
CloudMPL: A Domain Specific Language For Describing Management
Policies For An Autonomic Cloud Infrastructure

Marwah M. Alansari1, Andre Almeida2, Nelly Bencomo3 and Behzad Bordbar1

1School of Computer Science, University of Birmingham, Birmingham, UK
2Federal Institute of Science of Education, Science and Technology, Parnamirim, Brazil

3School of Computer Science, Aston University, Birmingham, UK
mma809@cs.bham.ac.uk, andre.almeida@ifrn.edu.br, nelly@acm.org, B.Bordbar@cs.bham.ac.uk

Keywords: Management Policies; Rule Language; Domain Specific Language; Autonomic Architecture; Cloud Infras-
tucture

Abstract: To benefit from the advantages that Cloud Computing brings to the IT industry, management policies must be
implemented as a part of the operation of the Cloud. Among others, for example, the specification of policies
can be used for the management of energy to reduce the cost of running the IT system or also for security
policies while handling privacy issues of users. As cloud platforms are large, manual enforcement of policies
is not scalable. Hence, autonomic approaches for management policies have recently received a considerable
attention. These approaches allow specification of rules that are executed via rule-engines. The process of
rules creation starts by the interpretation of the policies drafted by high-rank managers. Then, technical IT
staff translate such policies to operational activities to implement them. Such process can start from a textual
declarative description and after numerous steps terminates in a set of rules to be executed on a rule engine. To
simplify the steps and to bridge the considerable gap between the declarative policies and executable rules, we
propose a domain-specific language called CloudMPL. We also design a method of automated transformation
of the rules captured in CloudMPL to the popular rule-engine Drools. As the policies are changed over time,
code generation will reduce the time required for the implementation of the policies. In addition, using a
declarative language for writing the specifications is expected to make the authoring of rules easier. We
demonstrate the use of the CloudMPL language into a running example extracted from a management energy
consumption case study.

1 Introduction

Management of Cloud infrastructure supported by
autonomic techniques has recently received a con-
siderable attention [Beloglazov and Buyya, 2010, Mi
et al., 2010,Maurer et al., 2013,Borgetto et al., 2012].
Several existing autonomic techniques make a use of
rule-based systems [Mi et al., 2010, Maurer et al.,
2013, Borgetto et al., 2012, Alansari and Bordbar,
2013]. The rule-based systems operate by using a
set of statements in a form of ”if < condition > then
< action > ” which are known as rules executed by a
rule-engine. Rule-based frameworks have been used
to automatically trigger the live-migration of virtual
machine by using different types of constraints rules.
The constraints rules are formulated as management
policies [Borgetto et al., 2012] [Alansari and Bordbar,
2013].

In [Alansari and Bordbar, 2013], the authors pro-

pose an architectural framework for automatically ex-
ecuting management policies on Cloud infrastructure.
The rule engine is integrated to work with Cloud
management system to control the migration of run-
ning virtual machines among hosting nodes. Pol-
icy Rule Engine and Cloud Manager are communi-
cated through sensors and actuators. The sensor is
directly interlinked with Cloud APIs for management
of virtual machines that are responsible for request-
ing monitoring parameters such as Estimated Energy
Consumption and Current Resource Usage. Whilst
the actuator uses action APIs that directly launch the
management actions, such as virtual machine migra-
tion action [Alansari and Bordbar, 2013].

There are three steps defined for designing suit-
able policies which can be executed into the auto-
nomic framework proposed in [Alansari and Bord-
bar, 2013] or similar frameworks as in [Maurer et al.,
2013]. These steps are Policy Authoring, Policy Im-

Figure 1: The steps for designing and publishing management policies

plementation and Policy Deployment and Execution
(see Figure 1). Cloud-domain experts and rule de-
velopers are the roles which are involved during the
design process of the management policies. Cloud-
domain experts write the policies in simple plain En-
glish sentences “if/then ”. Rule developers encode the
described policies using a rule language and generat-
ing executable management policies as well as Cloud-
infrastructure domain model [Alansari and Bordbar,
2014].

Management policies are updated regularly be-
cause of alteration in the technical environment,
changes in the regulations, modifications of SLAs and
changes in business requirements. While going thor-
ough this process, there is a semantic gap between
Policy Authoring and Implementation levels. This
gap cab be bridged by using a combination of Do-
main Specific Language (DSL) for authoring of the
rules and automated code generation for producing
rules which are executed in the rule-engine. The Do-
main Specific Language (DSL) supplies expressive
representations, textual notions and high-level spec-
ification to describe policies written using plain En-
glish. Such a language helps the domain experts, who
may have little knowledge about formulating rules, to
avoid the complexity of writing management policies.
On the other hand, Code generation is used to convert
the policies captured in the DSL to be an input for
executable Rule Languages such as Drools.

