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Report Summary

The focus of this thesis is the extension of topographic visualisation mappings to al-
low for the incorporation of uncertainty. Few visualisation algorithms in the literature are
capable of mapping uncertain data with fewer able to represent observation uncertainties
in visualisations. As such, modifications are made to NeuroScale, Locally Linear Em-
bedding, Isomap and Laplacian Eigenmaps to incorporate uncertainty in the observation
and visualisation spaces. The proposed mappings are then called Normally-distributed
NeuroScale (N-NS), T-distributed NeuroScale (T-NS), Probabilistic LLE (PLLE), Prob-
abilistic Isomap (PIso) and Probabilistic Weighted Neighbourhood Mapping (PWNM).
These algorithms generate a probabilistic visualisation space with each latent visualised
point transformed to a multivariate Gaussian or T-distribution, using a feed-forward RBF
network.

Two types of uncertainty are then characterised dependent on the data and mapping
procedure. Data dependent uncertainty is the inherent observation uncertainty. Whereas,
mapping uncertainty is defined by the Fisher Information of a visualised distribution. This
indicates how well the data has been interpolated, offering a level of ‘surprise’ for each
observation.

These new probabilistic mappings are tested on three datasets of vectorial observa-
tions and three datasets of real world time series observations for anomaly detection. In
order to visualise the time series data, a method for analysing observed signals and noise
distributions, Residual Modelling, is introduced.

The performance of the new algorithms on the tested datasets is compared qualita-
tively with the latent space generated by the Gaussian Process Latent Variable Model
(GPLVM). A quantitative comparison using existing evaluation measures from the litera-
ture allows performance of each mapping function to be compared.

Finally, the mapping uncertainty measure is combined with NeuroScale to build a
deep learning classifier, the Cascading RBF. This new structure is tested on the MNist
dataset achieving world record performance whilst avoiding the flaws seen in other Deep
Learning Machines.
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1 Introduction

‘If people do not believe that mathematics is simple,

it is only because they do not realise how

complicated life is.’

- John von Neumann

1.1 Motivation

The work in this thesis stems from the inescapable fact that real world data is, in some

way or another, uncertain. Data uncertainties are typically characterised as the result of

the observation, measurement or analysis frameworks. Moreover, the data we are often

most interested in is complex and, in the case it is vectorial, high dimensional.

Non-vectorial data poses its own set of unique problems. With these elements coupled it

makes the task of understanding and generating reliable conclusions from data a difficult

task. The mathematical analysis performed on such data typically conforms to the

13



Chapter 1 INTRODUCTION

general supervised regression or classification framework, involving a mapping from

data observations to a set of targets. These scenarios have dominated research in pattern

analysis over the past fifty years, [1],[2],[3].

Sometimes, however, there don’t exist any targets to map the data to. In this case one

approach is to use summary statistics as a descriptor for data, or some feature-based

representation of the data. An alternative, and often more useful analysis tool, is to

generate a low-dimensional visualisation space, allowing for human interpretation of the

data. The ability of humans in deciphering patterns in data, taking into account expertise,

historical information or additional information not characterised in observations can

surpass that of automated systems. Mapping observed data to a space where it can be

visually interpreted relies on a visualisation algorithm. The ‘optimum’ positions of data

observations in this (typically 2 or 3-dimensional) visualisation space depends on the

algorithm being used. In general, the aim of such a mapping algorithm is to preserve

global or local data structure, in which case they are called ‘topographic’. A prominent

issue in the field of data visualisation is that many algorithms, for instance Locally

Linear Embedding [4] or Isomap [5], suffer in quality when data is noisy, or uncertain.

In addition to this there are often assumptions made as to the underlying manifold on

which observations sit. These deficiencies presents a significant problem for real world

data analysis.

In order to tackle the data uncertainty problem, this thesis extends current algorithms to

incorporate inherent observation uncertainty and the uncertainty imposed by the

mapping from observation to visualisation space. A framework for representing these

uncertainties in visualisations is also introduced, allowing for an informative

visualisation of data. Finally it is shown that the benefits of a thorough approach to

manifold leaning, through topographic mapping, extends beyond data visualisation to

areas such as deep learning classifiers.

