior to use to prevent unwanted monocyte interaction with the plastic causing monocyte activation. 
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Figure 2.13.1: Isolation of primary monocytes from whole blood. 

This figure displays the process used to negatively isolate primary monocytes from whole blood. The whole 

blood is initially diluted with PBS and layered onto a density solution, lymphoprep. The layered solution is 

centrifuged to allow cells with a greater density than the lymphoprep solution to pass through forming a 

pellet. The peripheral blood mononuclear cell (PBMC) population has a lower density than the lymphoprep 

solution so under centrifugation the PBMC population forms a band above the lymphoprep. The PBMC 

population is collected, washed with PBS and incubated with magnetic beads conjugated to antibodies 

specific to markers of unwanted cells. These cells are removed leaving an isolated monocyte population. 
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2.14 Assessment of blood glucose, HDL, LDL and total cholesterol 

 

2.14.1 Materials and reagents 

Reflotron machine (Roche), Reflotron strips to test for glucose, HDL cholesterol, LDL cholesterol and 

total cholesterol (Roche, UK). 

2.14.2 Protocol 

Subsequent to the collection of whole blood into evacuated tubes, 30µl of whole blood was placed 

onto the Reflotron strips to assess the content of glucose, HDL, LDL and total cholesterol. The 

Reflotron strips were placed into the machine and the produced result collected. 

 

2.15 Analysis of cytokine secretion by multiplex array  

 

2.15.1 Materials and reagents 

Merck Millipore 41 analyte magnetic bead cytokine panel (HCYTMAG-60K-PX41) (Kit supplies:96 well 

plate, human cytokine/chemokine standards, cytokine/chemokine quality controls, pre-mixed 

cytokine antibody bound beads, assay buffer, wash buffer, cytokine detection antibodies and 

streptavidin-phycoerythrin, Luminex 200 analyser. 

 

2.15.2 Background 

Cytokine secretion was assessed using a magnetic bead-based multiplex panel designed to quantify 

41 individual cytokines (2.15.1). The cytokine panel purchased from Merck Millipore utilises a 

mixture of 41 beads each coated with monoclonal antibodies which recognise a specific analyte. Each 

of the individual bead sets has a specific fluorescent signature which can be used to identify the 

bead. The bead mixtures are incubated with the sample, this allows binding of the analytes present 

in the sample to bind to the respective beads. The beads are washed and a detection antibody 

conjugated to biotin introduced which binds to the bead bound analytes. The fluorescent dye 

phycoerythrin conjugated to streptavidin is added to the beads whereby it binds to any biotinylated 

detection antibodies bound to the analyte-bead complexes. The beads were then analysed by the 
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Luminex 200 which employs methods similar to flow cytometry by using a series of laser and 

measuring fluorescent emission. The beads are identified by its specific fluorescent signature to 

determine the analyte bound to it and the quantity of analyte bound determined by fluorescence 

emitted by bound phycoerythrin.   

 

2.15.3 Protocol 

Wash buffer (200µl) was added to each well on the supplied 96 well plate, the plate sealed and 

incubated on a plate shaker for 10 minutes. The wash buffer was removed and the plate dried by 

inverting onto blotting paper. Prepared standards (25 µl) (10,000pg/ml – 3.2pg/ml) and quality 

controls (25µl) were added to appropriate wells on the 96 well plate. The samples (25µl) were added 

to the plate in duplicate to appropriate wells. To each well 25µl of assay buffer was added to give a 

well volume of 50µl. The pre-mixed magnetic beads were sonicated for 30 seconds prior to addition 

to each well on the 96 well plate. The plate was sealed and incubated on a plate shaker overnight at 

4°C. The 96 well plate was placed onto a magnetic plate to draw the magnetic beads to the base of 

the wells and the plate washed twice using an automated plate washer. The detection antibodies (25 

µL) were added to each well and the plate was covered with foil and incubated for 1 hour on a plate 

shaker at room temperature. To each well 25µl of streptavidin-phycoerythrin was added and the 

plate covered with foil and incubated for 30 minutes on a plate shaker. The plate was washed as 

described previously a further two times and 150µl of sheath fluid added to each well. The plate was 

incubated for 5 minutes at room temperature on a plate shaker to resuspend the magnetic beads. 

The plate was read on a Luminex 200 analyser with detection set to read a minimum of 50 beads per 

analyte. 
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The individual bead sets each recognise a specific cytokine and have a unique fluorescent signature that allows 

its identification. These beads are coated in capture antibodies that recognise and bind the target cytokine. A 

phycoerythrin conjugated detection antibody binds to the capture antibody bound cytokines. These beads are 

analysed using a piece of equipment called a luminex 200 which by using a series of lasers simultaneously 

identifies the bead group and quantifies the amount of bound cytokine. 

.  

Figure 2.15.1: Multiplex assays allow the detection of multiple analytes from an individual sample. 
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2.16 Extraction of total ribonucleic acid (RNA) 

 

2.16.1 Extraction of total RNA materials and reagents 

miRNeasy Micro Kit and miRNeasy Mini kit (Qiagen, UK), RNAse away solution (Sigma-Aldrich, UK), 

Trizol lysis solution (Qiagen, UK), Nuclease free H2O (Thermo-Scientific, UK), Nuclease free DNAse 

(Thermo-Scientific, UK).  

 

2.16.2 Extraction of total RNA background 

The cells are lysed in Trizol reagent, a phenol based lysis buffer containing guanidine thiocyanate. 

Guanidine thiocyanate is a chaotrophic agent meaning that the guanidine thiocyanate disrupts non-

covalent molecular interactions such as hydrophobic and Van der Waals interactions, this results in 

the denaturing of proteins. The benefit of this is that proteins which may result in the degradation of 

the RNA such as RNAses are denatured (Chomczynski and Sacchi 1987). The RNA extraction kits use a 

spin column containing a silica gel membrane. Nucleic acids bind to silica in the presence of high 

concentrations of chaotrophic salts in this case guanidine thiocyanate, these salts are removed by 

washing allowing the elution of the nucleic acid (Chen and Thomas 1980, Marko, Chipperfield et al. 

1982). 

 

2.16.3 Extraction of total RNA protocol 

The monocytes were transferred to 1.5ml micro-centrifuge tubes before being harvested by 

centrifugation at 1000xg for 5 minutes. The media was removed and the cells were washed in PBS, 

then cells were again pelleted and the supernatant removed. The cell pellet was lysed in 700µl of 

Trizol reagent, the pellet was vortexed until completely lysed prior to being stored at -80°C until 

extraction. The frozen samples were left at room temperature until thawed and briefly vortexed to 

ensure homogenisation. To each sample, 140µl of chloroform was added, the tube sealed and 

shaken vigorously for approximately 30 seconds. The mixture was centrifuged at 12,000xg 4°C for 15 

minutes in order to separate the mixture into an upper aqueous phase and a lower organic phase. 

The upper aqueous phase was collected (approximately 350µl) and mixed with 1.5 x volume of 100% 

ethanol (approximately 525µl) and mixed by pipetting. A supplied RNA extraction spin column was 

placed into a 2ml collection tube and 700µl of the sample loaded onto the spin column. The column 

was centrifuged at 8000xg for 30seconds at room temperature, the flow through discarded, the rest 

of the sample loaded and the centrifugation repeated. The spin column was washed with 700µl of a 
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supplied “RWT” wash buffer and centrifuged as described above and the flow through discarded. The 

spin column was again washed with 500µl of a supplied “RPE” wash buffer and centrifuged as 

described above and the flow through discarded. 500µl of 80%v/v ethanol was added to the spin 

column which was subsequently centrifuged at 8000xg for 2minutes at room temperature and the 

flow through discarded. The spin column was placed into a clean 2ml collection tube and centrifuged 

with the lid open at full speed (~14,000xg) for 5minutes to dry residual ethanol from the membrane. 

The spin column was placed into a 1.5ml collection tube and 14µl of nuclease free water added 

directly to the membrane and incubated at room temperature for 1minute before being centrifuged 

at full speed for 1 minute at room temperature. The eluted RNA was then quantified 

spectrophotometrically using a Nanodrop and stored at -80°C. 

 

2.17 Quantitative polymerase chain reaction (qPCR) of messenger RNA (mRNA)  

2.17.1 Materials and reagents 

SYBR green PCR master mix (Primer Design, UK), 96 well PCR plates, strip caps, nuclease free water, 

High capacity reverse transcription kit (Applied Biosystems, UK), PCR primers, Stratagene mx3000p 

qPCR thermocycler.  

 

2.17.2 Background 

Polymerase chain reaction (PCR), developed by Kary Mullis and colleagues for which he received the 

1993 noble prize for chemistry, is a technique which amplifies small quantities of DNA by several 

orders of magnitude (Saiki, Scharf et al. 1985, Saiki, Gelfand et al. 1988). PCR involves the 

amplification of a specific double stranded DNA sequence through the use of heat stable DNA 

polymerase enzymes. The specific DNA sequence is heated to cause denaturation to produce single 

strands of DNA. Specific DNA oligonucleotides called primers, which share complementarity with the 

5’ ends of the sense and anti-sense DNA strands anneal to the DNA. A DNA polymerase recognises 

the primer sequence bound at the 5’ ends and extends it using free nucleotides producing the 

complementing DNA strand. This produces copies of the both the sense and anti-sense strands which 

can reanneal resulting in a copy of the original DNA sequence. This cycle of denaturation, annealing 

and copying occurs numerous times to significantly amplify the DNA sequence. The amplification of 

DNA can be quantified through the addition of fluorescent dyes specific to DNA, SYBR green for 

example binds to double stranded DNA which as the sequence is copied the quantity of double 

stranded DNA increases. The rate at which the fluorescent signal increases gives an indication of the 
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quantity of DNA in the initial sample allowing relative quantification of the specific DNA sequence in 

the sample.  

 

2.17.3 Protocol 

Reverse transcription was performed using a high capacity reverse transcription kit purchased from 

Applied Biosystems to convert extracted mRNA to cDNA. A mastermix solution was made from the 

reverse transcription kit components, consisting of per sample; 2µl reverse transcriptase buffer, 0.8µl 

dNTP mixture (100mM), 1µl reverse transcriptase, 2µl random primers and 4.2µL nuclease free water 

was added. The mastermix was mixed by vortexing and 10µl added to 200µl PCR tubes. An equal 

volume of extracted RNA sample (containing 500ng RNA) was added to the PCR tubes. To control for 

possible genomic DNA contamination the samples were also incubated with a mastermix solution 

without the addition of the reverse transcriptase enzyme. The rationale behind this being that if the 

negative reverse transcriptase samples give a positive result during the qPCR stage it can be 

postulated that these samples have genomic DNA contamination that could negatively impact on the 

results. The samples were incubated in a thermal cycler set to the conditions described in table 2.1. 

The converted cDNA was diluted 1 in 10 with nuclease free water and stored at -20°C until needed.  

The expression of specific mRNA was measured by qPCR analysis of the diluted cDNA. A qPCR 

reaction stock solution was made by mixing for each sample: 0.5µl of the forward and reverse 

primers, 4µl nuclease free water and 10µl SYBR green mastermix. To each well on a qPCR plate 15µl 

of the reaction stock solution was added to 5µl of the diluted cDNA. The wells were sealed with strip 

caps and the plate loaded onto a Stratagene mx3000p qPCR thermocycler set to the thermal profile 

detailed in table 2.3. The produced data was analysed using the comparative delta delta CT method 

(Livak and Schmittgen 2001, Schmittgen and Livak 2008). The results are normalised as a fold change 

relative to the 5mM D-glucose treated cells, to avoid removing the variance as a result of the 

normalisation the standard error of the ΔCT (CT gene – CT housekeeper) values of the 5mM D-glucose 

treatments are included on the datasets. Which allows more accurate statistical analysis. 
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Table 2.1: Thermal cycler settings for reverse transcriptase of mRNA to cDNA 

 Step 1 Step 2 Step 3 Step 4 

Temperature (°C) 25 37 85 4 

Time 10 minutes 120 minutes 5 minutes ∞ 

 

Table 2.2: qPCR primers 

 

Table 2.3: Thermal profile conditions for mRNA qPCR 

 

 

 

 

 

 

 

 

Primer  Forward primer sequence Reverse primer sequence 

TNFα mRNA CCCAGGGACCTCTCTCTAATCA GCTACAGGCTTGTCACTCGG 

SIRT1 mRNA CTGGACAATTCCAGCCATCT GGGTGGCAACTCTGACAAAT 

18S rRNA GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG 

Step 

Enzyme activation PCR 

Hold 
40 cycles 

Denature Anneal Extension 

Temperature (°C) 95 95 55 72 

Time 10 minutes 5 seconds 5 seconds 10 seconds 
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2.18 qPCR of micro-RNA (miRNA) 

 

2.18.1 Materials and reagents 

Taqman miRNA reverse transcription kit (Thermo-Scientific, UK), PCR mastermix (Primer Design, UK), 

Taqman miRNA assays (Thermos Scientific: assays for miR-146a-5p, miR-155, miR-424 and miR-16), 

nuclease free water, 96 well PCR plates, strip caps, Stratagene mx3000p qPCR thermocycler. 

  

2.18.2 Protocol 

A reverse transcription mastermix was made by mixing 0.15µL dNTPs, 1µL reverse transcriptase, 

1.5µL reverse transcription buffer, 0.19µL RNase inhibitor and 4.16µL nuclease free water for each 

sample. Reverse transcription of each individual miRNA requires a miRNA specific reverse 

transcription primer. To the mastermix 3µL (per sample) of a miRNA specific reverse transcription 

primer was added. The solution is mixed and 10µL added to PCR tubes for the number of samples to 

be reverse transcribed. To each tube 5µL (containing 10ng RNA) of the extracted RNA was added and 

the tubes loaded into a thermocycler. The miRNA was reversed transcribed using the thermocycler 

conditions described in table 2.4. The reverse transcribed miRNA was stored at -20°C until needed. 

Quantitative PCR was performed on the reversed transcribed miRNA by adding 1.33µL of the reverse 

transcription product to 10µL PCR mastermix, 7.67µL nuclease free water and 1µL of miRNA specific 

primer and taqman probe. The final 20µL volume was transferred to a 96 well PCR plate, the plate 

sealed with strip caps and the plate loaded onto a stratagene mx3000p qPCR thermocycler set to the 

thermal profile described in table 2.5. The microRNA hsa-miR-16 was chosen as a housekeeper 

miRNA due to it being observed to remain stable in the microarray assessment of miRNA expression 

in monocytes taken from obese individuals, in addition to remaining stable during the qPCR 

assessment of glucose treated primary monocytes. The produced data was analysed using the 

comparative delta CT method (Livak and Schmittgen 2001, Schmittgen and Livak 2008). The results 

are normalised as a fold change relative to the 5mM D-glucose treated cells, to avoid removing the 

variance as a result of the normalisation the standard error of the ΔCT (CT gene – CT housekeeper) values of 

the 5mM D-glucose treatments are included on the datasets. Which allows more accurate statistical 

analysis. 
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Table 2.4: Thermal cycler settings for reverse transcription of miRNA 

 

 

Table 2.5: Thermal profile conditions for miRNA qPCR 

Step 

Enzyme activation PCR 

Hold 
40 cycles 

Denature Anneal/extend 

Temperature (°C) 95 95 60 

Time 10 minutes 15 seconds 60 seconds 

 

 

2.19 Chromatin Immunoprecipitation 

 

2.19.1 Materials and reagents 

Diagenode bioruptor, 1.5ml polymethylpentene microtubes (Diagenode, Belgium), methanol free 

16% formaldehyde ampoules (Thermo-Scientific, UK), SDS lysis buffer (50mM Tris-HCl pH8.0, 10mM 

EDTA, 1% v/v SDS (from 10%w/v stock solution), Added prior to use: 20mM sodium butyrate (NaBu) 

and protease inhibitor cocktail, RIPA buffer (10mM Tris-HCl pH 7.5, 1mM EDTA, 0.5mM EGTA, 

140mM sodium chloride, 1% Triton X-100, 0.1% SDS and 0.1% sodium deoxycholate), ChIP elution 

buffer (20mM Tris-HCl pH 7.5, 5mM EDTA, 50mM sodium chloride, 1% SDS, Added prior to use: 

20mM sodium butyrate), blocking buffer (added to RIPA buffer: BSA 200µg/ml, salmon sperm 

10µg/ml) 

 

 Step 1 Step 2 Step 3 Step 4 

Temperature (°C) 16 42 85 4 

Time 30 minutes 30 minutes 5 minutes ∞ 
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2.19.2 Background 

Chromatin immunoprecipitation is a technique developed to assess interactions between proteins 

such as histones and transcription factors with DNA (figure 2.19.1). This allows the identification of 

sites of transcription factor binding or genes associated with specific histone modifications.  

The technique first requires the proteins to be cross-linked to the DNA by a fixative agent such as UV 

light or formaldehyde. Formaldehyde is a common choice of fixative agent due to its reversibility 

with high temperature. The fixed chromatin is sheared by either micrococcal nucleases or sonication 

to approximately 500bp in length. The shearing of the chromatin allows for selection of specific 

proteins by immunoprecipitation in order to assess their associated genes. Subsequent to 

immunoprecipitation the extracted chromatin is treated with proteinase K and the crosslinking 

reversed leaving the DNA. The DNA is then extracted and purified for subsequent analysis by qPCR in 

order to identify specific genes regulated by the protein of interest.   

 

2.19.3 Protocol 

The protocol for chromatin immunoprecipitation was adapted from previously established protocols 

designed for use with low cell numbers (Dahl and Collas 2009, Sikes, Bradshaw et al. 2009). Isolated 

primary monocytes (1x105 cells) were washed with 500µl sterile PBS by centrifuging at 450xg for 5 

minutes and resuspended in 500µl sterile PBS before being fixed with 1% v/v methanol-free 

formaldehyde (31.25µl of 16% formaldehyde) for 10 minutes at room temperature. Methanol-free 

formaldehyde was used as methanol increases cellular permeability making fixation conditions 

difficult to replicate. The formaldehyde fixation was quenched by addition of Tris (pH 7.4) to a final 

concentration of 750mM, the solution was incubated at room temperature for 5 minutes with gently 

mixing (Sutherland, Toews et al. 2008). The fixed cells were pelleted by centrifuging at 450xg at 4°C 

for 5 minutes. The pellet was washed three times with 500µl ice cold PBS by centrifuging at 450xg at 

4°C for 5 minutes, the supernatant was removed and the cell pellet resuspended in sterile ice cold 

PBS. After the final wash the pellet was resuspended in 120µl 1% SDS lysis buffer (50mM Tris-HCl 

pH8.0, 10mM EDTA, 1% SDS with 20mM NaBu to inhibit histone deacetylase proteins thereby 

preventing loss of acetylation modifications during lysis, and protease inhibitor cocktail to prevent 

histone and transcription factor degradation). Sonication was chosen as the method of chromatin 

shearing as opposed to micrococcal nuclease digestion due to the bias micrococcal nucleases have 

for certain genomic regions resulting in uneven, non-random DNA shearing. Sonication was 

performed using a Diagenode Bioruptor, a water bath sonicator that emits 20kHz sonication waves. 

The fixed cells were sonicated for a total of 10 cycles, a cycle consisting of 30 seconds on and 30 
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seconds off. The samples were briefly vortexed after every 2 cycles of sonication and kept on ice. 

After sonication, the lysate was centrifuged at 4°C, 14,000xg for 10 minutes to clear the lysate of 

cellular debris. The sonicated chromatin was diluted with 1080µl RIPA buffer to reduce the SDS 

concentration to ~0.1% to prevent the SDS interfering with antibody binding during the 

immunoprecipitation process.  

 

The samples were pre-cleared prior to immunoprecipitation by incubating 100µl of sonicated 

chromatin with 10µl Dynal magnetic beads for 1 hour at 4°C with rotation; this was done in order to 

remove chromatin from the sample that may bind non-specifically to the beads decreasing sensitivity 

of the assay. 10µl of protein A-conjugated magnetic beads were blocked by incubating with 100ul of 

blocking buffer containing salmon sperm and BSA. The blocked protein A-coated Dynal magnetic 

beads were conjugated to an anti-acetylated (K310) P65 antibody by incubating 3µg of antibody in a 

solution of 90µl RIPA buffer with 10µl magnetic beads for 2 hours at 4°C. 100µl of the chromatin 

samples were incubated with the antibody-bead conjugates overnight at 4°C with rotation. The 

samples were placed onto a magnetic rack, the supernatant discarded and 100µl of RIPA buffer 

added prior to incubation for 4 minutes at 4°C with rotation. This washing step was repeated a 

further two times before the addition of 150µl of elution buffer supplemented with 2mg/ml of 

proteinase K. The samples were incubated at 68°C for 2.5 hours on a heating block; the samples were 

manually agitated every 10 minutes to prevent the beads from sedimenting. Heating the samples 

aids the elution process whilst reversing the DNA cross-linking. The heated samples were placed in 

the magnetic rack and the supernatant collected. The beads were resuspended in an additional 150µl 

elution buffer and heated again at 68°C for a further 30 minutes. The samples were again placed in a 

magnetic rack and the supernatant collected and added to the first collected sample to give a final 

volume of 300µl. The eluted DNA was isolated by phenol-chloroform-isoamyl alcohol extraction 

followed by qPCR (see below). 
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Figure 2.19.1: Background of Chromatin Immunoprecipitation method for assessment of protein -DNA 
interaction. 

Treated cells are incubated with formaldehyde to fix the DNA associated proteins preserving the 

interactions of transcription factors, histone proteins and polymerases with the DNA. The cells are lysed 

and the DNA sheared by sonication. The sheared DNA is immuno-precipitated from the lysate based on a 

specific protein or protein modification. The immuno-precipitated DNA is heated to reverse the 

crosslinking between the protein and the DNA. The DNA is purified and assessed by qPCR to determine 

the DNA regions interacting with the immuno-precipitated protein. 
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2.20 Phenol chloroform isoamyl alcohol extraction of immunoprecipitated DNA  

 

2.20.1 Materials and reagents 

ChIP elution buffer (20mM Tris-HCl pH 7.5, 5mM EDTA, 50mM sodium chloride, 1% SDS, Added prior 

to use: 20mM sodium butyrate), Phenol:Chloroform:Isoamyl alcohol (25:24:1), chloroform, ethanol, 

200mM sodium chloride solution Tris-EDTA (TE) buffer, linear acrylamide (Thermo-Scientific, UK), 

DNA low bind 1.5ml microcentrifuge tubes (Eppendorf, UK) 

  

2.20.2 Background 

The phenol chloroform isoamyl extraction method both removes contaminating proteins and purifies 

DNA from an aqueous sample. The aqueous sample is mixed with the phenol:chloroform:isoamyl 

solution and centrifuged. The centrifugation separates the mixture into a clear upper aqueous phase 

which contains the DNA, a white precipitous interphase consisting of protein and a lower organic 

phase containing phenol. As DNA and water are both polar molecules DNA due to its negative 

phosphate backbone and water due to its electronegative oxygen atom, is very soluble in water so 

upon centrifugation the DNA is localised to the aqueous phase. As proteins are generally non-polar 

they localise to the phenol organic phase upon centrifugation as phenol is itself a non-polar 

molecule. The aqueous phase containing the DNA can be removed and the DNA precipitated by 

mixing with cold ethanol and a high sodium chloride salt buffer. The positively charged sodium ions 

interact with the DNA negative phosphate backbone disrupting the electrostatic interactions that 

occur between the DNA phosphate back bone and the water molecules. The added ethanol reduces 

the dielectric constant facilitating the salts neutralisation of the DNA phosphate backbones charge 

causing its precipitation from solution.  

 

2.20.3 Protocol 

The 300µl of immunoprecipitated DNA was diluted with ChIP elution buffer to a volume of 500µL in 

1.5ml DNA low bind tubes and phenol:chloroform:isoamyl alcohol solution (supplied as a ratio of 

25:24:1) added in a 1:1 ratio. The solution was mixed vigorously for 30 seconds, left at room 

temperature for 5 minutes before being centrifuged at 12,000xg for 10 minutes at room 

temperature. The aqueous phase containing DNA was collected without disturbing the interphase or 

organic phase, was then mixed in a 1:1 ratio with chloroform and again vigorously mixed. The 

mixture was centrifuged at 4°C 12,000xg for 10 minutes to separate into aqueous-, inter- and organic 
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phases. The collected aqueous phase was collected then mixed with 100% ethanol at a ratio of 

1:1.75, 200mM sodium chloride (NaCl) and linear acrylamide. The mixture was incubated at -20°C 

overnight and then centrifuged at 14,000xg for 30 minutes at 4°C to pellet the DNA. The supernatant 

was then removed and the pellet washed with 70% ethanol to remove any salt and dried in a vacuum 

centrifuge. The pellet was then re-suspended in a Tris-HCl low EDTA buffer (to prevent any 

interference with subsequent qPCR analysis) and quantified spectrophotometrically using a 

Nanodrop.    

 

2.21 Agarose gel visualisation of sheared DNA 

 

2.21.1 Materials and reagents 

Agarose powder (Sigma-Aldrich, UK), Tris-acetate-EDTA (TAE) buffer (40mM Tris, 20mM acetic acid 

and 1mM EDTA (pH8.0)), ethidium bromide solution (10mg/ml), gel casting tray, gel combs, 

electrophoresis tank, electrophoresis power pack, 6x DNA loading buffer and 500bp DNA ladder 

(Thermo-Scientific, UK) 

 

2.21.2 Protocol 

Agarose gels were made by resuspending 1%w/v of agarose powder in TAE buffer, the agarose was 

dissolved by heating in a microwave. The solution was mixed after every 30 seconds of microwaving 

until the agarose was completely melted and homologous. The solution was left to cool until the 

beaker could be held without burning, after which an ethidium bromide solution was added to a final 

concentration of 0.5µg/ml. The solution was mixed to completely disperse the added ethidium 

bromide and the gel poured into a casting tray to a thickness of approximately 5mm with an inserted 

10 well comb. The gel was left until it had completely set and then placed into the electrophoresis 

chamber with the wells placed towards the negative (cathode) end. TAE buffer was poured into the 

electrophoresis chamber to cover the gel and the combs gently removed. 

The extracted DNA was mixed with 6x DNA loading buffer (Thermo Scientific, UK) in a 1:5 ratio. A 

500bp DNA ladder (5µl) was added to the first well and to the subsequent wells the prepared DNA 

samples (10µl) were added. The DNA was separated by applying 100V to the gel for approximately 2 

hours. The gel was removed from the electrophoresis tank and the separated DNA visualised on a UV 

light box.   
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3 Reversibility of obesity induced miRNA expression in response to bariatric 

surgery 
 

3.1 Preface 

 

This chapter describes an investigation into the effects of bariatric surgery on obese individuals’ 

monocyte microRNA expression profiles relative to those from healthy, non-obese control subjects. 

This was done in order to assess the reversibility of miRNA expression profiles associated with 

obesity and whether bariatric surgery would normalise expression of dysregulated miRNAs. Blood 

samples were collected from patients awaiting bariatric surgery and follow-up samples were taken 3 

months and 1 year post-surgery; samples were collected from control individuals at matching time 

points. The monocyte population was isolated from the collected blood samples and lysed for RNA 

extraction miRNA expression being subsequently assessed by microRNA microarrays.  

