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Abstract

We investigate the theoretical and numerical computation of rare transitions in simple geophysical
turbulent models. We consider the barotropic quasi-geostrophic and two-dimensional Navier—Stokes
equations in regimes where bistability between two coexisting large-scale attractors exist. By means of
large deviations and instanton theory with the use of an Onsager—Machlup path integral formalism for
the transition probability, we show how one can directly compute the most probable transition path
between two coexisting attractors analytically in an equilibrium (Langevin) framework and numeri-
cally otherwise. We adapt a class of numerical optimization algorithms known as minimum action
methods to simple geophysical turbulent models. We show that by numerically minimizing an appro-
priate action functional in a large deviation limit, one can predict the most likely transition path for a
rare transition between two states. By considering examples where theoretical predictions can be
made, we show that the minimum action method successfully predicts the most likely transition path.
Finally, we discuss the application and extension of such numerical optimization schemes to the com-
putation of rare transitions observed in direct numerical simulations and experiments and to other,
more complex, turbulent systems.

1. Introduction

Many turbulent flows related to climate dynamics undergo sporadic random transitions [1]: after long periods
of apparent statistical stationarity close to one of the dynamical attractors, they spontaneously switch to another
dynamical attractor. In recent years, there has been increasing evidence that indicates that the ocean circulation
has multiple attractors [2] corresponding to different regimes of thermohaline circulation, driven by salinity and
temperature differences between the poles and the equator. The transition between such attractors may be
related to Dansgaard—Oeschger events [2, 3]. Transitions between two attractors (bistability) is also observed at
large scales of ocean currents, for instance the Kuroshio [4, 5]. The importance of possible bistability and abrupt
transitions has been emphasized many times, including for the planetary atmosphere [6—11], where planetary
jets may have a huge impact on abrupt climate change [8, 12, 13].

Random transitions in turbulent flows are also extremely prevalent in astrophysics and geophysics as well as
in laboratories and industrial applications. For instance, the Earth’s magnetic field reversal is a transition
between two turbulent attractors just as in magneto-hydrodynamics experiments [ 14]. Bistability is also
observed in two-dimensional turbulence simulations and experiments [15—17] and in Rayleigh—Bénard
convection cells [18—21], and dozens of other three-dimensional fluid flows show this kind of behavior. (See, for
instance, [22] and [17] for more references.)

Stochastic resonance [23, 24] has been advocated as a possible mechanism for the abrupt transitions between
glacial and inter-glacial periods, and in relation to bistability of climate dynamics and time-varying forces (i.e.,
the Milankovitch cycles [25]). The hypothesis of stochastic resonance is debated [23, 26] because of the disparity
between simple models of only a few degrees of freedom that are used conceptually [23, 24] and more complex
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models. Stochastic resonance, however, remains a very interesting possibility. To address such issues one should
study the attractors and the dynamics of the rare transition between attractors in a hierarchy of models from the
simplest to more complex ones used by the climate community. For these complex climate models, which
genuinely reproduce the turbulent nature of the Earth’s atmosphere and ocean dynamics, such a task is currently
inconceivable and seems unreachable in the foreseeable future using direct numerical simulations. The reasons
are the rarity of the transitions and the computational complexity of these models. The main aim of this paper is
to make a step in the direction of this challenge by studying bistability and the associated transitions in turbulent
dynamics using tools that will allow one to compute transitions in more complex systems in the near future.

These rare transitions are essential phenomena because they correspond to drastic changes in complex
system behavior. Moreover, they cannot be studied using conventional tools. They contain dynamics occurring
on multiple and extremely different timescales, usually with no spectral gap. This prevents the use of classical
tools from dynamical system theory. The theoretical understanding of these transitions is an extremely difficult
problem due to the complexity, the large number of degrees of freedom, and the non-equilibrium nature of
many of these flows. Up to now, there have been an extremely limited number of theoretical results, where
analysis has been limited to analogies with models of very few degrees of freedom [27] or to specific classes of
systems that can be directly related to equilibrium Langevin dynamics [28]. For this reason, the use of non-
equilibrium statistical mechanics to study these dynamics is necessary.

The main problem is in how to develop a general theory for these phenomena. When a complex turbulent
flow switches at random from one subregion of the phase space to another, the first theoretical aim is to
characterize and predict the observed attractors. This is already a nontrivial task because no picture, based on a
potential landscape, is available. Indeed, this is especially tricky when the transition is not related to any
symmetry breaking. An additional theoretical challenge is in being able to compute the transition rates between
attractors. Itis also often the case that most transition paths from one attractor to another concentrate close to a
single unique path; therefore, a natural objective is to compute this most probable transition path. To achieve
these goals, it is convenient to think about the framework of large deviation theory either to describe the
stationary distribution of the system or to compute the transition probabilities of the stochastic process. In
principle, we can argue that from a path integral representation of the transition probability [29] and the study of
its semi-classical limit in an asymptotic expansion, with a well-chosen small parameter we can derive alarge
deviation rate function that would characterize the attractors and various other properties of the system. When
this semi-classical approach is relevant, one expects a large deviation result, similar to that obtained through the
Freidlin—Wentzell theory [30]. If this notion is correct, this would explain why these rare transitions share many
analogies with phase transitions in statistical mechanics and stochastic dynamics with few degrees of freedom.

On the mathematical side, the study of sufficient hypotheses in order to rigorously prove such large deviation
results is one of the main aspects of Freidlin-Wentzell theory [30]. However, we draw the attention of the reader
to the fact that for infinite dimensional field equations, e.g., turbulence models, a large deviation result is far
from obvious in the weak noise limit. It may be expected to be the case if, for instance, the degrees of freedom on
the smallest scales can be proven to have a negligible effect on the dynamics, such that they are qualitatively
similar to those of an effective finite dimensional system. For the turbulence model we present here, such a
property is not obvious at all. Studying this issue in general is an extremely difficult task and goes beyond the
scope of this paper. Similar questions have been addressed in the past in the context of the Allen—Cahn or the
stochastic Ginzburg-Landau equations in relation to stochastic quantization [31, 32], with very appealing new
results in larger dimensions [33, 34].

Therefore, with this in mind, we consider the simplest turbulent systems that exhibit random transitions
between multiple coexisting attractors. The quasi-geostrophic model with stochastic forces is simple enough to
be studied from first principles, in the framework of statistical mechanics and large deviation theory. Moreover,
this model is relevant to describe some aspects of the largest scales of turbulent geophysical fluid dynamics. The
model shares many analogies with the two-dimensional Euler and Navier—Stokes equation [35]. These systems
include the one-layer quasi-geostrophic model and its subsidiary, the two-dimensional Navier—Stokes
equations. For instance, in [17], the authors observed rare transitions between two quasi-stable large-scale flow
configurations, namely a dual-band zonal jet and a vortex dipole for the stochastically forced two-dimensional
Navier—Stokes equations in the limit of weak noise and dissipation. In geophysical fluid dynamics, zonal jets or
zonal flows occur when the velocity field is aligned with latitude circles, and they depend only on the longitude
coordinate y,i.e.,v = U (y)e,. Furthermore, multiple zonal jet configurations were observed as dynamical
attractors in the quasi-geostrophic model for the same set of parameters [36]. These examples provide the
necessary motivation to try to understand rare transitions between two attractors for geophysical fluid flows.
The goal is to develop a theory that will be able to predict the most likely transition path between two attractors
without having to resort to direct observations of rare events in nature, computationally expensive numerical
simulations, or costly experimental setups.
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To this end, we develop a non-equilibrium statistical mechanics description for the prediction of the most
probable rare transitions between two coexisting attractors. By considering the transition probability of all the
possible transition paths between the two states as a Feynman path integral, we apply a saddle-point
approximation, in an appropriate limit characterizing the rarity of these transitions, in order to determine the
path that yields the greatest contribution to the transition probability. We decompose the problem into two
subclasses: equilibrium and non-equilibrium. Through an equilibrium hypothesis, we are able to make direct
analytical predictions from the path integral formalism for the most probable transition path. In this case any
transition away from an attractor will become rare in the limit of weak noise. Alternatively, the non-equilibrium
problem is more complex. In many cases, we are obliged to resort to numerically computing the most probable
rare transition through numerical optimization techniques. We outline an appropriate algorithm for use in
turbulent models considered here and show that the numerical predictions agree with theoretical results when
obtainable.

The layout of this manuscript is as follows: In section 2 we discuss the class of turbulence models (the
barotropic quasi-geostrophic and two-dimensional Navier—Stokes equations) and detail the path integral
formalism for the Freidlin and Wentzell (instanton) approach. In section 3, we provide an overview of recent
theoretical results of these models in a purely equilibrium Langevin setup. In such cases, rare trajectories can be
directly computed by considering relaxation (deterministic) trajectories of a corresponding dual dynamics. By
considering a simple example where a first- and second-order phase transition occurs through bifurcation of a
tri-critical point, we show that the predicted rare trajectories agree with new direct numerical simulations of the
system for a transition between two zonal jets. Section 4 details a numerical optimization algorithm used to
compute the most probable rare transition in the barotropic quasi-geostrophic and two-dimensional Navier—
Stokes equations in both the equilibrium and non-equilibrium regimes. In section 5 we apply the numerical
method from the previous section to several examples of rare transitions in geophysical flows where analytical
predictions can be made. Moreover, we consider an important generalized example of bistability in geophysics: a
non-equilibrium transition between two distinct zonal jets with topography. We show how the numerical
optimization algorithm predicts a transition that remains in the set of zonal jet states, thus greatly simplifying the
accompanying theory. Finally, we conclude in section 6 by discussing the relevance of the equilibrium and non-
equilibrium setups, the advantages and disadvantages of the numerical procedure, and the possible extension of
this method to more complex turbulent systems.

