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Summary 
 
The quest for sustainable resources to meet the demands of a rapidly rising global population while mitigating the risks of rising 

CO2 emissions and associated climate change, represents a grand challenge for humanity. Biomass offers the most readily 

implemented and low cost solution for sustainable transportation fuels, and the only non-petroleum route to organic molecules 

for the manufacture of bulk, fine and speciality chemicals and polymers. To be considered truly sustainable, biomass must be 

derived from resources which do not compete with agricultural land use for food production, or compromise the environment 

e.g. via deforestation. Potential feedstocks include waste lignocellulosic or oil based materials derived from plant or aquatic 

sources, with the so-called biorefinery concept offering the co-production of  biofuels, platform chemicals and energy;  

analogous to today's petroleum refineries which deliver both high volume/low value (e.g. fuels and commodity chemicals) and 

low volume/high value (e.g. fine/speciality chemicals) products, thereby maximising biomass valorisation.  This article 

addresses the challenges to catalytic biomass processing, and highlights recent successes in the rational design of heterogeneous 

catalysts facilitated by advances in nanotechnology and the synthesis of templated porous materials, as well as the use of 

tailored catalyst surfaces to generate bifunctional solid acid/base materials or tune hydrophobicity. 

 

 

1. Introduction 
 

1.1. The Biorefinery concept 
Tackling the current world energy crisis and increasing environmental concerns over global climate change is a top priority for 

both developed and developing nations in the 21st century. To be truly viable, such alternative feedstocks must be sustainable, 

that is “have the ability to meet 21st century energy needs without compromising those of future generations.” In the context of 

energy, despite significant growth in proven and predicted fossil fuel reserves over the next two decades, (e.g heavy crude oil, 

tar sands, deep water wells, and shale oil and gas), there are great uncertainties in the economics of their exploitation via current 

extraction methodologies, and crucially, an increasing proportion of such carbon resources (estimates vary between 65-80 % [1, 

2]) cannot be burned without breaching the UNFCC targets for a 2 C increase in mean global temperature relative to pre-

industrial levels.[3-5] There is clearly a fine balance between meeting rising energy demands, predicted to rise 50 % globally by 

2040 [6] and the requirement to mitigate current CO2 emissions and hence climate change.  

 

Biomass, derived from non-food sources of lignocellulose, sugars, and triglycerides, is the only sustainable source of carbon 

that can provide low cost solutions for transportation fuels and organic chemicals.[7] The US DoE identified a range of sugar 

derived Platform Chemicals produced via chemical or biochemical transformation of lignocellulosic biomass that would be 

potential targets for production in biorefineries. [8] Akin to petroleum refining, biorefining will integrate such biomass 

conversion processes so biofuels, chemicals and energy are coproduced to maximise waste biomass valorisation; an approach 

analogous to current petroleum refineries which deliver high volume/low value (fuels and commodity chemicals) and low 

volume/high value (fine/speciality chemicals) products in tandem, the latter underpinning the economic success of the industry 

[9]. Catalytic technologies have played a critical role in the economic development of the petrochemical industry and modern 

society, underpinning 90 % of chemical manufacturing processes and contributing to over 20% of all industrial products. [10, 

11] In a post-petroleum era, catalysis will underpin analogous biorefinery technology, and researchers will need to rise to the 

challenge of synthesising chemical intermediates, advanced functional materials and fuels from non-petroleum feedstocks.  
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1.2. Renewable Feedstocks 
Feedstock selection for any bio-based process requires life-cycle and socio-economic assessments of attendant energy, resource 

and land use requirements to ensure sustainability. Polysaccharides sourced from starch (C6H10O5)n derived from wheat, corn or 

tuberous plants, or  sugar cane [12] and sorghum [13], are most easily processed to glucose via hydrolysis, but such food crops 

are not considered sustainable. In this respect, lignocellulose derived from waste agricultural or forestry materials (e.g. logging 

or mill and manufacturing residues), or perennial herbaceous plants and short rotation woody crops (e.g. miscanthus, eucalyptus 

or willow), is considered a particularly viable option for sustainable fuels and chemicals production.[14],[15] The use of 

agricultural waste biomass residues [16], such as bagasse and rice husk and straw, also offers a very attractive means to valorise 

waste materials that would otherwise be left to decompose, or  in the case of rice straw, simply burned thereby releasing 

atmospheric CO2.[17] The use of such agricultural wastes must only be used in conjunction with sustainable land management 

practices to ensure that soil quality, biodiversity and water use is safeguarded; if such policies are abided by it is claimed that 

sustainably sourced waste residues could supply 16 % of road transport fuel by 2030, delivering green-house gas savings in 

excess of 60 per cent across the European Union.[18]  

 

Lignocellulose is a biopolymer comprising cellulose (30–50% of total lignocellulosic dry mass) and hemicellulose (20–40% of 

total dry mass), themselves assembled from C6 and C5 sugars such as glucose, xylose and amylose, bound together by poly-

phenolic lignin which makes up the remaining 15–25% of dry biomass and imparts rigidity to plants and trees (Scheme 1). 

