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Abstract—Volunteered Service Composition (VSC) refers to
the process of composing volunteered services and resources.
These services are typically published to a pool of voluntary
resources. Selection and composition decisions tend to encounter
numerous uncertainties: service consumers and applications have
little control of these services and tend to be uncertain about
their level of support for the desired functionalities and non-
functionalities. In this paper, we contribute to a self-awareness
framework that implements two levels of awareness, Stimulus-
awareness and Time-awareness. The former responds to basic
changes in the environment while the latter takes into consider-
ation the historical performance of the services. We have used
volunteer service computing as an example to demonstrate the
benefits that self-awareness can introduce to self-adaptation. We
have compared the Stimulus- and Time-awareness approaches
with a recent Ranking approach from the literature. The results
show that the Time-awareness level has the advantage of satisfy-
ing higher number of requests with lower time cost.

Keywords—Volunteered Service, Stimulus-awareness, Time-
awareness, Service Dependability

I. INTRODUCTION

Volunteer Computing (VC) is an emerging distributed
computing paradigm in which users make their own resources
available to others enabling them to do distributed compu-
tations and/or storage [1]. VC provides a multitude of ad-
vantages. Firstly, VC helps achieve efficient utilization of the
computational and storage resources of the huge number of
available computing devices like PCs, laptops, smart phones,
etc. Secondly, VC has a positive impact on the environment
by reducing the energy consumption as applications use idle
resources instead of setting up new data centres or processing
units. Finally, the premise of VC is to volunteer resources
for little or no gain which reduces the costs of purchasing
commercial resources for the users who will access those
resources [2].

Many approaches have been proposed in the literature
to enable volunteers to donate their resources for scientific
projects, e.g. SETI@Home [3], Storage@Home [4], Fold-
ing@home [5], and others. Such projects are characterized
by a requirement of large scale computation and/or storage.
Taking into consideration that plenty of resources are available
and idle on the users computing devices, purchasing resources
for the large scale projects could be unreasonable, especially
if the fund is not obtainable. Also, the increasing demand
in resources may lead to some kind of ’monopoly’ by few

very big companies in the cloud market, according to [6]. So,
utilizing the volunteered resources brings the advantages of
large scale computing using inexpensive resources [7].

In Service-Oriented Computing (SOC), a service can be
viewed as an elementary unit of the whole distributed ap-
plication. That is, a distributed application consists of some
number of distributed services that are composed together
in order to provide the required functionality [8]. In VC,
similar concepts can be applied on volunteered storage when
considering this storage as a volunteered service (VS). Then,
a composition approach is required to combine the VSs to
form one composite service (CS) that satisfies the requester’s
required storage - a practice known as volunteered service
composition (VSC).

The dynamism in the VC environment makes VSC a
challenging task. Assume a volunteering environment in which
users volunteer their idle storage. The VSC in such environ-
ment faces multiple challenges, including those listed below
[9]:
• Storage-awareness: VSC should be able to compose

the contributed storage achieving both maximum uti-
lization and minimum waste with minimum computa-
tion time.

• Availability-awareness: the public contribute their re-
sources during the time intervals in which they do not
need these resources, i.e. the volunteered resources are
not available permanently [10].

• Dilution of control: As volunteer services are offered
on a voluntary basis by individuals and organizations
willing to participate in the model, VC tends to exhibit
’dilution’ of control increasing the level of uncertainty
and the dynamism of the provision. This is because
volunteered resources can be offered and withdrawn
at any time [11]. The right without the symmetric
obligation to participate in VC makes Service Level
Agreements (SLAs) less stringent as when compared
to commercial services.

The uncertainty associated with the volunteering environ-
ment makes the maintenance of the VSC beyond human
capabilities. Consequently, self-adaptability becomes a vital
requirement in VSC. A self-adaptive VSC should be able to
take automatic and efficient adaptation decisions under the
uncertainty associated with the behavior of the services. For
example, the historical performance of the services can provide
a significant input for self-adaptive service composition as it



can be employed in learning the behavioral models of the
services and predicting future performance which enables more
intelligent adaptation decisions [12].

