Reconnection dynamics and mutual friction in quantum turbulence
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We investigate the behaviour of the mutual friction force in finite temperature quantum turbulence
in “He, paying particular attention to the role of quantized vortex reconnections. Through the use
of the vortex filament model, we produce three experimentally relevant types of vortex tangles in
steady-state conditions, and examine through statistical analysis, how local properties of the tangle
influence the mutual friction force. Finally, by monitoring reconnection events, we present evidence
to indicate that vortex reconnections are the dominant mechanism for producing areas of high
curvature and velocity leading to regions of high mutual friction, particularly for homogeneous and
isotropic vortex tangles.

I. INTRODUCTION

At temperatures above the lambda transition point Ty &~ 2.17 K, liquid *He behaves as a classical (normal) fluid with
its dynamics described by the Navier-Stokes equations. However, at temperatures below Ty, *He becomes superfluid
(known as helium IT), and consequently, the classical Navier-Stokes description breaks down. A phenomenological
model, which describes the motion of superfluid helium is the the two-fluid model of Landau and Tisza [1-3]. Here
helium II is described as a mixture of two components, namely the superfluid and normal fluid. Each fluid is associated
with separate velocity and density fields, denoted v,, and p, for the normal fluid and v, and p, for the superfluid
respectively; the total density of helium II is p = p,, + ps. These two components interact via mutual friction arising
through the presence of extremely thin quasi-one-dimensional topological defects known as quantized vortices which
can be excited in the superfluid component. Unlike classical vortices, quantized vortices have a fixed vortex core size
of a ~ 1 A (for superfluid *He) and invoke an inviscid superfluid flow around them of fixed circulation defined in
integer multiples of I' = h/m, where h is Planck’s constant and m is the mass of a *He atom. For temperatures below
T\, the relative ratio of the normal and superfluid components is temperature dependent, going from a pure normal
fluid at T = T to a pure superfluid in the zero temperature limit.

Quantum or superfluid turbulence is the name given to the study of the chaotic (turbulent) fluid motions, which can
be readily generated in quantum fluids such as superfluid *He [4, 5]. As first envisaged by Feynman, this manifests
itself as a tangle of quantized vortices. Classical turbulent flows [6] are associated with the formation of eddies
(vortices) that can appear at multiple scales. The quantum analogue is more interesting due to the fact that vorticity
only emerges through quantized vortices of fixed size and circulation. For instance, large-scale topological features of
the flow can be created via the formation of polarized vortex bundles, mimicking the large-scale classical eddies [7, 8].
It is thus a hope, that the discreteness of vorticity in quantum turbulence may provide some insight into classical
turbulence. Whether this proves to be true or not is still open, nonetheless quantum turbulence provides a rich field
of study in its own right.

A major challenge in quantum turbulence is in the visualization of both the flow and the quantized vortex tangle, due
to the extremely low temperatures involved. Hence, numerical methods become necessary to aid our understanding,
providing a guide for both experiments and theory. At present, many numerical quantum turbulence studies have
focused on the behaviour of the superfluid component [9], with direct comparisons to classical fluid turbulence [8].
Several works have gone further and considered how quantum turbulence, at finite temperature, may effect the
behaviour of the normal fluid component. However it is evident that the complexity associated with the two-way
coupling of both the normal and superfluid components has limited theoretical progress. For example in some
articles the two-fluid system is modelled using the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) equations [10, 11].
However, the HVBK equations consider a coarse-grained superfluid vorticity in order to have a self-consistent two-
fluid description at scales larger than the mean inter-vortex spacing, meaning that small-scale dynamics such are
quantized vortex reconnections are ignored [12, 13]. Such reconnections events are discrete, dramatic events that are
thought to be key to understanding quantum turbulence [14, 15]. Therefore, vortex filament methods may be the more
appropriate model. Unfortunately, the application of the vortex filament model coupled to the Navier-Stokes equations
is a computationally expensive numerical scheme that has been currently limited to relatively simple configurations
such as a single propagating vortex ring [16] or for a limited number of reconnections between vortex rings [17].