2. The barotropic quasi-geostrophic and two-dimensional Navier-Stokes equations

The most simple turbulent model relevant to bistability in geophysical fluid dynamics is arguably the
stochastically forced one-layer barotropic quasi-geostrophic model inside a periodic domain of size
D = [0, L) x [0, L,) withaspectratiod = L, /L,:

0
a—f +v-Vg=—-aw - v(-A)'w + Jon, (1a)
v=e, X Vi, g=w+ h(r) = Ay + h(r), (1b)

where w, g, v, and yrare the vorticity, the potential vorticity, the non-divergent velocity, and the streamfunction
respectively.

The topography is defined through the function / (r). If we seth = 0, then the barotropic quasi-geostrophic
equation (1) reduces to the two-dimensional Navier—Stokes equation with linear friction and hyperviscosity. We
consider G to be the Green’s function of the Laplacian operator (G = A™") for doubly periodic functions with
zero averages. Then the streamfunction and velocity can be recovered from the vorticity via

w(r) = fD G(r, r)w(r)dr’ 2)
and

viw](r) = /D e, X VpG(r, 1) [q(r') — h(x')] dr/, (3)

respectively. Here we explicitly define the operator v[w] that allows us to compute the velocity from the vorticity.
Due to the double periodicity, it is convenient to consider a Fourier representation of the potential vorticity:

q(r, 1) = Y g (Dew(r), (4)
k

whereey (r) = exp (ik - r) /(L(L,)"/?is the orthonormal Fourier basis for a doubly periodic domain. We
introduce a stochastic noise 7, defined as a sum of random noises
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N, 0 = Y fim(Dex(), (5)
k

where#, areindependent, white in time real random noises, such that[E[nk () 1y (t’)] = Ok6 (t — t'),and f
is a complex noise spectrum with randomized phases for each Fourier mode k. Consequently, we can define the
noise correlation asE [ (r, t)n(r', )] = C(x, ¥')§ (t — t'), where C (r, r’), the noise correlation matrix, can
alternatively be represented in Fourier space in terms of the complex noise spectrum: C (r) = Y, Ciex(r)
= Y /fi | %€k (r). The noise amplitude o can be associated with the energy injection rate through the
normalization of the noise spectrum by

1 Cxk

=1, (6)
244 k2

wherek = |k|is the wavenumber of the wave vector k.
The barotropic quasi-geostrophic model (1) on a doubly periodic domain conserves the energy

Elw] = —% /D  ydr, (7)

and, if the topology satisfies the condition fD h(r)dr = 0, an infinite number of Casimir functionals

1
C.lql = 5 /D s(q)dr, (8)

where s(g) is any smooth function of the potential vorticity g. On the other hand, a common choice of
topography corresponds to the beta-plane approximation /1 (r) = fy. This model is widely used as a simple
model for atmospheric and ocean flows, where the curvature of the Earth is approximated by a beta-plane [37].
The beta-plane approximation h (r) = fy does not satisfy the condition /D h(r)dr = 0, and so an infinite

number of Casimirs are not conserved. However, the quadratic Casimir s (q) = q*/2 (in addition to the
energy (7)) is conserved. In any case, all the models discussed above—the barotropic quasi-geostrophic model
on abeta-plane and the one-layer quasi-geostrophic model, including the two-dimensional Navier—Stokes
equations—conserve two sign-definite quadratic invariants: the energy (7) and the enstrophy (the quadratic
Casimir) G, [q] = (1/2) fD g* dr (whereq = w for the Navier-Stokes case). Due to the presence of two
quadratic invariants, a simple phenomenological argument [38] shows that energy will flow to large scales,
whereas the enstrophy travels toward small scales. The implications of inverse energy transfer are of paramount
importance in atmospheric and ocean flows. Restrictions imposed by finite-size domains lead (in the inertial
limit) to the condensation of energy at the largest scales, which in turn causes the self-organization of the flow
into large-scale coherent structures on a background of random turbulent fluctuations. The explicit form of
these structures depends explicitly on the boundary conditions and on the noise correlation. For periodic
boundary conditions, coherent structures in the inertial limit of the Navier—Stokes (Euler) equations can take
the form of a vortex dipole or zonal jets [35], whereas only zonal jets are observed in large f regimes of the
barotropic quasi-geostrophic model [39, 40].

Using the definition of energy (7) and the equation of motion (1), we can derive an equation for the energy
balance in the system. By taking the scalar product of (1) with the streamfunction y and integrating, and
applying Itd’s lemma to the noise, we arrive at

% = =20 — VH + o, (9)
ot

where H = fD y (—A)"w dr corresponds to the dissipation of energy via the hyperviscosity term. Assuming the
system has achieved a non-equilibrium steady state such that the system reaches an energy balance between the
injection o and the dissipation, and by further assuming that the majority of the energy is concentrated at the
largest scales (meaning that it is reasonable to neglect energy dissipation through the hyperviscous term H ), we
can perform a non-dimensionalization to fix the mean energy density to be of order one. By enforcing that the
mean energy density be unity, i.e., that £/L* = U? = L*/z? = 1, where 7 is now the characteristic energy
turnover time at the domain scale L, from the energy balance equation (9) and assuming steady-state conditions
(0E/0t = 0), we can estimate the typical energy turnover timescaleasz = (2aL*/c)"/2. Then, by non-
dimensionalizing with respect to this timescale, we define new non-dimensional variables ast’ = t7,0’ = wr,
W (r) = h(r)t,@' = ar,v' = vt/L*,andn’ = nL*c"/?, resulting in the barotropic model in non-dimensional
form:

’

oq
ot'

+v -V =—-ado —-V(-A)'o + J2a'y, (10a)
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vi=e, X Wy, qg = + h(r)=Ay" + K (r), (10b)

From this moment on, we will deal with the non-dimensionalized quasi-geostrophic equation (10) with all
primes dropped.

2.1. Dynamics of the statistically steady state

For turbulent regimes where the flow is dominated by the presence of large-scale coherent structures, we
consider the inertial limits of the barotropic quasi-geostrophic equation (10):z < a < 1. The type of coherent
structures observed is dependent on the topography / (r). Much work has been done in the inertial (Euler) limit,
where & (r) = 0. Here the main approach has been to advocate the timescale separation between the inertial
dynamic and the slow dissipative and noise dynamics. It follows that the invariant measure will concentrate close
to the attractors of the two-dimensional Euler equations. A set of attractors can be found using equilibrium
statistical mechanics in the form of the Miller—Roberts—Sommeria theory through an energy—Casimir
variational problem [41, 42]. The theory predicts the formation of either a large-scale vortex dipole or a two-
band zonal jet. The appearance of the vortex dipole is associated with the degeneracy of the two smallest
eigenfunctions of the Laplace operator of the square geometry. For & (r) # 0, the picture is a little more
complicated. If we consider the barotropic model on a beta-plane, where h (r) = fy, then the relevant physical
parameter that determines the type of coherent structures observed is 5. For # < 1, we have the usual Euler (or
Navier—Stokes) equations, where we expect to observe the invariant measure to concentrate close to vortex
dipoles or zonal jets [35]. For rectangular domains, stable parallel flows are formed along the largest scales,
where two jets appear in opposite directions. For f > 1, the -effect dominates, which tends to stabilize the
parallel flows in the e, (zonal) direction (corresponding to the smallest eigenfunction). Then possible steady-
state solutions to the barotropic equations with more than two jets can be observed. A rough estimate of the
number of jets observed can be made by considering the ratio of the domain size L to the Rhine’s scale given by
Ly = 1/pr. However, it must be stated that this is only an approximate measure because the structure of the
noise correlation will also contribute. Moreover, many cases of multiple steady-state solutions of the barotropic
equation with differing numbers of jets have been observed for the same sets of parameters [36]. These multiple
states are assumed to be linearly stable for the unforced (with or without dissipation) dynamics. Consequently,
when one introduces stochastic fluctuations by the addition of a noise, the dynamical attractors become meta-
stable, and one may expect to observe rare transitions between several attractors.