This paper makes two contributions. Firstly,
we propose Cloud Management Policy Language
(CloudMPL), a domain specific language to support
Cloud-domain experts to specify policies. CloudMPL
is a textual language with a specification partially
inspired by the RELAX Language [Whittle et al.,

2010]. Secondly, we design a set of mapping rules
used for automatic transformation from CloudMPL
to rule languages based on Object Patterns such as
Drools [JBossCommunity, 2011] and JRules [IBM-
ILOG, 2007]. The objective is to built a foundation
for the automatic generation of a management policy
from Policy Authoring to Implementation levels and
hence bridge the gap described above.

The paper is organised as follows. Section 2
has an overview about rule-based systems and do-
main specific languages used in Cloud environment.
CloudMPL language and its specification are dis-
cussed in Section 3. The specification of management
policies in an executable rule language is explained in
Section 4. Section 5 includes the designed mapping
rules from CloudMPL to Drools. Section 6 contains
a demonstration of CloudMPL in XText for authoring
migration policies in energy management case study.
Finally, the conclusion is presented in Section 7.

2 Background And Related Work

This section introduces concepts about rule en-
gines and domain-specific languages.

2.1 Rule Engine and Rules

Policies can be executed via a rule-based engine such
as Drools [JBossCommunity, 2011] and ILOG JRules
[IBM-ILOG, 2007]. Both Drools and JRules en-
gines are based on the enhanced version of the RETE-
Algorithm for supporting Object Oriented Pattern.
RETE-Algorithm was introduced by Charles Forgy; it
is one of the efficient implementation rules inference

engines. The algorithm represents rules as an acyclic
graph to form a RETE-network and provides a pattern
matching process [Forgy, 1982].

The architecture of the rule engine is shown
in Figure 2. Both Drools and JRules rule engines
include Rule-Base and Working Memory. Rule Base
is a long-term memory in which rules are stored.
Working Memory is a type of short-term memory,
which contains Facts that need to be evaluated by
the inference engine. Facts are object models that
contain attributes that illustrate domain data for an
application. Agenda is the place where a rule that
has become active is stored for later in order to fire
satisfied rules. The agenda uses resolving conflicting
methodology for ordering the execution of active
rules [Forgy, 1982]. In order to execute policies in
a rule-based engine, policies have to be written in a
form of rule-sets. A rule-set consists of a number of
conditions followed with a set of sequential actions
in which the rule-set is expressed in the following
format:

when (condition statements) then (action state-
ments)

Figure 3 illustrates a sample of a constraint-based
policy encoded in Drools Language. The function of
this rule-set is to allow migration from Host1 to either
Host2 or Host3. The action will be invoked which re-
quests to migrate a virtual machine from Host1 when
the conditions are satisfied.

2.2 Domain Specific Languages DSLs

Domain-specific languages (DSLs) are languages
which are designed to be used in a specific application
domain. DSLs languages provide a special feature
in terms of the expressiveness and simplicity com-
pared with general-purpose programming languages
[Mernik et al., 2005]. Using DSLs have several ad-
vantages. They can speed up the development time
since the language is designed to be used for specific
environment. In addition, the language can assist to
reduce the number of domain and programming ex-

Figure 2: The architecture of OO-RETE engine

Figure 3: A sample of a constraint management policy
expressed in Drools Language

pertise which are required [Mernik et al., 2005]. Fur-
thermore, the domain-language is an extendible and
a machine readable which allows to build auto-code
generation tools in order to reduce the development
time [Mernik et al., 2005]. To accomplish these fea-
tures provided by DSLs, designing such languages re-
quires the experience in both domain-knowledge and
language development. In our research, we focus
on domain-specific languages designed for Cloud-
platform.

2.2.1 DSLs Used in Cloud Computing

There are extensive research for proposing many
DSLs for automating the deployment of applications
into Cloud-environment. One of these languages is
Crawl which is apart of Cloud Crawler environment
proposed for automating the execution of applications
performance test in IaaS used by Cloud application
developers [Cunha et al., 2013]. Crawl is a declarative
and an extensible domain-specific language (DSL) to
provide a high-level specification that captures all the
technical important information for executing appli-
cation performance tests [Cunha et al., 2013]. In-
stances of these information are the configuration pa-
rameters and the quantity of the resources allocated to
application components [Cunha et al., 2013]. The lan-
guage’s textual notion is described via YAML. Fur-
thermore, the language allows using XML and JSON
to define new specification of test scenarios [Cunha
et al., 2013].

Neptune is also another domain specific lan-
guage (DSL) designed to automate the configura-
tion and deployment HPC applications executed in
Cloud [Bunch et al., 2011]. The objective of Nup-
tune is to provide portability and flexibility to the de-
velopers of HPC [Bunch et al., 2011]. Neptune is a
meta-programming extension of the Ruby program-
ming language with a flexibility to run large number
of ruby’s libraries which are designed to communicate
with Cloud- infrastructure [Bunch et al., 2011]. Nep-
tune programmes allow users to write Ruby scripting
code and also Nuptune programs can also be used

in Ruby programs using neptune keyword. The pro-
grammes of Nuptune is composed of one or more in-
vocations for jobs to be processed in Cloud services
[Bunch et al., 2011]. The language is integrated to
run into AppScale which is an open-source Cloud en-
vironment that uses Google App Engine APIs [Bunch
et al., 2011].

