
 
 
 

Endothelial Cell Redox Regulation of Ischemic Angiogenesis 

 

Richard A. Cohen*, Colin E. Murdoch, Yosuke Watanabe, Victoria M. Bolotina**, Alicia M. 

Evangelista, Dagmar Haeussler, Yu Mei, XiaoYong Tong, Jingyan Han, Jessica B. Behring, 

Markus M. Bachschmid, Reiko Matsui 

 

Vascular Biology Section and **Ion Channel and Calcium Signaling Unit, Department of 

Medicine, Boston University School of Medicine 

 

*Address for correspondence:  

Richard A. Cohen, MD 

Director, Vascular Biology Section 

650 Albany Street 

Boston, MA 02118 

Tel: 617-638-7115 

Email: racohen@bu.edu 

  



Abstract 

 The endothelium produces and responds to reactive oxygen and nitrogen species 

(RONS), providing important redox regulation to the cardiovascular system in physiology and 

disease. In no other situation are RONS more critical than in the response to tissue ischemia. 

Here, tissue healing requires growth factor-mediated angiogenesis that is in part dependent on 

low levels of RONS, which paradoxically must overcome the damaging effects of high levels of 

RONS generated as a result of ischemia. While generation of endothelial cell RONS in 

hypoxia/reoxygenation is acknowledged, the mechanism for their role in angiogenesis is still 

poorly understood. During ischemia, the major low molecular weight thiol glutathione (GSH) 

reacts with RONS and protein cysteines, producing GSH-protein adducts. Recent data indicate 

that GSH adducts on certain proteins are essential to growth factor responses in endothelial 

cells. Genetic deletion of the enzyme glutaredoxin-1, which selectively removes GSH protein 

adducts, improves, while its overexpression impairs, revascularization of the ischemic hindlimb 

of mice. Ischemia-induced GSH adducts on specific cysteine residues of several proteins, 

including p65 NFkB and the sarcoplasmic reticulum calcium ATPase (SERCA2), appear to 

promote ischemic angiogenesis. Identifying the specific proteins in the redox response to 

ischemia has provided therapeutic opportunities to improve clinical outcomes of ischemia. 
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Introduction 

 Reactive oxygen, eg. superoxide anion and hydrogen peroxide, and reactive nitrogen 

species, eg. nitric oxide and peroxynitrite, (RONS) are low molecular weight reactive species 

created as a result of metabolism in respiring cells. Elevated levels of RONS have been 

measured in countless studies of various cardiovascular and metabolic diseases, notably 



diabetes mellitus, and in animal models, scavenging of the oxidants has therapeutic benefits. 

When they are present at high levels or for prolonged times, one of the most prevalent reasons 

for the adverse effects of RONS is the irreversible damage to proteins, requiring protein 

degradation and re-synthesis to return protein function. Such damage is evidenced by 

biologically irreversible post-translational chemical modifications. Although many such 

modifications have been identified, the one with most notoriety is nitrotyrosine1 due to the early 

development of a specific antibody. Nitrotyrosine, and other irreversible oxidative post-

translational modifications (OPTM), chlorotyrosine, methionine sulfoxide, and cysteine sulfonic 

acid (-SO3H), are all recognized biomarkers of oxidant stress  occurring in animal models and 

found in tissue and blood of human patients with cardiovascular disease
2,3,4,5,6

. These 

biomarkers have been demonstrated on proteins whose functions are essential to cellular 

homeostasis, including albumin7, endothelial nitric oxide synthase (eNOS)8, prostacyclin 

synthase9, the sarcoplasmic-endoplasmic reticulum calcium ATPase (SERCA)10,11 , 

manganese superoxide dismutase12, and p21Ras
13
. As an example, nitrotyrosine-modified 

proteins accumulate in endothelial cells of skeletal muscle in a commonly used mouse model 

of hindlimb ischemia
14,15

. In this model, a one centimeter length of the femoral artery is ligated 

and excised, allowing serial measurements of blood flow and other parameters over several 

weeks, during which angiogenesis and revascularization return blood flow to near normal. As 

another example of irreversible protein oxidation within endothelial cells during hindlimb 

ischemia in the mouse, the reactive cysteine-674 thiol of SERCA2 is in part irreversibly 

oxidized to the sulfonic acid as revealed by a specific antibody (Figure 1).  

 

Signaling in endothelial cells by thiol adducts 

 Lower levels of RONS are now recognized to be essential for cell signaling functions. 

For example, there is substantial evidence that nitric oxide (NO) is an endogenous mediator of 

growth factor-mediated angiogenesis16, and in therapeutic amounts, NO can provide 



substantial protection from the effects of ischemia
17

. Also, interference with normal functions of 

low-level RONS is a potential reason why application of non-specific scavenging antioxidants 

such as vitamin C and E have failed as therapies for diseases involving damage caused by 

high levels of RONS. These factors suggest that mammalian cells have developed 

mechanisms to utilize low levels of RONS, while protecting themselves from higher levels. 