Recently, self-awareness and self-expression concepts are
receiving more attention in computing [13]. Self-awareness
is mainly the knowledge of the current state of the system.
This knowledge is utilized in the self-expression to perform
the adaptation actions. So, self-awareness and self-expression
capabilities can provide self-adaptive systems with primitives
for proactive management and control at runtime [14]. They
can also improve both the accuracy and quality of adaptation.
This may in turn converge the system towards more desirable
stable states.

In previous work we developed a utility model for VSC,
which enables a systematic approach for selecting and com-
posing ’best’ services to serve the user request [9] In this
paper, we introduce a self-awareness framework for VSC.
The framework enables acquiring knowledge on the services
behaviour and adopting this knowledge VSC leading to reduce
the violations of the users’ requirements, i.e. leading to more
stable states. The contribution of this paper is two-fold:
• A self-awareness architectural framework for inform-

ing self-adaptation in VSC. As part of the framework,
two levels of awareness are defined, namely, Stimulus-
awareness and Time-awareness, and two adaptation
approached are proposed based on these levels.

• The evaluation of the VSC adaptation approaches,
Stimulus-awareness-based adaptation, Time-
awareness-based adaptation. The Stimulus-awareness-
based approach is considered a baseline adaptation
approach. The Time-awareness-based approach is
based on taking into consideration the request time
interval and the historical performance of the services
in that time interval, which enables for fine grain
representation of services historical performance.
That is, the Time-aware approach can learn from the
history the time intervals in which a service is more
likely to perform well and the time intervals in which
a service is more likely to perform poorly. In order
to compare the approaches with the literature, we
select the recent service selection Ranking approach
presented in [15]. The motivation behind the selection
of the ranking approach is that it can be comparable
with the Time-aware approach as it considers the
historical performance of the services by dividing the
history age into a number of timeslots which helps to
capture the variations of services performance over
time.

The remainder of this paper is organized as follows: in the
next section we present the self-awareness VSC framework.
Section III introduces the VSC problem formulation. Section
IV presents the self-aware approaches. Section V shows the
evaluation results. Related works are outlined in section VI
and we conclude in section VII.

II. SELF-AWARE VSC FRAMEWORK

A. Motivating Example

We motivate the need for integrating the concepts of self-
awareness into VSC using a situation in which volunteered

resources are offered as services. Assume a heterogeneous
environment which consists of varied computing nodes like
PCs, laptops, smart phones, etc., and these nodes are connected
via a network. Individual people owning these nodes, known as
publishers, offer their idle storage resources as services using
a publish/subscribe model. Assume a subscriber may need to
do some computations and store data temporarily but they
have insufficient storage. To overcome this issue, subscribers
can explore the network searching for volunteered storage
services to use. If a subscriber finds the required storage while
satisfying her requirements (e.g. location, security etc.), she
can request it for her use. Otherwise, volunteered storages can
be composed together to form a total storage that meets the
subscriber needs. Fig.1 shows an example in which we use
FindSpace4Me, a service which provides the subscribers the
ability to find the required volunteered storage on one publisher
node or any combination of volunteered storages that meet the
subscriber’s needs. The subscriber S1 invokes FindSpace4Me
to search for storage of 40 GB. To make this volume available
to S1, FindSpace4Me inspects the published storages and
returns three possible composition strategies:

1) Using VS 1. In this case no composition is required.
2) Composing VS 2, VS 3, and VS 4.
3) Composing VS 2 and VS 5.