14



Chapter 1 INTRODUCTION

1.2 Contributions

In this thesis a probabilistic framework is outlined for topographic information

visualisation accounting for uncertainty. Specifically:

• Probabilistic extensions to NeuroScale, Locally Linear Embedding, Isomap and

Laplacian Eigenmaps are introduced, accounting for observation uncertainty,

allowing for feed-forward projection of new data.

• A framework for interpreting observation uncertainty and the imposed mapping

uncertanty in visualisation spaces is outlined.

• A novel method for detecting anomalies in time series data using topographic

visualisation is described.

• A new form of deep learning machine consisting of topographically pre-trained

RBF networks is implemented in a classification setting.

1.3 Thesis Organisation

Chapter 2 offers an introductory background to some of the popular methods for

visualising data. Three criteria for quantitatively analysing visualisation performance are

also outlined. Chapter 3 extends the deterministic mappings outlined in chapter 2 to

allow for observation uncertainty. Chapter 4 proposes a method for representing both the

uncertainties generated by observations and the visualisation mapping itself. Chapter 5

implements the methods of chapters 3 and 4 on three vectorial datasets, accounting for

data uncertainty. In chapter 6 a process for visualising anomalies in time series data is

introduced and demonstrated on three datasets. Chapter 7 combines topographic

mapping with a deep learning machine in a classification setting. Finally, chapter 8

concludes the thesis.
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2 Background

‘A mathematician is a device which turns coffee

into theorems.’

- Alfred Rényi

2.1 Data Visualisation

This chapter forms an introductory section for the thesis describing the tools used for

visualisation of data.

Firstly, the notion of visualisation must be described in terms of some data. The simplest

and most intuitive case being where the data consists of a set of vectors. A few popular

visualisation mechanisms require the data to be of this form (for instance [6], [7] and

[8]). The purpose of a visualisation algorithm in this case is to reduce the dimensionality

of these vectors such that the observations, x ∈ RO, are mapped by some function to a

new co-ordinate system; y ∈ RP. P should be lower than O and is typically two or three

16



Chapter 2 BACKGROUND

so that the new points, y, can be visually interpreted.

Many other visualisation algorithms do not require pointwise observations and can

construct a visualisation space with only relative pairwise dissimilarities, in the form of a

dissimilarity matrix, D, as inputs, the most commonly used being the Sammon map [9].

This allows for perceptual analysis of more abstract notions than data-points; for

instance, in visualising different time series, probability distributions or graphs. This is a

significant benefit since these notions cannot be properly characterised by an observed

vector point.

2.1.1 Methods

As with all areas of Machine Learning, there exist multiple different methods for

construction of the functional mappings which generate a visualisation space. Each of

these offer different results depending on the data and mapping parameters. These

methods can be split into 3 groups:

1. Dissimilarity Mappings (section 2.2)

2. Graph Distance Mappings (section 2.3)

3. Latent Variable Models (section 2.4)

A taxonomy diagram showing examples of visualisation algorithms conforming to these

groups and their links is shown in figure 2.1. Some of these algorithms are not included

in this thesis but are shown for completeness. The Geodesic Nonlinear Mapping

(GNLM) [10] is a special case of the Sammon map with Geodesic dissimilarities, but the

Sammon map in general does not specify the input dissimilarity; so GNLM is not

discussed in this thesis. Curvilinear Component Analysis (CCA) [11], and also

Curvilinear Distance Analysis (CDA) [12], extnsions to the Sammon map (and GNLM)

requiring the specification of a neighbourhood weighting function and, for many popular

function choices have little global impact on the visualisations generated. As such these

are not discussed in this thesis. The Deep GP [13] and T-SNE [14] are not topographic,

17
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Figure 2.1: Taxonomy diagram showing the grouping and links between popular visuali-
sation algorithms. Arrows indicate a connection between algorithms, with arrows show-
ing extensions to previous techniques. Most algorithms can be shown to be extensions to,
or reliant upon, Multidimensional Scaling (MDS), of which PCA is a special case.

but it may not be clear initially why and as such are included in Appendix B.

