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Abstract24

Good estimates of ecosystem complexity are essential for a number25

of ecological tasks: from biodiversity estimation, to forest structure26

variable retrieval, to feature extraction by edge detection and genera-27

tion of multifractal surface as neutral models for e.g. feature change28

assessment. Hence, measuring ecological complexity over space be-29

comes crucial in macroecology and geography. Many geospatial tools30

have been advocated in spatial ecology to estimate ecosystem com-31

plexity and its changes over space and time. Among these tools, free32

and open source options especially o�er opportunities to guarantee33

the robustness of algorithms and reproducibility. In this paper we will34

summarize the most straightforward measures of spatial complexity35
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available in the Free and Open Source Software GRASS GIS, relating36

them to key ecological patterns and processes.37

keywords: Free and Open Source Software; remote sensing; spatial38

complexity; spatial ecology.39

1 Introduction40

In spatial ecology, the complexity of ecosystems, and the changes in that41

complexity over time, are critical issues. Mapping and modelling landscape42

heterogeneity over space and time has been acknowledged as one of the most43

powerful methods to gather information about underlying changes in abiotic44

and biotic components of ecosystems including land cover, land use, vegeta-45

tion and soil.46

Experimental manipulations to e�ectively measure complexity in the �eld47

are di�cult from both a cost and a logistical point of view, and, depending48

on the scale of the studied ecological problem, may become impossible (Roc-49

chini et al., 2013a). Therefore, proxies for ecological complexity are needed.50

Reliable proxy variables which are available at large scale can allow upscaling51

of complexity estimates and a clearer focus on processes that act at multiple52

spatial and temporal scales (Sagarin and Pauchard, 2009; Amici, 2011).53

In view of these requirements, remote sensing represents a crucial source54

of information for measuring ecological complexity for several reasons, in-55

cluding: i) availability at multiple spatial scales (grain, pixel size) at the56

same time, ii) high temporal resolution, iii) coverage of large areas within57

relatively short timespans (Wegmann et al., 2014). As an example, remote58

sensing data have long been used for ecological applications such as biodiver-59

sity estimation, ecosystem management, restoration, hydrological modelling,60

land use mapping and climate change detection (e.g. Skidmore et al. (2015)).61

Land and water resources managers around the world can now observe62

shifts in landscapes, nightscapes and waterscapes (Venot et al., 2007; Molle63

et al., 2012; Marcantonio et al., 2015) by combining remote sensing with64

spatio-temporal modeling (McCartney and Arranz, 2007; Ali et al., 2014).65

It is particularly important to monitor those resource constraints which can66

generate pressure on ecosystem services from various anthropogenic actors67

(Molle et al., 2012). Many software packages attempt to evaluate patterns of68

land use change and its impacts on land- and waterscapes (Baker et al., 1991;69

Rubin et al., 2003), and some of these packages consider long term dynamics70

(Coulthard, 2001).71

A review of the �eld shows some independent specialized software and72

some integrated software, such as OSSIM, Orfeo ToolBox, Opticks, and73
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GRASS GIS. There is a growing demand from the scienti�c community as74

well as public and funding bodies for full reproducibility in research, and75

producing the exact set of code and data used in a research goes a long way76

towards permitting both peer-review and future research (Chemin et al.,77

2015). Reproducibility and robustness of software algorithms are two funda-78

mental requirements to allow the continuity of scienti�c methods over time79

(Petras et al., 2015).80

In this paper we will summarize the most straightforward measures of81

spatial complexity available in the Free and Open Source Software GRASS82

GIS, and relate them to the potential estimation of key ecological patterns83

and processes.84

2 GRASS GIS based algorithms for complexity85

measurement from remote sensing86

2.1 Why GRASS GIS?87

GRASS GIS (Geographical Resources Analysis Support System, Neteler et al.88

(2012)) was �rst developed by the U.S. Army Construction Engineering Re-89

search Laboratories in the eighties. It allows managing and analyzing geo-90

graphical data by 500 dedicated modules.91

Worldwide contributions from the scienti�c community based on a free92

open source software (FOSS) license, available from 1999, and on an online93

source code repository (Concurrent Versioning System at that time) ren-94

ders GRASS GIS one of the most cutting-edge projects of the Open Source95

Geospatial Foundation (OSGeo, founded in 2006).96

In this research we will describe and illustrate the most powerful modules97

in GRASS GIS to measure spatial complexity from an ecological perspective.98

The methods are applicable to any raster imagery, but in ecology the datasets99

which are most commonly processed in these contexts are digital elevation100

models, categorical land-use maps or continuously-valued imagery derived101

from remote sensing, representing variables such as vegetation density.102

We will make use of the free dataset called �North Carolina� available103

online at104

http://grass.osgeo.org/download/sample-data/ together with additional Land-105

sat ETM+ data, using GRASS GIS version 7.0.106

107
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2.2 Geometrical complexity: detecting edges108