Now, which strategy should be selected to satisfy the request?
One possibility is to randomly pick any of them and when
one of the services involved in the selected strategy violates
the requirements, the system initiates an adaptation action to
repair the strategy. However, this adaptation helps to react to
stimuli after they occur. But, if the system is able to anticipate
the performance of the services, then it can select a strategy
so that violations are less likely to occur, thus avoiding the
violations. Also, the deeper the knowledge the system has on
the services performance, the more intelligent the decision will
be. For example, assume that S1 submitted a request at time
t1, and assume that the performance of VS 5 is anticipated to
be poor at t1, then the system can avoid the selection of the
third strategy. But, if we assume that S1 submitted a request at
time t2, and assume that the performance of VS 5 is anticipated
to be well at t2, then the system can select third strategy.

Fig. 1. Motivating Scenario - Composition request of S1 for 40GB using
FindSpace4ME



B. Architectural Framework

In [11] we proposed a general framework for self-aware
service composition which enables knowledge collection and
representation for reasoning about adaptation in service com-
position. The framework is motivated by the self-awareness
framework proposed by the EPiCS project in [12]. In this sec-
tion, we overview a customized pattern of the framework. This
pattern enables for considering the historical dependability of
the services at the selection phase. The architectural diagram of
the proposed framework is illustrated in Fig.2. The framework
consists of the following basic components:
• Internal/external sensors: The sensors are responsible

on collecting data on the services engaged in a compo-
sition (internal) and services available in the service
repository (external). The data include any changes
in the promised quality of service (internal) and the
offering of new services in the service repository
(external). Then the collected data are passed to the
Stimulus-awareness and Time-awareness levels in the
self-awareness component.

• Self-awareness: This component represents the knowl-
edge collected by the sensors and passes the
learnt models to the self-expression component. The
Stimulus-awareness level represents the basic level of
awareness i.e. this level enables the system to respond
to the events received from the sensors. The Time-
awareness level assumes the presence of the Stimulus-
awareness and adds more awareness by considering
the historical performance, in terms of dependability
which is defined in the next section, of the services
which enables the system to take more intelligent
adaptation decision by selecting services which have
high historical dependabilities.

• Self-expression: this component performs the actual
adaptation action based on the learnt models received
from the self-awareness component.

III. VOLUNTEERED SERVICE COMPOSITION MODEL

In this section we briefly introduce the utility model and the
composition approach we developed in [9]. This model is the
base for our adaptive VSC. In this model, we focus on storage
as a service, though our approach can readily be generalised
to other types of service.

A. Model Definitions

Definition 1: (Volunteered Service). A Volunteered Service
VSi , is a 3-tuple (Stgi , Ti, Si) where Stgi is the volunteered
amount of storage, Ti is the time interval [ai, bi] in which
the VSi is available, and Si is the security level guaranteed
by the service. A service repository (SR) is a set of disjoint
volunteered services. We denote a SR with n services as SR =
{VS 1,VS 2,. . .,VSn}. We denote the Stgi ,Ti, and Si as the
attributes of the service or the quality of the service.
Definition 2: (Subscriber’s Request). A subscriber’s request R

is a 3-tuple (StgR, TR, SR), where StgR denotes the required
storage, TR = [aR, bR] is the required time interval where
0 ≤ aR < bR < 24, and aR, bR ∈ R, and SR is the required
security level where 0 ≤ SR ≤ Smax and SR, Smax ∈ N.
Definition 3: (Composite Service). Given a subscriber’s re-
quest R, a Composite Service CS is a set of VS s, {VS 1,

Fig. 2. Self-aware VSC framework

VS 2,. . .,VSk}, such that the following global constrains are
satisfied (denoted as CS ` R):

1) VSi ∈ SR, 1 ≤ i ≤ k ≤ n
2)

∑k
i=1 Stgi ≥ StgR, at any time instant in [aR, bR].

3) aR ≥ min[ai] and bR ≤ max[bi], ∀ VSi ∈ CS
4) SR ≥ Si, ∀ Si ∈ CS

Definition 4: (Storage Utility). Given a volunteered service
VS i and a request R, the storage utility Ustg(VSi) defined in
Eq.(1) measures the amount of storage contributed by VSi to
R. This utility function gives maximum value of 1 if Stgi =
StgR and a value less than 1 otherwise. The parameters β
and α are set by the system administrator in a way that gives
utility values to services with Stgi > StgR higher than the
utility values of services with Stgi < StgR, if |Stgi −StgR| is
equal in both cases. The reason is to enable higher selection
chance for the services with higher storage if there are no
services with storage equal to the required storage which helps
to avoid composition as there will be one service that satisfies
the storage constraint.