Pim4Cloud DSL is a Platform Independent Model
for Cloud-based application which is designed using a
component-based approach [Brandtzæg et al., 2012].
A Cloud application- designer models the application
by using Pim4Cloud DSL. Meanwhile, at the other
side the available resources for the modelled appli-
cation are specified by Cloud provider [Brandtzæg
et al., 2012]. The Pim4Cloud has an interpreter
which is used to match the assigned resources to
application requirement. Pim4Cloud DSL is imple-
mented in to Scala which includes different set of
codes for modelling different topology for Cloud ap-
plications [Brandtzæg et al., 2012]. The syntax of
the Pim4Cloud DSL starts by defining the application
as an abstract class which can factorise the shared
entities. Each application topology can extend the
abstract class. Pim4Cloud DSL platform supports
a static analysis for the modelled application and
also allow the deployment of Cloud-component to be
reused [Brandtzæg et al., 2012].

3 CloudMPL language

CloudMPL can be applied instead of using Plain
English sentences for writing the management pol-
icy at early stage. CloudMPL is a textual language
that specifically is designed to be used by Cloud
domain-experts to describe management policies be-
fore interpreting them to an executable rule language.
CloudMPL is enriched with domain vocabularies and
expressive operators for expressing conditions and ac-
tions parts which are partially inspired by the RE-
LAX Language [Whittle et al., 2010]. CloudMPL is
targeting to author management policies which will
be executed in Infrastucture-as-a-Service(IaaS) Cloud
model.

When Cloud-domain experts specify policies, ba-
sically they are concerned about if some specific con-
ditions are met, based on resources that compose
a Cloud infrastructure, and actions that might be
taken upon these conditions. Therefore, CloudMPL
is designed to focus on the specification of Cloud-
related resources and policies. The specification of
CloudMPL includes a domain-vocabulary, a meta-
model, a set of operators, which are extracted from
RELAX language to describe various types of condi-

tions might be found in a management policy, and a
grammar for using the language.

3.1 CloudMPL Meta-model

Figure 4 presents the meta-model for CloudMPL lan-
guage. In the meta-model described in Figure 4, a
Resource is an element that can be managed and/or
monitored which could be a host, a virtual machine,
a cluster or any kind of resource that can described
in term of Properties. Those Properties should rep-
resent any kind of information that can be monitored
or used to describe a Resource. Every property has a
Type that can be either a built-in type, such as Num-
ber or String, or could be a Resource created by the
user. Each Policy is composed of several conditions,
detailed in terms of constraints. Constraints are three
different types which are:

1. Time, when an expert is interested in time related
events.

2. Location, which is an optional element, is to
check if a given resource is in a specific location.

3. Ordinal where raw values or a status of a given
property related to a resource are checked.

In this level of abstraction, an Action invocation is
an equivalent to a method call of any high-level pro-
gramming language. The actions definition is similar
to a method signature description, embedded into a
ActionManager, which will be equivalent to an inter-
face of a high-level programming language. To fully
implement the important actions, it would require for
the experts a deep knowledge on programming skills
as well as specific-language information.

Table 1 gives the set of CloudMPL elements,
organised into Statement, Time, Location and Con-
straint. The statements define the blocks of the lan-
guage in terms of the main elements for expressing
the policies. The Time and Location operators define
conditions for time and location. The Constraint con-
ditions can be applied to ordinals or status informa-
tion for basic comparison.

3.2 CloudMPL Syntax

The syntax of CloudMPL expressions are defined
by the grammar in Figure 5. Manageable resources
are described by the Create Resource statement, de-
fined by an ID and their respective properties. The
ActionManager requires an ID and at least one ac-
tion(method) to be defined. Policies are identified
by an ID and composed of CloudMPL operators. As
showed in Table 1 CloudMPL has Location, Time and

Figure 4: CloudMPL meta-model

<CLOUDMPL> ::= <RESOURCE> {<RESOURCE>}
<ACTIONMANAGER>
{<ACTIONMANAGER>}
<CREATE RESOURCE>
{<CREATE RESOURCE>}
<POLICY> {<POLICY>}

<RESOURCE> ::= DEFINE RESOURCE <ID> AS
<PROPERTY> {<PROPERTY>}

<PROPERTY> ::= <ID> AS <TYPE>

<ACTIONMANAGER> ::= DEFINE ACTIONMANAGER <ID>

AS
<ACTION> {<ACTION>}

<ACTION> ::= ACTION
<ID><PARAMETERLIST>

<POLICY> ::= POLICY <ID>

IF <CONDITIONS>
THEN <ACTION INVOCATION>

{<ACTION INVOCATION>)}

Figure 5: A simplified EBNF grammar for CloudMPL

Constraint operators, that can be combined using log-
ical operator such as AND,OR,NOT and parenthesis.
If the specified conditions are satisfied an action that
belong to an ActionManager should be invoked.

