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Thesis Summary

The cell:cell bond between an immune cell and an antigen presenting cell is a necessary event
in the activation of the adaptive immune response. At the juncture between the cells, cell
surface molecules on the opposing cells form non-covalent bonds and a distinct patterning is
observed that is termed the immunological synapse. An important binding molecule in the
synapse is the T-cell receptor (TCR), that is responsible for antigen recognition through its
binding with a major-histocompatibility complex with bound peptide (pMHC). This bond
leads to intracellular signalling events that culminate in the activation of the T-cell, and
ultimately leads to the expression of the immune effector function. The temporal analysis
of the TCR bonds during the formation of the immunological synapse presents a problem
to biologists, due to the spatio-temporal scales (nanometers and picoseconds) that compare
with experimental uncertainty limits.

In this study, a linear stochastic model, derived from a nonlinear model of the synapse, is
used to analyse the temporal dynamics of the bond attachments for the TCR. Mathematical
analysis and numerical methods are employed to analyse the qualitative dynamics of the non-
equilibrium membrane dynamics, with the specific aim of calculating the average persistence
time for the TCR:pMHC bond. A single-threshold method, that has been previously used to
successfully calculate the TCR:pMHC contact path sizes in the synapse, is applied to produce
results for the average contact times of the TCR:pMHC bonds. This method is extended
through the development of a two-threshold method, that produces results suggesting the
average time persistence for the TCR:pMHC bond is in the order of 2-4 seconds, values
that agree with experimental evidence for TCR signalling. The study reveals two distinct
scaling regimes in the time persistent survival probability density profile of these bonds,
one dominated by thermal fluctuations and the other associated with the TCR signalling.
Analysis of the thermal fluctuation regime reveals a minimal contribution to the average
time persistence calculation, that has an important biological implication when comparing
the probabilistic models to experimental evidence. In cases where only a few statistics can
be gathered from experimental conditions, the results are unlikely to match the probabilistic
predictions. The results also identify a rescaling relationship between the thermal noise
and the bond length, suggesting a recalibration of the experimental conditions, to adhere to
this scaling relationship, will enable biologists to identify the start of the signalling regime
for previously unobserved receptor:ligand bonds. Also, the regime associated with TCR
signalling exhibits a universal decay rate for the persistence probability, that is independent
of the bond length.

Keywords: TCR bond persistence, stochastic differential equation modelling, survival prob-
ability scaling exponent
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Chapter 1

Introduction

This chapter focuses on a core biological description of the key components of the human im-

mune system, with a detailed description of the immunological synapse that forms during an

immune response. Studies using mathematical modelling techniques to describe the different

components of the immunological synapse are reviewed, leading to the identification of the

research questions addressed in this thesis. The layout of this chapter is as follows: section 1.1

describes the human immune system, introducing the cells belonging to the adaptive immune

system, along with a discussion of their roles in coordinating immune functions during an

immune response. In section 1.2, the immunological synapse that forms during various stages

of the adaptive immune response is described, specifically concentrating on the synapse de-

veloped between a T lymphocyte (T-cell) and an antigen presenting cell (APC). Some of the

important cell surface molecules involved in the formation of the immunological synapse are

introduced, along with details concerning the formation, function and activation models for

the synapse. In section 1.3, the mathematical modelling undertakings used to analyse the

dynamics involved at the synaptic junction are outlined. Analysis of this literature leads to

the research questions defined in section 1.4 and finally, section 1.5 shows the organisation of

the remainder of the thesis.

1.1 The Human Immune System

The human immune system has evolved to provide a complex defence system against a wide

range of pathogens, both bacterial and viral. Bacterial pathogens are single-celled organisms

that are able to reproduce on their own, often infecting areas through attachment to host

cell surfaces. Viral pathogens are much smaller and are not able to reproduce on their own,

they require entry to a host cell, where they appropriate the internal organelles in order

to reproduce, often killing the host cell in the process. The immune system is comprised

of three different components (subsystems) that compliment each other during an immune
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response, these include a physical barrier, the innate system and the adaptive system. The

physical barrier is the initial gateway of interaction for a foreign pathogen, in the form of skin

tissue and the mucousal lining. When the physical barrier is compromised, cells belonging

to the innate system in the surrounding tissue are the first to react, followed by cells from

the adaptive system. The cellular interactions between these different cell types is central to

this study, so a brief overview of the innate and adaptive systems is given in the subsections

below.

1.1.1 The Innate System

Cells of the innate system include neutrophils, eosinophils, basophils, mast cells and macro-

phages. These cells constantly migrate throughout the blood and host tissue, enabling the

capability to produce a timely response to pathogenic material, through direct contact. In

general, this involves phagocytosis, where the foreign body is engulfed by the immune cell

membrane. The membrane folds around the pathogen to form an intracellular pocket, that

detaches from the main membrane layer, free to migrate through the cytosol as an intracellular

vesicle. Once the pathogen is held within the vesicle, the threat to surrounding healthy cells is

eliminated (Murphy, Travers and Walport, 2008). The innate cells are capable of responding

to a broad range of pathogens, but the response is non-specific and does not provide lasting

immunity. Upon ingestion of the pathogenic substance, the immune cell secretes cytokines

and chemokines that create an inflammatory response, effectively setting up a gradient to

attract additional immune cells to the site of infection. The innate system also includes

dendritic cells (DCs), that form a link between the innate and adaptive immune systems.

These cells are a type of professional APC, designed to present antigenic material to the

adaptive immune cells. This is accomplished through the ingestion and decomposition of the

antigen into to small peptide fragments, enabling external presentation of these fragments on

the DC surface. Following uptake of the antigenic material, mature DCs migrate from the

site of infection, through lymphatic vessels, toward the lymph nodes. Here, they mix with a

constant stream of lymphocytes, circulating the lymphatic system. The fragments on the DC

surface come in to direct contact with the antigen recognition receptors diffusing throughout

the immune cell surface. Positive recognition by the antigen recognition receptor is one of

the initiating event toward an immune response from the adaptive system.

1.1.2 The Adaptive System

Two important cells of the adaptive system are the T-cell and B lymphocyte (B-cell), with

both cells beginning life in the bone marrow. B-cells remain in the in the bone marrow,

where they continue to evolve in to mature B-cells that exhibit antigen recognition receptors,
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the B-cell antigen receptor (BCR), on the cell surface. Once they have matured, the B-cell

migrates to the peripheral lymph organs, where they begin to circulate within the lymphatic

system. B-cells use BCRs to recognise and bind to antigens on infected cells and when the

complimentary antigen is identified they proliferate and secrete antibodies, with some of

the cells evolving in to memory cells that are capable of producing a rapid response upon

subsequent encounters with antigens (Murphy, Travers and Walport, 2008).

Although T-cells also begin life in the bone marrow, at an early stage of their development

they migrate to the thymus where they mature through a series of positive and negative

selection processes. During this maturation process, the T-cells differentiate in to helper

T-Cells (TH-cells) or cytotoxic T-Cells (TCyt-cells). These two cell types express a different

distinct coreceptor molecule on their cell surface. The TH-cells are identified through the

presence of the cluster of differentiation 4 (CD4) coreceptor molecule, whereas TCyt-cells

express the cluster of differentiation 8 (CD8) coreceptor molecule. Both coreceptor molecules

are present on the immature T-cell, but the process of positive and negative selection ensures

the presence of only one of these coreceptor molecules on the mature T-cell.

Like the B-cell, the T-cell bears an antigen recognition molecule on the cell surface, the

T-cell antigen receptor (TCR). The TCR has an α and β chain that are constructed using

a random recombination of certain sections of the deoxyribonucleic acid (DNA) sequence,

denoted V, J and D. This random recombination is capable of producing somewhere in the

order of ∼ 1018 distinct receptors, with each T-cell bearing a set of identical antigen receptors

(approx. 30,000 per cell), that diffuse freely throughout the cell surface (Murphy, Travers

and Walport, 2008).

The TCR recognises antigenic material presented in the cleft of molecules synthesised from

the major histocompatibility complex (MHC) gene, that are expressed on the cell surface

of an APC. The two chains of the TCR contain binding sites, determined by the random

recombination of gene segments, that describe the specificity of the receptor. When the

receptor comes in to close contact with the MHC molecule on the APC, binding occurs when

the specific sites on the TCR match the structure of the antigenic material held in the cleft

of the MHC molecule.

There are two types of MHC molecules called class I and class II molecules. The TCRs on

TH-cells bind exclusively to the MHC class II molecules, while the TCyt-cell binds exclusively

to the MHC class I molecules (Murphy, Travers and Walport, 2008). Once maturation is

complete, single positive T-cells migrate toward the lymph organs and begin circulating

within the lymphatic system. As the T-cells migrate within the lymphatic system they

come in to contact with the DCs expressing antigenic material on their cell surface. Upon

successful recognition and binding of their specific antigenic peptide on a DC, the T-cell

rapidly proliferates and differentiates into antigen-specific clones that express the same TCR

3



specificity. The new cells may be direct clones that increase the immediate immune response,

suppressor T-cells that inhibit the immune response, or memory T-cells that provide a rapid

response to repeat infections (Murphy, Travers and Walport, 2008).

In addition to the difference in coreceptor molecules, the TH-cells and the TCyt-cell pro-

duce different immune function responses. The TH-cells work in conjunction with cells from

the innate system and B-cells. Interaction between macrophages and activated TH-cells cause

the macrophage to degrade pathogenic material stored in intracellular vesicles, disposing of

the degraded material in to the cytosol, an important mechanism for combating leprosy. Ac-

tivated TH-cells may also engage with B-cells, inducing antibody production and secretion

by the B-cell. The secreted antibodies are then able to bind to the specific antigenic material

and neutralise it (Murphy, Travers and Walport, 2008). In contrast, the TCyt-cell interacts

directly with infected cells and prolonged engagement results in the release of cytotoxic gran-

ules on to the infected cell surface, causing cell death through apoptosis. Thus, the adaptive

immune system provides a number of functions that both compliment the innate system and

directly target infected cells.

Four decades ago, Lipsky and Rosenthal (1975) studied the immune response in guinea

pig lymph nodes, leading them to conclude that direct cell contact is required for antigen

presentation and recognition. Since then, advances in molecular biology and medical imaging

technology have supported this view and now allow the spatial tracking of individual cellular

molecules through time, enabling the observation of the molecular interplay during cell to

cell contact. Experimental work has been conducted in vitro (on lipid bilayers), in vivo and

ex vivo (Day et al., 2003), using a range of imaging techniques such as electro-spectroscopy,

fluorescence imaging, interference reflection microscopy, and more recently two-photon mi-

croscopy. Antigen receptors, adhesion molecules and co-stimulatory molecules were among

the first to be analysed (Norcross, Smith and Shimizu, 1984; Meuer et al., 1984; Springer,

Dustin, Kishimoto and Marlin, 1987; Dustin, Sanders, Shaw and Springer, 1987; Selvaraj

et al., 1987; Poo, Conrad and Janeway, 1988), then the intracellular signalling pathways

were explored (Rosenstein et al., 1991; Shiroo, Goff, Biffen, Shivnan and Alexander, 1992;

Valitutti, Müller, Cella, Padovan and Lanzavecchia, 1995; Manjunath, Correa, Ardman and

Ardman, 1995; Dustin, Bromley, Kan, Peterson and Unanue, 1997; Dustin et al., 1998; Davis

and van der Merwe, 2011). Work through the 1990’s culminated in the first images of the

molecular spatial patterns formed in the inter-membrane junction during cell to cell con-

tact (Monks et al., 1998; Grakoui et al., 1999). The contact region between the cells was

termed the immunological synapse and a significant amount of work has been undertaken by

numerous labs to explore the synapse under various conditions ever since.
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1.2 The Immunological Synapse

The immunological synapse (IS) is formed through non-covalent bonds between receptor-

ligand pairs across the membrane junction between a T-cell and APC. These bonds form a

tight adhesion zone, that maintain cell engagement for periods of hours, facilitating extracel-

lular signalling that can lead to the activation of the immune cell, and ultimately an immune

response. The receptor-ligand bonds create patches of membrane that are tightly apposed,

with a diameter in the region of 10µm (Grakoui et al., 1999). The IS forms under many sce-

narios during the immune cell life-cycle, including early T-cell differentiation in the thymus

(Bhakta, Oh and Lewis, 2005; Falahati and Leitenberg, 2008), engagement of T-cells with

DCs in the lymph nodes (Stoll, Delon, Brotz and Germain, 2002; Zheng et al., 2008; Hen-

rickson et al., 2008), activation of B-cells by TH-cells (Poo et al., 1988), homotypic synapses

where activated T-cells engage with each other in the lymph nodes (Sabatos et al., 2008) and

during a cytotoxic attack directed toward an infected cell by a mature TCyt-cell (Kuhn and

Poenie, 2002; Stinchcombe, Bossi, Booth and Griffiths, 2001). In it’s simplest form, a single

T-cell creates a synapse with a single APC. However, cases where multiple APCs are at-

tached to a single TCyt-cell have been recorded (Poenie, Kuhn and Combs, 2004) and in vivo

studies in the lymph nodes have shown multiple T-cells engaged with a single DC (Ingulli,

Mondino, Khoruts and Jenkins, 1997). Each type of synapse often has a particular nuance

concerning the synapse formation and/or signalling properties, depending on the maturation

stage and the surrounding environmental conditions. But, there are many similarities, such

as the binding of specific receptor-ligand pairs, the stopping of T-cell migration and the re-

orientation of the intracellular organelles (Golgi apparatus, nucleus, microtubule organising

centre (MTOC)). In this thesis a single T-cell:APC interaction is considered, as these are

more readily studied under laboratory conditions and the mathematical modelling of the sin-

gle membrane:membrane system is significantly simpler than the multi-membrane:membrane

interactions.

1.2.1 Cell Surface Molecules

As mentioned above the IS is described by the bonding of a number of receptor-ligand pairs

in the intermembrane junction between the cells. Figure 1.1 shows a TH-cell and an APC

with some of the many cell surface molecules that are implicated in the formation of the IS.

Some of these molecules are functionally related to cell adhesion (lymphocyte function-

associated antigen 1 (LFA-1), intercellular adhesion molecule-1 (ICAM-1) and leukosialin

(CD43) (Allenspach et al., 2001)), some are necessary for specific antigen recognition (TCR

and major histocompatibility complex with bound antigenic peptide (pMHC)), while others

form coreceptor pairs capable of intracellular signalling (cluster of differentiation 28 (CD28),
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LFA-3 (CD58), leucocyte common antigen (CD45)), aiding the promotion of T-cell activation.

These cell surface molecules are briefly described in tables 1.1 and 1.2.

Molecule Description

TCR The antigen recognition receptor is a complex containing two vari-
able polypeptide chains, an α and β chain, along with 4 associated
CD3 subunits. The α and β chains are synthesised through recom-
bination of 3 major gene segments (the α chain only uses two of
the segments), capable of producing ∼ 1018 different TCR config-
urations, with ∼ 30, 000 identical receptors on the surface of each
T-cell (Murphy, Travers and Walport, 2008).

LFA-1 The LFA-1 integrin is an abundant adhesion molecule expressed
on all leukocytes (with a few macrophage exceptions), and has a
natural ligand in ICAM-1 (Miller et al., 1995; Springer, Dustin,
Kishimoto and Marlin, 1987).

CD2 One of the first processes relating to a receptor-ligand pair
to be studied was the interaction between CD2 and LFA-3
(CD48/CD58) (Selvaraj et al., 1987; Dustin, Sanders, Shaw and
Springer, 1987). CD2 is implicated in T-cell activation and pro-
liferation, through intracellular signalling pathways (Meuer et al.,
1984).

CD28 This co-stimulatory molecule is expressed on all T-cells and binds
with low affinity to B7-1 (CD80) and B7-2 (CD86) (van der Merwe
et al., 1997).

CD4 (TH-cell only) This coreceptor molecule is expressed on TH-cells and has been
identified in receptor-mediated virus entry for human immuno-
deficiency virus (HIV) (Littman, 1996). Extracellular domains
on CD4 binds to class II MHC molecules and TCR signalling is
increased through this binding (Murphy, Travers and Walport,
2008).

CD8 (TCyt-cell only) This coreceptor molecule is expressed on TCyt-cell and is only
functionally significant when recruited to a TCR:pMHC complex
(Wyer et al., 1999). Extracellular domains on CD8 bind to class I
MHC molecules with low affinity and can increase the sensitivity
of a T-cell to pMHC one-million fold (Stone and Kranz, 2013).

CD45 CD45 has a large extracellular domain with from 391 to 552 amino
acids and a large cytoplasmic domain containing two phosphoty-
rosine phosphatase (PTPase) (Barclay et al., 1997). CD45 is able
to dephosphorylate and activate Src-family kinases Lck and Fyn
(Shiroo et al., 1992; Johnson, Bromley, Dustin and Thomas, 2000).

CD43 CD43 has a large extracellular domain spanning 45nm and is im-
plicated in inhibiting cell adhesion (Cyster, Shotton and Williams,
1991; Manjunath, Correa, Ardman and Ardman, 1995).

Table 1.1: Membrane spanning molecules on the T-cell. The molecules listed have an
intracellular portion, an extracellular portion and a section that passes through the lipid bi-
layer membrane. These transmembrane molecules are capable of sensing extracellular signals
and carrying them across the membrane, where they are represented through intracellular
signalling cascades.

In the junction between the cells, the cell surface molecules form non-covalent bonds, as

shown in figure 1.2. The TCR binds to pMHC class I or class II complex, and has bond length

of ∼ 15 nm (Barclay et al., 1997). Other coreceptor bonds present in the IS with a similar
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Molecule Description

MHC There are two types of MHC molecules known as MHC class I
and MHC class II molecules. The two different MHC molecules
have different pathways to peptide expression at the cell surface.
Both types of molecule are formed in the lumen of the endoplasmic
reticulum (ER), but the class II molecule leaves the ER in vesicles
and the class I molecule remains in the ER. Viral pathogens that
enter the cytosol can be broken down in to peptide fragments by
proteasomes, after which they are transported to the ER through
TAP structures. Once in the ER the peptide fragment can be
loaded in the binding cleft of the MHC class I molecule, whereupon
the MHC molecule migrates to the cell surface. Peptide loading for
the MHC class II molecule is a little different. Pathogens engulfed
at the membrane surface reside in endosomes, and these endosomes
can fuse with the vesicles containing the MHC class II proteins.
Once the MHC class II molecule is in the endosome, it is able
to bind peptide fragments from the pathogen contained therein,
and following successful loading of the peptide the MHC molecule
migrates to the cell surface (Murphy, Travers and Walport, 2008).

ICAM-1 Otherwise known as CD54, ICAM-1 is a natural ligand for LFA-
1. The binding affinity of Kd = 500nm and slow dissociation
rate of 0.1s−1 suggests a potential mechanism for firm adhesion
(Tominaga et al., 1998).

CD58 Originally called LFA-3, CD58 (CD48 in mouse/rat) is expressed
in high quantities on memory T-cells and DCs (Freudenthal and
Steinman, 1990). It has been identified as a natural ligand for
CD2, with an association rate comparable to that of antibodies
to antigens and has a very fast dissociation rate (koff ≥ 4s−1)
(Selvaraj et al., 1987; Davis and van der Merwe, 1996).

CD80 CD80 provides a natural ligand for CD28 and is upregulated upon
activation of B-cells (Nabavi et al., 1992).

Table 1.2: Membrane spanning molecules on an APC.

bond length include the CD2:CD58 and the CD28:CD80 bonds (also shown). However, the

bond formed between the LFA-1 and ICAM-1 molecules (LFA-1:ICAM-1) is significantly

larger at ∼ 45nm. When two different bond lengths are in close apposition, there is a higher

energy cost than compared to the case where the same size bonds are present, as a result of

membrane bending. As is subsequently shown, these two length scales play a significant role

in the qualitative dynamics during IS formation.

1.2.2 Synapse Formation

When a T-cell and an APC engage, an intercellular junction is created containing close

contact patches, where the cell surface molecules are able to form bonds with their appropriate

conjugates. The first pictures of the dynamic formation of the synapse, between T-cell and

a supported membrane containing fluorescent stained APC-like proteins, were produced by

Monks et al. (1998) and Grakoui et al. (1999). They tracked the movements of TCR, LFA-

1, talin, and protein kinase C-θ (PKCθ) in the synaptic junction. Immediately following
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cell to cell contact, they observed segregation between the shorter bound conjugates (the

bond formed between the TCR and pMHC molecules (TCR:pMHC)) and the longer bonds

(LFA-1:ICAM-1), creating segregated clusters of TCR and LFA-1 in the synaptic junction.

Figure 1.3 shows a diagrammatic representation of the synapse formation over time, where

the TCR:pMHC bonds are depicted as green circles and the LFA-1:ICAM-1 bonds are shown

as red circles. The left panel shows the initial contact, where the LFA-1:ICAM-1 bonds form

Figure 1.3: Cell surface molecule movements during IS formation: early visualisa-
tions. During the initial contact period the LFA-1 molecules (red circles) are present at the
centre of the contact zone (left panel). The contact area increases over the first 2 minutes,
after which a contraction stage occurs. During this period the TCR and LFA-1 molecules
mix (centre panel). After ∼ 10 mins the synapse begins to stabilise, showing a central accu-
mulation of TCR surrounded by a peripheral accumulation of LFA-1 molecules (right panel)
(Monks et al., 1998; Grakoui et al., 1999).

at the centre of the junction with the TCR:pMHC bonds forming in the periphery. During

the first 2 minutes after the initial contact, intracellular signalling is detected in the form of

calcium (Ca2+) upregulation in the cytosol, the contact area spreads and polarisation of the

cytoskeleton and MTOC is observed (Bunnell et al., 2002; Huse et al., 2007; Yokosuka et al.,

2008). Over the next 2-10 minutes the contact area spreads and then contracts, during which

the two sets of bonds become mixed (centre panel). This phase is termed as the immature

synapse, characterised by a dynamic reorganisation of the surface proteins, polarisation of

the cytoskeleton and the initiation of intracellular signalling. The final phase (right panel)

is characterised by the inversion of the TCR and LFA-1 regions, where a stable conjugate

is formed and is sustained for periods of several hours. This stable synapse is termed the

mature synapse and is synonymous with the bullseye pattern observed.

Monks et al. (1998) used the term supramolecular activation cluster (SMAC) to describe

the spatial pattern, consisting a central supramolecular activation cluster (cSMAC), a pe-

ripheral supramolecular activation cluster (pSMAC) and a distal supramolecular activation

cluster (dSMAC). The cSMAC has a diameter of 1-3 µm and contains small cell-surface

molecules such as TCR, PKCθ, CD28 and cluster of differentiation 2 (CD2). The pSMAC
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contains LFA-1, CD4 and talin, while the distal region contains the larger CD43 and CD45

molecules.

In vivo experiments conducted by Stoll, Delon, Brotz and Germain (2002) used explanted

lymph nodes to analyse the interactions of T-cells with DCs, showing the IS was sustained

for hours (>15 hrs) before T-cell proliferation began. Their results agree with experimental

data in vitro (Lipsky and Rosenthal, 1975), but do not agree with experimental results in 3D

collagen matrices (Gunzer et al., 2000), where the T-cells were activated through a series of

short (< 15 min) interactions. Dustin (2007, 2008) has coined the word ‘kinapse’ to describe

these short-lived T cell:APC interactions that promote activation. These do not have the

stable, symmetrical properties of the mature synapse, but rather the T-cells remain highly

motile leading to asymmetry in the engaged membrane, promoting short-lived interactions

(Brossard et al., 2005; Beemiller, Jacobi and Krummel, 2012). At present there have been

few articles discussing short-contact-time activation mechanisms, and this is expected to be

a fruitful area for future research.

Work by Mempel, Hendrickson and von Andrian (2004) identified three distinct phases of

T-cell and DC interactions in lymph nodes during an immune response. The first phase, less

than 8 hrs after the introduction of T-cells in the lymph node, showed short lived contacts

with DCs and an average interaction time of 6 minutes. During the second phase, the T-

cells became less motile and interactions with DCs persisted for over 60 minutes, resulting

in upregulation of interleukin 2 (IL-2). After approximately 1 day, the T-cells became more

motile and the short-lived contact times returned, although there was still evidence of some

long-lived interactions.

More recently, the identification of TCR microclusters have been observed and studied

(Krummel, Sjaastad, Wülfing and Davis, 2000; Douglass and Vale, 2005; Saito and Yokosuka,

2006; Yokosuka et al., 2008). These microclusters contain TCR and CD28, along with kinase

and adaptor proteins required for signalling, and are present throughout the contact duration

(Campi, Varma and Dustin, 2005). Initially they appear uniformly throughout the contact

zone, but as the synapse stabilises they are continually generated at the pSMAC and then

migrate toward the cSMAC over time. Defects in microcluster assembly result in defects

in T-cell activation, therefore suggesting a central role for TCR microclusters in synapse

formation and T-cell activation (Bunnell et al., 2006).