Ustg(VSi) =

{
e−β(Stgi−Stg

R), if Stgi ≥ StgR

eα(Stgi−Stg
R), if Stgi < StgR

(1)

where 0 < β < α < 1.
Definition 5: (Availability Time Utility). Given a volunteered
service VSi and a request R, the time utility Utime(VSi),
defined in Eq.(2), measures the amount of time contributed
by VSi to R. Services that will be available in a time interval
exactly equals to [aR, bR], will be assigned a maximum utility
value of 1. On the other hand, services that will be available
partially during [aR, bR] or those that will be available in a
time interval greater than [aR, bR], will be assigned a utility
lower than 1, i.e. reducing their chance of being selected to
satisfy R. Otherwise, a zero-utility will be assigned.

Utime(VSi) =



0, if bi ≤ aRor bR ≤ ai
eγ(bi−b

R), if ai ≤ aRand aR < bi ≤ bR

eγ(a
R−bi), if bi > bRand aR < ai ≤ bR

eα(bi−ai)

eα(bR−aR)
, if ai ≥ aRand bi ≤ bR

e−β(bi−ai)

e−β(bR−aR)
, otherwise

(2)

where 0 < β < γ < α < 1.
Definition 6: (Security Utility). Given a volunteered service
VSi and a request R, the security utility Usec(VSi) defined in
Eq.(3) compares between the security level provided by VSi



and the requested level. The function in Eq.(3) gives a zero-
utility to those services that have a security level lower than the
requested level. Also, it gives maximum value of 1 if Si = SR

and a value less than 1 otherwise. Furthermore, the greater the
security level of VSi than the required level, the lower the
security utility of VSi which allows for keeping high security
services for serving future high security requests.

Usec(VSi) =

{
1−4u(Si − SR), if Si ≥ SR

0, otherwise
(3)

where 4u = (1− ε)/Smax, 0 < ε < 1

B. Selection and Composition Algorithm

When a subscriber submits a composition request, the sys-
tem retrieves the available services from the service repository
and creates an empty CS set. Then the system computes the
utility for each service in order to use these utilities as a
selection criterion. After that the system finds the services
which lie on the Pareto frontier and selects the highest utilities
service using Eq.(4) and adds it to CS . Then, if the storage
constraint specified in R is satisfied, the system returns CS to
the requester, otherwise the process is repeated. If no compos-
ite service can be found to satisfy the subscriber’s request, the
system returns empty CS . The detailed composition algorithm
is shown in Algorithm 1.

maximize (UStg(VSi), UTime(VSi), USec(VSi))

subject to: USec(VSi)) ≥ 0,

ai ≤ at
(4)

where at initially equals aR and is updated at run time.

IV. SELF-AWARE VSC APPROACHES

In this section, we present two self-adaptive VSC ap-
proaches, namely the Stimulus-aware and Time-aware VSC.

A. Stimulus-awareness VSC
In this approach, for each request R, the composition

method searches for a composite service that satisfies R
using Algorithm 1. When a change in the promised storage,
availability, or security, of a service VSi occurs, the self-
expression initiates an adaptation action in order to replace the
violating serviceVSi . If the adaptation process is successful,
then the violating service is replaced, otherwise the subscriber
is notified that the violation cannot be treated. The Stimulus-
aware adaptation approach is shown in Algorithm 2.

B. Time-aware VSC
The aim of Time-aware approach is to use the historical

performance of the services to select the most appropriate
services, i.e. services that provide what they promise. In our
approach, we express the services performance in terms of de-
pendability. We consider a service VSi to be dependable if VSi
provides the storage, availability, and security it promises. In
this section, we introduce a formal definition of dependability
then the Time-awareness VSC approach.