 

 
Scheme 1: Structure of lignin, hemicellulose and cellulose contained within woody biomass. 

 

Cross-linking of the cellulose and hemicellulosic components with lignin via ester and ether linkages renders lignocellulose 

resistant towards hydrolysis, hampering its chemical conversion.[16]  Popular approaches to lignocellulosic biomass utilisation 

for fuels and chemicals synthesis encompass sugar fermentation to ethanol, gasification to syngas (CO/H2), or pyrolysis to bio-

oils (Scheme 2). Given the rich functionality of biomass components, high temperature thermochemical methods such as 

gasification, are less desirable as they are crude, destructive methods that result in loss of potentially high value components that 

could add value to bio-based processes. The production of syngas from gasification of high quality biomass as a route to 

produce hydrocarbons (via e.g. Fisher Tropsch synthesis) cannot be rationalised unless the biomass fraction is particularly 

recalcitrant and unsuitable for processing via more economic methods. While biomass pyrolysis has good potential for the 

production of liquid fuels, generating a bio-oil which retains ~70% of the energy stored in the raw biomass, it has a high (> 40 

wt%) oxygen and water (15 - 25 wt%) content and several other shortcomings, such as a relatively low heating value (16–19 

MJ/Kg; less than half that of petroleum-derived fuels), strong corrosiveness (pH = 2–4), high viscosity, immiscibility with 
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conventional fuels and poor chemical stability which leads to polymerisation of components being observed on storage. 

Consequently, biomass pyrolysis into liquid fuels suffers from severe limitations that can be only overcome if the bio-oil is 

subjected to upgrading treatments to improve its properties, and is an area where significant developments are required in 

catalyst development, particularly in relation to pre-treatment processes and improved lifetime of deoxygenation catalysts. 

   

The use of lignocellulose in bio-chemical processes is also particularly challenging as it cannot be used directly, and thus while 

enzymatic transformation of glucose to chemical and fuel feedstocks is an attractive prospect, extensive pre-processing of the 

raw materials is required. [19]  Fractionation to isolate cellulose, lignin and hemicellulose is typically performed via acid or 

base hydrolysis, steam explosion [20] or organosolv treatments [21] to separate the polysaccharide from lignin components. 

[22] Once separated, the cellulose fractions are typically hydrolysed to fermentable sugars for further processing into fuels 

and/or chemicals via enzymatic, [23] chemical (acid or base) [24, 25], supercritical water [26] or more recently Ionic Liquid 

(IL) based [27] treatments. In an alternative approach, mechano-catalysis using H2SO4-impregnated lignocellulosic substrates is 

showing enormous promise for cleaner and efficient depolymerisation of lignocellulose using a one-pot process, in which 

mechanical forces and acid catalysis converts dried lignocellulose into water-soluble products comprising oligosaccharides and 

lignin fragments.[28, 29] 

  

 
 

Scheme 2: Thermochemical and biochemical routes for lignocellulose conversion to chemicals and fuels; biochemical routes 

require fractionation of lignocellulose to isolate cellulose from lignin and hemicellulose for subsequent hydrolysis to glucose.  

 

Current pre-treatment steps are energy intensive generating significant quantities of waste during acid/base neutralisation or 

enzyme separation; hence there is great scope for improved technology to enhance energy and atom economies. Furthermore, 

complete fractionation of lignocellulose often sacrifices one or more of the components e.g. lignin [30] or hemicellulose, [31] 

e.g. sulphuric acid treatments during the Kraft process results in a particularly intractable Kraft Lignin material. [32] Likewise, 

decomposition of hemicellulose during high temperature/pressure steam explosion leads to an aqueous fraction rich in furfural 

and C1-C2 acids [33] derived from hemicellulose decomposition, which is problematic for subsequent fermentation since they 

can inhibit yeast growth. Biomass pre-treatment is thus an area of intensive research which may be expected to play an 

increasingly important role in the viability of biorefineries. In all these steps the processing cost and waste generated greatly 

offsets the potential energy benefits associated with low temperature enzymatic processing of the purified glucose. Furthermore 

as chemicals contained within fermentation broths are often produced in low concentrations their separation from biocatalytic 

processes can also be economically prohibitive. In this respect there is a growing interest in aqueous phase processing of 

cellulosic derived sugars using heterogeneous catalysis as a complementary processing method to enzymatic routes. 

