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Abstract—This paper proposes an in situ diagnostic and prog-
nostic (D&P) technology to monitor the health condition of insu-
lated gate bipolar transistors (IGBTs) used in EVs with a focus
on the IGBTs’ solder layer fatigue. IGBTs’ thermal impedance
and the junction temperature can be used as health indicators for
through-life condition monitoring (CM) where the terminal char-
acteristics are measured and the devices’ internal temperature-
sensitive parameters are employed as temperature sensors to es-
timate the junction temperature. An auxiliary power supply unit,
which can be converted from the battery’s 12-V dc supply, pro-
vides power to the in situ test circuits and CM data can be stored in
the on-board data-logger for further offline analysis. The proposed
method is experimentally validated on the developed test circuitry
and also compared with finite-element thermoelectrical simula-
tion. The test results from thermal cycling are also compared with
acoustic microscope and thermal images. The developed circuitry
is proved to be effective to detect solder fatigue while each IGBT in
the converter can be examined sequentially during red-light stop-
ping or services. The D&P circuitry can utilize existing on-board
hardware and be embedded in the IGBT’s gate drive unit.

Index Terms—Electric vehicles (EVs), fault diagnosis, insulated
gate bipolar transistors (IGBTs), prognostics and health manage-
ment, reliability, thermal variable measurement.

I. INTRODUCTION

INSULATED gate bipolar transistor (IGBT) power modules
have been widely used in high-voltage and high-power ap-

plications such as electric vehicles (EVs) [1], [2], ships [3],
aircraft [4], wind turbines [5], smart grids [6], and industrial
drives [7], primarily due to their superior performance in terms
of power density, switching frequency, energy efficiency, and
cost effectiveness. EVs represent a mass market which is both
safety-critical and cost-sensitive. IGBTs are a weak link in the
EVs’ traction drive so that their failures could lead to a sudden
breakdown of the power converter or even a catastrophic ac-
cident involving human lives [8]–[10]. In general, the lifespan
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Fig. 1. Failure rate of power devices over their lifetime.

of IGBT power switches is much shorter than the drive sys-
tem so that these devices are considered to be “consumables”
which need to be renewed several times within the lifetime of
the system [11] or prior to the vehicle services (600 000 km or
15 years) [12]. Thus, the capital and maintenance costs of power
converters can be very high [9] and predominately affect the
market acceptance of EVs. Over the last 20 years, this issue has
been addressed by improving the device design at component
levels (i.e., semiconductor design and packaging) and system
levels (i.e., overengineering design, soft-switching, snubber cir-
cuit, advanced cooling and modulation schemes). The former
has led to the improved reliability of conventional silicon-based
power modules by the application-oriented design [13], [14], as
well as to the development of high-performance silicon carbide
(SiC) [7], [15] and gallium nitride (GaN) devices [16] which
offer much promise for future EVs. The latter focuses on re-
dundancy design, diagnosis, postfault protection and advanced
control algorithm [1], [17]–[20].

In industry, traditional reliability prediction methods such
as MIL-HDBK-217 [21], PRISM [22], and Telcordia [23] are
based on statistical and empirical data. They employ the fail-
ure rate as a reliability index and generate a so-called bathtub
curve (e.g., Fig. 1). The curve consists of three periods: early
failure period, random failure period, and wear-out failure pe-
riod with different failure rates. In general, early failures are
associated with flawed designs or manufacturing defects so that
such products would fail prematurely, i.e., the failure rate tends
to reduce as the operational time elapses. Random failures are
mainly due to the intermittent excessive stress (electrical, ther-
mal, mechanical, etc.) over the maximum rating of the devices.
The device failure rate can be very low after the early period.
Wear-out failures occur toward the end of the device lifetime,
caused by the operational loading and environmental stresses.
During this period, the failure rate increases rapidly and effective
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Fig. 2. Schematic diagram of a standard IGBT module.

condition monitoring (CM) can significantly lower the operation
and maintenance cost and improve the system availability.