1) VS dependabilities: The dependability evaluation pro-
vides a useful method for examining the behaviour of the
service provider i.e. the volunteer. We use the Dependability
measure to express the extent to which a selected service fulfils
the promised resources and quality of service. As the deviation
from the promised quality can be in any attributes, there will
be a Dependability measure for each service attribute. Here
we introduce the definition of Dependability as follows:
Definition 7: (Service Dependabilities). Given that a volun-
teered service VSi has been selected in a composite service CS
to serve the request R. Assume that UPstg(VSi) is the storage
utility promised by the volunteer of VSi . Assume also that
the actual storage utility provided by VSi during serving R is
UAstg(VSi). Then the storage dependability of VSi , Dstg(VSi),
is defined as in Eq.(5):

Dstg(VSi) =


UPstg(VSi )−UAstg(VSi )

UPstg(VSi )
, if UPstg(VSi) < UPstg(VSi)

1, otherwise
(5)

Similarly, the availability time dependability (Dtime(VSi)),
and the security dependability (Dsec(VSi)) are defined as in
Eq. (6) and Eq.(7).

Dtime(VSi) =


UPtime(VSi )−UAtime(VSi )

UPtime(VSi )
, if UPtime(VSi) < UPtime(VSi)

1, otherwise
(6)

Dsec(VSi) =


UPsec(VSi )−UAsec(VSi )

UPsec(VSi )
, if UPsec(VSi) < UPsec(VSi)

1, otherwise
(7)



2) History manipulation: Our aim is to acquire in-depth
knowledge on the services’ performance, in terms of depend-
abilities, so that the system can use that historical knowledge
to determine the time intervals in which a service is most
likely to fulfil the request requirements and the time intervals
in which that service is most likely to violate the request
requirements. To achieve that, our approach observes the
services’ historical dependabilities records, not only according
to the request time spot but also according to the request
time interval, unlike some approaches in the literature which
observe the history only according to the request time spot. As
we assume that the VS are volunteered on a daily basis during
specific hours, we divide the day timeline into timeslots and
record the dependabilities of each VS during each timeslot
For simplicity, we assume the length of the timeslot to be
one hour. Based on that method of history observation, each
history record is stored according to the timeslot in which
the service has been used. Figure 3 shows an example on
how the dependability data points can be re-plotted according
to the timeslots. Assume that a service VSi was used six
times in different days and assume that two out of these six
times were during the timeslot [6-7], two during [7-8], one
during [16-17], and one during [17-19]. Figure 3(a) shows
how the data points are plotted in the ’classical’. They are
plotted sequentially according to the time instance of usage.
In Fig.3(b) the data points are re-plotted according to the
timeslots in which the service has been used. The advantage
here is that Fig.3(b) shows VSi is most likely to be dependable
if it is selected to serve requests in the timeslots [6-7] and [7-8]
and undependable in the timeslots [17-18] and [18-19]. So, if
a request time is e.g. [6-8] then VSi is an appropriate service
to be involved in a CS that server the request. But it is not
the case if the request time is e.g. [17-19].

3) Dependabilities estimation: As there will be a certain
number of historical dependabilities per timeslot, we need
to estimate the distribution of the dependabilities data points
of each service in each time slot. To do that, we adopt the
following histogram-based method:

a. Divide the dependabilities range of values [0.0-1.0]
into a series of small equal non-overlapping bins mk,
k = 1, 2 . . . J , then count the number of data points
that fall into each bin, |mk|. Here we set J to 10, so
we have the bins [0.0-0.1], (0.1-0.2] . . . (0.9, 1.0].

b. Find V , the set of bins with their lower limit greater
than the dependability threshold, Dth, which is pro-
vided by the subscriber. For example, in our case if
the threshold is 0.8, then the bins will be (0.9-1.0]
and (0.8-0.9].

c. Compute the cumulative histogram CH for the inter-

Fig. 3. Dependability plotting in (a) Classical (b) Time-aware approach

vals in the set V ; CH =
∑|V |
i=1 |mi| , where mi ∈ V

and |V | is the size of V .
d. The CH in each timeslot will be the representative

dependability measure in that time slot.
The above steps are repeated in each time slot for each service
and for each dependability measure, i.e. the storage, time, and
security dependabilities.

