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Measurements of the energy spectrum and of the vortex-density fluctuation spectrum in superfluid
turbulence seem to contradict each other. Using a numerical model, we show that at each instance
of time the total vortex line density can be decomposed into two parts: one formed by metastable
bundles of coherent vortices, and one in which the vortices are randomly oriented. We show that the
former is responsible for the observed Kolmogorov energy spectrum, and the latter for the spectrum
of the vortex line density fluctuations.
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Below a critical temperature, liquid helium becomes a
two-fluid system in which an inviscid superfluid compo-
nent coexists with a viscous normal fluid component. The
flow of the superfluid is irrotational: superfluid vorticity
is confined to vortex lines of atomic thickness around
which the circulation takes a fixed value κ (the quantum
of circulation). Superfluid turbulence [1, 2] is easily cre-
ated by stirring either helium isotope (4He or 3He-B),
and consists of a tangle of reconnecting vortex filaments
which interact with each other and with the viscous nor-
mal fluid (which may be laminar or turbulent). The most
important observable quantity is the vortex line density
L (vortex length per unit volume), from which one infers
the average distance between vortex lines, ` ≈ L−1/2.
Our interest is in the properties of superfluid turbulence
and their similarities with ordinary turbulence.

Experiments [3, 4] have revealed that, if the superfluid
turbulence is driven by grids or propellers, the distribu-
tion of the turbulent kinetic energy over length scales
larger than ` obeys the celebrated k−5/3 Kolmogorov
scaling observed in ordinary (classical) turbulence. Here
k is the magnitude of the three-dimensional wavenum-
ber (wavenumber and frequency are related by k = f/v̄,
where v̄ is the mean flow). Numerical calculations per-
formed using either the vortex filament model [5, 6] or the
Gross-Pitaevskii equation [7, 8] confirm the Kolmogorov
scaling. It is thought that the effect arises from the par-
tial polarization of the vortex lines [1, 2, 9], but such
effect has never been clearly identified. Another impor-
tant experimental observation is that in both 4He [10]
and 3He-B [11], the frequency spectrum of the fluctua-
tions of L has a decreasing f−5/3 scaling typical of passive
objects [6, 12] advected by a turbulent flow. This latter
result seems to contradict the interpretation of L as a
measure of superfluid vorticity, ω = κL which is usually
made in the literature [1, 2, 11, 13–15].

In fact, from dimensional analysis, the vorticity spec-
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trum corresponding to the Kolmogorov law should in-
crease with f (as f1/3), not decrease. Since the vortex
line density is a positive quantity, a better analogy is to
the enstrophy spectrum: however in classical turbulence
this spectrum is essentially flat [16, 17], in disagreement
with the helium experiments [10, 11].

The aim of this letter is to reconcile these two sets of
observations (each separately backed by numerical simu-
lations). We shall show that, at any instant, the vortex
tangle can be decomposed into two parts: vortex lines
which are locally polarised in the same direction, form-
ing metastable coherent bundles, and vortex lines which
are randomly oriented in space. The former is responsi-
ble for the Kolmogorov energy spectrum, and the latter
for frequency spectrum of the vortex line density.

Following Schwarz [18], we model vortex filaments as
space curves s(ξ, t) which move according to

ds

dt
= vs +αs′× (vn−vs)−α′s′× (s′ × (vn − vs)) , (1)

where t is time, α and α′ are known temperature depen-
dent friction coefficients [19], s′ = ds/dξ is the unit tan-
gent vector at the point s, ξ is arc length, and vn is the
normal fluid velocity at the point s. We set the temper-
ature to T = 1.9 K, typical of many finite temperature
studies (corresponding to α = 0.206 and α′ = 0.0083).
The self-induced velocity of the vortex line at the point
s is given by the Biot-Savart law [20]

vs(s, t) = − κ

4π

∮
L

(s− r)

|s− r|3 × dr, (2)

where κ = 9.97 × 10−4 cm2/s (in 4He) and the line in-
tegral extends over the entire vortex configuration L.
The calculation is performed in a periodic cube of size
D = 0.1 cm. The numerical techniques to discretize the
vortex lines into a number of points sj (j = 1, · · ·N)
held at minimum separation ∆ξ/2, compute the time evo-
lution, de-singularize the Biot-Savart integrals, evaluate
vs using a tree-method (with critical opening angle 0.4),
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FIG. 1. (Color online) The time evolution of the total vortex
line density (black dashed line) L (cm−2) and the polarised
component L‖ (cm−2) (solid red line).

and algorithmically perform vortex reconnections when
vortex lines come sufficiently close to each other, are all
described in our previous papers [6, 21]. Here we take
∆ξ = 2 × 10−3 cm and a timestep of 5 × 10−5 s. The
number of discretization points varies with time; in the
statistically steady state we focus on, N ≈ 4000.