 

1.3. Catalyst Design Considerations  
Conversion of bio-based feedstocks presents new challenges to the catalytic scientist, as the attendant reaction conditions are 

very different to those typical of petroleum processing, which occurs mainly through vapour phase processes > 400 °C. The 
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utilisation of biomass-derived chemicals, whether from fermentation broths or sugars themselves, represents an area with 

extensive R&D potential for a renewable feedstock based technology platform. Biomass processing will be characterised by 

liquid phase, lower temperature [34] pathways such as hydrolysis, dehydration, isomerisation, oxidation, aldol condensation, 

and hydrogenation. [35] The design of catalysts for such biomass transformations requires careful tailoring of pore structure to 

minimise mass transport limitations, improve hydrothermal stability under aqueous operation, and tuneable hydrophobicity to 

aid product/reactant adsorption. [36] Platform molecules derived from fermentation are often present at low concentrations 

(typically <10 %) in aqueous solutions, alongside other polar molecules. Purification of such fermentation broths is particularly 

difficult,[37],[38] and energetically demanding, hence, an ability to directly transform organic molecules contained within these 

aqueous solutions would be desirable,[39],[8],[40-43] and requires the developments of water tolerant catalysts that are resistant 

to impurities present in the fermentation broth. [44] Corma et al. have extensively reviewed proposed methods for transforming 

platform molecules into chemicals. [41] Many approaches employ conventional homogeneous reagents which generate waste 

(Scheme 3a) and should be avoided, or attempt the use of commercial catalysts which are not optimised, hence there is 

enormous scope for rationally designing improved heterogeneously catalysed processes, tailored towards biomass-derived 

feedstocks. Catalyst development should thus focus on the use of tailored porous solids as high area supports to enhance 

reactant accessibility to active acid/basic groups. To function effectively catalysts will need to have tuneable hydrophobicity, be 

hydrothermally stable over a wide pH range, and resistant to in-situ leaching. Catalyst porosity will also be important to enable 

diffusion of bulky, viscous reactants to active sites; support materials with larger pores (compared to zeolites) are thus a 

promising starting point (Scheme 3b). Approaches to handling biomass-derived building blocks will be very different from 

petroleum processing, e.g. requiring reverse chemical transformations wherein highly functional bio-molecules are 

deoxygenated to their target product (Scheme 3c), instead of oxygenated as is usual when starting from crude oil.[45] New 

classes of catalyst are urgently required which are compatible with hydrophilic, bulky substrates to facilitate the move away 

from existing short-chain hydrocarbon supplies. Improvements and innovations in catalyst and processes design are thus needed 

in order to deliver high-value chemicals from biomass derived building blocks.  Low temperature (< 200 °C), thermochemical 

aqueous phase processing of sugars is of particular interest, as this offers a viable method to generate highly functional 

intermediates via selective deoxygenation to produce aldehydes, alcohols, acids and esters via dehydration, hydrogenolysis or 

isomerisation.[46], [43], [47] Catalysts containing acid or base sites, will also be required that exhibit bi-functional character so 

that, for example, catalysts possessing acid sites for dehydration also contain metal sites for (de)hydrogenation (Scheme 3d). 

Organic-inorganic hybrid catalysts may also prove particularly interesting, as these allow catalyst hydrophobicity and acid-base 

character to be readily tuned, and in turn control the adsorption strengths of polar molecules. [48] Mesoporous carbons [49] are 

particularly popular supports for biomass conversion since they tend to be highly resistant to acidic and chelating media. 

 

 
Scheme 3: Design considerations for heterogeneous catalysts in the conversion of sugars to platform chemicals. 

 

A number of reports have described pathways to important chemical intermediates from platform molecules, [40-42, 50] with 

succinic acid one such valuable platform chemical, from which a range of chemical intermediates can be derived. Succinic acid 

may also afford new biopolymers based on polyesters, polyamides, and polyesteramides. [51]  In this respect, carbon based 

solid acid catalysts have proven effective for succinic acid esterification with ethanol.[52],[53] Succinic acid production can be 

achieved via bacterial fermentation of glucose, which yields typically 40-60 gL-1 succinic acid (SA) as salt [54], and is a 

powerful route to valorise bakery waste with yields of 0.55g SA reported as being produced per g bread waste.[55] In contrast 

while less frequently discussed there are catalytic routes to succinic and maleic acid from furfural.[56] A 34.5 % maleic acid 

yield obtained at 130 °C under 20 Bar O2 when using a biphasic system [57] (Scheme 4), illustrating the potential of 

heterogeneous catalysts to offer alternative routes to platform chemicals conventionally produced via enzymatic processes.  
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Scheme 4: Catalytic routes to succinic and maleic acid via the acid catalysed oxidative ring-opening of furfural 

 

 

2. The catalytic conversion of sugars to 5-hydroxymethylfurfural (5-HMF) 
 
2.1. Introduction 
Among the platform chemicals identified by the US DoE [8, 58] 5-HMF [59] is widely recognised as a versatile intermediate for 

the production of value-added chemicals and high performance liquid fuels, and as a result its synthesis from sugars [8] has 

attracted significant academic and industrial interest.[60] 5-HMF can also be used as precursors for liquid hydrocarbon fuels via 

the production of linear alkanes aldol condensation and HDO generating hydrocarbons in the approximate molecular weight 

range for diesel and jet fuel (Scheme 5). Direct catalytic aqueous-phase reforming (APR) of cellulose has also been attempted 

for the conversion of carbohydrates into hydrogen and alkanes (C1 to C15) and could form a platform for fuels production within 

an integrated biorefinery. [34]  APR typically involves the reaction of cellulose under acid conditions at ~200 °C to yield C1 to 

C6 alkanes by aqueous-phase dehydration/hydrogenation (APD/H) of sugars, or C7 to C15 alkanes by combining aldol 

condensation with dehydration/hydrogenation.  