4) Time-aware service selection: Now, when a subscriber
submits a request, the system executes the following key steps
in order to satisfy the request:

a. Find the time slots that form the request interval. For
example, if the request interval is TR = [9−12], then
the time slots are [9-10], [10-11], [11-12].

b. For each VSi ∈ SR, compute the Ustg , Utime, and
Usec using (1), (2), and (3) respectively.

c. For each time slot, estimate the representative Dstg ,
Dtime, and Dsec for each VSi ∈ SR using (5), (6),
and (7) respectively.

d. Find the average storage dependability, AVDstg , for
each VSi by summing the representative storage
dependability of each time slot and dividing over the
number of time slots. Similarly find AVD time and
AVDsec.

e. Find the Pareto-optimal services using (8), select one
of them randomly, and add it to CS .

maximize

(
Ustg(VSi), Utime(VSi), Usec(VSi),

AVDstg(VSi), AVD time(VSi), AVDsec(VSi)

)
subject to: Usec(VSi) ≥ 0,

ai ≤ at

(8)

where at initially equals aR and is updated at run time.

After executing the above steps, the subscriber request will
be partially satisfied, then the request will be re-calculated and
the above steps will be repeated to select the next service. After
selecting each service, the global constraints (see section II.A)
will be checked. If they are satisfied, the composite service CS
will be returned; otherwise the above steps will be repeated. If
all the services are visited and the global constraints are still
not satisfied, an empty CS is returned and the subscriber will
be notified that the request cannot be satisfied. The detailed
greedy composition algorithm is shown in Algorithm 3.

5) Time-aware adaptation: Since Time-awareness involves
the presence of the Stimulus-awareness, the adaptation in
the Time-aware approach is two-fold, reactive adaptation and
proactive adaptation.
• Reactive adaptation: This type of adaptation is similar

to the Stimulus-awareness adaptation actions. When a
change in the promised quality of service is reported
to the Time-awareness component the actual utilities
will be computed and subsequently the dependabilities
using (5), (6), and (7). Then the dependabilities will be
stored according to the timeslot. After that, an adap-
tation action will be carried out by the self-expression
component in order to replace the service(s) that
violated the requirements.

• Proactive adaptation: In this adaptation type, the sys-
tem will predict the dependability of each service
involved in a composition. During each timeslot, each
dependability attribute of each VSi involved in a CS



Fig. 4. CH in the interval [Dth,1.0] and total CH

in the next timeslot is estimated using the histogram
method. If the CH between in the interval [Dth,1.0]
divided by the total CH is less than Dth (see Fig.4)
then that service is most likely to violate the con-
straints in the next time slot. Therefore, the system
will search the service repository for an alternative
VS in order to avoid a possible violation. Algorithm
4 shows the steps of the proactive adaptation.

V. EXPERIMENTAL EVALUATION

In this section, we conduct experiments in order to evaluate
the performance of the proposed Time-aware, and Stimulus-
aware approaches against the Ranking [15] approach. The
experiments were conducted on a desktop PC with an Intel
core i5-3570 3.5 GHZ processor, 4G RAM, Windows 7, Java
Standard Edition V1.7.0.