Initial work by Hanninen [18] has showed that a vortex reconnection leads to an enhancement of energy transfer
through mutual friction. The aim of this article is to try to examine the structure of the mutual friction force and to
understand the role of vortex reconnections in a fully turbulent quantum tangle. To achieve this, we use the vortex
filament model of Schwarz [19] to simulate the superfluid component only; for simplicity we only consider an imposed
normal fluid velocity field, neglecting the back-reaction of the superfluid onto the normal fluid. We perform a series
of numerical simulations, each with a different externally imposed normal fluid velocity profile. This produces a set of
quantized vortex tangles, each with their own specific characteristics, which we shall use to investigate the behaviour
of the corresponding mutual friction force.

The outline of this articles is as follows: In Section II, we introduce the vortex filament method used to model finite
temperature superfluid “He, and define the the formula for the mutual friction force which couples the superfluid
component to the normal fluid. In Section III we describe the three numerical simulations we perform, giving precise
details on how each quantum turbulence tangle is generated. We discuss our results in Section IV, before finally
concluding in Section V.

II. THE VORTEX FILAMENT MODEL

To simulate finite temperature quantum turbulence we utilize the well-known vortex filament method of Schwarz [19],
where the description of the superfluid component entails modelling the motion of quantized vortex lines as one-
dimensional space curves, s(&,t), which evolve according to

% =vs+as' x (v, —vs)—a's' x[s x (v, —v,)], (1a)
where t is time, s’ = ds/d¢ is the unit tangent vector at the point s, £ is arc length, and v,, is the normal fluid velocity
at the point s. Mutual friction effects with the normal fluid component are included through the last two terms in
Eq. (1a) where o and o’ are the non-dimensional temperature dependent friction coefficients for the vortex filament
model.

The velocity of the superfluid component vy can be decomposed in terms of a self-induced velocity generated by
the tangle v3, and an external superfluid flow v&*' such that v, = v 4+ v*t. Here, the self-induced velocity v& of

the vortex line at the point s, is computed using the Biot-Savart law [20]

Vvii(s, 1) = © ]{ T=5) g, (1b)
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where I' = 9.97 x 10~% ¢cm?/s (in “*He) and the line integral extends over the entire vortex configuration L.

In the fully coupled system, the normal fluid velocity v, is determined by the three-dimensional Navier-Stokes
equations coupled to the superfluid component through the mutual friction force F, s (Eq. (2)) that is included on
the right-hand side of the Navier-Stokes momentum equation. However, to obtain a vortex line density comparable to
experimental work using the fully coupled model is currently beyond available computational resources. Nevertheless,
we are still motivated to try and understand how a (turbulent) tangle of quantized vortices may perturb the normal
fluid velocity field.

The mutual friction force F,, is only created at the cores of the quantized vortex lines, which for the vortex filament
model is expressed as a line integral taken along the quantum vortex tangle:

Fo(x) = fé {(pal = D) [8' % (Vs — )] + Ds' x [§' x (vin — 8)]} 6(x — 5) dé(s). 2)

Here D and D’ are the temperature dependent mutual friction coefficients that are experimentally measured [21] and
can be related to a and o/ [22].

III. THE NUMERICAL SETUP

All our simulations are performed at a single experimentally feasible temperature of 7' = 1.9 K, where the normal
and superfluid densities are p, = 6.10 x 1072 g/cm? and p, = 8.44 x 1072 g/cm?, leading to a ratio of p, /ps ~ 0.723.
At this temperature the mutual friction coefficients used in Egs. (1a) and (2) are a = 2.1 x 107!, o/ = 8.3 x 1073,
D =471 x107° g/ecms and D’ = 1.35 x 10~* g/cm s respectively.

The numerical technique of the vortex filament model is to discretize the vortex lines by a series of points s; where
j =1,...,N held at a minimum distance of A¢ = 8 x 107 ¢cm. The Schwarz equation (la) is evolved using a



fourth-order Adams-Bashforth time-stepping method, with a typical timestep of At = 5 x 107° s inside a periodic
domain of size D = 0.1 ¢cm x 0.1 cm X 0.1 ¢cm. Details on how the Biot-Savart integral (1b) is regularized, how a
tree-approximation is utilized (with an opening angle of 0.3) to improve computational efficiency, and how vortex
reconnections are artificially implemented are all described in [23, 24].

