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Abstract—Photovoltaic (PV) stations have been built widely 

in the world to utilize solar energy directly. In order to reduce the 

capital and operational costs, early fault diagnosis is playing an 

increasingly important role by enabling the long effective 

operation of PV arrays. This paper analyzes the terminal 

characteristics of faulty PV strings and arrays, and develops a PV 

array fault diagnosis technique. The terminal current-voltage 

curve of a faulty PV array is divided into two sections: a high-

voltage and a low-voltage fault diagnosis section. The 

corresponding working points of healthy string modules, healthy 

and faulty modules in an unhealthy string are then analyzed for 

each section. By probing into different working points, a faulty PV 

module can be located. The fault information is of critical 

importance for the maximum power point tracking (MPPT) and 

the array dynamical reconfiguration. Furthermore, the string 

current sensors can be eliminated while the number of voltage 

sensors can also be reduced by optimizing voltage sensor locations. 

Typical fault scenarios including mono-string, multi-string and 

partial shadow for a 1.6 kW 3×3 PV array are presented and 

experimentally tested to confirm the effectiveness of the proposed 

fault diagnosis method. 

 

Index Terms—Fault diagnosis, optimization, photovoltaics, 

terminal characteristics, voltage sensors. 

I. INTRODUCTION 

HOTOVOLTAIC (PV) systems provide a promising solution 

to directly utilizing solar energy and are currently gaining 

in popularity as the technologies are mature and the material 

costs are driven down [1]-[5]. However, as they are installed in 

outdoor environments, operational and maintenance costs have 

always been an issue, demanding some fault diagnosis 

functions to improve system reliability. 

A PV module consists of dozens of PV cells in series 

connections. A large number of PV modules connected in series 

form a PV string, which can be further connected in parallel to 

form a PV array. PV modules are characterized with low power 

density and low output voltage [6]-[8]. If the PV system is 

connected to a power grid, a large number of PV modules are 

needed to connect in series to achieve a high voltage level. 

Typically, a 400 V bus voltage is required for a 220 V 50 Hz 

single-phase grid, and a 600 V bus voltage for a three-phase 

grid. Similarly, a large number of PV strings are also needed to 

connect in parallel to increase their power level [9],[10]. For 
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example, a 20 kW grid-connected PV system generally employs 

80 modules to form a 20×4 array (i.e. 20 modules in a string 

and 4 strings to form an array). 

In field conditions, a number of factors can cause the PV 

array to reduce its output power. In this paper, any cause for this 

reduction is considered as the “fault”. It can be permanent (such 

as open-circuits, short-circuits and device aging), or temporary 

(such as dust, leave, bird dropping and shadow). A temporary 

fault can be cleared after a short period of time while a 

permanent fault would persist over time. Temporary faults can 

normally be identified by human eyes and thus be cleared 

through maintenance. Some permanent faults can be seen if the 

damage is severe while other permanent faults are invisible to 

the naked eye so that they may propagate and cause the PV 

modules to deteriorate over time. PV faults can occur in the PV 

array and generate different effects on the performance and 

lifetime of the PV system [11]-[16]. Currently, thermal cameras 

[17]-[23], earth capacitance measurements (ECM) [24] and 

time domain reflectomery (TDR) [25] are the three popular 

methods for PV fault diagnosis. Thermal cameras can be 

employed to detect the temperature characteristics of a PV array 

under fault conditions. Thermal images can also be linked to the 

maximum power point tracking (MPPT) algorithm of the PV 

controller [22]. In practice, a gradual change in the thermal 

image of the PV module (e.g. due to device aging) poses a 

technical challenge [23], and high system costs also limit the 

wide application of thermal cameras. The ECM can locate the 

disconnection of PV strings while the TDR technology can 

predict the degradation of the PV array. Nonetheless, both ECM 

and TDR can only operate offline [24],[25]. In practice, online 

diagnosis methods are highly desired, which can take 

measurements while the tested device is in operation. To 

improve this, an automatic supervision and fault detection is 

proposed in [26],[27] based on power loss analysis. However, 

it requires surrounding environmental information and cannot 

identify the faulty module. An operating voltage-window is 

then developed based on the PV string operation voltage and 

ambient temperature [28]. It can locate the open and short faults 

but still cannot identify the faulty module from the array. 

Currently, both offline and online fault diagnosis methods have 

been developed. Offline diagnosis methods cannot give real-

time fault information that is the key factor for PV array 

optimization operation under fault condition. Current, online 
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fault diagnosis methods suffer from high costs or incapability 

of locating fault modules. A model-based reconfiguration 

algorithm is developed in [29] to realize the fault-tolerant 

operation. But it needs a large number of electrical relays to 

reconfigure PV arrays. A similar technology, the in-situ 

rearrangement strategy, can decrease the influence of shadow 

[30]-[33]. However, its success depends on three conditions: i) 

a large number of relays are used. ii) the health state of all PV 

modules should be monitored. iii) high computing resource of 

the controller is required to calculate complex optimal 

arrangements. These increase the system cost and control 

complexity. Paper [34] develops an improved strategy which 

combines power channels and relays to combat the shadow 

influence but it also needs the healthy state of PV modules. 