2.2.Thelarge deviation and instanton approach

Transitions between coexisting attractors and the appearance of uncommon large-scale flows are rare events.
There are many ways in which one can study these rare events in general. However, one of the most promising is
the large deviation and instanton approach. This strategy relies on the description of the transition probability of
observing a transition between two states in terms of a Feynman path integral derived from the statistical
properties of the noise [43]. For simplicity, one usually assumes that the system is driven by a white in time noise;
however, attempts have been made to generalize the formalism to include colored noises [44]. Detailed
mathematical derivations of the transition probability can be found in classical textbooks [29, 30]. The final
result is an Onsager—Machlup path integral [45, 46] over all possible transition trajectories from a state gpto a
state groccurring in time T, where each transition is weighted according to some action functional A:

(T)=qy A s [ ]
Plap Tiap0] = [ exp( —ﬂ)vm (1)

(0)=q, 20

Here deviations from the zero noise (deterministic) relaxation trajectory are represented by a penalty function
defined through an action functional A, 1y [g]. The action is the time integral of the Lagrangian associated with
the dynamical equations:

T oq
Ao, [q] = f L] g, — |dt. (12)

0 ot

For the barotropic quasi-geostrophic equation (10), the Lagrangian is explicitly
0q 1 0q
Y R
[q at] > o D[at+v q + aw + v( )a)](r)
7]

x C~!(r, r’)[a—i +v-Vg+aw+ v(—A)"w](r’)drdr’, (13)

where C™!(r, r’) is the formal inverse of the noise correlation, such that /D Clr, 1))C N r, ¥)dr=6(r — 1').
For rare probabilities, the path integral is a Laplace integral, and one can often perform a saddle-point
approximation around the global minimum of the action functional to get a leading-order approximation of the
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transition probability. This estimate will be based on the action of the trajectory that globally minimizes the
action functional. This global minimizer will be the most probable transition path going from state g, to grin
time T. At its most simple, it will consist of the most probable fluctuation path out of the initial attractor to the
edge of the basin of attraction of a neighoring attractor (known as an instanton) and then the relaxation to the
second attractor. Mathematically, this is defined as

q (1) = arg min Ao, 4] (14)
{4 14(x0)=q, q<r,T>=q»p}
When the saddle-point approximation is valid, the transitions are rare and are clustered around the instanton

path. As global minima, the most probable paths are critical points of the action functional (12) and satisfy the

corresponding Euler—Lagrange equations
6L d oL
_—=——, (15)
6q dt bq

whereq = dq/0t. The Euler-Lagrange equation (15) can be re-expressed in terms of an instanton Hamiltonian
H (g, p]for canonical variables gand p = 6L£/54°:

% = ﬁ, (16a)
ot p
@ _ M a6
ot oq

The instanton Hamiltonian is a quantity that remains conserved by the dynamics of the most probable transition
path (instanton and relaxation). Therefore, H becomes an extremely useful quantity for numerical purposes,
where it can be used to determine whether a transition path is a critical point of the action functional (12). For
the quasi-geostrophic dynamics (10) the instanton Hamiltonian H is given by

1 ’ / / n
Hig pl =< [pmCErIp@idrar = [pm[v- va+aw+v(-a")]mar. (17)
Then the Euler—Lagrange equations become explicitly
dp -1 "
E+v-Vp=A (ez-[VqX Vp])+ap+u(—A)p, (18a)
% +v:-Vg=—-aw —v(-A)'w + /; C(r, r')p(r)dr, (18b)

subject to the boundary conditions g (r, 0) = q,andq(r, T) = q;. The Euler—Lagrange equation (18) are also
known as the instanton equations because the most probable transition path will satisfy them. It should be made
clear that any transition path that is a critical point of the action functional may satisfy the Euler—Lagrange
equation (18), not only the most probable one (14). On general grounds, one should expect multiple solutions to
the instanton equations, hence leading one to compare their respective action values in order to determine the
most likely path. It should be emphasized that equations (18) are valid only in the Freidlin—-Wentzell limit of the
transition being rare, where the saddle-point approximation is valid.

A straightforward study of rare transitions through direct numerical simulation of the governing equations
is nearly always impracticable. This is mainly a complexity problem, due to the large number of degrees of
freedom involved for genuine turbulent flows and the extremely long time between two successive transitions.
The path integral approach provides a way to systematically determine the most likely transition path between
two attractors. Through the action functional A with the a priori given attractors, one can predict the most
probable rare transition by considering the local action minimizers or by solving the instanton equations with
appropriate boundary conditions. Theoretically, this problem is also extremely difficult and, for turbulent flows,
can be achieved only in the simplest of circumstances (see section 5). Alternatively, one can resort to numerical
approaches. Numerical algorithms exist that compute the most probable transition paths by iteratively
converging toward local action minimizers (see section 4) or by directly solving the boundary value problem
associated with the instanton equations (18) (for instance, see [47]).

In the cases where the dynamics are in equilibrium, i.e., where they satisfy Langevin dynamics, every
transition out of an attractor can be rare. This allows for the direct computation of rare transitions through
deterministic relaxation trajectories in a related dual system [28], as will be discussed in the next section.

The instanton Hamiltonian is conserved because it is actually the value of the Hamiltonian that corresponds to the time-invariant action
minimization, as in any classical mechanics problem. The instanton Hamiltonian structure derived through the action minimization should
not be confused with the Hamiltonian structure of the two-dimensional Euler equations.
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3. Equilibrium Langevin dynamics of the two-dimensional quasi-geostrophic equations

This section contains a brief overview of recent theoretical work [28] on the Langevin dynamics of the quasi-
geostrophic equations. We introduce the Langevin dynamics description for the quasi-geostrophic equations,
where a specific relationship between the noise correlation and the kernel of the potential force invokes the
Langevin property. By specifying a particular structure of the potential term, we consider a Langevin dynamics
with a first-order phase transition between coexisting zonal flow attractors. Through the equilibrium Langevin
dynamics theory, we can analytically predict the most probable rare transition paths between two attractors by
considering an effective potential landscape and relaxation (unforced) trajectories of a dual dynamics. This also
yields an Arrhenius law for the transition probability. The final part of this section is dedicated to the direct
numerical simulations of the bistable system considered in [28], verifying numerically that the theoretical
predictions hold.

3.1. The two-dimensional quasi-geostrophic Langevin equations
The Langevin formalism was previously considered for the two-dimensional quasi-geostrophic and Euler
equations in [28]. We explain why the two main hypotheses of Langevin dynamics (Liouville property and
conservation of the potential related to the transversality condition) are verified when the kernel in front of the
gradient part and the noise autocorrelation are identical.
The Langevin dynamics associated with the quasi-geostrophic equations in a periodic domain
D = [0, 276) X [0, 2x) with aspect ratio & are given by
9q

E+v[q—h]-Vq=—a/D C(r, 1)

dr’ + 2ayn, (19a)
oq(r’)

v=e,X Vi, w=A4y, qg=w+ h(r), (19b)

with potential G. The stochastic force 7 is a Gaussian process, white in time, with correlation function

En(xr, )y, t')] = C(r, v')d(t — t'). The topography h (r) is such that fD h(r)dr = 0,and wealso
introduce a new parameter y that will control the strength of the noise relative to the potential term. For the
Langevin description to be correct, the potential G must consist of conserved quantities of the inviscid (@ = 0)
dynamics of (10). Moreover, the deterministic equations for Langevin dynamics (equations (19) fora = 0)
essentially correspond to a transport equation by a non-divergent velocity field, leading to a Liouville property
for the nonlinear advection term v - V4. A more detailed discussion of the Langevin assumptions and results can
be found in [28].

As with the quasi-geostrophic equation (10), the equilibrium quasi-geostrophic dynamics conserve the
energy £ and an infinite number of Casimirs C; given by equations (7) and (8) respectively for the deterministic
(a = 0) dynamics. It follows that the correct choice of the potential G for Langevin dynamics will consist of a
combination of these conserved quantities:

g=C+ pe. (20)

3.2.Reversed dynamics and the relaxation equation

For the two-dimensional Euler or quasi-geostrophic equations, the time-reversed dynamics defined as

q,(t) = I'[q(T — t)]also satisfies a Langevin dynamics through a set of symmetries with the relevant involution
operator [ [-] corresponding to a time reversal being

I'ql = —q. (21
Then the dual process is given by (19) but withv[q — h] - Vq — v[q + h] - Vg, where the velocity operator is
defined by equation (3) and G [q] — G [—q], giving

9q
— + +h-V=—fCr,r’
o, TYlath-Va=—a j Clrr)

M dr’ + 2ayn, (22a)

oq(r")
v=e,X VW, w=A4y, q=w — h(r). (22b)

We observe that for the two-dimensional Euler equations (h = 0), the dual dynamics (22) agree with the
original dynamics (19) if the potential G is even. Then we conclude that the dynamics are time-reversible and
detailed balance is verified. If, however, G isnot even or i # 0, then the dynamics are not time-reversible and the
original dynamics are conjugate to another Langevin dynamics where h has to be replaced by —h and G [q] by
G [—¢]. In this case, detailed balance is not verified.

For Langevin dynamics, the instantons from one attractor to a saddle are given by the reverse of the
relaxation paths of the corresponding dual dynamics. The relaxation paths are simply the deterministic

7
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trajectories of the Langevin dynamics (19) withy = 0. Therefore, for the barotropic quasi-geostrophic
equations the equation for the relaxation paths is
9q
ot

0]
+v[q+h) - Vg= —(xf Clr, )29 [—qldr. (23)
D oq(r’)
Equation (23)is known as the relaxation equation. It provides the means to directly compute, through
deterministic means, the instanton trajectories from an attractor to a saddle by considering the relaxation paths,
defined by (23), from the saddle to the attractor.

3.3. The energy—enstrophy ensemble and physical dissipation
A special case of Langevin dynamics occurs when the potential is given by the following form:

_ [ (@=hy
g_fDTdHﬂg. (24)

This structure is referred to as the potential enstrophy ensemble (when # = 0), the enstrophy ensemble (when
p = 0and h=0), or generally as the energy—enstrophy ensemble. The properties of the corresponding invariant
measures have been discussed on a number of occasions, starting with the works of Kraichnan [48] in the case of
Galerkin truncations of the dynamics, and for some cases without discretization; see, for instance, [49] and
references therein.