We perform three numerical simulations, each with a different forcing mechanism to induce a particular structure
of quantum vortex tangle. The simulations are initialised with 6 randomly positioned vortex rings to seed a vortex
tangle. We have chosen the forcing parameters in each simulation specifically to ensure that the vortex line density
L =A/V, where A = fﬁ d¢(s) is the total vortex line length and V = 1 x 1072 cm? is the volume of the domain,
saturates at approximately the same value. This gives us a standard reference to make direct comparisons between
the three vortex tangles. Below, we outline our three numerical setups.

A. Generation of a Vinen tangle

For the first simulation we periodically inject randomly orientated vortex rings of radius R = 1.91 x 10~2 c¢m directly
into the superfluid component. We choose an injection period of 6 x 10™% s to ensure that a dense vortex tangle is
produced. The simulation is evolved so that a non-equilibrium statistical steady state regime is achieved through the
balance of the periodic injection of vortex rings and dissipation by mutual friction. This is confirmed through the
observation of statistical stationarity of the vortex line density which saturates at L ~ 2.0 x 10* cm~2. In this setup,
the normal fluid velocity profile is considered to be at rest (v, = 0).

B. Generation of a Counterflow tangle

The second simulation is a counterflow setup, where the quantum vortex tangle is excited through a uni-directional
normal fluid flow v,, = Ue,, with speed U = 1 cm/s. In counterflow experiments, the mean normal fluid flow invokes
an oppositely orientated superfluid flow of v&' = — (p,,/ps) vy, in order to satisfy overall mass conservation of the
fluid. In this respect, we also impose this external superfluid flow. The simulation is performed so that the vortex

line density saturates, reaching a value of L ~ 2.1 x 10* cm™2.

C. Generation of a Polarized tangle

Finally, for the third simulation we use a normal fluid profile v,, obtained from a numerical snapshot of classical
homogeneous and isotropic turbulence generated by the Navier-Stokes equations taken from the John Hopkins Tur-
bulence Database [25]. The dataset consists of a velocity field discretized on a mesh of 10243 points. The estimated

Reynolds number of the velocity snapshot is Re ~ (Lg/ 770)4/ 3 ~ 3025 where Ly and 7y are the integral and Kolmogorov
scales respectively. The reason for using a single stationary snapshot for the normal fluid velocity profile and not a
time-dependent one is based solely on computational constraints. As with the counterflow setup, the normal fluid
flow excites a quantum vortex tangle which after a transition period reaches a non-equilibrium statistical stationary
state monitored through the vortex line density L ~ 2.0 x 10* cm™—2.

IV. RESULTS
A. Tangle structure

In Fig. 1 we present images of all three vortex tangles taken during stationary conditions. Each vortex line segment
is colour-coded to its respective magnitude of the mutual friction force (2). The most evident distinction between the
three is in the tangle structure itself. Both the Vinen (left) and the Counterflow (centre) tangles show a distinct lack
of large-scale features; the tangles appear homogeneous and completely random in orientation. On the other hand, the
third tangle (Polarized, right) displays clear large-scale features in the form of polarized vortex bundles consisting of
multiple quantized vortex lines orientated in the same direction. In fact, as was noticed by Kivotides [26], who also used
a stationary normal fluid profile, the polarized vortex bundles are located precisely in the regions where the classical
vortices appear in the normal fluid flow. The structure of the tangle plays an essential role in the reconnection
dynamics as can be seen from the reconnection rates of our simulations: 5.43 x 10* s~! (Vinen), 5.03 x 10* s7!
(Counterflow) and 3.31 x 10* s~! (Polarized). We find that reconnections are suppressed in the Polarized tangle
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by almost a factor of two compared to the other two simulations. Indeed, L’vov et al. hypothesized [27] that the
formation of polarized vortex bundles will likely lead to a reduction of reconnections. Furthermore, we notice that
in both the unpolarized Vinen and Counterflow tangles the reconnection rates are almost identical, even though the
forcing mechanisms are different in both cases. Therefore, we may well surmise that the structure of the tangle
(random or polarized) strongly influences the reconnection rate in steady state conditions, for comparable vortex line
densities.