The following steps are required for applying
CloudMPL:
• Step 01: Modelling the resources that are going to be

managed and used to describe the policies.

• Step 02: Definition of the possible actions used in case
a policy condition is true. The Actions are created by
defining an ActionManager element.

• Step 03: Writing the policies using the operators and
the syntax for the CloudMPL language. Each policy
should be identified by a valid ID.

1 DEFINE RESOURCE Host AS
2 BEGIN
3 Violation_Percentage AS Number
4 Energy_Consumption AS Number
5 END
6 DEFINE ACTIONMANAGER Manager AS
7 BEGIN
8 ACTION Migrate_Alternative_Host Host origin ,
9 Host alternativeA , Host alternativeB

10 END
11 CREATE host1 ,host2 ,host3 AS Host
12 POLICY policy1
13 IF ((host1.Violation_Percentage FEW_AS 20) AND

(host1.Energy_Consumption MANY_AS 2000))
THEN

14 Manager.Migrate_Alternative_Host host1 , host2 ,
host3

Figure 6: CloudMPL representation for the given pol-
icy

In order to illustrate the usage of CloudMPL,
consider the following policy:

• Policy1: if the violation percentage rate is less than
20% in Host1 and the energy consumption is above than
2000 kwph in Host1 then it is necessary to migrate the
contents of Host1 to Host3 or Host2

Using CloudMPL grammar defined in Figure 5,
Figure 6 presents Policy written in CloudMPL.

First it is necessary to create a resource called
Host (lines 1 to 5) which describes a computer host
in a private Cloud infrastructure. Considering the
given policy the manager is interested in monitor-
ing the energy consumption and the rate of vio-
lation(error rate). As stated in the policy defini-
tion the action that needs to be done if the con-
ditions are met is to migrate contents of Host1
to Host2 or Host3. This action in CloudMPL is
embedded in an ActionManager, called Manager,
which has a single method Migrate Alternative Host

Table 1: CloudMPL Operators and Elements for De-
scribing Management Policies

CloudMPL Operators & State-
ments

Description

Statements:
DEFINE RESOURCE id AS
BEGIN
property AS type
END

Declares a Resource, by spec-
ifying its ID and properties

DEFINE ACTIONMANAGER id
AS
BEGIN
ACTION id,parameters
END

Declares an ActionManager if
a set of actions. Each action is
declared with a ID and a set of
parameters

CREATE id as resource Creates a Resource with the
given ID

POLICY id
IF conditions THEN actions

Declares a policy with the
given ID and starts the policy
conditions definition, followed
by a action(s) call(s).

Time Operators:
resource.time AFTER threshold Checks if the property of Time

type is after the given thresh-
old

resource.time BEFORE threshold Checks if the property of Time
type is before the given thresh-
old

resource.time BETWEEN
thresholda TO
thresholdb

Checks if the property of Time
type is in the specified interval.

Location Operator:
resource.location IN location Checks if a given Resource is

in the specified location.
Constraint Operators:
resource.property FEW AS value Checks if the ordinal repre-

sentation for a property is less
than a given value

resource.property MANY AS
value

Checks if the ordinal represen-
tation for a property is greater
than a given value

resource.property IS status Checks if the a given property
is within one of the following
status: HIGH, NORMAL or
LOW

(lines 6 to 10). Considering that the policy re-
quires the usage of three host, it is necessary to
create them (line 11). Finally the policy itself
(lines 12 to 14) is defined in terms of the resources
and properties, using Constraint operators. The
CloudMPL language was implemented using XText
[Xtext, 2014] and the current implementation is avail-
able for download at http://www.dimap.ufrn.br/
splmonitoring/adaptmcloud/index.php

Table 2: The syntax for conditional expressions for a
management policy

Expression <property:> <operator:> <value expr:>

Constraints-1: monitorable prams Comparison DataTerm

Constraints-2: monitorable pram

status

Level Specifi-

cation

DataTerm

SelectTargetHost: id or name TargetHost Se-

lection

DataTerm

TargetHost

Location:

location Location DataTerm

TargetHostTime: current time status Time ObjectTerm

4 The Specification of Management
Policies in Rule Language

Management policies expressed in CloudMPL can
be directly mapped to executable management poli-
cies by designing mapping rules between two lan-
guages. To produce such policies, any CloudMPL
policy is encoded as a special form of production
rules (more information about the productions rules
can be found in [REWERSE, 2012]). These produc-
tion rules follow a defined specification for formulat-
ing both condition and action parts in Rule Language
which can be applied to either Drools [JBossCom-
munity, 2011] or JRules [IBM-ILOG, 2007]. In this
work, we briefly discuss the specification for formu-
lating conditions and action parts for a policy in an
executable rule language. The specification includes
the meta-model for conditions, the classification for
operators used in conditions and the types of actions
used by a management policy. Both CloudMPL and
rule language specification will be used for designing
a translator from CloudMPL to Drools or JRules in
future.

