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Abstract 

While some aspects of social processing are shared between humans and other species, some 

aspects are not. The former seems to apply to merely tracking another’s visual perspective in 

the world (i.e., what a conspecific can or cannot perceive), while the latter applies to 

perspective taking in form of mentally “embodying” another’s viewpoint. Our previous 

behavioural research had indicated that only perspective taking, but not tracking, relies on 

simulating a body schema rotation into another’s viewpoint. In the current study we 

employed Magnetoencephalography (MEG) and revealed that this mechanism of mental body 

schema rotation is primarily linked to theta oscillations in a wider brain network of body-

schema, somatosensory and motor-related areas, with the right posterior temporo-parietal 

junction (pTPJ) at its core. The latter was reflected by a convergence of theta oscillatory 

power in right pTPJ obtained by overlapping the separately localised effects of rotation 

demands (angular disparity effect), cognitive embodiment (posture congruence effect), and 

basic body schema involvement (posture relevance effect) during perspective taking in 

contrast to perspective tracking. In a subsequent experiment we interfered with right pTPJ 

processing using dual pulse Transcranial Magnetic Stimulation (dpTMS) and observed a 

significant reduction of embodied processing. We conclude that right TPJ is the crucial 

network hub for transforming the embodied self into another’s viewpoint, body and/or mind, 

thus, substantiating how conflicting representations between self and other may be resolved 

and potentially highlighting the embodied origins of high-level social cognition in general. 

 

Keywords (5): Perspective Taking, Embodiment, Magnetoencephalography (MEG), 

Transcranial Magnetic Stimulation (TMS), Temporo-Parietal Junction (TPJ) 

Abbreviations: MEG = Magnetoencephalography; dpTMS = dual pulse Transcranial 

Magnetic Stimulation; pTPJ = posterior temporo-parietal junction 
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1. Introduction 

Humans and other species are social animals and therefore require specific information 

processing capacities that ensure social functioning in cooperative and competitive situations. 

While some aspects of social processing are shared with other species, other aspects have 

only been observed in humans (Frith & Frith, 2007; Tomasello, Carpenter, Call, Behne, & 

Moll, 2005). The latter typically involves representing what others might be thinking or 

experiencing (Call & Tomasello, 1999), while the former relies on simpler and more 

automatic processing of others in relation to the environment (Kessler & Rutherford, 2010; 

Michelon & Zacks, 2006). In both cases, however, processing seems to ensure alignment of 

some sorts between agents, enabling coordinated social behaviour (Frith & Frith, 2007).  

 

1.1. Perspective taking vs. perspective tracking 

Simple alignment may take on the form of tracking another’s perspective of the world, e.g. 

“Is the food visible or occluded from the view of the alpha male?” (Brauer, Call, & 

Tomasello, 2005, 2007). In contrast to other species, however, humans have the capacity to 

imagine another’s perspective of the world (Call & Tomasello, 1999; Frith & Frith, 2007; 

Tomasello et al., 2005), e.g. when giving directions such as “turn left in front of the 

building”. Such visuo-spatial perspective taking in form of imagining the world from 

another’s viewpoint must be distinguished from merely tracking what a conspecific can or 

cannot see as observed in other species.  

 

Nevertheless, apes and ravens have been reported to physically align themselves with 

humans, even moving around obstacles in order to be able to see what a human can see 

(Brauer et al., 2005; Bugnyar, Stöwe, & Heinrich, 2004). Such understanding of the required 

physical movement for aligning viewpoints could reflect a proto-form of higher-level 
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perspective taking. If this was the case, then perspective taking in humans may have evolved 

from physical viewpoint alignment, in other words, a mental simulation of adopting another’s 

viewpoint may have replaced actual movement execution.  

 

1.2. The embodied nature of perspective taking 

An increasing number of research findings indeed show that perspective taking is linked to 

internal representations of the body and its action and posture repertoire (Falconer & Mast, 

2012; Surtees, Apperly, & Samson, 2013; Tcaci Popescu & Wexler, 2012; Tversky & Hard, 

2009; van Elk & Blanke, 2014). Kessler and Thomson (2010) directly manipulated 

participant’s body posture during perspective taking (Fig. 1): When the body was turned 

towards the target (posture “congruent” with the direction of mental self-rotation), response 

times and error rates for directional judgments (“left/right”) from another’s perspective were 

significantly decreased compared to when the body was turned away (“incongruent” posture). 

This effect has been repeatedly replicated and extended (Kessler & Rutherford, 2010; Kessler 

& Wang, 2012; Surtees et al., 2013; Tcaci Popescu & Wexler, 2012; van Elk & Blanke, 

2014) and suggests that high-level visuospatial perspective taking is indeed based on a 

simulated rotation of the body (Kessler & Wang, 2012). Importantly, Kessler and Rutherford 

(also Kessler, Cao, O'Shea, & Wang, 2014; 2010) showed that during simple perspective 

tracking (judging “visibility”) the posture congruence effect was absent. This suggests that 

only the more complex process of perspective taking is significantly “embodied”, in the sense 

that humans mentally rotate their own body representation into another’s orientation in form 

of a mental self-rotation. 

 

1.2. The role of the temporo-parietal junction 
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Previous research in social cognitive neuroscience has implicated the temporo-parietal 

junction (TPJ) as a crucial area within a network generally engaged when inferring others’ 

experiences and mental states (Arzy, Thut, Mohr, Michel, & Blanke, 2006; O. Blanke et al., 

2005; Bögels, Barr, Garrod, & Kessler, 2014; Van Overwalle & Baetens, 2009; Zacks & 

Michelon, 2005) and particularly during high-level visuospatial perspective taking (Arzy et 

al., 2006; O. Blanke et al., 2005; Bögels et al., 2014). Recent structural and functional 

investigations suggest subdivisions of TPJ along an anterior-posterior and a ventral-dorsal 

dimension (Igelström, Webb, & Graziano, 2015; Mars et al., 2012). Converging results seem 

to indicate that a posterior section of TPJ is particularly linked to social processing (Carter & 

Huettel, 2013; Igelström et al., 2015; Mars et al., 2012).   