While not exclusively so, the major signaling actions of RONS are mediated by reversible 

protein modifications on cysteine residues18,19,20. Alterations in function are associated with 

multiple oxidative modifications of the thiol group (Figure 2). The primary targets include 

cysteines that are accessible on the protein surface, as well as those that are maintained in the 

chemically reactive thiolate anion state (-S-
 rather than -SH) by nearby positively charged 

arginine and lysine amino acids. Although high concentrations of RONS widely oxidize 

cysteines and other amino acids on proteins, low levels of RONS affect these reactive 

cysteines more specifically. As an example, during growth factor initiated signaling in 

endothelial cells, the thiol of cysteine-674 of SERCA2 serves as the exclusive target for 

glutathione (GSH) adducts. Despite the fact that there are many other cysteine thiols on the 

exterior of the protein, a cysteine to serine mutation of this one thiol nearly eliminates all GSH 

adducts occurring on the protein during growth factor-induced angiogenesis21. NO is well 

documented to produce S-nitroso thiols (-SNO), and hydrogen peroxide to produce sulfenic 

acid (-SOH) modification of thiols
22,23

. However, both of these thiol modifications readily react 

with abundant intracellular GSH to form the more stable GSH adduct (-SSG). In response to 

direct challenge with various oxidants in vitro, or in particular in response to ischemia in vivo, 

large amounts of glutathione adducts appear on reactive cysteines. As an example, during the 

first 24 hours of ischemia, cysteine-674 of SERCA2 abundantly forms GSH adducts that 

persist for at least several days (Figure 3).  

 

Glutaredoxin-1 



 Likely because of the chemical stability of GSH cysteine adducts, the cell has evolved 

several thiol reductase enzymes that can remove GSH adducts. While thioredoxins and 

peroxidoxins are abundant thiol reductases, glutaredoxin-1 (Glrx1) is the most selective in its 

ability to remove GSH protein adducts3. This 12 kiloDalton protein removes GSH adducts from 

a protein cysteine thiol by transferring the GSH adduct to one of its own reactive thiols on 

cysteine 23 or 26. Glrx1 is then reduced by free GSH, completing the catalytic cycle (Figure 4). 

There is growing awareness of the importance of Glrx1 as a physiological regulator 24–34
. Our 

studies show that Glrx1 regulates hindlimb ischemia, when the abundance of GSH adducts is 

high. The level of protein GSH adducts present in ischemic muscle and the restoration of blood 

flow during the two weeks following femoral artery excision was significantly enhanced in 

global Grx1 knockout mice
35

, consistent with an essential role of GSH adducts in the response 

to ischemia. In contrast, GSH adducts in the ischemic muscle were decreased and restoration 

of blood flow was impaired in global Glrx1 overexpressing transgenic mice (Figure 5)28. 

Additionally, when compared to wild type mice, endothelial-specific overexpression of Glrx1 

impaired the recovery from ischemia, resulting in necrotic loss of toes35., Together, these 

findings indicate a critical role for GSH adducts on endothelial cell proteins during the response 

to ischemia. Furthermore, these studies establish Grx1 as a critical regulator and potential 

therapeutic target to address in improving clinical outcomes of limb ischemia. 

 

Redox regulation of cellular mechanisms of angiogenesis in endothelial cells 

 During a normal response to ischemia induced by femoral artery excision, the 

involvement of RONS is well established. Throughout the subsequent recovery of blood flow, 

collateral arteries grow in diameter to conduct blood flow around the blocked artery, and the 

numbers of capillaries increase within ischemic muscle tissue. The increase in number of 

capillaries, termed angiogenesis, requires endothelial cell proliferation and migration driven by 

increased production by the ischemic cells of growth factors, the most abundant of which is 



vascular endothelium growth factor (VEGF). In cultured endothelial cells, VEGF causes 

proliferation, migration, and capillary-like tube formation. These endothelial angiogenic 

responses require signaling elements that mediate the response to VEGF including VEGF 

receptor-2, phosphatidylinositol-3 kinase, Akt phosphorylation, endothelial nitric oxide synthase 

(eNOS) phosphorylation, and NO production. NO and eNOS have proven to be essential in the 

angiogenic response in vivo, as demonstrated by the fact that the eNOS knockout mouse has 

only minimal restoration of blood flow following femoral artery ligation16. The activation of 

angiogenic behavior in cultured endothelial cells by VEGF can be mimicked by direct addition 

of micromolar concentrations of exogenous NO21.  

Interestingly, NO does not work alone, but requires other RONS. First, intracellular 

superoxide anion is required, as demonstrated by the fact that overexpression of either 

superoxide dismutase 1 or 2 prevents both VEGF and NO-induced endothelial cell migration36. 