 
 

Scheme 5: Biphasic system for the extraction of 5-HMF from the aqueous phase processing of hexoses, subsequent aldol 

condensation and hydrodeoxygenation of 5-HMF can be used to form synthetic alkane fuels.  

 
5-HMF is also important as an intermediate for production of some useful chemicals such as levulinic acid, 2,5-

furandicarboxylic acid (FDCA), [61]  2,5-diformylfuran (DFF), dihydroxymethylfuran, the promising fuel 2,5-dimethylfuran 

(DMF)[62] and 5-hydroxy-4-keto-2-pentenoic acid, which are potential intermediates for a variety of polymers and plastics.[41]  

The conversion of C6 sugars to 5-HMF has been the topic of much interest, with liquid acids including H2SO4, HCl, H3PO4 

frequently used to catalyse the dehydration reaction, however current industrial use of 5-HMF as a chemical intermediate is 

impeded by high production costs.[63] Ideally, a heterogeneously catalysed process in which glucose could be converted 

directly to 5-HMF in aqueous media would be desirable, and requires a tandem process involving Lewis acid or base catalysed  

isomerisation of glucose to fructose followed by Brönsted acid catalysed dehydration of fructose to 5-HMF (Scheme 6). 

Unfortunately the lack of detailed analysis, reporting actual mass balances and systematic studies correlating catalyst acid/base 

properties with performance hampers the development of such catalysts, and many studies focus on the more facile conversion 

of fructose as a model saccharide.[64-74]  To improve overall HMF yield, non-aqueous solvents such as dimethyl sulfoxide 

(DMSO) are often employed,[72] which while producing higher yields of 5-HMF by the aprotic solvent inhibiting the formation 

of levulinic acid and humins,[75] lead to problems for downstream processing and product separation due to the formation of 

toxic S-containing compounds during high temperature DMSO distillation.[76]  Furthermore, the use of DMSO as a solvent 

should be treated with caution as high background rates of fructose dehydration are observed making comparison of catalyst 
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performance impossible when studies operate at elevated temperatures. [77] The use of alternative media such as ionic liquids 

as a processing solvent for carbohydrates and cellulose itself is attracting much interest and is reported to yield ~70% HMF 

from glucose when using a homogeneous metal halide catalysts, [78]  however again, product separation is not facile.  

 

  a) 

 
  b) 

 
 
Scheme 6. a) Glucose isomerisation to fructose and subsequent dehydration to 5-HMF, and b) potential uses of 5-HMF as a chemical feedstock 

Biomass pre-treatments such as steam explosion [20] or enzymatic [23] and chemical (acid or base) [24, 25] routes to 

fractionate and hydrolyse cellulose will ultimately produce aqueous sugar sources, thus from a practical and environmental 

perspective aqueous phase, hydrothermal processing of cellulose and sugars offers an attractive method to produce platform 

chemicals and fuels.[79] The development of heterogeneous catalysts for aqueous phase conversion of sugars requires materials 

with improved hydrothermal stability,[80] such as carbon, zirconia and titania supports [81] which are amongst materials 

reported to exhibit excellent water tolerance. However, in their native form they exhibit low surface areas, or limited control 

over internal porosity, restricting their application in the chemical conversion of bulky bio-based molecules.  

 

To reduce side reactions of 5-HMF, the use of biphasic systems (e.g. Water/MIBK) which allows reactive extraction of 5-HMF 

from the aqueous phase is proposed as a promising way to allow continuous production of  5-HMF, [64, 82] with both liquid 

[64, 83, 84] and solid acids.[85-87] Recently a tandem homogeneously Lewis/Brönsted acid catalysed process utilising AlCl3 

and HCl in a biphasic system of water/2-sec-butylphenol, was reported to respectively isomerise glucose to fructose and then 

dehydrate fructose giving a 62% yield of 5-HMF. [88] Other homogeneous metal halides [89, 90] including Cr(III), Zn(II) and 

Sn(IV) and more water tolerant lanthanide chlorides [91] were also explored, which while effective in converting glucose, 

yielded only a ~45-48% selectivity to 5-HMF. While an interesting concept, the use of soluble catalysts, particularly AlCl3 

(which reacts violently with water) is a concern due to the potential toxic waste that would result from a large scale process, and 

is at odds with the principles of Green Chemistry. The application of Lewis acidic Sn-Beta-Zeolite in conjunction with aqueous 

HCl can convert glucose to 5-HMF in a biphasic system at 180 °C with ~60% HMF selectivity reported, however again the use 

of corrosive HCl is undesirable. [92] The application of a ‘one-pot’ tandem reaction using hydrotalcite as the solid base with a 

solid acid resin also show potential, but in this instance reaction was conducted in N,N-dimethylformamide as a solvent rather 

than water.[93] Further development of catalysts for glucose to 5-HMF conversion really requires improved bi-functional solid 

acid and base catalysts which can operate efficiently in the aqueous phase.  