Figure 1.4 shows a schematic view of the synapse formation, derived from diagrams pro-

duced by Saito and Yokosuka (2006, 2010). Information relating to LFA-1 (Grakoui et al.,

1999), CD43 (Manjunath, Correa, Ardman and Ardman, 1995; Sperling et al., 1998; Delon,

Kaibuchi and Germain, 2001) and CD45 (Varma et al., 2006) is also included. The initial

contact (left panel) is characterised by a central accumulation of adhesion bonds, with TCR

microclusters dispersed throughout the contact region and CD45 excluded from the contact
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Figure 1.4: The mature IS formation highlighting the spatial distribution and
movements of TCR microclusters over time. The figure is derived from diagrams
produced by Saito and Yokosuka (2006, 2010), overlaying the LFA-1 movements from Grakoui
et al., 1999. The left panel shows the initial expansion stage, followed by the contraction phase
(centre panel) and finally the mature synapse formation (right panel). The TCR microclusters
are continually generated in the pSMAC, where signalling is greatest, and they migrate toward
the cSMAC, detaching from the Src-kinase signalling components in the process.

zone. During the first 2 minutes after the initial contact the contact area undergoes an ex-

pansion phase, as indicated by the red arrows, where lamellipodia exist at the leading edge

in all directions. The second stage is characterised by a contraction phase, where the contact

interface stabilises moving toward the mature synapse pattern. During this phase (centre

panel), the TCR microclusters and adhesion molecules mix in the contact interface. Fi-

nally, around 10 minutes the contact zone exhibits the mature synapse pattern including the

cSMAC, pSMAC and dSMAC (right panel). It has been shown that cytoplasmic phospho-

rylated tyrosine residues associated with TCR signalling is maintained at high levels in the

pSMAC and diminishes as TCR microclusters translocate toward the cSMAC (indicated by

the black lines), where the the kinase and adaptor proteins dissociate from the microclusters

(Mossman, Campi, Groves and Dustin, 2005; Yokosuka et al., 2005). After the TCR-CD28

clusters enter the cSMAC they dissociate and 2 distinct domains appear, with the TCRs

accumulating at the centre of the cSMAC, surrounded by CD28 aggregations (Yokosuka et

al., 2008; Kaizuka et al., 2009). These results concerning microclusters contradict earlier

speculation regarding the synapse function aided TCR signalling through the cSMAC. How-

ever, Čemerski et al. (2008) have reported that while signalling is initially concentrated in

the pSMAC, at late times signalling occurs in the cSMAC and can increase the stimulatory

potency of weak agonists for the TCR.

CD43 is excluded from the synapse region through ezrin-radixin-moesin (ERM) interac-

tions (Allenspach et al., 2001; Delon, Kaibuchi and Germain, 2001) and has a functional

role inhibiting adhesion, thereby increasing the threshold for T-cell activation (Manjunath,

Correa, Ardman and Ardman, 1995). It was felt that the exclusion of CD43 was necessary

11



to maintain strong TCR signalling in the contact zone (Davis and van der Merwe, 1996).

However, Savage et al. (2002) have shown that inhibiting the ERM binding site, allowing

CD43 to enter the central contact zone, has no effect on the activation of T-cells.

Varma et al. (2006) have also shown that CD45 concentration in the cSMAC is greater

than the concentration of TCR microclusters and the area is enriched with lysobisphospha-

tidic acid, used to degrade membrane proteins. Since CD45 is a phosphatase, this action

supports the reduced signalling observed in the cSMAC, but contradicts earlier postulation

that larger molecules are excluded from the cSMAC (Davis and van der Merwe, 1996). The

presence of lysobisphosphatidic acid supports the finding that TCRs are down-regulated in

the cSMAC, with 40% of TCRs being down-regulated in the first 7 minutes and 90% down-

regulated within an hour (Favier, Burroughs, Wedderburn and Valitutti, 2001).

The CD4 coreceptor molecule (not shown in figure 1.4) initially collocates with the TCR

microclusters, but then moves to the periphery as the synapse stabilises. Early interpretation

of this information was that CD4 helped boost the initial TCR signal through it’s cytoplasmic

association with lymphoid cell kinase (Lck), but was not required once the synapse stabilised

(Krummel, Sjaastad, Wülfing and Davis, 2000). However, with a view to the prolonged

microcluster signalling in the pSMAC, the role of CD4 aiding TCR signalling throughout the

synapse duration can not be discounted.

1.2.3 Intracellular Signalling

Engagement of the TCR with agonist pMHC results in an intracellular signalling cascade that

leads to T-cell activation. Early studies show a clear dependency on TCR engagement and

Ca2+ elevation for T-cell activation, defined by IL-2 production (Weiss, Imboden, Shoback

and Stobo, 1984; Waldmann, 1989). Since these studies, many molecules and intracellular

signalling pathways have been identified that regulate T-cell activation, relating to cytoskele-

tal remodelling, binding affinities and gene transcription. What follows is a discussion of a

few of the signalling pathways relevant to the model results presented in chapters 5 and 6.

Upon binding with pMHC, immunoreceptor tyrosine-based activation motifs (ITAMs) on

the cytoplasmic portion of the TCR are phosphorylated on tyrosine residues through Src-

kinase enzymes (Lck and Fyn), that leads to subsequent recruitment and phosphorylation of

ζ-associated protein of 70 kDa (ZAP-70). The activated ZAP-70 subsequently phosphorylates

the adaptor protein linker for activated T cells (LAT), whereupon SH2-domain-containing

leukocyte-specific phosphoprotein of 76 kDa (SLP-76) and growth factor rector-bound protein

2 (Grb2) can bind. Two signal transducing molecules downstream of SLP-76, phospholipase C

γ 1 (PLCγ1) and Wiscott Aldrich Syndrome protein (WASp), are necessary for the elevation

of intracellular Ca2+ and actin remodelling (Finco et al., 1998). Activated PLCγ1 produces
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inositol triphosphate (IP3) and diacyl-glycerol (DAG), that results in increased concentration

levels of intracellular Ca2+, mediated through intracellular stores and Ca2+-release-activated

Ca2+ (CRAC) channels. This process also transduces the mitogen-activated protein kinase

(MAPK) signalling cascade, leading to synthesis of activator protein-1 (AP-1) in the nucleus.

The increase in Ca2+ also results in the production of calcineurin that is capable of dephos-

phorylating sites on nuclear factor of activated T-cells (NFAT), allowing it to migrate to the

nucleus where it forms a complex with AP-1 and binds with DNA to promote gene expres-

sion (Northrop et al., 1994; Hogan, Chen, Nardone and Rao, 2003; Maciàn, López-Rodriguez

and Rao, 2001; Lewis, 2003). WASp is understood to relay signals from the CD2 and TCR

receptors for remodelling of the actin cytoskeleton to form a stable synapse (Dustin et al.,

1998; Cannon et al., 2001; Sechi and Wehland, 2004). Conversely, PKCθ creates instabilities

in the SMAC that result in broken symmetry, allowing the cell to migrate (Sims et al., 2007).

The interplay between WASp and PKCθ is required by naive T-cells to migrate through the

substrate.

Signalling via the bond formed between CD28 and CD80 molecules (CD28:CD80) in the

pSMAC has a positive affect on the quantity of IL-2 production (Shen, Thams, Dustin and

Kam, 2008) and early signals through the CD28:CD80 bonds are necessary for recruitment of

additional molecules to the synapse through cytoskeletal effects (Wülfing and Davis, 1998).

However, the effect of CD28 signalling on the TCR signalling pathways is not well understood

and two contradictory reports have been published. Carey et al. (2000) produced results

suggesting CD28 signalling augments signals from TCR through inhibition of Rap1, however,

another study by Bromley et al. (2001) shows CD28 signalling in the cSMAC does not

support adhesion or enhancement of TCR signalling.

Experimental measurements of the time duration for some of these signalling events and

biological markers are detailed below in table 1.3. These experimental results show TCR

Signalling Theme Experimental Observation

Lck Lck phosphorylates ITAMs on the ζ chain within 3-6 seconds
(Nika et al., 2010). Activated Lck is continually generated in the
pSMAC during the first 5 minutes after initial contact (Campi,
Varma and Dustin, 2005).

LAT LAT phosphorylation recorded at 4 seconds (Huse et al., 2007).

ZAP-70 ZAP-70 is recruited to the TCR within 15 seconds of contact for-
mation, with half-maximal recoveries within 7-10 seconds (Bun-
nell et al., 2002). Houtman et al. (2005) recorded phosphoryla-
tion of ZAP-70 at 5 seconds.

Intracellular Ca2+ ele-
vation

Huse et al. (2007) recorded Ca2+ elevation at 6-7 seconds. Bun-
nell et al. (2002) recorded Ca2+ responses within 12 seconds.

Table 1.3: Biological measurements for intracellular signalling Src-kinase phospho-
rylation events.

related intracellular signalling activity is evident in the order of seconds, long before the
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synapse stabilises in to the SMAC formation. The elevated Ca2+ levels are of particular

importance, since elevated levels are necessary and sufficient to stop thymocyte migration

in the thymus, allowing the stabilisation of cell:cell engagement (Bhakta, Oh and Lewis,

2005). Also, elevation of Ca2+ levels upon stimulation by agonist pMHC correlates with

T-cell activation (Wülfing et al., 1997).

1.2.4 TCR Triggering Models

As described in the previous section, the movement of the cell surface proteins and the down-

stream signalling pathways have been studied extensively, but it is still not well understood

how the TCR complex is triggered to induce the initial intracellular signalling required to

promote IS formation. There have been a number of models proposed over the years and

three models, that are relevant to this study, are outlined below.

Davis and van der Merwe (1996, 2006) proposed the Kinetic Segregation (KS) model,

where the kinetic segregation of the cell surface molecules are determined through the min-

imisation of the energy function with respect to the bond lengths. They propose that the

membrane dynamics, coupled with the two competing length scales of the TCR:pMHC

and LFA-1:ICAM-1 bonds, are sufficient to drive segregation and aggregation of the sets

of molecules. Under this assumption, the TCR are continuously phosphorylated and dephos-

phorylated maintaining a balance that avoids internal signalling and T-cell activation. During

cell-cell adhesion the shorter bonds (TCR:pMHC, CD2:CD48 and CD28:CD80) form clusters

that exclude larger molecules, such as LFA-1:ICAM-1 and the CD45 phosphatase, through

steric barriers. The exclusion of CD45 enables prolonged phosphorylation of the TCR, re-

sulting in intracellular signalling. There have been a number of experiments that support

this model, including the initial segregation patterns produced showing TCR in the cSMAC

and LFA-1 in the pSMAC (Monks et al., 1998; Grakoui et al., 1999); experiments varying

the ectodomain size of CD45, where shortened versions inhibited TCR signalling (Cordoba

et al., 2013); experiments varying the CD48 length, where increased lengths disrupted the

ability for T-cell activation (Wild et al., 1999); and the relatively high level of activated Lck

(40%) in unstimulated T-cells that is readily available upon TCR binding (Nika et al., 2010).

There are also forces involved due to polarisation of the actin cytoskeleton toward the con-

tact zone. Under these conditions, the molecules attached to the cytoskeleton, such as CD43,

are transported away from the contact zone through ERM-dependent movement (Allenspach

et al., 2001). Savage et al. (2002) tested if the steric barrier created from the extracellular

length difference affected the synapse formation and found no negative effects, supporting

the ERM-dependent movement. This implies the KS model can not fully explain the SMAC

formation and it is likely the balance between kinetic segregation and signalling pathways are
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required.

Another model presented by Valittuti et al. (1995) is the Serial Triggering model. This

model attempts to explain the anomaly between the requirement of sustained signalling for

T-cell activation and the low binding affinity between TCR and pMHC. They propose that a

single pMHC can serially trigger up to 200 TCRs, which using the dissociation rates exhibited

by TCR:pMHC will require ∼ 8, 000 TCRs for T-cell activation (Viola and Lanzavecchia,

1996). Recent work by Manz et al. (2011) shows a minimum density of agonist pMHC (4

molecules) available to a TCR microcluster is sufficient for T-cell activation and this number

may be further reduced by the introduction of costimulatory signalling through CD28:CD80

bonds.

Finally, McKeithan (1995) proposed the Kinetic Proofreading model, that depends on

the half-life of the TCR:pMHC bond. In this model the interactions between TCR and

agonist pMHC are expected to have a longer half-life than TCR bonds with weak agonist or

null peptide MHC molecules. The longer bond time facilitates stronger downstream signals

required for T-cell activation and the shorter bond times ensures non-activation of T-cells

to weak agonists of self MHC. This model is supported by results that show a correlation

between the dissociation rate and T-cell activity, the faster dissociation rates result in weaker

T-cell activity (Matsui et al., 1994).

1.3 Mathematical Modelling of the Immunological Synapse

A number of mathematical models have been suggested for modelling different aspects of the

biochemical processes observed during synapse formation. An early model of cell adhesion

by Bell (1978) considered the binding rates, the strength of specific bonds and the force

required to uproot a receptor from the membrane. Then, Bell, Dembo and Bongrand (1984)

presented a thermodynamic calculus for modelling cell adhesion, including a free energy

function that includes the attractive chemical potentials and repulsive forces due to the

glycocalyx. This model is capable of measuring the thermodynamic equilibrium under a

given set of parameters, that are sought from biological experiments. However, it did not

include multiplicity of cell surface receptors and therefore could not be used to understand

the membrane dynamics associated with two different bond lengths. As the complexity of

the synapse formation is better understood, the models have grown more sophisticated to

simulate membrane dynamics, surface protein kinetics (Qi, Groves and Chakraborty, 2001;

Burroughs and Wülfing, 2002; Raychaudhuri, Chakraborty and Kardar, 2003; Chattopadhyay

and Burroughs, 2007), and intracellular signalling pathways (Heinrich, Neel and Rapoport,

2002; Lee et al., 2003; Burroughs, Lazic and van der Merwe, 2006).

Qi et al. (2001) proposed the first model to include TCR down-regulation and membrane
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dynamics under thermal fluctuations, called the synapse assembly (SA) model. Their results

were in near quantitative agreement with the experimental results produced by Grakoui et

al. (1999), where they successfully reproduced the inversion pattern for LFA-1s and TCRs.

An analysis of the model parameters highlighted the importance of the kinetic dissocia-

tion rates and the cell membrane properties in the formation of the synapse. Extensions of

this model to include cytoskeletal forces have also been presented (Burroughs and Wülfing,

2002; Raychaudhuri, Chakraborty and Kardar, 2003), where similar comparable results have

been produced along with phase diagrams that give an indication of permissible parameters

changes, such as binding rates, that do not disrupt the synapse formation (Lee et al., 2002).

At the same time, a stability analysis of the SA model was produced that predicts the size dif-

ferences of the bond lengths driving the segregation, showing the different bond lengths have

a significant contribution to the free energy (Hori, Raychaudhuri and Chakraborty, 2002).

The importance of the close contact patch sizes and density during a steady state equilib-

rium for the protein molecule concentrations were quantified for the first time by Chattopad-

hyay and Burroughs (2007), and also the scale of the stochastic cellular fluctuations. They

concluded that the density decreases exponentially as the membrane separation distance in-

creases, but the mean patch sizes remain relatively unchanged. Their results conform with

those of Raychaudhuri, Chakraborty and Kardar (2003) at the immature synapse formation

level and the analysis relies on methods applied to the calculation of the persistence probabil-

ity for the simple diffusion problem (Majumdar, Sire, Bray and Cornell, 1996; Chakraborty

and Bhattacharjee, 2007). The method used to calculate the persistence probability was

framed as the persistence within a close contact zone and was used to calculate the average

size of the patches within a close contact region. The patch size was calculated to be in the or-

der of tens of nanometers (Chattopadhyay and Burroughs, 2007). The small size implies that

phosphatase exclusion (CD45) probably results from density fluctuations, implying a specific

exclusion mechanism may not be required for CD45. Burroughs et al. (2011) also show that

the protein segregation can be attributed to the extracellular domain sizes through thermo-

dynamic arguments and these results validate some of the quantitative parameter ranges used

in the SA model.

During cytoskeletal polarisation, the cell surface proteins bound to the actin skeleton

may be translocated according to polarising forces, which adds non-thermal forces to the

analysis. Chattopadhyay (2011) and Taloni, Chechkin and Klafter (2012) have proposed

models that account for these non-thermal forces. The competition between thermal and non-

thermal forces are currently being explored, but no quantitative results have been produced

that can be verified by experimentation yet, since the spatio-temporal scales of nanometers

and picoseconds compare with experimental tolerance/uncertainty limits. Also, TCR:pMHC

half-life differences arising between cell-cell and cell-planar bilayer experiments have been
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addressed using thermodynamic models, suggesting the rigidity of the molecular subdomains

and changes in heat capacity upon binding account for the anomalies (Qi, Krosgaard, Davis

and Chakraborty, 2006).

The membrane models outlined above are used to describe the cell surface molecular pat-

terns and membrane shape distortions, however, they do not address the signal transduction

events. There have been a number of models proposed in this respect, some that are based on

the kinetic proofreading triggering model (Chan, George and Stark, 2001, 2004; Wedagedera

and Burroughs, 2006), some that test the KS hypothesis through kinase-phosphatase models

(Heinrich, Neel and Rapoport, 2002; Burroughs, Zorana and van der Merwe, 2006; Bur-

roughs and van der Merwe, 2007) and Chiam (2007) suggests a Src kinase signalling model

based on the Michealis-Menton equations to describe the rates of change for the protein ki-

nases. While these models are not analysed further in this study, they are of interest when

considering extensions to this work.

1.4 Research Questions

As discussed in the previous section, previous works (Hori, Raychaudhuri and Chakraborty,

2002) have analysed the phase separation properties about the thermodynamic limit for

the SA model and the spatial size of TCR patches for the related steady-state linearised

model (Chattopadhyay and Burroughs, 2007). What has not been studied are the temporal

properties of the steady-state model, therefore the research questions addressed in this thesis

are:

• What is the average contact time, predicted by the linear steady state membrane sep-

aration distance model, for a TCR:pMHC bond during early contact events between

T-cells and APCs? This information will help quantify the IS bond strength.

• Does the average contact time predicted by the steady state model agree with exper-

imental observations? This information will help to understand if the linear model is

sufficient predict the TCR signalling events, that begin the progression to the mature

synapse formation.

• The IS as a phenomenology, as well as from the modelling point of view, is driven by

stochastic fluctuations. What is not known is the importance of the magnitude of these

fluctuations in the bond formation process. So, what is the contribution of the low and

high amplitude membrane fluctuations to the average contact time? The answer to this

question will resolve what sort of mathematical theory could be used to model the IS.

• How does a change in the thermal noise strength alter the average contact time?
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1.5 Thesis Organisation

Chapter 2 is a detailed description of the linearised steady-state membrane separation dis-

tance model, developed from the SA model proposed by Qi et al. (2001). In chapter 3 the

analytical and numerical methods used to analyse the model are discussed. This is followed

in chapter 4 by an asymptotical approximation of the temporal correlation function as the

time difference tends to infinity. Chapters 5 and 6 present the analytical and simulation re-

sults, describing the temporal dynamics of the early contact periods between a T-cell and an

APC, exploring the scaling dynamics in the large time limit where signalling occurs. Finally,

chapter 7 discusses the implications of the present work and proposes possible extensions.

This thesis is primarily based on the published papers (Bush and Chattopadhyay, 2014;

Bush and Chattopadhyay, 2015) and the manuscript under preparation (Bush and Chat-

topadhyay, 2016).
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Chapter 2

Membrane Model

This chapter introduces the core nonlinear membrane model, including the derivation of

the linearly stable non-equilibrium model that forms the basis of the theoretical analysis in

the later chapters. Section 2.1 presents the SA model, including a description of the terms

included in the equations, the model parameters and a discussion on proposed variations to

this simple model. In section 2.2, the linearization steps required to construct the model used

to describe the dynamics of the local membrane separation distance are shown, under the

assumption of steady state cell surface protein concentration levels. Finally, in section 2.2.1

the final form of the linearized model is presented and the relevant biological parameter values

are defined, that are subsequently used in the analysis presented in later chapters.

2.1 Synapse Assembly Model

Qi et al. (2001) proposed the nonlinear SA model, that includes the TCR and LFA-1 surface

molecules on the T-cell and the pMHC and ICAM-1 molecule on the antigen presenting cell.

As shown elsewhere (Burroughs and Wülfing, 2002), these two sets of surface proteins are suf-

ficient to model two different bond lengths interacting in the synaptic junction, TCR:pMHC

(15nm) and LFA-1:ICAM-1 (45nm). The model uses the Smoluchowski (reaction-diffusion)

setup coupled with a time-dependent Landau-Ginzberg model (Van Kampen, 1987), where

two interacting two-dimensional membranes are considered, one fluctuating and the other a

flat, static, membrane. Using parameter values derived from experimental results, this model

was able to reproduce the bullseye pattern observed for the mature IS, in near quantitative

agreement with experimental findings (Monks et al., 1998; Grakoui et al., 1999). Table 2.1

and equations (2.1) to (2.3) are reproduced from the article by Qi et al., listing the variables

and equations that define the SA model.

Equation (2.1) describes the free energy in the system. The first term represents the

contribution of the TCR:pMHC bond to the free energy. Deviations from the natural bond
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Symbol Description

F Free Energy
CT TCR concentration in the T-cell membrane
CM MHC-peptide concentration in the APC membrane
CTM TCR:MHC-peptide complex concentration
CTt Triggered TCR concentration in the T-cell membrane
CAi Concentration of the ith adhesion molecule on the T-cell membrane (LFA-1)
CBi Concentration of the ith ligand on the APC membrane (ICAM-1)
Ci Concentration of the bound complex formed between Ai and Bi
kon On rate for TCR/MHC-peptide binding
koff Off rate for TCR/MHC-peptide binding
ki On rate for ith complex binding
k−i Off rate for ith complex binding
Dj Diffusion coefficient for the jth surface protein in the appropriate membrane
z Intermembrane separation distance
zj Natural bond length of the jth bond complex
t Time
γ Interfacial tension of cell membrane
κ Bending rigidity of the cell membrane
ζ Thermal noise, assumed to be white noise

kBT Thermal energy at temperature T
M Phenomenological constant for membrane response to free energy
λj Curvature of binding energy well for ith complex
P The percentage of triggered TCR concentration following pMHC binding
kt The rate of down-regulation for the triggered TCRs

Table 2.1: SA membrane model variables.

length, zTM , result in a change in the free energy. When the separation distance is larger than

the natural bond length, there is an energy cost due to the stretching of the bond and there is

also an energy cost when the separation distance is less than the natural bond length, due to

the tendency of the “squashed” bond to return to its natural length. The second term in the

equation applies the same principle to the adhesion bonds, LFA-1:ICAM-1. Finally, the third

term uses the Helfrich Hamiltonian (Safran, 2003) to model the free energy associated with

changes to the membrane shape, applying a penalty for the creation of new area (stretching)

and also high curvature (bending). An assumption is made here to ignore the Gaussian

curvature term, since the membrane is assumed not to undergo any topological changes.

The parameters associated with the bending modulus (κ) and the stretching modulus (γ)

are constants, that assumes the lipid bilayer composition remains unchanged during synapse

formation. It may be noted that initial TCR signalling leads to the opening of CRAC channels

to increase intracellular Ca2+ levels, whereupon the membrane becomes increasingly porous

and it is likely that these parameters will be altered during the formation of the synapse.

The set of equations (2.2) show the rate of change in the cell surface protein concentrations

with respect to time. The concentration of the uncoupled molecules is dependent on their

diffusive rates in the membrane, as well as their propensity to couple and uncouple from

their complimentary ligands. The model can be used to include any number of adhesion-
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ligand bonds through equations (2.2d), (2.2e) and (2.2g), although Qi et al. only include the

TCR:pMHC and LFA-1:ICAM-1 that exemplify the different bond lengths. The coreceptor

molecules and their natural ligands (the bond formed between CD2 and CD58 molecules

(CD2:CD58) and the bond formed between CD28 and CD80 molecules (CD28:CD80)) have

a bond length similar to that of the TCR:pMHC and will effect the free energy similar to

increasing the concentration levels of the TCR:pMHC bond, assuming the binding affinities

are similar. In all cases, the thermal noise, due to external forces, is assumed to be white

noise.