 

A variety of notions have been proposed for the role of TPJ involvement, e.g. suggesting a 

role in spatially transforming frames of reference or in simultaneous co-representation of 

several frames of reference (Schurz, Aichhorn, Martin, & Perner, 2013). It has further been 

proposed that especially the right TPJ controls conflicting representations of the self in 

relation to others, such as suppressing the self when the other’s representation is task-relevant 

and vice versa (Santiesteban, Banissy, Catmur, & Bird, 2012). However, work by Blanke and 

colleagues (Arzy et al., 2006; O. Blanke et al., 2005) using transcranial magnetic stimulation 

(TMS) and testing a patient suffering from involuntary “out-of-body” experiences, supports 

the notion that processing in TPJ could be related to bodily representations and not merely to 

abstract spatial processing. Indeed, based on lesion studies, areas in the parietal cortex 

including the TPJ (G. Berlucchi & Aglioti, 1997; Giovanni Berlucchi & Aglioti, 2010; O. 

Blanke et al., 2005; Buxbaum, Giovannetti, & Libon, 2000; Tsakiris, Costantini, & Haggard, 

2008; Wolpert, Goodbody, & Husain, 1998) have been associated with the so-called “body 

schema”, which has been defined by Coslett and colleagues (e.g. Coslett, Buxbaum, & 
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Schwoebel, 2008; Medina, Jax, & Coslett, 2009) as a continuously updated, dynamic 

representation of body part locations based on proprioceptive and efference-copy 

information.  

 

1.2. The current study 

Here we employed the novel paradigm and posture manipulation from Kessler and 

Rutherford (2010) and expected overlapping effects in the TPJ between visuospatial and 

body-related transformations during a perspective taking task, in contrast to a perspective 

tracking task. A confirmatory result would highlight TPJ as the major network hub for 

embodied perspective transformations and would allow for unique conclusions about the type 

of processing carried out within TPJ and its recently proposed subdivisions (Carter & Huettel, 

2013; Igelström et al., 2015; Mars et al., 2012). Potentially, this could substantiate a self-

other control mechanism proposed for right TPJ (Santiesteban et al., 2012). Such a result 

would further emphasise the embodied origins of social cognition, suggesting that humans 

may have developed the capacity for mental alignment by engaging the body representation 

system in simulation mode (Gallese, 2013; Pezzulo, Iodice, Ferraina, & Kessler, 2013; 

Wilson, 2002). This capacity may come with a trade-off in the form of spontaneous, 

uncontrolled disembodiment, that has also been linked to TPJ, hence, our findings could 

potentially further elucidate the link between perspective taking and spontaneous out-of-

body-experiences (O. Blanke et al., 2005; O. Blanke & Thut, 2007; Braithwaite et al., 2013). 

 

2. Materials and Methods 

2.1 Participants 

14 participants were tested in the MEG experiment at Glasgow University while a different 

group of 15 participants were tested in the TMS experiment at Aston University. 
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We obtained analysable MEG data from 12 participants (6 males, average age 23.3, all right-

handed). Data from two additional participants was excluded because of too noisy data 

(dental implant), and for being on medication, respectively. All participants had a maximum 

score of 5 on the “social skills” subscale of the Autism-Spectrum Quotient (Baron-Cohen, 

Wheelwright, Skinner, Martin, & Clubley, 2001), based on our previous research showing 

that low social skills (indicated by larger values) may result in the engagement of alternative 

processing strategies (Kessler & Wang, 2012).  

 

In the TMS experiment 15 volunteers participated (6 males, average age 26.3, minimum 21 

and maximum 37, 3 left-handed). All participants were screened for contra-indications (Keel, 

Smith, & Wassermann, 2001) and had a maximum score of 5 on the “social skills” subscale 

of the Autism-Spectrum Quotient (Baron-Cohen et al., 2001).  

 

2.2 Experimental Procedures 

All experimental procedures complied with the Declaration of Helsinki and were approved by 

the respective University ethics committee. 

 

2.2.1. MEG Expt. 

The employed tasks and stimuli were adopted from Kessler and Rutherford (2010, Expt. 1). 

In all stimuli an avatar was presented seated at a round table shown from one of six possible 

angular disparities (see Figure 1: 60°, 110°, 160° clockwise and anticlockwise). The stimuli 

were coloured photographs (resolution of 1024 by 768 pixels), taken from an angle of 65° 

above the plane of the avatar and table. The stimulus table contained four grey spheres 

(placed around an occluder, cf. Figure 1). In each trial one of the spheres turned red 

indicating this sphere as the target. From the avatar’s viewpoint the target could be 
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visible/occluded (perspective tracking task) or left/right (perspective taking task) and 

participants were asked to make a judgement according to the avatar’s perspective by 

pressing the instructed key (Lumitouch® response pads): the left key for “left” or “visible” 

targets and the right key for “right” or “occluded” targets1. For analysis we collapsed across 

correct responses for left and right and across correct responses for visible and occluded, 

respectively. We also collapsed across clockwise and anticlockwise orientations for each 

angular disparity, after ensuring that the neural signatures were comparable (no significant 

differences in source space).  

 

For each block of 120 trials (8 total per session) participants were instructed to maintain one 

of two possible postures as shown in Fig. 1, bottom right. The participant’s posture in any 

given block was always congruent with the mental rotation direction required for half of the 

trials, while it was incongruent with the other half. A blocked posture was essential for 

avoiding movement artefacts in the MEG due to inter-trial posture adjustments. The two tasks 

(perspective taking vs. tracking) were recorded in two separate sessions on different days and 

the sequence was counterbalanced across participants.  

 

MEG data were acquired using a Magnes 3600, 248-channel whole-head magnetometer (4D-

Neuroimaging), sampled at 508.63 Hz and band-pass filtered between 0.1 and 200 Hz. 

Stimulus resolution was 1024 x 768 pixels covering a visual angle of 24º horizontal by 18º 

vertical. We employed an SR Research remote Eyelink 1000 fort aborting trials (to be re-run 

                                                 
1 Note that in Kessler and Rutherford (2010) we found the same basic pattern of results with vocal responses 
(“left” or “right” for perspective taking and “in front” or “behind” for perspective tracking) as with spatially 
mapped key presses. This is important as vocal responses do not induce spatially incongruent stimulus-response 
mappings (see May & Wendt, 2013). Thus, since our current study replicated the pattern reported in Kessler and 
Rutherford (2010) we are confident that our effects are not due to spatial incompatibilities in stimulus-response 
mappings (see also Kessler et al., 2014). Furthermore Surtees et al., (2013) reported a similar posture 
congruence effect in a task that did not require laterality judgements but judgements of visual appearance (e.g. 
does the other person perceive a digit as a “9” or a “6”?). This further rules out stimulus-response mappings as a 
confound but also indicates that the posture effect is not only tied to left/right or other directionality judgements 
but generalises to judgements of visual experience. 
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later) where participants blinked or moved their eyes away from the screen centre (a box of 

dimensions 140x120 pixels, covering the central target area, see Fig. 1). 