Superoxide anion is also required in vivo for the restoration of hindlimb blood flow in ischemia 

as indicated by a subnormal return of blood flow in mice deficient in Nox2 (gp91phox), a 

component of NADPH oxidase,37 a major source of superoxide anion. The actual chemical 

identity of the essential RONS for a normal endothelial response to VEGF is uncertain. It has 

been suggested that peroxynitrite (ONOO-), the reaction product of nitric oxide and superoxide,  

is the true signaling RONS based on inhibition of VEGF-induced angiogenic responses by a 

ONOO
-
 degradation catalyst38. This also makes sense from the point of view that ONOO-

 is a 

much more potent thiol oxidant. For example, low micromolar concentrations of ONOO-
 induce 

protein GSH adducts in cell free systems on cysteine-674, the reactive thiol on SERCA2, much 

more effectively than do similar concentrations of nitric oxide alone
39

.  

NO and superoxide are not the only RONS required for angiogenesis, because 

scavenging of hydrogen peroxide (H2O2) by overexpression of catalase inhibits hindlimb 

ischemia-induced angiogenesis in vivo
40

 and angiogenic endothelial cell responses to VEGF in 

culture
36,39

. Indeed, low micromolar concentrations of H2O2 induce cell migration that mimics 



the  response to VEGF36. NADPH oxidase (Nox) 4 apparently provides the H2O2, as 

knockdown of its expression globally41 or selectively in endothelial cells
42

 in vivo inhibits the 

angiogenic response to ischemia and prevents the angiogenic responses to VEGF in cell 

culture. The interaction of NO, superoxide anion, and H2O2 is complex, but we found that H2O2 

production by Nox4 is upstream of superoxide anion production by Nox236. Namely, the 

angiogenic response to exogenous H2O2 or VEGF is prevented by overexpression of 

intracellular superoxide dismutase (directly removing the downstream mediator, superoxide) as 

well as knockdown of Nox2 (the producer of superoxide)36. Thus, both H2O2 from Nox4 and 

superoxide anion from Nox2 appear to be required for NO to perform its angiogenic functions.  

The requirements for nitric oxide, Nox4-derived H2O2, and Nox2-derived superoxide 

anion to achieve a normal angiogenic response to VEGF also extend to the ability of the 

growth factor to stimulate protein GSH adducts in endothelial cells in culture
36

. This is also 

compatible with the previously noted suggestion that ONOO-
 is essential for protein GSH 

adducts to form in sufficient abundance for VEGF signaling. Indeed, like the scavengers of 

RONS mentioned above, overexpression of Glrx1 prevents formation of GSH protein adducts 

and completely prevents VEGF-induced angiogenic responses in cultured endothelial cells21.  

 

Involvement of GSH adducts on specific proteins in the redox regulation of 

angiogenesis 

 It is clear from proteomics studies of endothelial cell proteins on which GSH adducts 

form during ischemia, that multiple, perhaps hundreds of, proteins are involved
35,43

. This is as 

might be expected, given that ischemia results in high concentrations of RONS and hundreds 

of proteins have been identified to have reactive cysteines 44. While it is uncertain if and how 

all the proteins on which GSH adducts occur are involved in the angiogenic response, it is 

certain that several are essential.  



 GSH adducts on the cysteine-674 thiol of SERCA2 are one example of a 

mechanistically essential GSH adduct. First, GSH adducts form abundantly on the SERCA2 

thiol during the first 3 days of ischemia (Figure 3). The importance of this cysteine was 

demonstrated in a heterozygote mouse in which one allele of SERCA2 was mutated to encode 

a serine in place of cysteine-67445. Total GSH adducts on SERCA2 in ischemic muscle were 

decreased approximately 50%, consistent with this single thiol being the primary site for GSH 

adduct formation on SERCA2 
21,39

. In cultured endothelial cells, knockdown of SERCA2 

expression prevented VEGF-induced calcium influx, cell migration, and capillary-like network 

formation. The importance of SERCA2 was attributed to its role in refilling intracellular calcium 

stores, which, in turn, regulates entry of the extracellular calcium required for angiogenic 

responses to VEGF. Overexpression of a SERCA2 cysteine-674 serine mutant or 

overexpression of Glrx1 in endothelial cells largely prevented increases in GSH adducts on 

SERCA2, calcium signaling, and angiogenic responses to VEGF. In addition, the mouse in 

which 50% of the redox-sensitive cysteines were mutated to serine showed impaired 

restoration of blood flow in the ischemic hindlimb (Figure 3). The fundamental importance of 

GSH adducts on cysteine-674 of SERCA2 for growth factor-mediated angiogenesis was also 

evidenced by the fact that the mouse with homozygote substitution of the SERCA2 serine 

mutation died in utero at the stage when heart and vascular development occur
45

.  