4.1 Conditions Meta-Model For A
Policy

Conditions for a management policy can be expressed
through the meta-model presented in Figure 7 which
is inspired from URML meta-model [REWERSE,
2012]. This meta-model is resulted from our classi-
fication for general rules used for management pur-
poses in Cloud.

In Figure 7, a single condition in a management
policy is a boolean expression which can be com-
posed with other conditions by using composition
operators. From URML rule meta-model [REW-
ERSE, 2012], we extracted some elements for mod-
elling various conditions. These elements are Term,
DataTerm, ObjectTerm, uml property, and Object
Variable [REWERSE, 2012].

Figure 7: The meta-model for conditions of a management policy in Rule Language (Drools and JRules)

In Figure 7, the conditional expression are clas-
sified into five types. Each expression in the condi-
tion meta-model uses a property. The property are
extracted from Target Host that is running in a Cloud-
platform. In addition, each expression also has a
value expr which might be of the following types:
Data Term, Object Term, or uml property. Further-
more, suitable operators are grouped to match each
conditional expression type. The operators are pre-
sented in Figure 8. Thus, by using both Figure 7 and
Figure 8, each conditional expression and its syntax
are explained as follows:
1. ConstraintsExpr: a comparative condition used

to compare monitorable parameters against a
specified threshold value or to specify sta-
tus of monitorable parameters. Examples for
monitorable parameters are CPU Usage, Viola-
tion Percentage and Energy Consumption. Con-
straintsExpr has two different syntaxes, which are
presented in Table 2.

2. SelectTargetHostExpr: an identification expres-
sion, which is used to select a targeted host. This
expression is necessary to be included in a man-
agement policy. The expression syntax is shown
in Table 2.

3. AssignVariableExpr: a selection expression,
which is to get values from some properties
and to assign them to an object variable. This
expression can be used in a management policy
for extracting variables which are required by
management APIs. The expression is optional
to be included in the policy. The syntax for the
expression is different from the syntax for other
expressions which is as follows:

< operator : Assignment$ >< property :
Ob jectVariable >< operator : Assignment :><
property : Ob jectTerm >

4. TargetHostLocationExpr: a location based ex-
pression, which is used to specify a geographi-
cal location of a target host. Since a physical
Cloud host can be located at any location around
the world, the policy meta-model should allow an
option for such a restriction. This expression is
an optional in the policy based on the require-
ment. The syntax for the expression is shown
in Table 2 where its Data Term can be either of
String type or GeoLocation which is Enumera-
tion type. An example for TargetHostLocation is
location == GeoLocation.Asia.

5. TargetHostTimeExpr: a time based expression
that specifies the time status at a target host. Any
target host in Cloud-platform has some operations
to deal with time expression.
These operations are IsTimeBetween(<
Time Begin >,< Time End >), IsTime-
Less(< Time Literal >), and IsTime-
Above(< Time Literal >). The syntax for
the time based expression is presented in Table 2.
The following expression is a simple expression
for checking time status:
current time status== IsTimeBetween(16.00,23.00)

4.2 Policy Action Description

The action of a management policy in a rule language
is expressed as action expressions. These action
expressions can be either expressions for assigning

Table 3: Operations used by Cloud Manager instance
in a management policy described in Drools
< OperationName > < Parameters : Type >
Migrate Original: TargetHost
MigrateAlternativeHosts Original: TargetHost , Destina-

tion1:TargetHost, Destination2: TargetHost
MigrateToLocation Original: TargetHost , LocationName: String
ReportingNoMigration Original: TargetHost
Calculate Original:TargetHost

values or expression for invocation actions. To
simplify the transformation process for future, we
only use invocation actions expression from the
rule language which is denoted as InvocationAc-
tionExprin [REWERSE, 2012]. In any management
policy, the invocation action expressions include
calls for management APIs/Operations specified in
Cloud manager. The syntax used for expressing
InvocationActionExpr is:
CloudManager.Operation Name(parameters);

In this syntax, CloudManager represents the in-
stance of a Cloud manager which has a number of
management operations. Each defined operations for
CloudManager instance has a number of parame-
ters which are necessary for migration of virtual ma-
chines, reporting information and calculating service
at the target host side in Cloud-platform. Table3
shows each defined operation and its related param-
eters.

5 The Transformation from
CloudMPL to Drools

After presenting CloudMPL language for express-
ing management policies at the description level and
the specification for formulating such policies at
the implementation level, the transformation between
CloudMPL and Drools is proposed. The objective is
to build the foundation for automatically generating

Figure 8: The possible common rule language opera-
tors families for expressing a management policy

an executable management policy from the descrip-
tion level.