 

2.2. Bifunctional Catalysts  
The amphoteric properties of zirconia make it an attractive catalytic material to employ in such a bifunctional process.[94, 95] 

Indeed zirconia has been reported as a catalyst for the isomerisation of glucose to fructose at 200 °C,[96] while sulfated zirconia 

(SZ) is also an attractive strong solid acid for alcohol dehydration processes. Initial reports relating to the performance of SZ in 

aqueous phase catalysis are somewhat disappointing due to instabilities of the SO4
2- ion under high temperature hydrothermal 

conditions; most likely associated with dissolution of multi-layer sulfate species formed at the high S contents employed in 

Solid Base 
or 

Lewis Acid

Brönsted
Acid

3 H2O3 H2O

2

2,5-Furandicarboxylic acid

2-Hydroxymethylfuran                                                                 2,5 -Dimethyltetrahydrofuran

2-Methylfuran                       5-Hydroxymethylfurfural                  2,5-Dimethylfuran 

2,5-Bis(hydroxymethyl)furan                        Levulinic acid                              Formic acid

http://www.chemspider.com/Chemical-Structure.56183.html


7 

 

 

 

 

Phil. Trans. R. Soc. A. 

 

 

 

conventional materials.[72],[97] However, judicious control over sulfate coverages over bulk ZrO2 materials can facilitate the 

‘one-pot’ conversion of glucose to 5-HMF when fractional surface coverage of acid and base sites are tuned such that bare ZrO2 

sites are retained to impart some basicity. Scheme 7 shows the detailed acid-base properties of SZ as the SO4 coverage is varied 

from 0-1 monolayer (ML) on ZrO2 and the resulting impact of acid:base ratio on production of 5-HMF in aqueous media.  

 
Scheme 7. a) NH3 and CO2 titration of acid and base sites as a function of SO4 coverage on ZrO2, and b) acid site normalised HMF productivity 

as a function of acid:base loading showing optimum activity for glucose isomerisation to fructose and subsequent dehydration to 5-HMF. 

Tailoring the acid:base distribution generates a material with the necessary base sites for glucosefructose isomerisation, and 

Brönsted acid sites optimized for the subsequent conversion of reactively-formed fructose to 5-HMF. Although such non-porous 

zirconias are promising, their intrinsic rate of 5-HMF productivity requires significant enhancement to improve catalyst 

efficiency and methods to stabilize highly porous and/or more highly dispersed tuneable ZrO2 phases are desirable. Poor thermal 

stability and associated pore-collapse during catalyst activation limits the utility of templated zirconias, [98, 99] hence high 

surface area nanostructured silicas (e.g. HMS-24,[100] MCM-41 and SBA-15) with well-defined mesoporosity are attractive 

scaffolds over which to disperse ZrO2. To maintain the internal pore network and hence molecular accessibility, it is critical that 

ZrO2 is introduced in a layer-by-layer fashion to minimise three dimensional crystallite formation and/or pore blockage. 

Incipient wetness impregnation, [101-106] urea hydrolysis [107] and vapour induced hydrolysis (VIH) [99, 108] methods have 

been reported to prepare ZrO2 coatings on SBA-15, typically employing zirconium propoxide [101-105] or acetate[106]  

precursors in an anhydrous organic solvent (e.g. dry hexane or 50:50 vol% anhydrous toluene:ethanol). However, simple 

variation of the precursor concentration to achieve different zirconia loadings invariably yields 3-4 nm crystallites, similar to the 

silica mesopore diameter. To address this, high area ZrO2/SBA-15 materials have been reported following a solution phase 

atomic layer deposition of Zr(iPrO4) from anhydrous hexane [109]. XPS verified the ZrO2 growth mode using the attenuation of 

the Si 2p signal to provide a direct measure of film thickness (Scheme 8a), with the observed exponential decay in the SBA-15 

substrate intensity with consecutive ZrO2 depositions indicative of a layer-by-layer growth mode. The observed attenuation with 

each cycle is in excellent agreement with the thickness of a (111) oriented monolayer of monoclinic ZrO2 (0.42 nm), indicating 

the conformal growth of ZrO2 monolayers over SBA-15. Further characterisation by HRTEM (Scheme 8b) and XRD provided 

additional verification for film uniformity, ruling out the presence of 3D crystallites of ZrO2. The grafted ZrO2 films were 

confirmed to exhibit amphoteric character similar to bulk ZrO2, with the Brönsted:Lewis acid site ratio increasing with sulfate 

loading at the expense of base sites. The optimum bilayer SO4-ZrO2/SBA-15 was found to afford an ordered mesoporous 

material with a high acid site loading, which delivers a three-fold enhancement in 5-HMF productivity from glucose over non-

porous SZ counterparts (Scheme 8c) [110]. The co-existence of accessible solid basic/Lewis acid and Brönsted acid sites in 

grafted SZ/SBA-15 promote the respective isomerization of glucose to fructose and dehydration of reactively-formed fructose to 

the desired 5-HMF platform chemical. 
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           a)                                               b)                                                                c) 

 
Scheme 8. a) Si 2p XP attenuation following 1-3 grafting cycles demonstrating layer-by-layer growth of ~0.42 nm thick ZrO2 sheets. Dashed 

line shows the theoretical fit and associated film thickness to the observed attenuation, b) HRTEM of SBA-15 with 2-3 grafted ZrO2 layers, 

and c) catalytic performance in HMF production from glucose and fructose using 2ML SZ/SBA-15. 