F =
λT
2

∫
dx

∫
dy CTM (x, y, t) · [z (x, y, t)− zTM ]2

+
∑
i

λi
2

∫
dx

∫
dy Ci (x, y, t) · [z (x, y, t)− zi]2

+
1

2

∫
dx

∫
dy
[
γ(∇z (x, y, t))2 + κ

(
∇2z (x, y, t)

)2]
(2.1)

∂CT
∂t

= DT∇2CT − kon (z)CTCM + koff (1− P )CTM + ζT (2.2a)

∂CTt
∂t

= DT∇2CTt − ktCTt + PkoffCTM + ζTt (2.2b)

∂CM
∂t

= DM∇2CM − kon (z)CTCM + koffCTM + ζM (2.2c)

∂CAi
∂t

= DAi∇2CAi − ki (z)CAiCBi + k−iCi + ζAi (2.2d)

∂CBi
∂t

= DBi∇2CBi − ki (z)CAiCBi + k−iCi + ζBi (2.2e)

∂CTM
∂t

= DTM

[
∇2CTM +

1

kBT
∇ · CTM∇

δF

δCTM

]
+ kon (z)CTCM − koffCTM + ζTM

(2.2f)

∂Ci
∂t

= Di

[
∇2Ci +

1

kBT
∇ · Ci∇

δF

δCi

]
+ ki (z)CAiCBi − k−iCi + ζi (2.2g)

∂z

∂t
= −M δF

δz
+ ζ (2.3)

Equation (2.2b) attempts to capture the effects of TCR down-regulation following TCR

triggering (Valitutti et al. 1995). A TCR is considered to be triggered once the signal com-

ponents have assembled on the cytoplasmic portion of the TCR, as described in section 1.2.3.

TCRs that have been bound to pMHC for a sufficient time are triggered and subsequently in-

ternalised and degraded, whereas the non-triggered TCR are free to make new bonds. When

modelling the early contact time period, immediately following the initial contact between

the cells, there is no spatial differentiation associated with down-regulation of TCR. However,

Varma et al. (2006) show that once the mature synapse has formed TCR internalisation is

more prevalent in the cSMAC, therefore this term could include some form of spatial depen-

dency at later stages of the synapse development. A recent work by Choudhuri et al. (2014)

has provided evidence of TCR detachment in the cSMAC during the synapse disengagement
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process, as cells detach and the T-cell resumes migration. While this would not appear to

affect the formation of the synapse, it may be included at later stages in the T-cell:APC

engagement. The PkoffCTM term models the concentration of triggered TCRs, where the ki-

netic constant P is approximated by P = exp[−koffτ ] and τ is the half-life of the TCR:pMHC

bond. Valitutti and Lanzavecchia (1997) suggest TCR:pMHC ligation greater than 5 seconds

results in full triggering, 3-5 seconds results in partial triggering and less than 3 seconds

corresponds to TCR inactivation.

Equations (2.2f) and (2.2g) relate to the bound complexes, where an additional term is

included to model the chemical potential forces, driving the translocation of the complexes

toward regions where the membrane separation distance is close to the unstressed bond length

(Hori, Raychaudhuri and Chakraborty, 2002). And finally, equation (2.3) shows the Langevin-

modelled time evolution of the membrane separation distance, as a functional derivative of

the free energy. This equation is a time-dependent Langevin equation for the non conserved

order parameter z(x, y, t).

The coupled equations demonstrate some of the intrinsic links between the different mem-

brane components, although there are a number of simplifications in this model. One simpli-

fication is the exclusion of the cytoskeletal effects on membrane bound molecules. It has been

noted that the actin cytoskeleton is continuously remodelled throughout the synapse life-cycle,

resulting in an expansion phase, a contraction phase and once the synapse is formed there is

centripetal transport of TCRs toward the cSMAC (Saito and Yokosuka, 2006; Wülfing and

Davis 1998). Drugs employed to interfere with the actin assembly have effectively stopped

the transport of TCRs toward the cSMAC and affected the stability of the synapse (Delon,

Bercovici, Liblau and Trautmann, 1998).

Improvements on the SA model that address the cytoskeletal effects have included an extra

term in equations (2.2) (Lee et al. 2002; Burroughs and Wülfing 2002; Hori, Raychaudhuri

and Chakraborty, 2002), for example

∂CT
∂t

= DT∇2CT − kon (z)CTCM + koff (1− P )CTM −∇ ·VCT + ζT (2.4)

where V is the cytoskeletal directional velocity and the ∇·V term models the effect of the cy-

toskeletal centripetal flow on membrane bound molecules. The model suggested by Burroughs

and Wülfing (2002) also includes additional equations of motion to describe the attachment of

the molecules to the cytoskeleton. For example, the concentration of TCR:pMHCs attached

to the cytoskeleton, Cat
TM , is modelled through equation (2.5)

∂Cat
TM

∂t
= −∇ ·VCat

TM − poffC
at
TM + ponCTM + kon (z)Cat

T CM − koffC
at (2.5)

22



where V is the cytoskeletal velocity and the TCR attachment and detachment rates to the

cytoskeleton are given by pon and poff, respectively. Analysis of this model points to a

necessary requirement of seeding/nucleation of surface molecules, along with bond elasticity

conditions, to produce segregation. Their work reinforces the significant effect differential

bond lengths have on the free energy and the spatial segregation of different molecules in the

IS. However, while the addition of cytoskeletal effects present a more detailed view of the

cellular dynamics, the thermodynamics corresponding to the free energy functional driving

the cell membrane shape has been analysed by Hori, Raychaudhuri and Charkaborty (2002).

They show that for small values of V in equation (2.4) the qualitative physics of pattern

formation do not change from the case where only diffusion is used to transport the molecules.

It may also be noted, the binding parameters for the association and dissociation rates

in equation (2.2) (kon, ki, koff, k−i) are modelled by Gaussian distributions centred on the

natural bond lengths. This simplification of the binding dynamics does not capture the

affinity changes observed empirically. Lollo et al. (1993) have shown a percentage of the

LFA-1:ICAM-1 affinity is increased 200-fold upon T-cell stimulation and CD2 affinity is also

increased. Springer and Dustin (2012) have also shown LFA-1 affinity can be increased in

orders of 103 to 104 when in an open-extended state, although it is not clear how the change

of state from the bent or close-extended state occurs. Also, large differences have been noted

in the binding rates of TCR:pMHC measured in solution, compared with those measured in

situ. Huppa et al. (2010) used single molecule microscopy and fluorescence resonance energy

transfer (FRET) to show the dissociation rates increased 4-12-fold in situ and association

rates increased by 100-fold, leading to an increased TCR affinity for MHC. These studies

highlight the sensitivity of the parameters on the environmental conditions.

Finally, the model was created before the identification of TCR microclusters, subse-

quently the understanding of the cell surface protein movements has altered significantly.

This model does not accommodate the expansion and contraction phases during the synapse

formation as shown in figure 1.4. Also, the results drawn from this model agree with the

synapse formation images produced by Monks et al. (1998) and Grakoui et al. (1999). The

later images produced by a number of labs (Campi, Varma and Dustin, 2005; Douglass and

Vale, 2005; Yokosuka et al., 2005) show TCR microcluster signalling in the pSMAC indicating

the membrane separation distance in this region must facilitate bonds of 15nm, something

that is not evident in the results of Qi et al.
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2.2 Steady State Linearized Membrane Separation Distance

Model

While the SA model attempts to describe the nonlinear dynamics during the formation of

the synapse from the immature to the mature structure, the focus here is directed toward

the early contact times where initial TCR signalling occurs. The start point is the nonlinear

coupled equations (2.1)-(2.3). Linearizing the system around a steady-state homogeneous

solution, such that the surface membrane protein concentrations are constant and nontrivial

at time t0, the linearly stable SA model becomes

∂Cj
∂t

= 0, Cj (x, y, t0) > 0, j = T, T t,M,Ai,Bi, TM, i (2.6)

F =
λT
2

∫
dx

∫
dy CTM (x, y, t0) · [z (x, y, t)− zTM ]2

+
∑
i

λi
2

∫
dx

∫
dy Ci (x, y, t0) · [z (x, y, t)− zi]2

+
1

2

∫
dx

∫
dy
[
γ(∇z (x, y, t))2 + κ

(
∇2z (x, y, t)

)2]
(2.7)

∂z

∂t
= −M δF

δz
+ ζ (2.8)

The time evolution of the membrane separation distance is modelled by a Langevin equation,

and is determined solely by the functional derivative of the free energy, that is dependent

on the reaction kinetics of the bound molecules and the membrane deformation dynamics.

The freely moving surface proteins do not have a role in the linearized model, except to say

that the number of bonds being created must equal the number of dissociating bonds at the

equilibrium point. Appendix A shows the derivation of the Langevin equation that arises for

the local separation distance, z(x, y, t), when the SA model is linearized about this steady

state equilibrium. The resulting Langevin equation is given by

∂z (x, y, t)

∂t
= −M

[
κ∇4z (x, y, t)− γ∇2z (x, y, t) + λz (x, y, t) + σ

]
+ ζ (x, y, t) (2.9)

where

λ = λT CTM (x, y, t0) +
∑
i

λi Ci (x, y, t0) (2.10)

σ = λT CTM (x, y, t0) zTM +
∑
i

λi Ci (x, y, t0) zi (2.11)

Equation (2.11) describes the total chemical potential of the binding energy for the un-

stretched bonds, when they are resting at their natural bond length. This is the mean

separation distance that the unperturbed system will tend toward. Equation (2.10) repre-

sents the strength of the binding energy associated with the bound complexes at time t0.
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This coefficient acts as a damping term, that draws z(x, y, t) toward the mean separation

distance σ.

2.2.1 Chattopadhyay and Burroughs Model

Chattopadhyay and Burroughs (2007) have used a similar form of this linear model to deter-

mine the spatial patch sizes for different bond lengths in the interface. They used a translation

in z that consumes the σ term, z 7→ z − σ
λ , that effectively performs a linear translation fix-

ing the model about the mean separation distance. The specific form of the resulting set of

equations is given by

M
∂z (x, y, t)

∂t
= −B∇4z (x, y, t) + γ∇2z (x, y, t)− λz (x, y, t) + η (x, y, t) (2.12a)

〈η (x, y, t)〉 = 0 (2.12b)〈
η ∗ η′

〉
= 2Dδ

(
x− x′

)
δ
(
y − y′

)
δ
(
t− t′

)
(2.12c)

where η ∗ η′ = η (x, y, t) η
(
x′, y′, t′

)
and the model parameter values were calculated as

shown in table 2.2. The properties of the thermal noise are described by equations (2.12b)

Parameter Description Value Units

M Phenomenological Parameter 4.7× 106 kBT s µm−4

B Membrane rigidity (normal force) 11.8 kBT
γ Membrane surface tension 5650 kBT µm−2

λ Total reaction binding force 6.0× 105 kBT µm−4

D Delta correlated thermal noise strength 4.7× 106 (kBT )2

Table 2.2: Steady state membrane separation distance model parameters. Model
parameters calculated by Chattopadhyay and Burroughs (2007).

and (2.12c). The first equation ensures the net force imposed by the thermal noise on the

system has an ensemble average of zero and the second equation describes the spatial and

temporal correlation for the noise. A delta correlation, with strength proportional to D,

is required to satisfy the equipartition law and is called a white noise force (Risken, 1989).

And, while it is noted that changes in the lipid bilayer resulting from signalling may lead to

non-constant parameter values for the bending modulus and stretching modulus, in the linear

model the constant values may be justified by the small time duration considered. Using this

model and parameters, Chattopadhyay and Burroughs (2007) estimated the average size of

the close contact patches at ∼ 84nm, in agreement with experimental results by Krummel,

Sjaastad, Wülfing and Davis (2000).

As noted in section 2.1, the SA model was developed prior to the discovery of TCR

microclusters and the linearized version of the model is identified with the early contact times

when the TCR:pMHC and LFA-1:ICAM-1 bonds mix in the same region of the membrane,

before the onset of the mature synapse. The existence of TCR microcluster signalling in the
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pSMAC, where LFA-1:ICAM-1 bonds are also located, suggests the linearized model can also

be used to model the dynamics in the pSMAC once the mature synapse has formed, since

there exists a mix of the two different bond lengths in this regime.

26



Chapter 3

Theoretical Methods

This chapter outlines the approach taken and the methods used to analyse the temporal

behaviour of the early contact patches in the IS. The methods used have their roots in

thermodynamics and statistical physics, specifically related to phase-ordering of quenched

systems and first passage probability problems. Section 3.1 outlines the analytical methods

used to analyse the linear steady state membrane separation distance model. The following

section, 3.2, presents a full description of the numerical methods used to produce a computer

simulation for the problem.

3.1 Analytical Methods

The Time Persistence Method, described below, builds on a Gaussian Stationary Process

structure to derive the probability density function associated with membrane:membrane

contact patches. This method has previously been applied to the Ising, Simple Diffusion

and Random Walk models (Majumdar and Sire, 1996; Majumdar, Sire, Bray and Cornell,

1996; Chakraborty and Battacharjee, 2007). It has also been used to determine the close

contact patch size in the linear IS model described by equation (2.12) (Chattopadhyay and

Burroughs, 2007). This section describes the analytical methods required to implement the

time persistence method on the linear IS model, with a view to analysing the temporal dy-

namics. Section 3.1.1 presents a solution for z(x, y, t) in equation (2.12), using the Fourier

transform method. In the following section 3.1.2, an estimate is derived for the probability

density function for the local membrane separation distance, calculated using the steady state

Fokker-Planck description. Then, section 3.1.3 shows a derivation of the temporal correla-

tion function for the problem. Similar problems have been analysed using a scaling approach

(Barabasi and Stanley, 1995), however, section 3.1.4 highlights the problems using this ap-

proach for the linear IS problem. Then, in section 3.1.5 a description of the independent

interval approximation (IIA) method is given, that leads to the calculation required to deter-
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mine the average time persistence for a Gaussian Stationary Process. Finally, section 3.1.6

extends the IIA method to include a single threshold, that is used to determine the bond

persistence for the linear IS model.

3.1.1 Integral Equation Solution of the Langevin Equation

In this section, a solution is derived for the linear membrane model defined in equation (2.12),

that is further detailed in appendix B. In the following sections, vector notation is used to

define the x, y dimensions in the plane of the membrane, such that x =
[
x y

]T
. In this

case, equation (2.12) can be rewritten

M
∂z (x, t)

∂t
= −B∇4z (x, t) + γ∇2z (x, t)− λz (x, t) + η (x, t) (3.1a)

〈η (x, t)〉 = 0 (3.1b)〈
η (x, t) η

(
x′, t′

)〉
= 2Dδ

(
x− x′

)
δ
(
t− t′

)
. (3.1c)

Using the complementary Fourier transforms,

F {z(x, t)} = z̃(k, t) =
1

2π

∫
Ω
z(x, t) e−ik·xdx (3.2a)

F−1 {z̃(k, t)} = z(x, t) =
1

2π

∫ ∞
−∞

z̃(k, t) eik·xdk (3.2b)

F {η(x, t)} = η̃(k, t) =
1

2π

∫
Ω
η(x, t) e−ik·x dx (3.3a)

F−1 {η̃(k, t)} = η(x, t) =
1

2π

∫ ∞
−∞

η̃(k, t) eik·x dk (3.3b)

where k =
[
k1 k2

]T
and Ω describes the surface area considered. The Langevin equa-

tion (3.1a) can then be expressed in the k − t space as

∂z̃(k, t)

∂t
= −α(k)z̃(k, t) +

η̃(k, t)

M
(3.4)

where

α(k) =
1

M

(
B|k|4 + γ|k|2 + λ

)
(3.5)

Then, equation (3.4) can be solved using the integrating factor method, as

z̃(k, t) = e−α(k)t

[
1

M

∫ t

t0

eα(k)t′ η̃(k, t′)dt′ + z̃0(k, t, t0)

]
(3.6)

whereupon, the inverse transform equation (3.2b) is applied to express the time-dependent
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solution as an integral equation

z(x, t) =
1

2πM

∫
dk

∫ t

t0

dt′ e−α(k)(t−t′)+ik·x η̃(k, t′) + z0(x, t, t0) (3.7)

where

z0(x, t, t0) =
1

2π

∫ ∞
−∞

dk z̃0(k, t0) e−α(k)t eik·x = F−1
{
z̃0(k, t0) e−α(k)t

}
(3.8)

describes the relevant contribution from the initial condition z̃0(k, t0). The α(k) function is

positive definite, with a minimum at k0 =
[
0 0

]T
of α(k0) = λ/M . Therefore, z0(x, t, t0)→

0 as t→∞, such that, following an initial relaxation period the effect of the initial conditions

are negligible. In practice, the initial condition, z0(x, t, t0), is set to zero. This corresponds

to a configuration where the entire membrane:membrane contact region is set at the mean

intermembrane separation distance.

3.1.2 Fokker-Planck Equation for the Steady State Probability Distribu-

tion

In this section, the Fokker-Planck equation is used to study the steady state probability

density distribution for the local mean separation distance, where it can be shown the steady

state probability density distribution admits of a Gaussian form. The Langevin equation in

the k − t space, equation (3.4), may be expressed in the form

∂z̃(k, t)

∂t
= f(z̃(k, t), t) + g(z̃(k, t), t)ζ(k, t) (3.9)

where ζ has zero mean and unit variance. The linear IS model is mapped to equation (3.9)

through the functions

f(z̃(k, t), t) = −α(k)z̃(k, t) (3.10)

g(z̃(k, t), t) =

√
2D

M
(3.11)

where g(z̃(k, t), t) is a constant function that is independent of time and the separation dis-

tance, that will be defined by the constant variable g. In the form presented in equation (3.9),

it can be shown that the Langevin equation is equivalent to the forward Fokker-Planck equa-

tion for the probability distribution P (z̃k,k, t), that is the probability the system is at the

separation distance in the k − t space, z̃k, at time t (Risken, 1989). Using the probability

definition,

P (z̃k,k, t) = 〈δ (z̃k − z̃ (k, t))〉 (3.12)

29



where the ensemble is taken over all noise realisations, the Langevin equation (3.9) gives rise

to the corresponding time-dependent Fokker-Planck equation

∂

∂t
P (z̃k,k, t) = − ∂

∂z̃k
[f(z̃k)P (z̃k,k, t)] +

∂2

∂z̃2
k

[
g2

2
P (z̃k,k, t)

]
, (3.13)

that describes the time evolution of the probability density function for the process. The

steady state solution occurs when
∂P (z̃k,k, t)

∂t
= 0 and the steady state probability distribu-

tion is given by Ps(z̃k,k), such that

∂

∂z̃k

[
−f(z̃k)Ps(z̃k,k) +

g2

2

∂

∂z̃k
Ps(z̃k,k)

]
= 0 . (3.14)

A solution exists when the term inside the square brackets is constant, that can be set to 0

without loss of generality, then

g2

2

∂

∂z̃k
Ps(z̃k,k)− f(z̃k)Ps(z̃k,k) = 0 (3.15)

that for the linear IS model is

∂

∂z̃k
Ps(z̃k,k) +

M2α(k)

D
z̃kPs(z̃k,k) = 0. (3.16)

Using the integrating factor method, equation (3.16) can be solved

Ps(z̃k,k) = Ce−
M2α(k)

D
z̃2
k (3.17)

where Ps is a function of k and z̃k, and C is the normalisation factor. Applying the inverse

Fourier transform and through a little manipulation, as shown in appendix G.2, the prob-

ability density distribution for the local membrane separation distance can be modelled by

the following Gaussian form

P (Z,x, t) = 〈δ (Z − z(x, t))〉 =

(
1

2π
∑

kA(k,x)

) 1
2

e
− Z2

2
∑

k A(k,x) (3.18)

with ∑
k

A(k,x) =
D

2π2M2

∫
dk

e2ik·x

α(k)
. (3.19)

3.1.3 Temporal Two Point Correlation Function

In this section, the calculation is outlined for the two point temporal correlation function

c12(z(x, t1), z(x, t2)) = 〈z (x, t1) z (x, t2)〉 , (3.20)
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using the time-dependent solution for the local intermembrane separation distance, equa-

tion (3.7). The temporal correlation for t2 ≥ t1 can be written as the sum of two integrals

(see Appendix C.1 for the full derivation)

〈z (x, t1) z (x, t2)〉 =
D

(2π)M2

[∫ ∞
0

r
e−α(r)τ

α(r)
dr −

∫ ∞
0

r
e−α(r)(τ ′−2t0))

α(r)
dr

]
+
〈
z2

0

〉
(3.21)

where τ = t2 − t1 is the time difference between two time points, τ ′ = t1 + t2 is the sum of

the two time points, z0 is dependent on the initial conditions and the scalar function α(r)

(not to be confused with equation (3.5), although it has a similar form) is given by

α (r) =
Br4 + γr2 + λ

M
. (3.22)

The dependence of the correlation function on τ ′ shows that this is a non-stationary

process. However, by setting z0 = 0 and considering the large time limit as t1 → ∞, the

second integral term on the r.h.s of equation (3.21) tends to 0, leaving a correlation function

that is entirely dependent on the time difference between t1 and t2 (time translation invariant)

c12 (|t2 − t1|) = 〈z (x, t1) z (x, t2)〉 =
D

2πM2

∫ ∞
0

r
e−α(r)τ

α(r)
dr . (3.23)

In this domain, the correlation function is a Gaussian Stationary Process and the autocorre-

lation function, where t1 = t2, is given by the constant term

c11 = c12 (0) =
〈
z2 (x, t)

〉
=

D

2πM2

∫ ∞
0

r

α(r)
dr . (3.24)

By analysing this time domain, far from the initial contact point, the focus is not on the time

dynamics directly following the initial contact between the cells. Instead, the time period

immediately following the relaxation of the membranes in to a quasi-stable contact zone is

considered, where the interplay between the membrane dynamics and the chemical potential

from the bonding maintain the Gaussian Stationary Process behaviour. Figure 3.1 shows the

normalised two point temporal correlation function plotted against τ , that is independent of

the thermal noise amplitude. As τ → ∞, there is a slow convergence and the correlation

function asymptotically approaches zero. Attempts to obtain a closed solution for the integral

equation (3.23) have proved unfruitful (see appendix D) and subsequently an asymptotic

approximation is developed in chapter 4, to analyse the behaviour as τ →∞.

3.1.4 Scaling Approach

A traditional scaling approach to determine the growth, roughening and dynamical scaling

exponents would determine if the interface z(x, t) is self-affine (Barabasi and Stanley, 1995).
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Figure 3.1: The large time Gaussian stationary process temporal correlation
length. The two point temporal correlation is scaled by the autocorrelation length.

I this case, through rescaling an interface that is statistically equivalent to the unscaled

interface can be obtained. For the purposes of this section only, φ(x, t) = z(x, t) is used for the

local separation distance in equation (3.1a), in order to retain the variable z for the dynamic

exponent (as is commonly used in the literature). Rescaling in the spatial dimensions, time

dimension and intermembrane separation distance relies on the introduction of the scaled

variables

x 7→ x′ ≡ bx (3.25)

t 7→ t′ ≡ bzt (3.26)

φ 7→ φ′ ≡ bαφ (3.27)

whereupon equation (3.1a) can be expressed as

Mbα−z
∂φ(x, t)

∂t
= −Bbα−4∇4φ(x, t) + γbα−2∇2φ(x, t)− λbαφ(x, t) + b−

d+z
2 η(x, t) (3.28)

and so

M
∂φ(x, t)

∂t
= −Bbz−4∇4φ(x, t) + γbz−2∇2φ(x, t)− λbzφ(x, t) + b

z−d
2
−αη(x, t). (3.29)

To find the correct exponents z, α and subsequently β = α/z, the equation (3.1a) must remain

invariant under the rescaling (3.29). Each of the four terms has a distinct exponent and there

are only 2 unknowns, therefore the system is overdetermined and it has no solution. However,
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the scaling behaviour can be analysed when different terms are forced to be invariant under

the transformation. Consider the following scenarios

• The rigidity term ∇4φ is invariant when z = 4.

Rendering the noise term invariant, this then leads to α =
4− d

2
and β =

4− d

8
.

In this case, the remaining terms scale like b2∇2φ and b4λφ. Then, in the hydrodynamic

limit, as b→∞ the λφ term dominates.

• The surface tension term ∇2φ is invariant when z = 2.

Rendering the noise term invariant, this then leads to α =
2− d

2
and β =

2− d

4
.

In this case, the remaining terms scale like b−2∇4φ and b2λφ. Again, in the hydrody-

namic limit, as b→∞ the λφ term dominates.

• The chemical potential term λφ is invariant when z = 1.

Rendering the noise term invariant, this then leads to α =
1− d

2
and β =

1− d

2
.

In this case, the remaining terms scale like b−3∇4φ and b−1∇2φ. Then, in the hydro-

dynamic limit, as b → ∞ the first two terms on the RHS of equation (3.29) vanish to

give

M
∂φ(x, t)

∂t
= −λφ(x, t) + η(x, t) (3.30)

While this approach is useful for the Edwards-Wilkinson equation (Edwards and Wilkinson,

1982), it is ineffectual for the linear IS model.