Geometrical complexity is a landscape property which is used as one of109

the main heuristics to distinguish individual patches by objective methods.110

Patches may be identi�ed by detecting edges at di�erent spatial scales under111

a hierarchical criterion (Burnett and Blaschke, 2003).112

Current Object Based Image Analysis (OBIA) techniques generally build113

on edge detection (Thomas, 2010). In this section we will illustrate the most114

powerful techniques available in GRASS GIS to detect edges relying on: i)115

zero-crossing edge detection, ii) building vector contours from raster maps,116

iii) edge density and contrast weighted edge density calculation, iv) Canny117

�ltering, v) Hough transforms.118

2.2.1 Zero-crossing "edge detection" raster function for image119

processing: the i.zc function120

The i.zc function allows users to locate boundaries using the zero-crossing121

algorithm based on the following arguments:122

123

i.zc input=string output=string [width=integer]

[threshold=float] [orientations=integer]
124

where an input raster is converted to a zero-crossing raster map (output)125

with a speci�ed Gaussian �lter dimension (default is 9, but it can be changed126

by the argument width) and sensitivity (default is 10, but it can be changed127

by the argument threshold, together with the optional speci�cation of128

the number of azimuth directions to be categorized (optional parameter129

orientations, default equals 1). Notice that, according to GRASS nota-130

tion, arguments in square brackets are optional.131

The procedure to �nd the edges in the image is based on the calculation of132

the Fourier transform of the image (see e.g. Rocchini et al. (2013b)) and the133

application of a Laplacian �lter. The image is further processed, searching134

for local changes from positive to negative values. Where the change value135

crosses zero with respect to a de�ned threshold the pixel is marked as an136

edge.137

As an example, using a Landsat7 ETM+ band as input, the output crossing138

edges are derived using the command shown below:139

140

i.zc lsat7_2002_40 output=lsat7_2002_40_zerocrossing
141
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leading to the output shown in Figure 1.142

2.2.2 Producing a vector map of speci�ed contours from a raster143

map by r.contour144

In some cases, edge detection relates to linear objects in the imagery that145

are de�ned by a series of points having similar properties, e.g. the same146

elevation. As an example, generating contours from an input raster map is147

done using the r.contour function as shown below:148

149

r.contour input=string output=string step=float

minlevel=float

maxlevel=float [levels=float[,float,...]] [cut=integer]
150

where input and output are the original raster map and the output vector151

contours map respectively, step is the relative increment between adjacent152

contours values, minlevel and maxlevel are the minimum and maximum153

values in the image. These values can be derived using the function r.info.154

As an example, let elevation be the input raster map; its contours might155

be derived simply as:156

157

r.contour input=elevation output=elev_contours minlevel=50

maxlevel=160 step=10
158

producing the map shown in Figure 2.159

2.2.3 Calculating edge density index on a raster map: r.li.edgedensity160

Given a raster map, r.li.edgedensity is able to calculate a perimeter-to-area161

ratio, creating polygons based on a 4-neighbour rule. In the ecological con-162

text, such an approach is often applied to maps of land use in order to163

estimate the heterogeneity of the landscape and the fragmentation of its164

components.165

The formula used is simply:166

167

E =

∑
(ek)

A
× 10000 (1)

168

where k=patch type and ek=total edge length related to class k, A=total169

landscape area.170

As in all the r.li functions in GRASS GIS, a con�guration �le (argument171
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conf) specifying the grain and the extent of analysis should be provided. This172

can be generated using the command g.gui.rlisetup which allows the user173

to choose the grain and extent of the calculation. In this paper we will rely174

on local moving windows sensu Hagen-Zanker (2016).175

The �nal command is as follows:176

177

r.li.edgedensity map=name conf=name output=name
178

2.2.4 Calculating contrast weighted edge density index on a raster179

map: r.li.cwed180

By contrast with simple edge density, contrast weighting allows a weighting181

of the calculation based on:182

183

184

CWED =

∑
eik × dik
Area

× 10000 (2)