 

3. Biofuel Synthesis  
 

3.1 Catalysts for esterification pre-treatments of pyrolysis oil.  
Pyrolytic thermal decomposition of biomass in the absence of oxygen is a commonly used approach to generate bio-oil, 

however this generates a broad product distribution which is sensitive to the feedstock, reaction temperature and residence time. 

Typical bio-oils are a mixture of acids, alcohols, furans, aldehydes, esters, ketones, sugars and multifunctional compounds such 

as hydroxyacetic acid, hydroxyl-acetaldehyde and hydroxyacetone (derived from cellulose and hemicellulose), together with 3-

hydroxy-3-methoxy benzaldehyde, phenols, guaiacols and syringols derived from the lignin component (Scheme 9).  

 

 
Scheme 9. Representative bio-oil components formed from lignin and (hemi)cellulose components during fast pyrolysis. 

The pyrolysis oil is however highly acidic and corrosive (pH 2–3), and as a result, fresh bio-oil is inherently unstable at room 

temperature, deteriorating via polymerisation and condensation reactions on storage leading to increased viscosity and poor 

combustion. Furthermore, the strong acidity of bio-oils resulting from the presence of organic acids can cause problems for the 

stability and lifetime of the catalysts used in the hydrodeoxygenation process used to upgrade and reform the oil to fuel. 

Esterification of these corrosive acidic components in bio-oil is proposed as a simple pre-treatment to improve the stability of 

oils during storage and transportation prior to subsequent upgrading. While the use of strong mineral acids such as H2SO4 is 

effective at catalysing esterification, this is not recommended due to the corrosive and hazardous nature of the acid 
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Sulfonic acid silicas are promising solid acid catalysts for esterification reactions, however the hydrophilic nature of polar silica 

surfaces can be problematic as surface hydroxyl groups favour H2O adsorption, which when formed during acid esterification 

can favour the reverse hydrolysis reaction and consequently reduce ester yields. Surface modification via the incorporation of 

organic functionality into polar oxide surfaces, or dehydroxylation, can lower their polarity and thereby increase initial rates of 

acid catalysed transformations of liquid phase organic molecules [111]. The incorporation of organic spectator groups (e.g. 

phenyl, methyl or propyl) during the sol–gel syntheses of SBA-15 [112] and MCM-41 [113] sulphonic acid silicas via co-

grafting, or simple addition of the respective alkyl or aryltrimethoxysilane during co-condensation protocols has been suggested 

as a means to tune hydrophobicity of silica surfaces. The effect of co-functionalisation of sulphonic acid derivatised MCM-41 

materials has been investigated to assess the effect of acid site density and surface hydrophobicity on catalyst acidity and 

associated performance in acetic acid esterification with butanol [114]. MCM-41 was selected due to the availability of accurate 

models for the pore structure from kinetic Monte Carlo simulations [115], enabling dynamic simulation of sulphonic acid and 

octyl groups co-attached within the MCM-41 pores to be modelled. In parallel experiments, two catalyst series were 

investigated towards acetic acid esterification with butanol (Scheme 10a). In one series, the propylsulphonic acid coverage was 

varied between (RSO3H) = 0–100 % ML over the bare silica (MCM-SO3H), while in the second octyl co-grafted series, both 

sulfonic acid and octyl coverages were tuned (MCM-Oc-SO3H).  Lateral interactions between acid head groups and also 

hydrogen bonding of sulphonic acid head groups with free surface silanols (Scheme 10b) could be assessed along with the role 

of hydrophobic octyl modifiers in altering the conformation of sulfonic acid groups [116]. 

 

Scheme 10. a) Protocol for the synthesis of sulfonic acid and octyl co-functionalised sulfonic acid MCM-41catalysts. Adapted from reference 

[116] with permission from The Royal Society of Chemistry. b) Molecular dynamics simulations of MCM-SO3H and MCM-Oc-SO3H pore 

models highlighting the interaction between surface sulfonic acid and hydroxyl groups in the absence of co-grafted octyl chains; (c-d) influence 

of PrSO3H surface density and co-grafted octyl groups on catalytic performance in acetic acid esterification with butanol. Adapted from 

reference [116] with permission from The Royal Society of Chemistry. 