With regard to IGBTs, major wear-out failures are bondwire
lift-off and baseplate solder fatigue [24], [25]. The chip solder
fatigue can also be an issue [26] when the device is subject to
active power cycling. In this study, the IGBT devices are tested
by thermal cycling within a thermal chamber, generating severe
fatigue in the direct copper-bonded (DCB) solder but little im-
pact on the chip solder. The coefficients of thermal expansion
(CTE) mismatch of silicon and DCB is lower than that of the
base plate and DCB. The chip solder also has a much smaller
dimension than the DCB solder layer so that its fatigue is com-
monly ignored when experiencing passive thermal cycling [26].
In order to operate at adverse environments and improve relia-
bility, wirebond-less technologies (e.g., planar packaging [27]
and solderable front metallization [28]) are currently develop-
ing to remove wire bonding. Nonetheless, solder layer fatigue
cannot be eliminated and it remains to be a challenging failure
mode. IGBT bondwire faults are extensively studied in a com-
panion article [1] whereas this paper is devoted specifically to
the solder fatigue.

II. SOLDER FATIGUE IN IGBT POWER MODULES

IGBT power modules operating at variable load conditions
in EVs experience repetitive thermomechanical stress due to
power cycles and thermal cycles [29], [30].

A. Failure Mechanisms

A simplified cross-sectional view of a standard IGBT power
module is shown in Fig. 2. Typically, a DCB substrate, which
is made of ceramic and metallized copper films, is attached to
the copper base plate by the solder layer. The IGBT chip is sol-
dered onto the DCB substrate and the chip surface is connected
to copper tracks via aluminum wire bonds. The assembly is
then housed in a plastic case and encapsulated with silicon gel.
Furthermore, a thermal interface material (e.g., thermal grease)
is inserted between the base plate and heat sink to improve
physical integrity and thermal transfer. Presently, some IGBT
modules for EV applications use integrated heat sinks [31], [32]
to eliminate the need for the baseplate. However, the tempera-
ture difference across the power chip increases and its thermal
overloading capability is reduced.

Because of different CTE for adjacent layers in the multilay-
ered module, excessive thermomechanical stress presents in the

solder layer. Consequently, solder fatigue appears and accumu-
lates between the base plate and the DCB substrate in the form
of creep [33], voids [34], cracks or delamination [35]. These
increase the heat flux density in the remaining solder layer and
retard the heat dissipation. If left untreated, the fault can grow
in size and lead to an ultimate failure. In this process, the ther-
mal impedance through the heat transfer paths increases and so
does the power loss to increase the chip temperature. In turn, the
escalated deterioration may trigger other failure models such as
hot-spots, latch-up, burn-out, leading to bond wire or even chip
failures. As a consequence, the majority of in-service IGBTs
can only operate for a fraction of their life expectancy.

B. Technologies for Detecting Solder Fatigue

Generally, existing CM technologies can be divided into
two methods: model-based and data-driven. The model-based
method utilizes a parameterized physics of failure (PoF) model
[36], [37] to determine the degradation based on life-cycle loads,
material properties, and packaging factor [14]. However, PoF
models are limited to only one failure mechanism where in re-
ality multiple degradation factors can collectively contribute to
solder fatigue. In order to derive a PoF model, the coefficients
of a device need to be determined experimentally which intro-
duces errors from device inhomogeneity, filtering, and curve
fitting [36]. Furthermore, a high fidelity model is computation-
ally costly and is often impractical for in situ measurements.

In contrast, data-driven methods take advantage of the infor-
mation from available measurements but usually involve pat-
tern recognition and machine learning to extract the diagnostic
and prognostic (D&P) signatures from the monitored parame-
ters. The information can be used to correlate with the damage
growth. Data-driven methods are practical, computationally ef-
ficient, and can discriminate between different failure mecha-
nisms in a complex multivariate system.

For monitoring the solder fatigue, nondestructive testing tech-
niques are reported in use such as scanning acoustic tomogra-
phy [38] and active thermography [39], [40]. Nonetheless, these
methods rely on sophisticated, expensive measurement equip-
ment and are only applicable to offline intrusive measurements.
Alternatively, the junction-to-case thermal impedance has been
widely used as a precursor of solder failures [34], [41], [42],
which provides an insight into multiple-layer devices with a
spatial resolution [43]. On this basis, this paper develops a
new in situ D&P method to estimate the changes in thermal
impedance consequent upon occurred faults or thermal aging.

III. IMPLEMENTATION OF THE PROPOSED METHOD

At the vehicle market, nearly all new models are equipped
with some fault diagnostic functions such as overvoltage, over-
current, overtemperature in gate drivers and interfaced with the
vehicle’s electronic control unit (ECU). But these are postfault
measures and are difficult to protect the switching devices from
short-circuits [44]. In EVs, gate drivers need to interface with
the master controller or ECU when faults are present, causing a
delayed response and fault propagation. In this paper, the health
condition of IGBTs is evaluated by characterizing the transient
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Fig. 3. Train of current pulses for solder D&P tests.

thermal impedance (TTI) curve along with IGBTs’ lifelong ag-
ing models established from analytical and data-driven methods.
The technology can provide both D&P functions and the in situ
measurement circuitry can be integrated into current gate drivers
to interface with ECUs.