The turbulent normal fluid is modelled by the following
synthetic turbulent flow [22]:

vn(s, t) =

M∑
m=1

(Am×km cosφm+Bm×km sinφm), (3)

where φm = km · s + fmt, km and fm =
√
k3mE(km)

are wave vectors and angular frequencies. This flow is
solenoidal and time-dependent; with a suitable random
choice of Am, Bm and km (adapted to the periodic box).
The normal fluid’s energy spectrum has Kolmogorov

form E(km) ∼ k−5/3m in the range from k1 (corresponding
to the integral scale) to kM (corresponding to the dissipa-
tion scale). This synthetic model of turbulence compares
very well with Lagrangian statistics obtained in direct
numerical simulations of the Navier-Stokes equations and
experiments. Here we take M = 188, k1 = 0.1 cm and
kM = 1.8× 10−3 cm, which corresponds to the Reynolds
number Ren = (k1/kM )4/3 ≈ 200. For computational
simplicity our model ignores any back-reaction of the vor-
tex lines onto the normal fluid.

We integrate the vortex lines in time according to
Eq. (1), for a period of 10 s (approximately 25 large eddy
turnover times of the normal fluid). We find that, after
an initial transient, the vortex line density saturates to
a statistically steady state, as shown in Fig. 1, indepen-
dently of the initial condition (various vortex loop con-
figurations were tried).

We analyse the properties of the superfluid turbulence
in the statistically steady state (t & 1.2 s). Firstly, we
compute the frequency spectrum of the fluctuations of
the vortex line density about its average value < L >=
1.15 × 104 cm−2. Fig. 2 shows that the spectrum scales
as f−5/3 for large f , as observed in experiments [10, 11]
and numerical simulations [6]. Secondly, we compute the
superfluid energy spectrum E(k), defined by

1

|V |

∫
V

1

2
|vs|2dx =

∫
E(k)dk, (4)
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FIG. 2. (Color online). Power spectral density, PSD, (arbi-
trary units) of fluctuations of the total vortex line density L
(black upper solid line) and of the polarised vortex line den-
sity L‖ (red lower solid line) vs frequency f (s−1). The dashed

(magenta) line shows the f−5/3 scaling.

where V = D3 is volume. The top curve (labelled a)
of Fig. 4 shows that the energy spectrum (computed on
a 2563 Cartesian mesh) is consistent with the cascading
classical Kolmogorov scaling E(k) ∼ k−5/3 in the range
kD = 2π/D < k < k` = 2π/`, in agreement with exper-
iments [3, 4] and numerical simulations [5–8]; at larger
wavenumbers k > k` the spectrum exhibits the non-
cascading scaling of individual vortex lines. We conclude
that the numerical model reproduces the two major spec-
tral features (the energy spectrum and the vortex density
fluctuations spectrum) observed in superfluid turbulence.

To solve the puzzle described in the introduction, we
examine the homogeneity of the turbulence. A simple
three-dimensional plot of the vortex lines may give the
wrong impression that the vortex tangle is spatially uni-
form: the orientation of the lines is not apparent and
some lines partially hide each other. A more careful anal-
ysis is required. We define a smoothed vorticity field ω
at the discretization points sj using a kernel with finite
support, the M4 kernel [23] (effectively a cubic spline):

ω(si) = κ

N∑
j=1

s′jW (rij , h)∆ξj , (5)

where rij = |si − sj |, ∆ξj = |sj+1 − sj |, W (r, h) =
g(r/h)/(πh3), h is a characteristic length scale, and

g(q) =


1− 3

2q
2 + 3

4q
3, 0 ≤ q < 1;

1
4 (2− q)3 , 1 ≤ q < 2;

0, q ≥ 2.

(6)

This approach is commonly employed in the smoothed
particle hydrodynamics (SPH) literature [23], as we only
need to take the contribution of discretization points
within a radius of 2h from each point si. We tested this
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FIG. 3. (Color online) Left: Snapshot of the vortex tangle at t = 7 s. Vortex lines are locally coloured according to the
local magnitude of the smoothed vorticity field ω. Right: The same snapshot but split into the locally polarized (top,
ω(si) > 1.4ωrms) and random components (bottom, ω(si) < 1.4ωrms) respectively. The color scale is normalised by the
maximum value ωmax = 38.4 s−1; ωrms = 15.7 s−1

.
smoothing algorithm against a Gaussian kernel g(q) =

e−q
2

[24] and found comparable results for single snap-
shots of the vortex tangle. The advantage of the new al-
gorithm is that ω is computed only at the discretization
points, so it can be evaluated during the time evolution.