Ammonia calorimetry revealed the acid strength of polar MCM-SO3H materials increases from 87 to 118 kJ mol-1 as a function 

of sulphonic acid loading. Octyl co-grafting dramatically enhances the acid strength of MCM-Oc-SO3H for submonolayer SO3H 

coverages, with Hads(NH3) rising to 103 kJ mol-1. While the per site activity of the MCM-SO3H series in butanol esterification 

with acetic acid increases with SO3H content, mirroring their acidity (Scheme 10c), octyl surface functionalisation promotes 

esterification for all MCM-Oc-SO3H catalysts, doubling the turnover frequency of the lowest loading SO3H material. Molecular 

dynamic simulations indicate that the interaction of isolated sulphonic acid moieties with surface silanol groups is the primary 

cause of the lower acidity and activity of sub-monolayer samples within the MCM-SO3H series. Lateral interactions with octyl 

groups help to re-orient sulphonic acid head groups into the pore interior, thereby enhancing acid strength and associated 

esterification activity. 

 

3.2 Biodiesel Synthesis using tailored porous catalysts  
Biodiesel, produced by the transesterification of plant or algal oil triglycerides [117, 118] to form fatty acid methyl ester 

(FAME) (Scheme 11a), is a low cost solution to renewable transportation fuels which can be blended with or replace 

conventional diesel. [119] Commercial production typically employs homogeneous alkali or mineral acid catalysts to effect 

these transformations and consequently generates vast quantities of aqueous waste, detrimental to the economic feasibility and 
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environmental impact of biodiesel synthesis. Solid acid catalysts able to simultaneously perform these esterification and 

transesterification reactions under mild conditions would be particularly desirable to minimise processing steps and permit the 

use of high FFA containing waste oils.  

 

 
Scheme 11 a) Triglyceride transesterification and b) fatty acid esterification with methanol. 

In both conventional solid acid and base systems poor accessibility of the active site within micropore networks and associated 

mass transport/diffusion limitations hinders their performance in biodiesel synthesis. Further catalyst development and 

improved activity should prove possible through utilising tailored porous solids as high area mesoporous supports to enhance 

TAG and FFA diffusion to the active acid/basic groups [120, 121]. Templated mesoporous solids are widely used as catalyst 

supports [122, 123], with SBA-15 silica popular candidates for reactions pertinent to biodiesel synthesis [124-126]. The SBA 

family of materials generated from block copolymer surfactants (e.g. P123 (PEO20PPO70PEO20) (Scheme 12a and b) typically 

give rise to larger pore diameters than those achieved with alkyl amines or ammonium surfactants used in HMS or MCM 

materials (Scheme 12a). However, conventionally synthesised sulfonic acid-functionalised SBA-15 silicas, with pore sizes 

below ~6 nm, possess long isolated parallel channels and suffer correspondingly slow in-pore diffusion and catalytic turnover in 

FFA esterification and TAG transesterification.  

 
Scheme 12 a) Structure of Pluronic P123 template, b) hexagonal SBA-15 pore structure and typical TAG size, and c) effect of pore expansion 

of RSO3H/SBA-15 on TOFs in palmitic acid esterification and triolein transesterification with methanol 

The use of poragens such as trimethylbenzene [127] triethylbenzene or triisopropylbenzene [128] to induce swelling of the 

Pluronic P123 micelles can be used to produce highly-ordered periodic mesostructures with pore diameters of 6, 8 and 14 nm 

[129]. When functionalised by mercaptopropyl trimethoxysilane (MPTS) and oxidised with H2O2 to yield expanded PrSO3-

SBA-15 catalysts these were effective in both palmitic acid esterification with methanol and tricaprylin and triolein 

tranesterification with methanol under mild conditions. Enhancements in TOF were observed which were attributed to superior 

mass-transport of the bulky free fatty acid and triglycerides within the expanded PrSO3-SBA-15 (Scheme 12c).  

 

An alternative means to improve mass transport is to replace the two dimensional, micron-length channels characteristic of the 

SBA-15 p6mm structure with three dimensional interconnected channels associated with the Ia3̅d structure of KIT-6 

mesoporous silica. This diversity of mesoporous silica architectures enables the impact of pore connectivity upon organic acid 

esterification to be quantified [130], using a family of pore-expanded propylsulfonic acid KIT-6 analogues, PrSO3H-KIT-6, 

prepared via MPTS grafting and subsequent oxidation. Such a conventionally-prepared material exhibited 40 and 70 % TOF 
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enhancements for propanoic and hexanoic acid esterification respectively over an analogous PrSO3H-SBA-15 catalyst of 

comparable (5 nm) pore diameter, attributed to faster mesopore diffusion. However, pore accessibility remained rate-limiting 

for esterification of the longer chain lauric and palmitic acids. Pore expansion of the KIT-6 mesopores up to 7 nm via 

hydrothermal ageing doubled the resulting TOFs for lauric and palmitic acid esterification with respect to an unexpanded 

PrSO3H-SBA-15 (Scheme 13).  