185

where k=attribute under consideration, eik=edge density between patch types186

i and k, dik=dissimilarity between patch types i and k, and Area=total land-187

scape area.188

In the ecological context, this varying dissimilarity is important because it189

allows certain types of boundary to be given more importance: for example,190

a boundary between hard surface and grassland represents more of a barrier191

to some dispersing species than a boundary between wet and dry grassland.192

2.2.5 Canny edge detector193

The i.edge function uses the edge detector de�ned by Canny (1986) to detect194

edges in a raster map. The Canny edge detector is considered optimal by195

Sonka et al. (1999) based on the following criteria: i) important edges cannot196

be omitted and only actual edges can be detected as edges, ii) the di�erence197

in position of the actual and the detected edge is minimal, iii) there is only198

one detected edge for an actual edge in the original image. The Canny edge199

detector �rst reduces the noise in the raster map using a Gaussian �lter. Then200

it computes gradient de�ned by an angle and magnitude. The next step is201

non-maximum suppression, which preserves only those pixels with magnitude202

higher than magnitude of other pixels in the direction of the gradient. The203

�nal step extracts signi�cant edges by thresholding with hysteresis. The204

Canny edge detector can be applied using the following command:205
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i.edge input=name output=name [angles_map=name]

[low_threshold=float] [high_threshold=float] [sigma=float]
206

where input is an image, output is a raster map containing the de-207

tected edges, angles_map is a raster map containing the angle of the image,208

sigma is the size of the moving window (kernel) used and low_threshold209

and high_threshold are used during the thresholding with hysteresis as fol-210

lows: values over the high_threshold are kept; values under low_threshold211

are removed; values in between these constants are kept only when the pixel212

touches another pixel with value above high_threshold.213

The result of i.edge function is a binary raster image where edges are214

represented as rasterised lines exactly one pixel wide. The detected edges215

can be used for further analysis using for example, the r.neighbors func-216

tion which can extract areas with high or low edge density. In Figure 3, areas217

with many edges are associated with developed areas, while areas with low218

density indicate natural areas. The result can be used also as an input for a219

Hough transform.220

2.2.6 Hough transform221

The Hough transform is a feature extraction technique which identi�es straight222

line segments from a raster image and outputs them as vector features. Such223

a technique is applicable to edges detected and rasterised using the methods224

described above (Hough, 1962; Duda and Hart, 1972). Points in the real225

space which are assumed to represent points on an edge are transformed into226

a Hough plane applying the following equation to describe a line:227

228

x cos θ + y sin θ = r (3)

where r is the length of a normal from the origin in the Hough plane to the229

line and θ is the angle of the normal.230

Points in the original image which belong to one line result in sinusoidal231

curves intersecting in one point in the transformed image as in Figure 4. The232

coordinates of this point describe the parameters r and θ of the line, and its233

value represents the number of points on the line.234

The r.houghtransform function in GRASS GIS uses the 'identify and235

remove' method proposed by Fiala (2003) which identi�es the most promi-236

nent lines in a raster image and outputs the coordinates of the associated line237

segments. Galambos et al. (2000) showed that the detection is signi�cantly238

faster when the gradient direction of the edge is provided as well. GRASS239

GIS uses this extension when the direction is available.240
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Using the Hough transform, GRASS GIS detects the linear features using241

the following:242

243

r.houghtransform input=name output=name [angles=name]

[hough_image=name] [max_gap_count=integer]

[min_segment_length=integer]
244

where input is a raster map containing edges, output is a vector map245

containing detected straight line segments, angles is an optional input for246

speedup, hough_image is an optional output for visual inspection of the247

Hough transform, max_gap_count is a maximal allowed number of gaps in248

one line segment and min_segment_length is a minimal allowed length of249

one line segment. There are several other parameters which ensure �ne con-250

trol over the number and properties of the detected lines.251

The typical input to a Hough transform is a raster image containing252

thin edges detected e.g. by the i.edge function. The straight (and, de-253

pending on con�guration, more or less long) lines which result from the254

r.houghtransform function can be used as indicators of man-made fea-255

tures such as the straight parts of a highway visible in Figure 5. The256

r.houghtransform can be also applied to terrain or surface contours to re-257

trieve straight lines in terrain, possibly associated with roads, buildings and258