A. Junction Temperature Measurement

Direct measurement of the semiconductor device junction
temperature is impractical [45]. A common alternative is to
measure the temperature sensitive electrical parameters (TSEPs)
[46]–[48]. This work utilizes the on-state voltage drop (VCE)
as a TSEP and measures it after injecting a low dc current (Il)
into the device. Additionally, a high dc current (Ih) is used for
the TTI characterization [49]. As a result, a train of pulses is
generated for both measurements, as illustrated in Fig. 3.

A TSEP calibration is carried out at low currents to obtain
a TSEP calibration curve over a wide temperature range (25–
135 ◦C in this case). In this test, the ohmic voltage drop at
bondwires and terminals is negligible [1] because of a very low
current used for calibration. The terminal voltage at high cur-
rent pulses (VCE(h)) is directly measured to find power losses.
Tj is derived from the VCE(l) measurement after the current is
switched from high to low. Three measurement points are taken
successively and averaged to estimate Tj with an aid of the pre-
determined TSEP calibration curves. Since some disturbances
may be present at the switching transients, an initial delay time
is inserted to attain valid temperature information. Therefore,
it is required to trace back to zero time in heating tests by an
extrapolation method.

B. Determination of Reference Temperature

The device case temperature is taken as reference and four
temperature sensors (k-type thermocouples) are installed at four
locations to obtain an average temperature (see Fig. 4) accord-
ing to the industrial practice [50]–[52]. Tr1 and Tr2 are glued
on the case back surface directly below the chip center of the
freewheeling diode and IGBT, respectively. Tr3 is placed in a
drill hole, 3 mm away from the chip edge and 2 mm from the
top surface of the heat sink. Tr4 is at the edge of the base plate.

Fig. 4. Locations of thermocouples for an average case temperature.

In this experiment, the noises in junction temperature and
case temperature are 0.6 and 0.3 ◦C (peak-to-peak), respectively.
These correspond to the resolution for the thermal impedance
measurement of ±0.003 ◦C/W with a sampling time of 4 ms.

C. Experimental Setup

Fig. 5 shows the experimental setup. In Fig. 5(a), the IGBT is
placed in a thermal chamber to maintain a required testing envi-
ronment and tested with the proposed D&P circuit. In Fig. 5(b),
T1–T6 are six identical IGBTs and D1–D6 are six freewheel-
ing diodes. The measurement circuitry consists of an auxiliary
power supply unit (PSU); a gate drive and protection circuit; a
measurement circuit with digital isolation; and several selector
relays.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Finite Element Method (FEM) Simulation Results

An FEM in COMSOL Multiphysics environment is used to
evaluate the IGBT thermal characteristics under different solder
fatigue conditions. The ambient temperature is set to 20 ◦C and
a defined heat transfer coefficient is applied to the bottom of the
heat sink to simulate the forced air cooling. A dissipative power
step is applied to the active chip volume homogeneously (i.e.,
up to 100 μm from the chip top surface). The heat flow in each
layer is calculated by

ρCp
∂T

∂t
+ ∇ · (−k∇T ) = Q + qsT (1)

where ρ,Cp , k,Q, and qs are the density, heat capacity, thermal
conductivity, injected heat power, and absorption/production
coefficient, respectively. The material and the dimension of each
layer are given in Tables I and II. The solder fatigue is modeled
by creating a 3-μm-thick vacuum “delamination” layer (with
infinite thermal resistance) in the solder layer between the DCB
and the baseplate.

Simulation results are presented in Fig. 6 for comparison. It
can be seen that, as the thermal cycle increases, the remaining
solder area reduces and the delamination spreads from the edge
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Fig. 5. Proposed in situ D&P circuitry [1]. (a) Photographs of the experimental
setup. (b) Schematic diagram of the D&P.

TABLE I
MATERIALS OF THE IGBT MODULE LAYERS

TABLE II
DIMENSIONS OF THE IGBT MODULE

Fig. 6. Simulation results for remaining DCB solder areas in % as a result of
solder fatigue.

Fig. 7. Voltage and heat dissipation at different ambient temperatures.
(a) Voltage as a function of time. (b) Power as a function of time.

to center. In addition, excessive heat is generated above the
“delamination” as the result of the increased thermal impedance
(i.e., aging).