From the colour scale (the same for all three tangles) we observe that the Vinen and Polarized tangles produce
a much lower mean mutual friction when compared to the Counterflow tangle. However, on closer inspection of all
three snapshots, one can find isolated vortex segments where the mutual friction is extremely high in comparison to
the typical value. We shall see that these extreme values can be attributed to vortex reconnections.
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indicates the magnitude of the 1||Frns(x)| given by Eq. (2).
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B. Bi-variate PDFs and vortex reconnections

To probe deeper into the local structure of the vortex tangles we compute kernel density estimates [28] for the
bi-variate probability density distributions (PDFs) to check for correlations between local vortex line quantities such
as the local mutual friction |F,|, local curvature x = |s”|, superfluid speed ||, and the local vorticity production rate
P = —k$-n, where n is the unit normal vector to the vortex segment. Note our numerical resolution 8 x 10™% cm <
A€ < 1.6 x 1073 cm implies the maximum curvature that can be resolved is Kmax =~ 1250 cm ™!,

We collect the data by averaging 20 snapshots taken 2.5x 1072 s apart once in steady state conditions. The PDFs are
shown using a logrithmic grey scale with black indicating regions of highest probability. On top of the PDF's; we display
specific vortex points that have recently undergone a vortex reconnection event. Theses are located by recording points
that have experienced a reconnection within a small time window of At,ec = 1 x 1072 s from the time each snapshot
was taken. The reason for this particular choice of At is that one expects after a reconnection event Kelvin waves
are generated at a scale of approximately the inter-vortex spacing, dynamically changing the local structure of the
neighbouring vortex segments. Hence, At,. is computed to be the timescale of one Kelvin wave period Aty ee ~ 27 /wg,
defined at the inter-vortex scale k; = 27/¢ = 2r/L~'/? with frequency wy = (kk?/47) [In (1/ka) —~v — 3/2]. This
enables us to capture the initial dynamics of the vortex segment post reconnection. In Table I we present an overview
of the mean values of each local quantity considered for the whole tangle and also for the reconnection events only.

TABLE I. Mean values of the mutual friction |Fs|, curvature x, superfluid speed |$| and vorticity production P. Mean values
of reconnection events are given in brackets.

Tangle (Recon) Vinen Counterflow Polarized
|Frns| [g/cm®s®] 1.55 (3.33) x107° 7.12 (7.28) x107° 2.77 (4.63) x107°
Kk [em™] 159.76 (516.21)  203.47 (755.03)  113.78 (478.11)
8| [cm/s] 0.19 (0.47) 0.28 (0.65) 0.21 (0.51)
P [s7Y] —6.86 (—32.26)  5.22 (—72.55) 1.11 (—7.90)

Figure 2 displays the PDF of the curvature verses the magnitude of the mutual friction force for each tangle. We
observe that the typical vortex tangle segment has far lower curvatures than those that have recently undergone a
reconnection. This is also verified by the values given in Table I indicating that reconnections lead to approximately
four times the mean curvatures observed in each tangle. Additionally, for the Vinen and Polarized tangles we see a



positive correlation between the curvature of the point and the associated mutual friction force. This indicates that
for these tangles, the most important regions that may effect the normal fluid behaviour are those that have recently
experienced a reconnection event.

In contrast the presence of the non-zero mean normal fluid flow that quintessentially defines superfluid counterflow,
means each vortex segment will produce a uniform drag against the normal fluid velocity. This is also indicated by
the mean mutual friction force being far higher than compared to the Vinen and Polarized tangles, as seen in Fig. 2
and Table I. It is quite evident that vortex reconnection events lead to large local fluctuations in the mutual friction
force. However as these fluctuations are on top of a large non-zero mean it is possible that vortex reconnections can
reduce (as well as enhance) the local mutual friction.

From the definition of the mutual friction force (2), we see that its value is proportional to the velocity difference
between the normal and superfluid components. Due to the fact that the model Vinen tangle in our numerical
simulations is coupled to a static normal fluid flow, we should expect that the mutual friction force will be correlated
to the local speed of the vortex tangle. This is perfectly verified in Fig. 3 by the stark positive correlation between
the superfluid speed and mutual friction, especially indicated by the reconnection events. A similar behaviour, but
with far more fluctuations, is also observed for the Polarized tangle. These fluctuations will most likely be associated
to the fluctuations of the turbulent normal fluid velocity. We observe that the correlation is not as strong in the
Counterflow tangle, presumably due to the larger mean mutual friction.