 GSH protein adducts on any of several components involved in NFkB signaling inhibits 

activation of the pathway, i.e. by inactivating IKK25 and limiting the DNA binding ability of p6546 

and p50
47

. For example, increased GSH adducts were noted on p65 in normal ischemic 

hindlimb muscle and endothelial cells exposed to hypoxia, suggesting that during ischemia, 

NFkB activity is inhibited by glutathione adduct formation (Figure 5). On the contrary, NFkB 

activity is dramatically increased in endothelial cells cultured from transgenic mice 

overexpressing Glrx128. Overexpression of Glrx1 in endothelial cells prevented p65 GSH 

adducts and resulted in the activation of NFkB. A consequence of this activation was increased 



production of the non-canonical Wnt ligand, Wnt5a, levels of which rose dramatically in the 

ischemic hindlimbs of Glrx1 transgenic mice. Wnt5a, in turn, increased production of soluble 

Flt, an alternatively spliced VEGF receptor that acts as a decoy, interfering with binding and 

response to VEGF28. Knocking down the expression of sFlt restored angiogenic function to 

endothelial cells that overexpressed Glrx1
28

. Regulation and downstream targets of NF-kB are, 

however, complex. However, mice with dominant negative IκBα, in which NF-kB is inhibited, 

showed decreased blood flow recovery after hindlimb ischemia48. Induction of sFlt in Glrx1 

overexpressing mice may result not only from NF-kB activation but also other transcriptional 

controls regulated by GSH adducts.  

 Phosphatases (eg. protein tyrosine phosphatase-1B and protein phosphatase-2A) are 

protein targets that are inhibited by oxidants, resulting in increased phosphorylation and 

activation of kinase signaling. VEGF was shown to induce increases in GSH adducts on low 

molecular weight protein tyrosine phosphatases49. In cultured endothelial cells, inhibition of the 

phosphatases by GSH adducts was required for increases in tyrosine phosphorylation and 

increased activity of focal adhesion kinase, a key mediator of endothelial cell migration. Either 

antioxidants or a ONOO
- decomposition catalyst were able to prevent GSH adducts from 

forming on the phosphatase, and thus prevented kinase activation. These studies indicate that 

endothelial cell migration requires GSH adducts and inhibition of the phosphatase to allow 

downstream kinase signaling. 

p21ras is essential for angiogenesis. Glutathione adducts on cysteine 118 of p21ras 

substantially increase its activity50, so it is possible that this small GTPase is another key 

protein that is redox-regulated by GSH adducts during ischemic angiogenesis. It is known that 

mutation of cysteine-118 in p21ras prevents a critical angiogenic role of eNOS in tumor 

maintenance 
51, making it likely that GSH adducts are involved. 

Whereas GSH adducts on the above cited proteins would appear to aid in the 

restoration of blood flow during ischemia, GSH adducts on some proteins known to be 



essential in the angiogenic response to ischemia may have adverse consequences. For 

example, both eNOS16 and sirtuin-152 are essential to normal angiogenesis and possess 

reactive cysteines that when adducted with GSH affect their function. However, GSH adducts 

on both eNOS
32

 and sirtuin-153 inhibit their catalytic activities, which would therefore be 

predicted to have a deleterious effect on ischemia-induced angiogenesis.  As GSH adducts on 

both proteins are reduced by Grx154,32, the deleterious effect of Grx1 itself cannot be 

explained. This apparent contradiction could exist for several reasons, including the possibility 

that these proteins are protected from GSH adducts during ischemia because of subcellular 

localization (eg. calveoli and nucleus, respectively), or that the global effects of up- or down-

regulation of Grx1 expression overrides changes in the function of these two proteins. It is also 

possible that because GSH adducts on eNOS uncouple the enzyme32, the increased ONOO- 

that results may benefit VEGF signaling by further increasing GSH adducts.  

  

Summary and future directions 

It is now evident that GSH adducts form abundantly on proteins during ischemia, and 

that from studies of up- and down-regulation of Grx1, formation of these adducts is important 

to the outcome of ischemia. It is possible that the benefit of GSH adducts on many proteins 

during ischemia is derived from protecting critical reactive cysteines against potential 

irreversible oxidation.The resulting preservation of cysteine function could explain the adverse 

consequences of overexpression and the benefit of knockdown of Grx1. This then suggests 

that inhibition of Grx1, because of its generalized effects on GSH adducts during ischemia, 

might be one therapeutic maneuver identified by these studies. It is also possible to affect GSH 

adduct formation by influencing GSH levels and the redox state of GSH itself, which is 

regulated by GSH reductase and GSH synthase, amongst other factors. 