For specific choices of the potential G and of the noise correlation C, the friction term can also be identified
with a classical physical dissipation mechanism. For instance, if C (r, ') = A6 (r — r’), and the potential takes
the form of (24), then the dissipative term on the right-hand side of (19) is

—a f Clr, r) =22 (4] d' = ado — apo, (25)
D oq(r')

which leads to diffusion-type dissipation with viscosity a and linear friction with friction parameter af for the

vorticityw = q — h. Such linear friction can model the effects of three-dimensional boundary layers on the

quasi two-dimensional bulk vorticity, which appear in experiments with a very large aspect ratio, rotating tank

experiments, and soap film experiments.

The fact that for the enstrophy ensemble, the quasi-potential is simply the enstrophy, the relaxation and
fluctuation paths can be easily computed explicitly in many scenarios, as is discussed in [35].

For the majority of the other cases, the dissipative term on the right-hand side of (19) cannot be identified as
amicroscopic dissipation mechanism or as a physical mechanism. There is, however, another possible
interpretation of this kind of friction term. As explained in [50], entropy maxima subjected to constraints related
to the conservation of energy and the distribution of vorticity are also extrema of energy—Casimir functionals. By
analogy with the Allen—Cahn equation in statistical mechanics, which uses the free energy as a potential, it seems
reasonable to describe the largest scales of turbulent flows as evolving through a gradient term of the energy—
Casimir functional. Such models have been considered in the past. (See, for example, [51, 52] and references
therein.) At this stage, this should be considered a phenomenological approach, as no clear theoretical results
exist to support this view.

3.4. Phase transitions and instantons between zonal flows in the equilibrium quasi-geostrophic equations
To fully determine the quasi-geostrophic Langevin dynamics (19), we need to specify the topography function
and the potential G. Given the infinite number of conserved quantities for the quasi-geostrophic dynamics, there
are many possible choices. We are interested in the description of the phenomenology of phase transitions and
instanton theory in situations of first-order transitions. Therefore, we will illustrate such a phenomenology
through an example originally discussed in [28].

As an illustrative example, we choose a zonal topography (depending only on y) given by h (r) = H cos(2y)
ona periodic domain([0, 276) X [0, 2x). For this simple choice, the attractors will be zonal flows (jets), similar
to the dynamics of planetary atmospheres, such as, for instance, that of Jupiter. The fact that the attractors are
purely zonal makes this example one of the simplest possible and more easily amenable to further theoretical
study. Consequently, the potential vorticity is given by

q = Ay + H cos(2y). (26)
We consider the potential

G=C+ p¢&, (27)
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with energy £ (equation (7)), with fbeing the inverse temperature, and where C is the Casimir functional:

2 4 6
C= 4 _ eq— + a6q— dr, (28)
D 2 4 6
where we assume thatag > 0and f = —1 + €. The choice of Casimir functional is due to the very interesting

phase diagram that be can studied analytically in the limit of small € [28]. For this analysis, using a Lyapunov—
Schmidt reduction, we refer the reader to [28, 53].

In [28], it was shown that for the potential (27), with small fand e > 0 we expect to observe a first-order
phase transition. When H = 0, a bifurcation occurs for § = —1 (¢ = 0), which can be easily verified (see [53]).
This bifurcation is due to the vanishing of the Hessian at f = —1 (¢ = 0). As discussed in many papers [35, 53—
55], for the quadratic Casimir functional C, = A) qz/ 2 dr, the first bifurcation involves the eigenfunction of —A
with the lowest eigenvalue. If we assume that the aspect ratio§ < 1, then the smallest eigenvalue is the one
corresponding to the zonal mode proportional to cos (y). Because we are interested in transitions between two
zonal states, we assume from nowon thatd < 1.

For nonzero but sufficiently small H, there will still be a bifurcation for € close to zero. This is the regime that
we want to consider. The null space of the Hessian is spanned by the eigenfunctions cos (y) and sin (y); therefore,
as a consequence, for small enough e and H, we expect that the bifurcation can be described by a normal form
involving only the projection of the field g onto the null space. It was shown in [28] that by tackling the problem
perturbatively, assuming thate < 1, H?> < 1,andagH? < ¢, the Langevin dynamics can be described by an
effective potential given by

G = 6n’G(A, B) (29)

with G given at the leading order by

H? H?>  5a¢H*
G(A,B)=—?+[€—€—+a6— (A2+BZ>

6 216
+ [ -~ %e + 725:1:52)(# +B) + 52%(A2 +B) + —56[7652 (4 - B, (30)

around the potential vorticity field of
H : 2 4
q= —? cos (2y) — A cos (y) — Bsin (y) + O(e) + (9<€A ) + (9(a6A ) (31)

The fact that G is a normal form for small enough ¢, a¢, and H implies that the gradient of G in the directions
transversetoq = —A cos(y) — B sin(y) is much steeper than the gradient of G.

2
We observe that the term proportional to ( A — Bz) breaks the symmetry between A and B. Its

minimization imposes that A> = B2. Then either A= Bor A = —B. If we take into account that minimizing with
respect to A2 + B2 will give only the absolute value of A, we can surmise that we will have four equivalent
nontrivial solutions:

H
q; = —?cos(Z)/) + \/5|A|(€, ag) cos (y+¢i), (32)
with ¢, taking one of the fourvalues{ —37”, —%, %, %”},with |A| minimizing:
- H? H? 5agH* 3 25a6H? 5a
GA) = —— +2]e — S + 22 AP + 4] -2 + 22 |1a)f + 222 |ap. (33)
3 6 216 8 144 3

The reduced potential Gis plotted in figure 1 for the casee > 0. The structure has four nontrivial attractors
due to a breaking of the symmetry imposed by the topographyh (y) = H cos(2y). In figure 2, we present the
potential vorticity across y of two of the four nontrivial attractors, the corresponding saddle between them, and
the topography. Note that the other two nontrivial attractors (not shown) correspond to y — y + & translations
arising from the A — —A symmetry of the two attractors displayed in figure 2.

Through the equilibrium hypothesis, we know how to describe and compute the instantons corresponding
to the phase transitions between zonal flows. They are none other then the reversed trajectories for the relaxation
paths for the dual dynamics. The corresponding equation of motion for the relaxation paths for the dual
dynamics for the quasi-geostrophic dynamics is then derived in section 3.2.

In the current example, the potential G is an even function; see equation (28). Also, we remark that over the
setof zonal flowsv = U (y)e,, the nonlinear term of the quasi-geostrophic equation vanishes:

v[q + h] - Vg = 0. Asa consequence, when the instanton remains a zonal flow, the fact that / has to be replaced

9
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-0.16

-0.18
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Figure 1. Figure adapted from [28]. Surface plot (left) and contour plot (right) of the reduced potential surface G (A, B) (see
equation (30)) for the parameterse = 1.6 x 1072, H = 7.746 x 107}, a5 = 2.6 x 107>, For these parameters, G has four global
minima with|A| = |B|and onelocal minimum at A = B = 0. This structure with four nontrivial attractors is due to symmetry
breaking imposed by the topography h (y) = H cos(2y). Level contours are shown in green. The most probable transition path is
shown by the red and blue curves. The instanton (red curve) is the reverse trajectory of a relaxation path from the saddle (white
square) to the attractor (white circle).

attractor
-3 ,“ saddle s 1
4 h = H cos(2y) ——
0 1 2 3 4 5 G
Y

Figure 2. The plot depicts the topography (h (y) = H cos(2y), symmetric red curve) and two of the four nontrivial attractors of the
potential vorticity g (solid black lines) corresponding to two minima of the effective potential G (see equation (30) and figure 1) for
parameter valuee > 0.In addition, we show the corresponding saddle between the two presented attractors (dashed black curve). The
two other nontrivial attractors (not displayed) correspond to y — y + x translations of the ones shown.

by —h has no consequence and hence the dynamics will be time-reversible. Let us now argue that the instanton is
actually generically a zonal flow.
We assume for simplicity that the stochastic noise is homogeneous (invariant by translation in both
directions). ThenC(r, t') = C(x — ¢') = C,(y — y') + C,,(y — ¥', x — x'), where
1

276
Cz(y)=% 0 C(x, y)dx (34)

is the zonal part of the correlation function and C,, = C — C, is the non-zonal or meridional part.

As the nonlinear term of the two-dimensional Euler equations identically vanishes, the relaxation dynamics
has a solution among the set of zonal flows. If C, is non-degenerate (positive definite as a correlation function),
then relaxation paths will exist through the gradient dynamics

5G
oq(y")

aq 2r
L R — / C.ly — y'
o U =y

dy’, (35)

whereq = q (y) is the zonal potential vorticity field.

Moreover, as argued previously, the fact that G (30) is a normal form for small enough as and H implies that
the gradient of G in directions transverse tog = —A cos(y) — B cos(y) is much steeper than the gradient of G.
Asaconsequence, at the leading order the relaxation paths will be given by the relaxation paths for the effective
two degrees of freedom G. Then, from (29), (30), and (35), we obtain that, at the leading order, the dynamics of
A and Bare given by

10
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I instanton =————% relaxation A

3l attractor 1
4 saddle sesemseees:
o 1 2 3 4 5 6

Y

Figure 3. Figure adapted from [28]. The potential vorticity (y) for two of the nontrivial attractors (solid black curves), the
corresponding saddle between the attractors (dashed black curve), and two intermediate profiles along the instanton path (solid red
curve) and the relaxation path (solid blue curve).

dA G dB 0G
=—c— and — = —c—

. = —C > (36)
dt 0A dt 0B

withc = —aé /o 2” C, () cos(y)dy, where we recall that G is given by equation (30).