Paper [35] proposes a fingerprint curve of the PV array under 

shading conditions to find the key information (e.g. open-circuit 

and short-circuit points and MPP region) but it cannot locate the 

faulted modules. Paper [36] presents a fault diagnosis technique 

using current and voltage sensors but the system cost is quite 

high. Paper [22] presents a method to use the fault diagnosis 

information for global MPPT without a need to trace I-V curves. 

It becomes clear that online fault diagnosis is important because 

i) it is the prerequisite for any array dynamical reconfiguration. 

ii) it can provide crucial information for global MPPT; (iii) it 

contains key state-of-health information useful for system 

maintenance. 

This paper proposes a low cost and online fault diagnosis 

method with optimized voltage sensor locations that can 

effectively locate the faulty PV strings and faulty modules. The 

paper is organized as follows. Section II introduces PV fault 

mechanisms. Section III illustrates the optimization of sensor 

locations. Section IV describes the two-section PV array fault 

diagnosis method. Section V presents experimental results to 

verify the proposed method, followed by a short conclusion in 

Section VI. 

II. FAULT MECHANISMS 

Firstly, it is crucial to understand fault mechanisms prior to 

developing fault diagnosis techniques. 

A. PV string faults 

The PV string is the basic structure of a PV array. Fig. 1 

presents typical output characteristics of the PV string under 

faulty conditions; the PV module parameters are listed in Table 

I. The string includes three modules with non-uniform 

illumination, the corresponding environment parameters are 

850 W/m2, 25oC; 620 W/m2, 25oC; 400 W/m2, 25oC. Each 

module has uniform illumination. It can be found that: i) The 

multi-stage characteristics are caused by the differing output 

current of each module; ii) In the low voltage diagnosis section, 

the faulty modules are short-circuited, and the terminal voltage 

of the corresponding faulty module is zero. 

In order to restrict the hot-spots in a PV module, a bypass 

diode is connected in parallel to PV cells. The corresponding 

structure is named the cell-unit, which is composed of m PV 

cells. The PV module is connected in series by n cell units to 

achieve the high output voltage. Usually, partial shadow is also 

accrued in one PV module. Due to the cell-unit structure, even 

though only one cell is faulty (0 W/m2), the output power of the 

cell-unit will decrease dramatically. Fig. 2(a) presents 

experimental results of the faulty cell-unit that includes 24 PV 

cells with one faulty PV cell; the experimental environment 

parameters are 790 W/m2 at 24oC. The faulty cell is equivalent 

to a resistance. As the current increases, the corresponding cell-

unit output power is decreased dramatically. For instance, the 

faulty cell-unit works at 0.96 A, and its output power is 4.75 W 

(about 10% of the output at healthy condition) and this power 

reduces to nearly zero when the cell-unit current is higher than 

1 A. In order to achieve a global MPP for the PV array, the 

current is much higher than 1 A under the condition in Fig. 2. 

Therefore, the output voltage for a faulty cell-unit is effectively 

negligible, as shown in Fig. 2. 

Therefore, when a PV module is subjected to partial shading, 

its terminal output voltage is lower than the healthy module but 

higher than zero. In Fig. 2(b), the PV module loses one of the 

cell-units and its output voltage is reduced to 
𝑛−1

𝑛
 of the output 

voltage.  

PV string fault diagnosis can be achieved by measuring the 

PV module voltage, which changes with the string working 

point. When the string works in the low voltage diagnosis 

section, the faulty module can be located because its output 

voltage is zero (full shadow) or lower than the healthy module 

(partial shadow). 

B. PV array faults 

When a PV array is faulted, the faulty module has a lower 

effective illumination than healthy modules. Take a 3×3 array 

for example. Fig. 3(a) shows a multi-string faulty condition and 

Fig. 3(b) shows its I-V characteristics. In Fig. 3(a), the diodes 

are used to block the reverse current when a fault occurs. The 

output I-V characteristics can be divided into two sections: a 

high voltage diagnosis section and a low voltage diagnosis 

section (constant output current). In the latter section, the faulty 

module in the faulty string is shorted by bypass diodes where 

both healthy string and unhealthy string carry the same current. 

PV string current sensors cannot distinguish the unhealthy 

string from healthy strings. Nevertheless, the healthy modules 

in the faulty string have a higher output voltage than the 

modules in the healthy string, as points A1 and A2 illustrated in 

Fig. 3(c). The voltage difference between the healthy module in 

the unhealthy string, and the module in the healthy string can 

be employed to locate the faulty module. 

 
Fig. 1 Output characteristics of the faulty string. 

TABLE I SPECIFICATIONS OF THE PV MODULE 

            Parameter    Value 

Open-circuit voltage 44.8 V 

Short-circuit current 5.29 A 

Power output 180 W 
MPP current 5 A 

MPP voltage 36 V 

Current temperature coefficient 0.037%/K 

Voltage temperature coefficient 4 
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Power temperature coefficient 8 

Operating cell temperature 46±2°C 

 
(a)  

 
 (b)  

Fig. 2 PV string under partial shading conditions. (a) The PV cell-unit 

output. (b) Partial shading illustration. 