The global increase in GSH adducts during ischemia is difficult to reconcile with the 

apparent importance of the redox state of reactive cysteines in the function of individual 



proteins. The evidence, for instance, that GSH adducts on one cysteine of SERCA are 

essential to angiogenic growth factor signaling and that a 50% substitution of the cysteine 

inhibits ischemic angiogenesis in vivo, suggests that GSH adducts on some proteins might be 

more important than on others. If this is so, it might be possible to use the redox state of these 

particular cysteines, such as was measured for SERCA cysteine-674 with 

immunohistochemistry in Figure 1, as an indicator or biomarker of a favorable or unfavorable 

response to ischemia. Potentially, proteins have evolved with reactive cysteines, in part, for 

protection from ischemia, or other acute adverse redox conditions. This notion is supported by 

preliminary proteomic studies that we designed to identify which endothelial cell proteins have 

GSH adducts on reactive cysteines. Using systems biology approaches, these studies show 

that many proteins in several categories of tissue healing and angiogenesis have increased 

adducts during prolonged hypoxia, raising the possibility that protection of these categories of 

proteins in particular has evolved to improve the response to adverse oxidative stress 

conditions including ischemia. Future systems biology analysis might reveal that proteins with 

essential reactive cysteines work not alone, but in unison to accomplish a normal response  to 

ischemia. 

 

Acknowledgements: 

 The work summarized in this review and writing of the manuscript were supported by 

funding from the National Institutes of Health grants RO1HL31607 and R37HL104017 (RAC), 

RO1DK103750 (MMB), T32HL007501(JBB), T32 HL07224, American Heart Association 

Scientist Development Grant 20140036, and the Boston University Clinical Translational 

Science Institute 1UL1TR001430 (J.H.).  

 

References: 
 



1.  MacMillan-Crow LA, Crow JP, Kerby JD, Beckman JS, Thompson JA. Nitration and 
inactivation of manganese superoxide dismutase in chronic rejection of human renal 
allografts. Proc.Natl.Acad.Sci.U.S.A 1996;93(21):11853-11858. 

2.  Cohen RA, Adachi T. Nitric-oxide-induced vasodilatation: regulation by physiologic  S -
glutathiolation and pathologic oxidation of the sarcoplasmic endoplasmic reticulum 
calcium ATPase. Trends Cardiovasc. 2006;16(4):109-114. 

3.  Mieyal JJ, Chock PB. Posttranslational modification of cysteine in redox signaling and 
oxidative stress: Focus on S-glutathionylation. Antioxid.Redox.Signal. 2012;16(6):471-
475. 

4.  Hong SJ, Gokulrangan G, Schoneich C. Proteomic analysis of age dependent nitration 
of rat cardiac proteins by solution isoelectric focusing coupled to nanoHPLC tandem 
mass spectrometry. Exp.Gerontol. 2007;42(7):639-651. 

5.  Stadtman ER, Van Remmen H, Richardson A, Wehr NB, Levine RL. Methionine 
oxidation and aging. Biochim. Biophys. Acta - Proteins Proteomics 2005;1703(2):135-
140. 

6.  Shao B, Pennathur S, Heinecke JW. Myeloperoxidase targets apolipoprotein A-I, the 
major high density lipoprotein protein, for site-specific oxidation in human atherosclerotic 
lesions. J. Biol. Chem. 2012;287(9):6375-6386. doi:10.1074/jbc.M111.337345. 

7.  Odhiambo A, Perlman DH, Huang H, et al. Identification of oxidative post-translational 
modification of serum albumin in patients with idiopathic pulmonary arterial hypertension 
and pulmonary hypertension of sickle cell anemia. Rapid Commun.Mass Spectrom. 
2007;21(14):2195-2203. 

8.  Xu J, Xie Z, Reece R, Pimental D, Zou MH. Uncoupling of endothelial nitric oxidase 
synthase by hypochlorous acid: role of NAD(P)H oxidase-derived superoxide and 
peroxynitrite. Arterioscler.Thromb.Vasc.Biol. 2006;26(12):2688-2695. 

9.  Nie H, Wu J liang, Zhang M, Xu J, Zou MH. Endothelial Nitric Oxide Synthase 
Dependent Tyrosine Nitration of Prostacyclin Synthase in Diabetes In Vivo. Diabetes 
2006;55(11):3133-3141. 

10.  Adachi T, Matsui R, Xu S, et al. Antioxidant improves smooth muscle sarco/endoplasmic 
reticulum Ca(2+)-ATPase function and lowers tyrosine nitration in hypercholesterolemia 
and improves nitric oxide-induced relaxation. Circ.Res. 2002;90(10):1114-1121. 

11.  Xu S, Ying J, Jiang B, et al. Detection of sequence-specific tyrosine nitration of 
manganese SOD and SERCA in cardiovascular disease and aging. Am.J.Physiol Hear. 
Circ.Physiol 2006;290(6):H2220-H2227. 