From this result the relaxation paths are easily computed. Using the fact that fluctuation paths are time-
reversed trajectories of relaxation paths, instantons are also easily obtained. One of the resultant relaxation paths
(blue curve) and one of the instantons (red curve) are depicted in figure 1 overlapped on the contours of the
potential G in the (A, B)-plane. The corresponding two attractors involved, together with the saddle point and
examples of two intermediate states, are shown in figure 3.

For the Langevin dynamics formalism, the stationary probability distribution is known a priori and is given
by

_ 1 f_Sld
Rlql = - exp( . ) (37)

where Zis a normalization constant. At a formal level, this can be computed by easily writing the Fokker—Planck
equation for the evolution of the probability density functional. Then the property that P, is stationary readily
follows from the Liouville theorem and the fact that G consists of the conserved quantities of the deterministic
dynamics.

Subsequently, the transition rate k for rare transitions between two attractors is given by an Arrhenius law of
the form

k=cC exp(ﬂ), (38)
14

where Cis an order-one prefactorand AG = G g, 441.] — G [4urractor ) 19 the potential difference between the
saddle and the initial attractor.

3.5. Direct numerical simulations of rare transitions between coexisting attractors
To verify the theoretical predictions of rare transitions in the equilibrium case, we perform direct numerical
simulation of the Langevin example previously discussed.

We numerically solve the Langevin dynamics of the quasi-geostrophic equations given by (19) by using a
pseudo-spectral spatial discretization scheme of resolution 64 X 128 on a periodic domain[0, 27z5) X [0, 27)
with§ = 1/2. Due to aliasing errors from the quintic nonlinearity associated with potential G, we fully dealias
courtesy of a 2/6 rule [56]. We time-integrate the system using a second-order Runge—Kutta method with time
stepdt = 2 x 107>, For simplicity we choose a white in time noise with correlation C (r, r') = 6 (r — r')/Z,
where Z is the normalization constant defined through condition (6). We add hyperviscous dissipation to the
right-hand side of equation (19) (see equation (39)) to act as a small-scale regularization in order to avoid any
numerical problems. The addition of this extra dissipation breaks the equilibrium hypothesis on a general basis.
However, the dissipation acts only on the extremely high harmonics, with little effect on the dynamics of the
largest scales. Therefore, we expect little deviation from the theoretical (equilibrium) prediction. The numerical
equation of motion is

11



10P Publishing

NewJ. Phys. 17 (2015) 015009 J Laurie and F Bouchet

Figure 4. Numerical attractors found using the relaxation equation (23). The dashed black lines correspond to the global minima
from the effect potential G (A, B). Thered, blue, green, and orange curves correspond to numerical solutions from equation (23).

-0.16

-0.18

-0.2

Figure 5. Rare transition from one attractor to the neighboring saddle, withy = 5 x 1072 (dashed blue curve) taken from direct
numerical simulation of the system (39) overlaid over the contour plot of the effective potential landscape of figure 1 with the
theoretically predicted instanton (solid red curve).

d
d_? +vig—h]-Vqg= —%[q —€eq’ + agq’ — pA (g — h)] +v(-4)"(q — h) + J2ayn, (39a)

v=e,X Vi, w=A4y, q=w+ h(r). (39b)

As an additional check of the predictions of subsection 3.4 we perform a relaxation of the system (39) from
arbitrary initial conditions withv = y = 0. From the effective potential landscape, the system should converge
to the attractors of G given by (32). By starting at four different regions of phase space, we indeed find the
predicted attractors of G plotted in figure 4. We observe that the theoretically predicted attractors (dashed black
curves) overlay perfectly the numerically found attractors (colored curves).

From the numerical perspective, we initialize the system beginning from one of the attractors and time-step
the system until we observe a transition to a neighboring saddle. We expect that if we are in a sufficiently weak
noise limity <« AG, the transition in the direct numerical simulation will remain close to the theoretically
predicted instanton (red curve in figure 1). Therefore, we use the following parameters in our numerical
simulation:a = 1 X 107,v =1 x 107'*,andy = 5 x 1072

In figure 5 we plot the numerically observed transition onto the contour plot of the effective potential G. We
observe a relatively noisy transition (dashed blue curve) up to the saddle from the initial attractor. We see a lot of
fluctuations at the base of the potential well where the gradients are small. As the transition progresses up the
potential well toward the saddle, we observe better agreement with the theoretically predicted transition (solid
red curve). We expect that closer agreement with the theoretically predicted transition would be observed if we
chose a smaller y, but at the cost of a far rarer transition. In principle, fluctuations around the instanton solution
can be addressed with the path integral formalism from the functional expansion of the Onsager—-Machlup
action up to the second order with regard to fluctuations. However, such analysis goes beyond the scope of the
current article.

12
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4. Numerical optimization of the Onsager—Machlup action functional for the barotropic
quasi-geostrophic equations

In this section we develop a numerical algorithm that computes local action minimizers of the Onsager—
Machlup action functional defined in section 2. These local action minimizers are candidates for the most
probable transition paths between two states. Unfortunately, these numerical optimization techniques are
usually unable to distinguish between local minimizers and global ones. Therefore, using numerical schemes
that are based on minimization of the action functional may not lead to the most likely transition path. However,
one may devise strategies to check to a certain degree whether alocal or global minimum is obtained by
perturbing found minima to see if they minimize to an alternative path. If multiple minima exist, then
comparison of the total action can be made. As already stated, the numerical prediction of rare events without
brute force simulations, observation, or experiments is important. The advantage of the action minimization
methods is that they can be applied to non-gradient systems in both equilibrium and non-equilibrium cases.

Alternative strategies exist to compute rare transitions, such as string methods [57, 58], the nudged elastic
band method [59], eigenvector-following-type methods [60], the dimer method [61], and obtaining direct
solutions to the instanton equation [62]. However, many of these methods cannot be applied to turbulent
systems in general.

The numerical scheme that we implement here is based on adaption of the minimum action method to
turbulent systems. In essence, this procedure uses a series of iterative estimates of transition paths until it finds a
local minimum of the action functional .A. This numerical method is applicable to both the equilibrium and
non-equilibrium cases and can easily be extended to consider more complex turbulence problems.

4.1. The minimum action method

The minimum action method is a class of numerical optimization procedures that determine local minimizers
of functionals. One of the key properties of this algorithm is that it can be applied to systems that do not provide
a priori an energy potential landscape. This makes it ideal for studying rare transitions in turbulence problems. It
has already found many applications in the use of computing most probable transition paths in low-dimensional
gradient systems [63, 64]and rare transitions in the the Kuramoto—Siavashinksky equation [65] and the Kardar—
Parisi—Zhang equation [66]. In this section, we outline an algorithm for the standard minimum action method;
however, many more advanced versions exist that may be useful in the future. These include algorithms that
provide adaptive re-meshing known as adaptive minimum action methods [64, 67] or ones that use an arc length
parameterization of time to compute infinite time transition paths, known as geometric minimum action
methods [68, 69].

The generic strategy of the minimum action method algorithm is to begin with an initial estimate of the most
probable transition path between two states. Then, with the use of variations of the action functional with
respect to the transition trajectory, improvements in the form of iterations to the initial guess can be made that
subsequently reduce the action. This iterative process is continually repeated until the series of estimates
converges to alocal minimum of the action functional.

The main complexity of this method is in determining how one should improve each guess so that the action
is reduced. One can use various strategies, such as applying Newton’s method [70], which uses information
about the first and second variations (Hessian) of the action functional or quasi-Newton methods, such as the
popular Broyden—Fletcher—Goldfarb—Sahnno (BFGS) scheme, which iteratively approximates the Hessian
without the need to compute it directly. Newton’s method is a relatively expensive procedure, especially for
high-dimensional minimization problems, where the computation of the Hessian is difficult. Subsequently,
quasi-Newton methods have been favored in the community and have been successfully applied to the
minimum action method but only in situations involving low-dimensional gradient systems [63, 66].

We found that for turbulence problems, where we have to deal with alarge number of degrees of freedom,
even quasi-Newton methods are expensive. Therefore, we are obliged to resort to relying on methods based
solely on using the first variation of the action functional. The simplest method that falls into this category is the
method of steepest descent, where a descent direction d is taken in the direction of the local anti-gradient of the
action functional, i.e.,d = —§.4/8q. Usually these methods can have poor convergence rates when the potential
energy landscape consists of long, narrow valleys, where the minimization procedure leads to zig-zagging across
the narrow valley rather than along it. To improve convergence in these situations, one can use the nonlinear
conjugate gradient method, which uses knowledge about previous descent steps to avoid crossing back and forth
across potential valleys [70]. It is with this in mind that we use a nonlinear conjugate gradient method for our
problem.