 

Data were preprocessed & analysed using the Matlab® toolbox Fieldtrip (Oostenveld, Fries, 

Maris, & Schoffelen, 2011). Epochs were extracted from 600 ms before the visual stimulus 

was shown until response. All epochs were detrended, denoised and trials with large artefacts 

(e.g. strong muscle artefacts) and continuously noisy channels were removed (with max 6 out 

of 248 rejected channels and an average of 142.6 remaining trials per individual). ICA 

components were then generated, visually inspected and removed if they reflected 

environmental noise and/or artefacts (such as heart beats and muscle artefacts).  

 

The power of frequencies between 2 and 32 Hz was calculated using a Hanning taper 

(Grandke, 1983) with 3 cycles per frequency. Planar gradient representations were calculated 

prior to sensor level analysis that used cluster-based random permutation (Maris & 

Oostenveld, 2007). Conforming to our previous research (e.g. Bögels et al., 2014) we 

employed a 2-step approach for emulating the interactions between two factors in time and 

frequency analysis (e.g. task x posture; task x angle). We first calculated differences between 

the two tasks, i.e. perspective tracking vs. taking, for each participant separately and then 

included the outcomes of this 1st step difference into a group statistic that compared a second 

factor, e.g. congruent vs. incongruent posture (or 60º vs. 160º). The comparison at group 

level followed the robust statistics approach described above. For localising the power of 

theta-band oscillations, we used the Dynamical Imaging of Coherent Sources (DICS, Gross et 

al., 2001) approach for calculating spatial filters based on cross-spectral densities for a time-

frequency tile centred on the effects found at sensor level (3, 4, 5, 6 Hz; 0-660 msec).  
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2.2.2. TMS Expt. 

The stimuli were identical to the MEG experiment but we simplified the paradigm by 

excluding trials with 110° angular disparity and by excluding visibility judgements in order to 

focus on the postulated pTPJ involvement in perspective taking. In addition, we randomly 

included trials with and without dual pulse TMS stimulation, hence, a 2x2x2 repeated 

measures design was employed with the factors “angular disparity” (160°/60°), “posture 

congruence” (congruent/incongruent), and “stimulation” (dpTMS vs. control). The total 

number of 160 trials (20 trials in each of the 8 design conditions) was delivered in 10 blocks 

of 16 trials each =, where participants maintained the same body posture (turned clockwise or 

anticlockwise, cf. Fig. 1 bottom right) throughout each block.  

 

TMS was applied using a Magstim Super Rapid with a 70mm diameter figure-of-eight 

stimulating coil, with maximum magnetic field strength of 1.5T. Prior to the experiment 

three-dimensional brain models were created for each participant in neuronavigation software 

(BrainSight® v2, Rogue Research, Montreal, Canada), using each participants’ structural 

MRI that was normalised into MNI space (Montreal Neurological Institute template) with 

SPM8 software (Litvak et al., 2011). The target sites for stimulation were defined in 

normalised stereotactic space (MNI) and the coordinates were based on the MEG group 

analysis (MNI coordinates: 50, -60, 32) reflecting a right posterior temporo-parietal (pTPJ) 

site. Brainsight® hard- and software ensured continued accuracy of pulse application. Dual 

pulse TMS (dpTMS) was applied to right pTPJ in concordance with previous research 

targeting the TPJ (e.g. Bosco, Carrozzo, & Lacquaniti, 2008). Conforming to one of Bosco et 

al.’s (2008) conditions, the two pulses were separated by 100ms with the 1st pulse being 

administered at 300ms after stimulus onset (2nd pulse at 400ms). Bosco et al suggested that 

this would cause interference lasting for approx. 300-500ms after stimulus onset. This period 
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further overlapped with the time window (350-550ms) reported by Blanke et al. (2005), 

where single pulse TMS affected perspective taking, and importantly, also covered the peak 

of the theta (and alpha/beta) effects observed in the current MEG experiment (200-400ms, 

Fig. 3, bottom). dpTMS was applied on 50% of the trials and pulses were applied at 110% 

resting motor threshold as determined in concordance with standard protocols (Rossini et al., 

1994). On all trials (also on those without dpTMS stimulation) acoustic click sounds played 

binaurally via ear phones ensured that participants could not distinguish between dpTMS and 

control trials based on the sounds of the TMS coil discharge alone.  

 

 

3. Results 

3.1. MEG Experiment: Behaviour 

Response time data (RTs) shown in Figure 2 were subjected to an ANOVA that included 

angular disparity (60°, 110°, 160°) posture congruence (congruent vs. incongruent), and task 

(left/right vs. visibility) as factors (see also Fig. 1). Based on previous research (Kessler et al., 

2014; Kessler & Rutherford, 2010; Michelon & Zacks, 2006; Surtees et al., 2013), only for 

perspective taking (left/right) but not for perspective tracking (visibility) RTs were expected 

to slow down with increasing angular disparity as a reflection of increased duration of mental 

transformation. Only for perspective taking (left/right) but not for perspective tracking 

(visibility) RTs were also expected to be faster for a congruent than for an incongruent body 

posture as a reflection of body schema involvement in the mental transformation (Kessler et 

al., 2014; Kessler & Rutherford, 2010; Kessler & Thomson, 2010; Surtees et al., 2013).  

 

Conforming to these expectations, the current results replicated Kessler and Rutherford’s 

findings (Kessler et al., 2014; 2010), revealing a significant main effect of angular disparity 
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(F(2,10) = 14.8, p<.001, 2
p=.747) for perspective taking (left/right), where RTs increased 

with angle, and a main effect of posture congruence (F(1,11) = 10.1, p<.01, 2
p=.478), with a 

congruent posture being significantly faster than an incongruent posture. In contrast, 

perspective tracking (visibility) only revealed a significant effect for angular disparity 

(F(2,10) = 12.2, p<.002, 2
p=.71), yet, where RTs decreased with angle (Kessler et al., 2014). 

Significant interactions for task x angle (F(2,10) = 17.9, p<.001, 2
p=.782), for task x posture 

(F(1,11) = 9.3, p<.01, 2
p=.458) and for task x angle x posture (F(2,10) = 25.9, p<.001, 

2
p=.839) confirmed the qualitative difference between the two tasks, as suggested by 

previous research (Kessler et al., 2014; Kessler & Rutherford, 2010; Michelon & Zacks, 

2006).  