12.  Guo W, Adachi T, Matsui R, et al. Quantitative assessment of tyrosine nitration of 
manganese superoxide dismutase in angiotensin II-infused rat kidney. Am.J.Physiol 
Hear. Circ.Physiol 2003;285(4):H1396-H1403. 

13.  Zhao C, Sethuraman M, Clavreul N, Kaur P, Cohen RA, O’Connor PB. Detailed map of 
oxidative post-translational modifications of human p21ras using Fourier transform mass 
spectrometry. Anal. Chem. 2006;78(14):5134-42. 



14.  Turgeon J, Haddad P, Dussault S, et al. Protection against vascular aging in Nox2-
deficient mice: Impact on endothelial progenitor cells and reparative neovascularization. 
Atherosclerosis 2012;223(1):122-9. 

15.  Yan J, Tie G, Park B, Yan Y, Nowicki PT, Messina LM. Recovery from hind limb 
ischemia is less effective in type 2 than in type 1 diabetic mice: roles of endothelial nitric 
oxide synthase and endothelial progenitor cells. J. Vasc. Surg. 2009;50(6):1412-22. 

16.  Yu J, deMuinck ED, Zhuang Z, et al. Endothelial nitric oxide synthase is critical for 
ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc. Natl. Acad. 
Sci. USA 2005;102(31):10999-11004. 

17.  Xia Z, Vanhoutte PM. Nitric oxide and protection against cardiac ischemia. Curr. Pharm. 
Des. 2011;17(18):1774-82. 

18.  Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free 
Radic. Biol. Med. 2008;45(5):549-561. 

19.  Go Y-M, Jones DP. Thiol/disulfide redox states in signaling and sensing. Crit. Rev. 
Biochem. Mol. Biol. 2013;48(2):173-81. 

20.  Kumar V, Calamaras TD, Haeussler D, et al. Cardiovascular redox and ox stress 
proteomics. Antioxid Redox Signal 2012;17(11):1528-1559. 

21.  Evangelista AM, Thompson MD, Weisbrod RM, et al. Redox regulation of SERCA2 is 
required for vascular endothelial growth factor-induced signaling and endothelial cell 
migration. Antioxid Redox Signal 2012;17(8):1099-1108. 

22.  Yang Y, Loscalzo J. S-nitrosoprotein formation and localization in endothelial cells. 
Proc.Natl.Acad.Sci.U.S.A 2005;102(1):117-122. 

23.  Saurin AT, Neubert H, Brennan JP, Eaton P. Widespread sulfenic acid formation in 
tissues in response to hydrogen peroxide9. Proc.Natl.Acad.Sci.U.S.A 
2004;101(52):17982-17987. 

24.  Lillig CH, Berndt C. Glutaredoxins in thiol/disulfide exchange. Antioxid. Redox Signal. 
2013;18(13):1654-65. 

25.  Reynaert NL, van der Vliet A, Guala AS, et al. Dynamic redox control of NF-kappaB 
through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc 
Natl Acad Sci U S A 2006;103(35):13086-13091. 

26.  Shelton MD, Distler AM, Kern TS, Mieyal JJ. Glutaredoxin regulates autocrine and 
paracrine proinflammatory responses in retinal glial (muller) cells. J Biol Chem 
2009;284(8):4760-4766. 

27.  Gallogly MM, Starke DW, Mieyal JJ. Mechanistic and kinetic details of catalysis of thiol-
disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid 
Redox Signal 2009;11(5):1059-1081. 



28.  Murdoch CE, Shuler M, Haeussler DJ, et al. Glutaredoxin-1 up-regulation induces 
soluble vascular endothelial growth factor receptor 1, attenuating post-ischemia limb 
revascularization. J. Biol. Chem. 2014;289(12):8633-8644. 

29.  Gallogly MM, Shelton MD, Qanungo S, et al. Glutaredoxin regulates apoptosis in 
cardiomyocytes via NFkappaB targets Bcl-2 and Bcl-xL: implications for cardiac aging. 
Antioxid Redox Signal 2010;12(12):1339-1353. 

30.  Pan S, Berk BC. Glutathiolation Regulates Tumor Necrosis Factor-{alpha}-Induced 
Caspase-3 Cleavage and Apoptosis: Key Role for Glutaredoxin in the Death Pathway. 
Circ. Res. 2007;100(2):213-219. 

31.  Okuda M, Inoue N, Azumi H, et al. Expression of Glutaredoxin in Human Coronary 
Arteries: Its Potential Role in Antioxidant Protection Against Atherosclerosis. Arterioscler. 
Thromb. Vasc. Biol. 2001;21(9):1483-1487. 

32.  Chen C-AA, De Pascali F, Basye A, Hemann C, Zweier JL. Redox modulation of 
endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-
translational modification. Biochemistry 2013;52(38):6712-6723. 