The transformation process requires to have a con-
ceptual mapping from CloudMPL to Drools Lan-
guage. Therefore, designing a set of mapping rules
from CloudMPL to Drools for both conditions and
actions parts is necessary. To design these mapping
rules, we used CloudMPL meta-model as well as its
syntax and Drools specification mentioned in Section
4. Firstly, the mapping step starts by presenting the
mapping for the general syntax for a management pol-
icy and keywords in both CloudMPL and Drools.

Table4 shows the mapping of generic syntax and
special keywords from CloudMPL to Drools. It is no-
ticeable from the generic syntax in Table4 that any
statement between IF and THEN is mapped as Con-
ditions in Drools which it should be enclosed with
Target operator mentioned in Figure 8. Furthermore,
any statement after THEN is mapped as Actions in
Drools. The mapping of both conditions and actions
requires more explanation which will be appeared in
the following subsections.

5.1 Mapping Conditions

In CloudMPL, a condition block consists of one
or more condition. Therefore, any condition in
CloudMPL can be structured as an attribute, an op-
erator and a value. The attribute in CloudMPL is usu-
ally written before CloudMPL operator. Usually, the
value is after CloudMPL operator. Thus, the mapping
for conditions is shown in Table 5 which applies the
following mapping rules:
1. The dot operator < . > in CloudMPL is mapped as

’==’ operator and <value:ID or Name> is mapped as
<value expr: DataTerm>.

2. After operator is mapped as ’==’ combined with
<ObjectTerm:IsTimeAbove> in Drools.

3. Before is mapped as ’==’ combined with
<ObjectTerm:IsTimeLess> in Drools.

4. BETWEEN,TO operator is mapped as ’==’ combined
with <ObjectTerm: IsTimeBetween>.

5. < value: threshold > is mapped as <Time Literal>
parameter for both IsTimeAbove and IsTimeLess in
Drools.

Table 4: Mapping generic syntax and keywords for a
policy in CloudMPL to Drools

CloudMPL Generic Syntax Drools Generic Syntax
POLICY < ID > → rule < ID >

IF → when
<CONDIT IONS > < Host(Conditions)>
THEN
< ACT ION INVOCAT ION >

→ then < Actions >

{< ACT ION INVOCAT ION >} end

Table 5: Mapping CloudMPL conditions to Drools
conditions using Table1 in Section3and Table2 in
Section4

CloudMPL Expression Drools Expression
<attribute:TIME> TargetHostTimeExpr
AFTER <value:threshold>
<attribute:TIME> TargetHostTimeExpr
BEFORE <value:threshold>
<attribute:TIME> BETWEEN TargetHostTimeExpr
< value: threshold a > TO
<value:threshold b>
IN <value:ID> SelectTargetHostExpr +
<value:location> TargetHostLocationExpr
<attribute:monitorable> FEW AS ConstraintsExpr-1
|MANY AS <value:threshold>
<attribute:monitorable>IS <value:status> ConstraintsExpr-2

6. < value: threshold a > and <value:threshold b>
are mapped as <Time Literal Begin> and
<Time Literal End> parameters for IsTimeBetween
in Drools.

7. <attribute:Time> is mapped as <property: cur-
rent time status>.

8. IN is mapped as ’==’ operator and <value:location>
is mapped as <value expr: DataTerm> which can be
either String or Enumeration.

9. FEW AS or MANY AS are mapped as Comparison op-
erators.

10. <attribute:monitorable> is mapped as <property:
monitoriable parms> and <value: threshold> is
mapped as DataTerm.

11. IS operator is mapped as ’==’ operator and
<value:status> is mapped as <DataTerm: Status>.

12. <attribute:monitorable> in IS expression is mapped as
<property: monitoriable Parms status>.

13. AND and OR is mapped as && and || operators in
Drools receptively.

To elaborate the mapping of policy condition, we
provide a sample of conditions which are written in
both CloudMPL and Drools in Figure 9. These con-
ditions are for expressing a management policy ex-
tracted from Energy Management Running Exam-

Figure 9: Using mapping rules for mapping
CloudMPL condition block to Drools condition part
for a policy

Figure 10: Using mapping rules for mapping
CloudMPL action block to Drools action part for a
policy

ple presented in Section 6. In Figure 9, the first
statement is CloudMPL expression for three condi-
tions, which are Violation Percentage FEW AS 20,
Energy Consumption MORE AS 2000, host1. These
conditions are composed in CloudMPL by AND op-
erator. The same figure also includes conditions ex-
pressed in Drools which map CloudMPL conditions.
In Figure 9, the arrows represent the types of the map-
ping rules that can be applied.

5.2 Mapping Actions

In CloudMPL, any action statement is mapped as a
call method for management operations in a policy
expressed in Drools. The mapping rules for actions
are:
1. Action < ID > in CloudMPL is mapped as the Name

of the operation in CloudManager (See Figure 10).

2. The parameters List, which includes a set of Parameter
Expression, is mapped as the operation parameters in
CloudManager.

3. In CloudMPL, Parameter Expression consists of <
TypeID >. Type is mapped as either < Ob jectTerm >
or < getOb jectRe f > in Operation. Whilst ID is the
mapped as the name of the parameter.