 

3.2 Introduction 

 
Many studies have determined that a number of microRNAs are dysregulated in response to obesity 

and diabetes (Baldeon, Weigelt et al. 2015, Li, Zhou et al. 2015). A number of these are postulated to 

contribute to the development of obesity associated chronic inflammation and insulin resistance 

(Williams and Mitchell 2012, Deiuliis 2015). Due to the increased prevalence of obesity and an 

increased evidence base supporting its use, bariatric surgery is becoming a more commonly 

employed means of treating obesity. Bariatric surgery describes a range of surgical procedures 

performed on patients with obesity with the aim of causing weight reduction. Guidelines set out by 

the National Institute for Health and Care Excellence (NICE) state that bariatric surgery should be 

available for individuals with a body mass index (BMI) greater than 35 who have failed to lose weight 

through medical weight loss programs. Recent additions (November 2014) to the NICE guidelines 

state that obese individuals (BMI > 30) with recently diagnosed type 2 diabetes should receive 

expedited assessment for bariatric surgery. The evidence base in support of bariatric surgery as a 

weight loss measure has grown substantially in recent years with it now being seen as an effective 

means of treating obesity and its associated co-morbidities, especially type 2 diabetes (Sjostrom, 

Narbro et al. 2007, Brethauer, Aminian et al. 2013). Bariatric surgery has also been shown to be more 

effective than conventional weight loss methods at reducing weight, improving mortality and also 

being more effective at improving glycaemic control during type 2 diabetes than currently prescribed 

medication (Mingrone, Panunzi et al. 2012, Schauer, Kashyap et al. 2012).  A study following the 
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progress of obese individuals treated with conventional weight loss methods against those who 

received bariatric surgery found that the individuals receiving bariatric surgery lost 16.1% of their 

body weight compared to the obese individuals who received the conventional weight loss methods 

gained 1.6% over the 10 year period (Sjostrom, Lindroos et al. 2004). A meta-analysis of 5000 obese 

patients with type 2 diabetes who received bariatric surgery found that 76.8% achieved full diabetic 

remission and 86% either achieved full diabetic remission or significantly improved glycaemic control 

(Buchwald, Avidor et al. 2004). Bariatric surgery also reduced some markers of obesity induced 

inflammation including plasma CRP, IL-6 and TNFα (Netto, Bettini et al. 2015). However adequate 

weight loss in response to bariatric surgery is not always achieved. Over a 10 year period after 

bariatric surgery 20.4% of morbidly obese patients and 34.9% of super morbidly obese patients failed 

to lose the amount of weight for the surgery to be deemed successful (Christou, Look et al. 2006).  

Cellular ageing is a complex process which is strongly linked to inflammation. The inflammaging 

model of cellular ageing proposed by Franceschi, Bonafe et al. (2000) suggests that the ageing 

phenotype is caused by the accumulation of damage from a multitude of stresses such as reactive 

oxygen species (ROS) produced as a consequence of normal cellular metabolism, exposure to U.V 

radiation and bacterial and viral infections. Stressed cells employ several adaptive mechanisms such 

as DNA repair pathways, organelle autophagy, reducing agents such as glutathione and inflammatory 

responses. It is believed that over prolonged exposure to these stresses, the cells become less 

capable of adequately repairing this damage leading to cellular ageing. Recent studies have 

highlighted a link between obesity and accelerated ageing, potentially mediated through 

inflammation. miR analysis during ageing has highlighted a number of regulatory sequences that are 

in common with those seen in obesity. It is not known whether any of the age- and obesity-

associated miR changes can be reversed nor whether this improves health outcomes.   

Although bariatric surgery has been proven in the majority of cases to be an effective method of 

reducing weight, inflammation and insulin resistance, only a handful of studies have assessed its 

ability to reverse obesity-induced microRNA dysregulation. Continued microRNA dysregulation could 

result in individuals continuing to be at a higher risk of developing insulin resistance and co-

morbidities associated with increased inflammation post bariatric surgery. This could impair the 

effectiveness of bariatric surgery as a method of weight reduction and patient outcome. Assessment 

of patients’ miR profiles prior to surgery may also give an indication as to how successful surgery may 

be for them in the long term. 
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3.2.1 Aims and objectives 

 
The aims of the research presented within this chapter were to assess whether obesity would result 

in the dysregulation of microRNAs associated with monocyte function and whether weight loss 

induced by bariatric surgery would result in the reversal of any observed changes in microRNA 

expression.  

 

The objectives were to assess monocyte miR expression of obese individuals prior to bariatric surgery 

relative to healthy controls, in order to determine miRs dysregulated in response to obesity and if 

surgery would reverse dysregulated microRNAs. To achieve this, whole blood samples were taken 

from obese individuals awaiting bariatric surgery, 3 months and 1 year after receiving bariatric 

surgery and from control individuals at corresponding time points. From these whole blood samples 

the monocytes were isolated, lysed and the RNA extracted. The RNA extracted at these time points 

was assessed for microRNA expression by microarray analysis to determine obesity induced changes 

and if bariatric surgery would reverse these changes.  
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3.3 Methods 

 

3.3.1 Patient sample collection and clinical values 

A total of ten obese individuals awaiting bariatric surgery were recruited from Heartlands Hospital, 

Birmingham, by Dr Srikanth Bellary, a consultant physician in diabetes and endocrinology. Whole 

blood samples (30ml) were collected by venepuncture into potassium EDTA evacuated collection 

tubes from the patients by a clinician. The patients’ blood samples were assessed for HbA1c, total 

cholesterol, HDL and LDL cholesterol (table 3.2). A total of six healthy control individuals were 

recruited from staff and student volunteers at Aston University and 30ml whole blood collected by 

venepuncture. The whole blood samples were collected and the monocytes isolated as described 

previously (methods chapter; 2.13). Approximately 1.5 million monocyte cells were extracted and 

lysed in a phenol based lysis regent (Trizol; Qiagen, UK). The RNA was extracted using spin columns 

as described previously (methods chapter; 2.16) and RNA integrity and concentration was assessed 

using a Bioanalyzer (Agilent, UK).  

 

The control and obese individuals’ clinical values were statistically compared by unpaired t-test to 

determine statistical significant differences between these groups of individuals. The obese 

individuals had significantly higher levels of plasma glucose and HbA1c although surprisingly they had 

comparable values for total, HDL and LDL cholesterol. The reason for this may be due in part to 

medication, lipid uptake inhibitors (Orlistat) and statins (Atorvastatin, Simvastatin) a number of the 

obese individuals were prescribed. A number of the obese individuals were also prescribed anti-

hyperglycaemic medications such as Metformin, Liraglutide, Sitagliptin and Novorapid, which may 

also have reduced the observed differences in plasma glucose and HbA1c values. The clinical values 

of the obese individuals at the baseline time-point and the 1 year follow-up time-point were also 

compared to determine changes occurring as a result of the bariatric surgery. Although plasma 

glucose and HbA1c concentration had decreased by the 1 year post surgery time-point the change 

was not determined to be statistically significant. 
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Significance was determined by unpaired t-test. Comparisons were made between the clinical data from the control 

individuals and from the obese individuals at baseline or the 1 year post surgery time-point whereby significant 

differences are denoted by (*), (**) and (***) representing p<0.05, p<0.01 and p<0.001 respectively. Comparisons 

were also made between the clinical data values from the obese individuals at the baseline time point with the 

values from the obese individuals at the 1 year post surgery time point whereby significant differences are denoted 

by (†), (††) or (†††) representing p<0.05, p<0.01 and p<0.001 respectively. 

Table 3.1: Participant gender and age information 

 

 

 

 

 

 

Table 3.2: Clinical values of obese individuals at baseline and 1 year post surgery time points 

 

Control individuals Obese individuals 

 

1 year time point Baseline 
1 year post surgery 

follow-up 

Average weight (kg) ~ 144.79 ± 35.91 119.22 ± 28.15 

Average BMI ~ 53.15 ± 10.16 43 ± 8.45 (†) 

HbA1c (%) 4.96 ± 0.51 7.02 ± 1.51 (*) 6.56 ± 1.78 

Glucose (mmol/L) 5.34 ± 0.83 8.59 ± 2.19 (*) 7.87 ± 2.19  

Cholesterol (mmol/L) 4.54 ± 1.07 4.6 ± 0.97 4.25 ± 1.17 

HDL (mmol/L) 1.11 ± 0.50 1.03 ± 0.33 1.13 ± 0.25 

LDL (mmol/L) 3.21 ± 0.80 3.06 ± 1.21 2.59 ± 1.08 

 

 

 

 

 

 

3.3.2 Isolation of primary monocytes 

Described in detail in Chapter 2, Materials and methods, Section (2.3) 

 

3.3.3 Determination of extracted RNA integrity and concentration using an Agilent Bioanalyzer  

3.3.3.1 Materials and reagents 

Agilent RNA 6000 nano kit (supplies: RNA nano chips, RNA ladder, RNA Dye concentrate, RNA nano 

marker and RNA nano gel matrix), nuclease free water, Agilent chip priming station, syringe, spin 

filters, Agilent 2100 bioanalyzer. 

 

  Bariatric participants Control participants 

Number 10 6 

Sex m= 4; f= 6 m= 2; f= 4 

Average age 46.1 ± 12.66 41.5 ± 16.02 
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3.3.3.2 Background 

The integrity and concentration of the extracted RNA samples were assessed through the use of an 

Agilent bioanalyzer. The bioanalyzer uses 16 well chips through which an electrophoresis gel 

containing a RNA specific dye has been included. This allows the RNA samples to be separated by 

electrophoresis providing quantification of RNA against markers and visualisation of RNA 

degradation.  

 

3.3.3.3 Protocol 

The supplied RNA nano gel matrix and RNA nano dye concentrate were equilibrated to room 

temperature for 30 minutes prior to use. The RNA gel matrix was filtered by adding 550µL of gel 

matrix to a spin filter and centrifuging at 1500xg for 10 minutes. The RNA nano dye concentrate was 

vortexed for 10 seconds prior to the addition of 1µL to 65µL of the filtered gel matrix. The gel-dye 

mixture was vortexed to ensure mixing and centrifuged at 13,000xg for 10 minutes at room 

temperature. The gel-dye mixture was loaded onto a supplied RNA nano chip which was sealed 

within the Agilent chip priming station, a syringe was fitted onto the chip priming station and the 

syringe plunger pressed down to pressurise and distribute the gel-dye matrix throughout the chip. 

5µL of supplied RNA nano marker was added to the wells. An RNA ladder (1µL) was added to a 

designated well on the chip. The samples were denatured by heating at 70°C for 2 minutes and 1µL 

of each sample loaded onto the chip. The chip was placed horizontally onto a vortexer chip adaptor 

and vortexed for 60 seconds. The chip was inserted into the Agilent 2100 bioanalyzer and the sample 

RNA concentration and quality analysed. 

 

 

3.3.4 microRNA microarray 

3.3.4.1 Materials and reagents 

Agilent technologies human miRNA microarray chips (8x60K) (included: calf intestinal phosphatase, 

10x calf intestinal phosphatase buffer, T4 ligase, 10x T4 ligase buffer, cyanine 3-pCp, labelling spike in 

solution, hybridisation buffer, hybridisation spike in solution, DMSO, Dilution buffer, gene expression 

blocking agent, gene expression wash buffer 1 and 2), Hybridisation chamber and gasket slides, 

hybridisation oven with rotators, heat block. 
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3.3.4.2 Background 

The concept, principles and protocols of microarrays were first conceived by Tse Wen Chang (1983) 

who described the use of antibody microarrays for proteomic analysis. Many varieties of microarrays 

exist allowing high throughput detection of a variety of substrates such as DNA, proteins or 

microRNAs. Microarrays consist of an array fixed to a solid substrate such as a glass slide; the 

microarray chips have complementary sequences or substrates bound to them which allow the 

binding of fluorescently tagged analytes of interest. MicroRNA microarrays for example are coated 

with RNA sequences complementary for the microRNAs being assessed. The microRNAs are 

fluorescently coated prior to hybridisation to the microarray. The arrays are washed to remove 

unbound microRNA and the array assessed by an array reader; bound microRNAs will produce a 

fluorescent signal. Each microRNA has several potential binding sites on the array so the array can 

give an indication of relative quantity of miRNA present in the sample compared to control samples.  

 

3.3.4.3 Protocol 

MicroRNA (miR) microarray analysis requires (a) preparation of the miR sample, (b) fluorescently 

labelling the miR, (c) vacuum drying the samples, (d) incubating the labelled miR with the array for 

hybridisation of the sample with immobilised probes, (e) washing the array slides and finally (f) 

quantitating the array fluorescence.  

The extracted RNA samples prior to preparation were quantified and the quality assessed using an 

Agilent Bioanalyzer. The RNA samples were diluted to a concentration of 50ng/µL in nuclease free 

water. The samples were dephosphorylated by incubating 2µL (100ng) of RNA with 0.5µL supplied 

calf intestinal phosphatase (CIP), 0.4µL 10x CIP buffer and 1.1µL labelling spike in solution. The 

samples were dephosphorylated in order to remove the miR 5’ phosphate groups. The labelling spike 

in solution controls for errors occurring as a result of the miR fluorescent dye labelling process. The 

RNA-CIP solution was incubated at 37°C for 30 minutes in a heat block to facilitate 

dephosphorylation. The samples were denatured to prevent miR self-annealing by treating with 

2.8µL DMSO and incubating at 100°C for 10 minutes. The samples were immediately transferred to 

an ice bath to prevent the miRNA from re-annealing. The dye cyanine 3-cytidine bisphosphate (3-

pCp) was then ligated to the 3’ end of the miR within the samples. The samples were treated with 

4.5µL of a ligation mastermix from supplied reagents including, 1µL 10x T4 RNA ligase buffer, 3µL 

cyanine 3-pCp and 0.5µL T4 RNA ligase. The samples were incubated for 2 hours at 16°C. The labelled 

miR samples were dried over a 3 hour period using a vacuum centrifuge set to 50°C. This was done in 

order to remove the DMSO from the sample which could adversely interfere with the hybridisation 
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of the miR to the microarray. The dried samples were resuspended in 17µL of nuclease-free water. 

To each sample a supplied 10x gene expression blocking agent (4.5µL), 2x hybridisation buffer 

(22.5µL) and hybridisation spike in solution (1µL) was added. Addition of the hybridisation spike-in 

solution controlled for any processing errors occurring during the hybridisation step. The samples 

were incubated for 5 minutes at 100°C followed by 5 minutes in an ice bath. The samples were 

pipetted onto individual chambers of an eight chamber Agilent gasket slide. The gasket slide was 

then sandwiched together with the microarray slide and inserted into a clasp assembly to hold the 

two together. The slides were incubated for 20 hours at 55°C in an incubator to allow hybridisation of 

the labelled miR to the microarray slide. The slides were removed from the incubator and submerged 

in the supplied gene expression wash buffer 1 (supplemented with 0.005%v/v triton X-102). The 

submerged slides were prised apart and the microarray slide transferred and submerged in fresh 

gene expression wash buffer 1 (0.005%v/v triton X-102) and incubated for 5 minutes. The microarray 

slides were transferred and submerged in the provided gene expression wash buffer 2 (preheated to 

37°C prior to use) and incubated for 5 minutes. The slides were removed from the wash buffer and 

allowed to dry prior to placing them in an Agilent microarray slide holder which was subsequently 

inserted and analysed using an Agilent high-resolution scanner (G2505C). 

 

3.3.5 MicroRNA microarray data analysis  

The microarray data was uploaded into Genespring software where it was normalised using a 

quantile normalisation method. The array manufacturer, Agilent, recommends normalising to the 

90th percentile, however, many publications have shown quantile normalisation to be the better 

normalisation method (Pradervand, Weber et al. 2009). Subsequent to quantile normalisation the 

data was baseline-normalised to the mean of all samples. The microarray produced a signal from 

1398 different immobilised entities. This list was filtered on entities detected in 100% of samples in 

all 6 of the conditions (bariatric baseline, bariatric 3 month post-surgery, bariatric 1 year post-

surgery, control baseline, control 3 month post-surgery and control 1 year post surgery) resulting in a 

list of 132 entities. These entities were analysed by volcano plot using a moderated T-test 

(ElSharawy, Keller et al. 2012), Benjamini Hochberg FDR (false detection rate) multiple comparison 

test (Benjamini and Hochberg 1995, ElSharawy, Keller et al. 2012). Entities were selected for further 

analysis based on a p value of less than 0.05 and a fold change difference of greater 2.0. Comparisons 

using the volcano plot were made to analyse statistical significance between bariatric baseline 

samples and control baseline samples in order to determine the differences in miR expression caused 

by obesity.  
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3.3.6 Identification of potential target mRNAs and subsequent pathway analysis 

Messenger RNA (mRNA) interaction targets of identified miRs were assessed through searching 

several online databases, miRTarBase, StarBase, miRecords, human Targetscan and through 

Ingenuity pathway analysis software. These databases were searched for experimentally validated 

mRNA targets of identified miRNAs. Experimentally validated miRNA targets were chosen for further 

study to assess as searching for predicted targets of miRNAs based on sequence complementarity 

can yield a large number of predictions. The lists of experimentally-validated target mRNAs were 

uploaded into Ingenuity pathway analysis software which attempts to place the targeted mRNAs into 

known pathways in order to predict affected pathways. 

 

 

3.3.7 Statistical analysis 

The results produced from the microRNA microarrays was analysed using a statistical software 

package called Genespring. The produced data was normalised using a quantile normalisation 

method to reduce inter-array variation. The microarrays produced miRNA expression data on 1368 

individual miRNAs. This data was first filtered by the miRNAs detectable in all of the six conditions 

assessed (Bariatric and control samples at baseline, 3 month follow-up and 1 year follow-up) leaving 

a total of 132 miRNAs. The miRNA expression of the bariatric baseline and control baseline samples 

were compared by volcano plot testing significance with a moderated t-test and determining miRNAs 

with a fold change of greater than or equal to 2.0. The miRNA expression of the bariatric baseline and 

bariatric one year follow-up samples were compared by volcano plot testing significance with a 

moderated t-test and determining miRNAs with a fold change of greater than or equal to 2.0. These 

comparisons were also compared using a Benjamini Hochberg multiple comparisons testing to 

attempt to eliminate false detection of significant changes. 
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3.4 Results 
 

3.4.1 Analysis of microRNA microarray  

The Volcano plots compared miRNA expression of monocytes between the bariatric and control 

participants at the baseline time point (figure 3.4.1, a.)) and between the bariatric baseline and 

bariatric 1 year follow up time points (figure 3.4.1, b.)). These comparisons were made in order to 

attempt to determine the differences in monocyte miRNA expression occurring as a result of obesity 

and in response to the weight reduction surgery within the bariatric individuals (figure 3.4.1, a.) and 

b.)). Comparisons made between the bariatric and control baseline samples did not identify any 

entities that fitted within the criteria of a p < 0.05 and a fold change difference > 2.0. However 

comparisons made between the bariatric baseline and the bariatric 1 year follow-up samples 

identified 15 entities that fitted the aforementioned inclusion criteria. Some of these entities, 

however, appeared to be changing over time in the control subjects between the baseline and 1 year 

follow-up time points. To measure the difference occurring independent of the observed change 

over time, fold change differences between the bariatric baseline, 3 month follow-up and 1 year 

follow-up samples were compared with their respective control sample time points (table 3.3). The 

expression of four of the entities listed in table 3.3, EBV-miR-BART12, hsa-miR-1202, hsa-miR-1260a 

and hsa-miR-3162-5p, appeared to change over time rather than in response to bariatric surgery or 

weight reduction.  Comparisons in the fold change of expression of these miRs between the bariatric 

samples and the control samples at corresponding time points indicated very low fold change 

differences in expression. This suggests that the expression of these miRs changed to the same 

degree in the control samples over the 1 year time course as was observed between the bariatric 

baseline and bariatric 1 year follow-up samples. Eight of these miRs, hsa-miR-130a-3p, hsa-miR-146a-

5p, hsa-miR-151a-5p, hsa-miR-199b-5p, hsa-miR-2861, hsa-miR-424-5p, hsa-miR-582-5p and hsa-

miR-638 appeared to have a greater fold change difference between the bariatric and control 

samples at the baseline time point. These observed differences were seen to be reduced when 

comparing the fold change differences between the bariatric and control samples at the 1 year 

follow-up time point. This suggests that expression is returning towards control levels in response to 

the weight reduction surgery. One of these entities, hsa-miR-199a-3p showed no difference in 

expression between the bariatric and control at baseline, although at the 3 month and 1 year follow-

up expression was reduced when fold change difference was compared to the respective control 

samples (table 3.3). Hsa-miR-126-3p, initially showed no difference in expression between bariatric 

and control samples at baseline. However, comparisons in fold change of expression between the 

bariatric and control samples at the 3 month follow-up time point showed the bariatric individuals to 
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have reduced expression relative to the control samples with the fold change difference in 

expression returning to control levels by the 1 year follow-up time point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b.) a.) 

Figure 3.4.1: Comparisons between bariatric baseline and control samples (a.), and bariatric baseline and bariatric 
one year follow-up samples (b.) in order to determine microRNAs with a p-value ≤0.05 and a fold change difference 
≥2.0. 

The microRNA microarray results were analysed by volcano plot to determine statistical significance and fold change 
differences between two of the six experimental conditions. Significance was determined using a moderated T-Test 
and Benjamini Hochberg multiple comparison test. Entities were selected based on a P values of ≤0.05 and a fold 
change difference of ≥2.0 and denoted on the volcano blot by a red square. Comparisons were made between the 
control baseline and bariatric samples a.) and the bariatric baseline and the bariatric one year follow-up samples b.).  
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Table 3.3: List of miRNA entities determined to have a p-value <0.05 and Fold change >2.0 between Bariatric baseline and one year follow-up samples. 

 
 
 
 

systematic name 

Fold change difference, 
Bariatric baseline and 
Bariatric 1 year follow-
up 

p-value 
Fold change difference, 
Bariatric baseline vs 
Control baseline 

Fold change difference, 
Bariatric 3 month follow-up 
vs Control 3 month follow-
up 

Fold change difference, 
Bariatric 1 year follow-up 
vs Control 1 year follow-up 

ebv-miR-BART12 2.58 0.001 1.11 1.08 1.12 

hsa-miR-1202 3.16 0.001 1.10 1.01 1.03 

hsa-miR-126-3p 4.54 0.004 -1.07 -1.53 -1.05 

hsa-miR-1260a 3.02 0.001 1.01 1.13 -1.09 

hsa-miR-130a-3p 2.80 0.015 -1.28 -1.28 -1.07 

hsa-miR-146a-5p 3.14 0.006 -1.69 -1.61 -1.04 

hsa-miR-151a-5p 3.96 0.004 -1.44 -1.54 -1.08 

hsa-miR-197-3p 2.09 0.002 -1.16 -1.01 -1.04 

hsa-miR-199a-3p 2.42 0.022 1.03 -1.25 -1.23 

hsa-miR-199b-5p 2.39 0.007 1.37 1.22 -1.07 

hsa-miR-2861 5.33 0.005 -1.83 1.23 1.25 

hsa-miR-3162-5p 2.66 0.005 -1.02 1.07 1.01 

hsa-miR-424-5p 2.18 0.015 1.72 1.63 -1.03 

hsa-miR-582-5p 2.07 0.010 1.78 1.10 -1.33 

hsa-miR-638 4.66 0.003 -1.62 -1.53 1.20 
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Figure 3.4.2: Line graphs displaying relative expression of microRNAs identified by volcano plot comparison of 
microRNA expression of bariatric baseline and one year follow up samples having a p value of ≤0.05 and a fold 
change difference of ≥2.0 (figure 3.4.1, b.). 

Each line graph represents the relative microRNA expression as determined by microarray, of the control and 

bariatric samples at the baseline, three month and one year follow up time points. 

 

hsa-miR-130a-3p hsa-miR-146a-5p 

hsa-miR-199b-5p hsa-miR-151a-5p 

hsa-miR-2861 

hsa-miR-638 hsa-miR-582-5p 

hsa-miR-424-5p 
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3.4.2 Ingenuity pathway analysis of experimentally observed miRNA target mRNA for the 

determination of canonical pathways and upstream regulators   

 

Each individual miR can potentially influence the expression of hundreds of mRNA targets (Lim, Lau 

et al. 2005). Many online databases exist which catalogue validated miR target mRNAs or can predict 

based on miR sequence their potential mRNA targets. A number of miR target databases 

(miRTarBase, starBase, miRecords and human Targetscan) were examined to determine the 

experimentally validated miR target mRNAs. A summary of the number of validated mRNA targets for 

each of the eight miRNAs and the database sources are listed in table 3.4 and the full list is available 

in the appendix, 8.3. The experimentally validated miR target mRNA were inputted into Ingenuity 

pathway analysis software to determine potential common pathways being affected by the altered 

miRs. The pathway analysis software generated a number of common pathways based on the 

uploaded list of experimentally validated target mRNAs. The software generates the pathways based 

on the degree of overlap between the miR target mRNA uploaded against the known mRNA in the 

specific pathway. The software determines this as a degree of overlap and uses a Fisher’s exact test 

which applies a value of probability to each pathway. The generated pathways have been ordered by 

p-value and are listed in table 3.5. A number of inflammatory signalling pathways were identified by 

the pathway analysis including: IL-6 and IL-10 signalling, toll like receptor signalling, acute phase 

response signalling, NF-κB signalling. 
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Table 3.4: Table displaying number of experimentally observed mRNA targets of selected miRNAs (full list of mRNA targets listed in appendix 8.3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

systematic name 
Number of experimentally validated 

mRNA targets 
Sources 

hsa-miR-130a-3p 9 TargetScan Human,miRecords, miRTarBase, Ingenuity Expert Findings 

hsa-miR-146a-5p 77 TargetScan Human,miRecords, miRTarBase, Ingenuity Expert Findings 

hsa-miR-151a-5p 4 miRTarBase 

hsa-miR-199b-5p 7 TargetScan Human,miRecords, miRTarBase, Ingenuity Expert Findings 

hsa-miR-2861 1 (Li, Xie et al. 2009), (Fischer, Paul et al. 2015) 

hsa-miR-424-5p 187 TargetScan Human,miRecords, miRTarBase, Ingenuity Expert Findings 

hsa-miR-582-5p 1 miRTarBase 

hsa-miR-638 1 miRTarBase 
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Table 3.5: Canonical pathways determined by ingenuity pathway analysis of experimentally observed miRNA mRNA 
targets 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Ingenuity Canonical Pathways   p-value 

Role of Macrophages, Fibroblasts and 

Endothelial Cells in Rheumatoid Arthritis 3.06E-19 

IL-6 Signalling 1.45E-18 

IL-10 Signalling 2.45E-17 

Toll-like Receptor Signalling 4.06E-17 

PPAR Signalling 2.97E-15 

p38 MAPK Signalling 7.94E-13 

Dendritic Cell Maturation 6.31E-13 

Hepatic Fibrosis / Hepatic Stellate Cell 

Activation 6.31E-13 

Altered T Cell and B Cell Signalling in 

Rheumatoid Arthritis 3.16E-13 

Communication between Innate and 

Adaptive Immune Cells 1.58E-13 

Acute Phase Response Signalling 1.58E-13 

NF-κB Signalling 1.26E-13 

Role of Osteoblasts, Osteoclasts and 

Chondrocytes in Rheumatoid Arthritis 7.94E-12 

Hepatic Cholestasis 7.94E-12 

Pancreatic Adenocarcinoma Signalling 1.00E-11 

Colorectal Cancer Metastasis Signalling 3.63E-10 

IL-8 Signalling 3.39E-10 

iNOS Signalling 3.24E-10 

Cholecystokinin/Gastrin-mediated 

Signalling 1.10E-10 

LXR/RXR Activation 1.07E-10 
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3.4.3 Ingenuity pathway analysis of predicted miRNA target mRNA for the determination of 

canonical pathways and upstream regulators   

 
 
The miRNAs observed to be changing in response to bariatric surgery were uploaded into ingenuity 

pathway prediction software. The software contacts a number of different miRNA target prediction 

databases to determine potential mRNA targets. Predicted mRNA targets were placed into order of 

confidence and the top hundred chosen for each miRNA. The final list of 800 target mRNA was 

uploaded into Ingenuity pathway analysis software to determine the common pathways these target 

mRNA belong to. This was done in addition to examining the experimentally observed miRNA mRNA 

targets due to the inherent bias examining only the experimentally observed targets introduces. Only 

two of the examined miRNAs had over ten experimentally observed target mRNA which skews the 

pathway prediction towards the miR with the largest number of experimentally validated target 

mRNA. Also the majority of experimental work surrounding miRNAs has examined them with regards 

to the development of various cancers. This can also skew the pathway analysis software to select 

pathways related to cancer development. The results of inputting the top one hundred target mRNA 

for each miRNA identified a number of common pathways. This included a number of inflammatory 

signalling pathways: IL-6 signalling, IL-10 signalling, toll like receptor signalling, NF-kB signalling and 

acute phase response signalling. 
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Table 3.6: Table displaying the number of predicted mRNA targets of selected miRNAs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Systematic name 
Number of predicted 

mRNA targets 
Sources 

hsa-miR-130a-3p 100 Ingenuity Expert Findings, TargetScan Human, miRecords 

hsa-miR-146a-5p 100 Ingenuity Expert Findings, TargetScan Human, miRecords 

hsa-miR-151a-5p 100 Ingenuity Expert Findings, TargetScan Human, miRecords 

hsa-miR-199b-5p 100 Ingenuity Expert Findings, TargetScan Human, miRecords 

hsa-miR-2861 100 Ingenuity Expert Findings, TargetScan Human, miRecords 

hsa-miR-424-5p 100 Ingenuity Expert Findings, TargetScan Human, miRecords 

hsa-miR-582-5p 100 Ingenuity Expert Findings, TargetScan Human, miRecords 

hsa-miR-638 100 Ingenuity Expert Findings, TargetScan Human, miRecords 
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Table 3.7: Canonical pathways determined by Ingenuity pathway analysis of the top 100 predicted mRNA targets for each 
miR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Ingenuity canonical pathway p-value 

Role of Macrophages, Fibroblasts and 

Endothelial Cells in Rheumatoid Arthritis 

4.46E-18 

PPAR Signalling 4.83E-13 

IL-6 Signalling 5.54E-13 

Toll-like Receptor Signalling 4.81E-12 

IL-10 Signalling 3.16E-11 

Role of Osteoblasts, Osteoclasts and 

Chrondrocytes in Rheumatoid Arthritis 

4.37E-11 

Hepatic Fibrosis/Hepatic Stellate cell 

activation 

2.27E-09 

NF-kB Signalling 2.45E-09 

Altered T Cell and B Cell signalling in 

Rheumatoid Arthritis 

7.18E-09 

Molecular mechanisms of Cancer 1.06E-08 

p38 MAPK Signalling 1.32E-08 

Dendritic cell maturation 2.35E-08 

Acute Phase response signalling 4.96E-08 

Cyclins and cell cycle response 7.42E-08 

Hepatic Cholestasis 9.04E-08 

Communication between Innate and 

Adaptive Immune cells 

9.67E-08 

iNOS signalling 1.08E-07 

STAT3 Signalling 2.81E-07 

Activation of IRF by cytosolic Pattern 

recognition receptors 

3.87E-07 

Axonal guidance Signalling 5.32E-07 
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Significance was determined by unpaired t-test, whereby (*), (**) and (***) represents p<0.05, p<0.01 and 

p<0.001 respectively. 