3.1.5 Independent Interval Approximation

The persistence probability of a stochastic process has been studied for a number of models

including the Ising, Random Walk, Diffusion and the IS model. The independent interval

approximation method, used to determine the time persistence, is introduced through works

by Majumdar, Sire, Bray and Cornell (1996) and more recently reviewed in Bray, Majumdar

and Schehr (2013). Here, a brief description is given of the method that is generic for

all Gaussian processes. The stochastic variable, z(x, t), with temporal correlation function

c12(t1, t2) = 〈z(x, t1)z(x, t2)〉 as shown in equation (3.23), may be normalised

X(t) =
z(x, t)√
〈z(x, t)2〉

(3.31)

whereupon, the temporal correlation function is given by

C(t1, t2) = 〈X(t1)X(t2)〉 =

〈
z(x, t1)z(x, t2)√

〈z(x, t1)2〉
√
〈z(x, t2)2〉

〉
. (3.32)
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For the case considered by Majumdar, Sire, Bray and Cornell, a new time variable T is

introduced, such that C(T1, T2) = f(T1 − T2). This correlation function is time translation

invariant and is expressed as a function solely dependent on the time difference between

two observations, whereupon it is shown to be a Gaussian Stationary Process. Then, the

“clipped” process σ(T ) = sgn X(T ) has the “clipped” correlator (Majumdar, Sire, Bray and

Cornell, 1996), as shown in appendix E

A(T ) = 〈σ(0)σ(T )〉 =
2

π
sin−1 (C(T )) , (3.33)

that can be used to calculate the probability density P (T ). Subsequently, the probability

p0(T ) that there are no zeros of X(T ) in the interval T can also be determined. Calculation

of P (T ) and p0(T ) enable the expression of the “clipped” correlator in terms of the mean

interval length < T > (through the small T approximation),

A(T ) = 1− 2T

< T >
+ . . . (3.34)

whereupon, differentiating A(T ) with respect to T , leads to the direct calculation

< T >= − 2

A′(T )
(3.35)

The basis of the method depends on the assumptions that successive crossings of the z = 0

line are independent, in the limit of the interval size tending to 0. An alternative calculation

was formerly presented half a century earlier by Rice (1944, 1945), that makes direct use of

the correlation function, C(T ),

ρ =
1

π

√
−C ′′(0) (3.36)

< T > =
1

ρ
. (3.37)

The method outlined in section 3.1.6 is based on this methodology, but with an important

difference concerning the reflection symmetry, as detailed below.

3.1.6 Single-Threshold Model

The method presented in section 3.1.5 can be used to calculate the average time persistence

between successive cuts of the z = 0 line for a given point, x, in the synaptic junction. The

z = 0 line represents the mean separation distance, taking in to consideration all separation

distances throughout the contact zone. Given a concentration of two differing bond lengths

in the synaptic junction, 15nm and 45nm, the mean separation distance will be somewhere in

between these two distances, and dependent on the relative bond concentration levels. The
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focus here is on the time persistence of membrane patches related to shorter TCR:pMHC

bonds, where the membrane separation distance is less than the mean separation distance.

To analyse this, a single threshold value is introduced, ∆, that can be used to define a

bond length at a distance ∆ from the mean separation distance. In this case, two opposing

membranes are said to be within a close contact distance if the separation distance is less than

−∆ nm (Chattopadhyay and Burroughs, 2007), such that if the mean separation distance

were 25 nm, then ∆ = 10 nm would describe a close contact definition of 15 nm. The time

persistence of this bond is then given by the length of time the separation distance remains

below this threshold value.

The Gaussian Stationary nature of the linear model, demonstrated through equation

(3.23), has reflection symmetry about the z = 0 line. Therefore, the statistics relating to

z(x, t) ≤ −∆ are equivalent to the statistics for z(x, t) ≥ ∆, and the latter description is

used for ease of notation.

As per Majumdar, Sire, Bray and Cornell (1996), the stochastic variable is normalised,

such that

X(t) =
z(x, t)√
〈z(x, t)2〉

(3.38)

and this new normalised variable has the two-point time correlation function

C12(t1, t2) = 〈X(t1)X(t2)〉 =

〈
z(x, t1)z(x, t2)√〈

[z(x, t1)]2
〉√〈

[z(x, t2)]2
〉
〉

=
c12(τ)

c11
= C12(τ) (3.39)

where c12(τ) is given by equation (3.23).

Then, for two variables X1 = X(t1) and X2 = X(t2), the joint probability distribution

has the probability density function

P (X1, X2) = Ne−
1
2
XTC−1X (3.40)

where X = [X1 X2]T , the covariance matrix is given by

C =

 1 C12(τ)

C12(τ) 1

 (3.41)

and N =
1

2π
√

det C
is the normalisation constant, ensuring

∫ ∞
−∞

dX1

∫ ∞
−∞

dX2 P (X1, X2) = 1 (3.42)

Next, the determination of an expression for the “clipped” correlator is sought. The

sign flip present in the σ function used by Majumdar et al. can be represented as a step
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function, that is appropriate for analysis on a process with vertical symmetry about the

z = 0 line. However, the introduction of the ∆ threshold value breaks this symmetry for

∆ 6= 0, therefore the solution requires the introduction of the “clipped” step function that

is 1 for close contact patches and 0 otherwise. The condition z(x, t) ≥ ∆ translates as

X(t) ≥ ∆√
c11

for the normalised variable, therefore the “clipped” variable is introduced

σ (X) =


1 for X ≥ ∆√

c11

0 for X < ∆√
c11

(3.43)

to analyse the desired region. In this case, the “clipped” correlator is given by (see ap-

pendix F)

A (t1, t2) =
1

2π
√

det C

∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1

∫ ∞
∆√
c11
−C12(τ)X1

du e−
1

2 detC
u2

(3.44)

where τ = t2 − t1 and detC is the determinant of the covariance matrix C.

Since the τ dependence for the clipped correlator is realised through the two-point cor-

relation function, the first derivative of A(τ) with respect to τ can be calculated using the

chain rule
∂A(τ)

∂τ
=

∂A(τ)

∂c12(τ)

∂c12(τ)

∂τ
(3.45)

The workings are shown in appendix F where the final form is expressed as

∂A(τ)

∂τ
=

[
C12(τ)

2π (det C)
3
2

∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1

∫ ∞
∆√
c11
−C12(τ)X1

du e−
1

2 detC
u2

+
1

2π
√

det C

∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1X1e
−C12(τ)

2 detC

(
X1− ∆

C12(τ)
√
c11

)2

− C12(τ)

2π (det C)
5
2

∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1

∫ ∞
∆√
c11
−C12(τ)X1

du u2e−
1

2 detC
u2

]

× −D
2πc11M2

∫ ∞
0

r e−α(r)τdr (3.46)

Figure 3.2 shows the plot of < τ > (using equations (3.35) and (3.46)) against ∆.

3.2 Numerical Methods

In order to obtain a numerical solution of the linear separation distance model, the spa-

tial and time dimensions in equation (3.1) are discretized using a finite difference scheme,

to approximate the derivatives at discrete sample points. Section 3.2.1 describes the map-

ping of the continuous space and time dimensions on to a discrete set of sample points. In
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Figure 3.2: 〈τ〉 plotted against ∆. The correlation function c12(τ) was calculated for
τ = 0.01. Changing the value of τ in the correlation function has the effect of vertically
rescaling the mean interval length < τ >, but the qualitative picture remains unchanged.

section 3.2.2, the finite difference equations for approximating the derivative terms in the

Langevin equation are defined, along with the explicit forward Euler representation. And

finally, section 3.2.3 gives an outline of the method used to collect ensemble statistics during

computer simulations.

3.2.1 Discretisation

Consider an area of membrane in the synaptic junction that is described in the Cartesian

coordinate system by length X in the x-direction and Y in the y-direction. The area can

be discretized using N regularly spaced intervals of size ∆x in the x-dimension to describe

the range 0 to X. Similarly, the y dimension is discretized using M intervals of size ∆y

to describe the range 0 to Y . The membrane area can then be represented as a grid with

discrete sample points defined as

xn,m = (n∆x, m∆y) (3.47)

where n = 0, 1, . . . , N and m = 0, 1, . . . ,M . Similarly, the time dimension may be discretized

using regular intervals such that the discrete time points are given by tk = k∆t, where ∆t is

the temporal step size.
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Using this discretization scheme, the local membrane separation distance and the noise

term at the discrete point xn,m, at time tk, can be expressed using the subscript notation

zn,m,k = z (xn,m, tk) (3.48)

ηn,m,k = η(xn,m, tk). (3.49)

The second moment for the noise term, equation (3.1c), can then be approximated in the

discrete domain by

〈
η(xn,m, tk)η(xn′,m′ , tk′)

〉
= 2Dδ(∆x(n− n′))δ(∆y(m−m′))δ(∆t(k − k′)) (3.50)

=
2D

∆x∆y∆t
δ(n− n′)δ(m−m′)δ(k − k′) (3.51)

and subsequently a scaling factor of

√
2D

∆x∆y∆t
is applied to the random noise variable

drawn from a Gaussian distribution with unit variance, that is used to represent the thermal

noise.

3.2.2 Finite Difference Approximations and Time Evolution

Using the discrete representation from section 3.2.1 the Taylor series expansion can be used

to derive the central difference approximations for the spatial derivatives in equation (3.1).

The second order Laplacian term can be approximated by

∇2z(xn,m, tk) =
zn+1,m,k − 2zn,m,k + zn−1,m,k

(∆x)2
+
zn,m+1,k − 2zn,m,k + zn,m−1,k

(∆y)2
(3.52)

and fourth order derivative can be approximated by

∇4z(xn,m, tk) =
zn+2,m,k − 4zn+1,m,k + 6zn,m,k − 4zn−1,m,k + zn−2,m,k

(∆x)4

+
zn,m+2,k − 4zn,m+1,k + 6zn,m,k − 4zn,m−1,k + zn,m−2,k

(∆y)4

+
2 (zn+1,m+1,k + zn+1,m−1,k + zn−1,m+1,k + zn−1,m−1,k)

(∆x)2(∆y)2

−
4 (zn+1,m,k + zn−1,m,k + zn,m+1,k + zn,m−1,k)

(∆x)2(∆y)2

+
8zn,m,k

(∆x)2(∆y)2
(3.53)

The synaptic junction may be considered as a large (infinite) sized system, that is modelled

using a small patch of membrane, whereupon periodic boundary conditions may be assumed.

Periodic boundary conditions can be implemented by “wrapping” the derivatives across the

boundary. For example, the Laplacian term at the point (n = 1,m = 0) on the membrane,
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at time tk, can be approximated by

∇2z(x1,0, tk) =
z2,0,k − 2z1,0,k + z0,0,k

(∆x)2
+
z1,1,k − 2z1,0,k + z1,M,k

(∆y)2
. (3.54)

Finally, the derivative with respect to time can be approximated using the forward difference

equation
∂z(xn,m, tk)

∂t
=
zn,m,k+1 − zn,m,k

∆t
. (3.55)

Using equations (3.52), (3.53) and (3.55) (with equations (3.54) and the fourth order equiv-

alent applied at the boundaries), the linear IS model described by equation (3.1) can be

numerically solved using the simple Euler integration method. The time evolution is then

given by

zn,m,k+1 = zn,m,k + ∆tF (zn,m,k) +
1

M

√
2D∆t

∆x∆y
ζn,m,k (3.56)

where

F (zn,m,k) = − B
M
∇4zn,m,k +

γ

M
∇2zn,m,k −

λ

M
zn,m,k (3.57)

and ζ is a random variable drawn from a Gaussian distribution with unit variance. In practise,

the Box-Müller algorithm is used to generate the values for ζ (Press, Teukolsky, Vetterling

and Flannery, 2005).

The stability of the Simple Euler method depends on the values of the time step size and

the discrete step size used in the spatial dimensions. The two-dimensional Laplacian is stable

when
∆t

∆x∆y
≤ 1

4
(3.58)

and by fixing ∆x = ∆y = 1, the stability is managed through the choice of ∆t.

The core structure relies on a version of Stratonovich calculus (Risken, 1989) in order to

avoid explicit multiplicative noise in the basic model, in conformity with most biological

models of this genre (Qi et al., 2001; Burroughs and Wülfing, 2002). The Runge-Kutta

order 4 method was used for the validation of the Eulerian scheme and the simulation results

remained unaffected by the choice of method.

Given thermal fluctuations arising from the reaction kinetics for the binding surface pro-

teins, the membrane dynamics over time are simulated through the time-evolution of the

discrete model, equation (3.56). Periodic boundary conditions are used and the initial condi-

tions for the simulations were chosen to represent a positioning of the membrane away from

the steady-state configuration. Figure 3.3 shows the time evolution of the local membrane

separation distance for a fixed point on the membrane, starting from an initial separation

distance of 100 nm, for a range of time steps used in the numerical integration. All values

of ∆t follow a similar initial relaxation trajectory, with the Gaussian Stationary Process ev-

39



-20

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120  140  160  180

Se
pa

ra
tio

n 
D

is
ta

nc
e,

 z
(t)

   
 (n

m
)

t (s)

6t = 0.1
6t = 0.05

6t = 0.025
6t = 0.001

Figure 3.3: The simulated time evolution of the local membrane separation dis-
tance. The membrane separation distance simulated over time using finite difference meth-
ods, for a fixed point x on the membrane, with initial condition z(x, 0) = 100 nm. The
separation distance relaxes to a steady-state, fluctuating about z = 0. The relaxation trajec-
tory and magnitude of fluctuations are consistent for different values of ∆t.

ident after ∼ 20 seconds. The fluctuations are of the same magnitude for all ∆t, due to the

rescaling constant used in the thermal noise term.

The delta correlated noise strength in equation (3.1c), D, determines the strength of the

thermal fluctuations. Using the model parameter values in table 2.2, a range of D values

were used in simulations to determine the observed deviations of membrane fluctuations

about the mean. Figure 3.4 shows the probability density distribution for z(x, t) generated

from numerical simulations, comparing three different thermal noise strengths. Using the

parameter values in table 2.2, the local membrane separation distance fluctuations are of the

nanometric scale. Figure 3.4(b) shows a good parabola fit to the natural logarithm of the

probability density, indicating a Gaussian structure for the probability density function.

3.2.3 Numerical Simulation of the Single-Threshold Model

In this section the numerical implementation of the single-threshold model, as described in

section 3.1.6, is outlined. The solution to equation (3.1) is the stochastic variable z(x, t)

that is a Gaussian Stationary Process fluctuating about z = 0, as shown in section 3.2.2.

Figure 3.5(a) shows simulation results for z(x, t), at a fixed point on the membrane, during

a sample time frame. The two different values of the noise strength, D, display the effect

of increasing/decreasing the thermal fluctuations, that corresponds to a Gaussian Stationary

40



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-35 -30 -25 -20 -15 -10 -5  0  5  10  15  20  25  30  35

P[
z(

x,
t)]

z(x,t) (nm)

D = 4.7 x 106

D = 4.7 x 107

D = 4.7 x 108

(a)

-20

-15

-10

-5

 0

-40 -30 -20 -10  0  10  20  30  40

ln
(P

[z
(x

,t)
])

z(x,t) (nm)

D = 4.7 x 106

D = 4.7 x 107

D = 4.7 x 108

(b)

Figure 3.4: The probability density of the local membrane separation distance, ex-
tracted from numerical simulations using three different thermal noise strengths.
Panel 3.4(a) shows the probability density for z(x, t). The probability density is centred
around 0 and the width increases as the magnitude of the thermal noise increases. Panel 3.4(b)
shows the probability density function plotted in the natural log scale (data points), with
parabolic curves fitted (lines) to show the Gaussian nature.
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Process with a larger/smaller amplitude. This implies higher values of thermal noise increase

the probability of crossing larger ∆ values.

A schematic illustration of the method used to determine the bond time persistence

instances is shown in figure 3.5(b). The t−−∆ regions correspond to the length of time a bond

(with length ∆ from the mean separation distance) persists and are calculated as the time

z(x, t) spends below the −∆ threshold. z(x, t) is statistically symmetrical about ∆ = 0, but

for ∆ 6= 0 the symmetry in the z direction is broken, whereupon the statistics below −∆

are different from the statistics above −∆. In this case, the persistence above −∆ would

indicate the time duration where no bonding is taking place. However, in accordance with

the statistical symmetry of the Gaussian Stationary Process about ∆ = 0, the statistics for

z(x, t) < −∆ are equivalent to the statistics for z(x, t) > ∆. A t+∆ region is defined as a time

interval between two successive crossings of the z = ∆ line, where z(x, t) remains above ∆.

In this case, z(x, t) enters the region from below the ∆ line and t+∆ is the time taken to return

below the ∆ threshold. Then, each instance of time persistence is given by t+∆ = t2 − t1,

where

z(x, t1) = z(x, t2) = ∆

z(x, t) ≥ ∆, t1 < t < t2. (3.59)

Using the discrete notation of section 3.2.1, if the separation distance at some point xn,m

on the membrane crosses the threshold from below at zn,m,k, then the index k is stored in

memory until the separation distance crosses back over the ∆ threshold at some future point

zn,m,k+j . Then, the time persistence above the ∆ threshold is given by t+∆ = j∆t, where ∆t

is the integration time step.

The different instances of time persistence are assumed to be statistically independent

via the independent interval approximation (Bray, Majumdar and Schehr, 2013; Majumdar,

Sire, Bray and Cornell, 1996). Then, the average time persistence is given by the statistical

average

< t+∆ >=
1

T

T∑
i=1

t
+(i)
∆ (3.60)

where t
+(i)
∆ is the ith instance of time persistence above ∆ and T is the total number of

instances recorded for all points xn,m over the simulated time range. In the following analysis

the ‘+’ is dropped for ease of notation, where it is assumed t∆ is the time persistence above

∆.

The probability density of the t∆ instances is recorded by maintaining a frequency dis-

tribution of the various t
(i)
∆ lengths. For large enough statistics, this normalised frequency

distribution is equivalent to the probability density for t∆. Then the probability that the
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Figure 3.5: Examples of simulated solutions for the separation distance and the
time persistence definition. Figure 3.5(a) shows the simulated time dependent solution
for z(x, t) using two different delta correlated noise strengths and 3.5(b) shows a schematic
illustration of the t−−∆ and t+∆ regions that represent persistent bonds.
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time persistence is equal to or less than τ is given by P (t∆ ≤ τ), with P (t∆ ≤ ∞) = 1. For

discrete P , the probability density can be expressed as a sum of Dirac-δ functions

W∆(τ) =
∞∑
m=1

p∆
mδ(τ − τm) (3.61)

where τm are multiples of ∆t and p∆
m is the first passage probability density associated with

τm for a given ∆ value (Krug et al., 1997). The persistence (survival) probability is then

identified through the first passage statistics of the fluctuating interface

P∆(τ) = 1−
∫ τ

0
W∆(τ ′)dτ ′ (3.62)

A major emphasis of this study is to analyse the effect of extremal values on the time

persistence calculated using this statistical average technique, as has often been shown to be

of great importance in understanding the expected variation between the theoretical analysis

presented and analogous biological experiments (Chattopadhyay and Burroughs, 2007; Bush

and Chattopadhyay, 2014). As an example of the latter type, quite often in the nanospec-

troscopy of flagellar dynamics, for example sperm (Hilfinger, Chattopadhyay and Jülicher,

2009; Bayly and Wilson, 2014), ensemble averaging is a serious issue due to the perceived lack

of ergodicity in such dynamics. Technically, what this will imply is an understanding of the

role of the long tail in the P∆(τ) probability distribution profile, as defined in equation (3.62).

The results shown in chapter 6, surprisingly indicate that high frequency nodes, the generator

of extremal value statistics, return negligible contribution to the ensemble statistics.
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Chapter 4

Asymptotic Analysis Applied to the

Temporal Correlation Function

The essence of this chapter lies in the understanding that the presence of the ∇4z term in

the membrane kinetics annuls the possibility of an exact closed form non-integral solution

of the two-point correlation function (cf. appendix D for a trial using the residue theorem).

However, asymptotic analysis can be employed to determine an approximation for the corre-

lation function, as τ →∞. Section 4.1 shows the derivation of the asymptotic solution using

Laplace’s Method and section 4.2 details the same derivation using the Saddle Point Method.

Both methods are detailed in Murray (1974) and the analysis that follows performs the same

logical steps as those presented in this work.

4.1 Laplace’s Method

Laplace’s method can be used for integral equations of the form

f(τ) =

∫ ∞
0

g(k)eh(k)τ dk . (4.1)

The temporal correlation function has the same functional form as equation (4.1), if the

following functional mapping is used

g(k) =
D

2πM2

(
Mk

Bk4 + γk2 + λ

)
(4.2)

h(k) = −Bk
4 + γk2 + λ

M
. (4.3)

As τ → ∞, the dominant term in the integral equation (4.1) comes from the immediate

vicinity of the maximum of h(k). The stationary points for h(k) occur at the points where
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the first derivative is zero, such that

∂h(k)

∂k
= −k(4Bk2 + 2γ)

M
= 0. (4.4)

In this case, values of k = 0 or k2 = −γ/2B describe the turning points, with the latter

describing purely imaginary solutions, that are considered through the application of the

saddle-point method in section 4.2. The stationary point with a real solution for ∂h(k)/∂k = 0

occurs at k = 0, where h(0) = − λ

M
. Now h(k) < h(0) for 0 < k <∞ and h′′(0) = −2γ/M <

0, therefore h(k) is a maximum at k = 0 and the Taylor expansion about k = 0 can be

expressed as

h(k) = h(0) + h′(0)k +
h′′(0)

2!
k2 +

h′′′(0)

3!
k3 +

h′′′′(0)

4!
k4, (4.5)

where the expansion terminates O(k4), since hn(k) = 0 for n > 4. It is also noted that

h′(0) = 0 and h′′′(0) = 0, such that

h(k)− h(0) =
h′′(0)

2!
k2 +O(k4) (4.6)

where h′′(0) < 0, such that the positive real variable s may be introduced

h(k)− h(0) = −s2 (4.7)

and the exponent in the term under the integral in equation (4.1) may be written

eh(k)τ = eh(0)τe−s
2τ . (4.8)

By comparing equations (4.6) and (4.7), it is possible to represent k as a function of s

h′′(0)

2!
k2 +O(k4) = −s2 (4.9)

k2 +O(k4) = − 2

h′′(0)
s2 (4.10)

k =

(
− 2

h′′(0)

) 1
2

s+O(s2) (4.11)

such that the Taylor expansion of g(k) may also be represented as a function of s

g(k) = g(0) + g′(0)k +
g′′(0)

2!
k2 +O(k3)

= g(0) + g′(0)

(
− 2

h′′(0)

) 1
2

s+O(s2) . (4.12)
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The rate of change of k with respect to s can be determined from differentiating equa-

tion (4.11), to give

dk

ds
=

(
− 2

h′′(0)

) 1
2

+O(s) (4.13)

and then finally, using equations (4.8), (4.12) and (4.13), the integral equation (4.1) can be

approximated by the expansion

f(τ) ∼ eh(0)τg(0)

[∫ ∞
0

(
− 2

h′′(0)

) 1
2

e−s
2τ ds+

∫ ∞
0
O (s) e−s

2τ ds

]

+eh(0)τg′(0)

[
− 2

h′′(0)

∫ ∞
0

s e−s
2τ ds+

∫ ∞
0
O(s2) e−s

2τ ds

]
+

∫ ∞
0
O(s2) e−s

2τ ds (4.14)

∼ eh(0)τg(0)

(
− π

2τh′′(0)

) 1
2

+ eh(0)τO
(

1

τ

)
. (4.15)

The specific function, g(k), required to map the temporal correlation function for the linear IS

model, equation (4.2), is zero for g(0). Therefore, the second term in the expansion containing

g′(0) 6= 0 is used (c.f. equation (4.14)), to give

f(τ) ∼ eh(0)τg′(0)

(
− 2

h′′(0)

)∫ ∞
0

s e−s
2τ ds+O

(
τ−

3
2

)
. (4.16)

Finally, substituting the values for h(0), g′(0) and h′′(0), gives the asymptotic approximation

f(τ) ∼ M2

λγ
τ−1e−

λ
M
τ +O

(
τ−

3
2

)
. (4.17)

Figure 4.1 shows a plot of the asymptotic solution (dashed line) and the integral solution (solid

line), where the asymptotic solution has been scaled by a pre-factor that is derived from a

least squares fit to the integral solution in the large τ range. The asymptotic approximation

is not appropriate for the range τ < 30, where there is a marked difference between the two

curves. However, a comparison of the decay rate in the large τ region, shows a consistent

decay rate for the two solutions. This is shown in figure 4.2, where the correlation function

solutions are plotted against time, using a log scale for the correlation functions. This implies

the asymptotic approximation may be used as an analytical alternative to the integral solution

in this region.