Riemannian Manifold Learning (RML) [15] is a principled local approach to manifold

learning with impressive results. It does, however, require a background in Differential

Geometry and is thus outside the scope of this thesis. Isotop [16] is an altogether

different method for generating data visualisations, again with impressive mapping

performance [17]. Despite this there is no clear cost function or knowledge of how it

generates these visualisations and as such is not included in this thesis.

Firstly, Principal Component Analysis (PCA) [6] will be discussed in section 2.2. It will

be shown that since it is a special case of metric Multidimensional Scaling (MDS) [18],

it can be thought of as a dissimilarity-based mapping. Following this Locally Linear

Embedding (LLE) [4] and Sammon mapping [9] will be introduced. These methods

reconstruct observations by attempting to preserve the relative dissimilarities between

the observations. Graph distance mappings including Isomap [5] and Laplacian

Eigenmaps (LE) [19] attempt to describe the observation space with a connected graph
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and preserve the graph distances when generating visualised points. Latent Variable

models such as Generative Topographic Mapping (GTM) [7] and the Gaussian Process

Latent Variable Model (GPLVM) [8] attempt to define the most likely latent visualisation

space which generates the observation space. These methods impose specific restrictions

on the latent space and require observations to be pointwise vectors. The figures

generated in this thesis rely upon Matlab toolboxes for their implementation. The list

below shows the algorithms and their relevant toolboxes:

• PCA/MDS, Isomap, LLE, Sammon Mapping, LE - drtoolbox [20],

• GTM, NeuroScale - Netlab toolbox [21],

• GPLVM - GPMat toolbox [22].

These toolboxes are widely used and thus considered robust for analysis in this thesis.

In order to gain insight into the differences between the algorithms, and to later

introduce mapping performance criteria, a comparison dataset will be used for

visualisation by all algorithms introduced in this chapter. The Open Box dataset [23] is a

suitable benchmark, existing in 3-dimensional space with six 2-dimensional connected

faces, one of which is an open lid. This is shown in figure 2.2a. The structure is

extensively analysed using variants of the nonlinear MDS in [24] and used to compare

many different visualisation algorithms in [17]. The colouring of points represents the

topological ordering of observations. The visualisations generated in this chapter should

preserve the local neighbourhoods, keeping points from the base (dark blue), front face

(cyan), sides (orange and light blue), connected side (yellow) and lid (red) in similar

groupings. This benchmark serves as a comparison; however, it is an entirely artificial

dataset and is therefore useful for visual comparison but not for drawing definitive

conclusions as to which algorithm is ‘best’. The histogram of dissimilarities, where the

dissimilarities between observations are the Euclidean distance, is shown in figure 2.2b.

It is clear that the structure consists largely of local neighbourhoods with di j ≤ 5. Larger

dissimilarities exist because of the distance between the points on the lid at the far right

of the plot and those in the bottom left corner of the front face.
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Figure 2.2: 3-dimensional plot of the Open Box dataset. It is clear that the structure
is composed of six 2-dimsensional planes with an open lid (red). The points here have
been connected to their nearest neighbours to assist in checking how the visualisation
algorithms distort neighbourhoods in the mapping process (left). The histogram of dis-
similarities is also shown where the dissimilarities are taken as the Euclidean distance
between points (right).

2.2 Dissimilarity Mappings

2.2.1 The PCA/MDS Mapping

Principal Component Analysis (PCA) and Multi-Dimentional Scaling (MDS) are

essentially different sides of the same coin as they both construct the same latent

representations through slightly different methods. Firstly, PCA is introduced prior to

explaining the process of MDS, following which the link between the two will be shown.

PCA has been the standard method for visualising data across multiple fields for many

years and is the starting point for many more robust visualisation algorithms shown in

figure 2.1.

PCA can be derived from multiple perspectives, the two most popular being the minimal

reconstruction error approach [6] or maximal preserved variance and decorrelation [25].