other man-made structures. Furthermore, Hough transform can be used to259

automatically detect geological lineaments (Vasuki et al., 2014; Wang and260

Howarth, 1990).261

2.3 Local diversity in a neighbourhood262

Calculating local diversity is important to detect spots of diversity at a local263

scale. As an example, in biodiversity research, this is known as α-diversity264

and it is a widely-used metric in ecology (Rocchini et al., 2010).265

2.3.1 Local statistics by r.neighbors266

The r.neighbors command provides the means to compute a variety of lo-267

cal statistic, including: average, median, mode, minimum, maximum, range,268

standard deviation, sum, count, variance, diversity (i.e. the number of dif-269

ferent values in the neighbourhood with respect to the central pixel), in-270

terspersion (weighted diversity), �rst quartile, third quartile, user-speci�ed271

quantiles.272

In the case where one is interested in a measure of complexity over space,273
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standard deviation in a neighbourhood might be simply calculated as follows:274

275

r.neighbors input=name output=name method=sttdev

[size=value]
276

The size may be changed to enlarge the window of analysis, starting with277

a default of 3×3 cells.278

279

2.3.2 Information-theory based statistics: r.li.shannon, r.li.pielou,280

r.li.simpson, r.li.renyi281

GRASS GIS is capable of handling common Information-theory based statis-282

tics such as Boltzman or Shannon-Weaver entropy H (Shannon, 1948), Pielou283

evenness (Pielou, 1966) and Simpson's reversed dominance (1-D, Simpson284

(1949)).285

Di�erent diversity measures are generally used to summarise large multi-286

variate data sets, providing for one potentially meaningful single value. Such287

an approach inevitably results in information loss, since no single summary288

statistic can characterize in an unequivocal manner all aspects of diversity289

(Ricotta, 2005; Marcantonio et al., 2014). Rocchini and Neteler (2012) ad-290

dressed such problems when measuring diversity from a satellite image relying291

on the richness and relative abundance of Digital Numbers (DNs), by only292

using entropy-based metrics. In particular, they observed: i) the intrinsic293

impossibility of discriminating among di�erent ecological situations with one294

single diversity index, and ii) the impossibility of understanding whether di-295

versity of di�erent sites is more related to di�erences in richness or in relative296

abundance of DN values. As an example, they provided a theoretical case in297

which the same value of the Shannon index would actually be related to very298

di�erent situations in terms of DNs richness and abundances (see Figure 2 in299

Rocchini and Neteler (2012)). In general, to solve this issue, combining these300

entropy-based indices with evenness-based metrics might lead to an increase301

in their information content. In this regard, the most commonly-used metric302

is the Pielou evenness index J = −
∑
p×ln(p)
ln(N)

(Pielou, 1969), which can be303

rewritten as: J = H
Hmax

since it contains the maximum possible diversity304

(ln(N)), for N DNs.305

All the previously described metrics based on Information theory only306

supply point descriptions of diversity. By contrast, Rényi (1970) �rstly in-307

troduced a generalized entropy metric, Hα = 1
1−α × ln

∑
pα which shows a308

high �exibility and power because a number of popular diversity indices are309
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special cases of Hα. In mathematical terms, if we consider e.g the variation310

of α from 0 to 2:311

Hα =


α = 0, H0 = ln(N)

α = 1, H1 = −
∑

(p× ln(p))

α = 2, H2 = ln(1/D)

(4)

where N = number of Digital Numbers (DNs), p = relative abundance of312

each DN value, D = Simpson index.313

Concerning the results attained when alpha=1, the Shannon index is de-314

rived according to the L'Hôpital's rule of calculus (see Ricotta (2005). Rényi315

generalized entropy represents a continuum of diversity measures Ricotta and316

Avena (2003)), meaning that it is possible to maintain sensitivity to both rare317

and abundant DNs, and it is more responsive to the commonest DNs while318

α increases. Varying α can be viewed as a scaling operation, not in a real319

space but in the data space.320

As far as we know, GRASS GIS is the only software capable of calculating321

generalized measures of diversity such as the Rényi formula in a 2-dimensional322