We implement the example described in Section II as a
publish/subscribe model in which n services are published and
m subscribers request their composition goals. A service is
represented as a tuple of the attributes: Storage, Availability
Time, and Security Level. The attributes’ values of the n

TABLE I. RANGE OF ATTRIBUTES’ VALUES

Service Subscriber
Attribute min max min max

Storage 5 20 20 30

Availability Time 8 19 9 20

Security 0 4 0 4

services were generated randomly. A subscriber’s request is
represented in the same way as services in addition to the
Dependability threshold Dth. The values of the requests were
generated randomly also but with higher Storage values so that
a composition of services is needed to meet each the request.
Table I shows the ranges of the services attributes values. The
history dataset has been generated such each service shows
variations in the dependabilities over the different timeslots.
The threshold Dth has been set to 0.9. In the experiments
we assume that we have 100 services, along with their cor-
responding history, which is a reasonable number to indicate
scalability compared with the literature, e.g. the number of
services in [15] is 5. We also vary the number of requests m
and the number of history records in each time slot. For each
test case, the experiment was conducted 100 times and the
average was computed.

The experiments compare the Stimulus-awareness, the
Time-awareness, and the Ranking approaches in the time cost
and the average percentage of requests satisfaction:
• Time Cost. Defined as the average summation of the

time needed to generate the composite services and
the time needed to adapt to the constraints viola-
tions (whether reactively or proactively in the Time-
awareness approach) in milliseconds.

• % Requests Satisfied. Defined as the number of re-
quests that the composition algorithm could success-
fully generate composite services for divided by the
total number of requests. This metric is related to
the efficiency of selecting services. That is, selecting
dependable services will lead to fewer violations and
hence more requests will be satisfied.

A. Comparison in % Satisfied Requests
The first experiment evaluates the number of requests that

each approach can satisfy proportional to the total number
of requests submitted. Fig. 5 compares the percentage of
satisfied requests using the three composition approaches. The
experiment is repeated 100 times and the percentage here is
computed as the average of satisfied requests. The results
show that the percentage of satisfied requests is the least in



Fig. 5. Comparison of the three approaches in percentage of satisfied requests.

the Stimulus-aware case whereas it is the best in the Time-
aware case especially when the number of requests increases
i.e. in Fig. 5(c) and Fig. 5(d). The figures show also that
the percentage of satisfied requests in the three approaches
decreases when m increases; the reason is that the higher the
number of requests while the fixed number of services raises
the probability of the inability of finding the composite services
for some requests. However, the Time-aware approach has the
advantage of satisfying higher number of requests compared
to the other approaches.

B. Comparison in Time Cost
The second experiment evaluates the time of generating and

adapting the composite services of the three approaches. Figure
6 plots computation cost (in milliseconds) of selecting services
for VSC and adapting to violations. The figure shows that
the Stimulus-aware approach has the least time cost whereas
the Ranking approach has the highest. It is notable also that
the time cost in the Time-aware and the Ranking approaches
increases slowly with the increase of the number of history
records, whereas the time cost in the Stimulus-aware approach
is not affected as it does not use the services history.

C. Discussion
The experimentation results show that leveraging history

in service selection helps satisfying more requests which is a
result of decreasing the violation of the constraints since learn-
ing from history enables the selection of the highly dependable
services. However, this improvement is accompanied with an
overhead in terms of the computational cost. In the comparison
between the Time-aware approach and the Ranking approach,
the results show that the Time-awareness is more efficient. The
reason is that the Time-aware approach is based on acquiring
in depth knowledge. In other words, the Time-aware approach
is able to discriminate between the times of good performance
and those of poor performance whereas the Ranking approach
can only benefit from the history if the service performance
changes over time. For example, the Time-awareness approach
can inform that a certain VS is dependable if we use it in the

Fig. 6. Comparison of the three approaches in Time cost.

morning but not in the evening, whereas the Ranking approach
can only inform that a certain VS was undependable in the past
but now it is becoming dependable.

An important threat of validity of the Time-aware approach
is related to the quality of the historical data, specifically, the
absence of a pattern of the services performance. That is, if
the services performance is highly variable and intervals of
good or poor performance cannot be discriminated then the
Time-awareness efficiency may decrease.