 

3.2. MEG experiment: Time-frequency results for theta, alpha, beta  

We replicated the pattern of behavioural results reported in Kessler and Rutherford (Kessler 

& Rutherford, 2010) with posture congruence and angular disparity effects for left/right, but 

no such effects for visible/occluded judgements (as confirmed by significant interactions with 

“task”). This indication of more intense embodied processing and higher rotation demands 

during perspective taking compared to tracking was also reflected in the MEG data where we 

did not find any effect that was stronger for visibility compared to left/right judgements, 

when we compared the two tasks directly (see also Fig. 3, Panel A). Also note that when 

tested separately for each task, posture congruence and angular disparity revealed significant 

clusters for perspective taking but not for tracking (Fig. 3 Panel B). Therefore, to complete 

the overall picture we explored visibility judgments as a simple comparison between pre-

stimulus baseline vs. post-stimulus task period (collapsed across all angular disparity and 

posture congruence conditions). This analysis is reported in the Supplementary Material (Fig. 

S1) and, in short, we observed significant effects in alpha, beta, and theta frequencies, 
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indicating more intense processing during stimulus presentation compared to pre-stimulus 

baseline. Importantly, theta power differences localised in the frontal eye fields (FEF), which 

has previously been related to visibility judgements (Wallentin, Roepstorff, & Burgess, 2008) 

as well as to perceiving another’s gaze and line-of-sight (Grosbras, Laird, & Paus, 2005).  

 

Furthermore, we focussed our analysis of rotation demands on the maximum angular 

disparity difference of 160º vs. 60º, since 110º revealed a pattern that was in-between the two 

other angular disparities, thus, not adding fundamentally new insights. 110º did not differ 

significantly from the other two angular disparities at theta but at alpha/beta frequencies, 

which is reported in Supplementary Material Figure S2.  

 

Conforming to the observed behavioural interaction effects of task x posture congruence and 

task x angular disparity, the main time-frequency (TFR) results were revealed in 2-level 

analysis approaches (e.g. Bögels et al., 2014), comparing the two tasks at individual level and 

then calculating an angle or posture effect at group level, thus, approximating the interactions 

between task x angle and task x posture congruence, respectively, while allowing for robust 

random-permutation cluster statistics to control for multiple comparison errors (see Section 

2.3.). A data-driven analysis of frequencies between 2-32 Hz (see Section 2.3.) was 

calculated conforming to this 2-level analysis approach. Generally, all conditions followed a 

similar pattern of post-stimulus theta-band (2-7 Hz) increase and an alpha/beta-band decrease 

(8-25Hz) compared to baseline (see Fig. 3, Panel A). These are typical observations 

(Klimesch, 1999; Pfurtscheller & Lopes da Silva, 1999) associated with processing of 

incoming stimuli (alpha/beta decrease) that also require cognitive processing (theta increase). 

Although the general pattern and topography was similar for both tasks (see Fig. 3, Panel A), 

perspective taking (left/right) revealed by far the stronger responses, i.e., theta increases as 
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well as alpha/beta decreases (see Differences in the far right column of Fig. 3, Panel A). In 

fact, we did not find any effect that was stronger for visibility compared to left/right 

judgements (but see Figure S1 for visibility judgements compared to the baseline interval). 

Furthermore we found the most reliable effects across all contrasts in the theta band incl. 

higher delta frequencies (2-7 Hz). We therefore focus our report on these frequencies but 

report additional alpha/beta effects in Supplementary Material (Figure S3). 

 

It is important to note that comparing the two tasks in the MEG analysis provided us with a 

further contrast option that could not be conducted based on behavioural responses alone, or 

by analysing the tasks separately. Specifically, we were able to test if posture, disregarding 

congruency with the cognitive target at hand, mattered more for perspective taking than for 

perspective tracking. This directly relates to our general hypothesis that the body schema 

would be engaged during perspective taking but not during tracking: If that was the case, then  

the neural representation of posture should be more strongly engaged during left/right than 

during visibility judgements. It is safe to assume that a body turned clockwise vs. 

anticlockwise results in different neural representations that code for the two different 

postures. If a particular context is likely to use these posture representations on every given 

trial of a block, e.g. a block of left/right judgements, then the neural differences between the 

two postures should be enhanced compared to a block where posture is irrelevant, e.g. a block 

of visibility judgements. Hence, if posture was more relevant during left/right compared to 

visibility judgements, then we expected to find a stronger difference between the two body 

postures (body turned clockwise vs. anticlockwise, see Fig. 1) in the former compared to the 

latter, resulting in what we termed a “posture relevance” effect. To clarify, posture relevance 

is different from posture congruence in that it is likely to reflect a tonic activity increase 

related to the body schema for the left/right compared to the visibility task (presented in 
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separate blocks), disregarding specific trial parameters such as mental rotation direction, 

demands and congruence2.  

 

The interaction between task and angular disparity was calculated for the maximum 

difference in angle, i.e., between 160º and 60º degrees, and revealed a significant cluster (p < 

.05; Fig. 5, left column) in the theta band (2-7Hz), lasting from 0ms to 650ms (Fig. 4, left). 

The 160º condition revealed a stronger theta increase than 60º (for left/right but not for 

visibility). The interaction between task and posture congruence was reflected by a 

significant cluster (p < .05) in the theta band (3-7Hz) and lasted from 50ms to 450ms (Fig. 4, 

middle column). In reflection of the obtained behavioural effects (see Fig. 2) posture 

congruence effects differed significantly between left/right and visibility judgements, with 

only the former showing significantly stronger theta modulation in response to posture 

incongruence vs. congruence. We also observed the predicted “posture relevance” effect 

where the two postures differed more strongly for left/right compared to visibility 

judgements, resulting in a significant cluster (p < .05) in the theta band (2-7Hz) that lasted 

from 0ms to 650ms (Fig. 4, right column). This effect, reflecting higher relevance of posture 

for left/right than for visibility judgements, further supports stronger engagement of the body 

schema during perspective taking (left/right) compared to mere perspective tracking 

(visibility). Finally, the effects for all three interactions seem to overlap over the right 

posterior hemisphere (Fig. 4, bottom row), possibly indicating a source in the right TPJ. 