For our notation, we label each iteration with a superscript such that the nth estimate of the most probable
transition path is labeled ¢" forn = 0, 1, 2,.... The initial guess is denoted as qo. Each new estimate for the most
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probable transition path g" ! is computed from the previous guess " by taking an appropriate descent step of
size I in the descent direction d":

qn+1 — qn + Indn. (40)

The descent direction d” is obtained through a nonlinear conjugate gradient method [70]. In general, for
nonlinear conjugate gradient methods one takes the descent direction as

antl = —5—“1 + p'd" where d°=-—". (41)

5q 5q°

The parameter " is known as the nonlinear conjugate gradient parameter, and it determines to what extent the
current descent direction should depend on the previous descent direction. There are various ways of computing
", but we found that the most optimal was to use the standard Fletcher and Reeves formula, where

2

5A
oq"
pr=——, (42)
5A
I
where|| - ||is an appropriate norm. Due to the finite number of degrees of freedom associated with the

numerical discretization, there can only be a finite number of orthogonal descent directions. Therefore, it will
become important to occasionally reset the nonlinear conjugate gradient parameter when two consecutive
descent directions are far from being orthogonal. To achieve this, we set " = 0, resulting in a standard steepest

descent step when
A 84
5q"’ 5qn—1

‘ 2

where(-, -) is the inner product associated with the norm|| - ||.

The step length I" is chosen such that we obtain the the greatest reduction in the action functional. To ensure
that d” corresponds to a descent direction (that it results in the reduction of the action), the step length I" must
satisfy the strong Wolfe conditions [70]. Fortunately, standard line search algorithms exist for determining the
largest step length that satisfies the strong Wolfe conditions. Therefore, we implement the line search algorithm
3.5 of chapter 3in [70].

The minimization is continuously performed for each iteration until the estimate of the most probable
transition trajectory q" is within some tolerance, say €, of being a solution to the Euler—Lagrange equation (18).
This is verified by halting the algorithm if the solution satisfies the condition

> 0.5, (43)
SA
5qn—1

‘ ‘ oA <e. (44)

6q"

4.2. Numerical discretization of the action functional
To numerically minimize the action functional, we must first discretize the action in both time and space. Due to
the periodicity of our domain, it is natural for us to consider the Fourier harmonics as the standard basis. In time,
we approximate the transition on a uniform grid of N; 4+ 1 points along the interval [0, T]. All spatial derivatives
are computed in Fourier space with the nonlinear terms computed in physical space using the 2/3 dealiasing rule
(the standard pseudo-spectral method [56]). Derivatives in time are achieved by applying the second-order
central finite difference scheme to a staggered grid labeled by {j + 1/2}forj = 0,..., N, — 1, where time s
parameterized byt; = jAt for j = 0,..., N;and At = T/N;.

In this respect, the transition trajectory is fully represented by the set of Fourier amplitudes
{4),;} = {a, (1A1)} given by equation (4), for j = 0,..., N, andk = (27, /L, 22n, /L, ) for

Ny € { —N¢y/2,5s N y/2 = 1 }, where N, X N, is the spatial resolution. Due to the reality of the potential

vorticity g, the Fourier harmonics satisfy the conditiong, = g, atevery pointin time.
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Using this convention, we define the numerically discretized action functional A [q] as

Ar |qk,j+% + (v V@ijs! + awijpl + vkM o
Alal ==Y - , (45)
j=0 k ‘fk|

where we have used the notation gy ;1 = (e iv1 — i ; )/At to denote the time derivative defined on the
i+ s

j+1
staggered grid. As a consequence, we must also compute the linear and nonlinear terms on the same grid. To do
this, we average the contribution of neighboring points by the simple interpolation g, ;, , , = (i j4; + 4i;)/2-

To compute the first variation of the action functional 5.4/8q, we express the action in terms of its

Lagrangian:
6A _ At| 6L + oL | '5L 3 ’5L ) (46)
O 2\ M Oy Odyjyr Oy 1
where the variations of the Lagrangian are explicitly given as
oL L T. 2
5 = Pyjrl =73 [Qk,;ﬂ + (v Vel + okt + vk wk’j"']i] (47)
icj} |fk|
and
oL i 5
S =—(v: Vplj+i +14 (qu% X ij+%) Tl | (kjty T AP+ vk Prejet- (48)
IAs)

Notice that the expressions p, (v - Vp),and A™! [ (Vg x Vp) - ez] are defined only on the staggered grid indexed

by{j + 1/2}. Consequently, our notation is defined as (v - Vp)yj+1 = (vj11 - Vp 41 )k- To evaluate these

1
2
quantities back onto the original grid, we interpolate the quantities by p; i = (P et Py ) / 2.

Finally, after some straightforward mathematics, we arrive at the numerical expression for the first variation
of the action function with respect to g:

£%=mﬁw—ww@w+ﬁﬂﬁﬁxW”Q“M*”M*”%J )

where the time derivative of p is the standard central finite difference expression p; i = Py o1 T Pt ) /A .
> ) ] T2

5. Numerical predictions for the most probable rare transitions

To show that the minimum action method is suitable for the prediction of rare transitions in turbulent models,
we consider a series of examples that verifies the algorithm. In this section we begin by considering the over-
damped limit of the barotropic quasi-geostrophic dynamics where the nonlinearity is assumed to be absent. We
follow with an example that satisfies the equilibrium hypothesis of section 3 in a regime of a single global
dynamical attractor. Through this example, we verify that the numerically obtained transition agrees with the
prediction made through the equilibrium theory. Finally, we consider a geophysical-based example of
considering a transition between two distinct zonal jet configurations modeled by the quasi-geostrophic
equations. In all cases, we show good agreement of the numerical prediction with analytical predictions.

5.1. The over-damped limit

The over-damped limita, v > 1 of the barotropic quasi-geostrophic equations corresponds to dynamics that
are dominated by dissipative effects. Therefore, we can make the assumption that the nonlinearity is
subdominant and can be neglected. Moreover, for simplicity, we assume also that the topography is absent
(h=0). We remark that this limit, although unphysical in reality, provides a simple way of verifying the
minimization procedure of the minimum action method. Absence of nonlinearity reduces the system to a linear
problem, allowing for a theoretical treatment. Indeed, the instanton equation (18) become a series of linearly
independent differential equations for each Fourier amplitude that can be straightforwardly solved. The over-
damped dynamics are given as

ow

m =—aw —v(-A)'®w + J2aymn, (50a)
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v=e, X Wy, w = Ay. (50b)

Due to the linearity of equation (50a), the dynamics of the Fourier representation of the vorticity field w can
be represented as a series of uncoupled Ornstein—Uhlenbeck processes for each Fourier amplitude wy. This
linearity means that the instanton equations can be solved directly, yielding a theoretical prediction for a rare
transition between two states for a transition time T. By working in the Fourier representation, the instanton
equations can be reduced to series of second-order linear boundary value problems for each Fourier amplitude:

2
aa?;k = (a + vkz)na)k, (51a)
ok, 0) = wr(0), ok, T)=w(T). (51b)

Notice that the noise correlation f, | drops out of the instanton equations, meaning that the trajectory is
independent of the noise—this is a consequence of the decoupling of each Fourier amplitude from every other.
Equation (51) can be readily solved with the solution

o (r, 1) = ) wi(Dex(r), (52a)
k
with

sinh (£, [T = 1] ) (0) + sinh (B t) i (T)

k) = sinh ([)’kT)

) (52b)

where we have used the notation 5, = a + vk®". As one can observe from solution (52), the most probable rare
transition corresponds to an exponential decay from the initial state at a rate §, followed by an exponential
increase at the same rate to the final state. In essence, the transition wants to decay to the zero state, with the
relaxation defined by the dissipation rate , for each Fourier mode. Once decayed, the trajectory transitions to
the final state, with an exponential rate governed again by the dissipation rate. It should be noticed that for large
transition times T, the majority of the transition will result in the state being close to zero, with most of the
dynamics occurring at the beginning and at the end of the transition on a timescale defined by the dissipation
rate 5, . Moreover, it is worth commenting that no other alternative families of solutions exist other than the
over-damped solution (52).

The corresponding Lagrangian for the theoretically predicted rare transition (52) is given by

* _l dw* * AVt
E[w, ]_zfvalat + aw* + v( A)w}(r)

x C\(r, r’)[aait + ao”* + v(—A)”a)*}(r’) dr dr’

ow*
ot

_1 Pr eXP<2ﬂkt) ~ 2
=3 - ‘fk‘zsinhz(ﬁkT_) ‘wk(T) wy (0) exp(ﬂkT)| . (53)

The Lagrangian (53) quantifies how much momentum is required from the noise to push the transition to
the final state. Therefore, it is an important quantity for the rare transition, characterizing the effect of the noise
along the transition, and also yields the action upon time integration.