4.2 Saddle Point Method

The Saddle Point Method may also be used to determine an asymptotic approximation for the

integral solution. The method is similar to Laplace’s Method, but is applied in the complex

plane and the main steps, as described by Murray(1974), are shown below. In this case, the
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asymptotic approximation is derived for integrals of the form

f(τ) =

∫
C
g(z)eh(z)τdz (4.18)

where z = x + iy and x, y ∈ <. The two-point correlation function, equation (3.23), can be

expressed in the form of equation (4.18) by using the following functions

h(z) = −α(z) = −Bz
4 + γz2 + λ

M
(4.19)

g(z) =
D

2πM2

z

α(z)
=

Dz

2πM(Bz4 + γz2 + λ)
(4.20)

and then h(z) is the complex function

h(z) = φ(x, y) + iψ(x, y) (4.21)

with the two real-valued functions given by

φ(x, y) = −
B
(
x4 + y4 − 6x2y2

)
+ γ

(
x2 − y2

)
+ λ

M
(4.22a)

ψ(x, y) = −
4B
(
x3y − xy3

)
+ 2xyγ

M
. (4.22b)

It can be shown that these equations satisfy the Cauchy-Rieman equations

∂φ

∂x
=
∂ψ

∂y
= −4Bx3 − 12Bxy2 + 2γx

M
(4.23a)

∂φ

∂y
= −∂ψ

∂x
= −4By3 − 12Bx2y − 2γy

M
(4.23b)

and they are potential functions that satisfy Laplace’s equation

∂2φ

∂x2
+
∂2φ

∂y2
= 0 and

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0. (4.24)

Consider the solution, z0, that satisfies ∇φ = 0, then through the Cauchy-Riemann equations

z0 is also a solution of ∇ψ = 0. By the maximum modulus theorem, φ and ψ cannot have a

maximum (or minimum) in the domain of analyticity of h(z). Therefore, the solution z0 is a

saddle-point of both φ and ψ, and hence, a saddle-point of h(z). The aim is to find solutions

for h(z), where h′(z0) = 0 and h′′(z0) 6= 0. The first derivative of h with respect to z is given

by

h′(z) = φ̂(x, y) + iψ̂(x, y) (4.25)
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where

φ̂(x, y) = −
4B
(
x3 − 3xy2

)
+ 2γx

M
(4.26a)

ψ̂(x, y) = −
4B
(
3x2y − y3

)
+ 2γy

M
. (4.26b)

Then, the stationary points exist where φ̂(x0, y0) = 0 and ψ̂(x0, y0) = 0. Solving the simul-

taneous equations that arise at the turning points leads to the following solutions

x = 0, y = 0 (4.27a)

x = 0, y = ±
√

γ

2B
(4.27b)

x = ± i
2

√
γ

2B
, y = ±1

2

√
γ

2B
(4.27c)

x = ±i
√

γ

2B
, y = 0 (4.27d)

and ultimately the 3 distinct complex solutions

z0 = 0 (4.28)

z0 = i

√
γ

2B
(4.29)

z0 = −i
√

γ

2B
. (4.30)

In the region of the saddlepoint, where h′(z0) = 0, the Taylor series for h(z) about z0 is

h(z) = h(z0) +
1

2
(z − z0)2 h′′(z0) +O((z − z0)3) (4.31)

and using the definition

h′′(z0) = aeiβ, a > 0, z − z0 = reiθ, r > 0 (4.32)

equation (4.31) can be written, using equation (4.21), as

φ(x, y) + iψ(x, y) = φ0 + iψ0 +
1

2
ar2ei(2θ+β) +O(r3) (4.33)

where φ0 = φ(x0, y0) and ψ0 = ψ(x0, y0). The second derivative of h is given by

h′′(z) = −12Bz2 + 2γ

M
(4.34)
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that can be evaluated for the three solutions to give

h′′(z0 = 0) = −2γ

M
(4.35)

h′′(z0 = ±i
√

γ

2B
) =

4γ

M
. (4.36)

It is noted that h′′(z0) is a purely real-valued function for all three solutions. Thus, β = 0

such that the real part of equation (4.33) is given by

φ = φ0 +
1

2
ar2 cos (2θ) +O(r3). (4.37)

Then, there are two orthogonal lines which are solutions of 1
2ar

2 cos (2θ) = 0, namely

θ =
π

4
and it’s continuation θ = π +

π

4

and

θ = −π
4

and it’s continuation θ = π − π

4

that correspond to two ranges of θ around z0 where φ < φ0,
π

4
< θ <

3π

4
and

5π

4
< θ <

7π

4
.

Similarly, equating the imaginary parts, the two curves ψ = ψ0 where φ changes most rapidly,

are described by the solutions to sin(2θ), namely

θ = 0 and it’s continuation θ = π

and

θ = −π
2

and it’s continuation θ = π − π

2
.

The contour C is then deformed to lie along the steepest descent path where ψ = ψ0, where-

upon

φ− φ0 = h(z)− h(z0) =
1

2
(z − z0)2 h′′(z0) < 0. (4.38)

The next step involves the introduction of a new real-valued variable, ε, such that

h(z)− h(z0) = −ε2, ε real (4.39)
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whereupon equation (4.18) can now be written as

f(τ) = eτh(z0)

∫ εb

εa

e−τε
2
g(z(ε))

dz

dε
dε. (4.40)

Finally, Watson’s lemma is used to write the asymptotic expansion as

f(τ) ∼ eτh(z0)

∫ ∞
0

e−τε
2
g(z(ε))

dz

dε
dε, τ →∞. (4.41)

To determine z as a function of ε, equation (4.39) is used and h(z) expanded as a Taylor

series about z0

1

2
(z − z0)2 h′′(z0) +O((z − z0)3) = −ε2 (4.42)

leading to

z − z0 =

{
−2

h′′(z0)

} 1
2

ε+O(ε2). (4.43)

Then, g(z(ε))) can be presented as a power series

g(z(ε)) = g(z0) + (z − z0)g′(z0) + . . . (4.44)

= g(z0) + g′(z0)

{
−2

h′′(z0)

} 1
2

ε+O(ε2) (4.45)

and equation (4.41) can be written

f(τ) ∼ eτh(z0)g(z0)

{
−2

h′′(z0)

} 1
2
∫ ∞

0
e−τε

2
dε+ . . . (4.46)

= eτh(z0)g(z0)

{
−π

2τh′′(z0)

} 1
2

+O

(
eτh(z0)

τ

)
. (4.47)

Each of the stationary points, equations (4.28)-(4.30) has a different asymptotic form,

depending on the values of h(z), g(z) and h′′(z) at the stationary point. Comparing the

different solution values for h(z0)

h (z0 = 0) = − λ

M
(4.48a)

h

(
z0 = i

√
γ

2B

)
=
γ2 − 4Bλ

4BM
(4.48b)

h

(
z0 = −i

√
γ

2B

)
=
γ2 − 4Bλ

4BM
(4.48c)

and noting all the parameter values are positive, it can be seen the complex conjugate imag-

inary solutions have a greater value for h(z) than the real-valued solution, z = 0. However,

52



the second derivative of h(z) calculated for each solution

h′′ (z0 = 0) = −2λ

M
(4.49a)

h′′
(
z0 = i

√
γ

2B

)
=

4γ

M
(4.49b)

h′′
(
z0 = −i

√
γ

2B

)
=

4γ

M
(4.49c)

shows the stationary points associated with the imaginary solutions represent a minimum in

the respective regions. In this case, the z = 0 solution represents the dominant term in the

integral and the final steps to produce the asymptotic form follows the analysis in section 4.1

to give

f(τ) ∼ D

4πγ2
τ−1e−

γ
M
τ (4.50)

which has the same form as that produced through the application of Laplace’s Method,

equation (4.17).
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Chapter 5

Contact Time Periods in

Immunological Synapse

In this chapter, the focus is on the dynamics related to the linear IS model defined by

equation (2.12), specifically analysing the variation in the time duration associated with close

contact patches of varying bond lengths. The layout of this chapter is as follows: Section 5.1

outlines the objectives of the analysis presented in this chapter. Section 5.2 introduces the

two-threshold model that extends the single threshold model previously used for analysing

the close contact patch sizes (Chattopadhyay and Burroughs, 2007). Then in section 5.3, the

results for the average time persistence of the close contact patches are presented, for both

the single and two-threshold models. These results are compared with the analytical results

calculated in section 3.1.6. In section 5.4, the probability density functions associated with

the time persistence are shown together with a discussion of the symmetry properties for the

first passage statistics. Finally, the biological interpretation of these results are discussed in

section 5.5.

5.1 Introduction

A primary objective of this study is to focus on the kinetic behaviour at the start of the

dynamical IS bond formation process. When the TCR is attached to an agonist pMHC, in-

tracellular signalling molecules can phosphorylate the cytoplasmic portion of the TCR leading

to signal transduction. Recent studies have also identified TCR microclusters, small patches

of membrane enriched in TCR and signalling molecules. Throughout the contact duration

the microclusters continuously form in the pSMAC, followed by centripetal migration toward

the cSMAC (Yokosuka et al., 2005). The TCR signalling peaks while in the periphery (Moss-

man, Campi, Groves and Dustin, 2005) and diminishes as they migrate toward the centre

of the synapse, with the kinase-phosphatase signalling complexes dissociating from the mi-
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croclusters as they cross the barrier from the pSMAC to the cSMAC. The time dynamics of

these signals are in the order of seconds, consistent with upregulation of Ca2+ levels, before

the synapse matures minutes later (Dustin, 2008). It is not well understood if signalling

continues after the TCR has disengaged from the pMHC, so this scenario is discounted for

the present work, although some studies indicate this may be possible (Bunnell, 2010).

The strength and start time of the IS bond patterning is defined by the average time

the two randomly forced (due to thermal fluctuations) fluctuating membranes (T-cell and

APC) remain in contact with each other above a minimum threshold ∆, that is defined by

the bond lengths of the participating molecules as described in section 3.2.3. Previously, the

model was successfully implemented (Chattopadhyay and Burroughs, 2007) to estimate the

average length scale of the interacting TCR:pMHC patch sizes and here the focus is on the

average time of contact of these close contact patches, at the start of patterning, based on

an analogous one membrane-two-threshold model that is described below in section 5.2.

The probability that the membrane remains within a close contact distance, i.e. above

the threshold value, represents the survival probability for an engaged bond. The probability

density functions for the single threshold and two-threshold models therefore provide a picture

of the survival probability as a function of time, for the different bond lengths. The linearised

model portrays the non-stationary state dynamics of a fluctuating membrane z(x, t) close to

the linearly stable point and across a range of mean separation distances, defined by the

bond lengths of relevant coreceptor molecules (15-45nm). Incorporation of the first nonlinear

(cubic) perturbation in the linearised (stochastic) model predicts a Hopf-bifurcation point,

below which the linear regime dominates and above which oscillatory nonlinear patterning

takes over (Kos̆mrlj, Kardar and Chakraborty, 2013; Qi et al., 2001; Burroughs et al., 2011).

The focus here is to study the crossover from the linear to the nonlinear regime.

5.2 The Two-Threshold Model

The starting model is a generalised version of the model described by Chattopadhyay and

Burroughs (2007). In this earlier work, they defined a one membrane model fluctuating

across a threshold as an analogue of the physical system. In that model, this single threshold

cloned the TCR:pMHC and other small coreceptor bond lengths but considered all larger

length bonds (e.g. integrin-ligand) as part of the coreceptor chemical potential, which was

then associated with the inherent spatial scale of the model itself ([L] ∼

√
B

γ
). This present

improved model considers two thresholds ∆1 (TCR:pMHC) and ∆2 (LFA-1:ICAM-1) in ac-

knowledgment of the presence of two different length scales, one large and other small, in a

reminder of the conclusions drawn by Burroughs et al. (2011). Two opposing points on the

membranes are said to be within close contact if the separation distance is less than −∆i
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Figure 5.1: Schematic for the identification of the different time persistence do-
mains for the fluctuating membrane in the IS, using the two-threshold model.
The t+∆i

regions are periods of time where z(x, t) remains above the ∆i threshold. These
regions are periods where close contact patches exist between the membrane surfaces at dis-
tances ∆i (i = 1, 2). The t−∆i regions are periods of time where z(x, t) remains below the
∆i threshold and this represents the time duration where the membrane separation distance
is not favourable for ligand-receptor bond formation. The shaded regions indicate the four
different scenarios for time persistence between the two thresholds, ∆1 and ∆2. In each case,
the separation distance enters the domain between the thresholds for below ∆1 or above ∆2

and exits again through crossing one of the thresholds.

nm (i=1,2), that, in the one-membrane model, translates to a configuration of a fluctuat-

ing membrane staying above a critical threshold ∆i nm through a certain average distance

< X+ > (Chattopadhyay and Burroughs, 2007) and an average time < t+ > (Bush and

Chattopadhyay, 2014). Figure 5.1 shows a schematic of the time persistence behaviour of

the fluctuating membrane, where t±∆i (i=1,2) gives the “bottom-up/up-bottom” cross-over

times across the lines z = ∆i, corresponding to the single threshold definition of section 3.2.3.

The two-threshold model introduces additional analytical domains that exist between the

two thresholds. The assumption is made that each successive crossing of the z = ∆i line is

statistically independent via the independent interval approximation. Then, the time persis-

tence characteristics between two thresholds ∆1 and ∆2 (∆2 > ∆1), that are separated by a

distance δ = ∆2−∆1, represents a set of four different events where a signal, z(x, t), persists
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between the two thresholds:

t11: the fluctuation enters the δ region from below the lower threshold, persists within the

δ region and returns below the lower threshold, never crossing the upper threshold.

t12: the fluctuation enters the δ region from below the lower threshold, persists and becomes

larger than the upper threshold.

t21: the fluctuation enters the δ region from above the upper threshold, persists and exits

below the lower threshold.

t22: the fluctuation enters from above the upper threshold, persists and exits above the

upper threshold, never crossing the lower threshold.

A consummate representation of the average time persistence, considering all four scenarios

together, can then be given as

< tδ >=

2∑
i,j=1

wij(δ) < tij(δ) >, (5.1)

where wij(δ) is the δ-dependent probability of the occurrence of the event tij , with the

probabilities normalised to ensure
∑2

i,j=1 wij(δ) = 1. A detailed quantitative depiction of

statistics for each of these zones will be detailed in section 5.4. In the numerical simulation

of the model, the above normalisation condition was strictly adhered to.

5.3 Average Close Contact Time Persistence

The theoretical routine encompasses both analytical and numerical fronts. As of the former,

the target is to recast the model solutions within a Gaussian Stationary Process framework

and use the methods set out in section 3.1.6 to determine the average time persistence about

∆i. For the latter, numerical integration of the stochastic model, using Eulerian and Runge-

Kutta schemes separately, is followed by an estimation of the average time persistence, and

then the probably density function of the persistent crossings.

In the numerical simulations, the magnitude of noise strength (D) is chosen to provide

enough stimulation to overcome the relaxation dynamics and drive the thermal fluctuations,

while remaining small enough to avoid dominating the equation, rendering it pure brownian

motion. Here the choice of D = 4.7× 107 is shown to satisfy this remit through dimensional

analysis. From a dimensional term-by-term comparison of the starting linear model, using
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the biological parameter values described in table 2.2, the dimensional analysis gives

B∇4z ∼ γ∇2z ∼ λz ∼
√

2Dζ

11.8× [z]

L4
∼ 5650× [z]

L2
∼ 6× 105 × [z] ∼

√
2× 4.7× 107 [ζ]

11.8× [z]

(102 × 10−3)4 ∼
5650× [z]

(102 × 10−3)2 ∼ 6× 105 × [z] ∼
√

9.4× 107 [ζ]

11.8× [z]

10−4
∼ 5.65× 103 [z]

10−2
∼ 6× 105 × [z] ∼

√
0.94× 104 [ζ]

1.18× 105 [z] ∼ 5.65× 105 [z] ∼ 6× 105 × [z] ∼ 1× 104 [ζ]

where ζ is a random variable drawn from a Gaussian distribution with zero mean and unit

variance. The numerical results shown below apply this noise strength regime.

Figure 5.2 shows the ensemble average for the time persistence above any of the (∆1

or ∆2) thresholds keeping the other fixed, for both the numerical and the scaled analytical

solution. The parameters used give rise to persistent close contact patches in the order of

magnitude required for the biological problem, that is 15-45 nm. The numerical results (in

dots: figure 5.2) are consistent with the analytical solutions (continuous line: figure 5.2),

where the close contact time decreases as the separation distance increases, suggesting that

the TCR:pMHC bond persists longer than the LFA-1:ICAM-1, thereby explaining the stabil-

ity aspect of shorter bonds, as was previously conjectured by Burroughs and Wülfing (2002).

The result shown in figure 5.2 can be qualitatively understood from simple probabilistic

considerations. As the threshold value increases, it becomes more difficult for the randomised

(Gaussian) fluctuations to cross this threshold, resulting in reduced average time spent above

the threshold value, also leading to smaller time patches. More non-trivial, though, is the

functional nature of the decay in the < τ+ > value against ∆. As opposed to a simplistic

(and incorrect) visual impression, the decay profile here is not exponential, rather it is defined

through an intricate balance between power-law scaled fluctuations against the statistics of

deterministically decaying membrane fluctuation modes.

A vital part of this model study is the analysis of the dynamics of the randomly driven

membrane in between the two given thresholds. In line with the parlance used previously, as

well as in (Chattopadhyay and Burroughs, 2007), this can be represented as an estimation

of the time persistence between two threshold values, ∆1 and ∆2, where ∆1 is the T cell

analogue of the TCR:pMHC bond length (∼ 15 nm) and ∆2 symbolises the LFA-1:ICAM-1

bond separation length (∼ 45 nm).

The result for the variation of the average time between the two thresholds as a function of

the distance δ between the thresholds is shown in figure 5.3. The calculations were performed

by starting with ∆1 = 0 nm and then varying ∆2 between 1 nm to 50 nm. The results

shown in figure 5.3 are the average over multiple such initial choices of ∆1 and then varying

58



 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 16  18  20  22  24  26  28  30

< 
o+  >

 (s
ec

s)
  

 

6 (nm)   

Numerical
Analytical

Figure 5.2: Time persistence above the ∆i threshold, < τ+ > vs ∆i. The dots show
the result obtained by numerically solving equation (3.56) and applying the method set out
in section 3.2.3, while the solid line indicates the analytical result obtained from a solution
of equation (3.35). The results have been linearly scaled for comparison and qualitatively
remain unchanged irrespective of the choice of ∆1 or ∆2, since this is essentially a single
threshold analysis.

∆2 accordingly to generate the appropriate range for δ. The dotted points refer to the

numerical simulation results while the continuous line represents the interpolation of the

same to maintain continuity. The time persistence initially increases as δ increases, then it

saturates and asymptotically approaches the < τ+ >∆1 value, as the two-threshold picture

reduces to the one-threshold picture. As δ → 0 the average time persistence tends toward

the smallest time length scale used. For the case shown, dt = 0.1 seconds. Once again, an

understanding of figure 5.3 can be had from the fact that an increase in the δ value can

be wrought about in either of the two possible ways, either through an increase in ∆2 for

fixed ∆1, or else through a decrease in ∆1 for a fixed ∆2. For the first case, fixing ∆1 and

increasing ∆2, it is easier for a fluctuation mode to remain within the upper limit (∆2) than

to cross it. For the second case, with a fixed value of the upper threshold ∆2, a lowering

of ∆1 increases the probability of a fluctuation mode remaining within the lower limit, thus

increasing the value of < τδ >.

Figures 5.2 and 5.3 respectively express the variation of the average “persistent times”

against bond lengths above a critical threshold, and between two thresholds (∆1 and ∆2).

These results are subsets of a bigger ensemble defined by a membrane that fluctuates across

two thresholds ∆1 and ∆2, or else that of two membranes whose fluctuations are measured
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Figure 5.3: Time persistence between two thresholds, < τδ > vs δ. The ensemble
average time persistence between two thresholds, where the distance between the thresholds
is given by δ = ∆2−∆1. The dotted points represent the numerical results and the solid line
is an interpolation of the numerical results.

across a single threshold ∆, that, as already explained earlier, are equivalent analytical de-

scriptions. In line with the model of a single membrane, fluctuating across two thresholds, as

detailed in the previous section and as depicted in figure 5.1, the statistics can be classified in

to four broad zones - “11”, “12”, “21” and “22”. While “11” defines the fluctuation regime

for a crossing from a region in z < ∆1 across the line z = ∆1, remaining below the upper

threshold (z < ∆2) and then returning to the z < ∆1 region, “22” encapsulates the comple-

mentary regime for a crossing across z = ∆2 from a point z > ∆2. “12” and “21” represent

statistics when crossings are restricted within ∆1 < z < ∆2 as explained in figure 5.1.

5.4 Persistence Probability Density of Close Contact Time

Representing the corresponding average t“persistent time” by τij (i,j=1,2), it can be shown

that due to reflection symmetry, the time correlators obey (A+(t+,∆1) = −A−(t−,∆2) and

A−(t+,∆1) = −A+(t−,∆2)), such that τ11 and τ22 are identical, as are τ12 and τ21. Compar-

ing with the notations used previously, τ12(= τ21) may be identified with τδ as in figure 5.3,

while τ11(= τ22) may be identified with < τ+ > under the constraint z < ∆2. For the same

reason (reflection symmetry), as shown in figure 5.4, the respective density distributions also

conform to these symmetry lines.

The result presented in figure 5.4 is not a special case, as shown in figure 5.5 where the τ11
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Figure 5.4: Probability density, p(τ) between two thresholds. For large enough statis-
tics, the probability density profile for τ11 is equivalent to τ22, and similarly the probability
density for τ12 is equivalent to τ21.

and τ12 probability densities are plotted for three values of δ. As δ increases, the probability

density for the τ12 case shows an increase in the probability associated with longer time

persistences, shown as a right shift in the statistics for the stretched Gaussian with a long

tail, a result that matches with the observation presented earlier through figure 5.3. On

the other hand, the number of τ12 events become less frequent as δ is increased, since the

probability for crossing the upper threshold is significantly decreased. The τ11 probability

densities also change slightly as δ varies, again showing an increase in the probability for longer

time persistence, that corresponds to bond durations in the order of seconds, consistent with

Ca2+ concentration level elevation.

5.5 Discussion

The analysis presented here has two major immunological implications. Firstly, figures 5.2

and 5.3 clearly prove that the onset of patterning at the immature synapse level, when the

central LFA-1:ICAM-1 bond gives way to the smaller TCR:pMHC bond, occurs at the time

scale of seconds. This discovery is expected to confirm the start time of mature synapse

formation. Admittedly, though, the parameter values used make the result a subjective case

for TCR:pMHC bonding, in that the time scale predicted for a different membrane:membrane

dynamics may as well be in minutes or hours, instead of in seconds. Secondly, the non-

universal character of the time correlation of the IS bond, in that the probability density
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Figure 5.5: Comparison of the probability density for p(τ12) and p(τ11) as δ varies.

p(t) is a function of the system parameters along with being a function of the bond length

difference δ (figure 5.5), confirms a widely acknowledged belief in the community that the

TCR:pMHC bond is non-self-organising in nature. As shown in figure 5.5, the difference in

the two bond lengths introduces a persistence time scale that spans 2-4 seconds (peak time

of the PDF profile). The implication of this analysis is that of a time scale difference of an

order of magnitude related to the start time of the “immature” IS bond formation, a time

scale that is also associated with the transition from the linear to the nonlinear regime (and

hence the emphasis on this study of the linear stability regime of an otherwise nonlinear

dynamics). How such a crossover is affected by the kinase-phosphatase signalling pathways

and what modifications it may have on the prediction of the time scale of a mature IS bond

are some of the exciting topics currently being investigated.

Results from the linear membrane model calculations show < τ+ > to be of the order of

seconds instead of minutes. Close to the linearly stable regime, it is shown that in between

the two critical spatial thresholds, defined by the integrin:ligand pair (∆2 ∼ 40-45 nm) and

the T cell receptor (TCR):pMHC bond (∆1 ∼ 14-15 nm), < τ > grows monotonically with

increasing co-receptor bond length separation δ (= ∆2−∆1 ∼ 26-30 nm) while < τ > decays

with ∆1 for fixed ∆2.
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Chapter 6

Temporal dynamics in

immunological synapse: Role of

thermal fluctuations in signalling

This chapter analyses the contribution of stochastic thermal fluctuations in the attachment

times of the immature TCR:pMHC immunological synapse bond. The key question addressed

here is the following: how does a synapse bond remain stabilised in the presence of large

thermal noise that potentially equates to a strong detaching force? Focusing on the average

time persistence of an immature synapse, it is shown that the extremal value statistics of

large fluctuations are accompanied by an even faster energy dissipation mechanism that

eventually leads to the immunological synapse bond being unaffected by the extremal value

statistics of large amplitude fluctuations. The analysis shows that such a counterintuitive

behaviour, a null result, could be easily explained from the fact that the survival probability

distribution is governed by two distinct phases, corresponding to two separate time exponents,

for the two different time regimes. The relatively shorter time scales correspond to the

cohesion:adhesion induced immature bond formation, whereas the larger time reciprocates

the association:dissociation regime leading to TCR:pMHC signalling.