 

3.3. MEG experiment: Source analysis for theta  

Figure 4 (middle row and top image) depicts the source reconstructions for each of the three 

theta interaction effects (with task) obtained with a similar 2-level approach as for the sensor 
                                                 
2 Posture relevance was calculated as (L/R (anticlockwise) – visibility (anticlockwise)) - (L/R (clockwise) – 
visibility (clockwise)), while posture congruence as (L/R (incongruent) – visibility (incongruent)) - (L/R 
(congruent) – visibility (congruent)). 
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level analysis (see Section 2.3.); the source coordinates in MNI space are provided in Table 1. 

Firstly, angular disparity localised in the posterior part of the right TPJ (pTPJ), extending 

dorsally into dorsal TPJ and ventrally into the lateral occipital complex, overlapping with the 

extrastriate body area (OCC). More anterior sources include sensorimotor (SM1) and frontal 

areas (SMA, latPFC), thus, reflecting the topography of the widely distributed sensor level 

cluster (Fig. 4, bottom left). Secondly, posture congruence (Fig. 4, bottom middle; Table 1) 

also localized in the right pTPJ extending into more superior areas of the posterior parietal 

lobe (SPL) as well as to the right supplementary motor area (SMA). The posture relevance 

effect also localised in the right pTPJ (Fig. 4, bottom right; Table 1) along with right 

sensorimotor (SM1) and ventral premotor cortex (vmPFC). Finally, Figure 4 and Table 1 

reveal that the maximum overlap between the three effects is indeed located in the right pTPJ, 

thus confirming our hypothesis that TPJ could be the locus where the embodied self is 

transformed into another’s perspective and experience, possibly aligning bodies as well as 

minds.  

 

3.4. TMS experiment: effects of dpTMS applied to rTPJ 

We tested the proposed critical role of right pTPJ for embodied processing during perspective 

taking (left/right). We targeted the right pTPJ with a dual pulse TMS paradigm (dpTMS; e.g. 

Bosco et al., 2008) based on the coordinates obtained from the MEG overlap analysis (Fig. 4, 

top; Fig. 5, left) and the time window observed for the theta effects (Fig. 3) and in 

concordance with previous research (see Methods). We applied the 1st pulse at 300 and the 

2nd pulse at 400 msec after stimulus onset. On all trials acoustic click sounds, mimicking 

TMS coil discharges, were played via ear phones. The played sounds were louder than the 

actual discharges; hence, participants were unable to distinguish acoustically between dpTMS 

trials and no-pulse control trials, which allowed us to mix TMS and sham trials into a random 
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trial-sequence. The binaurally played sounds also masked the spatial asymmetry of the real 

coil discharges over the right hemisphere, which otherwise could have resulted in a spatial 

bias to the right. 

 

The factor “stimulation” (dpTMS vs. control) was included as a within-subjects factor into a 

2x2x2 repeated measures ANOVA along with the factors “angular disparity” (60º vs. 160º) 

and “posture congruence” (congruent vs. incongruent). The analysis revealed a significant 

main effect of “angular disparity” (F(1, 14) = 20.6, p < .0001, η²p = .595), a significant 

interaction between “angular disparity” and “posture congruence” (F(1, 14) = 7.8, p = .014, 

η²p = .359), and a significant interaction between “stimulation” and “posture congruence” 

(F(1, 14) = 6.5, p = .023, η²p = .319). All other effects did not reach significance (all p > .1). 

The first two effects are in line with our previous research showing faster RTs at low (60°) 

compared to high (160°) angular disparity and a significant posture effect at high (160°) but 

not at low (60°) angular disparity (Kessler & Thomson, 2010; Kessler & Wang, 2012). The 

third effect is novel and can be interpreted, based on Fig. 5 (right graph), as a disruption of 

the posture congruence effect by dpTMS to right pTPJ. Although the 3-way interaction 

between angle, posture, and stimulation was not significant (p = .381), Fig. 5 (right graph) 

reveals that dpTMS primarily disrupted the posture effect where it existed in the first 

instance, namely at 160°. 

 

4. Discussion 

Firstly, our current MEG Expt. replicated previous behavioural findings (Kessler et al., 2014; 

Kessler & Rutherford, 2010; Kessler & Thomson, 2010; Kessler & Wang, 2012; Surtees et 

al., 2013) showing a significant RT increase (Fig. 2) in relation to higher angular disparity 

and posture incongruence for perspective taking (left/right) in contrast to perspective tracking 
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(visibility), hence, further corroborating the notion of two distinct mechanisms (Michelon & 

Zacks, 2006). One mechanism seems to be restricted to the simpler process of tracking 

another’s line of sight, while the other allows for imagining another’s perspective by 

engaging an embodied process of mental self-rotation into the other’s orientation (Kessler et 

al., 2014; Kessler & Rutherford, 2010; Michelon & Zacks, 2006). This clear behavioural 

pattern (i.e., posture and disparity effects only in the left/right task) allowed us to pursue the 

neural substrate of perspective taking (left/right) in comparison to perspective tracking 

(visibility). While all reported effects in the direct task comparison were indeed due to 

stronger oscillatory modulation in the left/right task, we were nonetheless able to pinpoint 

FEF as a major  processing hub for the visibility task compared to a pre-trial baseline period 

(2-7 Hz, see Fig. SM1), replicating previous findings (Grosbras et al., 2005; Wallentin et al., 

2008) and, thus, confirming a potential role of FEF in inferring another’s line of sight .  

 

Regarding perspective taking (in contrast to tracking) our data-driven time-frequency 

analysis revealed that modulations of theta oscillations were a common theme (Fig. 4, bottom 

row) amongst our three types of effects,. “Rotation demands” was reflected in higher theta 

power for 160° vs. 60° angular disparity, “cognitive embodiment” was reflected by stronger 

theta for an incongruent vs. a congruent posture, and “posture relevance” was reflected by a 

stronger theta contrast between anti- vs. clockwise turned body postures for perspective 

taking compared to tracking. Not only was the frequency of interest (~2-7 Hz) in common 

across all three effects, but also the primary cortical origin of these effects overlapped in the 

right posterior temporo-parietal junction (pTPJ; Fig. 4 top image). This is in agreement with 

previously reported involvement of right TPJ-theta in high-level perspective taking and 

mentalizing (Bögels et al., 2014). In the subsequent TMS study we were able to disrupt the 

posture congruence effect (“cognitive embodiment”) by targeting right pTPJ with a dual 
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pulse interference paradigm (Fig. 5). However, we did not find a dpTMS effect on angular 

disparity indicating that rotation demands were unaffected by the stimulation. A more 

disruptive repetitive TMS protocol might have affected both effects. However, our result 

could also be related to the targeted site being drawn more towards the body-related effects in 

the overlap (Fig. 4). Potentially, it might be possible to selectively disrupt the effects of 

posture or angular disparity or both, by targeting slightly different sites within right TPJ. 