Setting h = `, the smoothed vorticity field ω al-
lows us to identify the presence of any coherent vor-
tex structures. From the vorticity values ωj at each
discretization point sj we compute the rms vorticity

ωrms =
√

1
N

∑N
i=1 |ω(si)|2. and, following Ref. [12], we

decompose the vortex lines into locally ‘polarised’ and
‘unpolarised‘ fields, L‖ and L× respectively. The po-
larised vortex line density L‖ consists of the discretization
points sj associated to intense metastable vortical regions
where the magnitude of the smoothed vorticity exceeds
the rms vorticity by a threshold value, ω(si) > 1.4ωrms

(we shall discuss this threshold shortly). The remaining
discretization points form the ‘unpolarised’ field L×. As
with the total vortex line density, we find that L‖ rapidly
saturates to a statistically steady state, see Fig. 1.

A snapshot of the vortex tangle in which the vortex
lines are coloured according to the local value of the
smoothed vorticity is shown in Fig. 3 (left); vortex bun-
dles are clearly visible. The right-hand side of Fig. 3
shows respectively the polarised (top, ω(sj) > 1.4ωrms)
and unpolarised vortex lines (bottom, ω(sj) < 1.4ωrms):
the former consists of bundles and contributes to L‖, the
latter is spatially random and contributes to L×.

We find that the polarised and unpolarised vortex lines
have different properties. The frequency spectrum of the
fluctuations of L× scales as f−5/3, as for the total line
density L (top black curve of Fig. 2), whereas the spec-
trum of the fluctuations of L‖ slowly increases at low fre-
quency and drops rapidly at high frequency (bottom red
curve of Fig. 2). Changing the threshold value within the
range 1.4 to 2.2ωrms does not change this distinction. The

flattening and the slow increase with f of the spectrum
of the fluctuations of the polarised vortex lines are con-
sistent with observations in ordinary turbulence [16, 17].

We now turn our attention to the role of the polarised
lines on the energy spectrum. We have seen that the top
curve (labelled a) of the top panel of Fig. 4 displays, in
the range kD < k < k`, the Kolmogorov energy spectrum
corresponding to all vortex lines. The curves labelled b,
c, d, and e show energy spectra arising only from dis-
cretization points sj such that ω is below a given (de-
creasing) rms threshold. It is clear that, as we remove
the contribution of the high-intensity bundles, the energy
spectrum E(k) in the range kD < k < k` becomes shal-
lower, and changes from a k−5/3 scaling to a k−1 scaling.
The bottom panel of Fig. 4 compares the energy spec-
trum arising from the isotropic vorticity L× (top curve,
labelled a) and that arising from the polarised vorticity
L‖ (bottom curve, labelled b). It is apparent that the vor-

tex bundles correspond to the classical k−5/3 Kolmogorov
scaling, and that the random vorticity corresponds to the
k−1 spectrum.

The decomposition of L into L‖ and L× is robust and
holds during the time evolution, thus vindicating Roche
and Barenghi [12] who suggested it when discussing an
experiment [10]. Unlike that experiment, in our calcula-
tion the random vortex lines contain most of the energy.
A possible explanation of this difference is that our model
of turbulent normal fluid does not contain strong vortical
structures, unlike real turbulence or DNS, thus our po-
larised bundles are an underestimate of reality (the pres-
ence of vortical structures in the normal fluid would cer-
tainly induce stronger vortex bundles in the superfluid,
as shown in numerical simulations [25], hence increase
the energy contained in L‖). It is also interesting to re-
mark that the the smoothed vorticity ω can be related
to the coarse-grained vorticity of the HVBK equations
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FIG. 4. Energy spectra E(k) (arbitrary units) vs wavenumber
k (cm−1) corresponding to Fig. 3. Top: The upper solid line
(a) is the energy spectrum corresponds to the flow induced
by all vortex lines. Lower curves correspond to the flow in-
duced by vortices with smoothed vorticity below the following
thresholds: (b) ω < 1.7ωrms, (c) 1.4ωrms, (d) 1.2ωrms, and
(e) ωrms. Bottom: Energy spectra corresponding to vortex
lines with smoothed vorticity respectively below (a) and above
(b) the threshold 1.4ωrms. The dashed lines display the k−1

and the k−5/3 scalings.

[26], and that the decomposition of L into L‖ and L×,
has an analogy to that of Farge et al. [27] for classical
turbulence.

In summary, we have shown compelling evidence that,
at any instant, the turbulent vortex tangle can be de-
composed into a polarised and a random component.
The polarised component, associated to L‖, consists of
metastable coherent vortex bundles, shown in the top
right panel of Fig. 3, and is responsible for the observed
Kolmogorov k−5/3 energy spectrum. The random com-
ponent, shown in the bottom right panel of Fig. 3, is
responsible for the observed f−5/3 frequency spectrum
of the fluctuations of the vortex length. The result con-
firms that the Kolmogorov spectrum arises from partial
polarization of the vortex lines, and solves an apparent
puzzle between experiments. It also points to direction of
further work: determining the degree of polarization as
a function of temperature and normal fluid’s Reynolds
number (in Fig. 1 it is about 20 percent with the pa-
rameters used), and developing a two-scale approach to
superfluid hydrodynamics such as Lipniacki’s [28] to ac-
count for such polarization.
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