In this thesis the former is the more suitable so it will be introduced in that format. The

minimal reconstruction error approach was derived by Pearson [6] where the dual
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relationship in the linear model is defined as:

RO→ RP,xi→ yi =W T xi, (2.1)

RP→ RO,yi→ xi =Wyi. (2.2)

W is an orthogonal matrix such that W T =W †, where W † is the Moore-Penrose

Pseudo-Inverse of W . This ensures that W TW =W †W = IP. The P subscript here

indicates the identity matrix is a square matrix of dimensions P×P. The squared

reconstruction error is given by:

EPCA = EX
[
‖xi−WW T xi‖2

2
]
,

where ‖.‖2 is the Euclidean distance. In the ideal case of xi generated by equation (2.2),

the mapping results in a reconstruction error of zero. This is because W will be full rank,

ensuring WW T = IO where IO is the O×O identity matrix. Unfortunately this is in

almost all real situations not the case. In order to determine W , the above expectation

can be expanded as follows:

EPCA = EX

[(
xi−WW T xi

)T (xi−WW T xi
)]

,

= EX
[
xT

i xi−2xT
i WW T xi +xT

i WW TWW T xi
]
,

= EX
[
xT

i xi−2xT
i WW T xi +xT

i WW T xi
]
,

= EX
[
xT

i xi−xT
i WW T xi

]
,

= EX
[
xT

i xi
]
−EX

[
xT

i WW T xi
]
.

Splitting the error into these two parts allows for the optimum W to be found. The

minimsisation of EPCA is given by maximising EX
[
xT

i WW T xi
]
, found when WW T = IO.

Since data samples in X are finite, we can approximate this expression with the sample

mean:

EX
[
xT

i WW T xi
]
≈ 1

N ∑
N
i
(
xT

i WW T xi
)
= 1

N tr
(
XTWW T X

)
.

Here, X is the matrix set of observations, {xi}i=1:N , such that the i-th row of X is xi with

dimensions O×N. Using a singular value decomposition, X =V ΣUT with U and V
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orthonormal matrices (UTU = IN and V TV = IO) and Σ matrix with the diagonal

elements given by the singular values, EPCA can be re-written as:

EPCA = EX
[
xT

i xi
]
−EX

[
xT

i WW T xi
]
= tr

(
XT X

)
− tr

(
XTWW T X

)
.

Since tr
(
XT X

)
= tr

(
UΣTV TV ΣUT) from the singular value decomposition and using

the following two relations from [26, p. 6]:

• tr(ABC) = tr(CBA),

• tr(XT X) = tr(ΣT Σ),

it is clear that:

EPCA = tr
(
UΣTV TV ΣUT)− tr

(
UΣTV TWW TV ΣUT),

EPCA = tr
(
UTUΣTV TV Σ

)
− tr

(
UTUΣTV TWW TV Σ

)
,

EPCA = tr
(
ΣT Σ

)
− tr

(
ΣTV TWW TV Σ

)
.

In the case where P = O, EPCA is zero for W =V . Since the typical use of PCA is for

dimension reduction and P < O an approximation must be used to make W as linearly

close to V as possible, namely W =V IO×P. Here IO×P is a matrix made up of the first P

columns of the identity matrix IO. The P dimensional latent variables are approximated

by computing:

ŷi
PCA =W T xi = IP×OV T xi. (2.3)

Classical multidimensional scaling (MDS) [18] will now be outlined as the other side of

the coin to PCA. MDS seeks to preserve vector inner products from observations when

generating visualisation points. Using a linear model, as with PCA, we denote the inner

product matrix S by:

S = XT X ,

= (WY )T (WY ),

= Y TW TWY ,

= Y TY .
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MDS has a particularly useful property that X need not be a vectorial observation. Often

observations are characterised by a pairwise dissimilarity matrix, D, of dimensions

N×N, where the i jth element, Di j = d(i, j), is the pairwise dissimilarity between

observations i and j. From D, the equivalent inner product matrix S, known as the Gram

matrix, is found by double centering:

S =−1
2

(
D2− 1

N
D21N1T

N−
1
N

1N1T
ND2 +

1
N2 1N1T

ND21N1T
N

)
, (2.4)

where D2 is the element-wise square of the matrix D. This double centering removes the

row and column means before adding back the total mean. In order to find Y the

eigendecomposition of S is performed:

S =UΛUT ,

= (UΛ
1
2 )(Λ

1
2UT ),

= (Λ
1
2UT )T (Λ

1
2UT ),

The optimal linear reconstruction (in a Least-Mean Square sense) of Y , Ŷ , is then given

by:

ŶMDS = IP×NΛ
1
2UT , (2.5)

where IP×N is the first P columns of the N×N identity matrix IN . This ensures that only

the required P dimensions are recovered by the MDS mapping algorithm. The

embeddings in equations (2.3) and (2.5) can be shown to be equivalent [17, p. 74-75]:

ŶPCA = ŶMDS,

IP×OV T X = IP×NΛ
1
2UT ,

IP×OV TV ΣUT = IP×N(Σ
T Σ)

1
2UT ,

IP×OΣUT = IP×NΣUT .

The PCA/MDS embedding of the open box dataset is given in figure 2.3.

2.2.2 Locally Linear Embedding

MDS attempts to preserve global dissimilarities in visualisation spaces, however this can

lead to a good overall mapping at the expense of good local reconstruction. Locally
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Figure 2.3: Open box embedded by PCA/MDS. The embedding is a poor representation
of the original box as it is a top oriented squashed view. The top of the box remains
separated from the other five sides, however the two open sides of the box have points
overlapping which is not a true representation of their relative position in the observation
space. This is because the linear relationship of equation (2.2) does not hold for the
observed manifold, X .

Linear Embedding (LLE) [4] attempts to preserve dissimilarities in observation space by

describing observations in terms of their local neighbours. This is done by imposing a

locally Euclidean space on a manifold. The observed manifold is then characterised by a

series of weighted neighbourhoods (either by k-nearest neighbours or an ε-ball). The

visualisation space is constructed in a two step process.

The first step is to determine the weights associated with each neighbourhood,

minimising the following error:

ELLE(W ) =
N

∑
i=1
‖xi− ∑

j∈N(i)
Wi jx j‖2, (2.6)

where N(i) is the set containing all neighbours of xi. This essentially sums all squared

distances between an observation and its locally linear reconstruction. Constraints are

imposed on W such that:

• ∑ j Wi j = 1,

• Wi j ≥ 0,
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• Wi j = 0 ∀ j /∈ N(i).

The weights are determined by re-casting the error:

Ei = |xi−∑
j

Wi jηηη j|2 = |∑
j

Wj(x−ηηη j)|2 = ∑
jl

WjWlC(i) jl,

where {ηηη j, j = 1, . . . ,k} are the set of k nearest neighbours of a point i. The second part

comes from the first constraint above. C(i) jl = (xi−ηηη j).(xi−ηηηl) is the local covariance

matrix. The weights corresponding to each observation ‘i’ denoted by the vector, wi, are

then given by:

Wi j =
∑l C(i)−1

jl

∑ jl C(i)−1
jl

, (2.7)

for j = 1, . . . ,k, which are concatenated into the weight matrix W = {wi}i=1:N .

Alternatively W can be found by solving the linear system:

∑
j

C(i) jlWil = 1,

and rescaling so that ∑ j Wj = 1. It is proposed in [4] that if C jl is singular or nearly

singular the following augmentation can be used, such that:

C jl ←C jl +

(
∆2tr(C jl)

K

)
I,

where ∆2 is small compared to the trace of C jl . This augmentation ensures that the

matrix can be inverted thanks to the ‘jitter’ term (right). This is a typical jitter

modification used to ensure numerically unstable matrices are invertible. Typical values

of ∆, for instance as used in [17], are 10−3. Alternatively a simpler jitter such as ∆I can

be added to ensure that the matrix is not singular in a less principled way.