space, based on the following function:323

324

r.li.renyi conf=conf3 in=landsat.pc1 out=landsatrenyi

alpha=2
325

Changing the parameter α will change the behaviour of the formula, gen-326

erating di�erent maps of diversity as represented in Figure 6, representing327

a continuum of diversity values over space instead of single measures. In-328

creasing alpha values in the Rényi diversity index will weight di�erences in329

relative abundance more heavily than di�erences in simple richness.330

2.4 Texture-basedmetrics (sensu Haralick et al. (1973))331

2.4.1 Generating images with textural features from a raster map:332

r.texture333

GRASS GIS permits computation of all the local textural features that may334

be calculated in a neighborhood of pixels, described in the benchmark paper335

by Haralick et al. (1973): i) the angular second moment, as a measure of local336

homogeneity; ii) the contrast, a gray-level variation with respect to neighbor337

pixels; iii) the correlation, a linear dependency value; iv) the variance in338

the neighboring moving window (see also r.neighbors); v) the entropy, an339

index of randomness; vi) the sum average; vii) the sum entropy; viii) the sum340
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variance; ix) the di�erence in variance; x) the di�erence in entropy; xi) the341

inverse distance moment, i.e. the inverse of the previously described contrast342

measure; xii) the maximal correlation coe�cient. We refer to Haralick et al.343

(1973) for a detailed description of all the measures.344

The approach to be used can be declared as the method parameter of the345

function r.texture, as follows:346

347

r.texture input=landsat.pc1 method=asm,contrast,corr,var,idm,

sa,se,sv,entr,dv,de,moc1,moc2 output=texture

348

Figure 7 presents all the aforementioned maps generated from a Landsat349

ETM+ image.350

Further, the following R code can show the amount of correlation among351

di�erent measures once data are imported in R by the rgrass7 package, as352

shown below:353

354

# require the rgrass7 library to import GRASS data in R
require(rgrass7)

# import data textureset <- readRAST(c("texture_ASM",

"texture_Contr","texture_Corr",

"texture_Var",

"texture_Entr","texture_SA","texture_SE","texture_SV",

"texture_DV", "texture_DE", "texture_IDM",

"texture_MOC−1"), cat=c(F,F,F,F,F,F,F,F,F,F,F,F))

# require the hexbin package to do an hexagon binning between
variables
hbin <- hexbin(textureset$texture_IDM,

textureset$texture_Contr, xbins=50)

plot(hbin)
355

Figure 8 shows the correlation trends found applying this code, while356

the hexagon binning plots are shown in the Supplementary Material of this357

manuscript. The majority of the variables were strongly correlated (Figure 9,358

generated by the corrplot package in R), showing the high multicollinearity359

of the texture measures system. Once such relations are used to plot maps360

derived from each other, the similarity is apparent. Figure 10 shows the361

map of estimated Sum Entropy from Entropy (by applying a linear model,362

R2=0.9023, p<0.001) which is similar to the original one, while residuals363

distribution follows, as expected, the magnitude of the values of the predicted364
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variable. Hence, when modelling ecosystem complexity, texture measures365

should be used with care since, by their very nature, they are expected to be366

correlated with each other.367

2.5 Detecting heterogeneity in synthetic spaces368

2.5.1 Fast Fourier Transforms (FFT) for image processing: i.fft369

The use of transforms in frequency spaces to measure variation in a signal has370

long been acknowledged. While methods exist based on orthonormal series371

(e.g. rectangular decomposition of waves, Walsh (1923), the most commonly-372

used methods rely on continuous waves, mainly based on the Fourier trans-373

forms (Fourier, 1822).374

When seeking a method to detect landscape change based on continuous375

instead of classi�ed information, one should rely on a (continuous) function376

which does not require a) a-priori �eld information nor ii) a speci�c model377

based on the data being used. In view of this, Fourier transforms (Fourier,378

1822) may represent the best algorithmic solution.379

Let f(x) be a continuous function described into a spatial domain. Based380

on the Fourier theorem (Fourier, 1822) every f(x) can be transformed into a381

continuum of sinusoidal functions of varying frequency, as follows:382

F (ω) =

∫ ∞
−∞

f(x)e−2πiω dx (5)