The chapter is organised as follows: in section 6.1, the ensemble statistics used to generate

the results are shown, along with the probability density profile associated with the single

threshold method described in section 3.2.3. This is followed by an analysis of the numer-

ical results, that is subdivided into three parts. Section 6.2 analyses the small time phase

where thermal fluctuations are dominant, section 6.3 analyses the large time phase statistics

and section 6.4 focuses on extremal value statistics, including comparisons with sections 6.2

and 6.3. This is followed by a discussion of the biological implications of these results in

section 6.5.
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6.1 Close Contact Survival Statistics

Equation (3.56) was solved using the parameter values described in table 2.2. The numeri-

cal simulations were performed for a time evolution using a sufficiently large time window,

including 106 time steps. The t+∆ statistics for the frequency distributions using the single

threshold model were then collected, as set out in section 3.2.3.

Using these simulation parameters, a single d=2+1 system with a lattice of L = 10× 10

discrete spatial points generates on average 2.5× 105 statistics for ∆ = 0. As the ∆ thresh-

old increases, the average number of statistics per system decreases as shown in figure 6.1.

Ensemble averaging was used to further increase the statistics, where an ensemble size of 105

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  20  40  60  80  100  120  140

N
um

be
r o

f C
as

es
 p

er
 S

ys
te

m

6 (nm)

D=4.7 x 107

D=4.7 x 108

D=4.7 x 109

Figure 6.1: Average number of cases per system run for d = 2 + 1. The number of
statistics per simulated system is plotted against the ∆ threshold value. Three thermal noise
strengths are plotted to show the variation in the statistics as the noise strength changes.

systems produced statistics in the order of 1010 for the ∆ = 0 case. Increasing the thermal

noise strength increases the range of ∆ where statistics can be found, although the Gaussian

profile shown in figure 6.1 is unaltered. It can also be noted that the number of statistics is

constant for ∆ = 0, regardless of the noise strength. Simulations were performed on a lattice

of L=100× 100 and the number of statistics generated scales proportional to the number of

spatial nodes.

Figure 6.2 shows the numerical simulation results for the probability density, W∆(τ), for

the τ+
∆ instances (for ∆ = 0nm), as defined by equation (3.61). This probability density is

then used to calculate the survival probability, P∆(τ) as defined in equation (3.62). Figure 6.3

shows the log:log plot (solid line) for the survival probability, produced from a numerical
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Figure 6.2: The probability density distribution, W∆(τ), for the time persistence
above ∆ = 0 nm.

.

simulation for the ∆ = 0 case and using the model parameter values mentioned above. Two

distinct linear regions can be observed, corresponding to two different power law regimes.

Using a least squares’ linear fit in the log:log regime, approximations for the time persistence

exponents were estimated for each regime. The transition region separating the two different

scaling regimes, the crossover region, has a length scale in the order of tens of seconds, with

the crossover point τ× shown as the intersection between the least square fitted lines. Defining

θS as the time persistence exponent for the small τ regime and θL as the exponent for the

large τ regime, the survival probability scales according to

P∆(τ) ∼ τ−θS τ � τ× (6.1)

P∆(τ) ∼ τ−θL τ � τ× . (6.2)

As the results clearly show, the system exhibits two different relaxation time scales, one

dominated by diffusion and the other by the chemical force interacting with the stochastic

forcing. In a way, this is complementary to the two time scale problem that was analysed

earlier (Burroughs and Wülfing, 2002). In the following subsections the small and large τ

regimes are analysed, with respect to the bond length and thermal noise strength. In the final

section, the persistence probability density is used to understand the effect of high frequency

fluctuations on the average statistics.
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6.2 The Small-τ Phase: The “Thermal Fluctuations” regime

The small τ phase represents the regime where receptor:ligand complexes are associating

and dissociating rapidly due to the impact of high frequency thermal fluctuations, within a

relatively small time frame. The bond duration in the small τ regime is not deemed sufficient

to coincide with the elevation in intracellular Ca2+ levels at 6 seconds (Huse et al., 2007).

However, this regime is statistically relevant due to its impact on the average time per-

sistence. The simulation results and subsequent calculations indicate the probability density

associated with ∆ = 0 explains ∼ 30% of the statistical cases, where the bonds persist for a

single time step and then return below the threshold (shown in figure 6.2). Using the notation

from equation (3.61), the first passage probability values are p0
1 = 0.29306, p0

2 = 0.12993 and

p0
3 = 0.07751, and thus, 50% of the t∆=0 instances survive for three (or less) discrete time

lengths.

Simulations using ∆t = 0.01 second were run and figure 6.4(a) shows the log:log plot for

the survival probability against time for different values of ∆ in the small τ regime. The plot

shows θS becomes steeper with increasing ∆, indicating the rate of decay for the survival

probability (and hence the survival probability) is dependent on ∆. The direct relationship

between θS and ∆ is shown in figure 6.4(b) for three different thermal fluctuation strengths.

In each case, a near linear relationship exists between the time exponent θS and ∆. All three
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values of D have the same persistence exponent at ∆ = 0, but the rate of change of the time

exponent with respect to ∆ is increased as D is decreased.
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Figure 6.4: The time exponent for the small τ regime. Figure 6.4(a) shows the plot of
the survival probability against time, in the log:log scale, for a range of ∆ and figure 6.4(b)
shows the time exponent θS plotted against ∆ for three different thermal noise strengths.

The linear relationship between θS and ∆ suggests the persistence probability has a scaling
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relationship in the small τ regime of the form

P (τ) ∼ τ−θS(∆) ∼ τ−(α∆+β) (τ � τ×) , (6.3)

where α is the coefficient related to the ∆ dependence, and β is the persistence exponent when

∆ = 0. Table 6.1 shows values for α and β for a range of D. The value of β is constant for all

δ-correlated noise
strength (D)

α β

4.7× 106 0.0971 0.5030
4.7× 107 0.0315 0.5026
4.7× 108 0.0107 0.4953
4.7× 109 0.0028 0.5088
4.7× 1010 0.0008 0.5090

Table 6.1: Linear fit parameters for θS. The α parameter is dependent on the noise
strength, whereas β is independent of the noise.

D, but α is clearly dependent on D. Plotting α against D in the log:log scale (fig. 6.5) reveals
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Figure 6.5: The α dependence on D. Linear fit (solid line) for the time exponent parameter
α against D in the log:log scale. χ shows the gradient of the fitted line.

a linear relationship that leads to a power law: α ∼ Dχ. The fitted solid line in figure 6.5

suggests a value of χ ≈ −0.52; in other words, α ∼ 1√
D

that combined with the definition

of the exponent α gives the noise scaling of the survival probability as P (τ) ∼ τ
−( ∆√

D
+β)

.

Mathematically, this implies the existence of a well defined universality class of the noise

strength as a function of the bond length ∆, which also means that numerical simulations

could better use the redefined noise amplitude
D

∆2
instead of D. One must here be aware of
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a realistic biological constraint, where higher noise corresponds to larger thermal fluctuations

and hence will be capped at some finite value for a finite sized system.

Table 6.1 suggests that for ∆ = 0, the survival probability is independent of the noise

strength (since β is noise independent always converging to the value 0.5) as it should be

for Brownian motion. However, for all other values of ∆, there is a competition between the

free energy and noise terms that eventually determines the effective number of data points

to be obtained numerically (the plot for D = 4.7× 108 in figure 6.1 is instructive here). In a

way, this suggests the limit of simulation accuracy in analysing the probabilistic persistence

data. So, increasing the thermal noise leads to a greater range of statistics for increasing

∆, but does not alter the time exponent relating to ∆ = 0 nm, that corresponds to the

glycocalyx length used in the linear stability analysis. The range of τ where the scaling

relation in equation (6.3) holds is in the order of seconds and the range decreases steadily as

∆ increases.

6.3 The Large-τ Phase: The “Signalling” regime

The large τ phase represents the regime where infrequent, longer lasting, receptor:ligand

bonds exist. This is the phase characterised by large TCR:pMHC bond half lives facilitating

intracellular signalling required for T-cell activation. The persistence time of these bonds are

in the order of tens of seconds and therefore sufficient for signalling pathways that lead to

elevated levels of intracellular Ca2+.

Analysis of the θL values for different ∆ reveals a consistent decay rate of θL ∼ 16. By

rescaling the different curves for each ∆ the large τ regime can be data collapsed on to a

single universal curve (Barabasi and Stanley, 1995). Figure 6.6 shows the rescaling steps in

the log:log scale. The crossover time for a given ∆, Ω∆ = log (τ×), is used as a hard cut-off

between the small and large τ regimes (fig. 6.6(a)). Ω is plotted against ∆ in figure 6.7(a) for

three different noise strengths, where it is found a near linear relationship exists for small ∆.

For a fixed noise strength the statistics drop off at some upper limit, as shown in figure 6.1.

As ∆ approaches this upper limit, the linear relationship between Ω and ∆ is less convincing,

that may or may not be answered with increased statistics, but it is not considered further

in this report.

A linear fit can be applied to the sample crossover points, Ω∆, for a given noise strength.

This linear relationship, shown in figure 6.7(a) (solid lines), leads to the expression Ω =

log(τ×) = −ω∆ + c1, where c1 is a scaling constant. Similar to the analysis conducted for

the small τ regime, the ω coefficient is dependent on the noise strength, but the ∆ = 0

case is independent of noise strength. The crossover time can be then be expressed as the
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exponential

τ× ∼ e−ω(D)∆+c1 . (6.4)

Then, rescaling the time dimension, using the new time variable u = log(τ/τ×), corresponds

to a horizontal shift of the curves in the log-log scale. This ensures the phase transition

occurs at the same point in the time dimension for all values of ∆ (figure 6.6(b)).

Similarly, rescaling is applied in the direction of the survival probability. To achieve

this, the definition Ψ∆ = log (P∆(τ×)) is used, as shown in 6.6(b), then the values of Ψ∆ are

plotted against ∆ (figure 6.7(b)). Again, a linear relationship between Ψ∆ and ∆ is observed,

which can be modelled through the linear fit Ψ∆ = −ψ∆ + c2 and it is noted that the ψ

coefficient has a dependency on the thermal noise strength, D. The survival probability at

the crossover time can then be expressed as the exponential

P∆ (τ×) ∼ e−ψ(D)∆+c2 (6.5)

where c2 is a scaling constant. Equations (6.4) and (6.5) remain impervious to changes in the

noise strength for ∆ = 0, thereby indicating the existence of a universal survival probability

for ∆ = 0. This result has a vital biological connotation. While all other persistence statistics

are shown to be scale dependent, the cross-over time regime is a scale independent dynam-

ics, suggesting that parameter values could always be monitored to attain non-equilibrium

dynamics.

Using the steps above, the following scaling function is introduced

f(τ, τ×) = log (P∆(τ)/P∆(τ×)) (6.6)

and plotted against the new time variable, u, as shown in figure 6.6 (c). This leads to the

data collapse in the large τ regime on to the universal problem

f(τ, τ×) = −θLu+ c3 , (6.7)

where θL is the time exponent described in equation (6.2) and c3 is a scaling constant.

This relationship is valid for u ≥ 0, corresponding to τ ≥ τ×. Substituting equation (6.6)

into equation (6.7), the survival probability can be rearranged to give the following scaling

relationship

P∆(τ) ∼ τ−θL τ ≥ τ× . (6.8)

Also, from equations (6.4) and (6.5), the magnitude of the survival probability for a given ∆
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Figure 6.6: Schematic illustration of the time-dependent rescaling used in the
large τ regime. In figure 6.6 (a) the time dimension is rescaled to ensure the crossover
point between the two phases occurs at the same time for each ∆, then figure 6.6 (b) shows
the rescaling step in the direction of the probability density, that collapses the large τ regime
for the different ∆ curves. Figure 6.6 (c) shows the final data collapse for the rescaled curves
for τ ≥ τ×.
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Figure 6.7(c) shows the rescaled simulation results, where the data collapse in the large τ
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θL is shown.
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and noise strength is given by

e−(ψ(D)+ω(D)θL)∆+θLc1+c2+c3 , (6.9)

confirming the universal persistence probability for ∆ = 0, for all D. Finally, figure 6.7(c)

shows the collapsed large τ regime for the simulation results using a noise strength of

D = 4.7 × 108, that is representative of the amplitude required to stimulate dynamics on

a scale required for the TCR:pMHC and LFA-1:ICAM-1 bonds. The data collapse suggests

a universal scaling regime for the decay rate of the persistence probability during longer

duration bond attachments.

The scaling functions also give some approximation for the range of ∆ where the method

is valid. The linear fit, used to determine the functional relationships for the scaling variables

with respect to ∆, is a good fit for small ∆, but the scaling variables begin to depart from the

linear fit as ∆ increases and the statistics decrease significantly, see figures 6.7(a) and 6.7(b).

The simulations have a low cut-off for τ , the integration time step length ∆t, that can be used

to impose an upper limit on ∆ (∆c), such that the problem containing two distinct τ regimes

can be maintained. Beyond this critical value the small τ regime shares the same dynamics

as the large τ regime and the problem reduces to one with a single τ scaling regime. The

biological interpretation of this regime would be one where only the TCR:pMHC bonds that

have persisted long enough to begin signalling exist. The crossover point must be greater

than the simulation step length, giving

τx ≥ ∆t

e−ω(D)∆c+c1 ≥ ∆t

∆c =
c1 − log (∆t)

ω(D)
(6.10)

where ∆c is the critical threshold value for the two τ regime problem.

Given c1 is constant, there is an inverse relationship between ∆c and ω . For ∆ ≥ 0

as value of c1 ≥ log (∆t) is required. As the noise level increases, ω(D) gets smaller and

subsequently the upper limit on ∆ increases. The upper limit calculated over estimates the

range of ∆, possibly due to the crude linear approximations for Ω∆ and Ψ∆ for large ∆.

6.4 Extremal Value Statistics

As shown in section 5.3, the average time persistence is a monotonically decreasing function

of an increasing threshold value (Bush and Chattopadhyay, 2014). The fluctuations due

to thermal noise lead to rapid crossings of the threshold as the separation distance moves

73



from a close contact phase to one of separation and vice-versa. This section presents the

analysis concerning the extent to which these rapid crossings contribute to the average time

persistence for the bonds.

The term extremal value is used to describe the time persistence realisations due to rapid

fluctuations , where the bond life is extremely short. Table 6.2 shows the first three intervals

of the normalised frequency distribution of t∆ for a range of ∆. At least 50% of the statistics

First Passage Prob Time
∆ (nm) ∆t 2∆t 3∆t Total

0 0.2945 0.1315 0.0789 0.5048
5 0.3072 0.1366 0.0818 0.5257
10 0.3201 0.1417 0.0846 0.5465
15 0.3333 0.1467 0.0873 0.5672
20 0.3466 0.1515 0.0897 0.5878
25 0.3601 0.1562 0.0919 0.6082
30 0.3738 0.1607 0.0939 0.6283

Table 6.2: First passage probability frequencies for transient bonding. The number
of bonds that have a duration of 3 discrete time step lengths or less account for 50% or more
of the statistics.

for each ∆ are accounted for in the first three discrete time steps. That is, at least a half of

the bonds forming will dissociate in a fraction of a second.
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Figure 6.8: Contribution of the extremal values to the average time persistence
calculation. The average time persistence plotted against ∆ (solid line), along with the
average time persistence excluding the extremal events (dotted line).

The computer simulation results were used to calculate an approximate measure of the

∆-dependent probability density function W∆, equation (3.61), and this is used to calculate
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the average time persistence. To assess the contribution of the extremal values to the total

average, a lower cut-off, v ≥ 0, is introduced to the first moment calculation

〈t∆〉 =

∫ ∞
v

t W∆ (t) dt (6.11)

that is used to exclude the extremal values from the calculation. A value of v = 3∆t is then

used to exclude the statistics set out in table 6.2. Figure 6.8 shows 〈t∆〉 against ∆ (solid

line) along with the corresponding average time persistence excluding the rapid fluctuations

(dotted line), created using a D = 4.7×108 thermal noise strength. Increasing v will exclude

a larger portion of the “thermal fluctuation regime”, eventually excluding the “signalling

regime” as v becomes large.

For small ∆ the extremal values considered have very little contribution to the total

average calculation, however the contribution steadily increases as ∆ increases. This can

be understood from the statistical view presented in figure 6.1, where the statistics drop off

as ∆ increases, leading to an increasing percentage of statistics in the small τ regime as ∆

increases. This analysis is limited by the choice of v and future work aims to use the results of

section 6.3 to ascertain the relative contribution of the “thermal fluctuation” regime against

the “signalling” regime.

6.5 Discussion

From an estimation of the bond survival probability, it is shown that at shorter time scales,

the survival probability P (τ) scales with time τ as a universal function of a rescaled noise

amplitude D, such that P (τ) ∼ τ−( ∆√
D

+ 1
2

)
, ∆ describing the TCR:pMHC bond length through

the distance measure from the mean membrane separation distance. The crossover from this

shorter time regime to a longer time regime leads to a loss of this universality property, at

which point the survival probability changes from a scaled form to an exponential function of

the mean bond length ∆. In biological terms, such a crossover indicates that the TCR:pMHC

bond has a survival probability with a slower decay rate than the longer LFA-1:ICAM-1 bond

justifying its stability. The analysis presented defines a scaled noise amplitude (=
D

∆2
), the

breakdown of whose scaling property identifies the crossover from the linear (immature) to

the nonlinear (mature) synapse domain.
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Chapter 7

Conclusion and Discussion

The biological literature review in chapter 1 reveals a lack of clarity regarding the forma-

tion of the mature IS, largely due to the spatio-temporal scale of the problem (nanometers

and picoseconds). The mechanisms for TCR triggering and processes that drive the pattern

formation have therefore inspired a number of hypotheses. The aim of this study was to

analyse the temporal dynamics of cell surface bonds engaged during the immature phase of

the IS formation, long before the mature synapse takes root. During the immature synapse

phase, there are two different bonds (TCR:pMHC, LFA-1:ICAM-1) of great importance that

are evident at the synapse juncture. The different bond length scales and cell membrane

properties have been used in various mathematical models ,to understand the dynamics un-

derpinning the synapse formation. The temporal dynamics of the bond durations during the

immature synapse phase was missing from the literature and this was the basis for the re-

search questions outlined in section 1.4. Further analysis of the biological literature revealed

TCR microclusters present in the pSMAC of the mature synapse, and the bond dynamics in

this region could be seen as an analogous problem to that of the immature synapse.

The approach to the study was to use a previous model suggested for the immature

synapse, detailed in section 2.2.1. This model was then analysed using a set of numeri-

cal and analytical methods, outlined in chapter 3. The single threshold model introduced

in section 3.1.6 has been previously used to calculate the spatial patch size related to the

TCR:pMHC bond, but it had not been applied to the temporal persistence of the patch sizes.

This analysis is one of the contributions of knowledge to the field, supported by the pub-

lished journal articles (Bush and Chattopadhyay, 2014; Bush and Chattopadhyay, 2015) and

the manuscript under preparation (Bush and Chattopadhyay, 2016). The analysis led to the

development of a two threshold model, described in section 5.2, that had not been previously

presented. And it was this model that enabled the calculation of quantitative results, using

the maximum likelihood probability for the persistence of the TCR:pMHC bond, defined

by the distance between the two thresholds. The findings related to the research questions
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addressed in this study are outlined in the sections below.

7.1 Average persistence time for the TCR:pMHC bond

The average persistence time for the TCR:pMHC bond in the immature synapse was cal-

culated using both numerical and analytical methods. The results presented in chapter 5

suggest the persistence of the TCR:pMHC bond is in the order of 2-4 seconds. This result

is in agreement with the order of magnitude of time, observed in biological experiments,

for the biological markers related to signal transduction events. As noted earlier, the result

is somewhat subjective, depending on the parameter values used. However, the parameter

units used are calculated with time measured in seconds and therefore justifies the case for

the proposed 2-4 seconds persistence time. A shortcoming in the results stems from the use

of parameter values previously calculated in the original study by Chattopadhyay and Bur-

roughs (2007). Therefore, any recent improvements on these calculations are not included in

this study, although at the time of publishing, none have been identified.

The survival probability analysed in chapter 6 shows two distinct phases, a thermal fluc-

tuation regime and a signalling regime, as shown in figure 6.3, corresponding to two separate

time persistence exponents. The thermal fluctuation regime has a time exponent that is de-

pendent on both the threshold bond length and the noise amplitude. As shown in figure 6.5,

the exponent α scales with the noise amplitude D thereby defining a “diffusive universality

class” between α and D, that quantifies into the rescaling of the noise amplitude as
D

∆2
.

From the perspective of a biologist, the above result implies that if the system is calibrated

with respect to the dimensionless variable
D

∆2
instead of the two variables D and ∆ indepen-

dently, the fluctuation regime can be identified through a single-valued scaling exponent, and

then ultimately the start of the signalling regime. For a signalling setup involving multiple

coreceptor molecules with varying bond lengths, based on the results presented here, the

above analysis could enable the prediction of the start of the signalling regime for a fixed

noise input.

The signalling regime is identified by a universal time exponent that is defined by θL,

indicating a constant dissociation rate (koff). This result agrees with the findings of Burroughs

and Wülfing (2002) and McKeithan (1995). However, these results do not consider the effects

on the binding rates due to coreceptor bonding. The model is simplistic in its approximation

of the binding parameters, where they remain constant throughout the synapse formation.

Whereas, signals resulting from coreceptor bonding have been shown to increase the affinity

for TCR:pMHC and LFA-1:ICAM-1 bonding, therefore an interesting future work would be

to analyse the effects of these altered affinities on the persistence time calculated.
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7.2 The effect of thermal fluctuations on the average persis-

tence time for the TCR:pMHC bond

The calculation of the average time persistence contains statistics from the full probability

density function. However, as mentioned above, there are two distinct regimes present in

this probability density function. The contribution of the rapid membrane fluctuations, the

fluctuating regime, to the average bond persistence is important to the biologist when infer-

ring results from experiments. The results in chapter 6 show the maximum likelihood for

bond persistence is one that is transient, engaging and disengaging spontaneously, figure 6.2.

However, these rapidly fluctuating membrane dynamics appear to have little effect on the

statistics and the survival probability profile may be well described excluding large ampli-

tude fluctuations. This is visualised in figure 6.8, where it is clearly shown that extremal

value statistics do not contribute greatly to the average time persistence in the linear sta-

bility region. These short-lived bonds are not consistent with the time required for TCR

signalling, therefore this contribution to knowledge presents a null hypothesis of sorts. Many

quantitative biological experiments and conclusions are based on singular or at best only

a small number of observations. Such lack of statistical information implies that existing

probabilistic theories, including previous immunological synapse based models, will be inade-

quate in dealing with such eventualities. A corollary of this present work is the development

of a methodology to avoid having to explicitly deal with statistically large datasets, since at

least for immature immunological synapse dynamics, the results clearly indicate that large

amplitude fluctuations can be largely neglected in the statistical analysis, thereby limiting

the available configuration space to a much smaller size than would otherwise be required.

7.3 Future Work

The work presented here is focused on the linearly stable region of the immature synapse.

There are a number of exciting areas for future work, especially progressing to the nonlinear

dynamics describing the onset of the mature synapse. The list below outlines some of the

work that follows from this study:

• Use the time-dependent Fokker-Planck equation to analyse the changing

survival probability density profile during synapse formation. Chapter 3 in-

troduced the steady state Fokker-Planck equation to describe the probability density

function of the Langevin equation. The time-dependent solution to the Fokker-Planck

equation could be used to analyse the time evolution of the immature synapse. Ex-

tended to a non-linear mode, this would also indicate the immature to mature crossover

timescale.
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• Analysis of the model parameter space through the use of the nonlinear SA

model. Using boundary values derived from experimental results, the parameter space

for the SA model could be analysed. In this case, a set of solutions in the parametric

space that lead to the mature synapse formation may be identified, leading to a better

understanding of the sensitivity of the model to parameter values.

• Inclusion of coreceptor, phosphatase and self-pMHC molecules to the SA

model.

Various studies have reproduced and analysed the SA model using the two bonds consid-

ered in this work (TCR:pMHC, LFA-1:ICAM-1). None have have been identified that

include the coreceptor molecules (CD2, CD28, CD4/CD8), the larger molecules (CD43,

CD45) or major histocompatibility complex with bound self-peptide (self-pMHC). Nu-

merous biological results exist concerning the dynamics of these molecules and their

inclusion may expose interdependencies otherwise overlooked.

• Introduction of the kinase-phosphatase pathways to the nonlinear model.

There are a number of recent models analysing the binding kinetics of the Src-kinase

signalling pathways, but there are no reports integrating the intracellular signalling

with membrane models. In this case, the currently proposed models for signal trans-

duction could be coupled with a nonlinear membrane model, in a way that promotes

signal transduction for bound TCRs. The addition of the large phosphatase (CD45)

to the membrane bound molecules would also need consideration, since the combina-

tion of Src-kinase signalling and large phosphatases appear to maintain the balance of

phosphorylation and dephosphorylation required to regulate the intracellular signalling

pathways.

• Extension of the SA model to include the recent TCR microcluster experi-

mental evidence.