B. Power Loss Measurements

A 60-A heating current is injected during the IGBT’s forward
conduction state while the ambient temperature is controlled
within the thermal chamber. The current and voltage are mea-
sured to compute the instantaneous power input. VCE(on) con-
sists of the voltage drop across the silicon chip (Vchip ) and across
the stray impedance (Vstray ) accounting for terminal leads and
DCB films. VCE(on) gradually increases with the rising junc-
tion temperature during the heating period. The observed power
dissipation is shown in Fig. 7 where the power is segmentally
averaged for TTI measurements.
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Fig. 8. TTI curves at different ambient temperatures.

Since a fixed dc current is used for injection, the injected
power is not constant. To simplify the calculation of the heat
power, it is decomposed into a series of power pulses. Within a
pulse, the power is considered to be constant. This power wave-
form can be represented approximately by m sequential pulses
with averaged amplitudes of P1 , P2 , . . ., Pm . The amplitude of
each pulse with N samples is calculated by

Pav =
1
N

N∑

u=1

VCE(on) (u) · IC (u). (2)

In this paper, heat is assumed to conduct along a single dom-
inant path from the IGBT junction to the environment. This
offers a spatial inspection of the fault location in the multilay-
ered power module. By controlling the duration of the applied
heating pulses, the depth of the heat diffusion from IGBT chips
can be regulated so that the heat flux through the solder layer can
be developed sequentially (i.e., baseplate, thermal grease, and
heat sink). This enables a fast condition estimation and a focus
on the solder layer. Alternatively, it can increase heat loss (i.e.,
high temperature gradient) for a given thermal resistance. Thus,
a 60-A heating current is chosen to give a sufficient increase in
ΔTjr (circa 100 ◦C) while still limiting the junction temperature
to <150 ◦C, even in the worst-case scenario.

C. Thermal Response at Different Ambient Temperatures

The thermal impedance is measured at the ambient temper-
ature of 0, 20, and 40 ◦C, as shown in Fig. 8. The heat flux
distribution is altered due to the combined effect of silicon ther-
mal conductivity and power dissipation variation. VCE(on) varies
with Vchip while the change in Vstray caused by the copper ther-
mal conductivity is negligible.

The average thermal impedance at t = 1 s and 2 s are plotted
against the ambient temperature in Fig. 9. It can be observed that

Fig. 9. Averaged thermal impedance at t =1 s and 2 s.

Fig. 10. TTI curves under different injection currents.

the thermal impedance has a nearly linear characteristic against
the ambient temperature. Therefore, the thermal impedance can
be derived by linear curve fitting and a 3-D look-up table at
various ambient temperatures can be created for the IGBT’s
healthy baselines. Any noticeable rise in measurement results
above the baseline will indicate thermal path degradation. In
Fig. 9, the dotted lines also show a 0.01 ◦C/W drift from the
initial thermal impedance at t = 1 s and 2 s. Clearly, the thermal
deterioration can be easily identified.

D. Thermal Impedance With Different Injection Currents

TTI curves are obtained to study the impact of injection cur-
rents (20, 40, and 60 A), as shown in Fig. 10. Test results do not
match perfectly at different injection currents. This is because at
a higher injection current an increased heat dissipates through
the terminal leads and chip surface, rather than a downward
conduction route as assumed. This effect needs to be factored
when evaluating the test results.

Since the thermal resistance of the DCB solder is only a
fraction of the total junction-to-case thermal resistance, a high
power is preferred to produce a large temperature gradient for
heating tests. By doing so, the signal-to-noise ratio is improved
and so is the measurement accuracy.

E. Effects of Bondwire Failures on Solder Fatigue

In practice, bond wires age when solder layers do so. Be-
cause of this coupling effect, the wire failures and subsequently
increased heat can speed up the solder layer fatigue. A series of
TTI tests are performed with six, five, four, and three healthy
bondwires. The bondwire breakage is realized by cutting off the
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Fig. 11. Comparison of TTI curves with different healthy wires.

Fig. 12. Ambient temperature profile for the thermal aging test.

wire one after another. As shown in Fig. 11, the power dissipa-
tion and junction temperature in the remaining wires increase
as the wire is disconnected. However, the variation of thermal
impedance is negligible in spite of broken wire faults. This is
because the majority of the diverted heat passes downward into
the heat sink. This confirms the effectiveness of the TTI method
for monitoring bond wire lift-off failures.