where ω = frequency, also known as radian frequency since it is expressed383

in radians per spatial units. In mathematical notation for discrete Fourier384

transforms f(x)F(ω). Extending Eq. (4) to two dimensions implies consid-385

ering a two-dimensional function f(x,y), e.g. a raster matrix. Its Fourier386

transform turns out to be:387

F (ω, ν) =

∫ ∫ ∞
−∞

f(x, y)e−2πi(ωx+νy) dx, dy (6)

where ω,ν= frequency coordinates.388

Considering as an example a single raster image (e.g. the �rst Principal389

Component of a Landsat scene) the command to be used to calculate its390

Fourier transform is straightforward:391

392

i.fft input_image=lsat_pca1 real=lsat_pca1_real

imaginary=lsat_pca1_imag
393
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where real=real part of Eq.(4) and Eq.(5) and imaginary=imaginary394

part of Eq.(4) and Eq.(5), both stored as raster maps. An example of the395

output is provided in Figure 11.396

In the Fourier space, high frequency values (high heterogeneity) are at the397

border of the image while low frequency values (high homogeneity) are at398

the center. Hence the higher the value of pixels at the border, the higher the399

heterogeneity / complexity of the whole image.400

2.6 Testing complexity against random surfaces401

Observed ecological patterns can be tested again random patterns by calcu-402

lating the deviation from random expectations in two dimensions (Hanspach403

et al., 2011). To accomplish this goal, di�erent kinds of lattice surfaces can404

be generated, including: completely random surfaces, gaussian distributed405

and fractal surfaces with a prede�ned fractal dimension.406

2.6.1 Generating random surfaces by r.random.surface407

Random surfaces can be generated by the following basic function and argu-408

ments command:409

410

r.random.surface output=string [distance=value]

[exponent=value]

411

where distance represents the maximum distance of spatial correlation412

among pixels and exponent represents the exponential decay of values over413

space. As an example, Figure 12 represents a random surface generated by414

the aforementioned command. As an example, a Landsat image might be415

tested against this to �nd areas where similar values are especially clumped416

and signi�cantly deviate from random expectations over space.417

2.6.2 Generating gaussian random number maps by r.surf.gauss418

A more sophisticated but still straightfoward neutral model is represented by419

a surface whose values have a normal distribution in two dimensions.420

This can be created by the following command:421

422

r.surf.gauss output=name [mean=value] [sigma=value]
423
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where the mean and the standard deviation (σ) can be de�ned a-priori424

(Figure 12).425

2.6.3 Neutral landscapes by fractal surfaces of a given fractal di-426

mension: r.surf.fractal427

Following Mandelbrot (2006), surfaces with a given fractal dimension from 2428

to 3 might represent severe di�erences in their roughness / complexity (Imre429

et al., 2011). Such surfaces can be generated in GRASS GIS by the function430

r.surf.fractal by explicitly stating the fractal dimension according to the431

parameter dimension, as:432

r.surf.fractal output=name [dimension=value]

[number=value]
433

A very useful parameter is represented by number which indicates the434

number of intermediate surfaces one might want to generate to �nally gather435

a complete set of images of variable fractal dimension (Figure 12).436

3 Summary of the presented algorithms437

As described in this paper, there are many ways of de�ning complexity438

(Anand and Tucker, 2003), and then measuring it. Every single measure of439

complexity has a potential spatio-ecological application, in particular when440

it is applied to remotely sensed imagery: from feature extraction by edge de-441

tection (Zhang et al., 2005), to biodiversity estimation by information theory442

(e.g. Rocchini et al. (2010)), to forest structure variable retrieval by textu-443

ral analysis (Kayitakire et al., 2006), and multifractal surfaces generated as444

neutral models for e.g. feature change assessment (Cheng, 1999).445

We structured our paper to consider all the di�erent aspects of complexity446

in a variety of potential spatial �elds of research: from geometrical complex-447

ity to information theory-based measures, to texture, reprojected spaces and448

random surfaces. In this paper we have accounted only for spatial complex-449

ity, while ecological dynamics (temporal complexity) might be further stud-450

ied using throughput analytic approaches based on e.g. i) stationary Markov451

models (Tucker and Anand, 2005), ii) Monte Carlo analysis of multitemporal452

series (Van Niel et al., 2005), or iii) Kohonen neural networks (Foody and453

Cutler, 2006). The present paper mainly aims to describe features that are454

already implemented in the GRASS GIS platform rather than describing the455

procedure to implement new features. It can be stated that GRASS GIS456

o�ers a concrete possibility of implementing new features rather easily using457
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its collection of excellent internal and external software libraries.458