The almost identical distributions observed in Figs. 2 and 3 lead us to consider PDF's of curvature against superfluid
speed. These PDF's are presented in Fig. 4 and demonstrate almost perfect correlation between the curvature and
speed for the vortex reconnection events in all of the tangles. Indeed, we see that the majority of the vortex points
within each tangle are of small curvatures and speeds with the rare and spontaneous reconnection events being
responsible for the generation of high curvature and high superfluid velocities. Considering the data presented in
Figs. 3 and 4 we can conclude that vortex reconnections produce areas of high curvature and high velocities which in
turn will contribute to strong fluctuations of the mutual friction. It is important to note that the numerical resolution
limits the maximum curvature we can resolve, and hence the maximum velocities produced after a reconnection.

If, like the Vinen and Polarized tangles, there is no mean normal fluid flow, reconnection events become the dominant
mechanism for creating regions of high mutual friction. Indeed, one can imagine that the normal fluid will experience
instantaneous intense ‘explosions’ of mutual friction force in the neighbourhood of reconnections in the superfluid
component. This type of force will also predominately act on small scales due to the localized nature of the vortex
reconnection events. Therefore, one may question the potential for the mutual friction force to destabilise the normal
fluid if it was to act sporadically at such small scales—we discuss this further in the conclusions.
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FIG. 2. Kernel density estimates of the probability density function of the local mutual friction F,,s verses the local curvature s
for the Vinen tangle (left), Counterflow tangle (centre) and Polarized tangle (right). The coloured symbols indicate reconnection
events.

Let us comment on the particularly large curvatures observed in the Vinen and Counterflow tangles as opposed to
those of the Polarized tangle, see Table I. In Fig. 5, we compute PDF's of the reconnection angles of the reconnecting
vortex segments for each tangle. We notice that both the Counterflow and Vinen tangles contain predominately
large angle vortex reconnections corresponding to reconnections between almost anti-parallel vortex lines. From the
schematic in Fig. 5 (left) one can easily understand how large angle (6 > 7/2) reconnections lead to regions of higher
curvatures than those of small angles—for large angle reconnections two sharp (high curvature) cusps are created post
reconnection. As previously discussed, there is a strong correlation between the local curvature and the local speed
of the vortex segment. Therefore, large angle reconnections may lead to significantly higher velocities and higher
mutual friction forces than those with smaller angles. From the data presented in Table I, one may argue that this
is not necessarily the case for the Vinen tangle (as the values are similar to those of the Polarized tangle). However,
one should be aware that there are many reconnections in the Vinen tangle occurring near £ ~ 50 cm™! as seen in
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FIG. 3. Kernel density estimates of the probability density function of the mutual friction F,s verses the local superfluid
speed |s| for the Vinen tangle (left), Counterflow tangle (centre) and Polarized tangle (right). The coloured symbols indicate
reconnection events.
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FIG. 4. Kernel density estimates of the probability density function of the curvature k verses the local superfluid speed |$| for
the Vinen tangle (left), Counterflow tangle (centre) and Polarized tangle (right). The coloured symbols indicate reconnection
events.

Figs. 2 and 4. This value of curvature corresponds to the that of the injected vortex rings x = 1/R ~ 52.35 cm™!

meaning we are recording instantaneous reconnections due to the random placement of vortex rings from our forcing
mechanism. Consequently, these small curvatures are biasing the actual average curvatures expected in a completely
random Vinen tangle that one could produced through other means.

The last set of PDFs shown in Fig. 6 display the relationship between the mutual friction and the vorticity production
rate P defined as

P(¢) = —k$ - n, (3)

where n is the local normal vector to the vortex line. P quantifies the local rate in which the vortex line length
increases or decreases, and therefore can be used as a measure of vorticity production in quantum turbulence. We
observe in Fig. 6 that the majority of the points lie close to the zero vorticity production rate region, indicating that
many areas of the tangle are neither stretching nor contracting. However, what we do find is that many reconnection
events appear to reduce the vortex line length corresponding to negative P. This feature is most pronounced in the
Vinen and Counterflow tangles. The most effective way for a vortex ring to increase in size is to propagate in the
direction of the normal fluid flow. In steady state conditions this process in balanced by the dissipative effects of
mutual friction. However, reconnections can lead to topological changes in the local structure of the vortex line and
randomize the direction of the vortex segment. In turn, this may greatly decrease its ability to absorb energy from
the fluid flow, consequently, leading to the mutual friction dominating and the vortex line to shrink. One may also
expect that this process will be enhanced if the reconnections are of the larger angle variety as they will produce
larger curvatures and larger velocities. This seems to be the case indicated by the values of P for the reconnection
events given in Table I.