4. In CloudMPL , if Type is Host and it is the first param-
eter in the statement, then it is mapped as the Original
and its type is TargetHost in Drools.

5. In CloudMPL, if Type is Host and is not the first pa-
rameter, then it is mapped as either to Destination1 or
Destination2 based on ordering parameters in Drools.

Figure 10 illustrates applying the mapping rules
for action from CloudMPL to Drools. The figure in-
cludes an operation defined in Table3. The operation
has three parameters which are Host1, Host2, Host3.
In Drools mapping, Action ID is mapped as Mi-
grate Alternative Host. Whilst the first parameter is
mapped as $host1. Both Host2 and Host3 are mapped
as $host1.getHost2() and $host1.getHost3(), respec-
tively.

The previously mentioned mapping rules for both
conditions and actions parts will be used to design
an interpreter to automatically or semi-automatically
generate Drools codes for policies that would be ex-
ecuted into the architecture shown in Figure 1. The
Drools code generation will be a future step.

(a) CloudMPL Declarations (b) CloudMPL Expressions 1

(c) CloudMPL Expressions 2

Figure 12: A sample of CloudMPL (XText) for management policies used in the case study

6 CloudMPL In Practice

CloudMPL is used as a language for express-
ing a number of management policies extracted from
Management Energy Consumption Case Study pre-
sented in [Alansari and Bordbar, 2013]. The Manage-
ment Energy Consumption Case Study implemented
in OpenNebula [Toraldo, 2012] which is a Cloud-

Figure 11: UML for Cloud infrastructure used in the
case study

platform management system. In the case study, there
are a set of management policies which are enforced
in Drools rule-engine which periodically responses to
changes in three monitored parameters. The param-
eters are average CPU usage for running VMs, Vio-
lation Rate and Average Energy Consumption for pri-
vate hosts per hour. The engine automatically controls
the migration action for running virtual machines de-
ployed on three private physical hosts. The hosts runs
Ubuntu OS and KVM as virtualization environment.
The policies should trigger a migration action for run-
ning virtual machines and may switch off idle hosts.
The policies which are provided in the case study are
written in Drools Rule Language [Alansari and Bor-
dbar, 2013]). Figure 11 presents the UML model for
the Cloud-infrastructure for the used example.

In Figure 11, the Cloud infrastructure consists
of three main components, which are Host, VM
images and SLA classes. The Host class runs
a number of virtual machines and has a number
of monitorable attributes such as CPU Usage, En-
ergy Consumption,etc.). Furthermore, Host class has

a time and also a location attribute, which represents
the geographical location for the host. Each running
virtual machine in the model belongs to only one
Cloud consumer. Thus, each running VM instance
is associated with only one SLA and also has a life
cycle (For more details about Figure 11 see [Alansari
and Bordbar, 2014]).

We took some management policies encoded into
Drools and we used CloudMPL to write them. Both
CloudMPL Declarations and CloudMPL Policies for
the case study, which are implemented using XText
[Xtext, 2014], are shown in Figure 12.

Looking at Figure 12, there are six policies ex-
pressed in CloudMPL which demonstrate the usage
of all operators suggested by the language. Policy 1 is
constraints and it requires to use monitorable param-
eters and uses the CloudMPL operators FEW AS and
MANY AS. Whilst policy 2, policy 3 and policy 4 are
composed of both time and constraints expressions.
Both policy 2 and policy 4 use the operator After
whereas policy 3 includes the ClodMPL time operator
Between / To. The constraints operator used in these
policies is IS. Policy 5 has only a single time expres-
sion which uses the CloudMPL time operator Before.
The final policy, which is policy 6, contains a loca-
tion expression besides the time and constraints con-
ditions. The location condition uses the CloudMPL
operator IN.

6.1 The Interpretation of CloudMPL
Policies to Drools

We applied the mapping process introduced in Sec-
tion 5 to the policies of the case study. Using the
designed mapping rules explained in Section 5 and
the meta-model presented in Figure 11, Drools codes
are generated manually. The purpose is to test the
mapping rules. A sample of Drools code for policy
1, policy 3, policy 5 and policy 6 are shown in Figure
13 which are depicted into two groups. The impor-
tant Drools operators used in the conditions are high-
lighted in Blue.

Taking policy 3 as an example, this policy is
mapped as a combination of Time and Constraints 2
Expressions which are shown in management policies
conditions meta-model mentioned in Section 4. The
mapping for the condition part applies the rules num-
ber 1, 4, 6, 7,11, 12 and 13 explained in Mapping
Conditions at Section 5. On the other hand, all the
rules proposed for mapping the action part expressed
in Section 5 are applied. As a result, policy 3 will have
a rule code similar to what is illustrated in Figure 13.
This method is applied to all remaining CloudMPL
policies captured in Figure 12.