F. Thermal Cycling Tests

A thermal aging test is conducted in a two-chamber thermal
shocker with the temperature varying between −50 and 160 ◦C
(see Fig. 12). The transition time is 2 min. The dwell time is
set to 10 min, allowing the assembly to reach the maximum and
minimum temperatures. The thermal cycling is interrupted at
800 and 1300 cycles for inspection.

The degradation of the solder layer between the DCB and
the base plate is also examined by a C-mode scanning acoustic
microscope (SAM). On detecting the reflected acoustic signal
upon an injection, the delamination patterns can be visually
examined. Fig. 13 presents three SAM images of two 70 A

Fig. 13. Remaining DCB solder areas in % observed by the SAM.

Fig. 14. Impedance results under different thermal aging cycles.

600 V IGBTs in one module from new (a), after 800 (b) and
after 1300 cycles (c). The remaining DCB solder area (given in
%) is calculated by the grayscale image processing programme
using Matlab. These photos clearly show that the damage ini-
tiates around the circumferential area and propagates inwards
to the center. In addition, it is also interesting to see the differ-
ences in the damage between the two IGBTs: less than 1% from
new, 12% at both 800 and 1300 cycles. This is not uncommon
from previous observations, suggesting a necessity for improv-
ing quality control in the packaging process of manufacturing
power IGBT devices.

Impedance results are illustrated in Fig. 14, with a compari-
son of the thermal image results. A direct, positive correlation
between the two methodologies can be clearly seen at 0, 800,
and 1300 cycles since the two observe the same fatigue mech-
anism. As the delamination propagates deeper, the heat dissi-
pation area shrinks and thus the thermal impedance increases.
These changes are sufficiently large to be identified in this case.
This may favor the data driven methods which do not rely on
accurate lifelong thermal models. As for the die-attach solder
layer, its degradation can also be detected with the developed
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Fig. 15. Temperature changes at the IGBT surface.

D&P system but the magnitude and duration of the heating pulse
should be optimized.

Moreover, the IGBT chip surface temperature under healthy
(0 cycle) and aged conditions (1300 cycles) is also captured by a
thermal camera for further comparison. As shown in Fig. 15(a),
the maximum chip temperature rises from 117 ◦C in the initial
state (healthy) to 129 ◦C in an aged state when the DCB solder
changes from a healthy to a degraded state after 1300 thermal
cycles. The temperature gradient over the IGBT chip surface
varies from less than 50 ◦C in the initial state to more than 55 ◦C
in the aged state, as demonstrated in Fig. 15(b).

V. CONCLUSION

IGBTs become the most vulnerable component in the electri-
cal drivetrain of EVs, their failure would bring about safety and
economic issues. This paper has addressed these by developing
a D&P circuitry for IGBT solder fatigue detection.

Test results from simulation, experiments, scanning acous-
tic and thermal images have clearly shown that, with the
gradual solder layer degradation, the junction-to-case thermal
impedance and chip surface temperature will increase. High
accuracy and sensibility of IGBT terminal parameter and tem-
perature measurements would be necessary to evaluate thermal
impedance so as to reveal such degradation.

The effectiveness of the developed technology is validated
in terms of in situ monitoring the IGBT solder fatigue. The
D&P functions can be embedded in the IGBT’s gate drive unit
(GDU) to improve system reliability and fault predictability. In
order to minimize modifications to the system architecture and
control algorithm, the measurement (junction temperature, volt-
age and/or current), protection (e.g., dc-bus voltage and voltage

transients) and data postprocessing functions can be integrated
into the GDU. The GDU can also control the selector relays
to enable the sequential tests of the IGBTs, which can be con-
ducted during stop-and-go traffic conditions or routine services.
Although the paper has focused on automotive applications, the
developed technology can be applied to many other applications
such as wind turbines, smart grids, and industrial drives.

Presently, some intelligent power modules are equipped with
on-chip temperature sensors for overtemperature protection. It
is also possible to utilize these sensors for measuring junction
temperature in the integrated GDU. Another tendency in IGBT
packaging is to develop baseplate-free power modules which
can eliminate the need for baseplates. However, in absence of
baseplates, the temperature difference across the power chip in-
creases and their thermal overloading capability is reduced. This
may be improved by the latest sintering technology but the con-
sequent manufacturing costs are high. Furthermore, these de-
vices are only available from few selected manufacturers while
the proposed technology can be applied to all standard IGBT
modules available on the marketplace.
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