 

In this paper, s modules are connected in series to form a PV 

string and p PV strings are connected in parallel to form a PV 

array. For a p row s column array, assume that there are x 

faulted modules in the unhealthy string. In Fig. 3(c), UA1 is the 

voltage of a PV module in a healthy string, such as PV11; UA2 

is the voltage of a healthy PV module in an unhealthy string, 

such as PV22. UA1 and UA2 can be expressed as: 

1

array

A

U
U

s


                                    (1)

 

2

array

A

U
U

s x


                                     (2) 

where Uarray is the output voltage of PV arrays.                             

 

The high voltage diagnosis section in Fig. 3(b) is due to a 

lower solar illumination of the faulty module. The output 

current of the unhealthy string is limited by the faulty module 

output current. Therefore, the unhealthy string output current is 

lower than the healthy string. Since all the modules contribute 

to electricity generation, there are three working points in two 

output characteristics. A3 is the working point of modules in the 

healthy string; A4 is working point of the faulty modules in the 

unhealthy string; A5 is the working point of normal modules in 

the unhealthy string; as in Fig. 3(d). Because both A3 and A5 are 

the working points of a healthy module, they share the same 

output curve characteristics. Because A4 and A5 are the working 

points of an unhealthy module and a healthy module in the same 

string, they have the same output current.  

Voltages UA3, UA4 and UA5 for working points A3, A4 and A5 

are given by: 

3 4 5 ( )A A AU s U x U s x     
                       (3) 

According to the previous analysis, UA4＜UA3＜UA5. This can 

be employed to locate faulty modules without current 

information. 
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(b)  

 
(c)                                          (d) 

Fig. 3 PV array under fault conditions. (a) Faulty 3×3 PV array. (b) 

Output characteristics. (c) Working points in the voltage fault 

diagnosis section. (d) Working points in the high-voltage section. 

 

The extreme condition for the PV array under non-uniform 

illumination is that the illumination on the faulty module is zero. 

Fig. 4 presents the output curves of healthy string and unhealthy 

string under this condition. There is a zero-output condition, 

where the faulty string does not generate electricity. When the 

array output voltage is between 100~130 V, every module in 

the healthy string generates electricity and works in the high-

voltage diagnosis section. In the unhealthy string, the faulty 

module cannot generate electricity. Although the healthy 

modules work in the high-voltage diagnosis section, the 

unhealthy string still cannot reach the PV array voltage. 

Therefore the healthy modules in the unhealthy string are 

effectively open-circuited, similar to the faulted modules. There 

is neither current flowing in the unhealthy string, nor in the 

bypass diodes. That is, all the modules in an unhealthy string 

are open-circuited.  

Therefore, the fault diagnosis can be achieved by analyzing 

the module voltage at different diagnosis sections. This also 

removes the necessity of current sensors. In this work, the two-

stage power conversion [37] is adopted so that the control of the 

PV system is load independent. That is, the PV’s working point 

can be chosen at will in the two-stage PV system where the  
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front-end   DC-DC    converter   tracks   the  

 
Fig. 4 Extreme case of the PV array fault.  

 

desired working point of the PV array; the bus voltage control 

and the DC-AC inverter control ensure that the grid current is 

controlled as per the input power. 

III. OPTIMIZATION OF SENSOR LOCATIONS 

In order to achieve the PV array fault diagnosis, the reading 

of PV module voltage is needed. Due to the large number of PV 

modules employed, a large number of voltage sensors are also 

needed in the first instance. 

A. Sensor placement strategy 

There are three basic sensor placement methods, as shown in 

Fig. 5. If every module’s terminal voltage is measured by a 

voltage sensor by method 1; and the total number of sensors is 

ps. In method 2, each voltage sensor measures the voltage 

between two nodes in the same column of adjacent strings; and 

(p1)(s1) voltage sensors are needed. In method 3, the 

electric potential difference of adjacent modules is measured; 

the corresponding number of sensors is p(s2). The large 

number of voltage sensors may increase system capital cost and 

information processing burden. Therefore, the voltage 

placement method needs to be optimized. 

Fig. 6 shows an equivalent PV matrix where a PV module is 

shown as a dot; the connection line of the adjacent module is 

represented by a node. The proposed voltage placement strategy 

is developed by the following steps: 

i)   All the nodes should be covered by voltage sensors. 

ii)  A sensor can only connect one node in a string. 

iii) Voltage sensor nodes cover different isoelectric points 

from different strings. 

iv) If p or s is an even number, each node is connected to 

and only to one sensor. If both p and s are odd, there is 

one and only one node to be connected to two different 

sensors, while each of remaining nodes is connected to 

one sensor. 
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(a)                              (b)                               (c)  

Fig. 5 Voltage sensor placement methods: (a) 1, (b) 2, (c) 3. 