The second step consists of embedding the points using their local reconstruction. This

amounts to manipulating the visualised points yi to minimise the error with respect to the

set of latent points, Y :

ELLE(Y ) =
N

∑
i=1
‖yi− ∑

j∈N(i)
Wi jy j‖2, (2.8)
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where W is given from equation (2.7). Two constraints are imposed upon Y :

• ∑i yi = 0⇒ centred around the origin

• CYY = 1
NYY T = I⇒ unit covariance so ELLE(Y ) cannot be minimised by arbitrary

rotations or rescalings.

The embedding is found by the well-posed eigenvalue problem:

ELLE(Y ) = ∑
i
|yi− ∑

j∈N(i)
Wi jy j|2 = ∑

i
| ∑

j∈N(i)
Wi j(yi−y j)|2 = ∑

i j
Mi jyT

i y j,

using the same properties as above. The entries of M are given by:

M = (I−W )T (I−W ),

which is sparse (since the elements of W are non-zero only for the k neighbours of each

point i), symmetric and positive definite. The co-ordinates of Y are found by computing

the bottom P+1 eigenvectors of M (where P is the visualisation dimension, e.g. 2) and

discarding the bottom eigenvector as its eigenvalue is 0 (since ∑i yi = 0):

YLLE = Û ,

where Û is the bottom N−1 : N−P eigenvectors. This ensures that the best linear

reconstruction of the neighbourhoods of X are given by Y .

The Open Box visualisation using LLE with four neighbours (the same as that of [17]) is

shown in figure (2.4). In contrast to the PCA mapping, the sides of the box (light blue

and orange) are no longer flattened. The six surfaces of the box are all well reconstructed

in themselves, appearing as parallelograms. On the other hand, the relative distances of

the sides with respect to the bottom of the box (dark blue) are not well preserved. This is

clear from the overlap of points in visualisation space which are not close in observation

space, for instance the front face which overlaps the bottom face. The good local

reconstruction comes at the cost of the global distribution of points caused by the LLE

error function.
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Figure 2.4: Open box embedded by LLE. The six surfaces of the box are all well recon-
structed in themselves, appearing as rectangles. The relative distances of the sides (light
blue and orange) with respect to the bottom of the box (dark blue) are not well preserved.

2.2.3 Sammon Mapping & NeuroScale

This section will outline the Sammon Mapping process for visualisation before

describing the NeuroScale mapping.

Sammon map

Taking a more global approach to visualisation, the Sammon map [9] attempts to

construct a set of visualisation points, Y , by preserving relative dissimilarities. This is

done by matching the dissimilarity matrices, as opposed to inner product matrices as

MDS does. This constructs more reliable visualisations, as shown in [17]. Denoting the

dissimilarities between observations dx(i, j) and between visualised points dy(i, j) the

error to be minimised is:

ESammon =
1
c

N

∑
i,i< j

(dx(i, j)−dy(i, j))2

dx(i, j)
, (2.9)

where the normalisation constant c = ∑
N
i,i< j dx(i, j). This function is commonly known

as the Standardised Residual Sum of Squares (STRESS) measure. It is important to note

that no assumption is made about dx(i, j) and so can be application-specific (e.g. [27] or

[28]). However, it is typical that for vector observations dx(i, j) = ‖xi−x j‖2. dy(i, j) is

27



Chapter 2 BACKGROUND

Figure 2.5: Open box embedded by Sammon mapping. The sides of the box are still
attached to the top and bottom faces, but are correctly placed directly on top. The front
face of the box opposite the open lid is squashed in a similar way to that of PCA/MDS
and the bottom corners appear torn.

usually taken to be the Euclidean distance; dy(i, j) = ‖yi−y j‖2. Originally Sammon

proposed an iterative quasi-Newton style update rule such that:

yi← yi−α
∂ESammon/∂yi

|∂2ESammon/∂y2
i |
,

where α is a learning rate. In reality this can result in quickly finding poor local minima

so other gradient-based optimisation procedure can produce more reliable visualisation

spaces. PCA or MDS can be used as an initialisation of Y , but this can provide minima

close to, but not as optimal as, the global minima. The derivative of (2.9) is given by:

∂ESammon

∂yi
=
−2
c ∑

j, j 6=i

dx(i, j)−dy(i, j)
dx(i, j)dy(i, j)

(yi−y j), (2.10)

where c is again given by c = ∑
N
i,i< j dx(i, j). The use of Quasi-Newton optimisation is

not essential here, other gradient-based optimisers could be used e.g. Scaled Conjugate

Gradients (SCG). Unlike MDS, PCA and LLE, Sammon Maps embed in a nonlinear

way.