 

3.4.4 The expression of miR-146a-5p and miR-424-5p was altered with increasing age 

 

Primary monocytes were taken as described previously from healthy midlife (>50 years old) and 

young (<30 years old) participants. These monocytes were lysed and total RNA extracted for analysis 

of the miRNAs 146a-5p and 424-5p. This was done in order to determine whether increased age 

would result in a similar expression pattern of these miRNAs as was observed between the 

individuals awaiting bariatric surgery and control individuals in figure3.4.3. Differences in age were 

selected due to the predisposition of increased age towards the development of diabetes and other 

complications in response to obesity.  

Participant blood glucose, total, HDL and LDL cholesterol was measured using a Reflotron clinical 

chemistry analyser as described previously in more detail (methods chapter, 2.14). Table 3.8 contains 

mean values ± the standard deviation. Significance in differences in resting blood glucose, total, HDL 

and LDL cholesterol between mid-life and young participants was determined by unpaired t-test. 

Total cholesterol and LDL cholesterol was determined to be significantly higher (p-values of 0.044 

and 0.021 respectively) in the mid-life participants compared to the young participants. 

The expression of the miRNAs 146a-5p and 424-5p in monocytes was assessed by qPCR as described 

previously (methods chapter, 2.18). Data was analysed using the comparative CT method and 

expressed as fold change difference in miRNA expression between younger and mid-life participants. 

Figure 3.4.4, a.) and b.) display expression of miRNA 146a-5p and miRNA 424-5p respectively. 

Expression of the miRNA 146a-5p was observed to be decreased in the mid-life individuals relative to 

the young participants. Expression of the miRNA 424-5p was observed to be increased in the mid-life 

individuals relative to the young participants. The expression patterns of these miRNAs follow a 

similar pattern of expression as was observed in figure 3.4.3 between individuals awaiting bariatric 

surgery and control individuals at the baseline time-point. 

Table 3.8: Clinical chemistry data of young and mid-life participants 

 Young participants 
(<30 years old) 

Mid-life participants 
(>50 years old)  

Average Age  28.33 ± 0.58  61.33 ± 8.14** 

Gender M=2, F=1 M=2, F=1 

Average resting glucose (mmol/L) ± SD 4.97 ± 0.39 5.25 ± 1.19 

Average Total cholesterol (mmol/L) ± SD 3.34 ± 0.17 5.12 ± 1.05* 

Average total HDL cholesterol (mmol/L) ± SD 0.84 ± 0.20 1.33 ± 0.64 

Average total LDL cholesterol (mmol/L) ± SD 2.33 ± 0.35 3.61 ± 0.50* 
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Figure 3.4.4: Increased age results in altered expression of the miRs 146a-5p and 424-5p 

Human primary monocytes were isolated from whole blood taken by venepuncture from healthy volunteers who were 

either <30 years old (young) or >50 years old (midlife) (table 3.8). The isolated monocytes were harvested by 

centrifugation, washed with PBS and lysed in Trizol reagent prior to RNA extraction. The total RNA was extracted by spin 

columns and the RNA quantity and quality assessed by nanodrop. The expression of the miRs 146a-5p a.) and 424-5p b.) 

were assessed by qPCR to determine if increasing age would change expression. The micro RNA miR-16 was used as a 

housekeeper gene, the results were analysed using the ΔΔCT method and expressed as fold change (±SE) relative to the 

young (<30 years old) participants’ expression. Significance was determined by unpaired t-test, whereby (*), (**) and 

(***) represents p<0.05, p<0.01 and p<0.001 respectively. 

a.) b.) 
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3.5 Discussion 

 

The microarray study of monocyte microRNA expression identified eight miRs that were significantly 

different with a fold change difference of >2.0 between the bariatric baseline and bariatric 1 year 

follow-up samples. This included the miRs: 146a-5p, 424-5p, 130a-3p, 199b-5p, 151a-5p, 2861, 582-

5p and 638. Comparisons in fold change difference in the expression of these miRs between the 

bariatric and control individuals identified the largest fold change difference to be occurring at the 

baseline time point. This fold change difference in miR expression between the bariatric and control 

individuals decreased at the 1 year post surgery time point. A number of these identified miR have 

either been reported in the literature as being dysregulated in response to obesity and T2 diabetes or 

have a functional role in the regulation of inflammatory signalling pathways.  

The reduced expression of miR-146a-5p in obese relative to control individuals reported within this 

thesis has been reported previously in individuals with T2 diabetes and obesity (Balasubramanyam, 

Aravind et al. 2011, Baldeon, Weigelt et al. 2014). miR-146a-5p has been shown to function as a 

negative regulator of TLR signalling by targeting and silencing IRAK1 and TRAF6 (Ho, Yu et al. 2014, 

Park, Huang et al. 2015). Increased expression of miR-146a-5p has also been observed to result in 

decreased expression of IL-6, IL-8, IL-1β and TNFα (Pauley, Satoh et al. 2008). A study by Yang, He et 

al. (2011) observed expression of miR-146a-5p in THP-1 monocytes and differentiated macrophages 

to be reduced in response to oxidised LDL. The authors identified overexpression of miR-146a in 

response to a miR-146a-5p mimetic to result in decreased monocyte and macrophage uptake of LDL 

and cholesterol suggesting miR-146a as a target of intervention in the prevention of atherosclerosis. 

In patients with T2 diabetes the expression of miR-146a-5p has been negatively correlated to insulin 

resistance, glycated haemoglobin, NF-κB mRNA levels and circulating levels of TNFα and IL-6 

(Balasubramanyam, Aravind et al. 2011).  

Expression of the miR-130a-3p was observed within this thesis to be decreased in the obese relative 

to the control individuals at the baseline time point (table 3.3). Decreased expression of miR-130a-3p 

has been reported previously in diabetic mice models where it was observed to result in impaired 

insulin signalling (Xiao, Yu et al. 2014). The authors showed that decreased expression of miR-130a-

3p resulted in increased expression of growth factor receptor-bound protein 10 (GRB10) which has 

been found previously to disrupt insulin signalling (Wang, Balas et al. 2007).  

Expression of miR-199b-5p was observed to be increased in the obese relative to the control 

individuals at the baseline time point (table 3.3). Expression of miR-199b-5p has been previously 

reported to be increased in diabetic cardiomyocytes (Greco, Fasanaro et al. 2012). Increased 



105 
 

expression of miR-199b-5p has been observed to negatively regulate SIRT1 expression (Saunders, 

Sharma et al. 2010). The protein deacetylase SIRT1 has been observed to both inhibit inflammatory 

signalling through NF-κB deacetylation (Yang, Zhang et al. 2012) and protect against high fat diet 

induced insulin resistance (Sun, Zhang et al. 2007).  

Expression of the miR-151a-5p was observed to be decreased in the obese relative to the control 

individuals at the baseline time point (table 3.3). Although this finding has not currently been 

reported in regard to obesity or diabetes, it has been observed to be significantly decreased in 

response to increased age in both humans and Rhesus monkeys  (Noren Hooten, Fitzpatrick et al. 

2013). The authors performed pathway analysis on miR-151a-5p predicted mRNA targets which 

identified miR-151a-5p to potentially be involved in regulation of TNFα and NF-κB signalling.  

Expression of miR-424-5p was observed to be increased in the obese relative to the control 

individuals at the baseline time point (table 3.3). Although expression of miR-424 has not at the time 

of writing been linked to obesity or diabetes, high expression has been observed to result in 

increased differentiation of monocytes to macrophages (Rosa, Ballarino et al. 2007) which has been 

suggested to play a role during development of atherosclerosis (Hulsmans, De Keyzer et al. 2011).  

Expression of miR-582-5p was observed to be higher and the miRs miR-638 and miR-2861 were 

observed to be lower in the obese relative to the control individuals at the baseline time point (table 

3.3). At present, very little work has been conducted on these miRs with each of them having only a 

single experimentally validated target mRNA. A number of these miRs appear to contribute to the 

development of obesity associated inflammation and could facilitate the development of associated 

complications.  

Expression of the miR-126-3p was observed to be increased in the obese relative to the control 

individuals at the 3 month post-surgery time point. The miR-126-3p has previously been reported to 

regulate angiogenesis (Wang, Aurora et al. 2008) and stimulate tissue repair by increasing 

recruitment of progenitor cells to the area of damage (Zernecke, Bidzhekov et al. 2009). The increase 

in miR-126-3p expression observed in the obese individuals 3 months post-surgery could be an 

attempt to promote tissue repair in response to surgery.  

The eight identified miR appearing dysregulated in response to obesity returned towards control 

levels of expression by the one year post surgery time point. Although research in this area is 

currently limited, a number of studies have sought to assess whether bariatric surgery would have an 

impact on miRNA expression. The current literature has assessed the effects of bariatric surgery on 

the presence of serum miRs (Lirun, Sewe et al. 2015, Wu, Li et al. 2015). Both of these studies 
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identified a number of miRs changing in response to surgery, however, there appears to be little 

consensus between the results. Between the two studies a total of 33 independent miRs were 

observed to change in response to surgery, however, only three of these were commonly identified 

between the two studies with one of these having the opposite response. This illustrates the need 

for further research in this particular field to strengthen the knowledge base. Of the miRs identified 

by these papers only two, miR-146a-5p and miR-151-5p were identified in the results presented in 

this thesis with miR-146a-5p having the opposite response to surgery. The differences observed 

between these results could be due to the location of miR analysis, with some of the differences 

representing monocyte specific changes. 

The experimentally validated and top one hundred predicted target mRNA for each miR were 

inputted into Ingenuity pathway analysis software. The experimentally validated and predicted target 

mRNA were identified to be involved in a number of inflammatory pathways including IL-6, IL-10 and 

toll like receptor signalling. These pathways have previously been reported to be present during 

obesity contributing to development of associated chronic inflammation and decreased insulin 

sensitivity. A number of studies have identified decreased secretion of the anti-inflammatory 

cytokine IL-10 (Manigrasso, Ferroni et al. 2005, Jung, Park et al. 2008, Paredes-Turrubiarte, Gonzalez-

Chavez et al. 2015), increased secretion of IL-6 (Kern, Ranganathan et al. 2001, Khaodhiar, Ling et al. 

2004) and increased toll like receptor induction of inflammatory cytokines (Tsukumo, Carvalho-Filho 

et al. 2007, Kim, Choi et al. 2012) during obesity. The miRs regulation of the target mRNAs involved in 

these pathways could potentially be contributing to the altered activity of these pathways in obesity.  

This study, through the use of microarrays, demonstrated a number of miR appearing dysregulated in 

monocytes in response to obesity. Over the course of a year post bariatric surgery, a number of these 

miRs returned towards control levels of expression. These results add to a currently limited 

knowledge base.  

 

Many theories have been suggested over the last 100 years to try to explain the process of cellular 

ageing. The rate of living hypothesis proposed by Raymond Pearl in 1928 suggested that a quicker 

basal metabolic rate results in decreased lifespan. Denham Harman built on this notion with the free 

radical theory of ageing which suggested that the by-products of metabolic activity such as the 

reactive oxygen species OH˙ and O-˙
2 results in cellular ageing. The mutation accumulation theory 

suggested by Peter Medawar in 1952 suggests that over the cause of the organism’s lifetime, 

mutations accumulate in the genome causing dysregulation of genes involved in ageing and 

development. The process of replicative senescence was first discovered by Hayflick and Moorhead 
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in 1961 who described that cells had a limited number of cell divisions called the Hayflick 

phenomenon. This effect has been explained as being caused by the shortening of telomeres that 

occurs with each cell division. Recently, the strong association between altered metabolism and 

inflammation has been highlighted as an important underpinning ageing mechanism. The expression 

of miR-146a-5p was observed to decrease and miR-424-5p increase in older relative (>50 years old) 

to younger individuals (<30 years old). Expression of miR-146a-5p has been reported previously to 

decrease in response repeated passaging of HUVEC cells to induce an ageing phenotype (Vasa-

Nicotera, Chen et al. 2011). Expression of miR-424-5p in bone marrow derived human mesenchymal 

stem cells aged through repeated passaging has been previously shown to increase (Yoo, Kim et al. 

2014). The change in expression induced by increased age in these miRs could contribute to the 

development of increased inflammation observed with increasing age (Jenny 2012). 

 

3.5.1 Strengths and limitations 

 
 
A limitation of the data reported within this chapter is that due to time constraints there has been no 

validation of the microarray results by an alternative method such as qPCR. A number of studies have 

shown good correlation between data obtained by microarrays and qPCR for miRNA analysis, 

although qPCR analysis of miRNA expression has been shown to be a more sensitive and specific 

method (Ach, Wang et al. 2008, Chen, Gelfond et al. 2009, Pradervand, Weber et al. 2010). Future 

work would seek to confirm the miR changes observed within this chapter by qPCR and could also 

seek to assess the effects of any confirmed dysregulated miR on mRNA expression. This could be 

assessed by whole transcriptome analysis performed using RNA sequencing or by targeted qPCR to 

assess the expression of specific miR target mRNA. The effects of the dysregulated miRs could also be 

determined in vitro experiments by transfecting isolated monocytes with miR mimetics or inhibitors 

and assessing the resulting response to a number of inflammatory or metabolic stimuli. 

 
A further limitation of the study presented within this chapter are as a result of the chosen monocyte 

isolation technique. The monocyte isolation procedure extracted only the “classical” Mon 1, CD14 

positive CD16 negative primary monocytes due to the removal of CD16 positive cells. The 

consequence of this is that miRNA expression of the CD16 positive monocyte Mon2 “intermediate” 

and Mon 3 “non-classical” subpopulations were not assessed. The loss of the Mon 2 “intermediate” 

population in particular is important due to its identified role as the more inflammatory 

subpopulation and due to the expansion of this population during obesity (Frankenberger, Sternsdorf 

et al. 1996, Belge, Dayyani et al. 2002, Cros, Cagnard et al. 2010, Poitou, Dalmas et al. 2011, Wong, 
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Tai et al. 2011). Due to this population being expanded during obesity it may be the monocyte 

population experiencing the largest changes in miRNA expression. 

Although there are some advantages to only assessing a single monocyte subpopulation. Each of the 

individual subpopulations have been shown to have unique gene expression profiles and role within 

the innate immune system (Wong, Tai et al. 2011), pooling the three populations together would 

potentially dilute any observable changes. An alternative method could have isolated both CD14 and 

CD16 positive monocyte populations and subsequently separated them by fluorescence-activated 

cell sorting (FACS) into each individual population for miRNA assessment.   
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4 Identifying mechanisms of inflammation during metabolic disturbances in 

treated THP-1 monocytes  
  

4.1 Preface 

The research presented in this chapter aimed to investigate whether acute treatment with high 

concentrations of glucose would elicit a pro-inflammatory response in monocytes and whether the 

mechanisms through which this occurs could be investigated in vitro. Treatments were performed 

using the THP-1 monocyte cell line. The monocytes were treated with up to 50mM D-glucose over 

either a 6 or 28 hour period and the effect of treatment on cytokine secretion in response to LPS 

assessed. Further experiments sought to explore the pathways through which glucose may modulate 

LPS induced cytokine secretion. This included assessment of intracellular NAD:NADH ratios, sirtuin 1 

deacetylase activity and acetylation status of the NF-κB P65 subunit.  

 

4.2 Introduction 

Increased availability of glucose present during type 2 diabetes and insulin resistance is associated 

with increasing pro-inflammatory cytokine secretion and monocyte recruitment to the endothelium 

and adipose tissue (Shanmugam, Reddy et al. 2003, Giulietti, van Etten et al. 2007, Nandy, 

Janardhanan et al. 2011, Tencerova, Kracmerova et al. 2015).  Primary monocytes isolated from 

individuals with either type 1 or type 2 diabetes were both shown to have higher mRNA expression 

of TNFα, IL-6, IL-1α and IL-8 compared to control participants (Giulietti, van Etten et al. 2007). This 

has also been observed following in vitro treatment of THP-1 monocytes with high concentrations of 

glucose over a 72 hour period (Shanmugam, Reddy et al. 2003). The authors observed increased 

mRNA expression of a number of inflammatory cytokines and chemokines including; TNFα, IL-1β and 

MCP-1.  

 

Cytokine expression is regulated at several levels; initial signalling through the MAPK cascade is 

amplified by intracellular ROS that inactivates protein tyrosine phosphatase 1B and amplifies the 

MAPK signal. At the transcriptional level, post-translational modifications to IKK, the inhibitor of NF-

κB, trigger release of active NF-κB which translocates to the nucleus whereas for STAT3, 

phosphorylation by JAK provides a regulatory nuclear localisation signal.  The consensus sequence 

transcription factor binding sites in the nucleus can undergo variable methylation which in turn, 

regulates transcription factor binding or RNA polymerase association. Translation of protein and 

maturation in the ribosome is dependent on functional endoplasmic reticulum. However, recent 

evidence suggests that hyperglycaemia causes endoplasmic reticulum stress in monocytes (Komura, 
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Sakai et al. 2010). Failure to fold proteins affects the processing of secretory proteins which may 

result in monocytes being more susceptible to apoptosis due to endoplasmic reticulum stress. 

Secretion of cytokines proceeds via different pathways; TNF is expressed on cell surface membranes 

where it is released by TACE, although the efficiency of this process differs between primary cells and 

THP-1 tumour cells (Moreira-Tabaka, Peluso et al. 2012). Secretion is also affected by osmotic 

pressure with an increase in secretion being reported after hypo-osmotic shock (Frenkel, Shani et al. 

2001). Many of the steps in the regulation of cytokine expression are likely to be sensitive to 

extracellular glucose concentration.  

 

Increased availability of glucose has been observed to alter the intracellular balance of NAD+: NADH 

leading to decreased NAD+ availability (Travis, Morrison et al. 1971, Nyengaard, Ido et al. 2004, Fulco, 

Cen et al. 2008). Increased glucose availability leads to glucose being shuttled through the polyol 

pathway which results in its conversion to sorbitol and subsequently to fructose via the aldose 

reductase (AR) and sorbitol dehydrogenase enzymes respectively. The AR enzyme has a relatively 

high Km for D-glucose (0.66 µm/l) which limits its ability to convert glucose to sorbitol at 

normoglycaemic concentrations (Inagaki, Miwa et al. 1982, Grimshaw 1986, Erbel, Rupp et al. 2016). 

Increased glucose availability during diabetes results in increased substrate for AR leading to 

increased conversion of D-glucose to sorbitol and fructose through the polyol pathway. This process 

utilises intracellular NAD+ leading to a reduction in the NAD+: NADH ratio (Sango, Suzuki et al. 2006, 

Takamura, Tomomatsu et al. 2008). Decreased availability of NAD+ limits the activity of NAD+-

dependent deacetylases such as SIRT1. SIRT1 has been identified to act as both a suppressor of 

inflammation and an insulin sensitizer in several tissue types. Endogenously formed fructose has 

been observed to be phosphorylated by fructose-3-phosphokinase at the C-3 position to produce 

fructose-3-phosphate, a glycating agent (Hamada, Araki et al. 1996). Fructose-3-phosphate degrades 

to produce 3-deoxyglucosone a highly reactive sugar which has been reported to crosslink proteins to 

produce advanced glycation end products (Kato, Hayase et al. 1989, Schalkwijk, Stehouwer et al. 

2004).    

Upon activation, the NF-κB complex translocates to the cell nucleus where it is acetylated by the 

protein acetyltransferase p300 and activated causing transcription of several genes responsible for 

the inflammatory response such as cytokine secretion (Vanden Berghe, De Bosscher et al. 1999, 

Mukherjee, Behar et al. 2013). SIRT1 binds to and deacetylates the P65 subunit of the NF-κB complex 

thereby preventing its acetylation and activation (Yeung, Hoberg et al. 2004).  
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In summary, a number of studies have assessed the effects of hyperglycaemia on monocyte 

inflammatory response in vitro and ex vivo, finding increased secretion of inflammatory cytokines 

(Hancu, Netea et al. 1998, Wu, Wu et al. 2009). At present, the majority of these studies have 

assessed chronic exposure to high concentrations of glucose (3 – 7 days) on monocyte inflammatory 

response. A number of mechanisms of glucose mediated inflammatory response have been 

identified from these chronic treatments. These include the generation of ROS and advanced 

glycation end products in response to increased glucose metabolism (Brownlee 2005). This is of 

relevance to pre-diabetes whereby individuals with reduced insulin sensitivity and glucose tolerance 

may suffer from very large, acute oscillations in post-prandial glucose concentrations. Investigating 

the effects of acute high glucose exposure may also allow the direct effects of glucose metabolism on 

inflammatory response to be assessed independent of increased advanced glycation end product 

formation and ROS generation. 

 

4.2.1 Aims and objectives 

The aims of the research presented within this chapter were to determine whether acute treatment 

with high concentrations of D-glucose would result in modulation of endotoxin induced inflammatory 

response and assess whether the THP-1 monocytic cell line could be used as a viable model of high 

glucose induced inflammation. 

The objectives were to identify whether treatment with high concentrations of D-glucose would 

modulate cytokine response to treatment with LPS and to identify potential mechanisms through 

which high glucose may lead to induction of an inflammatory response. 

  

 

 

 

 

 

 

 

 

 



112 
 

4.3 Materials and Methods 

 

4.3.1 Treatment of THP-1 monocyte with increased concentrations of glucose prior to 

inflammatory stimulation 

Prior to treatment, the THP-1 monocytes were harvested by centrifugation at 500xg for 5 minutes, 

the supernatant removed and the cells washed in glucose free RPMI media, supplemented with 10% 

FCS and 1% penicillin/streptomycin and pre-heated to 37°C. The cells were counted using trypan blue 

staining, centrifuged again and re-suspended in fresh glucose-free RPMI media. The THP-1 monocytes 

were loaded onto a 12 well plate at 1 x 106 cells/ml, 1ml per well. To these wells 1ml of pre-made 

glucose stock solutions of either 10mM D-glucose, 40mM D-glucose, 100mM D-glucose or 10mM D-

glucose with 90mM L-glucose was added and mixed by pipetting. Glucose stock solutions were made 

by addition of a glucose solution to glucose free RPMI media; the stock solutions were stored at 4°C 

and were kept for up to 1 week. This gave final glucose concentrations of either 5mM D-glucose, 

20mM D-glucose, 50mM D-glucose or 5mM D-glucose with 45mM L-glucose and a cell density of 5 x 

105 cells/ml in a 2ml volume. The treated cells were incubated at 37°C for a period of 4 hours 

subsequent to which either LPS (serotype- 0111:B4) or opsonised zymosan was added to a final 

concentration of 10ng/ml or 250µg/ml respectively. The cells were again incubated for a further 2 or 

24 hours after which supernatants, lysates and RNA were taken for further analysis. 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 4.3.1: Schematic of monocyte treatments. 

Figure displays the time-line of in vitro treatment of THP-1 monocytes with high concentrations of glucose. The THP-1 

monocytes were treated for a period of 4 hours with either 5mM D-glucose, 20mM D-glucose, 50mM D-glucose or 5mM D-

glucose with 45mM L-glucose. The cells were subsequently treated with LPS and incubated for a further 2 hours, 18 hours 

or 24 hours at which points samples were taken for analysis. 

LPS added 
Cells treated with; 5mM D-glucose, 

20mM D-glucose, 50mM D-glucose 

and 5mM D-glucose with 45mM L-

glucose 

Samples 

collected 

for analysis 

4 hours  Treatment start point 6 hours  28 hours  18 hours  

Samples 

collected 

for analysis 

Samples 

collected 

for analysis 
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4.3.2 Preparation of opsonised zymosan 

Opsonised zymosan was prepared by conjugating guinea pig complement (TCA Bioscience) to 

zymosan A (Sigma). Lyophilised guinea pig complement was reconstituted by dissolving in 20ml 

sterile filtered PBS prior to the addition of zymosan A. The mixture of complement and zymosan was 

heated at 37°C in a water bath for 1 hour with agitation to aid conjugation. Excess complement was 

removed by centrifuging the mixture at 1500xg, discarding the supernatant and replacing with fresh 

sterile PBS. Washing was repeated three times and the solution stored at 4°C and kept for up to one 

week before being discarded. 