33.  Bachschmid MM, Xu S, Maitland-Toolan KA, Ho YS, Cohen RA, Matsui R. Attenuated 
cardiovascular hypertrophy and oxidant generation in response to angiotensin II infusion 
in glutaredoxin-1 knockout mice. Free Radic Biol Med 2010;49(7):1221-1229. 

34.  Wang J, Boja ES, Tan W, et al. Reversible glutathionylation regulates actin 
polymerization in A431 cells. J Biol Chem 2001;276(51):47763-47766. 
doi:10.1074/jbc.C100415200. 

35.  Watanabe Y, Murdoch C, Han J, Cohen R, Mastui R. S-Glutathionylation of Endothelial 
Cell Proteins Facilitates Ischemic Limb Revascularization. Circulation 2014;130(Suppl 
2):A16856. 

36.  Evangelista AM, Thompson MD, Bolotina VM, Tong X, Cohen RA. Nox4- and Nox2-
dependent oxidant production is required for VEGF-induced SERCA cysteine-674 S-
glutathiolation and endothelial cell migration. Free Radic Biol Med 2012;53(12):2327-
2334. 

37.  Tojo T, Ushio-Fukai M, Yamaoka-Tojo M, Ikeda S, Patrushev N, Alexander RW. Role of 
gp91phox (Nox2)-containing NAD(P)H oxidase in angiogenesis in response to hindlimb 
ischemia. Circulation 2005;111(18):2347-2355. 

38.  El-Remessy AB, Al-Shabrawey M, Platt DH, et al. Peroxynitrite mediates VEGF’s 
angiogenic signal and function via a nitration-independent mechanism in endothelial 
cells. FASEB J. 2007;21(10):2528-2539. 

39.  Adachi T, Weisbrod RM, Pimentel DR, et al. S-Glutathiolation by peroxynitrite activates 
SERCA during arterial relaxation by nitric oxide. A mechanism targeted by oxidants in 
vascular disease. Nat.Med. 2004;10(11):1200-1207. 

40.  Hodara R, Weiss D, Joseph G, et al. Overexpression of catalase in myeloid cells causes 
impaired postischemic neovascularization. Arterioscler. Thromb. Vasc. Biol. 
2011;31(10):2203-2209. 



41.  Schroder K, Zhang M, Benkhoff S, et al. Nox4 is a protective reactive oxygen species 
generating vascular NADPH oxidase. Circ.Res. 2012;110(9):1217-1225. 

42.  Chen L, Xiao J, Kuroda J, et al. Both hydrogen peroxide and transforming growth factor 
beta 1 contribute to endothelial Nox4 mediated angiogenesis in endothelial Nox4 
transgenic mouse lines. Biochim. Biophys. Acta 2014;1842(12 Pt A):2489-99. 

43.  Behring JBB, Kumar V, Whelan SAA, et al. Does reversible cysteine oxidation link the 
Western diet to cardiac dysfunction? FASEB J 2014;Epub ahea(5):1975-1987. 

44.  Sethuraman M, McComb ME, Huang H, et al. Isotope-coded affinity tag (ICAT) approach 
to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in 
complex protein mixtures. J.Proteome.Res. 2004;3(6):1228-1233. 

45.  Thompson MD, Mei Y, Weisbrod RM, et al. Glutathione adducts on 
sarcoplasmic/endoplasmic reticulum Ca2+ ATPase Cys-674 regulate endothelial cell 
calcium stores and angiogenic function as well as promote ischemic blood flow recovery. 
J. Biol. Chem. 2014;289(29):19907-16. 

46.  Qanungo S, Starke DW, Pai H V, Mieyal JJ, Nieminen AL. Glutathione supplementation 
potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB. J Biol Chem 
2007;282(25):18427-18436. 

47.  Pineda-Molina E, Klatt P, Vazquez J, et al. Glutathionylation of the p50 subunit of NF-
kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 
2001;40(47):14134-14142. 

48.  Tirziu D, Jaba IM, Yu P, et al. Endothelial nuclear factor-κB-dependent regulation of 
arteriogenesis and branching. Circulation 2012;126(22):2589-2600. 

49.  Abdelsaid MA, El-Remessy AB. S-Glutathionylation of LMW-PTP regulates VEGF-
mediated FAK activation and endothelial cell migration. J. Cell Sci. 2012. 

50.  Clavreul N, Adachi T, Pimental DR, Ido Y, Schoneich C, Cohen RA. S-glutathiolation by 
peroxynitrite of p21ras at cysteine-118 mediates its direct activation and downstream 
signaling in endothelial cells. FASEB J. 2006;20(3):518-520. 

51.  Lim K-HH, Ancrile BB, Kashatus DF, Counter CM. Tumour maintenance is mediated by 
eNOS. Nature 2008;452(7187):646-649. 

52.  Potente M, Ghaeni L, Baldessari D, et al. SIRT1 controls endothelial angiogenic 
functions during vascular growth. Genes Dev. 2007;21(20):2644-2658. 