The 2-dimensional embedding of the Open Box dataset using Sammon mapping is

shown in figure 2.5. The mapping is optimised using Quasi-Newton gradient descent
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with random initialisation to avoid the potential PCA-initialisation sink. The nonlinear

embedding process allows for curvature to be imposed on the manifold, by not placing a

linear mapping on the observation space. This causes the sides of the box to still be

attached to the top and bottom faces, without being placed directly on top. The front face

of the box opposite the open lid is squashed in a similar way to that of PCA/MDS and

the bottom corners appear torn. Despite these inaccuracies the overall shape of the

manifold can be easily recognised from the visualisation.

In [29] an extension to the Sammon map using feed forward Radial Basis Function

(RBF) networks was outlined which will be described in the next section. An

introduction to RBF networks is given in appedix A.

NeuroScale

The extension of the Sammon map using RBF’s is called NeuroScale (NS). Variants

using a Multi-Layer Perceptron network were also proposed in [30]. As already

mentioned, the STRESS function, in contrast to the standard learning procedure of

RBFs, requires nonlinear optimisation. Learning weights through gradient descent is the

standard approach in the training of Artificial Neural Networks. However, a more robust

and efficient method for training the NS RBF network was described in [31]. True

observation targets, T , do not exist but the ‘Shadow Targets’ algorithm involves

generating a series of synthetic targets, ti:

ti = yi−α
∂ESammon

∂yi
,

Ŵ = Φ
†T,

Ŷ = ΦŴ ,

with ∂ESammon
∂yi

given by equation (2.2.3). This iterative steepest descents process is

repeated until convergence using α as a learning rate. The NS algorithm works best

when Φ is as representative as possible of the data, i.e. when the number of centres is as

close to the number of training points as possible. Unlike training in standard
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parameterised machine learning tasks, NS cannot overtrain [29], [32]; performing

implicit auto-regularisation due to the network centres and curvature with respect to the

STRESS function. In addition to this, the RBF network is infinitely smooth meaning out

of sample observations will also be topographically mapped. With this in mind a suitably

interpolated data space in NS would generate an identical Open Box visualisation to that

of the Sammon mapping and is therefore not included here. The Shadow Targets

algorithm is used extensively in chapters 3 and 7 in this thesis as an optimisation

procedure.

Standard NS was extended in [33] to account for uncertainty using isotropic Gaussians

to describe observations and mapped points. This method will be discussed in chapter 3.

2.3 Graph Distance Mappings

Graph distance mappings take a slightly different approach to visualisation than

dissimilarity-based mappings. They treat observations as objects of a graph to be

represented in a visualisation space. Two methods are outlined; Isomap, relying on graph

distances, and Laplacian Eigenmaps (LE) using the graph Laplacian for optimisation.

2.3.1 IsoMap

The Isomap algorithm [5] uses neighbourhood structures like LLE, k-neighbourhoods or

ε-balls, to construct a graph characterising observations. Graph edges are labelled with

Euclidean lengths, giving a sparse weighted graph (note that other dissimilarity measures

can be used, though this is not common in the literature). The remaining graph distances

between observations are computed in a pairwise manner using geodesic distances

computed by Djikstra’s [34] or Floyd’s [35] algorithms and stored as a dissimilarity

matrix, D (many implementations such as that in [20] use Djikstra’s algorithm as

default). This dissimilarity matrix is treated as an alternative to dissimilarities in MDS,

but the embedding procedure is then identical for Isomap as for MDS.