 

4.1. Implications for the role of TPJ 

Our findings are in concordance with previous research that has pinpointed TPJ, and pTPJ in 

particular, as a crucial area within a network generally engaged when inferring others’ 

experiences and mental states (Arzy et al., 2006; O. Blanke et al., 2005; Bögels et al., 2014; 

Van Overwalle & Baetens, 2009; Zacks & Michelon, 2005). In addition, TPJ has also been 

related directly to high-level visuospatial perspective taking and notions of the role of TPJ 

either suggest an embodied contribution (Arzy et al., 2006; O. Blanke et al., 2005) or the 

deliberate transformation of frames of reference and/or the co-representation of egocentric 

and altercentric perspectives (e.g., Santiesteban et al., 2012; Schurz et al., 2013). However, 

TPJ does not seem to be confined to deliberate processing of another’s experience but has 

also been associated with spontaneous forms of viewpoint changes, prominently subsumed 

under the label of “out-of-body” experiences (Blanke et al. 2005; Braithwaite et al. 2010; 

Braithwaite et al. 2013), which is supportive of body-related processing in TPJ. 

 

Our current empirical evidence allows reconciling diverging views of the role of TPJ by 

suggesting it as the locus of convergence between implicit body representation, i.e. the body 

schema (e.g. Coslett et al., 2008; Medina et al., 2009), and deliberate processes that use 

simulated manipulations of these representations to imagine the body (and mind) in 
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another(’s) viewpoint. This has implications on how the self is represented in relation to 

another. Previous research (Santiesteban et al., 2012) had proposed that TPJ controls conflicts 

between representations of the self- in contrast to representations of another. Santiesteban et 

al. (2012) reported TPJ involvement when “the other” needed to be ignored while focussing 

on the self (e.g. supressing automatic imitation tendencies), yet also when self-centred 

representations needed to be supressed to represent the other (e.g. when adopting the other’s 

perspective). Our current findings extend and substantiate this rather vague notion of self- vs. 

other representations. As explained, our findings suggest that humans simulate a rotation of 

their embodied self into the other’s orientation. Thus, we propose that a conflict arises 

because of a simulated self where parts of the body schema have been rotated outside the 

current location of the body, while parts of the self and the body schema remain tied to the 

body’s current physical location (see also May, 2004). Without the latter mental self-rotation 

would always result in full-blown “out-of-body” experiences.  

 

Therefore, our notion shifts the focus away from “the other”, towards conflicts that arise 

between alternative (physically vs. mentally embodied) representations of the self. This 

implies that humans might represent others primarily by generating an alternative 

representation of the self in the other’s circumstances (e.g. their body posture, viewpoint, 

perspective, socio-emotional context, etc.; e.g. Pezzulo et al., 2013). Accordingly, TPJ might 

play a crucial role in simulating projected selves and controlling conflict with the self that 

remains in the physical location of the body. This shift away from “the other” towards 

alternative embodied selves is corroborated by the role of TPJ in “out-of-body” experiences 

(e.g.O. Blanke et al., 2005), where an alternative embodied self is generated while no other is 

present. Furthermore, in our previous research using the same basic paradigm as reported 

here we substituted the avatar, i.e. “the other”, with an empty chair, where participants had to 
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imagine themselves being located, while making left/right judgments towards target objects 

(Kessler & Thomson, Expt. 2). Importantly, the basic mechanism of embodied mental self-

rotation was also engaged in this version without avatar, as suggested by typical effects of 

posture congruence and angular disparity. This further corroborates our notion of a body-

schema-related conflict in TPJ between a projected self (via simulated body-schema rotation) 

and the self that remains physically embodied (May, 2004 proposes a similar notion, but see 

Kessler & Thomson, 2010, for discussion). Sometimes during “out-of-body” experiences 

individuals report that they perceive their self as being embodied in two locations at the same 

time (so-called heautoscopy; O Blanke & Mohr, 2005). This indicates that the proposed split 

of the self is possible and while it is being perceived as odd, when it is triggered 

uncontrollably, it may serve the crucial purpose of perspective taking, when it is engaged 

deliberately. Indeed, our recent research confirms that individuals who report “out-of-body” 

experiences are quicker at mentally adopting another’s body orientation (Braithwaite et al., 

2013). 

 

4.2. TPJ linking separate functional subnetworks 

In addition to the convergence of theta effects in right pTPJ, we also observed differences in 

theta power localisation for the three effects (Fig. 4, middle row). For rotation demands (160° 

vs. 60° angular disparity) we observed a more widely distributed topography (Fig. 4, bottom 

left), which could reflect executive function (latPFC) as well as visual processing (OCC) in a 

theta-based network of brain areas. The lateral occipital source overlaps with the extrastriate 

body area (EBA) and suggests more intense visual processing of the avatar’s body (for 

review, Carter & Huettel, 2013), when rotation demands are higher (160° vs. 60°). In Kessler 

& Thomson (2010, Expt. 4; also Kessler & Rutherford, 2010) we had argued that the 

presence of another’s body and their posture helps determining the accurate endpoint of the 
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mental self-rotation process - particularly at high angular disparities. Sustained theta 

activation in the EBA observed here corroborates this notion of another’s body as an 

important visual parameter for mental self-rotation. For the effect of angular disparity, right 

TPJ activation extends into dorsal TPJ which has previously been related to executive 

functions (Igelström et al., 2015; Mars et al., 2012). Overall the source configuration for the 

angular disparity effect fits well with our interpretation that it might reflect rotation demands 

that engage executive functions and rely on rotation parameters. 

 

Theta power effects for posture congruence localised in right pTPJ and further areas within 

the superior parietal cortex (BA 40/7) that have been associated with sensorimotor 

representations and the body schema (Andersen, Snyder, Bradley, & Xing, 1997; Wolpert et 

al., 1998). Activation of the pTPJ extends ventrally into EBA, further underlining processes 

that integrate the perception of another’s body (i.e. the avatar in the scene) with the process of 

transforming the embodied self into the other’s orientation. Again, this dovetails nicely with 

our previous behavioural findings (Kessler & Thomson, 2010, Expt. 4), where we 

demonstrated an accelerating effect on perspective taking if the avatar’s body posture 

matched the participants’ posture. This emphasises the importance of another’s posture for 

perspective taking, not only as a visual parameter for rotation, but also by generating 

embodied resonance between participant and avatar.  