(a) Drools Rules ”Group 1”

(b) Drools Rules ”Group 2”

Figure 13: The generated Drools rules from
CloudMPL policies

7 Conclusion

This paper aims at reducing the existing gap be-
tween the specification of management policies for
Cloud and the implementation of policies via rule-
engines. We presented CloudMPL that is a domain-
specific language for specifying management poli-
cies for Cloud-environments. Furthermore, we de-
scribed a method of automating the creation of var-
ious CloudMPL expressions to an executable Rule
Language such as Drools. CloudMPL establishes a
set of operators that deal with several kinds of con-
straints, from ordinal, ranging trough time and lo-
cations constraints, that can be applied to a spe-
cific or a set of Cloud resources. In addition,
CloudMPL supports user-defined actions to deal with
the consequences of conditions specified by the man-
agers of Cloud computing infrastructure. The us-
age of both CloudMPL and the automated approach,
which is based on designing mapping rules between
CloudMPL and Drools, is illustrated with the help of
an example related to management energy consump-
tion by migrating virtual machines.

It is also important to highlight that, even with-
out the transformation process fully implemented, the
suggesting method for automating policy creation as-
sists to cope with frequent changes in policies spec-
ified at the description level. Using both CloudMPL
and the automated process for creation management

policies can decrease the amount of time that requires
to spend in implementing such policies. Due to the
closeness of CloudMPL to natural languages and its
declarative nature, it is easier for non-technical peo-
ple to make a use of the language for specifying poli-
cies. As a future step, it is imperative to fully im-
plement the transformation process and also build an
integrated environment that supporting the specifica-
tion, translation and deployment of the policies.

REFERENCES

Alansari, M. and Bordbar, B. (2014). Modelling and analy-
sis of migration policies for autonomic management
of energy consumption in cloud via petri-nets. In
Proceedings of the The International Conference on
Cloud and Autonomic Computing. IEEE.

Alansari, M. M. and Bordbar, B. (2013). An architectural
framework for enforcing energy management policies
in cloud. 2013 IEEE Sixth International Conference
on Cloud Computing, 0:717–724.

Beloglazov, A. and Buyya, R. (2010). Adaptive threshold-
based approach for energy-efficient consolidation of
virtual machines in cloud data centers. In Proceedings
of the 8th International Workshop on Middleware for
Grids, Clouds and e-Science. ACM.

Borgetto, D., Maurer, M., Da-Costa, G., Pierson, J.-M.,
and Brandic, I. (2012). Energy-efficient and sla-aware
management of iaas clouds. In Proceedings of the
3rd International Conference on Future Energy Sys-
tems: Where Energy, Computing and Communication
Meet, e-Energy ’12, pages 25:1–25:10, New York,
NY, USA. ACM.

Brandtzæg, E., Mohagheghi, P., and Mosser, S. (2012). To-
wards a domain-specific language to deploy applica-
tions in the clouds. In Cloud Computing 2012, The
Third International Conference on Cloud Computing,
GRIDs, and Virtualization, pages 213–218.

Bunch, C., Chohan, N., Krintz, C., and Shams, K. (2011).
Neptune: A domain specific language for deploy-
ing hpc software on cloud platforms. In Proceed-
ings of the 2Nd International Workshop on Scientific
Cloud Computing, ScienceCloud ’11, pages 59–68,
New York, NY, USA. ACM.

Cunha, M., Mendonca, N., and Sampaio, A. (2013). A
declarative environment for automatic performance
evaluation in iaas clouds. In Cloud Computing
(CLOUD), 2013 IEEE Sixth International Conference
on, pages 285–292.

Forgy, C. L. (1982). Rete : A fast algorithm for the many
patternimany object pattern match problem. Artificial
Intelligence, 19:17–37.

IBM-ILOG (2007). Ilog jrules techincal. http:
//logic.stanford.edu/poem/externalpapers/
iRules/WP-JRules50Strengths.pdf.

JBossCommunity (2011). Drools tools reference guide.
Maurer, M., Brandic, I., and Sakellariou, R. (2013). Adap-

tive resource configuration for cloud infrastructure

management. Future Generation Computer Systems,
29(2):472 – 487.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344.

Mi, H., Wang, H., Yin, G., Zhou, Y., Shi, D., and Yuan, L.
(2010). Online self-reconfiguration with performance
guarantee for energy-efficient large-scale cloud com-
puting data centers. In IEEE International Conference
on Services Computing, pages 514–521. Ieee.

REWERSE (2012). Uml-based rule modeling lan-
guage. http://oxygen.informatik.tu-cottbus.
de/rewerse-i1/?q=URML.

Toraldo, G. (2012). OpenNebula 3 Cloud Computing.
PACKT Publishing, Birmingham B3.

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H., and
Bruel, J.-M. (2010). Relax: a language to address
uncertainty in self-adaptive systems requirement. Re-
quirements Engineering, 15(2):177–196.

Xtext (2014). Xtext textual domain-specific language (dsl).
http://www.eclipse.org/Xtext/.