We now test the minimum action method and compare the numerically obtained transition path with that
predicted by the theory. We apply the numerical method to the over-damped system previously defined. We
select the initial and final states to be wy = [cos (x)—(2/5) sin (x) + (1/5) cos (y)+(3/5) cos (x + y) —

(4/5) sin (2y — x)]/E and wr = [(1/2) cos (x) + (2/5) sin (x) + (3/5) cos (3y) — (1/5) cos (2y — x)+

(1/5) sin (2y — x)]/E, appropriately normalized through E to give unit energy density. The two states are
displayed in figure 6 and were chosen so that they contain a large number of modes. We perform the
minimization with an initial trajectory defined through linear interpolation between the two boundary states in
time. Weuse Ny = N, = 16 Fourier modes and a temporal grid of N, = 100 points for a periodic spatial domain
ofsize L, = L, = 2z and a time domain oflength T'= 10. The dissipation parameters that we use are

a=1x 10"tandv = 5 x 1072, with n= 1. We choose a noise correlation that represents a Gaussian white
noisewithC (r — r’) = 6 (r — t')/Z, where Zis the normalization constant to ensure relation (6) holds.
Displayed in figure 7 (left) is the time evolution of absolute value of each Fourier mode in the transition and
(right) the complex phase space of the transition of each Fourier mode. In both plots, the theoretical predictions
arising from equation (52) are overlaid by the dashed black curves. We observe excellent agreement between the
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Figure 6. We plot the vorticity distribution of the initial wy = [cos (x) — (2/5) sin (x)+(1/5) cos (y)+(3/5) cos (x + y) —
(4/5) sin (2y — x)]/E and final wr = [(1/2) cos (x) + (2/5) sin (x)+(3/5) cos (3y) — (1/5) cos (2y — x)+(1/5) sin (2y — x)]/E
states, appropriately normalized through the constant E to give unit energy density.
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Figure 7. (Left) We plot the time evolution of|wy () | for each mode k.(Right) We plot the complex phase space trajectories of each
mode. For each, the theoretical prediction of equation (52) is overlaid by a dashed black curve.

numerical and theoretical results. We observe a slight discrepancy with the numerical data in the time evolution
of modek = (—1, 2), but this s certainly due to numerical resolution close to the cusp, where the transition goes
from exponential decay to growth near t = 5. In figure 7 (right), we quite clearly observe that the transition
quickly decays to the zero state for each Fourier amplitude before transitioning to the final state. In figure 8 we
plot the time evolution of the Lagrangian for the numerical prediction and compare with the theoretical result
given by (53). We observe excellent agreement with the theory and see that the majority of the Lagrangian
appears at later times where the transition needs to be pushed against the dissipation to reach the final state.

We conclude that the numerical minimization for the over-damped system yields the expected results
predicted through the Freidlin-Wentzell theory. However, we stress that this example ignores the effect of the
nonlinear advection term of the quasi-geostrophic equations, which we discuss in the next subsections.

5.2. Equilibrium instanton starting at zero

In this subsection, we consider applying the minimum action method to an example that satisfies the
equilibrium hypothesis of section 3. Such an example will allow for the direct comparison with the predictions
made in section 3, thus verifying not only the numerical optimization algorithm but also the equilibrium theory.
Our setup will be the following: we will consider a transition beginning at the zero state and transitioning to
another, nonzero, state. What is essential is that we compute this transition in the equilibrium regime where
there is only one global dynamical attractor, the zero state. This is important because we want to compare the
numerical prediction with the solution defined through relaxation from the time-reversed transition in the
corresponding dual dynamics defined through the relaxation equation (23). The criterion of zero being the only
attractor is important because this comparison can be made only if the transition remains in the same basin of
attraction as that of the attractor in which the transition starts. (Transitions that occur across several basins of
attraction will have to be compared with a theoretical transition composed of several instantons and relaxation
trajectories corresponding to each attractor and saddle that the transition passes through.) By considering a
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Figure 8. Time evolution of the Lagrangian L for the over-damped problem. The theoretical result of (53) is plotted by the dashed
black curve.

setup with only one attractor, all possible nonzero states will be within the basin of attraction w = 0 and the
transition can be compared with one instanton prediction through the relaxation equations.

In general, determining a transition from zero to an arbitrary state wr analytically is difficult. However,
ensuring the equilibrium hypothesis holds will help us in this regard. We know from section 3 that the rare
transition from an attractor to any state within the basin of attraction of that attractor will be the time-reversed
relaxation path of the corresponding dual system. Therefore, by considering the relaxation path equation (23),
we will recover the instanton: the most probable infinite time fluctuation path. Unfortunately, due to the
numerical discretization of the minimum action method, we are unable to ascertain the infinite time transition
path. However, one would expect that if T'is sufficiently large, the two transitions should be relatively close.
Therefore, we will consider a sequence of transitions for increasing T'and show convergence to the instanton.

The equilibrium setup is as follows: we consider a noise spectrum that is uniform in Fourier space, i.e.,
corresponding to a Gaussian white noise with a correlation C (r, r') = § (r — r’)/Z and a potential that s
proportional to the enstrophy measure G o« @?/2. This is important for three reasons: i) this corresponds to
linear friction in the two-dimensional Euler equations, meaning that the model is realistic in some sense; 7i) this
potential and the noise correlation satisfy the equilibrium hypothesis of section 3; and iii) the quadratic form of
the potential implies that only one minimum corresponds in this case to the zero statew = 0.

For the numerics, we choose the final state to be wr = [cos (x) —(2/5) sin (x)+(2/5) cos (x + y)

— (1/2) sin (x + y)+(3/5) cos (2x + y) — (1/5) sin (2x + y)]/E, where Eis the normalization constant to give
unit energy density.

We use a Fourier resolution of Ny = N,, = 16 Fourier harmonics in the minimum action method and
compare a series of minimizations with increasing transition time T In each realization we ensure that we have
sufficient temporal resolution by using a fixed grid spacing of T/N; = 107"

In figure 9 we show the vorticity distribution of the final transition state (left) and the time evolution of the
transition energy £ (right). Notice that from the energy balance equation (9), we expect an exponential decrease
of the energy at the rate 2a. This is exactly what is observed from the relaxation trajectory (dashed black line in
figure 9). Moreover, observe that the numerical minimization predictions also agree with this decay rate initially.
The discrepancy at later times is a consequence of the minimization procedure dealing only with a transition of
finite transition time T, such that the energy must vanish in finite time. This is also supported by the observation
that increasingly longer transition times result in better agreement with the expected energy decay. Of course,
one expects, and this is indicated by the numerics, that this agreement will be exact in the limit of T — oo.

We plot the complex phase space trajectories for each Fourier mode in figure 10. Again, we observe gradual
convergence to the theoretical infinite transition time prediction computed through the relaxation equation.
Notice the complex behavior of the transition associated with the nonlinear nature of the evolution. Finally, in
figure 11 we plot the instanton Hamiltonian for the numerical minimum action predictions for the various
transition times T. We observe fairly good stationarity of the Hamiltonian across the time evolution for
transition times 7. Notice that the value of the Hamiltonian decreases with increasing transition time T. We
expect that the value of the instanton Hamiltonian should decrease with increasing transition time 7.

Through this example, we have verified that the numerical predictions for the most probable rare transition
from zero to an arbitrary state using the minimum action method agree with the theoretical prediction made
using the equilibrium hypothesis of section 3. Through this, we have also independently confirmed that the
predictions of rare transitions in equilibrium cases can be verified through the relaxation dynamics of a
corresponding dual system.
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Figure9. (Left) The final transition state wy = [cos (x) —(2/5) sin (x)+(2/5) cos (x + y) — (1/2) sin (x + y)+H3/5) cos (2x + y)

— (1/5) sin (2x + y)]/E, where E is a normalization constant to give unit energy density. (Right) The time evolution of energy of the
predicted transition path for transition times T= 10 and T = 20 compared with the relaxation trajectory from direct numerical
simulation corresponding to the T — oo limit.
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Figure 10. Complex phase space trajectories of each of the Fourier modes of the final state fork = (1, 0) (left),k = (1, 1) (middle),
k = (2, 1) (right) for transition times T'= 10 and T'= 20. The dashed black curve corresponds to the T — oo limit computed using the
relaxation equation (23).
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Figure 11. Plot of the instanton Hamiltonian for the numerical minimization predictions from the minimum action method for
transition times T'= 10 and T'= 20.

5.3. Anon-equilibrium geophysical example: Action minimization between two zonal flow states

In this subsection we consider a more general example which is of huge interest to the geophysical community—
namely, an action minimizer between two zonal jet configurations for the barotropic quasi-geostrophic
equations with topography and forced by statistically homogeneous noise. This example does not verify the
equilibrium hypothesis of section 3.

The importance of this example is based on its practicality. A transition between two zonal flow states is
something that arises in nature, for instance in ocean currents and atmospheric dynamics. Moreover, the
existence of multiple zonal jet attractors in geophysical models has also recently been observed [36], meaning
that a transition between them in the presence of stochastic fluctuations is an important and viable problem.
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Mathematically, the problem is an intriguing one because the set of all zonal states in the periodic barotropic
quasi-geostrophic equations (q (r, ) = q(y, t)) forms a vector space of steady-state solutions of the dynamics
where the condition v - Vq = 0 is always satisfied. By considering the transition between two zonal flow states,
there always exists a critical point of the action (a solution to the Euler—Lagrange equations) that remains in the
vector space of zonal flows as long as the noise is non-degenerate in the zonal direction. The noise is non-
degenerate if the spatial correlation defines a symmetric operator that is definite-positive. For a spatially
homogeneous correlation function, this definition is equivalent to the property that all Fourier coefficients of the
spatial correlation function (the spatial noise correlation spectrum) are strictly positive. As discussed hereafter,
this zonal critical point of the action verifies simple equations, enabling us to make analytical predictions. We
stress, however, that it is not granted that this zonal critical point is an action minimizer or even alocal action
minimizer. In this section, for a specific example, we will use the action minimization algorithm to check that
this critical point of the action is actually a local minimizer.