 

The emerging picture of the neural signature of embodied mental self-rotation is completed 

by the sources for the “posture relevance“ effect, where stronger body schema involvement 

during perspective taking compared to tracking was reflected by localisations in right pTPJ 

and right ventrolateral premotor (vPMC) and sensorimotor (SM1) areas. This could directly 

reflect the embodied simulation process postulated for perspective taking. It is unlikely that 
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this localisation is due to the preparation of a motor response (key press), since equivalent 

preparation processes could be expected for all conditions. vPMC specifically has been 

associated with embodied simulations and re-enactment in social interaction (Gallese, 2013; 

Wheatley, Milleville, & Martin, 2007) and our results emphasise the integration with TPJ for 

simulating a body rotation into another’s viewpoint, possibly along with sensorimotor 

feedback from the simulation (e.g. Tcaci Popescu & Wexler, 2012) and/or sensorimotor 

conflict between physically vs. mentally embodied self. Overall our findings corroborate the 

notion of a simulated body rotation that generates an updated efference copy within the body 

schema, which in turn drives the actual visuospatial transformation process (Kessler & 

Thomson, 2010; Tcaci Popescu & Wexler, 2012; Zacks & Michelon, 2005). 

 

4.3. Implications for the wider context of social processing 

Within a wider context our current findings and our previous research suggest that high-level 

perspective taking is still grounded in older action- and body-related brain systems, in other 

words, that older systems have been re-purposed for resolving new challenges (see also 

Gallese, 2013; Kessler & Thomson, 2010; Parkinson & Wheatley, 2013; Pezzulo et al., 2013; 

Wilson, 2002). This could explain the evolution of perspective taking from physical 

alignment that is observed in other species (Kessler & Thomson, 2010). More generally, the 

embodied origin of mentalizing could be reflected by TPJ activation in conjunction with 

other body-related brain areas. This notion of visuo-spatial perspective taking as a 

developmental and possibly evolutionary stepping stone for full-blown theory of mind has 

recently found agreement (Hamilton, Brindley, & Frith, 2009; Parkinson & Wheatley, 2013) 

as well as disagreement (Moll & Kadipasaoglu, 2013), where the latter postulates that social 

empathy and perspective understanding precedes visuo-spatial perspective taking. While we 
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believe that our findings rather support the former, we acknowledge that certain forms of 

joint attention may predate even simple perspective tracking. 

 

5. Conclusions 

Significant aspects of information processing in humans are not shared with other species. In 

the social domain such processes have been typically related to explicitly representing the 

subjective experience and mental states of others. However, some of these unique abilities 

still seem to depend on “older” systems such as the body’s movement repertoire. The current 

research confirmed that the human capacity for imagining another’s perspective of the world 

is still significantly “embodied”, in the sense that humans mentally rotate their own body 

representation (body schema) into another’s orientation. Using Magnetoencephalography we 

found that brain oscillations at theta frequency, originating from the right posterior temporo-

parietal-junction (pTPJ) reflected cognitive as well as embodied processing elements. This 

was subsequently confirmed using transcranial magnetic stimulation, which disrupted 

embodied processing effects, pinpointing right pTPJ as the crucial network hub for 

transforming the embodied self into another’s viewpoint, body and/or mind. We propose that 

such a “transformed embodied self”, projected into another’s circumstances (e.g. their 

posture, orientation, perspective, socio-emotional context, etc.), serves as the basis for 

representing and understanding others in various social scenarios. Using state-of-the-art 

methodology our research elucidates the embodied origins of high-level social processing in 

humans, specifically highlighting the critical role of right pTPJ and theta oscillations. 
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Table 1. Labels, Brodmann areas, and MNI coordinates for sources identified in Figure 4. 

Source label in 
Fig. 4 

Brodmann 
Areas 

Brain areas MNI Coordinates 

) Contrast for Angle (160º vs. 60º)   
pTPJ 39/7 Right temporo-parietal junction: 

angular gyrus 
34 -70 44

OCC 18/19 Right occipital cortex/lateral 
occipital complex 

26 -90 0

infSMG 2/40 Right supramarginal gyrus 64 -22 32
SM1/SMA 6/4/5 Right supplementary motor 

area, sensorimotor gyrus 
-2 -14 60

latPFC 9/46 Right superior frontal 
gyrus/lateral prefrontal cortex 

30 42 36

- 8/6 Left superior frontal gyrus/SMA -22 14 52
- 21/22 Left middle temporal gyrus -62 -30 4
- 44/45 Left inferior frontal 

gyrus/lateral PFC 
-57 18 12

2) Contrast for Posture congruence   
pTPJ 39 Right temporo-parietal junction: 

angular gyrus 
50 -60 24

SPL(BA40/7) 40/7 Right superior parietal lobule 42 -58 60
SMA 6 Right supplementary motor area 26 -6 64

- 18 Left occipital cortex -38 -90 8
- 7 Left superior parietal lobule -30 -62 52

3) Contrast for Posture relevance   
pTPJ 39 Right temporo-parietal junction: 

angular gyrus 
54 -62 36

SM1 3/4 Right sensorimotor gyrus 52 -18 60
vPMC 6/44 Right ventral premotor cortex 54 6 16

- 18 Right occipital cortex 6 -78 28
- 18/19 Left occipital cortex/lateral 

occipital complex 
-34 -94 -8

Average across the 3 contrasts (top, Fig. 4)   
pTPJ 39 Right temporo-parietal junction: 

angular gyrus 
50 -60 32

- 17 Right occipital cortex 0 -96 -10
- 18/19 Left occipital cortex/lateral 

occipital complex 
-30 -96 -2
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Figure 1: Stimuli and Postures employed by Kessler and Rutherford (2010) and in the current 

study. Note that images were presented in colour during the experiment and target objects 

were indicated in red colour (here in white). The top left image shows an example for a 

“right” target from the avatar’s perspective at 110° anticlockwise angular disparity, the top 

right image shows an example for a “left” target from the avatar’s perspective at 160° 