 
Fig. 6 Equivalent matrix. 

 

 

 

Ua V 
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Fig. 7 Simplified voltage sensor placement for a 33 PV array.  

 
TABLE II NUMBER OF VOLTAGE SENSORS USED BY DIFFERENT METHODS  

Method 1 2 3 Proposed 

No. p s (p-1)(s-1) p(s-2) p(s-1)/2 

 

Fig. 7 presents an example of the 3×3 PV array. According 

to the proposed sensor placement strategy, only three voltage 

sensors are needed. 

The minimum number of sensors used to detect all possible 

faults should be ⌈𝑝 × (𝑠 − 1)/2⌉. When a node is not connected 

to any sensor, the two adjacent PV modules of this node cannot 

be discriminated once a fault occurs at one of the two modules. 

The total number of nodes is equal to ⌈𝑝 × (𝑠 − 1)/2⌉. This is 

summarized in Table II. Clearly, the proposed method uses less 

voltage sensors than other three methods.  

B. Mathematical model of the proposed strategy  

The variable 𝑎𝑖𝑗  is defined as the state of the PV module 

sitting at the i-th string and j-th module (i.e. (𝑖, 𝑗)) in the 𝑝 × 𝑠 

array. If this module is healthy, 𝑎𝑖𝑗 =1, otherwise 𝑎𝑖𝑗 =0. The 

terminal voltage of the (i, j) module is denoted by 𝑢𝑖𝑗, and the 

reading of a voltage sensor connecting the (i, j) and (r, k) 

modules is denoted by 𝑅𝑖,𝑗,𝑟,𝑘. Consider that each string has at 

least one healthy module. The number of healthy modules in 

the i-th string equalizes 𝑎𝑖1 + 𝑎𝑖2 + ⋯ + 𝑎𝑖𝑠 . The terminal 

voltage 𝑢𝑖𝑗 of the (i, j) module is equal to a fraction of  𝑈𝑎𝑟𝑟𝑎𝑦 , 

and this fraction is 0 if 𝑎𝑖𝑗 = 0 , and is 1/(𝑎𝑖1 + 𝑎𝑖2 + ⋯ +

𝑎𝑖𝑠) if 𝑎𝑖𝑗 = 1. That is, 

𝑢𝑖𝑗 =
𝑎𝑖𝑗𝑈array

𝑎𝑖1+𝑎𝑖2+⋯+𝑎𝑖𝑠
                               (4) 

Note that the total output voltage of the modules (i, 1), (i, 

2),…, and (i, j) is the sum of the terminal voltage of j modules, 

i.e., 𝑢𝑖1 + 𝑢𝑖2 + ⋯ + 𝑢𝑖𝑗. Similarly the total output voltage of 

the modules (r, 1), (r, 2),…, and (r, k) equalizes 𝑢𝑟1 + 𝑢𝑟2 +
⋯ 𝑢𝑟𝑘. Therefore, the reading of the voltage sensor connecting 

the (i, j) module and the (r, k) module is calculated as 

𝑅𝑖,𝑗,𝑟,𝑘 = (𝑢𝑖1 + 𝑢𝑖2 + ⋯ + 𝑢𝑖𝑗) − (𝑢𝑟1 + 𝑢𝑟2 + ⋯ 𝑢𝑟𝑘)  

=
(𝑎𝑖1+𝑎𝑖2+⋯+𝑎𝑖𝑗)𝑈array

𝑎𝑖1+𝑎𝑖2+⋯+𝑎𝑖𝑠
−

(𝑎𝑟1+𝑎𝑟2+⋯+𝑎𝑟𝑘)𝑈array

𝑎𝑟1+𝑎𝑟2+⋯+𝑎𝑟𝑠
          (5) 
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When the working point of a PV string moves to the high 

voltage section, the output voltage of the healthy modules 

increases until reaching 𝑈𝑜𝑐. The faulted modules in the string 

will equally divide the remaining voltage 𝑈array −(𝑎𝑖1 + 𝑎𝑖2 +
⋯ + 𝑎𝑖𝑠)𝑈𝑜𝑐 . The following relations hold for a string including 

both healthy and unhealthy modules. 

𝑢𝑖𝑗 = 𝑎𝑖𝑗𝑈𝑜𝑐 +
(1−𝑎𝑖𝑗)(𝑈array−(𝑎𝑖1+𝑎𝑖2+⋯+𝑎𝑖𝑠)𝑈𝑜𝑐)

𝑠−(𝑎𝑖1+𝑎𝑖2+⋯+𝑎𝑖𝑠)
   

=
(𝑎𝑖𝑗𝑠−(𝑎𝑖1+𝑎𝑖2+⋯+𝑎𝑖𝑠))𝑈𝑜𝑐

𝑠−(𝑎𝑖1+𝑎𝑖2+⋯+𝑎𝑖𝑠)
+

(1−𝑎𝑖𝑗)𝑈array

𝑠−(𝑎𝑖1+𝑎𝑖2+⋯+𝑎𝑖𝑠)
   (6) 