 

4.3.3 Statistical analysis 

The data reported within this chapter has been expressed as the mean± the standard error of the 

mean (SEM) of a minimum of three independent experiments.  The data was collated using 

Graphpad software and statistically analysed by one-way analysis of variance (ANOVA) followed by 

Dunnett’s post-test comparing treatments against 5mM D-glucose treated cells. The significance is 

reported where the p-value is less than 0.05 denoted by *, >0.01 denoted by ** and >0.001 denoted 

by ***. 
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4.4 Results 

 

4.4.1 Treatment with increased concentrations of glucose with and without concurrent LPS 

treatment had no effect on THP-1 viability, determined by MTT assay and trypan blue 

counts 

 

THP-1 monocytes were treated with increased concentrations of glucose in order to determine any 

effect of treatment with or without LPS (10ng/ml) on cellular viability over a 28 hour period. Viability 

was determined subsequent to treatment by trypan blue staining and MTT assays as described 

previously (Methods chapter, sections; 2.2 and 2.3 respectively). This was done to determine whether 

treatment with glucose by itself or concurrent with LPS would result in cellular apoptosis. 

After 24 hour incubation with increased concentrations of glucose with or without LPS, MTT 

reduction was analysed. As a positive control for the MTT assay cells were treated with FCCP, a 

mitochondrial uncoupler, which will inhibit the cells’ ability to reduce MTT to formazan via 

mitochondrial reductases. Data are expressed as a percentage of the 5mM D-glucose treated cells. 

Figures, 4.4.1 a.) and b.) showed no decrease in cellular viability as a result of treatment with D-

glucose at concentrations ranging from 5mM -50mM or with 5mM D-glucose with 45mM L-glucose 

either in the presence or absence of LPS. 

Trypan blue staining was used to assess cellular viability in conjunction with MTT assays due to the 

MTT assay being a measurement of mitochondrial activity not a direct measure of cellular viability. 

THP-1 monocytes incubated with high concentrations of glucose in the presence or absence of LPS 

(figures, 4.4.1 c.) and d.) respectively) produced no significant change in the percentage of viable to 

dead cells. Total cell numbers were counted to determine whether treatment would result in a 

change in THP-1 monocyte proliferation. High concentrations of glucose in the presence or absence 

of LPS, figures, 4.4.1 e.) and f.) respectively, produced no change in the total number of cells. 
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c.) d.) 

e.) f.) 

a.) b.) 

Figure 4.4.1: Treatment of THP-1 monocytes with increased concentrations of D-glucose had no effect on 
cellular viability 

THP-1 monocytes were pre-treated with either 5mM D-glucose, 20mM D-glucose, 50mM D-glucose or 5mM D-

glucose with 45mM L-glucose for a period of 4 hours. Subsequent to this the cells were incubated for a further 24 

hours either with LPS (10ng/ml) (b.), d.), f.)) or without LPS (a.), c.), e.)). Cellular metabolic activity and viability 

was assessed by MTT assay (a.) and b.)) and trypan blue staining respectively. The trypan blue counts are 

expressed as a percentage of viable cells (c.) and d.)) and total cell number (e.) and f.)). Results are the mean of 3 

independent experiments (± the standard error of the mean). Significance was determined by ANOVA followed by 

Dunnett’s post-test comparing treatments to the 5mM D-glucose treated cells, whereby (*), (**) and (***) 

represents p<0.05, p<0.01 and p<0.001 respectively. 
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4.4.2 THP-1 monocytes treated with 50mM D-glucose remove significantly more glucose from 

the media than 5mM D-glucose-treated cells 

 

To investigate whether THP-1 monocytes consumed more glucose when incubated with higher 

extracellular glucose concentrations, monocytes were incubated in glucose-free RMPI media (10%v/v 

FCS, 1%v/v Pen/Strep) supplemented with glucose (5mM D-glucose, 50mM D-glucose and 5mM D-

glucose with 45mM L-glucose) and supernatants were collected at 2 hours, 18 hours and 24hours 

post-LPS addition. Glucose content in the media was assessed using a glucose quantification assay 

purchased from Sigma; the final glucose measurement was subtracted from the initial value to 

determine the concentration of glucose removed by the cells from the media over the 28 hour 

period. THP-1 monocytes incubated with 50mM D-glucose over a 28 hour period took up significantly 

more D-glucose over the time course compared to the 5mM treated and L-glucose-treated THP-1 

monocytes.  

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

Figure 4.4.2: Treatment of THP-1 monocytes with increased concentrations of D-glucose resulted in a 
significant increase in D-glucose utilisation from the media. 

THP-1 monocytes were treated with glucose at concentrations of either 5mM D-glucose, 50mM D-glucose or 
5mM D-glucose with 45mM L-glucose for a period of 4 hours prior to the addition of LPS (10ng/ml).  The 
supernatants were collected at the start of the treatment and at 24 hours post LPS addition and the glucose 
concentration of these samples determined. Glucose utilisation from the media by the monocytes was 
calculated by subtracting the glucose concentration of the final time point from the concentration of the initial 
time point. Results are the mean of 3 independent experiments (± the standard error of the mean). Significance 
was determined by ANOVA followed by Dunnett’s post-test comparing treatments to the 5mM D-glucose 
treated cells, whereby (*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 respectively. 
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4.4.3 THP-1 monocytes treated with increased concentrations of D-glucose over a 28 hour period 

did not increase the generation of reactive oxygen species 

 

THP-1 monocytes treated with high concentrations of D-glucose over a 28 hour period were 

incubated with MitoSOX, a fluorescent dye used to measure mitochondrial reactive oxygen species 

(ROS). Fluorescence generated in response to ROS was measured by flow cytometry. This was 

conducted to determine whether treatment with increased concentrations of D-glucose would result 

in an increase in generation of mitochondrial ROS. As a positive control for measurement of 

mitochondrial ROS the cells were treated with FCCP, a mitochondrial electron transport chain 

uncoupler.  

THP-1 monocytes treated with increased concentrations of D-glucose (20mM or 50mM D-glucose) 

did not show a significant increase in mitochondrial ROS relative to 5mM D-glucose treated cells. 

Treatment with 5µM FCCP resulted in a significant increase in ROS generation.  
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Figure 4.4.3: Treatment of THP-1 monocytes with increased concentrations of D-
glucose had no effect on mitochondrial ROS generation 

THP-1 monocytes were treated with either 5mM D-glucose, 20mM D-glucose, 50mM D-
glucose or 5mM D-glucose and 45mM L-glucose for 28 hours. The cells were collected by 
centrifugation and washed with PBS prior to mitoSOX staining. The cells were 
resuspended in PBS and incubated with 2.5µM mitoSOX reagent for 5 minutes at 37°C 
prior to analysis by flow cytometry. Results are the mean of 3 independent experiments 
(± the standard error of the mean). Significance was determined by ANOVA followed by 
Dunnett’s post-test comparing treatments to the 5mM D-glucose treated cells, whereby 
(*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 respectively. 
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4.4.4 LPS induced TNFα secretion of THP-1 monocytes was reduced in the presence of high 

concentrations of glucose 

 

THP-1 monocytes were treated with increased concentrations of D-glucose prior to incubation with 

the bacterial cell wall component LPS, which induces an inflammatory response through activation of 

the TLR4 receptor. This was done to assess whether an increased availability of D-glucose would alter 

THP-1 monocyte inflammatory response to LPS. THP-1 monocytes were treated with either 5mM, 

20mM or 50mM D-glucose and to control for osmotic concentration, 5mM D-glucose was added with 

45mM of L-glucose. L-glucose is an isomer of D-glucose that is taken up by the cells through glucose 

transporters but cannot be phosphorylated by hexokinase so does not enter the metabolic pathway. 

The cells were incubated at their respective glucose concentrations for 4 hours prior to treatment 

with LPS at 10ng/ml. Supernatants were collected and assessed for TNFα content by ELISA (Methods 

chapter, 2.5.3) at 2, 18 and 24 hours post-LPS addition. At all three time points, treatment with 

20mM and 50mM D-glucose and 5mM D-glucose with 45mM L-glucose reduced TNFα secretion 

compared to the 5mM D-glucose treated monocytes. Both 2 and 18 hour post LPS addition THP-1 

monocyte TNFα secretion decreased significantly with increasing concentration of glucose, (p<0.01) 

compared to the 5mM D-glucose treated cells. After 24 hours, TNFα secretion induced by LPS was 

significantly decreased with 50mM D-glucose and L-glucose treatments (p<0.01 and p<0.001 

respectively) compared to the 5mM D-glucose treated cells. At all three time points the largest 

decrease in TNFα secreted in response to LPS was caused by treatment with 5mM D-glucose with 

45mM L-glucose. This suggests that the decrease in TNFα secretion may be a result of the change in 

osmotic pressure rather than a specific effect of increased D-glucose uptake. 
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Figure 4.4.4: Treatment of THP-1 monocytes with 
increased concentrations of D-glucose results in 
decreased TNFα secretion in response to LPS 
stimulation 

THP-1 monocytes were treated with either 5mM D-
glucose, 50mM D-glucose or 5mM D-glucose with 
45mM L-glucose for a period of 4 hours prior to the 
addition of LPS (10ng/ml). Supernatants were collected 
either 2 hours a.), 18 hours b.) or 24 hours c.)  post LPS 
addition. Supernatant TNFα content (ng/ml) was 
assessed by ELISA. Significance was determined by 
ANOVA followed by Dunnett’s post-test comparing 
treatments to the 5mM D-glucose treated cells, 
whereby (*), (**) and (***) represents p<0.05, p<0.01 
and p<0.001 respectively. 

* 
* 

** * 

ns. 
ns. 

*** *** 

*** 

*** 

*** 

ns. 

a.) b.) 

c.) 
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4.4.5 Opsonised zymosan induced TNFα secretion of THP-1 monocytes was reduced in the 

presence of high concentrations of glucose 

 

THP-1 monocytes were treated with increasing concentrations of D-glucose prior to incubation with 

opsonised zymosan inducing an inflammatory response through activation of the TLR2 and 

complement receptor 3 (CR3) receptors. This was done to assess whether the observed decrease in 

TNFα secretion by THP-1 monocytes in the presence of high glucose and treated with the 

inflammatory stimulus LPS, is specific to the TLR4 pathway. The THP-1 monocytes were treated with 

increasing concentrations of opsonised zymosan in the presence of 5mM D-glucose in order to 

optimise the concentration of opsonised zymosan required to elicit an inflammatory response. The 

cells were incubated with 5mM D-glucose for a period of 4 hours prior to the addition of opsonised 

zymosan ranging in concentration from 50µg/ml to 4mg/ml. TNFα secretion was measured by ELISA. 

The results presented in figure 4.4.5, a.) show THP-1 monocyte TNFα secretion increasing as the cells 

were treated with increasing concentrations of opsonised zymosan. Treatment with 250µg/ml of 

opsonised zymosan produced a significant inflammatory response measured as TNF-α secretion for 

further study. THP-1 monocytes were treated with either 5mM, 20mM or 50mM D-glucose and 5mM 

D-glucose with 45mM of L-glucose to control for osmotic pressure effects. The cells were incubated 

at their respective glucose concentrations for 4 hours prior to treatment with opsonised zymosan at 

250µg/ml. The cells were incubated for a further 24 hours and THP-1 monocyte TNFα secretion was 

again measured by ELISA. THP-1 monocyte TNFα secretion in response to opsonised zymosan was 

reduced with increased concentrations of glucose. Treatment with 20mM D-glucose results in a trend 

to decreased TNFα secretion. Treatment with 50mM D-glucose and L-glucose resulted in a significant 

decrease (p<0.001) in opsonised zymosan stimulated secretion of TNFα by THP-1 monocytes. As was 

previously observed in figure 4.4.4 the L-glucose treatment resulted in the greatest decrease in 

opsonised zymosan-stimulated TNFα secretion, again suggesting that the decrease is caused by the 

presence of increased osmotic pressure rather than increased availability of D-glucose. Incubation 

with D- and L- glucose has the same inhibitory effect on inflammatory response induced through the 

TLR2 and CR3 pathways as observed with LPS induction of TLR4 pathway, suggesting that the 

inhibitory effect is occurring downstream at a point where these pathways converge. 
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Figure 4.4.5: Treatment of THP-1 monocytes with increased concentrations of D-glucose results in decreased TNFα 
secretion in response to opsonised zymosan stimulation 

THP-1 monocytes were treated with opsonised zymosan at concentrations of 50µg/ml up to 4mg/ml in the presence 

of 5mM D-glucose over a 28 hour period in order to determine the optimum concentration required to elicit a 

sufficient TNFα response a.). THP-1 monocytes were treated with glucose at concentrations of either 5mM D-glucose, 

50mM D-glucose or 5mM D-glucose with 45mM L-glucose for 4 hours prior to the addition of opsonised zymosan 

(250µg/ml). The cells were incubated for a further 24 hours, the supernatants collected and the TNFα content (ng/ml) 

assessed by ELISA b.). Results are the mean of 3 independent experiments (± the standard error of the mean). 

Significance was determined by ANOVA followed by Dunnett’s post-test comparing treatments to the 5mM D-glucose 

treated cells, whereby (*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 respectively. 

 

a.) b.) 
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4.4.6 Increased concentrations of glucose reduce the secretion of many cytokines from LPS-

stimulated THP-1 monocytes  

 

Supernatants of glucose treated THP-1 monocytes were assessed for alterations in LPS-induced 

cytokine secretion by multiplex array, which examined a panel of 41 individual inflammatory 

cytokines (Methods chapter, 2.15). This was done in order to assess whether the observed inhibitory 

effect of treatment with 50mM D-glucose or 5mM D-glucose with 45mM L-glucose was limited to 

LPS-induced TNFα secretion, or whether secretion of other cytokines would be affected. THP-1 

monocytes were treated as described previously, pre-treated with different glucose concentrations 

for 4 hours and then stimulated with LPS (10ng/ml) for a further 24 hours. Treatment with either 

50mM D-glucose or 5mM D-glucose with 45mM L-glucose resulted in the inhibition of LPS-induced 

secretion of a number of cytokines compared to 5mM D-glucose treated THP-1 monocytes. The 

treatment with 5mM D-glucose with 45mM L-glucose generally produced a greater decrease in LPS 

induced cytokine secretion than treatment with 50mM D-glucose or 5mM D-glucose. This suggests 

that the inhibitory effect of osmotic pressure on cytokine secretion is not specific to TNFα secretion 

and affects the secretion of many other cytokines. The only cytokine of the 41 analysed that 

increased with treatment with 50mM D-glucose and 5mM D-glucose with 45mM L-glucose compared 

to 5mM D-glucose treated THP-1 monocytes was interferon gamma-induced protein 10 (IP-10).  
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Figure 4.4.6: Treatment of THP-1 monocytes with increased concentrations of glucose resulted in decreased 
secretion of a number of cytokines in response to LPS 

THP-1 monocytes were treated with glucose at concentrations of either 5mM D-glucose, 50mM D-glucose or 

5mM D-glucose with 45mM L-glucose for a period of 4 hours prior to the addition of LPS (10ng/ml). The 

supernatants were collected 24 hours post LPS addition and the presence of 41 individual cytokines assessed 

using cytokine multiplex assays. Results are the mean of 3 independent experiments (± the standard error of the 

mean). Significance was determined by ANOVA followed by Dunnett’s post-test comparing treatments to the 

5mM D-glucose treated cells, whereby (*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 respectively. 
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Table 4.1: Summary of multiplex (41-plex) cytokine assay of supernatants from THP-1 monocytes treated with varying concentrations of glucose with LPS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cytokine 
Summary of change in cytokine secretion relative to 
5mM D-glucose treated THP-1 monocytes Cytokine 

Summary of change in cytokine secretion relative to 
5mM D-glucose treated THP-1 monocytes 

EGF Analyte concentration too low for detection IL-10 Analyte concentration too low for detection 

Eotaxin Analyte concentration too low for detection IL-12(p40) Decrease; 50mM D-glucose, L-glucose 

FGF-2 Analyte concentration too low for detection IL-12(p70) Analyte concentration too low for detection 

Flt-3L Analyte concentration too low for detection IL-13 Analyte concentration too low for detection 

Fractalkine No change observed in response to treatment IL-15 Analyte concentration too low for detection 

G-CSF Decrease; treatment with L-glucose IL-17 Analyte concentration too low for detection 

GM-CSF Analyte concentration too low for detection IP-10 Increase; treatment with 50mM D-glucose, L-glucose 

GRO No change observed in response to treatment MCP-1 No change observed in response to treatment 

IFNα2 Analyte concentration too low for detection MCP-3 Analyte concentration too low for detection 

IFN-γ Analyte concentration too low for detection MDC Decrease; 50mM D-glucose, L-glucose 

IL-1α Analyte concentration too low for detection MIP-1α Decrease; 50mM D-glucose, L-glucose 

IL-1β Decrease;  50mM D-glucose, L-glucose MIP-1β Decrease; 50mM D-glucose, L-glucose 

IL-1RA Decrease;  L-glucose PDGF-AA No change observed in response to treatment 

IL-2 Analyte concentration too low for detection PDGF-BB Analyte concentration too low for detection 

IL-3 Analyte concentration too low for detection RANTES Decrease; 50mM D-glucose, L-glucose 

IL-4 Analyte concentration too low for detection sCD40L Analyte concentration too low for detection 

IL-5 Analyte concentration too low for detection TGFα Analyte concentration too low for detection 

IL-6 Analyte concentration too low for detection TNFα Decrease; 50mM D-glucose, L-glucose 

IL-7 Decrease; 50mM D-glucose, L-glucose TNFβ Analyte concentration too low for detection 

IL-8 Decrease; 50mM D-glucose, L-glucose VEGF No change observed in response to treatment 

IL-9 Analyte concentration too low for detection 
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4.4.7 Increased concentrations of glucose reduce the secretion of many cytokines from 

opsonised zymosan-stimulated THP-1 monocytes  

 

Supernatants of glucose-treated THP-1 monocytes were assessed for alterations in opsonised 

zymosan-induced cytokine secretion by multiplex cytokine detection.THP-1 monocytes were treated 

as described previously, pre-treated with glucose for 4 hours and stimulated with opsonised zymosan 

(250µg/ml) for a further 24 hours. Subsequent to glucose and zymosan treatment, the supernatants 

were collected and analysed for the presence of 41 individual cytokines by multiplex detection. 

The only cytokine secretion that was increased following opsonised zymosan stimulation in the 

presence of increased concentrations of glucose was IP-10. IP-10 was increased in response to 

treatment with either 50mM D-glucose or 5mM D-glucose with 45mM L-glucose. The secretion of 

many other cytokines decreased in response to increased concentrations of glucose, although these 

again decreased in the presence of both 50mM D-glucose or 5mM D-glucose with 45mM L-glucose. 

This suggests that the increase in osmotic pressure inhibited the secretion of many inflammatory 

cytokines except for the cytokine IP-10. 
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Figure 4.4.7: Treatment of THP-1 monocytes with increased concentrations of glucose resulted in decreased secretion 
of a number of cytokines in response to opsonised zymosan 

THP-1 monocytes were treated with glucose at concentrations of either 5mM D-glucose, 50mM D-glucose or 5mM D-

glucose with 45mM L-glucose for 4 hours prior to the addition of opsonised zymosan (250µg/ml). The supernatants 

were collected 24 hours post addition of opsonised zymosan and the presence of 41 individual cytokines assessed using 

cytokine multiplex assays. Results are the mean of 3 independent experiments (± the standard error of the mean). 

Significance was determined by ANOVA followed by Dunnett’s post-test comparing treatments to the 5mM D-glucose 

treated cells, whereby (*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 respectively. 
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Table 4.2: Summary of multiplex (41-plex) cytokine assay of supernatants from THP-1 monocytes treated with varying concentrations of glucose with opsonised zymosan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cytokine 
Summary of change in cytokine secretion relative to 

5mM D-glucose treated THP-1 monocytes Cytokine 
Summary of change in cytokine secretion relative to 

5mM D-glucose treated THP-1 monocytes 

EGF Analyte concentration too low for detection IL-10 Decrease; treatment with 50mM D-glucose, L-glucose 

Eotaxin Analyte concentration too low for detection IL-12(p40) Decrease; treatment with 50mM D-glucose, L-glucose 

FGF-2 Analyte concentration too low for detection IL-12(p70) Analyte concentration too low for detection 

Flt-3L Analyte concentration too low for detection IL-13 Analyte concentration too low for detection 

Fractalkine No change observed in response to treatment IL-15 Analyte concentration too low for detection 

G-CSF Decrease; treatment with 50mM D-glucose, L-glucose IL-17 Analyte concentration too low for detection 

GM-CSF Decrease; treatment with 50mM D-glucose, L-glucose IP-10 Increase; treatment with 50mM D-glucose, L-glucose 

GRO No change observed in response to treatment MCP-1 Analyte concentration too high for detection 

IFNα2 No change observed in response to treatment MCP-3 Decrease; treatment with 50mM D-glucose, L-glucose 

IFN-γ Analyte concentration too low for detection MDC Decrease; treatment with 50mM D-glucose, L-glucose 

IL-1α Decrease; treatment with 50mM D-glucose, L-glucose MIP-1α Analyte concentration too high for detection 

IL-1β Decrease; treatment with 50mM D-glucose, L-glucose MIP-1β Analyte concentration too high for detection 

IL-1RA No change observed in response to treatment PDGF-AA No change observed in response to treatment 

IL-2 Analyte concentration too low for detection PDGF-BB Analyte concentration too low for detection 

IL-3 Analyte concentration too low for detection RANTES No change observed in response to treatment 

IL-4 Analyte concentration too low for detection sCD40L No change observed in response to treatment 

IL-5 Analyte concentration too low for detection TGFα Analyte concentration too low for detection 

IL-6 Decrease; treatment with 50mM D-glucose, L-glucose TNFα Decrease; treatment with 50mM D-glucose, L-glucose 

IL-7 No change observed in response to treatment TNFβ Analyte concentration too low for detection 

IL-8 No change observed in response to treatment VEGF No change observed in response to treatment 

IL-9 Analyte concentration too low for detection 
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4.4.8 Higher osmotic concentration decreases THP-1 monocyte TNFα secretion  

 

As observed in previous figures 4.4.6 and 4.4.7, treatment of THP-1 monocytes with both D- and L-

glucose results in decreased secretion of a number of cytokines in response to both LPS and 

opsonised zymosan. A series of experiments were performed to determine if this effect would be 

observed by treatment with an alternative sugar, mannitol. Also, normalising the osmotic 

concentration to 50milliosmoles (mOsM) was investigated, to determine whether treatment with 

increased concentrations of D-glucose would result in a relative increase in LPS-induced secretion of 

TNFα. THP-1 monocytes were treated with increasing concentrations of the sugar mannitol in the 

presence of 5mM D-glucose for 4 hours prior to addition of LPS (10ng/ml) after which the cells were 

incubated for a further 24 hours in order to assess the effects of increased osmotic concentration on 

THP-1 cellular viability by MTT (figure 4.4.8, a.)) and LPS-induced secretion of the inflammatory 

cytokine TNFα (figure 4.4.8, b.)). Increased osmotic concentration as a result of mannitol incubation 

had no significant effect on THP-1 cell viability as assessed by MTT assay.  

Incubation of THP-1 monocytes with 5mM D-glucose and increasing concentrations of mannitol 

decreased the secretion of TNFα (figure 4.4.8, b.)). Incubation of THP-1 monocytes with 5mM D-

glucose and 95mM mannitol (100mOsm) resulted in a significant decrease in TNFα secretion in 

response to LPS stimulation. This suggests that higher osmotic concentration suppresses LPS-induced 

TNFα secretion by THP-1 monocytes. This result conforms with the effects of increased osmotic 

concentration from 5mM D-glucose and 45mM L-glucose on LPS- or opsonised zymosan-induced 

TNFα secretion (figures, 4.4.4 and 4.4.5). 

Figure 4.4.8, c.), represents the effects of varying concentrations of D-glucose whilst the osmotic 

concentration remained constant at 50 milliosmoles (mOsm) on LPS induced TNFα secretion by THP-

1 monocytes treated over a 28 hour period. Although not significant, 50mM D-glucose showed a 

trend for increased secretion of TNFα in response to LPS compared to the THP-1 monocytes co-

treated with 5mM D-glucose and 45mM L-glucose. This may suggest that the presence of higher 

concentrations of D-glucose may induce an increase in LPS induced secretion of TNFα which is being 

suppressed by the presence of higher osmotic concentration. This possibility was investigated 

subsequently by analysing the effect of high glucose on TNFα mRNA  
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Figure 4.4.8: Increased osmotic concentration has an inhibitory effect on LPS induced THP-1 TNFα secretion 
independent of cellular viability 

THP-1 monocytes were treated with concentrations of the sugar mannitol up to 100mM with 5mM D-glucose 

over a 28 hour period and cellular metabolic activity and LPS induced TNFα secretion assessed by MTT assay 

a.) and ELISA b.) respectively. THP-1 monocytes were also treated with increased concentrations of D-glucose 

with a normalised osmotic concentration of 50mOsm and LPS induced TNFα secretion assessed by ELISA c.). 

Results are the mean of 3 independent experiments (± the standard error of the mean). Significance was 

determined by ANOVA followed by Dunnett’s post-test comparing treatments to the 5mM D-glucose treated 

monocytes, whereby (*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 respectively. 
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4.4.9 TNFα mRNA transcription THP1 monocytes in response to LPS is reduced by increased 

concentrations of glucose  

 

Due to the decrease in cytokine secretion observed in THP-1 monocytes treated with increased 

concentrations of glucose and stimulated with LPS, TNFα mRNA transcription was examined under 

the same conditions. This was to assess whether the observed osmotic effect on cytokine secretion 

was occurring further upstream of the cytokine secretory pathways, e.g. causing alterations in 

cytokine mRNA transcription.    

THP-1 monocytes were treated with increased concentrations of glucose and LPS as described 

previously; cells were lysed for RNA extraction at 2, 18 and 24 hours post-LPS addition. The extracted 

RNA was quantified and quality-assessed spectrophotometrically then reverse transcribed as 

previously described. The data was assessed using the comparative CT method (Livak and Schmittgen 

2001, Schmittgen and Livak 2008), normalising to the housekeeper gene 18S and expressing the data 

as fold change relative to 5mM D-glucose-treated monocytes.  

The results show decreased TNFα mRNA expression in the THP-1 monocytes treated with either 

50mM D-glucose or 5mM D-glucose with 45mM L-glucose in response to LPS stimulation. The 

reduction occurs at all three of the time points studied, with TNFα expression reduced by 

approximately 30% in response to 50mM D-glucose and 5mM D-glucose with 45mM L-glucose 

treatment. 
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Figure 4.4.9: Treatment of THP-1 monocytes with increased concentrations of D-glucose resulted in 
decreased expression of TNFα mRNA  

THP-1 monocytes were treated with glucose at concentrations of either 5mM D-glucose, 50mM D-glucose or 
5mM D-glucose with 45mM L-glucose for 4 hours prior to the addition of LPS (10ng/ml). The negative LPS 
treatment group were treated with 5mM D-glucose without LPS for the duration of the treatment. The 
monocytes were harvested by centrifugation, washed with PBS and lysed in Trizol reagent at 2 hours a.), 18 
hours b.) and 24 hours c.) post LPS addition. The total RNA was extracted using Qiagen RNA extraction spin 
columns and the RNA quantity and quality assessed by nanodrop. The extracted RNA was reverse transcribed 
to cDNA and TNFα mRNA expression assessed by qPCR at the 2 hour, 18 hour and 24 hour post LPS addition 
time points. The ribosomal RNA 18S was used as a housekeeper gene. The results were analysed using the 
ΔΔCT method, whereby the results are expressed as a fold change (± standard error of ΔCT) relative to the 
5mM D-glucose treated monocytes. The results are the mean of 3 independent experiments (± the standard 
error of the mean). Significance was determined by ANOVA followed by Dunnett’s post-test comparing 
treatments to the 5mM D-glucose treated cells and the 5mM D-glucose and 45mM L-glucose treated cells, 
whereby (*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 respectively. 

a.) b.) 

c.) 
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4.4.10 Treatment of THP-1 monocytes with increased concentrations of D-glucose results in a 

decrease in the NAD+:NADH ratio 

 

The ratio of NAD+:NADH was assessed in order to determine whether treatment with increased 

concentrations of glucose would alter intracellular NAD+:NADH ratio. This is of particular significance 

to proteins which require NAD+ to function such as the deacetylase SIRT1.   