First, let us begin by investigating the theoretical problem. Consider the path between two generic zonal
flows (without loss of generality, we assume the zonal direction to be x), e.g.,q (r, 0) = g, (y) and
q(r, T) = q;(y), with topography varying only across y: i (r) = h(y). As mentioned previously, we study the
action minimizer between two zonal flows that occur through other zonal states. Subsequently, the equations for
the minimizer are:

7 0n ) =1 O] ar») = 40 | + 4,0 (54)
y(0)=0, y(T)=1. (54b)

To find the structure of the parameterized path y (t), we insert an ansatz (54) into the instanton equation (18).
Due to the ansatz requiring the minimizer to remain through zonal steady states, all nonlinear terms identically
vanish in the instanton equations. Then these Euler—-Lagrange equations simplify to

2 % 2\ 2
await(zy’t) = [a + y[ - %) ] @*(y, 1), (55a)
o (y,0) =q,(y) = h(y), oy, T)=q:(y) = h(y), (55b)

wherew* (t) = y (1) [qT ) —q, (y)] + g,(y) — h(y). Thereason for expressing (55) in terms of the vorticity
o and not the potential vorticity q is that the topography h appears only in the definition of the boundary states
and not in the equation of motion itself. We can then straightforwardly solve (55) for each Fourier amplitude
because the system is linear in . Subsequently, writing the solution in terms of the Fourier amplitudes for @ is
more transparent:

@ (y, 1) = Y. of (Der, (1), (56a)
k

y

with
o, (1) = m[sinh(ﬂky [T - 1] )a)ky(O) + sinh(ﬂkyt) wky(T)], (56b)

wheree;, = exp ( ik, y) / Lyl/ 2. Wehave represented the action minimizer in terms of cok*y (1) = qk*y (1) — hky,

where h are Fourier coefficients of the topography h (y) = K, hy ey, and ﬂky =a+ ka". Solution (56) can

be transformed back into the solution for the potential vorticity usingq, (1) = y (t) — hy,. Whatshould be
y

noticed is that the transition (56) is reminiscent of the over-damped solution presented in subsection 5.1. This is
because the zonal-zonal minimizer path occurs through the vector space of zonal flows and the nonlinearity
vanishes throughout the transition. Therefore, one can think of the zonal-zonal action minimizer as the same as
the over-damped solution or in terms of an Ornstein—Uhlenbeck process with the transition exponentially
diffusing across steady states. What is also interesting is that the solution does not depend on the type of
topography as long as it is defined along y only.
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Figure 12. The vorticity distribution of the initial and final zonal flow states: w, = [cos (y) —(2/5) sin (y)+(4/5) cos (3y)
— (3/5) sin (3y)+2 cos (4y) ]/E and wr = [cos (y) — sin (y) — (3/2) sin (2y)+(4/5) cos (3y)-(4/5) sin (3y)]/E, with Ebeing the
normalization constant to ensure unit energy density in each case.

The explicit expression for the Lagrangian for trajectory (56) is given by

a)(— ax- 2\"
Eq*,aqt =%A/D %+aa)’*+v(—z—]w* (y)
y

o oq* 02 )
XC; (y—y") +aw" +v| - — | 0" |(y)dy dy’
o ay’
1 Px, exp(Zﬁkyt) 2
= X0 0k, (1) = 0, 0) exp (5, T) | (57)
blfy, sinh2<ﬂky T)

where C, is the zonal part of the noise correlation function defined by (34).
To perform the numerical minimization, we select two zonal flow states given by wg = [cos (y)

— (2/5) sin (y)+(4/5) cos (3y) — (3/5) sin (3y)+2 cos (4y))/E and wr = [cos (y) — sin (y) — (3/2) sin (2y)+
(4/5) cos (3y)-(4/5) sin (3y) |/E, where E is the appropriate normalization constant. Both these states are
displayed in figure 12. We use a linear friction coefficient ofa = 1 x 10~!and normal viscosity (n = 1) with
coefficienty = 5 X 1072 We consider a transition occurring over a time of T= 10 with a temporal resolution of
N, =200 grid points. Our Fourier resolutionis N, = N, = 16 on a periodic square domain of size L, = L, = 27.
For the noise, our only conditions are that it be homogeneous and non-degenerate. Therefore, we choose a noise
spectrum of the form

1 k? k? T
fi = Ek_f exp( - k_f] exp(zz), (58)

with k¢= 3 and Z being the normalization constant to ensure condition (6) is satisfied. The profile of the forcing
is shown in figure 13. As one can observe, the noise is isotropic and peaks at wavenumber k = 3, with a Gaussian
profile around this peak.

In figure 14 we plot the time evolution of the action minimizer from the initial to the final state in terms of a
Hovmoller diagram. A more illustrative comparison with the theory can viewed in figure 15, which shows the
time evolution of the zonal Fourier amplitudes of the numerically predicted minimizer (left) and also the
evolution of each mode in the complex phase space (right). Overlaid in both of the plots with dashed black
curves is the theoretically predicted action minimizer from equation (56). We observe excellent agreement
between the numerical data and theory, indicating that the minimum action method haslocated alocal action
minimizer of the action that coincides with the theoretical zonal critical point.

As additional checks, we present the time evolution of the Lagrangian (57) and instanton Hamiltonian (17)
in figure 16, with the theoretical predictions overlaid in black. Again, we observe that the theory agrees with the
numerical data. The Lagrangian indicates that most of the effort is in pushing the trajectory to the final state near
the end of the evolution. The constant value of the Hamiltonian throughout the path is another indicator that
the minimum action method has found alocal minimum.
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Figure 14. Hovmoller diagram of the zonal flow action minimizer.
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Figure 15. (Left) Time evolution of the modulus of zonal Fourier harmonics of modesk = (0, 1),k = (0, 2),k = (0, 3),and
k = (0, 4). The dashed black curve overlays the theoretical prediction from (56). (Right) The phase space trajectories of the zonal
Fourier harmonics from the numerically found action minimizer and the prediction of (56).
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Figure 16. (Left) Evolution of the Lagrangian (57) with comparison with the theoretical prediction. (Right) Time evolution of the
instanton Hamiltonian (17) with comparison with the theoretical value obtained from (56).
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As can be observed from the expression of the Lagrangian for this setup (57), the amplitude of the noise plays
an essential role in determining which Fourier modes contribute to the Lagrangian and hence the action. An
important remark in this example is that the noise correlation will not have a direct effect on the shape of the
action minimizer, this being due to the nonlinear terms vanishing, but will be essential for determining the
specific value of the action corresponding to the minimizer.

The preceding example illustrates the local stability of an action minimizer between two zonal flows. We
predict that the trajectory of the minimizer will remain through the vector space of zonal flows, with the
structure of the transition being independent of the non-degenerate noise correlation. Because the action
minimizer remains through connected steady states, we do not know at this point whether the Freidlin—
Wentzell theory is valid or whether the action minimizer corresponds to a rare transition. However, this is a first
step toward understanding (in a numerical context) rare transitions observed in direct numerical simulations of
the quasi-geostrophic equations in regimes like the ones in [36], where multiple zonal jets have been observed as
dynamical attractors.

The preceding result for the action minimizer between two zonal flow states can be generalized in the context
of an action minimizer between two steady states that are formed from eigenfunctions of the Laplacian operator
A with the same eigenvalue A, where —Aq = Aq. This is because the set of states constructed by eigenfunctions of
the Laplacian also form a vector space of steady-state solutions with v - Vg = 0. Consequently, if both states,
initial and final, are constructed with the same sets of eigenfunctions with identical eigenvalues, then we expect a
result similar to the foregoing.

6. Conclusions

We have adapted a numerical optimization algorithm called the minimum action method and applied it to a
simple model of two-dimensional geophysical turbulence. We have shown, using specific examples, that such an
algorithm can be used to compute the most probable rare transitions between two states in cases of bistability in
turbulent systems. Using the equilibrium theory derived in [28], we showed how the numerically predicted
transition agreed with those computed through the relaxation equations of the corresponding dual system when
the equilibrium hypothesis holds. Furthermore, we considered a more general problem of computing the most
probable transition between two different zonal flow configurations where the equilibrium hypothesis does not
hold—an important example of relevance to geophysics.

The minimum action method is a viable way to compute rare events in simple turbulent models. It is
straightforward to extend this method to more complex turbulent models such as magneto-hydrodynamics,
where rare transitions between different magnetic field polarizations can be observed [14]. Moreover, natural
extensions to the algorithm proposed here could be of benefit, such as arc length parameterization of time [69],
adaptive discretization [64], and parallelization [67].

Clearly, the next step in this approach is to compare the action minimizers with observed transitions in both
experiments and direct numerical simulations. Indeed, this is one of the current directions of future work.
Besides this direct comparison, much work is still to be done both at the theoretical and at the practical level in
order to actually assess when minimum action methods alone will be enough to describe rare transitions. This is
certainly true when we are in a Freidlin—Wentzell regime, as discussed in subsection 2.2; however, for most
turbulence models no clear criteria have yet been developed to assess when a rare transition in a turbulent flow is
actually in the Freidlin—-Wentzell regime. This is an important question that should be addressed from both a
theoretical and an empirical point of view.

This work is a step in along-term program that is aimed at developing the tools to compute rare transitions
and their probabilities in complex turbulent flows. Our ultimate aim is to be able to make these computations
for models that are relevant to climate dynamics. Of course, much is still to be achieved in this direction before
climate applications can truly be considered. However, it is important to stress that no approach currently makes
it possible to reliably compute rare transition in climate problems.
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