The SA model does not reproduce results consistent with the discovery of TCR mi-

croclusters (Yokosuka et al., 2005). A suggestion to incorporate these, would be the

inclusion of spatial dependent functions that introduce TCR microclusters in the pS-

MAC, once the mature synapse patterning is established. The inclusion of terms to

model the spreading and contraction phases would also be required and terms to en-

capsulate the Src-kinase signalling, using a switching mechanism to arrest signalling

once the microcluster has crossed the threshold between the pSMAC and cSMAC.

• Apply the computer code base to alternative systems of coupled equations.

The numerical methods undertaken in the present work have necessitated the devel-

opment of a large code base. The routines have been developed in C++ and include
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OpenMP functionality, capable of running parallel computations on multiprocessor sys-

tems. The design of the computer simulation code contains an object model with 30+

classes, is extensible and scalable, with capabilities of simulating nonlinear coupled

equations across multiple processing nodes. In recognition of recent research council

funding rules, this code will be made available through the Aston repository for other

researchers.

• Application of the method presented by Sire (2007), using the closed form

solution derived in the asymptotic analysis. The asymptotic solution derived for

the large τ regime could be combined with the steady state probability distribution

derived from the Fokker-Planck equation. Together, they form the two inputs required

to implement the method set out by Sire (2007), used to determine analytical results for

< τ+ > and < τ− > for ∆ 6= 0. This work is currently being prepared for publication.
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Appendix A

Linearised Steady State Model:

Deriving the Langevin Equation for

the Local Separation Distance

In this section we show the workings to derive the Langevin equation that arises from a

linearisation of the SA model (Qi et al., 2001) about a steady state equilibrium of surface

protein concentration levels. We start with the nonlinear coupled equations (2.1) and linearise

about fixed concentration levels, at time t0, for both the freely diffusing surface proteins and

the bond complexes. This leads to the set of steady state equations (A.1) for the cell surface

concentration levels, the corresponding energy functional, equation (A.2), and the Langevin

equation describing the membrane separation distance, equation (A.3),

∂Cj
∂t

= 0, Cj (x, t0) > 0, j = T, T t,M,Ai,Bi, TM, i (A.1)

F =
λT
2

∫
dx CTM (x, t0) · [z (x, t)− zTM ]2

+
∑
i

λi
2

∫
dx Ci (x, t0) · [z (x, t)− zi]2

+
1

2

∫
dx

[
γ(∇z (x, t))2 + κ

(
∇2z (x, t)

)2]
(A.2)

∂z

∂t
= −M δF

δz
+ ζ . (A.3)

In such a case we can derive the form of the functional derivative for the free energy with

respect to the local separation distance. The functional derivative can be defined as

δF

δz(y, t)
= lim

ε→0

F (z(x, t) + εδ(x− y))− F (z(x, t))

ε
(A.4)

where the use of the δ function signifies the variation is only varied at the point y. The

justification of this lies in the fact this is a homogenous surface, whereupon the variation at
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a single point is indicative of the variation at any point on the surface. For our case, the free

energy function can be expressed as four separate terms

F (1) =
λT
2

∫
dx CTM (x, t0) · [z (x, t)− zTM ]2 (A.5a)

F (2) =
∑
i

λi
2

∫
dx Ci (x, t0) · [z (x, t)− zi]2 (A.5b)

F (3) =
1

2

∫
dx γ[∇z (x, t)]2 (A.5c)

F (4) =
1

2

∫
dx κ

[
∇2z (x, t)

]2
(A.5d)

then

F = F (1) + F (2) + F (3) + F (4) (A.6)

and
δF

δz(y, t)
=

δF (1)

δz(y, t)
+

δF (2)

δz(y, t)
+

δF (3)

δz(y, t)
+

δF (4)

δz(y, t)
(A.7)

Calculating the functional derivative for the first term:

δF (1)

δz(y, t)
= lim

ε→0

F (1) (z(x, t) + εδ(x− y))− F (1) (z(x, t))

ε
(A.8)

with

F (1)(z(x, t)+ ε δ(x− y))

=
λT
2

∫
dx CTM (x, t0) ·

[
(z (x, t)− zTM )2 + 2ε (z (x, t)− zTM ) δ (x− y)

]
where ε orders greater than two have been omitted, then

δF (1)

δz(y, t)
= λT

∫
dx CTM (x, t0) · (z (x, t)− zTM ) δ (x− y)

= λT CTM (y, t0) · (z (y, t)− zTM ) (A.9)

and similarly,
δF (2)

δz(y, t)
=
∑
i

λi Ci (y, t0) · (z (y, t)− zi) (A.10)
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For the third term, we get

δF (3)

δz(y, t)
= lim

ε→0

1
2

∫
dx γ(∇ (z (x, t) + εδ (x− y)))2 − 1

2

∫
dx γ(∇z (x, t))2

ε

= lim
ε→0

1
2

∫
dx γ

[
(∇z (x, t))2 + 2ε∇z (x, t) · ∇δ (x− y)

]
− 1

2

∫
dx γ(∇z (x, t))2

ε

= γ

∫
dx ∇z (x, t) · ∇δ (x− y)

= −γ
∫

dx ∇2z (x, t) δ (x− y)

= −γ ∇2z (y, t) (A.11)

where the fourth line is derived from applying integration by parts, and noting the boundary

integral cancels for periodic boundary conditions. Similarly, the fourth term is given by

δF (4)

δz
= lim

ε→0

1
2

∫
dx κ

(
∇2 (z (x, t) + εδ (x− y))

)2 − 1
2

∫
dx κ

(
∇2z (x, t)

)2
ε

= lim
ε→0

1
2

∫
dx κ

[(
∇2z (x, t)

)2
+ 2ε∇2z (x, t) · ∇2δ (x− y)

]
− 1

2

∫
dx κ

(
∇2z (x, t)

)2
ε

= κ

∫
dx ∇2z (x, t) · ∇2δ (x− y)

= κ

∫
dx ∇4z (x, t) δ (x− y)

= κ ∇4z (y, t) (A.12)

Then the full functional derivative for the potential force is given by

δF

δz
= λz (y, t)− σ − γ ∇2z (y, t) + κ ∇4z (y, t) (A.13)

where

λ = λT CTM (y, t0) +
∑
i

λi Ci (y, t0) (A.14)

and

σ = λT CTM (y, t0) zTM +
∑
i

λi Ci (y, t0) zi (A.15)

Then the time difference formula for the local membrane separation distance is given by

∂z (x, t)

∂t
= −M

[
λz (x, t)− σ − γ ∇2z (x, t) + κ ∇4z (x, t)

]
+ ζ (A.16)

Another calculation that is useful is the functional derivative of the free energy with respect
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to the concentration level of a surface protein

δF

δCi(y, t)
= lim

ε→0

F (Ci(x, t) + εδ(x− y))− F (Ci(x, t))

ε

= lim
ε→0

λi
2

∫
dx [Ci (x, t) + εδ (x− y)] · [z (x, t)− zi]2 − λi

2

∫
dx Ci (x, t) · [z (x, t)− zi]2

ε

= lim
ε→0

λi
2

∫
dx εδ (x− y) · [z (x, t)− zi]2

ε

=
λi
2

∫
dx [z (x, t)− zi]2δ (x− y)

=
λi
2

[z (y, t)− zi]2

(A.17)

that is required when analysing the full nonlinear model.
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Appendix B

Integral Equation Solution to the

Langevin Equation

In this section we use a Fourier transform method to develop a solution for the linear stochastic

model (cf. equation (2.12))

M
∂z (x, t)

∂t
= −B∇4z (x, t) + γ∇2z (x, t)− λz (x, t) + η (x, t) (B.1a)

〈η (x, t)〉 = 0 (B.1b)〈
η (x, t) η

(
x′, t′

)〉
= 2Dδ

(
x− x′

)
δ
(
t− t′

)
(B.1c)

where the points on the 2 dimensional surface are represented by the vector x =
[
x y

]T
.

We consider a small spatial region, Ω, in the synaptic junction, that is large enough to

contain a significant number of surface protein molecules. The full synaptic junction can

then be represented by N simply connected, Ω subregions. The subregions at the centre

of the synapse, far from the boundary, are surrounded by similar nearest neighbours that

are equally far from the boundary. In this case, we use periodic boundary conditions for

these central subregions, such that there is zero net flow across the boundary. Then, the

corresponding Fourier transform pairs for the membrane separation distance, z(x, t), and the

thermal noise η(x, t) are given by

F {z(x, t)} = z̃(k, t) =
1

2π

∫
Ω
z(x, t) e−ik·xdx (B.2a)

F−1 {z̃(k, t)} = z(x, t) =
1

2π

∫ ∞
−∞

z̃(k, t) eik·xdk (B.2b)

F {η(x, t)} = η̃(k, t) =
1

2π

∫
Ω
η(x, t) e−ik·x dx (B.2c)

F−1 {η̃(k, t)} = η(x, t) =
1

2π

∫ ∞
−∞

η̃(k, t) eik·x dk (B.2d)

(B.3)
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where k =
[
k1 k2

]T
.

Applying the Fourier transforms to equation (B.1)

F
{
∂z(x, t)

∂t

}
= −BF

{
∇4z(x, t)

}
+ γF

{
∇2z(x, t)

}
− λF {z(x, t)}+ F {η(x, t)} (B.4)

The Laplacian term may be treated like so

F
{
∇2z(x, t)

}
= F

{
∇2z(x, y, t)

}
= F {∇ · ∇z(x, y, t)}

= F
{(

i
∂

∂x
+ j

∂

∂y

)
·
(

i
∂z(x, y, t)

∂x
+ j

∂z(x, y, t)

∂y

)}
= F

{
∂2z(x, y, t)

∂x2
+
∂2z(x, y, t)

∂y2

}
=
∂2F {z(x, y, t)}

∂x2
+
∂2F {z(x, y, t)}

∂y2
(B.5)

then, using equation (B.2a),

F
{
∇2z(x, t)

}
= (ik1)2F {z(x, y, t)}+ (ik2)2F {z(x, y, t)}

= −(k2
1 + k2

2)F {z(x, y, t)}

= −|k|2F {z(x, y, t)} (B.6)

. Similarly,

F
{
∇4z(x, t)

}
= F

{
∇4z(x, y, t)

}
=
∂4F {z(x, y, t)}

∂x4
+
∂4F {z(x, y, t)}

∂y4
+ 2

∂4F {z(x, y, t)}
∂y2∂x2

= (ik1)4F {z(x, y, t)}+ (ik2)4F {z(x, y, t)}+ 2(ik1)2(ik2)2F {z(x, y, t)}

=
(
k2

1 + k2
2

)2F {z(x, y, t)}
= |k|4F {z(x, y, t)} (B.7)

whereupon, equation (B.4) can be written as

M
∂z̃(k, t)

∂t
= −

(
B|k|4 + γ|k|2 + λ

)
z̃(k, t) + η̃(k, t) (B.8)

then
∂z̃(k, t)

∂t
+ α(k)z̃(k, t) =

1

M
η̃(k, t) (B.9)

where

α(k) =
1

M

(
B|k|4 + γ|k|2 + λ

)
(B.10)

86



Equation (B.9) can be solved using the integrating factor method, to give

z̃(k, t) = e−α(k)t

[
1

M

∫ t

t0

eα(k)t′ η̃(k, t′)dt′ + z̃0(k, t0)

]
(B.11)

where the function z̃0(k, t0) represents the initial conditions (in the spectral domain) at time

t0. Finally, applying the inverse Fourier transform, equation B.2b, gives the integral equation

solution

z(x, t) =
1

2π

∫ ∞
−∞

dk e−α(k)t

[
1

M

∫ t

t0

eα(k)t′ η̃(k, t′)dt′ + z̃0(k, t0)

]
eik·x

z(x, t) =
1

2πM

∫ ∞
−∞

dk

∫ t

t0

dt′ e−α(k)(t−t′)+ik·x η̃(k, t′) + z0(x, t, t0) (B.12)

where the initial conditions are embedded in the z0(x, t, t0) function

z0(x, t, t0) =
1

2π

∫ ∞
−∞

dk z̃0(k, t0) e−α(k)t eik·x = F−1
{
z̃0(k, t0) e−α(k)t

}
(B.13)
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Appendix C

Temporal Correlation Function

C.1 Temporal Correlation 〈z (x, t1) z (x, t2)〉

The temporal correlation of the fluctuations in the inter-membrane separation distance, at a

point in the synaptic junction, is given by

〈z(x, t1)z(x, t2)〉 =
〈[ 1

(2π)d/2M

∫
ddk′

∫ t1

t0

dt′ e−α(k′)(t1−t′)+ik′·x η̃(k′, t′) + z0(x, t0)

]

×

[
1

(2π)d/2M

∫
ddk′′

∫ t2

t0

dt′′ e−α(k′′)(t2−t′′)+ik′′·x η̃(k′′, t′′) + z0(x, t0)

]〉
(C.1)

Now, only the stochastic noise term, η̃(k, t), has variation in the ensemble. The first two

cumulants in the k-t space are given by 1

< η̃(k, t) > = 0

< η̃(k, t)η̃(k′, t′) > = 2Dδd(k + k′)δ(t− t′)

then equation (C.1) can be written

〈z(x, t1)z(x, t2)〉 =
1

(2π)dM2

∫
ddk′

∫
ddk′′ e−α(k′)t1−α(k′′)t2+i(k′+k′′)·x

×
∫ t1

t0

dt′
∫ t2

t0

dt′′ eα(k′)t′+α(k′′)t′′ < η̃(k′, t′)η̃(k′′, t′′) > +z0 (C.2)

〈z(x, t1)z(x, t2)〉 =
2D

(2π)dM2

∫
ddk′

∫
ddk′′ e−α(k′)t1−α(k′′)t2+i(k′+k′′)·x

×
∫ t1

t0

dt′
∫ t2

t0

dt′′ eα(k′)t′+α(k′′)t′′ δ(k′ + k′′)δ(t′ − t′′) + z0 (C.3)

1The transformation from the x-t space to the k-t space for the second cumulant is outlined in appendix C.2
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where

z0 = z2
0(x, t0) =

1

(2π)d

∫
ddk′

∫
ddk′′ z̃0(k′, t0)z̃0(k′′, t0) e−(α(k′)+α(k′′))t0+i(k′+k′′)·x (C.4)

Now, δ(k′+ k′′) = 0 everywhere except for k′ = −k′′, where
∫

ddk′
∫

ddk′′δ(k′+ k′′) = 1. We

also note that α(k) = α(−k), then equation (C.2) can be written

〈z(x, t1)z(x, t2)〉 =
2D

(2π)dM2

∫
ddk e−α(k)(t1+t2)

∫ t1

t0

dt′
∫ t2

t0

dt′′ eα(k)(t′+t′′) δ(t′ − t′′) + z0

(C.5)

Now, δ(t′ − t′′) = 1 when t′′ = t′ and is zero everywhere else. Therefore, we can use a single

integral over the range 0 to min(t1, t2), since values above the minimum will fall outside the

delta excitation definition. For example, if t1 < t2 , then values of t′′ greater than t1 will

result in δ(t′ − t′′) = 0, giving

〈z(x, t1)z(x, t2)〉 =
2D

(2π)dM2

∫
ddk e−α(k)(t1+t2)

∫ min(t1,t2)

t0

dt′ e2 α(k)t′ + z0 (C.6)

〈z(x, t1)z(x, t2)〉 =
2D

(2π)dM2

∫
ddk e−α(k)(t1+t2)

[
1

2α(k)
e2α(k)t

]min(t1,t2)

t0

+ z0

=
D

(2π)dM2

∫
ddk e−α(k)(t1+t2)

[
e2α(k)min(t1,t2) − e2α(k)t0

α(k)

]
+ z0

=
D

(2π)dM2

∫
ddk

e−α(k)(max(t1,t2)−min(t1,t2))

α(k)

− D

(2π)dM2

∫
ddk

e−α(k)(t1+t2−2t0)

α(k)
+ z0

=
D

(2π)dM2

∫
ddk

e−α(k)(max(t1,t2)−min(t1,t2))

α(k)

− D

(2π)dM2

∫
ddk

e−α(k)(max(t1,t2)−min(t1,t2)+2(min(t1,t2)−t0))

α(k)

+z0 (C.7)

Let τ = max(t1, t2)−min(t1, t2) and τ ′ = t1 + t2, then

〈z(x, t1)z(x, t2)〉 =
D

(2π)dM2

∫
ddk

e−α(k)τ

α(k)

− D

(2π)dM2

∫
ddk

e−α(k)(τ ′−2t0))

α(k)
+ z0 (C.8)

Equation C.8 describes the two-point time correlation for all times, given initial condition z0.

For models with d = 2, i.e. membranes with no overhangs, we can express the function

by a substitution for d in equation (C.8) and transform to use polar co-ordinates, r and θ.
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Let

k =

k1

k2

 =

g(r, θ)

h(r, θ)

 =

r cos θ

r sin θ

 (C.9)

where r is the distance from the origin ranging from 0 < r <∞, satisfying r2 = k2
1 + k2

2; and

θ is the angle made with the k1 axis, i.e. tan(θ) = k2
k1

ranging from . We note

k2 = k · k

= r2 cos2 θ + r2 sin2 θ = r2(cos2 θ + sin2 θ)

= r2 (C.10)

and

k4 = k2 · k2 = r4 (C.11)

whereupon the transformation of α(k) on to the new co-ordinates gives a function that relies

on r alone

α(k) = α̂(r) =
Br4 + γr2 + λ

M
(C.12)

We also calculate the determinant of the Jacobian for the transformation pair

∂(g, h)

∂(r, θ)
=

∣∣∣∣∣∣
∂g
∂r

∂g
∂θ

∂h
∂r

∂h
∂θ

∣∣∣∣∣∣
=
∂g

∂r

∂h

∂θ
− ∂h

∂r

∂g

∂θ

= r cos2 θ + r sin2 θ

= r (C.13)

and then we can transform the integrals in equation C.8 to the new co-ordinate system using

∫ ∞
−∞

∫ ∞
−∞

f(k)dk =

∫ π

−π

∫ ∞
0

f (g(r, θ), h(r, θ))
∂(g, h)

∂(r, θ)
drdθ (C.14)

to give

∫ ∞
−∞

∫ ∞
−∞

e−α(k)τ

α(k)
=

∫ π

−π

∫ ∞
0

r
e−α̂(r)τ

α̂(r)
drdθ

= 2π

∫ ∞
0

r
e−α̂(r)τ

α̂(r)
dr (C.15)
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Then, the two-point correlation function can be expressed as

〈z(x, t1)z(x, t2)〉 =
D

(2π)2M2

[∫
dk

e−α(k)τ

α(k)
−
∫

dk
e−α(k)(τ ′−2t0))

α(k)

]
+ z0

=
D

(2π)M2

[∫ ∞
0

r
e−α̂(r)τ

α̂(r)
dr −

∫ ∞
0

r
e−α̂(r)(τ ′−2t0))

α̂(r)
dr

]
+ z0 (C.16)

C.2 Spatial Langevin Force in the k-space

Here we show the workings for the k-space Langevin force. First consider the Fourier trans-

form pair

f(~x) =
1

(2π)d/2

∫ ∞
−∞

f̃(~k) ei
~k·~x ddk (C.17)

f̃(~k) =
1

(2π)d/2

∫ ∞
−∞

f(~x) e−i
~k·~x ddx (C.18)

Now,

f(~x, ~x′) =
1

(2π)d

∫ ∞
−∞

ddk

∫ ∞
−∞

ddk′ f̃(~k,~k′) ei
~k·~x ei

~k′·~x′ (C.19)

f̃(~k,~k′) =
1

(2π)d

∫ ∞
−∞

ddx

∫ ∞
−∞

ddx′ f(~x, ~x′) e−i
~k·~x e−i

~k′·~x′ (C.20)

when f(~x, ~x′) = δd(~x− ~x′) then

f̃(~k,~k′) =
1

(2π)d

∫ ∞
−∞

ddx

∫ ∞
−∞

ddx′ δd(~x− ~x′) e−i(~k·~x+~k′·~x′) (C.21)

then δd(~x− ~x′) = 1 when ~x = ~x′, giving

f̃(~k,~k′) =
1

(2π)d

∫ ∞
−∞

ddx′ e−i(
~k+~k′)·~x′

= δ(~k + ~k′) (C.22)
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Appendix D

Residue Theorem “Null” Solution

of the Temporal Correlation

Function

The analysis below was used as an attempt to determine a closed form solution of the tempo-

ral correlation function describe by equation (3.21) by using the residue theorem for complex

integration with poles. For demonstration purposes we consider the just the Gaussian Sta-

tionary Process related integral term

C12 (τ) ∼
∫ ∞

0
r
e−α(r)τ

α(r)
dr (D.1)

where

α(r) =
Br4 + γr2 + λ

M
(D.2)

As we shall see, the method fails for the type of equation above. We begin by defining the

poles of the 1/α(r), and these exist when

α(r) = 0 (D.3)

It is clear to see at this point that the exponential term is 1 at the poles, and therefore the

τ dependency is lost. However, we proceed with the full calculation, as this was not initially

well understood. Let r0 be a pole such that

Br0
4 + γr0

2 + λ

M
= 0 (D.4)

then the poles exist at

r0 = ±

√
−γ ±

√
γ2 − 4Bλ

2B
(D.5)
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Given the problem parameter values specified in Chattopadhyay and Burroughs (2007) [28]

(M = 4.7 × 106 KBT , B = 11.8 KBT , γ = 5650 KBT µm−2 and λ = 6 × 105 KBT µm−4),

we can evaluate the terms in equation (D.5) to give the four purely imaginary roots, that are

two sets of complex conjugates

r
(1)
0 = iC1, r

(2)
0 = iC2

r
(3)
0 = −iC1, r

(4)
0 = −iC2

with C1 = 12.609 µm−1 and C2 = 17.884 µm−1. Then using repeated partial fraction

decomposition we can rearrange

1

α(r)
=
M

B

[
1

(r − r(1)
0 )(r − r(2)

0 )(r − r(3)
0 )(r − r(4)

0 )

]

=
M

B

[
1

(r − iC1)(r − iC2)(r + iC1)(r + iC2)

]
=
M

B

( 1

(C1 − C2)2

[ 1

(r − iC1)(r + iC1)
− 1

(r − iC2)(r + iC1)

− 1

(r − iC1)(r + iC2)
+

1

(r − iC2)(r + iC2)

])
=

M

B(C1 − C2)2

(
1

i2C1
− 1

i(C1 + C2)

)
1

(r − iC1)

+
M

B(C1 − C2)2

(
1

i(C1 + C2)
− 1

i2C1

)
1

(r + iC1)

+
M

B(C1 − C2)2

(
1

i2C2
− 1

i(C1 + C2)

)
1

(r − iC2)

+
M

B(C1 − C2)2

(
1

i(C1 + C2)
− 1

i2C2

)
1

(r + iC2)

and finally

1

α(r)
=

iA1

(r − iC1)
+

iA2

(r − iC2)
− iA3

(r + iC1)
− iA4

(r + iC2)
(D.6)

where

A1 = A3 =
M

2BC1(C2
2 − C2

1 )
= 98.196 µm3

A2 = A4 =
M

2BC2(C2
2 − C2

1 )
= 69.232 µm3

We can now calculate the integral term in equation (D.1) by using the residue theorem on

the simple poles in the upper half of the complex plane1

∫ ∞
0

r
e−α(r)τ

α(r)
dr =

∫ ∞
0

iA1r e
−α(r)τ

(r − iC1)
dr +

∫ ∞
0

iA2r e
−α(r)τ

(r − iC2)
dr (D.7)

1Check this in Churchill and Brown
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For the first integral on the r.h.s. of equation (D.7) we calculate the residue by using the

functional representation
p(r)

q(r)
=
iA1r e

−α̂(r)τ

(r − iC1)
(D.8)

then p(r
(1)
0 ) = iA1r

(1)
0 6= 0, q(r

(1)
0 ) = 0 and q′(r

(1)
0 ) = 1 6= 0, giving the residue

b1 =
p(r

(1)
0 )

q′(r
(1)
0 )

= −A1C1 (D.9)

and similarly we calculate the residue for the second integral as b2 = −A2C2. Then, using

the Cauchy integral formula

f(z0) =
1

2πi

∫
f(z)

z − z0
dz =⇒

∫
f(z)

z − z0
dz = 2πif(z0)

to evaluate the integrals in equation (D.7) to give

∫ ∞
0

r
e−α̂(r)τ

α̂(r)
dr = −2πi(A1C1 +A2C2)

=
−2πiM

B(C2
2 − C2

1 )
(D.10)

which can be used to give a solution for equation (D.1)

C12(τ) ∼ −2πiM

B(C2
2 − C2

1 )
(D.11)

This does not represent a solution as it is purely imaginary and there is no τ dependency. We

suspect this is due to the simultaneous presence of the ∇4z and ∇2z terms in the Langevin

equation.
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Appendix E

Clipped Correlator For a Gaussian

Stationary Process

This appendix shows the calculation of the “clipped” correlator for any Gaussian process,

as shown in Majumdar, Sire, Bray and Cornell (1996). We start with the random Gaussian

process z(x, t) with the two-point time correlation function

c12(t1, t2) = 〈z(x, t1)z(x, t2)〉 (E.1)

and the autocorrelation function c11(t) =
〈

[z(x, t)]2
〉

. If z(x, t) is a Gaussian Stationary

Process, then the process is time translation invariant and c11(t) = c11 is constant for all t,

and c12(t1, t2) = c12(τ), where τ = |t2 − t1|.