The results show a reduction in the NAD+:NADH ratio in the 50mM D-glucose-treated THP-1 

monocytes compared to the 5mM D-glucose-treated and the 5mM D-glucose 45mM L-glucose-

treated monocytes which was greater at 24 hours.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a.) b.) 

Figure 4.4.10: Treatment of THP-1 monocytes with glucose over a 6 or 24 hour period results in a decrease in the 
NAD+:NADH ratio 

THP-1 monocytes were treated with either 5mM D-glucose, 50mM D-glucose or 5mM D-glucose with 45mM L-

glucose for a period of either 6 hours a.) or 28 hours b.). Subsequent to treatment the ratio of NAD+: NADH was 

measured using a NAD+:NADH quantification assay. Results are the mean of 3 independent experiments (± the 

standard error of the mean). Significance was determined by ANOVA followed by Dunnett’s post-test comparing 

treatments with either the 5mM D-glucose treated monocytes or the 5mM D-glucose, 45mM L-glucose treated cells, 

whereby (*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 respectively. 
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4.4.11 SIRT1 deacetylase activity of THP-1 monocytes is reduced with 50mM D-glucose  

 

THP-1 monocytes were treated with increased concentrations of glucose over either a 6 hour or 28 

hour period. The cells were subsequently lysed and the nuclear fraction retained in order to 

determine the effect, if any, of elevated glucose on SIRT1 deacetylase activity. SIRT1 activity was 

measured due to its observed role as a nutrient sensor and in the regulation of NF-κB gene 

transcription in response to inflammatory stimuli. 

Treatment of THP-1 monocytes with 50mM D-glucose or 5mM D-glucose with 45mM L-glucose over 

a 6 hour period had no effect on SIRT1 deacetylase activity relative to the 5mM D-glucose treated 

cells. Treatment of THP-1 monocytes with 50mM D-glucose over a 28 hour period resulted in a 

significant decrease (p<0.05) in SIRT1 deacetylase activity relative to 5mM D-glucose treated cells. 

However, THP-1 monocytes incubated with 5mM D-glucose and 45mM L-glucose produced no 

change in SIRT1 deacetylase activity relative to 5mM D-glucose treated cells. These results suggest 

that the observed decrease in SIRT1 deacetylase activity resulting from treatment with 50mM D-

glucose occurred independent of increases in osmotic concentration. This reduction in SIRT1 

deacetylase activity may be further affected by the reduction in the NAD+:NADH ratio occurring in 

THP-1 monocytes treated with 50mM D-glucose over a 28 hour period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.11: Treatment of THP-1 monocytes with increased concentrations of D-glucose over a 28 hour period results in 
decreased SIRT1 activity  

THP-1 monocytes were treated with glucose at concentrations of either 5mM D-glucose, 50mM D-glucose or 5mM D-glucose 

with 45mM L-glucose for a period of either 6 hours a.) or 28 hours b.). Subsequent to treatment the THP-1 monocytes were 

harvested by centrifugation, lysed and the nuclear fraction collected. The protein concentration of the isolated nuclear fraction 

was assessed by BCA assay. SIRT1 deacetylase activity was measured in 15µg of nuclear lysate using the SIRT1 activity assay as 

described in the protocol. Results are the mean of 3 independent experiments (± the standard error of the mean). Significance 

was determined by ANOVA followed by Dunnett’s post-test comparing treatments to the 5mM D-glucose treated cells, 

whereby (*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 respectively. 

a.) b.) 
ns. ns. 
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4.4.12 Incubation of THP-1 monocytes with increased concentration of D-glucose had no effect on 

SIRT1 mRNA expression 

 

THP-1 monocytes were treated with varying concentrations of D-glucose over a 4 hour period prior 

to incubation with LPS (10ng/ml); the cells were again incubated for a further 2, 18 or 24 hours. The 

cells were collected by centrifugation washed with ice cold sterile PBS, and pelleted prior to lysis and 

RNA extraction. The extracted mRNA was converted to cDNA and assessed for the presence of SIRT1 

mRNA by qPCR. Due to the decrease in SIRT1 deacetylase activity observed in high glucose treated 

THP-1 monocytes (figure, 4.4.11), changes in SIRT1 mRNA expression in response to treatment was 

examined by qPCR.  

Treatment of THP-1 monocytes with glucose and LPS for a combined 6 or 18 hours did not result in a 

significant change in SIRT1 mRNA expression. Treatment of THP-1 monocytes with glucose and LPS 

over a 28 hour period did not result in a significant change in SIRT1 mRNA expression although 

treatment with 50mM D-glucose appeared to result in a slight albeit non-significant increase in 

mRNA expression.  
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Figure 4.4.12: Treatment of THP-1 monocytes with increased concentrations of glucose had no significant effect 
on SIRT1 mRNA expression 

THP-1 monocytes were treated with glucose at concentrations of either 5mM D-glucose, 50mM D-glucose or 5mM 

D-glucose with 45mM L-glucose for 4 hours prior to the addition of LPS (10ng/ml). The negative LPS treatment 

group were treated with 5mM D-glucose without LPS for the duration of the treatment. The monocytes were 

harvested by centrifugation, washed with PBS and lysed in Trizol reagent at 2 hours a.), 18 hours b.) and 24 hours 

c.) post LPS addition. The total RNA was extracted using Qiagen RNA extraction spin columns and the RNA quantity 

and quality assessed by nanodrop. The extracted RNA was reverse transcribed to cDNA and SIRT1 mRNA 

expression assessed by qPCR at the 2 hour, 18 hour and 24 hour post LPS addition time points. The ribosomal RNA 

18S was used as a housekeeper gene. The results were analysed using the ΔΔCT method, whereby the results are 

expressed as a fold change (± standard error of the ΔCT) relative to the 5mM D-glucose treated monocytes. The 

results are the mean of 3 independent experiments (± the standard error of the mean). Significance was 

determined by ANOVA followed by Dunnett’s post-test comparing treatments to the 5mM D-glucose treated cells, 

whereby (*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 respectively. 

 

a.) b.) 

c.) 
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4.4.13 Treatment of THP-1 monocytes with 50mM D-glucose over a 6 hour period resulted in an 

increase in P65 acetylation at lysine 310  

 

THP-1 monocytes were treated with increased concentrations of glucose over a 6 hour period and 

the cells subsequently lysed in order to determine the effect, if any, of high glucose on the 

acetylation status of the P65 subunit of the NF-κB complex. Immunoblot detection of acetylated 

(K310) P65 was normalised to total P65 and beta actin. Lysine 310 acetylation was assessed as it 

regulates P65 activity and is a target of SIRT1 deacetylation. Densitometry analysis of the 

immunoblots were analysed using Image J software and the acetylated P65 (K310) and total P65 

blots normalised to the density of the beta actin blots. The densitometry results were expressed as 

fold change relative to 5mM D-glucose treated monocytes. When normalised to beta actin, P65 

(K310) acetylation status was significantly increased (p<0.01) in response to treatment with 50mM D-

glucose over a 6 hour period (figure 4.4.13, b.)). Total P65 was then measured by immunoblot in 

order to be able to express acetylated P65 as a ratio of total P65. THP-1 monocytes treated with 

50mM D-glucose and 5mM D-glucose with 45mM L-glucose over a 6 hour period resulted in a 

significant (p<0.01) increase in expression of total P65 (figure4.4.13, c.)). As this result occurred in 

both treatment with 50mM D-glucose and 5mM D-glucose with 45mM L-glucose it appears to be as a 

result of the increased osmotic concentration. When these results (figures b.) and c.)) were 

expressed as a ratio of acetylated P65 to total P65 (figure 4.4.13, d.)) P65 acetylation was significantly 

increased (p<0.05) in response to 50mM D-glucose. Treatment of THP-1 monocytes with 5mM D-

glucose and 45mM L-glucose appeared to result in a trend to a decrease in P65 acetylation status 

relative to total P65 although this result was not statistically significant 
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Figure 4.4.13: Treatment of THP-1 monocytes with increased concentrations of glucose over a 28 hour 
period resulted in increased P65 acetylation status (K310) 

THP-1 monocytes were treated with glucose at concentrations of either 5mM D-glucose, 50mM D-glucose or 

5mM D-glucose with 45mM L-glucose for a period of 6 hours. Subsequent to this the monocytes were 

harvested by centrifugation, washed with ice cold sterile PBS and lysed using a RIPA buffer. Protein 

concentration was determined by BCA assay. The extracted protein was separated by SDS electrophoresis on 

a 10% acrylamide gel prior to being transferred to PVDF membranes. The membranes were stained with 

antibodies against acetylated (K310) P65, total P65 and beta actin. The membranes were washed to remove 

excess antibody and incubated with HRP conjugated anti-IgG antibody. The blots were developed by 

incubating with an ECL solution and the produced chemiluminescence detected using a GBOX imaging system 

a.). Densitometry analysis was performed on the blots using Image J software, to compare acetylated P65 

relative to the beta actin loading control b.), total P65 to beta actin c.) and to produce a ratio of acetylated 

P65 to total P65 d.). Results are the mean of 3 independent experiments (± the standard error of the mean). 

Significance was determined by ANOVA followed by Dunnett’s post-test comparing treatments to the 5mM 

D-glucose, 45mML-glucose treated cells, whereby (*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 

respectively. 

 

c.) 

b.) 

d.) 

a.) 
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4.5 Discussion 

 

The purpose of the research presented in this chapter was to determine the effects of elevated 

glucose on monocyte cytokine secretion and to attempt to identify pathways through which any 

changes in expression might be occurring. Previous studies have primarily used the THP-1 monocyte 

cell line, which due to its proliferative nature is metabolically more active than primary monocytes. 

As THP-1 monocytes are frequently used as a model system in metabolic inflammation studies, it is 

important to assess how comparable the responses between THP-1 and primary monocytes treated 

with high concentrations of glucose are. 

THP-1 monocytes are routinely cultured in high glucose (11mM), but here cells were treated with 

lower (5mM) and higher concentrations (20mM and 50mM) of either D-glucose or its metabolically 

inert isoform, L-glucose. Neither 5mM nor 50mM D-glucose affected TNFα secretion up to 24 hours. 

These result differ from previous reports where THP-1 monocytes treated with high glucose have 

been observed to increase secretion (Iwata, Soga et al. 2007, Wu, Wu et al. 2009) and mRNA 

expression of a number of inflammatory cytokines (Shanmugam, Reddy et al. 2003) including TNFα at 

72 hours. The response observed at 72 hours may result from interaction between increased 

advanced glycation end products with their receptor (RAGE) which increases intracellular reactive 

oxygen species resulting in increased induction of an inflammatory response. Treatment of THP-1 

monocytes over a 28 hour period with increased concentrations of D-glucose did not result in an 

increase in mitochondrial ROS generation as determined by MitoSOX staining. The generation of 

advanced glycation end products was not assessed in this thesis. Previous studies have failed to 

observe an increase in advanced glycation end products in endothelial cells treated with increased 

concentrations of glucose over a 24 hour period (Shinohara, Thornalley et al. 1998). In addition, the 

work presented in this chapter has shown that THP-1 monocytes treated with high glucose resulted 

in decreased secretion of a number of cytokines in response to either LPS or opsonised zymosan.  

The cytokine IP-10 was the only cytokine observed to increase in THP-1 monocytes treated with high 

concentrations of D-glucose and LPS. The gene for the cytokine IP-10 has been mapped to 

chromosome 4, band q21, a locus strongly associated with monocytic leukaemia (Luster, Jhanwar et 

al. 1987, Liu, Guo et al. 2011). Increased secretion of IP-10 has also been associated with a variety of 

leukaemias (Olsnes, Motorin et al. 2006, Khandany, Hassanshahi et al. 2012). The strong association 

of the gene locus containing IP-10 with monocytic leukaemia cell lines (Domer, Fakharzadeh et al. 

1993) could provide a reason for the increased expression of IP-10 observed in treated THP-1 
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monocytes. This increase in IP-10 secretion also supports the notion that the decreased secretion of 

the other cytokines are occurring independent of any osmotic toxicity effect. 

LPS and opsonised zymosan induce an inflammatory response through interaction with the TLR4 or 

CR3 and TLR2 receptors respectively. As the same cytokine response to high glucose was observed 

with either stimulus it can be postulated that the decrease in cytokine secretion is not receptor 

mediated and is occurring downstream of receptor interaction. Decreased cytokine secretion was 

observed in response to treatment with either D- or L-glucose therefore it can be postulated that this 

effect is being caused by the increased osmotic concentration rather than an increase in glucose 

availability. The treatment of THP-1 monocytes with increased concentrations of either D- or L-

glucose resulted in decreased expression of TNFα mRNA. The increased osmotic concentration, 

resulting from treatment with 50mM D-glucose or 5mM D-glucose with 45mM L-glucose could 

potentially have interfered with the ELISAs ability to detect THP-1 secreted TNFα. This could explain 

the decreased TNFα observed as a result of these treatments. Although this possibility can be 

discounted by the results obtained in figure 4.4.8, c.). THP-1 monocytes were treated with either 

5mM D-glucose with 45mM L-glucose, 20mM D-glucose with 30mM L-glucose or 50mM D-glucose to 

create a constant osmotic concentration of 50mOsm with varying concentrations of D-glucose prior 

to stimulation with LPS. The ELISAs detected a greater concentration of TNFα present in the 

supernatants of THP-1 monocytes treated with higher concentrations of D-glucose at a constant 

osmotic concentration of 50 osmoles. This suggests that the increased osmotic concentration does 

not limit the ELISAs ability to detect secreted TNFα, rather the osmotic concentration affected the 

THP-1 monocytes ability to secrete TNFα in response to LPS. THP-1 monocytes treated with high 

concentrations of the sugar mannitol to produce an osmotic environment also showed reduced 

secretion of the cytokine TNFα in response to LPS. These results suggest that a high osmotic 

concentration irrespective of the source was resulting in a decrease in cytokine secretion and mRNA 

expression. 

High osmolarity has been reported to interfere with secretory pathways blocking exocytosis from the 

endoplasmic reticulum and Golgi bodies to the cell surface in mammalian cell lines (Docherty and 

Snider 1991, Lee and Linstedt 1999, Wu, Zhao et al. 2003). The presence of hypertonic solutions has 

previously been observed to inhibit cellular mRNA transcription and protein expression (Robbins, 

Pederson et al. 1970, Petronini, Tramacere et al. 1986). The observed inhibition of monocyte 

cytokine secretion and mRNA expression in response to increased osmotic sugar concentration has 

also been observed in a study by Qiu, Campbell et al. (2002). The authors examined the effect 

increased concentrations of potassium ions had on monocyte cytokine response. To control for 
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osmotic concentration the monocytes were treated with the sugar, sucrose. Treatment with 30mM, 

60mM and 90mM sucrose inhibited LPS-induced mRNA production and TNFα secretion in a dose-

dependent manner with 90mM sucrose resulting in complete inhibition of TNFα secretion. The 

increased presence of inert osmolytes such as mannitol or xylitol has been found to reduce 

inflammatory response in several studies (Cuschieri, Gourlay et al. 2002, Suganuma, Miwa et al. 

2010, Xiong, Wang et al. 2010). Rabbit macrophages pre-conditioned with either mannitol or NaCl at 

concentrations ranging from 40mM – 100mM for a period of 4 hours prior to the addition of LPS 

resulted in decreased secretion of TNFα (Cuschieri, Gourlay et al. 2002). The authors reported the 

increased osmotic concentration resulted in cell shrinkage leading to the inhibition of polymerisation 

of stress fibres in response to stimulation with LPS. The authors reported macrophage cell shrinkage 

in response to the hyperosmotic environment which resulted in decreased polymerisation of stress 

response fibres and decreased phosphorylation of extracellular signal-related kinase (ERK1/2) in 

response to LPS treatment. This response is consistent with in vitro models of endotoxin tolerance 

(Kraatz, Clair et al. 1999). The hyperosmotic environment had no effect on macrophage TNFα 

secretion after a 20 hour incubation period prior to treatment with LPS. This suggests that the cells 

adapt to the hyperosmotic environment restoring normal response to endotoxin. This may provide 

an explanation as to why examples in the literature of THP-1 monocytes treated with high 

concentrations of D-glucose over a longer time course result in increased secretion of pro-

inflammatory cytokines such as TNFα. This response also potentially explains the decrease in 

secretion of multiple cytokines by THP-1 monocytes treated with increased concentrations of D- or L-

glucose prior to LPS stimulation reported within this chapter. 

These previous findings are supported by the work presented here which has shown that increasing 

D-glucose at a constant 50mOsM (from addition of L-glucose) resulted in increased secretion of the 

inflammatory cytokine TNFα from 50mM D-glucose relative to 5mM or 20mM D-glucose (with 45mM 

and 30mM L-glucose respectively). This suggests that high concentrations of D-glucose may stimulate 

secretion of the inflammatory cytokine TNFα over 24 hours when osmolarity effects are discounted.  

To understand the biochemical mechanism that underpins the changes in cytokine mRNA expression, 

THP-1 monocytes treated with high concentrations of D-glucose over a 6 hour period were studied. 

Monocytes showed a decrease in the NAD+:NADH ratio relative to cells treated with 5mM D-glucose 

or 5mM D-glucose with 45mM L-glucose. This result fits within the current literature where 

hyperglycaemic conditions have previously been observed to reduce the NAD+:NADH ratio in a 

variety of different cell types, including monocytes (Travis, Morrison et al. 1971, Guha, Bai et al. 

2000, Nyengaard, Ido et al. 2004, Fulco, Cen et al. 2008). A decrease in the NAD+:NADH ratio in 
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response to treatment with high glucose was also seen as acutely as 2 hours in rat retinal cells 

(Nyengaard, Ido et al. 2004). Increased availability of glucose results in a greater amounts of glucose 

being shuttled through the polyol pathway to produce sorbitol and fructose (Travis, Morrison et al. 

1971, Sango, Suzuki et al. 2006). This process results in cytosolic NAD+ being reduced to NADH 

resulting in a decreased availability of available cytosolic NAD+. The polyol pathway is dependent on 

the activity of the enzyme aldose reductase; the contribution of glucose entering the polyol pathway 

towards the observed results could be tested in the future through treating cells with aldose 

reductase inhibitors.  

Here, THP-1 monocytes treated with increased concentrations of D-glucose over a 6 hour period 

exhibited a significant decrease in SIRT1 deacetylase activity relative to cells treated with 5mM D-

glucose or 5mM D-glucose with 45mM L-glucose. These findings support other studies which have 

shown general histone deacetylase protein including SIRT1’s deacetylase activities in response to 

hyperglycaemic conditions in a number of cell types. Yun, Jialal et al. (2011) observed a general 

decrease in total HDAC activity in THP-1 monocytes treated with high glucose over a 72 hour period. 

Zheng, Chen et al. (2012) and Mortuza, Chen et al. (2013) also observed a decrease in SIRT1 

deacetylase activity in high glucose-treated endothelial cells over a longer time course of 3 weeks 

with 11 cellular passages. The decrease in SIRT1 deacetylase activity reported in this chapter 

occurred independent of changes in mRNA expression although protein translation of SIRT1 was not 

assessed, this could be examined in the future by western blot. A recent study by Ceolotto, De 

Kreutzenberg et al. (2014) reported that SIRT1 mRNA is stabilised for translation by the RNA binding 

protein HuR. The authors observed that participants exhibiting metabolic syndrome had significantly 

reduced binding of HuR to SIRT1 mRNA reducing mRNA stability and translation to protein. 

Decreased SIRT1 mRNA stability in response to high glucose could also represent a mechanism 

through which SIRT1 deacetylase activity is impaired. Studies assessing the effects of decreased SIRT1 

deacetylase activity by pharmacological inhibition have described a number of adverse effects. 

Mortuza, Chen et al. (2013) reported a decrease in SIRT1 deacetylase to directly correlate with 

increased cellular senescence. In contrast, increased SIRT1 activity has also been shown to improve 

insulin sensitivity (Sun, Zhang et al. 2007) and decrease inflammatory response (Yoshizaki, Milne et 

al. 2009, Yang, Zhang et al. 2012). Inhibition of SIRT1 deacetylase activity results in increased 

acetylation of the NF-κB P65 subunit at lysine 310, leading to increased NF-κB-DNA binding and 

subsequently increased transcription of NF-κB regulated genes (Breitenstein, Stein et al. 2011).  

In the present study, THP-1 monocytes treated with increased concentrations of D-glucose over a 6 

hour period showed a significant increase in the ratio of acetylated P65 (K310) to total P65 relative to 
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monocytes treated with either 5mM D-glucose or 5mM D-glucose with 45mM L-glucose. These 

results support the current literature where a number of studies have observed increased P65 

acetylation at lysine 310 in response to high concentrations of glucose. Kim, Kim et al. (2012), Kim, 

Lee et al. (2014) and Yun, Jialal et al. (2011) studied THP-1 monocytes over either a 48 or 72 hour 

period; within the present study, changes were observed within 6 hours, earlier than has previously 

been documented in the literature. Acetylation of P65 at lysine 310 has been shown to be an 

important regulator of NF-κB transcriptional activity; mutation of P65 lysine 310 to an arginine 

residue was observed to significantly reduce NF-κB transcriptional activity using luciferase assays 

(Chen, Mu et al. 2002). Acetylation of P65 at lysine 310 prevents methylation of lysine residues 314 

and 315, a post translational modification that is required for the ubiquitination and degradation of 

DNA bound P65 (Yang, Huang et al. 2009, Yang, Tajkhorshid et al. 2010). According to the literature, 

the consequence of increased P65 acetylation appears to be increased and prolonged transcription 

of NF-κB regulated genes. 

 

4.5.1 Strengths and limitations 

A limitation of the results presented within this chapter is that the research was carried using the 

THP-1 monocytic leukaemia cell line rather than with primary human monocytes which may limit the 

applicability of the results to in vivo human monocytes. The use of the THP-1 monocyte cell line was 

chosen due to its wide use in numerous research studies as a model of monocyte function and due to 

the ease at which they are grown. The THP-1 cell line also provides easy access to large numbers of 

cells without which some of the experiments performed within this chapter would not have been 

possible. The THP-1 monocytes were routinely grown in RPMI media containing 11mM D-glucose as 

is recommended by the American Tissue Culture Collection (ATCC) and the ECACC. However, this 

concentration is much higher than the 5mM D-glucose used as the low glucose treatment, and the 

concentration observed in healthy non-diabetic individuals. This could have resulted in the THP-1 

monocytes having an adaption to high concentrations of glucose prior to the treatment thereby 

perhaps limiting the responses observed.  

The THP-1 monocytes also appeared to be very susceptible to the osmotic stress of the 50mOsm 

treatments (50mM D-glucose, 5mM D-glucose with 45mM L-glucose). This was observed by the 

apparent decreased cytokine response of the 50mM D-glucose and 5mM D-glucose with 45mM L-

glucose treated THP-1 monocytes in response to LPS stimulation. This response to high osmolarity 

has been previously observed to inhibit cytokine response to LPS stimulation in rabbit macrophages 

(Cuschieri, Gourlay et al. 2002). Although a number of the results observed within this chapter did 
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occur independently of the osmolality control (5mM D-glucose, 45mM L-glucose) the validity of some 

of these results may be questioned due to the observed effects of high osmolarity on the cells. 

The main strength of the results within this chapter are that a number of the changes observed in 

response to treatment with high concentrations of D-glucose are occurring over a much shorter time 

period than has previously been assessed within the literature.   
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5 Identifying mechanisms of inflammation during metabolic disturbances in 

primary human monocytes  
 

 

5.1.1 Preface 

Following on from the previous chapter, the aims of the research presented in this chapter were to 

investigate whether an acute treatment with high concentrations of glucose would induce an 

inflammatory response in primary human monocytes and whether the response would be 

comparable to treated THP-1 monocytes. The primary monocytes were collected from healthy 

participants and treated with up to 50mM D-glucose over a 6 or 28 hour period. High glucose 

induced cytokine secretion in the absence and presence of LPS was assessed and possible 

mechanisms of induced inflammatory response assessed.  

 

5.2 Introduction 
Immortalised leukemic monocytic cell lines such as the THP-1 and U937 cell lines have frequently 

been used to study metabolic and inflammatory diseases. However a number of studies have 

identified profound differences in inflammatory response and metabolic activity between 

immortalised leukemic cell lines and primary human cells. The use of monocytic cell lines has many 

advantages over primary human monocytes such as decreased variability due to a homogeneous 

genetic background (Rogers, Thornton et al. 2003), and relative ease of use; however these cell lines 

are derived from leukaemias, are highly proliferative and may behave differently to increased 

nutrient availability and inflammatory stimuli than primary human monocytes. These cell lines also 

represent relatively immature cells of the monocyte lineage, and have been shown to express a 

number of markers of monocyte immaturity not found on the cell surface of mature peripheral blood 

monocytes (Abrink, Gobl et al. 1994).  

A number of studies have observed monocytic cell lines to be less responsive to inflammatory stimuli 

such as LPS than primary human monocytes. A study by Baek, Haas et al. (2009) reported U937 

monocytes had lower basal expression of TNFα mRNA than primary human monocytes. The authors 

also identified the involvement of a number of novel genes in U937 cellular inflammation and 

differentiation not present in primary monocytes. A study by Schildberger, Rossmanith et al. (2013) 

reported that LPS stimulation of THP-1 and primary monocytes resulted in very different cytokine 

secretion profiles. The authors observed the LPS treated primary monocytes to secrete high levels of 

TNFα, IL-6 and IL-8 whereas the treated THP-1 monocytes secreted significantly less TNFα and IL-8 
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and did not secret detectable quantities of IL-6. Both THP-1 and U937 monocytes treated with  trans-

retinoic acid displayed increased expression of the integrins, CD11a/b/c, and CD18 whereas 

expression in treated primary monocytes decreased (Babina and Henz 2003). The authors suggest 

that this response may be due to considerable differences in the regulation of expression of these 

integrins between the cell lines and primary blood monocytes. 

A number of leukaemias and cancers are highly proliferative and have been shown to have increased 

rates of metabolic activity and glycolysis (Gatenby and Gillies 2004, Herst, Howman et al. 2011). The 

THP-1 monocytes are highly proliferative and will therefore likely have a higher metabolic rate than 

mature non-proliferative primary human monocytes which could result in them having an altered 

response to high concentrations of D-glucose.  

 

 

 

5.2.1 Aims and objectives 

The aims of the research presented in this chapter were to assess the effect of acute exposure to 

high concentrations of glucose on primary monocyte inflammatory response; whether primary 

human monocytes treated with high concentrations of glucose would responds in similar ways to 

leukemic THP-1 monocytes.  