𝑅𝑖,𝑗,𝑟,𝑘 = (𝑢𝑖1 + 𝑢𝑖2 + ⋯ + 𝑢𝑖𝑗) − (𝑢𝑟1 + 𝑢𝑟2 + ⋯ 𝑢𝑟𝑘) 

=
(𝑠 ∑ 𝑎𝑖𝑙

𝑗
𝑙=1 − 𝑗 ∑ 𝑎𝑖𝑙

𝑠
𝑙=1 )𝑈𝑜𝑐

𝑠 − ∑ 𝑎𝑖𝑙
𝑠
𝑙=1

+
(𝑗 − ∑ 𝑎𝑖𝑙

𝑗
𝑙=1 )𝑈array

∑ 𝑎𝑖𝑙
𝑠
𝑙=1

 

  −
(𝑠 ∑ 𝑎𝑟𝑙

𝑘
𝑙=1 −𝑘 ∑ 𝑎𝑟𝑙

𝑠
𝑙=1 )𝑈𝑜𝑐

𝑠−∑ 𝑎𝑟𝑙
𝑠
𝑙=1

−
(𝑘−∑ 𝑎𝑟𝑙

𝑘
𝑙=1 )𝑈array

∑ 𝑎𝑟𝑙
𝑠
𝑙=1

            (7) 

The reading 𝑅𝑖,𝑗,𝑟,𝑘  at the high voltage section provides 

extra equations to solve variable 𝑎𝑖𝑗 . There is a way to design 

the optimal sensor placement for any 𝑝 × 𝑠  array with 
⌈𝑝 × (𝑠 − 1)/2⌉  sensors. If p is an even number, the 𝑝 × 𝑠 

array can be divided into  
𝑝

2
 elements of 2 × 𝑠 arrays. For each 

2 × 𝑠  array, it needs to apply the optimal sensor placement 

method by using 
𝑝

2
× 𝑠  sensors. If p is odd, the 𝑝 × 𝑠  array 

consists of one 3 × 𝑠 array and 
𝑝−3

2
 elements of 2 × 𝑠 arrays. It 

needs to apply the sensor placement method for these elements 

and the number of sensors needed is equal to ⌈3 × (𝑠 − 1)/2⌉ +
𝑝−3

2
(𝑠 − 1). By considering both even and odd numbers,  

⌈3 × (𝑠 − 1)/2⌉ +
𝑝−3

2
(𝑠 − 1) = ⌈𝑝 × (𝑠 − 1)/2⌉        (8) 

Therefore, the optimal number of sensors can be obtained. 

IV. TWO-SECTION PV ARRAY FAULT DIAGNOSIS STRATEGY  

The proposed PV array fault diagnosis strategy is 

implemented in three steps: locating healthy PV string, locating 

faulty module in the low-voltage diagnosis section, and in the 

high-voltage diagnosis section.  

A. Locating healthy PV strings 

The information of healthy strings is useful to identify a 

faulty module. Thus the first step in fault diagnosis is to locate 

healthy PV strings. Because of the absence of current sensors 

in the string, the healthy string cannot be found directly. When 

a PV array changes from a healthy condition to an unhealthy 

condition, the voltage sensor can pick up the change. 

i) If the voltage sensor reading 𝑅𝑖,𝑗,𝑟,𝑘  always satisfies 

𝑅𝑖,𝑗,𝑟,𝑘 =
𝑗−𝑘

𝑠
 𝑈array  despite any changes of the working 

point along the I-V curve, both i-th and r-th strings are 

healthy.  

ii) If the i-th string is healthy, the sensor reading 𝑅𝑖,𝑗,𝑟,𝑘 

satisfies 
𝑅𝑖,𝑗,𝑟,𝑘

𝑈array

−
𝑗

𝑠
= −

𝑎𝑟1+𝑎𝑟2+⋯+𝑎𝑟𝑘

𝑎𝑟1+𝑎𝑟2+⋯+𝑎𝑟𝑠
 at low voltage 

working points. This can be used to judge the number of 

faulty modules in the r-th string. 

iii) If the i-th string is healthy, and (𝑅𝑖,𝑗,𝑟,𝑘 −
𝑗

𝑠
𝑈array) remains 

constant for all working points, there is no current flowing 

in the r-th string, i.e., the r-th string is open circuited. This 

is because that (𝑅𝑖,𝑗,𝑟,𝑘 −
𝑗

𝑠
𝑈array) is equal to the voltage of 

the first k modules in the r-th string (i.e. 𝑢𝑟1 + 𝑢𝑟2 +
⋯ 𝑢𝑟𝑘 ). Whenever there is current flowing in the r-th 

string, there will be at least one module works at low 

voltage working points (e.g., 𝑈array  < 𝑈𝑜𝑐 ). At the low 

voltage section, the reading of 𝑢𝑟1 + 𝑢𝑟2 + ⋯ 𝑢𝑟𝑘  is a 

function of 𝑈array and cannot remain constant.  