V. CONCLUSIONS AND DISCUSSIONS

We have performed numerical simulations using the vortex filament model for finite temperature quantum turbu-
lence, and have considered three physically relevant types of vortex tangles in order to investigate how the tangle
structure and vortex reconnection dynamics effect the behaviour of the mutual friction force.
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FIG. 5. (left) Diagram showing the definition of the reconnection angle 6 between two quantized vortex lines (red and blue). The
arrows point in the direction of the vorticity vector s’. (right) Kernel density estimation of the probability density function of
the reconnection angle 6 of quantum vortex reconnections for the Vinen (red squares), Counterflow (blue circles) and Polarized
(green triangles) vortex tangles. Here, @ = 0 corresponds to parallel vortex lines and 6 = 7 to anti-parallel vortex lines.
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FIG. 6. Kernel density estimates of the probability density function of the mutual friction F,s verses the vorticity production
P = —ks$-n for the Vinen tangle (left), Counterflow tangle (centre) and Polarized tangle (right). The coloured symbols indicate
reconnection events.

We have found that quantized vortex reconnections lead to areas of high curvature and subsequently to regions of
intense superfluid velocity. Hence in isotropic tangles, where the mean mutual friction force is close to zero, vortex
reconnections are primarily responsible for areas of high mutual friction. We also note that high polarization of the
tangle can lead to a suppression of vortex reconnections reducing the frequency of high mutual friction ‘explosions’.

In contrast, for superfluid counterflow, we observe that the imposed normal fluid leads to a significant mean mutual
friction force. Vortex reconnections lead to further fluctuations on the background force, and so can reduce the local
value of the mutual friction if they lead to velocity fluctuations aligned with the normal fluid flow. However, it is worth
remarking that the most extreme values of mutual friction are associated with vortex reconnections. If one considers
a more realistic setup with solid boundaries, it has been shown [29] that the vortex line density is not homogeneous.
As the reconnection rate is proportional to the vortex line density [30], one can expect that in superfluid counterflow,
the specific spatial structure of the vortex tangle will play an essential role in the characteristics of the mutual friction
force.

Furthermore, it is important to appreciate that computational limitations (resolution) severely constrain the maxi-
mum curvature that one can resolve in numerical simulations performed with the vortex filament mode. From Figs. 2
and 4 we can visibly see that curvatures are capped by our resolution at fmax ~ 1250 cm™!; in reality we would expect
quantized vortex reconnections to create curvatures many orders of magnitude larger than the results of the numerics
presented here, and hence produce larger values of mutual friction force. This will only enhance the importance



quantized vortex reconnections has upon the mutual friction force.

As is indicated by our numerical simulations, if vortex reconnections are indeed important events that lead to the
largest values of the mutual friction force, then one should try to understand how such small-scale, localized regions,
will effect the normal fluid flow. Indeed, as our analysis indicates, the mutual friction forcing due to reconnections will
effect the normal fluid at extremely small-scales; possibly scales far smaller than the viscous dissipation scale. One
could imagine that adding a forcing term acting at very small scales to the equation for the normal fluid component in
the coarse-grained HVBK equations (see [13]) to approximate vortex reconnections would be appropriate, although at
such small scales numerical instabilities will pose a problem. Furthermore, we would not expect this to effect the large-
scale dynamics of the turbulence in the normal fluid, as the forcing would occur on scales many orders of magnitudes
smaller than the integral scale. However, Lagrangian quantities may well be affected by the mutual friction force on
the normal fluid. In particular recent experimental studies [31, 32] have made use of particle tracking techniques to
probe Lagrangian quantities such as one-point velocity and acceleration statistics. For particles following the normal
fluid one may expect that the one-point velocity statistics to follow a Gaussian distribution, as observed in classical
turbulence [33]. Our results here suggest that this may not be the case as large fluctuations in the particles velocity
and acceleration could occur due to the effect of quantized vortex reconnections on the normal fluid.
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