53.  Zee RS, Yoo CB, Pimentel DR, et al. Redox regulation of sirtuin-1 by S-glutathiolation. 
Antioxid Redox Signal 2010;13(7):1023-1032. 

54.  Shao D, Fry JL, Han J, et al. A redox-resistant sirtuin-1 mutant protects against hepatic 
metabolic and oxidant stress. J Biol Chem 2014. 

55.  Ying J, Sharov V, Xu S, et al. Cysteine-674 oxidation and degradation of sarcoplasmic 
reticulum Ca(2+) ATPase in diabetic pig aorta. Free Radic Biol Med 2008;45(6):756-762.  



Figure legends: 

1. Immuno-histochemical staining of oxidation of SERCA cysteine-674 in mouse hindlimb after 

3 weeks of ischemia. An antibody was produced against the irreversibly oxidized sulfonic 

acid in the SERCA2 sequence containing cysteine-674 and validated previously55. Marked 

increase in staining is present in endothelial cells of capillaries within the chronically 

ischemic muscle compared to a sham-operated limb and represents accumulation of the 

oxidized protein thiol during ischemia. Magnification 10x. 

2. Schematic representation of oxidative modifications of protein cysteine thiols. The reactive 

thiolate anion exposed to RONS forms reversible intermediates, -SNO and –SOH. These 

can be further oxidized to irreversible forms, sulfinic (-SO2H) and sulfonic (-SO3H) acids, or 

may react with free GSH to form GSH adducts. These adducts may be reversed by 

glutaredoxin-1 (Glrx1), forming oxidized GSH (GSSG) in the process.  

3. GSH adducts on SERCA2 cysteine-674 affect the severity of mouse hindlimb ischemia. A. 

Western blots with a monoclonal antibody against GSH protein adducts of immuno-

precipitated SERCA2 show increased adducts in ischemic (I) muscle compared to the non-

ischemic (N) muscle of wildtype (WT) mice 3 days following induction of ischemia. By 

comparison, there are decreased adducts in the ischemic limbs of a mouse expressing a 

heterozygote knockin allele (SKI) expressing a SERCA2 serine-674. Results of studies like 

those in panel A are summarized in panel B. C. LASER Döppler image of the ischemic limbs 

of WT and SKI mice after 28 days of ischemia. The ischemic limb is shown on the right; non-

ischemic on the left. D. LASER Döppler images obtained before (pre) and immediately post 

femoral artery excision, and following 7-28 days of recovery. Significantly impaired blood 

flow recovery was demonstrated at 21 and 28 days. Data from 45
!"

4. Schematic diagram showing the molecular structure and catalytic activity of glutaredoxin-1. 

The 10 kDa protein has a CXXC motif containing cysteines 23 and 26 shown at left. The 

"



scheme at right shows how the chemically reduced Glrx1 (two –SH groups) reacts with a 

protein GSH adduct, reducing the protein thiol in the process and taking on the GSH adduct. 

The oxidized glutaredoxin-1 then reacts with GSH to form GSSG, returning glutaredoxin-1 to 

the fully reduced form.  

5. Glutaredoxin-1 overexpression impairs hindlimb ischemia. A. LASER Döppler and 

photographic images of ischemic (right) hind limbs of WT mice and transgenic mice globally 

overexpressing glutaredoxin-1 (TG). A marked lack of blood flow and cyanosis is seen in the 

transgenic mouse. Results of measurements made over 14 days of recovery are shown in 

panel B and indicate the worsened prolonged ischemia associated with glutaredoxin-1 

overexpression. Panel C summarizes results of studies to quantify reversible thiol oxidation 

of p65 NFkB in hindlimb muscle from WT and TG mice. Free protein thiols in muscle lysates 

were chemically blocked, and then reversibly oxidized thiols were reduced and labeled with 

a biotin containing thiol tag. Pull-down of biotin-labeled proteins on streptavidin was followed 

by gel electrophoresis and immuno-blotting for p65. Ischemia caused a 7-fold increase in 

reversible thiol oxidation on p65 in muscle from WT mice, but no significant increase in TG 

mice overexpressing glutaredoxin-1. The presumption being made is that glutaredoxin-1 

reduced GSH adducts on p65 thiols despite ischemic conditions. Panel D shows increased 

plasma levels of sFlt in TG mice at 4 and 14 days post-ischemia. Cell studies showed that 

sFlt, an antagonist of endothelial VEGF receptor-mediated signaling and angiogenic 

behavior, is normally suppressed during ischemia by GSH adducts on p65 that inhibit NFkB 

activity and Wnt5A-mediated sFlt production. In glutaredoxin-1 TG mice, fewer GSH adducts 

formed, and NFkB-dependent Wnt5A-mediated sFlt increased to explain impaired 

angiogenesis. From reference28. 

 