B. Locating faulty PV modules in the low-voltage section 

After locating the healthy string, the next step is to find the 

faulty PV module. In the low voltage diagnosis section, the 

faulty modules are shorted. The corresponding fault diagnosis 

eigenvalue of the mono-string faulty is presented in Table III, 

where the fully-faulty module indicates that all cell-units in the 

module are faulty (0: healthy and 1: faulty). No. 7 (111) is the 

extreme case that all the modules in this string are faulty. Even 

though the PV array works in the low-voltage diagnosis section, 

the modules are open-circuited when all modules are faulty. 

Table IV shows the multi-string eigenvalues. From these, the 

faulty module can be identified easily. 

 
TABLE III VOLTAGE OF THE MONO-STRING ALL FAULTED MODULES 

PV31~PV33 Ua Ub Uc 

100 Uarray/3 2Uarray/3 Uarray/6 
010 Uarray/3 Uarray/6 Uarray/6 

001 Uarray/3 Uarray/6 2Uarray/3 

110 Uarray/3 2Uarray/3 Uarray/3 
011 Uarray/3 Uarray/3 2Uarray/3 

101 Uarray/3 2Uarray/3 2Uarray/3 

111 
000 

Uarray/3 
Uarray/3 

2Uarray/3-Uoc 

Uarray/3 
2Uoc -Uarray/3 

Uarray/3 

 

TABLE IV VOLTAGE OF THE MULTI-STRINGS FULLY FAULTED MODULES 

PV11~PV13/PV21~PV23 Ua Ub Uc 

100/100 Uarray/2 Uarray/6 2Uarray/3 

010/100 Uarray/2 Uarray/6 Uarray/6 
001/100 Uarray Uarray/6 Uarray/6 

100/010 Uarray/6 Uarray/6 2Uarray/3 

010/010 Uarray/6 Uarray/6 Uarray/6 
001/010 Uarray/2 Uarray/6 Uarray/6 

100/001 0 2Uarray/3 2Uarray/3 

010/001 0 2Uarray/3 Uarray/6 
001/001 Uarray/2 2Uarray/3 Uarray/6 

110/100 0 Uarray/6 2Uarray/3 

101/100 Uarray Uarray/6 2Uarray/3 
011/100 Uarray Uarray/6 Uarray/3 

 

In practice, partial shading is a very common fault [2]-

[3][5][12]-[14][22]-[33]. This is illustrated in detail in Table V. 

Both Tables III and V are concerned with PV module faults. 

Tables III deals with the fully-faulted module where all cell-

units are faulted while Table V shows a partially faulted module 

including some faulted cell-units. Their output voltages are zero 

and non-zero, respectively.  

C. Locating faulty PV module in the high-voltage section 

If all the PV strings are faulty, the eigenvalues of Tables III-

V may be the same as other faulty conditions. This can lead to 

misjudgment in locating faulty modules. 

For example, two types of the unhealthy 3×3 PV array with 

the same sensor placement strategy are presented in Fig. 8. 

PV11, PV21, PV23 and PV32 are faulty at fault condition 1; 

PV12, PV21, PV31 and PV33 are faulty at condition 2. Two 

fault conditions give the same voltage reading in the low-

voltage diagnosis section, which is Uarray/2. In order to 

discriminate the two conditions, the high voltage diagnosis 

section is employed to find the actual faulty modules.  
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TABLE V VOLT OF THE MONO-STRING PARTIALLY FAULTED MODULES  

PV11~PV13 Ua Ub Uc Comparison 

100 
Uarray/6<Ua< 

Uarray/3 
Uarray/3 

Uarray/3<Uc< 
2Uarray/3 

— 

010 
Uarray/6<Ua< 

Uarray/3 
Uarray/3 

Uarray/6<Uc< 

Uarray/3 
— 

001 
Uarray/3<Ua< 

2Uarray/3 
Uarray/3 

Uarray/6<Uc< 

Uarray/3 
— 

110 Ua<Uarray/3 Uarray/3 
Uarray/3<Uc< 

2Uarray/3 
2Ua Uc< Uarray 

011 
Uarray/3<Ua< 

2Uarray/3 
Uarray/3 Uc<Uarray/3 Ua 2Uc< Uarray 

101 Ua<Uarray/3 Uarray/3 
Uarray/3<Uc< 

2Uarray/3 
Ua 2Uc> Uarray 

 

     
(a)                                                   (b)  

Fig. 8 The 3×3 array under two fault conditions: (a) 1, (b) 2. 
 

TABLE VI EIGENVALUE UNDER DIFFERENT FAULT DIAGNOSIS SECTIONS  

Fault condition Diagnosis section Ua Ub Uc 

1 Low voltage Uarray/2 Uarray/2 Uarray/2 
2 Low voltage Uarray/2 Uarray/2 Uarray/2 

1 High voltage Uarray/2-Uoc 2Uoc-Uarray/2 Uarray/2 

2 High voltage Uarray/2 Uarray/2-Uoc 2Uoc-Uarray/2 

 

As analyzed previously, when the PV array works in the high 

diagnosis voltage section, the faulty modules in string 2 are 

open-circuited while strings 1 and 3 can still operate. In a low-

voltage section all the healthy modules in the array generate 

electricity and the faulty modules are shorted. The voltage value 

is different between the low-voltage and the high voltage 

sections, as illustrated in Table VI. By changing the diagnosis 

section from low to high, different eigenvalues can be obtained 

to locate faulty modules. 