The objectives were to identify whether treatment with high concentrations of D-glucose would 

modulate cytokine response alone or with co-treatment with LPS; to identify potential mechanisms 

through which high glucose may lead to induction of an inflammatory response and to compare 

responses observed in treated primary monocytes with THP-1 monocytes to determine differences in 

response  
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5.3 Methods 

 

5.3.1 Collection of blood from participants 

Whole blood was collected by venepuncture using 21 gauge butterfly needles from the antecubital 

vein of healthy volunteers. The blood was collected into potassium EDTA coated evacuated collection 

tubes; after collection the tubes were inverted repeatedly to ensure mixture of the EDTA. Study 

participants were fasted prior to blood collection to give accurate measurements of blood glucose, 

total cholesterol, HDL cholesterol and triglycerides using a Reflotron clinical analyser (Roche, UK). LDL 

cholesterol was subsequently determined using the Friedwald formula (Friedewald, Levy et al. 1972). 

Ethical approval for the study was granted by the Aston University Ethics Committee.  

Table 5.1: Participant information 

 
Participants 

Average Age 36.1 ± 13.42 

Sex M=5, F=4 

Average resting glucose (mmol/L) ± SD 5.18 ± 0.67 

Average Total cholesterol (mmol/L) ± SD 4.14 ± 0.97 

Average total HDL cholesterol (mmol/L) ± SD 1.06 ± 0.39 

Average total LDL cholesterol (mmol/L) ± SD 2.88 ± 0.76 

 

 

5.3.2 Treatment of primary monocytes with increased concentrations of glucose prior to 

inflammatory stimulation 

Primary monocytes were negatively isolated as previously described (methods chapter, section; 2.13) 

from whole blood taken from healthy participants. Their age and lipids profiles are described in Table 

5.1. After isolation, the primary monocytes were pelleted by centrifugation at 350xg for 8 minutes 

and washed in a glucose free RPMI media previously supplemented with 10% FCS and 1% 

penicillin/streptomycin solution. The cells were counted by trypan blue staining and pelleted in again 

by centrifugation and re-suspended in fresh glucose-free RPMI media at a cell density of 5 x 105 

cells/ml. Cells were transferred (100µl) to 96 well cell culture plates and subsequently treated with 

glucose stock solutions to give a final glucose concentration of either 5mM D-glucose, 50mM D-

glucose or 5mM D-glucose with 45mM L-glucose. The final cell density was 2.5 x 105 cells/ml.  

The concentration of LPS required to elicit the desired TNFα cytokine response was determined by 

treating primary monocytes incubated with 5mM D-glucose with concentrations of LPS ranging from 

0 – 1µg/ml. A concentration of 250ng/ml was determined to induce the desired TNFα cytokine 

response. 
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Primary monocytes treated with the aforementioned glucose concentrations were incubated for 4 

hours at 37°C prior to the addition of LPS (serotype- 0111:B4) at 250ng/ml. The cells were again 

incubated at 37°C for a further 2 or 24 hours after which supernatants, lysates and RNA were taken 

for analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.3 Statistical analysis 

The data reported within this chapter has been expressed as the mean± the standard error of the 

mean (SEM) of a minimum of three independent experiments.  The data was collated using 

Graphpad software and statistically analysed by one-way analysis of variance (ANOVA) followed by 

Dunnett’s post-test comparing treatments against 5mM D-glucose treated cells. The significance is 

reported where the p-value is less than 0.05 denoted by *, >0.01 denoted by ** and >0.001 denoted 

by ***. 

 

 

  

Figure 5.3.2: Optimisation of LPS concentration for the treatment of primary monocytes 

Human primary monocytes were isolated from whole blood taken by venepuncture from healthy volunteers. 

The primary monocytes were treated ex vivo with 5mM D-glucose for 4 hours prior to the addition of LPS at 

concentrations ranging from 0ng/ml up to 1µg/ml. The treatments were incubated for a further 24 hours. 

Subsequent to treatment the supernatants were collected and TNFα (ng/ml) content was measured by ELISA. 

n=2. 
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5.4 Results 

 

5.4.1 Treatment of whole blood with 50mM D-glucose and LPS (1µg/ml) over a 28 hour period 

results in increased TNFα secretion 

 

Supplementation of whole blood over a 6 hour period with either 20mM or 50mM D-glucose had no 

significant effect on LPS-negative TNFα secretion relative to the 5mM D-glucose treated cells. 

Treatment of whole blood ex vivo with 500ng/ml LPS resulted in an increase in the TNFα content of 

plasma after 6 hours compared to LPS-negative treated cells although treatment with 20mM or 

50mM D-glucose had no effect on LPS (500ng/ml)-induced secretion of TNFα. Treatment of whole 

blood over a 6 hour period with either 5mM D-glucose or 20mM D-glucose and 1µg/ml LPS did not 

result in any further increase in TNFα secretion compared to cells treated with 500ng/ml LPS. At this 

higher LPS concentration the addition of 50mM D-glucose appears to result in a slight increase in the 

mean TNFα secretion relative to 5mM D-glucose-treated cells although this increase was not large 

enough to be statistically significant. 

Treatment of whole blood over a 28 hour period with 20mM or 50mM D-glucose had no effect on 

LPS-negative secretion of TNFα relative to 5mM D-glucose treated cells. Whole blood treated with 

5mM or 20mM D-glucose and then stimulated with 500ng/ml of LPS did not display any change in 

TNFα secretion after a 28 hour period compared to the LPS-negative glucose-treated whole blood. 

Treatment of whole blood with 50mM D-glucose and stimulated with 500ng/ml LPS appeared to 

result in an increase in mean TNFα secretion compared to 5mM or 20mM cells treated with the same 

concentration of LPS, although this difference was not statistically significant so may be occurring 

due to chance. Stimulation of 5mM, 20mM and 50mM D-glucose treated whole blood with 1µg/ml 

LPS resulted in an increase in TNFα secretion over LPS-negative treated cells. Treatment of whole 

blood with 50mM D-glucose resulted in a significant increase (p<0.01) in TNFα secretion compared to 

5mM and 20mM D-glucose treated cells when stimulated with LPS at 1µg/ml. 
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Figure 5.4.1: Treatment of whole blood with 50mM D-glucose results in increased TNFα secretion in 
response to stimulation with LPS at 1µg/ml over a 28 hour period. 

Whole blood collected by venepuncture from healthy volunteers was treated ex vivo with either 5mM D-

glucose, 20mM D-glucose or 50mM D-glucose for a period of 4 hours prior to the addition of LPS at either 

500ng/ml or 1µg/ml. Plasma was collected by centrifugation and TNFα content assessed 2 hours a.) or 24 

hours b.) post LPS addition by ELISA. Results are the mean of 3 independent experiments (± the standard 

error of the mean). Significance was determined by ANOVA followed by Dunnett’s post-test comparing 

treatments to the 5mM D-glucose treated whole blood, whereby (*), (**) and (***) represents p<0.05, 

p<0.01 and p<0.001 respectively. 

a.) b.) 
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5.4.2 Treatment of primary monocytes with increased concentrations of D-glucose had no effect 

on cellular viability 

 

Primary monocytes were isolated from whole blood taken from healthy volunteers and subsequently 

treated with varying concentrations of glucose for 4 hours prior to addition of LPS (250µg/ml). The 

treated cells were incubated for a further 24 hours after which cellular viability was determined by 

trypan blue staining. This was to determine whether treatment with increased concentrations of 

glucose or the accompanying increase in osmotic concentration would have an adverse effect on 

cellular viability. 

Glucose-treated primary monocytes were stained with trypan blue and the unstained (alive) and 

stained (dead) cells counted and expressed as a percentage of viable to dead cells (figure, 5.4.2, a.). 

Primary monocytes incubated with increased concentrations of glucose in the presence of LPS 

produced no change in the percentage of viable and dead cells. There was no change in the total 

number of primary monocytes after incubation with increased concentrations of glucose in the 

presence of LPS (figure, 5.4.2, b.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b.) a.) 

Figure 5.4.2: Treatment of primary monocytes with increased concentrations of D-glucose had no observable effect 
on cellular viability 

Human primary monocytes were isolated from whole blood taken by venepuncture from healthy volunteers. The 

primary monocytes were treated ex vivo with either 5mM D-glucose, 50mM D-glucose or 5mM D-glucose with 45mM 

L-glucose for a period of 4 hours prior to the addition of LPS at 250ng/ml. The cells were incubated for a further 24 

hours and cellular viability assessed by trypan blue staining. The results are expressed as a percentage of viable and 

dead cells a.) and as total cell number b.). Results are the mean of 3 independent experiments (± the standard error 

of the mean). Significance was determined by ANOVA followed by Dunnett’s post-test comparing treatments to the 

5mM D-glucose treated whole blood, whereby (*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 

respectively. 
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5.4.3 Primary monocytes treated with high concentrations of D-glucose sequestered an 

increased amount of glucose from the surrounding media 

 

Glucose content of cell culture media after monocytes had been cultured for up to 28 hours was 

assessed using a glucose quantification assay purchased from Sigma; the final glucose measurement 

was subtracted from the initial value to determine the concentration of glucose removed by the cells 

from the media over the 28 hour period. This was investigated to determine whether primary 

monocytes incubated with a higher concentration of D-glucose would sequester more glucose from 

the media. 

The results indicate that the treated primary monocytes incubated with 50mM D-glucose over a 28 

hour period took up significantly more D-glucose over the time course compared to the 5mM treated 

and L-glucose-treated THP-1 monocytes. 

 

  

Figure 5.4.3: Treatment of primary monocytes with increased concentrations of D-glucose resulted in a 
significant increase in D-glucose removal from the media over a 28 hour period. 

Human primary monocytes were isolated from whole blood taken by venepuncture from healthy volunteers. 

Glucose quantification assay performed on supernatants collected from primary monocytes treated with 

either 5mM D-glucose, 50mM D-glucose or 5mM D-glucose with 45mM L-glucose over a 28 hour period. 

Supernatants were collected at the start of the treatment and at the final time-point and the glucose 

concentration of these samples determined. Glucose utilisation from the media by the monocytes was 

calculated by subtracting the glucose concentration of the final time point from the concentration of the initial 

time point. Results are the mean of 3 independent experiments (± the standard error of the mean). 

Significance was determined by ANOVA followed by Dunnett’s post-test comparing treatments to the 5mM D-

glucose treated cells, whereby (*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 respectively. 
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5.4.4 Primary monocytes treated ex vivo with high concentrations of D-glucose and LPS increase 

TNFα secretion 

 

LPS (1µg/ml) stimulation of whole blood presented in figure 5.4.1 subsequent to pre-treatment with 

50mM D-glucose resulted in an increase in TNFα secretion compared to 5mM D-glucose pre-treated 

cells. Treatment of primary monocytes with glucose for 4 hours and LPS for a further 2 hours 

produced a trend to greater TNFα response upon LPS stimulation than pre-incubation with 5mM D-

glucose. Treatment of the monocytes with 5mM D-glucose with 45mM L-glucose did not alter LPS-

induced TNFα secretion compared to 5mM D-glucose treated cells. Primary monocytes incubated 

with 50mM D-glucose for 4 hours and LPS for a further 24 hours produced a significantly increased 

(p<0.01) TNFα response than 5mM D-glucose pre-treated primary monocytes. Treatment of primary 

monocytes with 5mM D-glucose with 45mM L-glucose did not alter LPS induced TNFα secretion 

compared to 5mM D-glucose treated cells after 28 hours. These results indicate that increased 

concentrations of D-glucose result in an increase in secretion of the pro-inflammatory cytokine TNFα 

upon LPS stimulation independent of the increased osmotic concentration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.4:  Treatment of primary monocytes with increased concentrations of D-glucose results in increased TNFα 
secretion in response to LPS stimulation 

Human primary monocytes were isolated from whole blood taken by venepuncture from healthy volunteers. The 
primary monocytes were treated ex vivo with either 5mM D-glucose, 50mM D-glucose or 5mM D-glucose with 45mM 
L-glucose for a period of 4 hours prior to the addition of LPS at 250ng/ml. The negative LPS treatment group were 
treated with 5mM D-glucose without LPS for the duration of the treatment. Supernatants were collected and TNFα 
content assessed at either 2 hours a.) or 24 hours b.) post LPS addition by ELISA. Results are the means of n=3 and n=7 
independent experiments respectively (± the standard error of the mean). Significance was determined by ANOVA 
followed by Dunnett’s post-test comparing treatments to the 5mM D-glucose treated cells, whereby (*), (**) and (***) 
represents p<0.05, p<0.01 and p<0.001 respectively. 

a.) b.) 
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5.4.5 Primary monocytes treated ex vivo with 50mM D-glucose expressed increased levels of 

TNFα mRNA upon LPS stimulation  

 

Primary monocytes were treated with high glucose ex vivo in order to determine any effect of 

glucose on LPS-induced inflammatory gene transcription. Treatment with 50mM D-glucose resulted 

in significant increases in TNFα mRNA transcription at both the 6 hour and 28 hour time points. After 

6 hours with 50mM D-glucose, an approximate 1.8 fold increase (p<0.05) in TNFα mRNA 

transcription was observed (Figure 5.4.5). At the 28 hour time point treatment with 50mM D-glucose 

resulted in an approximate 2.1 fold increase (p<0.05) in TNFα mRNA transcription. At both times, 

5mM D-glucose and 45mM L-glucose had no significant effect on TNFα mRNA transcription. This 

suggests that the changes induced by treatment with 50mM D-glucose are independent of increases 

in osmotic concentration. THP-1 monocytes treated with glucose and LPS over the 6 hour period 

displayed increased TNFα mRNA expression relative to the 5mM D-glucose negative LPS treated cells. 

THP-1 monocytes treated with either 5mM D-glucose or 5mM D-glucose with 45mM L-glucose 

displayed similar levels of TNFα mRNA expression to the 5mM D-glucose negative LPS treated cells. 

This indicates that in these treatments the LPS induced increase in TNFα mRNA transcription has 

returned to basal levels by 28 hours. However, the monocytes treated with 50mM D-glucose still 

have elevated TNFα mRNA expression indicating the high glucose is prolonging the inflammatory 

response. 
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Figure 5.4.5: Primary monocytes treated with increased concentrations of D-glucose resulted in increased 
expression of TNFα mRNA in response to LPS stimulation 

Human primary monocytes were isolated from whole blood taken by venepuncture from healthy volunteers. The 

primary monocytes were treated with 5mM D-glucose, 50mM D-glucose and 5mM D-glucose with 45mM L-glucose 

for 4 hours prior to the addition of LPS. The negative LPS treatment group were treated with 5mM D-glucose 

without LPS for the duration of the treatment. The monocytes were harvested by centrifugation, washed with PBS 

and lysed in Trizol reagent at 2 hours a.) and 24 hours b.) post LPS addition. The total RNA was extracted using 

Qiagen RNA extraction spin columns and the RNA quantity and quality assessed by nanodrop. The extracted RNA 

was reverse transcribed to cDNA and TNFα mRNA expression assessed by qPCR at the 2 hour a.) and 24 hour b.) 

post LPS addition time points. The ribosomal RNA 18S was used as a housekeeper gene. The results were analysed 

using the ΔΔCT method, whereby the results are expressed as a fold change (± standard error of the ΔCT) relative 

to the 5mM D-glucose treated monocytes. The results are the mean of 3 and 4 independent experiments 

respectively (± the standard error of the mean). Significance was determined by ANOVA followed by Dunnett’s 

post-test comparing treatments to the 5mM D-glucose treated cells and the 5mM D-glucose and 45mM L-glucose 

treated cells, whereby (*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 respectively. 

a.) b.) 
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5.4.6 Primary monocytes treated with increased concentrations of D-glucose over 24 hours 

resulted in a decrease in the intracellular NAD+:NADH ratio 

 

The ratio of NAD+:NADH was assessed in order to determine whether treatment with increased 

concentrations of glucose would alter the intracellular NAD+:NADH ratio in treated primary 

monocytes. This was to determine whether primary monocytes treated with high concentrations of 

glucose would display a decreased intracellular NAD+: NADH ratio as was previously observed in 

treated THP-1 monocytes. Primary monocytes treated with 50mM D-glucose over a 24 hour period 

resulted in a significant decrease in the NAD+: NADH ratio relative to monocytes treated with either 

5mM D-glucose or 5mM D-glucose with 45mM L-glucose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.6: Treatment of primary monocytes with high concentrations of D-glucose over a 28 hour 
period results in a decrease in the NAD+:NADH ratio 

Human primary monocytes were isolated from whole blood taken by venepuncture from healthy 

volunteers. The primary monocytes were treated ex vivo with either 5mM D-glucose, 50mM D-glucose 

and 5mM D-glucose with 45mM L-glucose for a period of 28 hours. Subsequent to treatment the ratio of 

NAD+: NADH was measured using a NAD+: NADH quantification assay purchased from Abcam. The results 

are the mean of 3 independent experiments respectively (± the standard error of the mean). Significance 

was determined by ANOVA followed by Dunnett’s post-test comparing treatments to the 5mM D-glucose 

treated cells, whereby (*), (**) and (***) represents p<0.05, p<0.01 and p<0.001 respectively. 
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5.4.7 Treatment of primary monocytes with increased concentrations of D-glucose over a 28 

hour period had no effect on SIRT1 mRNA expression 

 

Expression of the SIRT1 gene was studied in the presence of high glucose in monocytes, as SIRT1 

activity links metabolism and inflammation through altered acetylation. Treatment of primary 

monocytes with high concentrations of glucose and LPS over a 28 hour period produced no 

observable change in SIRT1 mRNA expression in the presence of LPS. Treatment with LPS alone at 

5mM glucose appeared to result in a slight increase in SIRT1 mRNA expression.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.7: Treatment of primary monocytes with increased concentrations of D-glucose had no effect 
on SIRT1 mRNA expression 

Human primary monocytes were isolated from whole blood taken by venepuncture from healthy 

volunteers. The primary monocytes were treated ex vivo with either 5mM D-glucose, 50mM D-glucose 

and 5mM D-glucose with 45mM L-glucose for 4 hours prior to the addition of LPS (250ng/ml). The 

negative LPS treatment group were treated with 5mM D-glucose without LPS for the duration of the 

treatment. The monocytes were harvested by centrifugation, washed with PBS and lysed in Trizol reagent 

24 hours post LPS addition. The total RNA was extracted using Qiagen RNA extraction spin columns and 

the RNA quantity and quality assessed by nanodrop. The extracted RNA was reverse transcribed to cDNA 

and SIRT1 mRNA expression assessed by qPCR at the 24 hour post LPS addition time point. The ribosomal 

RNA 18S was used as a housekeeper gene. The results were analysed using the ΔΔCT method, whereby 

the results are expressed as a fold change (± standard error of the ΔCT) relative to the 5mM D-glucose 

treated monocytes. The results are the mean of 3 independent experiments respectively (± the standard 

error of the mean). Significance was determined by ANOVA followed by Dunnett’s post-test comparing 

treatments to the 5mM D-glucose treated cells, whereby (*), (**) and (***) represents p<0.05, p<0.01 and 

p<0.001 respectively. 
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5.4.8 Treatment of primary monocytes with 50mM D-glucose resulted in altered secretion of 

many inflammatory cytokines as determined by Luminex assay 

 

The isolated monocytes were treated with either 5mM D-glucose, 50mM D-glucose or 5mM D-

glucose with 45mM L-glucose for 28 hours and the supernatants collected. Due to the observed 

increases in both TNFα secretion and TNFα mRNA production in 50mM D-glucose- treated primary 

monocytes compared to 5mM D-glucose- and L-glucose-treated cells (Figures 5.4.4 and 5.4.5), 

further multiplex analysis of cytokine secretion was performed. Due to the inherent variation 

between individuals, the results are presented as fold change relative to the 5mM D-glucose treated-

cells. The secretion of a number of cytokines was changed when the primary monocytes were 

incubated with 50mM D-glucose compared to 5mM D-glucose or the L-glucose (5mM D-glucose, 

45mM L-glucose) control for osmotic concentration; inflammatory cytokines such as IL-6, IL-8 and 

TNFα increased whereas secretion of the anti-inflammatory cytokine IL-10 was decreased. Although 

there is some difference observed in the L-glucose treatment group compared to the 5mM D-glucose 

treated cells it is not significant, suggesting that the changes in cytokine secretion are occurring 

independent of changes in osmotic concentration. 
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Figure 5.4.8: Treatment of primary monocytes from 8 individuals with 
increased concentrations of D-glucose resulted in altered secretion of 
a number of cytokines independent of osmotic concentration 

Human primary monocytes were isolated from whole blood taken by 
venepuncture from healthy volunteers. The primary monocytes were 
treated ex vivo with either 5mM D-glucose, 50mM D-glucose or 5mM D-
glucose with 45mM L-glucose for a period of 28 hours. Supernatants 
were collected at the experiment end point and the presence of 41 
individual cytokines assessed using cytokine multiplex assays. The 
results are the mean (± the standard error of the mean) of supernatants 
taken from 8 individuals. To correct for donor variation in cytokine 
secretion, the results are displayed as fold change of the 5mM D-
glucose treated values. Significance was determined by ANOVA followed 
by Dunnett’s post-test comparing treatments to the 5mM D-glucose 
45mM L-glucose treated monocytes, whereby (*), (**) and (***) 
represents p<0.05, p<0.01 and p<0.001 respectively. 
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Table 5.2: Summary of multiplex (41-plex) cytokine assay of supernatants from primary monocytes treated with varying concentrations of glucose 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cytokine 
Summary of change in cytokine secretion relative to 
5mM D-glucose treated THP-1 monocytes Cytokine 

Summary of change in cytokine secretion relative to 
5mM D-glucose treated THP-1 monocytes 

EGF Analyte concentration too low for detection IL-10 Decrease secretion in response to 50mM D-glucose 

Eotaxin Analyte concentration too low for detection IL-12(p40) Analyte concentration too low for detection 

FGF-2 Analyte concentration too low for detection IL-12(p70) Analyte concentration too low for detection 

Flt-3L Analyte concentration too low for detection IL-13 Analyte concentration too low for detection 

Fractalkine Analyte concentration too low for detection IL-15 Analyte concentration too low for detection 

G-CSF No change observed in response to treatment IL-17 Analyte concentration too low for detection 

GM-CSF Increased secretion in response to 50mM D-glucose IP-10 No change observed in response to treatment 

GRO Increased secretion in response to 50mM D-glucose MCP-1 Decreased secretion in response to 50mM D-glucose 

IFNα2 Increased secretion in response to 50mM D-glucose MCP-3 Decreased secretion in response to 50mM D-glucose 

IFN-γ Analyte concentration too low for detection MDC No significant change in secretion 

IL-1α Analyte concentration too low for detection MIP-1α Analyte concentration too low for detection 

IL-1β Analyte concentration too low for detection MIP-1β Analyte concentration too low for detection 

IL-1RA Increased secretion in response to 50mM D-glucose PDGF-AA No change observed in response to treatment 

IL-2 Analyte concentration too low for detection PDGF-BB No change observed in response to treatment 

IL-3 Analyte concentration too low for detection RANTES No change observed in response to treatment 

IL-4 Analyte concentration too low for detection sCD40L No change observed in response to treatment 

IL-5 Analyte concentration too low for detection TGFα Analyte concentration too low for detection 

IL-6 Increased secretion in response to 50mM D-glucose TNFα No significant change in secretion 

IL-7 Analyte concentration too low for detection TNFβ Analyte concentration too low for detection 

IL-8 Increased secretion in response to 50mM D-glucose VEGF No change observed in response to treatment 

IL-9 Analyte concentration too low for detection 
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5.4.9 Treatment of primary monocytes with 50mM D-glucose resulted in altered secretion of a 

number of LPS-induced cytokines as determined by Luminex assay 

 

The secretion of a number of cytokines changed when the primary monocytes from 9 adults were 

incubated with 50mM D-glucose compared to 5mM D-glucose or the L-glucose (5mM D-glucose, 

45mM L-glucose) osmolaric control and treated with LPS (250ng/ml). The secretion of inflammatory 

cytokines such as IL-6, IL-8 and TNFα increased whereas secretion of the anti-inflammatory and 

reparative cytokines IL-10 and TGFα was decreased. Due to the inherent variation between 

individuals, the results are presented as fold change relative to the 5mM D-glucose treated-cells. 

Although there is some difference observed in the L-glucose treatment group compared to the 5mM 

D-glucose treated cells it is not significant, suggesting that the changes in cytokine secretion are 

occurring independent of changes in osmolarity.  
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Figure 5.4.9: Treatment of primary monocytes, from 9 individuals with increased concentrations of D-glucose 
resulted in altered secretion of a number of cytokines in response to LPS stimulation 

Human primary monocytes were isolated from whole blood taken by venepuncture from healthy volunteers. 

The primary monocytes were treated ex vivo with either 5mM D-glucose, 50mM D-glucose or 5mM D-glucose 

with 45mM L-glucose for a period of 4 hours prior to the addition of LPS at 250ng/ml. Supernatants were 

collected 24 hours post LPS addition and the presence of 41 individual cytokines assessed using cytokine 

multiplex assays. The results are the mean (± the standard error of the mean) of supernatants taken from 8 

individuals. To correct for donor variation in cytokine secretion, the results are displayed as fold change of the 

5mM D-glucose treated values. Significance was determined by ANOVA followed by Dunnett’s post-test 

comparing treatments to the 5mM D-glucose, 45mM L-glucose treated monocytes, whereby (*), (**) and (***) 

represents p<0.05, p<0.01 and p<0.001 respectively. 
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Table 5.3: Summary table of multiplex (41-plex) cytokine assay of primary monocytes treated with varying concentrations of glucose with LPS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cytokine 
Summary of change in cytokine secretion relative to 
5mM D-glucose treated THP-1 monocytes Cytokine 

Summary of change in cytokine secretion relative to 
5mM D-glucose treated THP-1 monocytes 

EGF    Analyte concentration too low for detection IL-10   Decrease secretion in response to 50mM D-glucose 

Eotaxin    Analyte concentration too low for detection IL-12(p40)   Increased secretion in response to 50mM D-glucose 

FGF-2    Analyte concentration too low for detection IL-12(p70)     Analyte concentration too low for detection 

Flt-3L    Analyte concentration too low for detection IL-13    Analyte concentration too low for detection 

Fractalkine    Analyte concentration too low for detection IL-15    Analyte concentration too low for detection 

G-CSF  No change observed in response to treatment  IL-17    Analyte concentration too low for detection 

GM-CSF   Increased secretion in response to 50mM D-glucose IP-10     No change observed in response to treatment 

GRO   No change observed in response to treatment MCP-1   Decreased secretion in response to 50mM D-glucose 

IFNα2    Analyte concentration too low for detection  MCP-3   Decreased secretion in response to 50mM D-glucose 

IFN-γ    Analyte concentration too low for detection MDC   Increased secretion in response to 50mM D-glucose 

IL-1α   Increased secretion in response to 50mM D-glucose MIP-1α   No change observed in response to treatment 

IL-1β   No change observed in response to treatment MIP-1β   No change observed in response to treatment 

IL-1RA   No change observed in response to treatment PDGF-AA   No change observed in response to treatment 

IL-2    Analyte concentration too low for detection PDGF-BB   No change observed in response to treatment 

IL-3    Analyte concentration too low for detection RANTES     No change observed in response to treatment 

IL-4    Analyte concentration too low for detection sCD40L       No change observed in response to treatment 

IL-5    Analyte concentration too low for detection TGFα   Decreased secretion in response to 50mM D-glucose 

IL-6   Increased secretion in response to 50mM D-glucose TNFα   Increased secretion in response to 50mM D-glucose 

IL-7      Analyte concentration too low for detection TNFβ   Analyte concentration too low for detection 

IL-8   Increased secretion in response to 50mM D-glucose VEGF       No change observed in response to treatment 

IL-9    Analyte concentration too low for detection     
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5.4.10 Pathway analysis of multiplex cytokine assay results using Ingenuity Pathway Analysis 

software 

 

The results of the multiplex cytokine assays shown in figures, 5.4.8 and 5.4.9 performed on 

supernatants from primary monocytes treated with 5mM D-glucose, 50mM D-glucose and 5mM D-

glucose with 45mM L-glucose with or without the addition of LPS (250ng/ml) were uploaded into 

Ingenuity Pathway Analysis software. This was done in order to determine potential pathways or 

transcriptional regulators affected by the 50mM D-glucose treatment which may have resulted in the 

observed alteration in primary monocyte cytokine secretion. This allowed identification of potential 

targets for further investigation. 