Following the method set out by Majumdar, Sire, Bray and Cornell (1996), we introduce the

normalised variable

X(t) =
z(x, t)√〈
[z(x, t)]2

〉 (E.2)

with the two-point time correlation function

C12(t1, t2) = 〈X(t1)X(t2)〉 =

〈
z(x, t1)z(x, t2)√〈

[z(x, t1)]2
〉√〈

[z(x, t2)]2
〉
〉

=
c12(τ)

c11
= C12(τ) (E.3)

The covariance matrix is given by

C =

 1 C12(τ)

C12(τ) 1

 (E.4)
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with inverse

C−1 =
1

det C

 1 −C12(τ)

−C12(τ) 1

 (E.5)

where det C = 1− [C12(τ)]2.

For two variables X1 = X(t1) and X2 = X(t2), the joint probability distribution has proba-

bility density function

P (X1, X2) = Ne−
1
2
XTC−1X (E.6)

where X = [X1 X2]T and N is the normalisation constant, ensuring

∫ ∞
−∞

dX1

∫ ∞
−∞

dX2 P (X1, X2) = 1 (E.7)

E.1 Calculate Normalisation Constant

In order that ∫ ∞
−∞

dX1

∫ ∞
−∞

dX2 P (X1, X2) = 1 (E.8)

we require

1 =

∫ ∞
−∞

dX1

∫ ∞
−∞

dX2 Ne
− 1

2
XTC−1X (E.9)

= N

∫ ∞
−∞

dX1

∫ ∞
−∞

dX2 e
− 1

2 detC(X2
1 +X2

2−2C12(τ)X1X2) (E.10)

= N

∫ ∞
−∞

dX1

∫ ∞
−∞

dX2 e
− 1

2 detC((X2−C12(τ)X1)2+(1−[C12(τ)]2)X2
1) (E.11)

= N

∫ ∞
−∞

dX1 e
− 1

2
X2

1

∫ ∞
−∞

dX2 e
− 1

2 detC
(X2−C12(τ)X1)2

(E.12)

Change of variables, let u = X2−C12(τ)X1, then du = dX2, and the limits remain unchanged

(X2 = −∞, u = −∞; X2 =∞, u =∞), giving

1 = N

∫ ∞
−∞

dX1 e
− 1

2
X2

1

∫ ∞
−∞

du e−
1

2 detC
u2

(E.13)

= N
√

2π det C

∫ ∞
−∞

dX1 e
− 1

2
X2

1 (E.14)

= N
√

2π det C
√

2π (E.15)

then

N =
1

2π
√

det C
(E.16)
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E.2 Clipped Correlator

Introducing the “clipped” variable σ(X) = sgn(X), we define the “clipped” correlator

A(t1, t2) = 〈σ(X1)σ(X2)〉 (E.17)

=

∫ ∞
−∞

dX1

∫ ∞
−∞

dX2 σ(X1)σ(X2) P (X1, X2) (E.18)

=

∫ 0

−∞
dX1

∫ 0

−∞
dX2 P (X1, X2)−

∫ 0

−∞
dX1

∫ ∞
0

dX2 P (X1, X2)

−
∫ ∞

0
dX1

∫ 0

−∞
dX2 P (X1, X2) +

∫ ∞
0

dX1

∫ ∞
0

dX2 P (X1, X2) (E.19)

= N

∫ 0

−∞
dX1 e

− 1
2
X2

1

∫ 0

−∞
dX2 e

− 1
2 detC

(X2−C12(τ)X1)2

−N
∫ 0

−∞
dX1 e

− 1
2
X2

1

∫ ∞
0

dX2 e
− 1

2 detC
(X2−C12(τ)X1)2

−N
∫ ∞

0
dX1 e

− 1
2
X2

1

∫ 0

−∞
dX2 e

− 1
2 detC

(X2−C12(τ)X1)2

+N

∫ ∞
0

dX1 e
− 1

2
X2

1

∫ ∞
0

dX2 e
− 1

2 detC
(X2−C12(τ)X1)2

(E.20)

Change of variables, let u = X2 − C12(τ)X1, then du = dX2, and the limits change to

(X2 = −∞, u = −∞; X2 =∞, u =∞; X2 = 0, u = −C12(τ)X1 ), giving

A(t1, t2) = N

∫ 0

−∞
dX1 e

− 1
2
X2

1

∫ −C12(τ)X1

−∞
du e−

1
2 detC

u2

−N
∫ 0

−∞
dX1 e

− 1
2
X2

1

∫ ∞
−C12(τ)X1

du e−
1

2 detC
u2

−N
∫ ∞

0
dX1 e

− 1
2
X2

1

∫ −C12(τ)X1

−∞
du e−

1
2 detC

u2

+N

∫ ∞
0

dX1 e
− 1

2
X2

1

∫ ∞
−C12(τ)X1

du e−
1

2 detC
u2

(E.21)

A(t1, t2) = N

∫ 0

−∞
dX1 e

− 1
2
X2

1

[∫ 0

−∞
du e−

1
2 detC

u2
+

∫ −C12(τ)X1

0
du e−

1
2 detC

u2

]

−N
∫ 0

−∞
dX1 e

− 1
2
X2

1

[∫ 0

−C12(τ)X1

du e−
1

2 detC
u2

+

∫ ∞
0

du e−
1

2 detC
u2

]

−N
∫ ∞

0
dX1 e

− 1
2
X2

1

[∫ 0

−∞
du e−

1
2 detC

u2
+

∫ −C12(τ)X1

0
du e−

1
2 detC

u2

]

+N

∫ ∞
0

dX1 e
− 1

2
X2

1

[∫ 0

−C12(τ)X1

du e−
1

2 detC
u2

+

∫ ∞
0

du e−
1

2 detC
u2

]
(E.22)
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A(t1, t2) =
1

2
√

2π

∫ 0

−∞
dX1 e

− 1
2
X2

1 +N

∫ 0

−∞
dX1 e

− 1
2
X2

1

∫ −C12(τ)X1

0
du e−

1
2 detC

u2

−N
∫ 0

−∞
dX1 e

− 1
2
X2

1

∫ 0

−C12(τ)X1

du e−
1

2 detC
u2 − 1

2
√

2π

∫ 0

−∞
dX1 e

− 1
2
X2

1

− 1

2
√

2π

∫ 0

−∞
dX1 e

− 1
2
X2

1 −N
∫ ∞

0
dX1 e

− 1
2
X2

1

∫ −C12(τ)X1

0
du e−

1
2 detC

u2

+N

∫ ∞
0

dX1 e
− 1

2
X2

1

∫ 0

−C12(τ)X1

du e−
1

2 detC
u2

+
1

2
√

2π

∫ ∞
0

dX1 e
− 1

2
X2

1 (E.23)

A(t1, t2) = N

∫ 0

−∞
dX1 e

− 1
2
X2

1

∫ −C12(τ)X1

0
du e−

1
2 detC

u2

−N
∫ 0

−∞
dX1 e

− 1
2
X2

1

∫ 0

−C12(τ)X1

du e−
1

2 detC
u2

−N
∫ ∞

0
dX1 e

− 1
2
X2

1

∫ −C12(τ)X1

0
du e−

1
2 detC

u2

+N

∫ ∞
0

dX1 e
− 1

2
X2

1

∫ 0

−C12(τ)X1

du e−
1

2 detC
u2

(E.24)

A(t1, t2) = 4N
√

det C tan−1

(
C12(τ)

det C

)
=

2

π
tan−1

(
C12(τ)

det C

)
=

2

π
sin−1 (C12(τ)) (E.25)
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Appendix F

Clipped Correlator Derivation

This chapter shows the derivation of the “clipped” correlator used to define the bonding

events that persist at a distance ∆ from the mean separation distance for the Langevin

equation (2.12). We start with the random Gaussian process z(x, t) with the two-point time

correlation function

c12(t1, t2) = 〈z(x, t1)z(x, t2)〉 (F.1)

and the autocorrelation function c11(t) =
〈

[z(x, t)]2
〉

. If z(x, t) is a Gaussian Stationary

Process, then the process is time translation invariant and c11(t) = c11 is constant for all t,

and c12(t1, t2) = c12(τ), where τ = |t2 − t1|.

Following the method set out by Majumdar, Sire, Bray and Cornell (1996), we introduce the

normalised variable

X(t) =
z(x, t)√〈
[z(x, t)]2

〉 (F.2)

with the two-point time correlation function

C12(t1, t2) = 〈X(t1)X(t2)〉 =

〈
z(x, t1)z(x, t2)√〈

[z(x, t1)]2
〉√〈

[z(x, t2)]2
〉
〉

=
c12(τ)

c11
= C12(τ) (F.3)

The covariance matrix is given by

C =

 1 C12(τ)

C12(τ) 1

 (F.4)

with inverse

C−1 =
1

det C

 1 −C12(τ)

−C12(τ) 1

 (F.5)
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where det C = 1− [C12(τ)]2.

For two variables X1 = X(t1) and X2 = X(t2), the joint probability distribution has proba-

bility density function

P (X1, X2) = Ne−
1
2
XTC−1X (F.6)

where X = [X1 X2]T and N is the normalisation constant, ensuring

∫ ∞
−∞

dX1

∫ ∞
−∞

dX2 P (X1, X2) = 1 (F.7)

F.1 Calculate Normalisation Constant

In order that ∫ ∞
−∞

dX1

∫ ∞
−∞

dX2 P (X1, X2) = 1 (F.8)

we require

1 =

∫ ∞
−∞

dX1

∫ ∞
−∞

dX2 Ne
− 1

2
XTC−1X (F.9)

= N

∫ ∞
−∞

dX1

∫ ∞
−∞

dX2 e
− 1

2 detC(X2
1 +X2

2−2C12(τ)X1X2) (F.10)

= N

∫ ∞
−∞

dX1

∫ ∞
−∞

dX2 e
− 1

2 detC((X2−C12(τ)X1)2+(1−[C12(τ)]2)X2
1) (F.11)

= N

∫ ∞
−∞

dX1 e
− 1

2
X2

1

∫ ∞
−∞

dX2 e
− 1

2 detC
(X2−C12(τ)X1)2

(F.12)

Change of variables, let u = X2−C12(τ)X1, then du = dX2, and the limits remain unchanged

(X2 = −∞, u = −∞; X2 =∞, u =∞), giving

1 = N

∫ ∞
−∞

dX1 e
− 1

2
X2

1

∫ ∞
−∞

du e−
1

2 detC
u2

(F.13)

= N
√

2π det C

∫ ∞
−∞

dX1 e
− 1

2
X2

1 (F.14)

= N
√

2π det C
√

2π (F.15)

then

N =
1

2π
√

det C
(F.16)

F.2 Clipped Correlator

We begin defining the “clipped” variable that is 1 for close contact patches and 0 otherwise.

Now, the condition z(x, t) ≥ ∆ translates as X(t) ≥ ∆√
c11

for our normalised variable, so we
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introduce the “clipped” variable

σ (X) =


1 for X ≥ ∆√

c11

0 for X < ∆√
c11

(F.17)

Then the “clipped” correlator is given as

A (t1, t2) = 〈σ(X1)σ(X2)〉

=

∫ ∞
−∞

dX1

∫ ∞
−∞

dX2 σ(X1)σ(X2)P (X1, X2)

= N

∫ ∞
∆√
c11

dX1

∫ ∞
∆√
c11

dX2 e
− 1

2 detC(X2
1 +X2

2−2C12(τ)X1X2)

= N

∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1

∫ ∞
∆√
c11

dX2 e
− 1

2 detC
(X2−C12(τ)X1)2

Change of variables, let u = X2 − C12(τ)X1, then du = dX2, and the limits are changed

(X2 = ∆√
c11

, u = ∆√
c11
− C12(τ)X1; X2 =∞, u =∞), giving

A (t1, t2) = N

∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1

∫ ∞
∆√
c11
−C12(τ)X1

du e−
1

2 detC
u2

(F.18)

F.2.1 ∂A(τ)
∂τ

Calculation

Here we present the calculation steps to determine an expression for ∂A(τ)
∂τ , where A(τ) is

given by equation F.18. The τ dependency is realised through C12(τ), therefore we can

calculate the derivative using the chain rule

∂A(τ)

∂τ
=

∂A(τ)

∂C12(τ)

∂C12(τ)

∂τ
(F.19)

∂A(τ)
∂c12(τ) Calculation

We wish to calculate

∂A(τ)

∂C12(τ)
=

∂

∂C12(τ)

{
N

∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1

∫ ∞
∆√
c11
−C12(τ)X1

du e−
1

2 detC
u2

}

=
∂

∂C12(τ)
{N}

∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1

∫ ∞
∆√
c11
−C12(τ)X1

du e−
1

2 detC
u2

+N
∂

∂C12(τ)

{∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1

∫ ∞
∆√
c11
−C12(τ)X1

du e−
1

2 detC
u2

}
(F.20)
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Now,

∂

∂C12(τ)
{N} =

∂

∂C12(τ)

{
1

2π
√

det C

}
=

∂

∂C12(τ)

{
1

2π
√

1− [C12(τ)]2

}
=

1

2π

∂

∂C12(τ)

{(
1− [C12(τ)]2

)− 1
2

}
=

1

2π
×−1

2

(
1− [C12(τ)]2

)− 3
2 ×−2C12(τ)

=
C12(τ)

2π (det C)
3
2

(F.21)

and to solve the second partial derivative in equation (F.25) we first move the derivative

under the first integral sign, since there is no C12(τ) dependency, to give

∂

∂C12(τ)

{∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1

∫ ∞
∆√
c11
−C12(τ)X1

du e−
1

2 detC
u2

}

=

∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1
∂

∂C12(τ)

{∫ ∞
∆√
c11
−C12(τ)X1

du e−
1

2 detC
u2

}
(F.22)

then applying the Leibnitz differentiation rule

∂

∂C12

{∫ b(C12)

a(C12)
f (X1, C12) dX1

}
=

∫ b(C12)

a(C12)

∂

∂C12
{f (X1, C12)} dX1

+f (b(C12), C12)
∂

∂C12
{b(C12)}

−f (a(C12), C12)
∂

∂C12
{a(C12)} (F.23)

we get

∂

∂C12(τ)

{∫ ∞
∆√
c11
−C12(τ)X1

du e−
1

2 detC
u2

}

= X1e
−C12(τ)

2 detC

(
X1− ∆

C12(τ)
√
c11

)2

−
∫ ∞

∆√
c11
−C12(τ)X1

du
u2C12(τ)

(det C)2 e
− 1

2 detC
u2

(F.24)

Then, using equations (F.21) and (F.24) we can write the full form for equation (F.25) as

∂A(τ)

∂C12(τ)
=

C12(τ)

2π (det C)
3
2

∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1

∫ ∞
∆√
c11
−C12(τ)X1

du e−
1

2 detC
u2

+N

∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1X1e
−C12(τ)

2 detC

(
X1− ∆

C12(τ)
√
c11

)2

−N
∫ ∞

∆√
c11

dX1 e
− 1

2
X2

1

∫ ∞
∆√
c11
−C12(τ)X1

du
u2C12(τ)

(det C)2 e
− 1

2 detC
u2

(F.25)
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∂c12(τ)
∂τ Calculation

The approximation for the two-point time correlation function, in the large time limit, for

z(x, t) is given by

c12(τ) =
D

2πM2

∫ ∞
0

r

α(r)
e−α(r)τ (F.26)

where α(r) = Br4+γr2+λ
M . Then, the first derivative of C12(τ), equation (F.3), with respect

to τ is given by

∂C12(τ)

∂τ
=
∂

∂τ

{
D

2πc11M2

∫ ∞
0

r
e−α(r)τ

α(r)
dr

}
=

−D
2πc11M2

∫ ∞
0

r e−α(r)τdr (F.27)

∂A(τ)
∂τ Calculation

Using equations (F.25) and (F.27) we can rearrange to get the full form for the derivative of

A(τ) with respect to τ

∂A(τ)

∂τ
=

[
C12(τ)

2π (det C)
3
2

∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1

∫ ∞
∆√
c11
−C12(τ)X1

du e−
1

2 detC
u2

+
1

2π
√

det C

∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1X1e
−C12(τ)

2 detC

(
X1− ∆

C12(τ)
√
c11

)2

− C12(τ)

2π (det C)
5
2

∫ ∞
∆√
c11

dX1 e
− 1

2
X2

1

∫ ∞
∆√
c11
−C12(τ)X1

du u2e−
1

2 detC
u2

]

× −D
2πc11M2

∫ ∞
0

r e−α(r)τdr (F.28)
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Appendix G

Steady State Fokker-Planck

Equation

In this appendix, the steady state Fokker-Planck equation is used to derive an expression

for the probability density distribution for the local intermembrane separation distance. Sec-

tion G.1 shows steps required to express the Langevin equation as a Fokker-Planck equation,

that describes the time evolution of the probability density distribution. The steady state,

equilibrium, probability density distribution is then calculated for the Fourier transformed

variable, of the intermembrane separation distance. Then, in section G.2, the conversion

from the Fourier space to the cartesian space is shown.

G.1 Langevin Equation to Steady State Fokker-Planck Equa-

tion

In this section, we use the Fokker-Planck equation to study the steady state probability

density distribution for the local mean separation distance, where it can be shown the steady

state probability density distribution admits of a Gaussian form. We begin with the Langevin

equation in the Fourier k − t space, equation (3.4), that may be expressed in the form

∂z̃(k, t)

∂t
= f(z̃(k, t), t) + g(z̃(k, t), t)ζ(k, t) (G.1)

where ζ has zero mean and unit variance. The linear IS model is mapped to equation (G.1)

through the functions

f(z̃(k, t), t) = −α(k)z̃(k, t) (G.2)

g(z̃(k, t), t) =

√
2D

M
(G.3)
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where we have a constant function g(z̃(k, t), t) that is independent of time and the separation

distance, that we will call g. In the form presented in equation (G.1), it can be shown that

the Langevin equation is equivalent to the forward Fokker-Planck equation for the probability

distribution P (z̃k, k, t), that is the probability the system is at the separation distance in the

k − t space, z̃k, at time t (Risken, 1989). Using the probability density definition

P (z̃k,k, t) = 〈δ (z̃k − z̃ (k, t))〉 (G.4)

resulting in the Fokker-Planck equation

∂

∂t
P (z̃k,k, t) = − ∂

∂z̃k
[f(z̃k)P (z̃k,k, t)] +

∂2

∂z̃2
k

[
g2

2
P (z̃k,k, t)

]
(G.5)

The steady state solution occurs when
∂P (z̃k,k, t)

∂t
= 0 and we call the steady state proba-

bility distribution Ps(z̃k,k), then

∂

∂z̃k

[
−f(z̃k)Ps(z̃k,k) +

g2

2

∂

∂z̃k
Ps(z̃k,k)

]
= 0 (G.6)

A solution exists when the term inside brackets is constant, that we can set to 0 without loss

of generality, then
g2

2

∂

∂z̃k
Ps(z̃k,k)− f(z̃k)Ps(z̃k,k) = 0 (G.7)

that for our case is
∂

∂z̃k
Ps(z̃k,k) +

M2α(k)

D
z̃kPs(z̃k,k) = 0 (G.8)

Using the integrating factor method, we can solve equation (G.8)

Ps(z̃k,k) = Ce−
M2α(k)

D
z̃2
k (G.9)

where Ps is a function of k and z̃k, and C is the normalisation factor

C =

(
M2α(k)

πD

) 1
2

(G.10)

.
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G.2 Relation to P (z (x, t) ,x, t)

Consider

P (Z,x, t) = 〈δ (Z − z(x, t))〉 (G.11)

=

∫
dq
〈
eiq(Z−z(x,t))

〉
(G.12)

=

∫
dq eiqZ

〈
e−

iq
2π

∑
k z̃(k,t)e

ik·x
〉

(G.13)

=

∫
dq eiqZ

∏
k

〈
e−

iq
2π
z̃(k,t)eik·x

〉
(G.14)

then we use equation (G.9) to find an expression for the statistical ensemble

〈
e−

iq
2π
z̃(k,t)eik·x

〉
= C

∫
dz̃ke

− iq
2π
z̃ke

ik·x
e−

M2α(k)
D

z̃2
k (G.15)

= C

∫
dz̃ke

−
[
iq
2π
z̃ke

ik·x+
M2α(k)

D
z̃2
k

]
(G.16)

= C

∫
dz̃ke

−M
2α(k)
D

[
iqD

2πM2α(k)
z̃ke

ik·x+z̃2
k

]
(G.17)

= C

∫
dz̃ke

−M
2α(k)
D

[(
z̃k+ iqD

4πM2α(k)
eik·x

)2
−
(

iqD

4πM2α(k)

)2
e2ik·x

]
(G.18)

= Ce
− q2

(4π)2
D

M2α(k)
e2ik·x

∫
dz̃ke

−M
2α(k)
D

[(
z̃k+ iqD

4πM2α(k)
eik·x

)2
]

(G.19)

= C

(
πD

M2α(k)

) 1
2

e
− q2

(4π)2
D

M2α(k)
e2ik·x

(G.20)

then using equation (??) we get the final expression

〈
e−

iq
2π
z̃(k,t)eik·x

〉
= e
− q2

(4π)2
D

M2α(k)
e2ik·x

(G.21)

that we substitute in to equation (??) to give

P (Z,x, t) =

∫
dq eiqZ

∏
k

e
− q2

(4π)2
D

M2α(k)
e2ik·x

(G.22)

(G.23)

106



Let A(k,x) = D
2π2M2α(k)

e2ik·x, then

P (Z,x, t) =

∫
dq eiqZ

∏
k

e−
A(k,x)

2
q2

(G.24)

=

∫
dq eiqZe−

∑
k A(k,x)

2
q2

(G.25)

=

∫
dq e

−
∑

k A(k,x)

2

(
q2− 2iqZ∑

k A(k,x)

)
(G.26)

=

∫
dq e

−
∑

k A(k,x)

2

[(
q− iZ∑

k A(k,x)

)2
+
(

Z∑
k A(k,x)

)2
]

(G.27)

= e
− Z2

2
∑

k A(k,x)

∫
dq e

−
∑

k A(k,x)

2

(
q− iZ∑

k A(k,x)

)2

(G.28)

then, using substitution of variables

P (Z,x, t) = e
− Z2

2
∑

k A(k,x)

∫
du e−

∑
k A(k,x)

2
u2

(G.29)

=

(
2π∑

kA(k,x)

) 1
2

e
− Z2

2
∑

k A(k,x) (G.30)

where ∑
k

A(k,x) =
D

2π2M2

∫
dk

e2ik·x

α(k)
(G.31)

In order for P (Z,x, t) to be a Gaussian,
∑

kA(k,x) must be positive definite. This is true, if

D

2π2M2

∫
dk

e2ik·x

α(k)
> 0 (G.32)

Now, D,M > 0, α(k) > 0 for all k, and

∫
dk e2ik·x =

∫
dk

(
eik·x

)2
(G.33)

=

∫
dk (cos (k · x) + i sin (k · x))2 (G.34)

=

∫
dk cos2 (k · x)− sin2 (k · x) + 2i cos (k · x) sin (k · x) (G.35)

and ∫
dk 2i cos (k · x) sin (k · x) = 0 (G.36)

therefore, we require

∫
dk cos2 (k · x)− sin2 (k · x) ≥ 0 (G.37)∫

dk
1

2
(1 + cos (2k · x))− 1

2
(1− cos (2k · x)) ≥ 0 (G.38)∫
dk cos (2k · x) ≥ 0 (G.39)

(G.40)

107



and this equality holds when

−π
2
<2k · x< π

2
(G.41)

−π
4
< k · x < π

4
(G.42)

(G.43)

therefore,
∑

kA(k,x) ≥ 0 and P (Z,x, t) is Gaussian distributed.

To normalise the probability over −∞ < Z <∞,

1 =

∫ ∞
−∞

N P (Z,x, t)dZ (G.44)

= N

∫ ∞
−∞

(
2π∑

kA(k,x)

) 1
2

e
− Z2

2
∑

k A(k,x)dZ (G.45)

= N

(
2π∑

kA(k,x)

) 1
2
∫ ∞
−∞

e
− Z2

2
∑

k A(k,x)dZ (G.46)

= N

(
2π∑

kA(k,x)

) 1
2

(
2π
∑
k

A(k,x)

) 1
2

(G.47)

1

2π
= N (G.48)

whereupon, the final form for the probability density distribution of the local membrane

separation distance is given by

P (Z,x, t) =

(
1

2π
∑

kA(k,x)

) 1
2

e
− Z2

2
∑

k A(k,x) . (G.49)
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