D. Implementation of the two-section fault diagnosis strategy  

The two-section fault diagnosis strategy is summarized in a 

flowchart in Fig. 9. Firstly, the system checks if the voltage 

sensor readings sufficiently deviate from the normal ones (e.g. 

10%). If this is true, the system enters into fault diagnosis. Next, 

the system checks if there is a healthy string in the PV array 

based on voltage sensor readings. If this is the case, the faulty 

module can be located directly by the eigenvalue table in the 

low-voltage diagnosis section. If there does not exist a healthy 

string, both the low-voltage and high-voltage fault diagnosis is 

needed to locate faulty modules.    

V. EXPERIMENTAL TESTS 

A 3×3 PV array and a signal conditioning system are built 

to verify the proposed fault diagnosis technique, as shown in 

Fig. 10. In this figure, resistor dividers are employed as 

differential voltage sensors to eliminate the grounding issue, tri-

port connectors and shield twisted pair cables are used to 

transmit the voltage signal. In the signal conditioning circuit, 

the electrical isolation of sensor signals is achieved by using a 

linear optical coupling (HCNR201) to avoid the interaction of 

earth and ground connections.  The    voltage   readings       are 

Monitor values from 

voltage sensor

Are all values normal?
Y

N
Is there a healthy 

string?

Low voltage area

 fault diagnosis

Low voltage area

 fault diagnosis

Y

Locate faulty 

module

High voltage area

 fault diagnosis

Locate faulty 

module  
Fig. 9 Flowchart of the two-section fault diagnosis. 

 

processed by the conditioning circuit and then input to DSP 

TMS320F2812. The PV modules are the same for simulation, 

and the environment illumination is recorded by TS1333R. In 

the experiment, typical fault scenarios are studied and the 

sensor readings are compared with eigenvalues in the high-

voltage and low-voltage diagnosis sections to check the 

effectiveness of the proposed fault diagnosis technique.       

Fig. 11 shows the mono-string mono-module fault diagnosis. 

In the fault scenario 1 (see Fig. 11(a)), the voltage sensor 

connection method is identical to that in Fig. 7. The 

illumination is 550 W/m2 and the temperature is 15℃. The P33 

PV module is cast by shadow manually to emulate a partial-

shading fault. Uaref, Ubref and Ucref are the reference voltages for 

sensors a, b and c, respectively, under the fault condition. Fig. 

11(b) shows the I-V characteristics of faulty PV arrays. Due to 

the fault on module P33, string 3 cannot generate electricity in 

the output voltage range 82~120 V. Fig. 11(c) presents the 

sensor output voltage. In the low-voltage diagnosis section 

(10~70V); the sensor a output voltage is Uarray/3 (as shown in 

Fig. 11(d)). This is a normal output voltage and the 

corresponding strings are healthy. That is, strings 1 and 2 

connected by this sensor are healthy, which coincides with fault 

scenario 1 in Fig. 11(a). Fig. 11(e) illustrates the high-voltage 

and low-voltage diagnosis sections. In the low-voltage section, 

the reference eigenvalue is Uarray/6; and in the high-voltage 

section, it is 2Uarray/3-Uoc. The fact that the sensor b output is 

close to the reference value also verifies the proposed diagnosis 

method. The reference eigenvalue of Uc is 2Uarray/3; and the 

corresponding sensor c output also agrees with the reference 

eigenvalues. There is a slight deviation between Ua, Ub and Uc 

and their reference values. This is caused by the diode voltage 

drop and the minor product irregularity between PV modules. 

From the sensor output results and information in Table III, the 

fault type is classified as “001”. The faulty module is P33 that 

also agrees with fault scenario 1 (Fig. 11(a)).   

Fig. 12 shows the diagnosis of the multi-string mono-module 

fault. In fault scenario 2, the illumination is 580 W/m2 and the 

temperature is 25℃. Module P11 in string 1 and P33 in string 

3 are cast by partial shadow manually. Fig. 12(b) presents the I-

V characteristics of the faulty PV array. When faults occur in 

modules P11 and P33, strings 1 and 3 cannot generate 

electricity in the range of 82~120 V. In the low-voltage section, 

the sensors a and b have the same output (Ua=Ub=Uarray/6), as 

illustrated in Fig.12(c). The voltage sensors a and b also satisfy 

http://dict.cnki.net/dict_result.aspx?searchword=%e7%ba%bf%e6%80%a7%e5%85%89%e8%80%a6&tjType=sentence&style=&t=linear+optical+coupling
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the rule for locating healthy strings. Therefore, string 2 is 

diagnosed as being healthy which coincides with the fault 

scenario in Fig. 12(a). Fig. 12(d) shows the sensor c output 

curves. It can be seen that there is a healthy string, and the 

values of Ua, Ub and Uc are Uarray/6, Uarray/6 and Uarray, 

respectively, in the low-voltage diagnosis section. The faulty 

modules identified are P11 and P33. 