Tables 5.4 and 5.5 display the potential upstream regulators identified through pathway analysis of 

the changes in cytokine secretion in response to treatment with 50mM D-glucose in the absence and 

presence of LPS. The Ingenuity Pathway Analysis software identified a number of potential upstream 

regulators common in both tables such as the miRNAs 146a and 155, the secreted cytokine HMGB1 

and the transcription factor NF-κB. This provided several potential targets for further investigation. 

 

 

Table 5.4: Potential upstream regulators responsible for altered cytokine secretion observed in primary monocytes 
treated with high concentrations of glucose over a 28 hour period 

Upstream regulator Molecule type p-value 

mir-146a-5p microRNA 3.32E-16 

TRAF6 Enzyme 2.90E-15 

CD14 Transmembrane receptor 3.27E-15 

IL6R Transmembrane receptor 1.56E-14 

HMGB1 Transcription regulator 2.63E-14 

CLEC7A Transmembrane receptor 2.86E-14 

NF-κB-RELA Complex 3.65E-14 

SPHK1 Kinase 2.18E-13 

ERK1/2 Group 2.38E-13 

SYK Kinase 4.08E-13 
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Table 5.5: Potential upstream regulators responsible for altered cytokine secretion observed in primary monocytes 
treated with high concentrations of glucose and LPS over a 28 hour period 

Upstream regulator Molecule type p-value 

IL17a dimer Complex 6.57E-19 

CD14 Transmembrane receptor 3.27E-18 

Lymphotoxin-α-1-β2 Complex 2.63E-17 

NF-κB-RELA Complex 8.81E-16 

STAT3 Transcription regulator 1.79E-15 

Ap1 Complex 2.90E-15 

HMGB1 Transcription regulator 4.76E-15 

RPSA Transcription regulator 5.17E-15 

miR-155-5p microRNA 5.25E-15 

miR-146a-5p microRNA 2.02E-14 
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5.4.11 Treatment of primary monocytes with 50mM D-glucose resulted in altered secretion of 

HMGB1 over a 28 hour period 

 

As HMGB1 may be an upstream regulator of glucose effects and is secreted by activated monocytes, 

the effect of high glucose on its secretion was studied. Primary monocytes treated with 50mM D-

glucose over a 28 hour period without LPS (figure, 5.4.11 a.) showed a significant increase in HMGB1 

secretion relative to 5mM D-glucose treated cells. Treatment of primary monocytes with 5mM D-

glucose and 45mM L-glucose appeared to result in a slight increase in HMGB1 secretion relative to 

5mM D-glucose, although this increase was not significant. 

Primary monocytes treated with 50mM D-glucose in the presence of LPS (250ng/ml) over a 28 hour 

period (figure, 5.4.11 b.) showed a significant decrease in HMGB1 secretion relative to cells treated 

with 5mM D-glucose and LPS. When compared to the cells treated with 5mM D-glucose without LPS, 

treatment with 50mM D-glucose appears to reduce HMGB1 secretion to basal levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.10: Treatment of primary monocytes with 50mM D-glucose alters HMGB1 secretion  

Human primary monocytes were isolated from whole blood taken by venepuncture from healthy 
volunteers. Primary monocytes were treated ex vivo with either 5mM D-glucose, 50mM D-glucose or 5mM 
D-glucose with 45mM L-glucose for a period of 4 hours. The monocytes were incubated for a further 24 
hours with or without the addition of LPS (250ng/ml). The supernatants were collected and HMGB1 
secretion assessed by ELISA. The results are the mean (± the standard error of the mean) of supernatants 
taken from 5 and 7 individuals respectively. Significance was determined by ANOVA followed by Dunnett’s 
post-test comparing treatments to the 5mM D-glucose treated monocytes, whereby (*), (**) and (***) 
represents p<0.05, p<0.01 and p<0.001 respectively. 



167 
 

5.4.12 Treatment of primary monocytes with increased concentrations of D-glucose resulted in 

increased binding of acetylated P65 to the TNFα promoter region 

 

Increased acetylated (K310) P65 was observed previously in high glucose treated THP-1 monocytes 

by western blot analysis. Treated primary monocytes were assessed for changes in P65 acetylation 

(K310) in order to confirm whether the same response would be observed. Due to limitations in cell 

number, assessment of acetylated (K310) P65 by immunoblot in treated primary monocytes proved 

insensitive. A chromatin immunoprecipitation method developed for use with low cell numbers, 

followed by quantitative PCR was used to assess the binding of acetylated P65 to the TNFα promoter 

region.  

The chromatin sonication was performed using a Diagenode bioruptor. The sonication procedure was 

optimised to determine the number of sonication cycles necessary to achieve chromatin of between 

200-500bps in length. Cells were sonicated for an increasing number of cycles, the DNA extracted by 

PCIA extraction and separated on agarose gels. A number of 10 sonication cycles (30 seconds on, 30 

seconds off) was determined to produce chromatin of between 200-500bp in length. 

Treatment of primary monocytes with 50mM D-glucose resulted in an increase in acetylated P65 

(K310) binding to the TNFα promoter region relative to cells treated with either 5mM D-glucose or 

5mM D- with 45mM L-glucose. Treatment of cells with 50mM D-glucose and LPS also resulted in an 

increase in binding of acetylated P65 to the TNFα promoter region.  Glucose treatments to the 

primary monocytes with LPS resulted in an increase in acetylated P65 binding to the TNFα promoter 

relative to non-LPS, glucose-treated cells.  
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Figure 5.4.9 Treatment of primary monocytes with 50mM D-glucose results in increased binding of 
acetylated P65 to the TNFα promoter region 

Optimisation of DNA shearing by sonication, 1 x105 cells sheared by sonication, the DNA extracted and 

separated on 1% agarose gels stained with ethidium bromide a.). Primary monocytes were treated ex vivo 

with 5mM D-glucose, 50mM D-glucose and 5mM D-glucose with 45mM L-glucose for 4 hours. The cells were 

incubated for a further 2 hours with or without the addition of LPS (250ng/ml). The cells formaldehyde fixed, 

lysed and the DNA sheared by sonication. Acetylated P65 was immune-precipitated from the sheared DNA 

sample and the extracted DNA assessed for P65 binding region of the TNFα promoter by qPCR b.) Data is 

expressed as % of input (non-immuno-precipitated) sheared DNA samples. The data here represents the 

means (±SE) of 3 independent experiments. Significance was determined by ANOVA followed by Dunnett’s 

post-test comparing treatments to the 5mM D-glucose treated monocytes, whereby (*), (**) and (***) 

represents p<0.05, p<0.01 and p<0.001 respectively. 
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5.4.13 Increased concentrations of D-glucose reduce the expression of miRNA 146a-5p in primary 

monocytes 

 

Pathway analysis of the cytokine response to high concentrations of D-glucose both with and without 

the addition of LPS identified miR-146a-5p as potentially contributing to the response. For this 

reason, expression of miR-146a-5p in primary monocytes in the presence of high concentrations of 

D-glucose was assessed by qPCR.  

Treatment of primary monocytes with 50mM D-glucose and LPS (250µg/ml) over a 6 hour period 

resulted in a significant decrease in the expression of miRNA 146a-5p relative to 5mM D-glucose 

treated cells. However, no observable change occurred in response to treatment with 5mM D-

glucose with 45mM L-glucose relative to 5mM D-glucose treated cells, suggesting increased osmotic 

concentration had no effect on miRNA 146a-5p expression. 

Treatment of primary monocytes with 50mM D-glucose or 5mM D-glucose with 45mM L-glucose and 

LPS (250ng/ml) over a 28 hour period produced no observable change in miRNA 146a-5p expression 

relative to 5mM D-glucose treated cells. This suggests that the expression of the miRNA 146a-5p in 

the presence of 50mM D-glucose has returned to basal levels after 28 hours. 
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Figure 5.4.10: Treatment of primary monocytes with 50mM D-glucose over a 6 hour reduces expression of miR-
146a-5p in the presence of LPS 

Human primary monocytes were isolated from whole blood taken by venepuncture from healthy volunteers. The 

primary monocytes were treated with either 5mM D-glucose, 50mM D-glucose and 5mM D-glucose with 45mM L-

glucose for 4 hours prior to the addition of LPS (250ng/ml). The negative LPS treatment group were treated with 

5mM D-glucose without LPS for the duration of the treatment. The monocytes were harvested by centrifugation, 

washed with PBS and lysed in Trizol reagent at 2 hours a.) and 24 hours b.) post LPS addition. The total RNA was 

extracted using Qiagen RNA extraction spin columns and the RNA quantity and quality assessed by nanodrop. The 

extracted RNA was reverse transcribed and microRNA 146a-5p expression assessed by qPCR at the 2 hour a.) and 24 

hour b.) post LPS addition time points. The microRNA miR-16 was used as a housekeeper gene. The results were 

analysed using the ΔΔCT method, whereby the results are expressed as a fold change (± standard error of the ΔCT) 

relative to the 5mM D-glucose treated monocytes. The results are the mean of 3 independent experiments 

respectively (± the standard error of the mean). Significance was determined by ANOVA followed by Dunnett’s post-

test comparing treatments to the 5mM D-glucose treated cells, whereby (*), (**) and (***) represents p<0.05, 

p<0.01 and p<0.001 respectively. 

a.) b.) 
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5.4.14 Treatment with increased concentrations of D-glucose prevents LPS induction of miRNA 

155-5p in primary monocytes 

 

Pathway analysis of the cytokine response to high concentrations of D-glucose with and without 

addition of LPS both identified miR-155 as potentially contributing to the inflammatory response. For 

this reason, expression of miR-155 in response to high concentrations of D-glucose was assessed by 

qPCR.  

Treatment of primary monocytes with 50mM D-glucose and LPS (250ng/ml) over a 6 hour period 

resulted in a decrease in the fold change expression of miRNA 155-5p relative to 5mM D-glucose and 

LPS treated cells, although this change was not statistically significant therefore cannot be confirmed 

to have occurred independent of chance. The expression of miR-155-5p in these 50mM  D-glucose 

treated cells is approximately the same as the 5mM D-glucose negative LPS treatment group. This 

suggests that treatment with LPS resulted in increased expression of miR-155-5p in the 5mM D-

glucose and 5mM D-glucose with 45mM L-glucose which treatment with 50mM D-glucose prevented. 

Treatment of primary monocytes with 50mM D-glucose or 5mM D-glucose with 45mM L-glucose and 

LPS (250ng/ml) over a 28 hour period produced no observable change in miRNA 155-5p expression 

relative to 5mM D-glucose treated cells. This suggests that the increased expression of miRNA 155-5p 

induced by LPS in the 5mM D-glucose and 5mM D-glucose with 45mM L-glucose has returned to 

basal levels. 
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Figure 5.4.11: Assessment of miR-155-5p expression in primary monocytes treated ex vivo with LPS in the presence 
of elevated concentrations of D-glucose.  

Human primary monocytes were isolated from whole blood taken by venepuncture from healthy volunteers. The 

primary monocytes were treated ex vivo with either 5mM D-glucose, 50mM D-glucose and 5mM D-glucose with 

45mM L-glucose for 4 hours prior to the addition of LPS (250ng/ml). The negative LPS treatment group were treated 

with 5mM D-glucose without LPS for the duration of the treatment. The monocytes were harvested by centrifugation, 

washed with PBS and lysed in Trizol reagent at 2 hours a.) and 24 hours b.) post LPS addition. The total RNA was 

extracted using Qiagen RNA extraction spin columns and the RNA quantity and quality assessed by nanodrop. The 

extracted RNA was reverse transcribed and microRNA 155-5p expression assessed by qPCR at the 2 hour a.) and 24 

hour b.) post LPS addition time points. The microRNA miR-16 was used as a housekeeper gene. The results were 

analysed using the ΔΔCT method, whereby the results are expressed as a fold change (± standard error of the ΔCT) 

relative to the 5mM D-glucose treated monocytes. The results are the mean of 3 independent experiments 

respectively (± the standard error of the mean). Significance was determined by ANOVA followed by Dunnett’s post-

test comparing treatments to the 5mM D-glucose treated cells, whereby (*), (**) and (***) represents p<0.05, p<0.01 

and p<0.001 respectively. 

 

a.) b.) 
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5.4.15 Treatment with increased concentrations of D-glucose increases expression of miR-424-5p 

in primary monocytes  

 

Treatment of primary monocytes with 50mM D-glucose and LPS (250ng/ml) over a 6 hour period 

resulted in a significant increase in the expression of miRNA 424-5p relative to 5mM D-glucose 

treated cells. However, no significant change in miRNA 424-5p expression occurred in response to 

treatment with 5mM D-glucose and 45mM L-glucose co-incubation relative to 5mM D-glucose 

treated cells, suggesting increased osmotic concentration had no effect on miRNA 424-5p expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.12: Treatment of primary monocytes with increased concentrations of glucose resulted in a 
significant increase in expression of miR-424-5p 

Human primary monocytes were isolated from whole blood taken by venepuncture from healthy volunteers. 

The primary monocytes were treated ex vivo with either 5mM D-glucose, 50mM D-glucose and 5mM D-glucose 

with 45mM L-glucose for 4 hours prior to the addition of LPS (250ng/ml). The negative LPS treatment group 

were treated with 5mM D-glucose without LPS for the duration of the treatment. The monocytes were 

harvested by centrifugation, washed with PBS and lysed in Trizol reagent at 2 hours post LPS addition. The total 

RNA was extracted using Qiagen RNA extraction spin columns and the RNA quantity and quality assessed by 

nanodrop. The extracted RNA was reverse transcribed and microRNA 424-5p expression assessed by qPCR at 

the 2 hour post LPS addition time points. The microRNA, miR-16 was used as a housekeeper gene. The results 

were analysed using the ΔΔCT method, whereby the results are expressed as a fold change (± standard error of 

the ΔCT) relative to the 5mM D-glucose treated monocytes. The results are the mean of 3 independent 

experiments respectively (± the standard error of the mean). Significance was determined by ANOVA followed 

by Dunnett’s post-test comparing treatments to the 5mM D-glucose treated cells, whereby (*), (**) and (***) 

represents p<0.05, p<0.01 and p<0.001 respectively. 
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5.5 Discussion 

 

Treatment of primary monocytes with increased concentrations of D-glucose with or without the 

addition of LPS over a 28 hour period resulted in altered secretion of a number of inflammatory 

cytokines. This included increased secretion of TNFα, IL-6 and IL-8 and decreased secretion of IL-10 

and TGFα. These findings contrast to the response observed in high glucose treated THP-1 

monocytes. No change in TNFα secretion was observed in THP-1 monocytes treated with high 

glucose alone but high D-glucose treated primary monocytes exhibited increased secretion of a 

number of inflammatory cytokines. 

Previous studies have reported increased secretion and mRNA production of IL-6 and TNFα in high 

glucose treated primary monocytes (Morohoshi, Fujisawa et al. 1995, Morohoshi, Fujisawa et al. 

1996). An additional study by Gonzalez, Herrera et al. (2012) observed that treatment of primary 

monocytes with high concentrations of glucose resulted in increased secretion of TNFα although they 

did not observe significant changes in secretion of IL-6, IL-8 or IL-1β. The authors of this paper 

treated the primary monocytes with 50mM D-glucose over a time period of 7 days which may have 

resulted in the cells becoming tolerant of the environment, reducing cytokine secretion back to 

control levels at later times. Further publications have also reported that treatment of PBMCs with 

high concentrations of glucose with LPS act synergistically to increase secretion of inflammatory 

cytokines (Hancu, Netea et al. 1998, Otto, Schindler et al. 2008). The results presented in this chapter 

are novel in that they examine the response of a wider variety of cytokines to treatment with high 

glucose with and without the addition of LPS. The benefit of a broader cytokine profile lies in the 

opportunity for pathway discovery. 

The cytokine secretion profiles were inputted into Ingenuity Pathway Analysis software in order to 

determine predicted upstream regulators which may have contributed to the differences observed in 

response to incubation with high concentrations of D-glucose. The pathway analysis identified a 

number of potential upstream regulators including: NF-κB, STAT3, HMGB1, miR-146a-5p and miR-

155-5p. 

Treatment of primary monocytes over 28 hours with increased concentrations of D-glucose resulted 

in altered secretion of HMGB1. Primary monocytes treated with increased concentrations of D-

glucose in the absence of LPS resulted in a significant increase in secretion of HMGB1 whereas in the 

presence of LPS high concentrations of D-glucose resulted in a significant decrease in secretion. 

HMGB1 is chromatin component that when secreted by activated monocytes or macrophages acts as 

a pro-inflammatory cytokine through interacting with RAGE (Luan, Zhang et al. 2010), TLR2 and TLR4 
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receptors (Park, Gamboni-Robertson et al. 2006). Secretion of HMGB1 has been previously reported 

to be increased in diabetic individuals (Abu El-Asrar, Nawaz et al. 2013) and in vitro treatments of 

endothelial cells with high concentrations of D-glucose (Mudaliar, Pollock et al. 2014). The observed 

increase in secretion of HMGB1 by primary human monocytes treated with high concentrations of D-

glucose has not currently been reported in the literature. The translocation of HMGB1 from the 

nucleus to the cytoplasm and its secretion has been reported to be regulated by acetylation of 

HMGB1 at various lysine residues by the histone acetyltransferase enzymes (Bonaldi, Talamo et al. 

2003). HMGB1 has been observed to be a target for deacetylation by SIRT1 which results in 

decreased cellular HMGB1 secretion (Rickenbacher, Jang et al. 2014, Rabadi, Xavier et al. 2015). The 

observed decrease in SIRT1 deacetylase activity and the previously reported increase in HAT activity 

in response to treatment with high concentrations of D-glucose could result in increased HMGB1 

acetylation and secretion. The primary monocytes treated with increased concentrations of D-

glucose with LPS resulted in a significant decrease in HMGB1 secretion over a 28 hour period. This 

response is not currently supported by the current literature where LPS has been observed to result 

in increased secretion of HMGB1 (El Gazzar 2007). Secretion of HMGB1 has been observed to be a 

late stage mediator of the inflammatory response; a study by (Wang, Bloom et al. 1999) reported 

that mice treated with endotoxin had increased serum levels of HMGB1 after 8 hours, peaking at 16 

hours after which serum concentration remained high although it had started to decrease. The 

observed decrease in HMGB1 secretion of primary monocytes treated with high glucose and LPS 

after 28 hours could indicate that HMGB1 has reached its peak in secretion earlier than cells treated 

with high glucose alone. This could indicate an earlier resolution to the inflammatory response 

resulting in decreased secretion of HMGB1. 

Although HMGB1 secretion by primary monocytes was increased in response to high glucose alone, 

the function of HMGB1 is dependent on the redox state of its three cysteine residues (Yang, Antoine 

et al. 2013). Further studies could seek to investigate the redox state of the secreted HMGB1 in order 

to contextualise the increased secretion. 

Primary monocytes treated with increased concentrations of glucose over a 6 hour period decreased 

the expression of miR-146a-5p relative to cells treated with 5mM D-glucose. Expression of miR-146a-

5p has been previously reported to decrease in response to incubation with high concentrations of D-

glucose in endothelial cells (Feng, Chen et al. 2011, Wang, Huang et al. 2014); the observed decrease 

in miRNA 146a expression in response to high glucose reported in this chapter is the first time this 

effect has been observed in human primary monocytes. Expression of miR-146a-5p has been 

reported to be regulated by the binding of NF-κB to its gene promoter region (Taganov, Boldin et al. 
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2006). For this reason increased NF-κB activity induced in response to LPS has been observed to 

result in increased expression of miR-146a (Taganov, Boldin et al. 2006). Increased expression of miR-

146a forms a negative feedback loop repressing TLR mediated inflammation and NF-κB 

transcriptional activity (Bhaumik, Scott et al. 2008).   

Expression of miRNA 146a-5p has also been reported to be regulated by the histone 

acetyltransferase p300 (Feng, Chen et al. 2011). The authors observed that incubation with high 

concentrations of D-glucose increased activity of p300 and histone acetylation which resulted in 

decreased miR-146a expression. Treatment with p300-silencing RNA restored miR-146a expression in 

response to high concentrations of D-glucose suggesting increased p300 mediated acetylation 

regulates miR-146a expression. The expression and activity of p300 increased in response to 

treatment with high concentrations of glucose (Feng, Chen et al. 2011). Expression and activity of the 

p300 histone acetyltransferase has not been explored within this thesis although this could serve as 

the pathway resulting in increased miRNA 146a-5p expression. miRNA 146a-5p has a role in 

regulating the inflammatory response through disruption of the TLR4 signalling pathway by causing 

degradation of TRAF6 and IRAK1 mRNA (Gao, Wang et al. 2015, Lu, Cao et al. 2015). Decreased 

expression of miRNA 146a-5p has been observed to result in increased secretion of the inflammatory 

cytokines: IL-6 and IL-8 (Bhaumik, Scott et al. 2009) and may at least in part explain the increase in IL-

6 and IL-8 observed here in primary monocytes during high glucose treatment. 

Treatment of primary monocytes with increased concentrations of glucose resulted in a non-

significant decrease, in the expression of miRNA 155-5p relative to cells treated with 5mM D-glucose 

and 5mM D-glucose with 45mM L-glucose. Within the literature, expression of miRNA 155-5p has 

been shown to be both increased and reduced in response to a hyperglycaemic environment. T2DM 

patients exhibited decreased expression of miRNA 155-5p in examined bone marrow-derived CD34 

positive stem cells (Spinetti, Cordella et al. 2013). In diabetic rat and mouse models, increased 

expression of miRNA 155-5p has been observed (Kovacs, Lumayag et al. 2011, Lin, You et al. 2015). 

The exact role miR-155-5p plays in the regulation of inflammatory responses is also currently 

debated; reported in the literature as both pro- (Li, Tian et al. 2013) and anti-inflammatory (Tili, 

Michaille et al. 2007, Tang, Xiao et al. 2010). Li, Tian et al. (2013) identified miR-155-5p as having a 

pro-inflammatory role by targeting and inhibiting the expression of SOCS1 resulting in increased 

expression of TNFα and IL-1β. Tang, Xiao et al. (2010) identified miR-155-5p as having an anti-

inflammatory role by targeting and inhibiting the expression of MyD88 which the authors observed 

to result in a significant decrease in IL-8 cytokine secretion. The role of miR-155-5p in the regulation 

of the inflammatory response may depend on the specific cell/tissue type or the circumstances of the 
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inflammatory response. Additional research appears to be required to further clarify the role of miR-

155-5p in the inflammatory response. 

Expression of the miR-424-5p was increased in primary monocytes treated with high concentrations 

of glucose. Expression of miR-424 in response to treatments with high concentrations of glucose has 

not currently been explored within the literature. Increased expression of miR-424-5p has been 

shown to be associated with increased monocyte differentiation to macrophages (Rosa, Ballarino et 

al. 2007). The authors observed that increased expression of miR-424 resulted in degradation of 

nuclear factor 1 A-type (NFIA) mRNA resulting in increased monocyte differentiation to 

macrophages. The expression of miR-424-5p has been reported to be regulated by the binding of the 

transcription factor PU.1 to the gene promoter region (Rosa, Ballarino et al. 2007). Expression of the 

PU.1 transcription factor and its activity has been observed to increase in response to obesity and 

diabetes (Nadler, Stoehr et al. 2000, Furukawa, Fujita et al. 2004). This known increase in PU.1 

expression and activity in response to obesity and diabetes could explain the increased expression of 

miR-424-5p in high glucose treated primary monocytes. Expression of miR-424-5p has also been 

reported to be suppressed by a variety of histone deacetylase proteins (Zhou, Gong et al. 2013). The 

authors observed that mice treated with a number of histone deacetylase inhibitors for HDAC1, 

HDAC2 and SIRT1 had increased expression of miR-424-5p. This would suggest that decreased 

histone deacetylase activity, as has been previously reported in response to hyperglycaemia (Yun, 

Jialal et al. 2011), may result in increased expression of miR-424-5p.  

The importance of these miRs in regulating the inflammatory response by monocytes to high glucose 

could be investigated further by treating cells with either anti-miRs or miR mimetics to either 

decrease or increase activity of specific miRs. 

 

5.5.1 Strengths and limitations 

 

A limitation of the research presented within this chapter is due to the monocyte isolation technique 

used. The isolation technique only isolated the CD14 positive, CD16 negative mon 1 monocyte 

subpopulation. The consequence of this being that the responses of the CD16 positive mon 2 and 

mon 3 populations to high concentrations of D-glucose and LPS remains unknown. This is of great 

significance when it is considered that the CD16 positive mon 2 and mon 3 populations have both 

been shown to secrete greater amounts of pro-inflammatory cytokines in response to TLR ligands. 

The mon 2 and mon 3 subpopulations have also been reported to expand in a number of 



178 
 

inflammatory conditions in addition to obesity and diabetes occurring either independently or 

simultaneously (Frankenberger, Sternsdorf et al. 1996, Belge, Dayyani et al. 2002, Cros, Cagnard et al. 

2010, Poitou, Dalmas et al. 2011, Wong, Tai et al. 2011). This perhaps suggests a functional role of 

these populations in these inflammatory conditions. Further work could seek to isolate the total 

monocyte population and subsequently separate them by FACS to determine the responses of each 

subpopulation to treatment with elevated concentrations of glucose. Further work could also assess 

the effects of treatment with elevated glucose on mon 1 monocyte CD14 and CD16 expression by 

flow cytometry in order to determine whether exposure could promote mon 1 monocytes to shift to 

CD16 mon 2 or mon 3 populations. Although there are some advantages to only assessing a single 

monocyte subpopulation. Each of the individual subpopulations have been shown to have unique 

gene expression profile and role within the innate immune system (Wong, Tai et al. 2011), pooling 

the three populations together would potentially dilute and prevent observing significant changes in 

response to treatment. 

A strength of the results presented within this chapter is that these experiments were performed 

using primary human monocytes treated ex vivo. By using primary human monocytes as opposed to 

a leukaemic monocyte cell line the results can be determined to be more applicable to human 

individuals with high plasma concentrations of D-glucose occurring as a result of diabetes. However, 

a consideration when treating and examining the responses of a single cell type in isolation is that in 

vivo the monocytes responses would be influenced by the variety of other cell types that reside in 

the blood. Using primary human monocytes also limited the available number of cells restricting 

some of the experiments that could be successfully performed. This meant that some of the 

responses from THP-1 monocytes treated with high concentrations of D-glucose presented in chapter 

four such as effect on SIRT1 deacetylase activity and P65 acetylation status could not be replicated in 

primary monocytes. 