(clockwise), and the bottom left image shows an example for a “visible” target from the 

avatar’s perspective at 60° (anticlockwise). The bottom right images show the two possible 

postures of the participant: body turned either clock- or anticlockwise, while gazing straight 

ahead. Note that this induced either posture congruence or incongruence with the direction of 

mental self-rotation for any given stimulus. Further explanations in the text. 
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Figure 2: Behavioural effects for response times (RT in msec on the y-axes). Significance is 

indicated as follows: * = p <.05; ** = p < .01; *** = p < .001. “60”,”110”, “160” refer to the 

three angular disparities employed in the design (collapsed across clockwise and 

anticlockwise orientations) and “congruent” and “incongruent” indicate the relationship 

between the participant’s posture and the target orientation (see also Fig. 1). Error bars denote 

standard error of mean. Further explanations in the text. 
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Figure 3: General time-frequency signatures. The top row of Panel A shows typical time-

frequency representations (TFRs) for “left/right” and “visibility” judgements at 160° and 

their difference (left/right - visibility) at the far right, with a theta band increase and an 

alpha/beta band decrease in both tasks, yet, both frequency effects being more pronounced 

for “left/right” than for “visibility” (y-axis: 2-30 Hz; x-axis: -200 msec pre-stimulus to +700 

msec post-stimulus time; colour-coded scale shows power from -5x10-23=blue to +5x10-
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23=red). Rows 2 and 3 depict the related topographies for the alpha and theta band effects, 

respectively. Panel B shows two significant TFR cluster effects (for angle and posture, 

respectively) for the “left/right” task in relation to the pre-trial baseline interval. The TFR 

graph and topographies on the left show the effect of angular disparity (160° vs. 60°), where 

160° reveals a significantly stronger theta increase, while 60° shows a significantly stronger 

alpha decrease. Note that effects involving 110° angular disparity are shown in 

Supplementary Material, Figure S2. The TFR graph and topography on the right shows the 

effect of posture congruence, where a congruent posture reveals a significantly stronger theta 

increase and a numerically stronger, but non-significant alpha decrease. Topography plots of 

significant clusters shown below each TFR depict significant channels (and related power 

topographies) within a cluster (p < .05) as fully visible, while non-significant channels are 

reduced in visibility (70% opaque white). Note that for the visibility task no significant 

clusters for angular disparity or posture congruence were observed, as indicated at the bottom 

of Panel B (but see Figure S1 for a pre- vs. post-stimulus comparison for the visibility task, 

collapsed across all conditions). Further explanations in the text. 
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Figure 4: Theta interaction effects in sensor and source space. Three interactions of task 

(left/right vs. visibility) with 1) angular disparity (160° vs. 60°), 2) posture congruence 

(incongruent vs. congruent), and 3) posture relevance (anti- vs. clockwise posture). Bottom 

row: Topographies of interaction effects in the theta band (2-7 Hz, colour-coded scale shows 

power from -1x10-23=blue to +1x10-23=red). Significant channels within a cluster (p < .05) are 

fully visible while non-significant channels are reduced in visibility. (For effects at alpha and 

beta frequencies see Supplementary Material, Fig. S2.) Middle row: Theta power source 

reconstructions for each of the three interaction effects. TPJ = temporo-parietal junction; 

OCC = occipital cortex; SM1 = primary sensorimotor cortex; SMA = supplementary motor 
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area; latPFC = lateral prefrontal cortex; SPL = superior parietal lobule; vPMC = ventrolateral 

premotor cortex. Colour scale shows normalized theta power (red = positive). Top image: 

The maximum overlap across the three interaction effects (average) is localised in the right 

pTPJ, specifically Broadman area (BA) 39, extending into BA40 and BA7. Further 

explanations in the text. 
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Figure 5: TMS target site and response time results. Left: The same right pTPJ site (MNI 

coordinates taken from MEG group analysis: 50, -60, 32) was targeted with dpTMS for each 

individual (MNI normalised) brain using Brainsight®. Right: Response time results, shown 

as residuals after subtracting a congruent from an incongruent posture for each condition 

separately (collapsed across clockwise and anticlockwise avatar locations and across left and 

right targets). The y-axis denotes RT differences in msec and the x-axis contrasts control vs. 

dpTMS trials for each of the two angular disparities. Error bars denote standard error of 

mean. Further explanations in the text. 
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Supplemental Material 

Figure S1: Post- vs. pre-stimulus analysis for perspective tracking (visibility judgements) 

collapsed across all conditions. Images on the top right show sensor level frequency-specific 

cluster statistics output (see Methods, main text). VPT-1 revealed significant increases in 

theta (2-7 Hz, positive cluster, p < .05, from 150ms to 400ms), in alpha (8-12 Hz, negative 

cluster, p < .05, from 100ms to 500ms) and in beta (13-30 Hz, negative cluster, p < .05, from 

0 to 500ms). See also time-frequency power-plot at the top-left (-5=blue to 5= red; x10-23). 

Conforming to the analysis described in Methods, main text, we localised theta power with 

DICS (Gross et al. 2001) for visibility judgments comparing post- vs. pre-stimulus intervals 

collapsed across all conditions of posture and angle (images at the bottom). We observed the 

most reliable statistical difference in the frontal eye fields (FEF), which has previously been 

related to visibility judgements (Wallentin et al. 2008) as well as to perceiving another’s gaze 

or line-of-sight (Grosbras et al. 2005). The online use of an eyetracker (see Methods, main 

text) reduced the likelihood that this activity was related to eye movements. Thus, our results 

confirm that VPT-1 tasks in form of visibility judgements could engage the FEF for inferring 

another’s line-of-sight. Here, this seems to be the case across all experimental conditions, i.e. 
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disregarding specific postures or angular disparities. OTC stands for occipito-temporal cortex 

and has been linked to object perception (e.g. Grill-Spector 2003). 

 

 

 

Figure S2. Topographies of angular disparity effects in relation to 110°: 160° vs. 110° on the 

left, 110° vs. 60° on the right. Significant channels within a cluster (p < .05) are fully visible 

while non-significant channels are reduced in visibility. Rows indicate the two significant 

frequency bands (power scaled from -1=blue to 1=red x10-23): alpha (9-12 Hz) and beta (13-

24 Hz). 
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Figure S3. Topographies of interaction effects. Three interactions of task (L/R vs. visibility) 

with 1) angular disparity (160° vs. 60°, left column), 2) posture congruence (incongruent vs. 

congruent, middle column), and 3) posture relevance (anti- vs. clockwise posture, right 

column). Significant channels within a cluster (p < .05) are fully visible while non-significant 

channels are reduced in visibility. Rows indicate the three frequency bands (power scaled 

from -1=blue to 1=red x10-23T): theta (2-7 Hz; also shown in main text, Fig. 4, bottom row), 

alpha (8-12 Hz), and beta (13-30 Hz). 

 

 

 