 

signal 

conditioning 

circuit

DSP

2812

Tri-port 

connector

PV array

Resistor 

divider 

Shield twisted pair cable

Two stage 

converter

 
Fig. 10 Experimental platform. 

    
(a)                                                   (b) 

  
(c)                                                   (d) 

  
(e)                                                 (f) 

Fig. 11 Mono-string mono-module fully faulted diagnosis. (a) Fault 

scenario 1. (b) Output characteristics. (c) Voltage sensor output. (d) Ua 

sensor output. (e) Comparison of Ub sensor output. (f) Comparison of 

Uc sensor output. 

   
(a)                                               (b) 

     
(c)                                               (d) 

Fig. 12 Multi-string mono-module fault diagnosis. (a) Fault scenario 2. 

(b) Output characteristics. (c) Comparison of sensor outputs Ua and Ub. 

(d) Sensor output voltage.    

 

 
(a) 

   
(b)                                                      (c) 

  
(d)                                                 (e) 

Fig. 13 Mono-string multi-module fault diagnosis. (a) Fault scenario 3. 

(b) Output characteristics. (c) Ua sensor output. (d) Comparison of 

sensor output Uc. (e) Comparison of sensor output Ub.  

   

In fault scenario 3 (Fig. 13(a)), the illumination is 610 W/m2 

at 30℃. P32 and P33 in string 3 are cast by partial shadow and 

full shadow, respectively. Fig. 13(b) shows the output 

characteristics. String 3 can only generate electricity at 0~60 V. 

As presented in Fig. 13(c), Ua =Uarray/3 in the whole output 

voltage range, indicating strings 1 and 2 are both healthy. In the 

low-voltage section of Fig. 13(d), Uc matches the reference 

value 2Uarray/3, verifying that P33 is faulty. In the high-voltage 

section, Uc= 2Uoc-Uarray/3. Therefore, either P31 or P32 is faulty. 

Fig. 13(e) presents the output characteristics for sensor b. The 
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corresponding output is equal to -Uarray/3 in the low-voltage 

range, proving that P32 module is faulty and P31 module is 

healthy.  

From the analysis of three fault scenarios for a 3×3 PV array, 

the proposed fault diagnosis strategy is proven be effective. 

For small-scale or low-voltage arrays, passive voltage 

sensors (e.g. resistor dividers) can be employed. Given that 16 

channels are available for analog-digital (A/D) conversion in 

DSP TMS320F28335, there might not need for additional A/D 

chips. For large-scale PV systems at high voltages, Hall-effect 

voltage sensors (e.g. LEM LV25-P) are required. These sensors 

can be powered by the PV cell-unit directly. They also need 

long sensor cables to transmit the voltage results unless wireless 

sensor networks are used [38][39]. Clearly, the cost of the fault 

diagnosis equipment and computational complexity handling 

for more extended PV arrays and large PV arrays will be 

increased. Given the gain in reduced voltage sensors and 

increased solar power production, the total capital cost is 

justified by using the proposed technique. 

It needs to point out that this is a proof-of-concept work and 

its technology readiness level (TRL) is between 3-4. Ideally, the 

developed technology will eventually lead to a new product, in 

place of existing converters for PV systems. However, it can 

also be integrated into the exiting commercial converters. i) If 

commercial converters allow for updating their software 

programs, the developed algorithm can be implemented into the 

control program of the front-end DC-DC converter and voltage 

sensors need to add to the system for voltage measurement. For 

fault diagnosis, the reference voltages of PV arrays in the low-

voltage and high-voltage fault diagnosis areas are firstly 

chosen. The difference between the PV array output voltage and 

the reference voltage is the input to the PI controller and its 

output is the duty cycle of the DC-DC converter. ii) If 

commercial converters do not allow any modification of their 

software programs, an extra DC-DC converter is needed and its 

output is connected across the DC-link capacitor. This 

arrangement bypasses the first stage of the commercial 

converter and fault diagnosis can be conducted when the PV 

system is operational. 

VI. CONCLUSION 

PVs are a cost-sensitive market. Online fault diagnosis is 

key to the success of the PV array reconfiguration and the 

global MPPT. This paper has proposed a low-cost online PV 

array fault diagnosis with optimized voltage sensor locations. 

This work can increase productivity and reduce the capital and 

maintenance costs by reducing the number of sensors and by 

developing an effective fault diagnosis technique. 

Compared to existing methods in the literature, this work 

has made the following improvements: i) String current sensors 

are removed and the number of voltage sensors is also reduced 

by optimizing the location of voltage sensors. ii) An online two-

section fault diagnosis method is developed to locate faulty PV 

modules. iii) The state of health information from this work can 

be also used for the MPPT and PV array dynamical 

reconfiguration. 
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