The ex vivo treatment of primary monocytes with high concentrations of D-glucose identified a 

number of novel responses not previously reported in the current literature; these include the 

increased secretion of HMGB1, acetylated P65 binding to the TNFα promotor and miR-424-5p 

expression in addition to decreased expression of miR-146a-5p. 
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6 Discussion 
 

6.1 Summary of findings 

 

The results of the study presented in chapter three identified a total of eight miRs that were 

dysregulated in monocytes of obese individuals awaiting bariatric surgery that returned to control 

levels of expression one year after the surgery. A number of the miRs identified, 146a-5p, 424-5p, 

151a-5p and 199-5p, have previously been reported in the literature to play a role in the regulation 

of inflammatory signalling. As monocytes play a fundamental role in the induction of inflammatory 

responses, it is of note that miRs involved in the regulation of inflammation signalling are 

dysregulated in response to obesity. The dysregulation of these miRs could contribute to the chronic 

inflammatory phenotype observed in obese and diabetic individuals. The subsequent pathway 

analysis of the predicted miR target mRNAs which were identified using sequence prediction 

software appears to support the role of the dysregulated miRs in inflammatory signalling. The 

pathway analysis was performed on the top one hundred target mRNAs ranked in order of 

confidence of prediction for each miR; potential involvement in a number of inflammatory signalling 

pathways including IL-6, IL-10, toll-like receptor and NF-κB signalling was identified. Whilst the 

involvement in these pathways is likely to facilitate further investigation, it should be noted that this 

is based on the use of predictive software which should be considered when interpreting these 

results. The identification of these miRs represents a significant finding, adding to a currently limited 

knowledge base and could, with further investigation identify potential targets for intervention to 

limit obesity and diabetes associated inflammation and its complications. The study also showed that 

bariatric surgery and the resulting weight loss after one year was successful in restoring the 

dysregulated miRs towards control levels of expression.   

The expression of miR-146a-5p and miR-424-5p was additionally altered in response to increased 

age; expression of miR-146a-5 was lower in older age and expression of miR-424 was higher. Human 

monocyte expression of these two miRs have not, at the time of writing been associated with age, 

although the trend in the change of expression of these two miRs has been observed in endothelial 

cells aged through increased cellular passages. The expression of both miR-146a-5p and miR-424-5p 

are both reportedly involved in the regulation of the inflammatory response. The dysregulation of 

these with increased age could contribute to the observed increase in serum inflammatory cytokines 

present with advancing age. The increased presence of inflammatory cytokines in response to 

dysregulation of these miRs could also contribute to the increased insulin resistance associated with 
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age. Alternatively these miRs could become dysregulated in response to age associated increases in 

insulin resistance, serum glucose and cholesterol concentrations.  A longitudinal study would be 

necessary to determine whether alterations in expression of these miRs results from, or results in, 

the age associated changes in inflammatory response and metabolism. 

The results of the study presented in chapter four identified the responses of THP-1 monocytes to 

incubation with increased concentrations of D-glucose with or without co-treatment with LPS. The 

results reported the effects of treatment with increased concentrations of D-glucose on THP-1 

intracellular NAD+:NADH ratio, SIRT1 deacetylase activity, P65 acetylation status, cytokine secretion 

and TNFα mRNA transcription in the presence or absence of LPS. Incubation with either increased 

concentrations of D-glucose or its osmotic control L-glucose reduced secretion of a number of 

cytokines and chemokines in response to LPS. Secretion of a total of 41 cytokines and chemokines 

were assessed by multiplex cytokine analysis; of all the cytokines detected, IP-10 was the single 

cytokine shown to increase in response to high concentrations of glucose in THP-1 monocytes. The 

increased osmotic concentration also reduced LPS-induced transcription of TNFα mRNA. Treatment 

of THP-1 monocytes with high concentrations of D-glucose was observed to decrease the 

NAD+:NADH ratio. This response to increased glucose availability has been reported previously to 

occur in a variety of different cell types; the increased availability of glucose has been shown to result 

in increased sorbitol and fructose formation through the polyol pathway a process which utilises 

NAD+ reducing it to NADH. Treatment of THP-1 monocytes with high concentrations of D-glucose was 

shown to result in decreased SIRT1 deacetylase activity independent of any significant changes in 

SIRT1 mRNA transcription. The current literature has described that incubation with increased 

concentrations of D-glucose to result in decreased SIRT1 deacetylase activity in a variety of cell types. 

This response is reported within the literature to be due to decreased availability of NAD+, a co-factor 

required for SIRT1 deacetylase activity. However the assay used to assess deacetylase activity 

supplies NAD+, so the observed decrease in SIRT1 activity seen here must be caused by alternative 

mechanisms, although its intracellular activity may be further reduced due to the observed decrease 

in the NAD+:NADH ratio. SIRT1 mRNA stability has been observed to be decreased in individuals with 

metabolic syndrome which may not have an effect on levels of SIRT1 mRNA but may reduce 

translation to protein (Ceolotto, De Kreutzenberg et al. 2014). Treated THP-1 monocytes displayed an 

increased ratio of acetylated (K310) P65 to total P65 in response to treatment with increased 

concentrations of D-glucose. P65 acetylation status has been shown to be regulated by SIRT1 

deacetylation. The increased P65 acetylation observed in treated THP-1 monocytes could be 

occurring as a result of the decrease in SIRT1 deacetylase activity. Increased P65 acetylation at lysine 



181 
 

310 has been observed to result in increased transcriptional activity and prolonged binding to sites of 

gene transcription resulting in increased NF-κB transcriptional activity.  

The results reported in chapter five identified the responses of human primary monocytes from 

healthy volunteers to incubation with increased concentrations of D-glucose. This assessed the 

effects of treatment on NAD+:NADH ratio, binding of acetylated P65 to the TNFα promoter, 

expression of the miRs 146a, 424 and 155, cytokine secretion and TNFα mRNA transcription in the 

presence or absence of LPS.  

Incubation of primary monocytes with concentrations of D-glucose was observed to alter the 

secretion of a number of cytokines in either the presence or absence of LPS. A total of 41 individual 

cytokines from the supernatants of treated primary monocytes were assessed by multiplex cytokine 

assay. Treatment with increased concentrations of D-glucose in the absence or presence of LPS 

resulted in increased secretion of the inflammatory cytokines TNFα, IL-6, IL-8 and decreased 

secretion of IL-10 and TGFα. Treatment of primary monocytes with increased concentrations of D-

glucose resulted in increased LPS induced expression of TNFα mRNA. The results from the cytokine 

panels were entered into Ingenuity Pathway Analysis software in order to determine predicted 

upstream regulators to direct further analysis. The results of the pathway analysis predicted that NF-

κB, STAT3, HMGB1, miR-146a-5p and miR-155-5p were upstream regulators of the cytokine 

response. Treatment of primary human monocytes with high concentrations of D-glucose decreased 

the NAD+:NADH ratio. This same response to high concentrations of D-glucose was observed in 

glucose treated THP-1 monocytes and has been reported previously in a variety of cells. Primary 

monocytes treated with increased concentrations of D-glucose resulted in increased binding of 

acetylated P65 (K310) to the TNFα promoter region. Increased P65 acetylation (K310) status has 

been reported to block SET9 mediated methylation of NF-κB, a process important for the 

ubiquitination and degradation of chromatin bound NF-κB which has been shown to result in 

increased and prolonged NF-κB transcriptional activity. Treatment with increased concentrations of 

D-glucose resulted in increased primary monocyte secretion of HMGB1; however, treatment with 

increased concentrations of D-glucose with the addition of LPS reduced the primary monocyte 

secretion of HMGB1. Increased serum levels of HMGB1 have been observed in diabetic individuals 

and secretion by endothelial cells increased in response to high concentrations of glucose. Secreted 

HMGB1 has been observed to perpetuate the inflammatory response by interacting with cell surface 

RAGE, TLR2 and TLR4. Treatment of primary monocytes taken from healthy volunteers, with high 

concentrations of D-glucose resulted in the decreased expression of miR-146a-5p and increased 

expression of miR-424-5p. Although decreased expression of miR-146a-5p in response to high 
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concentrations of D-glucose has been previously reported in the literature, this result represents the 

first time this response has been observed in treated primary human monocytes. Expression of miR-

424-5p has not currently been explored in response to treatment with high concentrations of D-

glucose; the observed increase in expression of miR-424-5p in primary human monocytes in response 

to high concentrations of D-glucose is a novel finding. The decreased expression of miR-146a-5p, a 

known negative regulator of TLR and NF-κB signalling, could potentially contribute towards the 

increased secretion of multiple inflammatory cytokines observed in high glucose-treated primary 

monocytes. This finding could indicate a potential mechanism through which high glucose availability 

results in increased inflammatory signalling and could represent a target for intervention during 

conditions such as T2 diabetes.  

 

6.2 Implications of research  

 

Gastric bypass surgery, which is associated with greater recovery from diabetes than other forms of 

bariatric surgery, has been shown to increase secretion of the gut hormone glucagon-like peptide-1 

(GLP-1). GLP-1 secretion by intestinal L-cells increases pancreatic beta cell proliferation, survivability 

and glucose stimulated insulin secretion (Lim and Brubaker 2006). Secretion of, and beta cell 

sensitivity to GLP-1 has been previously reported to be reduced in obese and diabetic individuals (Xu, 

Kaneto et al. 2007, Calanna, Christensen et al. 2013). Rat models of gastric bypass surgery (Patriti, 

Facchiano et al. 2004, Rubino, Forgione et al. 2006) were shown to have an increased number of the 

cells responsible for secretion of GIP and GLP-1 (Speck, Cho et al. 2011). Treatment of the rats with 

exendin9-39, a GLP-1 receptor antagonist (Serre, Dolci et al. 1998) neutralised the glucose reducing 

effects of gastric bypass surgery (Kindel, Yoder et al. 2009). Although administration of extendin9-39 to 

gastric bypass patients had no significant effect on blood glucose concentrations (Jimenez, 

Casamitjana et al. 2013). Some restrictive bariatric surgeries such as sleeve gastrectomy have also 

been shown to increase GLP-1 secretion, this is believed to be caused by increased transit of 

gastrointestinal content (Jimenez, Casamitjana et al. 2012). This increased secretion of GLP-1 

reportedly improves pancreatic beta cell function (Nannipieri, Baldi et al. 2013) an observation which 

was shown to be neutralised when treated with the GLP-1 antagonist exendin9-39 (Salehi, Prigeon et 

al. 2011). A study by Shiraishi, Fujiwara et al. (2012) reported that increased GLP-1 resulted in 

increased STAT3 signalling and polarization of macrophages to a M2 anti-inflammatory phenotype. 

Both obesity and T2 diabetes are associated with an increased proportion of M1 pro-inflammatory 

macrophages (Satoh, Shimatsu et al. 2010, Kanter, Kramer et al. 2012). Bariatric surgery has been 
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shown to increase the proportion of M2 anti-inflammatory macrophages to M1 pro-inflammatory 

macrophages (Aron-Wisnewsky, Tordjman et al. 2009). The miR expression profiles of macrophages 

have been reported to alter depending on whether they are polarized towards a pro-inflammatory or 

anti-inflammatory phenotype (Graff, Dickson et al. 2012, Liu and Abraham 2013). Bariatric surgery 

could reduce circulating lipids and glucose in obesity contributing towards a shift in 

monocyte/macrophage polarization which could facilitate the change in miR expression towards 

control values post-surgery.  

The monocyte expression of miR-146a-5p and miR-424-5p were observed to have similar trends in 

expression in response to obesity, age and treatment with high concentrations of D-glucose. In all of 

these conditions the expression of miR-146a-5p was decreased whilst the expression of miR-424-5p 

increased. The mid-life participants (>50 years old) had increased serum total cholesterol, LDL 

cholesterol HDL cholesterol and resting glucose compared to the younger participants (<30 years 

old). This is supported by previous studies which have shown mid-life (50-60 years old) to be 

associated with increased total cholesterol, LDL cholesterol (Heiss, Tamir et al. 1980, Moulopoulos, 

Adamopoulos et al. 1987, Heitmann 1992) and resting glucose (Ko, Wai et al. 2006). Potentially the 

increase in serum total cholesterol or resting glucose could lead to the observed changes in miR-

146a-5p and miR-424-5p expression. Increased age has also been shown to result in decreased 

intracellular NAD+:NADH ratio and decreased SIRT1 deacetylase activity in rats (Braidy, Guillemin et 

al. 2011). A response also observed in relation to obesity and type 2 diabetes (Gillum, Kotas et al. 

2011, Yoshino, Mills et al. 2011, Mortuza, Chen et al. 2013). The obese patients awaiting bariatric 

surgery also displayed increased expression of miR-199b-5p which has been reported previously to 

target and reduce expression of SIRT1 (Saunders, Sharma et al. 2010). Although SIRT1 deacetylase 

activity was not assessed in the obese or midlife participants its activity was shown to decrease in 

vitro treatments of THP-1 monocytes with increased concentrations of D-glucose.  Decreased SIRT1 

deacetylase activity could provide a link between the observed changes in miR-146a-5p and miR-424-

5p expression observed in obese and mid-life participants and primary monocytes treated ex vivo 

with high concentrations of glucose. 

The dysregulation of these miRs whilst potentially having implications for monocyte function such as 

decreased regulation of inflammatory responses also may have implications for surrounding cells and 

tissues. A number of cells belonging to the innate immune system including monocytes have been 

observed to secrete miR containing exosomes (Matsumoto, Morisaki et al. 2004, Lemaire, Mkannez 

et al. 2013). Secreted exosomes containing miRs have been shown to affect the functioning of 

surrounding cells and tissues in a paracrine manner (Momen-Heravi, Bala et al. 2015, Zhang, Li et al. 
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2015). The dysregulation of monocyte miR expression in obesity could result in exosomes being 

secreted resulting in an adverse effect on the surrounding cells. Exosome secretion containing 

increased miR-424-5p, an identified promoter of monocyte differentiation, in the inflamed 

endothelium could result in increased macrophages perhaps contributing to the development of 

atherosclerosis. Exosomes being secreted containing lower levels of miR-146a-5p, an inhibitor of TLR 

induced inflammation could lead to dysregulation of inflammation in the surrounding cells.  

The in vitro treatment of THP-1 and primary monocytes with increased concentrations of D-glucose 

resulted in differential cytokine secretion profiles and expression of TNFα mRNA. Treated THP-1 

monocytes displayed decreased TNFα mRNA expression and secretion of a number of cytokines in 

response to LPS or opsonised zymosan. This response occurred in response to the increased osmotic 

concentration rather than the increased availability of D-glucose. A single cytokine, IP-10 was shown 

to increase in high glucose treated THP-1 monocytes, although this appeared to occur in response to 

the increased osmotic concentration. This response was considerably different to primary monocytes 

treated with increased concentrations of D-glucose and LPS which resulted in increased expression of 

TNFα mRNA and altered secretion of a number of cytokines independent of osmotic concentration. 

This appears to indicate that the THP-1 monocyte cell line is more sensitive to changes in osmotic 

pressure than primary human monocytes. Expression of aquaporin 5 mRNA has been observed to be 

increased in leukemic cell lines (K562, U937, EM-2, LAMA-84) relative to peripheral blood 

lymphocytes (Chae, Kang et al. 2008). Increased expression of cell surface aquaporins could result in 

increased flux of water across the cell membrane resulting in increased cell shrinkage in response to 

a hyperosmotic environment. Cuschieri, Gourlay et al. (2002) observed that preconditioning rabbit 

macrophages with increased osmotic concentrations reduced secretion of TNFα in response to LPS. 

The authors treated the macrophages for a period of 4 hours with mannitol or NaCl at concentrations 

of 40 – 100mM prior to the addition of LPS; this resulted in increased cell shrinkage which was 

observed to result in decreased activation of ERK1/2 leading to decreased TNFα secretion. This could 

represent the mechanism through which increased osmotic concentration reduces THP-1 cytokine 

secretion and TNFα mRNA expression in response to LPS or opsonised zymosan. 

Treatment of THP-1 and primary human monocytes also produced a number of similar responses to 

high concentrations of D-glucose. Treatment of both primary human and THP-1 monocytes with 

increased concentrations of D-glucose resulted in a decreased NAD+:NADH ratio. Treatment of THP-1 

monocytes with high concentrations of D-glucose resulted in a significant decrease in SIRT1 

deacetylase activity and increased ratio of acetylated (K310) P65 to total P65. Due to limitations in 

available cell numbers these findings could not be confirmed in treated primary monocytes, however 
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primary monocytes treated with increased concentrations of D-glucose displayed increased binding 

of acetylated P65 to the TNFα promotor. This result could indicate that the primary monocytes 

treated with high concentrations of D-glucose may also be displaying decreased SIRT1 deacetylase 

activity resulting in increased total P65 (K310) acetylation. 

Acute treatments of primary and THP-1 monocytes with high concentrations of D-glucose resulted in 

a shift in the intracellular NAD+:NADH ratio leading to decreased functioning of NAD+ dependent 

enzymes such as SIRT1. The histone deacetylase SIRT1 displayed decreased deacetylase activity in 

response to high concentrations of glucose which could result in dysregulation of the balance 

between acetylation and deacetylation. This response was identified by the increased acetylation of 

P65 relative to total P65 observed in glucose treated monocytes, a modification reported to increase 

NF-κB transcriptional activity and duration. Although not explored within this thesis, alterations in 

the balance between acetylation and deacetylation could result in altered expression of multiple 

genes via altered acetylation of histone proteins. Some potential evidence for this exists in the 

expression profiles of the miR-146a-5p and miR-424-5p. Expression of miR-146a-5p was shown to 

decrease and miR-424-5p to increase in primary monocytes treated with high concentrations of 

glucose. Expression of miR-146a-5p has been shown to decrease and miR-424-5p increase in 

response to decreased deacetylation and increased acetylation. A number of these results occurred 

after only 6 hours of treatment with increased concentrations of glucose an earlier time point than 

has previously been assessed in monocytes. Assessment of treatment at these early time points also 

allowed for the identification of direct responses to increased availability of D-glucose independent 

of increased ROS. Changes occurring after 6 hours in response to high concentrations of glucose 

could have implications even for individuals with well controlled diabetes who may experience post-

prandial hyperglycaemia occurring over short periods of time.  
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Figure 6.2.1: Schematic detailing a potential mechanism through which increased glucose availability 
induces inflammation  
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6.3 Strengths and limitations of research 

 

The research presented in chapter 3 identified a number of novel miRs that were dysregulated in 

monocytes during obesity. The dysregulation of these miRs give possible insights into how 

differences in monocyte function and inflammatory response occur during obesity. Microarray 

analysis of miR expression, although shown in multiple publications to have a very good correlation 

with qPCR analysis, the latter has been shown to be the more sensitive and specific method of 

detection. The expression of these identified miRs should be confirmed in these samples by qPCR 

analysis to provide greater confidence in these results.   

The in vitro treatments of THP-1 and primary human monocytes used 50mM D-glucose as the high 

glucose treatment. This concentration is higher than may be expected during diabetes although has 

been reported in individuals with unmanaged diabetes (Faxon, Creager et al. 2004) and been used as 

a high glucose treatment in various other studies (Fukuhara-Takaki, Sakai et al. 2005, Feng and Chou 

2014, Jayakumar, Chang et al. 2014). This concentration was selected based on these previous 

publications and due to the acute nature of the treatments.  

THP-1 monocytes appeared more sensitive than primary human monocytes to the increased osmotic 

concentration resulting from treatment with high concentrations of glucose. The high osmotic 

concentration affected THP-1 monocyte inflammatory response indicated through decreased 

expression of TNFα mRNA and secretion of multiple cytokines. This difference between THP-1 and 

primary monocytes may represent differential regulation of the inflammatory response occurring in 

THP-1 monocytes which may limit its usage in circumstances of high osmotic concentration. 

The in vitro treatments of THP-1 and primary human monocytes with high concentrations of D-

glucose produced a number of results previously reported in the literature such as decreased SIRT1 

deacetylase activity and increased P65 acetylation; although the novelty of the work presented 

within this thesis is the identification of these changes in response to high concentrations of D-

glucose occurring at earlier time points then had previously been reported.  

The in vitro treatment of primary monocytes with high concentrations of D-glucose also identified a 

number of novel responses not previously reported in the current literature; these included the 

increased secretion of HMGB1, acetylated P65 binding to the TNFα promotor and miR-424-5p 

expression and decreased expression of miR-146a-5p and miR-155 in response to high 

concentrations of D-glucose. 
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A general limitation of assessing the expression of miRs is that so little is known about the specific 

target mRNAs of each miR. Target prediction software is required to attempt to determine which 

mRNAs may be affected by each miR. However, the results of target prediction and subsequent 

pathway analysis are based on predictions determined by sequence complementarity and may not 

reflect the actual function of the assessed miR. This should be taken into consideration when 

assessing these results. 

As previously stated the research involving isolated primary monocytes detailed in chapters three 

and five is limited by the monocyte isolation technique chosen. The isolation technique only isolated 

CD14 positive and CD16 negative mon 1 monocytes leading to the loss of the CD16 positive mon 2 

and mon 3 populations. Although these populations are relatively small relative to the mon 1 

population these populations have been reported to expand during obesity, diabetes and a variety of 

chronic inflammatory conditions and have been suggested to play a role in disease development. The 

results can therefore only be applied to the mon 1 monocyte population. 

 

6.4 Future work 

 

Future work could seek to address some of the identified limitations of the research presented 

within this thesis. The obesity dysregulated miRs identified by microarray analysis could be 

confirmed by qPCR analysis, which is a more accurate and sensitive technique. The RNA extracted 

from the obese and control individuals could be subjected to transcriptome analysis by either RNA 

sequencing or microarray. This would provide information on the specific genes being transcribed 

which could be paired with the already assessed miRs in order to determine which predicted target 

mRNAs were being affected by the dysregulated miRs. This would provide greater detail on the 

effects dysregulation of these miRs would have on monocyte function in obesity and diabetes. 

Future work could additionally seek to assess to contribution of increased glucose entering the polyol 

pathway on the reduction of intracellular NAD+:NADH ratio and the responses observed in THP-1 and 

primary monocytes to high concentrations of D-glucose. Treatment of primary monocytes with 

inhibitors of aldose reductase an enzyme required for glucose to enter the polyol pathway in 

conjunction with high concentrations of D-glucose could also be investigated to further understand 

the mechanism and as a potential target for modulating inflammation with age and obesity.  

Investigation of high glucose induced inflammatory response in treated THP-1 monocytes showed 

high sensitivity to the increased osmotic concentration within 24 hours. Further work could treat 
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THP-1 monocytes with high concentrations of D-glucose subsequent to being adapted to an 

increased osmotic environment. Cuschieri, Gourlay et al. (2002) reported that after incubation for 20 

hours in a high osmotic environment rabbit macrophages secreted the same quantities of TNFα as 

macrophages incubated in an isosmotic environment. THP-1 monocytes could be treated with an 

equivalent osmotic concentration over a 24 hour period to allow adjustment, the media replaced and 

the cells treated with the high concentrations of glucose.   

Further work could also explore the dysregulated miRs in in vitro treatments using specific miR 

inhibitors and mimetics. This could be done in order to assess the contribution of these miRs towards 

the inflammatory response to the high glucose conditions reported within this thesis.   

Finally, the microarray analysis of monocyte miRs dysregulated in obesity identified a number of 

miRs that could be assessed in the in vitro treatments of primary monocytes with increased 

concentrations of D-glucose. 

 

6.5 Conclusion 

The results presented within this thesis identified a number of novel miR dysregulated in obesity in 

addition to highlighting the benefits of bariatric surgery to reduce these changes towards control 

values. Some of these results were replicated in older individuals and by in vitro treatments of 

primary monocytes with high concentrations of D-glucose, specifically alterations in expression of 

miRs 146a-5p and 424-5p. In vitro treatments of THP-1 monocytes did not induce an inflammatory 

response over 24 hours due to an apparent sensitivity to hyper-osmolality. However these 

treatments did significantly shift the intracellular NAD+:NADH availability, SIRT1 deacetylase activity 

and P65 acetylation status. These results suggest that increased glucose availability impairs SIRT1 

mediated deacetylation leading to increased inflammatory cytokine secretion and expression of pro-

inflammatory miRs. These changes may contribute to, and perpetuate the inflammatory response 

observed with increased age, obesity and diabetes, playing a role in the development of long term 

complications. 
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8.3 List of experimentally observed miRNA target mRNA inputted into ingenuity 

pathway analysis software  

 

ID Source Confidence Symbol 

hsa-miR-199b-
5p 

TargetScan Human,miRecords 
Experimentally 
Observed 

SIRT1 

hsa-miR-199b-
5p 

miRecords 
Experimentally 
Observed 

SET 

hsa-miR-199b-
5p 

TarBase,miRecords 
Experimentally 
Observed 

LAMC2 

hsa-miR-199b-
5p 

Ingenuity Expert 
Findings,TargetScan 
Human,miRecords 

Experimentally 
Observed 

HIF1A 

hsa-miR-199b-
5p 

Ingenuity Expert 
Findings,TargetScan Human 

Experimentally 
Observed 

ETS1 

hsa-miR-199b-
5p 

Ingenuity Expert Findings 
Experimentally 
Observed 

DYRK1A 

hsa-miR-199b-
5p 

miRecords 
Experimentally 
Observed 

ALOX5AP 

hsa-miR-424-5p 
Ingenuity Expert 
Findings,TargetScan Human 

Experimentally 
Observed 

ZYX 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

ZNF622 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

ZNF559 

hsa-miR-424-5p TarBase 
Experimentally 
Observed 

YIF1B 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

WT1 

hsa-miR-424-5p 
Ingenuity Expert 
Findings,TargetScan Human 

Experimentally 
Observed 

WNT3A 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

WIPF1 

hsa-miR-424-5p 
Ingenuity Expert 
Findings,TargetScan Human 

Experimentally 
Observed 

WEE1 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

VTI1B 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

VPS45 

hsa-miR-424-5p TargetScan Human,miRecords 
Experimentally 
Observed 

VEGFA 

hsa-miR-424-5p TarBase 
Experimentally 
Observed 

UTP15 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

UGP2 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

UGDH 

hsa-miR-424-5p 
Ingenuity Expert 
Findings,TargetScan Human 

Experimentally 
Observed 

UCP2 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

UBE4A 
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hsa-miR-424-5p TarBase 
Experimentally 
Observed 

UBE2S 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

TXN2 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

TRMT13 

hsa-miR-424-5p 
TarBase,TargetScan 
Human,miRecords 

Experimentally 
Observed 

TPPP3 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

TPM3 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

TPI1 

hsa-miR-424-5p TarBase 
Experimentally 
Observed 

TOMM34 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

TNFSF9 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

TMEM43 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

TMEM251 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

TMEM189-
UBE2V1 

hsa-miR-424-5p TarBase 
Experimentally 
Observed 

TMEM109 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

TIA1 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

SRPRB 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

SRPR 

hsa-miR-424-5p TarBase 
Experimentally 
Observed 

SQSTM1 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

SPTLC1 

hsa-miR-424-5p Ingenuity Expert Findings 
Experimentally 
Observed 

SPI1 

hsa-miR-424-5p TarBase 
Experimentally 
Observed 

SNX15 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

SLC7A1 

hsa-miR-424-5p TarBase 
Experimentally 
Observed 

SLC38A5 

hsa-miR-424-5p TarBase 
Experimentally 
Observed 

SLC38A1 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

SLC35B3 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

SLC35A1 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

SLC25A22 

hsa-miR-424-5p TarBase 
Experimentally 
Observed 

SLC16A3 

hsa-miR-424-5p 
TarBase,TargetScan 
Human,miRecords 

Experimentally 
Observed 

SLC12A2 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

SKAP2 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

SHOC2 
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hsa-miR-424-5p TarBase 
Experimentally 
Observed 

SERPINE2 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

SEC24A 

hsa-miR-424-5p TarBase,TargetScan Human 
Experimentally 
Observed 

RTN4 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

RNASEL 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

RHOT1 

hsa-miR-424-5p TarBase 
Experimentally 
Observed 

RFT1 

hsa-miR-424-5p TargetScan Human,miRecords 
Experimentally 
Observed 

RECK 

hsa-miR-424-5p TarBase 
Experimentally 
Observed 

RARS 

hsa-miR-424-5p miRecords 
Experimentally 
Observed 

RAD51C 
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