VI. RELATED WORKS

A. Volunteer Computing Paradigms
In this section, we present an overview of the deemed

volunteer computing frameworks. BOINC is the earliest VC
middleware [2]. It enables for creating public-resource com-
puting projects. Through this middleware, users can participate
their PCs and specify their contributions to the projects.
SETI@home [3] is one of the earliest volunteer computing
projects that use BOINC. It uses volunteered resources to
analyse radio signals from space instead of special purpose
supercomputers. Folding@home [5] project benefits from the
huge computational power of volunteered processing resources
to simulate a biological process, the protein folding. Stor-
age@home [4] is a project that has been developed to enable
backing up, storing, and sharing huge amounts of scientific
results using volunteered resources. The following projects are
also other examples of BOINC-based projects; the UCB/Intel
study of Internet resources [16], Climateprediction.net [17],
Climate@home, CERN projects, and Predictor@home [16].
Cloud@Home [6] is a computing paradigm that has been
proposed to enable resource sharing on either voluntary or
commercial basis. Contributing resources for scientific re-
search projects or commercial data centres can be possible
application for the Cloud@Home paradigm. Social Cloud
[18] is a paradigm that takes advantage of pre-existing social
networks trust relationships to share resource among users.
In this paradigm, users can discover and use volunteered
storage shared by their friends in an online social network.



None of the existing approaches address the VSC problem
and the dynamism of the volunteering environment. They do
not provide answers on how to deal with the changes in the
environment and how to adapt to those changes.

B. Self-adaptive Frameworks
Many frameworks have been proposed to architect self-

adaptive systems. IBM MAPE-K [19] enables representing
knowledge about the environment and using this knowledge to
adapt the system behaviour at runtime through Monitor, Anal-
yse, Plan, and Execute cycle to meet user’s objectives. Another
reference model was introduced in [20]. The model defines
three layers; Component Control which reports the current
state to higher layers, Change Management which responds
to the state change by executing some predefined actions, and
Goal Management which produces plans in response to change
in the goals. These two architectures [19] [20] were presented
as reference models rather than as a guide to implement self-
adaptive systems. In [21] an architecture has been proposed
to monitor the state of a system in order to find any runtime
problems, e.g. constraints violation. Using these frameworks
as a foundation, other frameworks were proposed to extend
its capabilities by adopting machine learning techniques. For
example, [22] presents a learning based framework entitled
FUSION in which adaptation decisions are taken based on
monitoring the system at runtime to learn the system’s runtime
behaviour unforeseen at design time. The framework defines
a particular system capability as a feature. One drawback of
this framework is that it depends on the user’s knowledge in
reducing the features’ space, an assumption that is not practical
in the service composition problem as the size of services is
too large for human to process. A recent architecture has been
proposed in [12] for adopting self-awareness as a prerequisite
for self-adaptability in computing systems. The proposed ar-
chitecture defines five levels of self-awareness for knowledge
acquisition and representation in addition to self-expression
component that make use of the obtained knowledge to take
appropriate actions in response to the system and environment
dynamics. In this paper, we applied a custom pattern of
the self-awareness framework to reason on the reactive and
proactive adaptation in VSC problem.

VII. CONCLUSION

We have proposed a self-awareness framework to enhance
the self-adaptation capabilities of volunteered service composi-
tion. One of the core fundamentals of the proposed framework
is that it considers the services historical performance in the
selection of the services that will composed to server the users’
requests. The historical performance is also used to reason
on the reactive and proactive adaptation of the composite
services. We have experimentally evaluated and compared
three approaches of adaptation; the Stimulus-aware, the Time-
aware, and the Ranking approach. The results show the one
of the benefits that Time-awareness capabilities can bring to
a self-adaptive application is satisfying more requests since it
tends to select services that exhibit high dependability and low
probability of violating the requests constraints. A scenario of
volunteer storage is introduced to evaluate the framework and
approaches. In the future, we will work on implementing other
levels of awareness of the framework and evaluate the potential
benefits and overheads of these also.
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