GRASS GIS o�ers the tools to compute a number of pre-existing mea-459

sures of complexity, as well as the possibility to generate and evaluate new460

ones, because of the free and open access to the source code. The mod-461

ular software design of GRASS facilitates the introduction and sharing of462

new functionalities without a�ecting the overall performance of the system.463

Moreover, its scripting capabilities enable automated processing of a large464

volume of data and wide-ranging use of the achieved results. In particular,465

recent developments also allow GRASS users and developers to make use of466

the Python programming language (Van Rossum (1995)) to introduce new467

features.468
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Figure 1: Zero-crossing �edge detection� raster function for image processing.
A Landsat ETM+ band (near infrared) is processed and edges are revealed
thanks to the i.zc function in GRASS GIS. Refer to the main text for
additional information.
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Figure 2: An elevation map from the GRASS North Carolina free dataset
showing an elevation map and its contour with a step of 10 meters.
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Figure 3: Edges (in red) detected by Canny edge detector on �rst component
from PCA computed on 9 channels from Landsat 7, 2002, RGB channels in
the background.
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Figure 4: The linear feature to be automatically detected lies on the green
line in the left image (coordinate space de�ned by {x,y}) and is represented
only by several points (black pixels). Each point in the left image is trans-
formed into a curve in the right image (coordinate space de�ned by {θ,r}) by
considering lines in all directions θ passing through the point. The coordi-
nates of the intersection of the curves in the right image are the parameters
of the line in the left image.
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Figure 5: Detail of the central area from Figure 3 with lines obtained through
Hough transformation (green) computed using the edges from Canny detec-
tor (red). Only the long lines, especially straight portions of the road, are
detected.
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Figure 6: Rényi entropy can be calculated into GRASS 7.0 by the
r.li.renyi command. In this example, starting from a Landsat ETM+
image, or a derivative like the �rst Principal Component, one might calcu-
late di�erent maps of Rényi entropy with di�erent α values according to the
formula Hα = 1

1−α× ln
∑
pα. In this case α=2 (B), α=5 (C), α=7 (D). Refer

to the main text for additional information.
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Figure 7: Di�erent measures of texture as described in Haralick et al. (1973)
starting from a Landsat ETM+ image of the Trentino region (Northern
Italy). Acronyms: ASM = Angular Second Moment; IDM = Inverse Dis-
tance Moment
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Figure 8: Hexagon binning showing the muticollinearity of a set of texture
measures. Some of the main trends found, from top to bottom: linear re-
lationship, power positive relationship, exponential decay. All the hexagon
binning plots among the measured texture variables are available as Supple-
mentary Material of this manuscript. If such variables are further used as
predictors in e.g. a multiple regression model as complexity variables, they
might be used with care since they basically carry the same (inverse, in this
case) information.
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Figure 9: Correlations among the texture variables measured in GRASS GIS
on a Landsat ETM+ of the Trentino region (Northern Italy), see Haralick
et al. (1973), generated by the corrplot package in R. Only few variables
showed a correlation near zero while most of them showed a high pairwise
positive or negative correlation, demonstrating the basic multicollinearity
of the texture measures system. ASM = Angular Second Moment, Contr
= Contrast, Corr = Correlation, Var = Variance, Entr = Entropy, SA =
Sum Average, SE = Sum Entropy, SV = Sum Variance, DV = Di�erence
Variance, DE = Di�erence Entropy , IDM = Inverse Di�erence Moment,
MOC = Information Measures of Correlation
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Figure 10: sExample of the estimated values of a texture variable starting
from another one. In this case, Sum Entropy is estimated from the Entropy
variable, showing a similar pattern of the original Sum entropy image.
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Figure 11: Fourier transform of a remotely sensed image. blue: high values.
red: low values, green: medium values. The higher the green cloud the
higher the magnitude of values toward the border of the image, i.e. the high
frequency part. Hence the higher the green cloud the higher the heterogeneity
of the image. (Please refer to the main text for additional information).
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Figure 12: Random surfaces can be created as neutral models to test for
patterns in real world images. As an example, patterns from a Landsat
ETM+ of the Trentino region (Northern Italy) might be tested against a
complete random surface (B), a gaussian surface (C), a fractal surface (D),
fractal dimension 2.1.
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