 

Simulations demonstrate that in the Knudsen diffusion regime [131], where reactants/products are able to diffuse enter/exit 

mesopores but experience moderate diffusion limitations, hierarchical pore structures may significantly improve catalyst 

activity. Materials with interpenetrating, bimodal meso-macropore networks have been prepared using microemulsion [132] or 

co-surfactant [133] templating routes and are particularly attractive for liquid phase, flow reactors wherein rapid pore diffusion 

is required. Liquid crystalline (soft) and colloidal polystyrene nanospheres (hard) templating methods have been combined to 

create highly organised, macro-mesoporous aluminas [134] and ‘SBA-15 like’ silicas [114] (Scheme 14), in which both macro- 

and mesopore diameters can be independently tuned over the range 200–500 nm and 5–20 nm respectively. Macropore 

incorporation in the mesopore network of a propylsulfonic acid functionalised SBA-15 confers a striking enhancement in the 

rates of tricaprylin transesterification and palmitic acid esterification with methanol, attributed to the macropores acting as 

transport conduits for reactants to rapidly access PrSO3H active sites located within the mesopores 

 

 

Scheme 13. Superior performance of interconnected, mesoporous propylsulfonic acid KIT-6 catalysts for biodiesel synthesis via free fatty acid 

esterification with methanol, versus non-interconnected mesoporous SBA-15 analogue. Adapted from reference [130] Copyright 2012 

American Chemical Society. 

 

Scheme 14. (left) (a) SEM and (b, c) low and high magnification TEM micrographs of a hierarchical macro-mesoporous Pr-SO3H-SBA-15; 

(right) corresponding catalytic performance in palmitic acid esterification and tricaprylin transesterification with methanol as a function of 

macropore density, versus a purely mesoporous Pr-SO3H-SBA-15. Adapted from reference [114] with permission from The Royal Society of 

Chemistry. 

CH3OH

+ H2O
FFA Biodiesel • Probe using esterification of free 

fatty acids (FFA) to FAME

H+0

20

40

60

80

100

120

Amberlyst SBA-15  
4.9nm

Kit-6-80 
5.2nm

Kit-6-100 
6.2nm

Kit-6-120 
7.0nm

E
st

e
ri

fi
c
a
ti

o
n

 T
O

F
 /
 h

-1

Solid Acid

Propanoic acid 

Hexanoic acid

Lauric acid

Palmitic acid

0

1

2

3

4

5

6

7

8

0

5

10

15

20

25

30

35

40 T
rica

p
ry

lin
tra

n
sesterifica

tio
n

 T
O

F
 / h

-1

P
a

lt
im

ic
a

ci
d

 e
st

er
if

ic
a

ti
o

n
 T

O
F

 /
 h

-1

Macropore advantage



12 
 
 

 

Phil. Trans. R. Soc. A.  

 

 

 

 

4. Concluding Remarks  
 
The potential of lignocellulosic biomass for the production of renewable chemicals and advanced transportation fuels can only 

be unlocked via the development of tailored heterogeneous catalysts, in which advances in materials chemistry, nanoscience, 

surface chemistry and process engineering are exploited. Ultimately, catalytic chemists and engineers need to emulate the 

successes of heterogeneous catalysis in petroleum refining; achieving this necessitates an improved understanding of biomass 

properties and its impact on catalyst deactivation in order to accelerate biomass-to-chemicals and fuels production.  

 
Widespread uptake and the development of next-generation biofuels and chemical feedstocks also requires progressive 

government policies and incentive schemes to place biomass-derived chemicals on a comparable footing with heavily 

subsidised fossil fuel-derived resources. [135],[136] In the short- to medium-term it is likely that so called ‘drop-in’ 

replacements of crude oil derived chemicals, or methods to co-process biomass in conventional oil refineries will be most cost 

effective to circumvent high capital costs of new processing facilities.[137]  Targeting processes that require ‘drop in’ chemical 

feedstocks that directly replace existing fossil derived chemicals, has the advantage of providing raw material for a mature 

market in which the necessary infrastructure and technology exists, thereby maximising the impact of the value added chemical.  

In parallel emerging chemicals will produce a completely new value chain with new products that may offer enhanced 

performance and potential for new business opportunities. [138] To overcome some of the infrastructure problems for biomass 

processing, economic models for biorefineries have proposed enhanced revenue that could be achieved by making more use of 

underutilised infrastructure in corn wet and dry mills or pulp and paper operations.[8]   
 

Biomass pre-treatments employed to isolate sugars are some of the most wasteful steps in biorefineries, and new approaches are 

therefore desired to improve the atom- and energy efficiency of lignocellulose processing such that preliminary acid 

hydrolysis/extraction steps to sugars from lignocellulose can be performed under mild conditions and with minimal waste 

generation. Cellulose stability itself presents a major hurdle to such advances, with environmentally friendly and energy 

efficient means to break up this biopolymer an ongoing challenge. Conventional heterogeneous catalysts cannot be employed 

alone in solid phase reactions with biomass, although some recent reports propose ball milling as an effective means to induce 

'mechanocatalysis' between cellulose and clay based catalysts possessing layered structures, [139] or carbon based catalysts 

[140]. Ultimately, the development of new heterogeneous catalysts, and integrated process optimisation, requires collaboration 

between catalytic chemists, chemical engineers and experts in molecular simulation to exploit innovative reactor designs; 

catalytic routes to convert biomass to chemicals and fuels will underpin renewable feedstock valorisation this century. 
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