The dissimilarity matrix D is converted into an inner product (Gram) matrix, S, by

double centering (equation 2.4). As with MDS the eigendecomposition of S gives
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S =UΛUT with eigenvectors U and eigenvalues as diagonal elements of Λ. The

P-dimensional embedding of the observations X , given by D, is:

Y = IP×NΛ
1
2UT , (2.11)

This embedding attempts to minimise the standard MDS error:

EIso = ∑
i, j
‖dx(i, j)−dy(i, j)‖2, (2.12)

by inner product eigendecomposition. Isomap is an efficient and popular tool for

creating representative visualisations of complex data. Geodesic distances are a much

more realistic dissimilarity between points on a manifold than the assumption that a

manifold is Euclidean, for example in Riemannian manifolds [36]. This fact is

reinforced by the work in Machine Learning on Riemannian Manifolds (for instance

[36], [15]). There are three particular weaknesses worth noting with Isomap:

1. The sensitivity of the map to choice of k or ε,

2. The calculation of dissimilarities in the presence of noise or uncertainty.

3. The linear embedding formed by MDS.

These can cause short-circuits in the graph construction leading to an incorrect over- or

underestimation of the distance between observations. An important note is that k or ε

should be chosen such that the graph is fully connected (no geodesic distances should be

infinite). The embedding generated is a linear mapping and is therefore unable to

appropriately characterise a highly nonlinear mapping function. An alternative method

using geodesic dissimilarities was proposed in [37],[38]. These dissimilarities were

combined with the Sammon map, relying on the benefits of the two methods, called the

Geodesic Nonlinear Map (GNLM) . The training procedure for GNLM is the same as

that of the Sammon map but with dx(i, j) given by geodesic distances and graph

neighbourhoods.

The Isomap embedded box is shown in figure (2.6). A connected graph was achieved for
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Figure 2.6: Open box embedded by Isomap using four neighbours. The front face of the
box has been overlapped with the bottom of the shape and the mapping has imposed a
curved surface on the box lid which is in fact rectangular in the original space. The box
sides are squashed and therefore not representative of the original structure.

k = 4 neighbours and the overall box structure is clear. This seems an improvement on

the LLE box, but there are still squashed sides similar to those of the PCA/MDS box.

The front face of the box has been overlapped with the bottom of the shape and the

mapping has imposed a curved surface on the box lid which is in fact rectangular in the

original space. If the neighbourhood structure is extended to incorporate k = 8

neighbours, a more visually satisfactory image is achieved in figure 2.7. Here the lid is

made approximately rectangular and there is less overlapping in the box sides due to the

curvature imposed here. The distances from the box front to the bottom are more

faithfully preserved with less overlapping. This does highlight a main issue with

neighbourhood based mappings, namely that the change in visualisation spaces can be

significant with changes in k or ε. It is noteworthy that the visualisation space remains

largely unchanged for increases in neighbourhood size beyond eight neighbours. The

only differences are seen in the lid and bottom becoming more rectangular, as in the

MDS mapping of figure 2.3.
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Figure 2.7: Open box embedded by Isomap with eight neighbours. The lid is made ap-
proximately rectangular and there is less overlapping in the box sides than the k = 4
mapping thanks to the curvature imposed here. The distances from the box front to the
bottom are also more faithfully preserved with less overlapping.

2.3.2 Laplacian Eigenmaps

Laplacian Eigenmaps [19] is another graph-based embedding process with connections

to LLE. The algorithm begins with a dissimilarity matrix, D, constructed by pairwise

dissimilarities between observations. Following this step, a k or ε-ball neighbourhood is

found. These neighbourhoods are used to build a graph with corresponding adjacency

matrix A (an (i,j) binary matrix with elements 1 when observations (i,j) are adjacent, or

neighbours, and 0 otherwise). The graph weight matrix W is then calculated by use of

the ‘heat kernel’ (this is typically known as a Gaussian function in other areas of the

literature, but is referred to here as the ‘heat kernel’ as it is in [19]):

Wi j = Ai j exp
(
−‖xi−x j‖2

2
2T 2

)
, (2.13)

where T is the temperature parameter. T is a user-specified parameter in the interval

[1,∞) with popular choices being 1 or ∞. The dissimilarity measure does not necessarily

need to be Euclidean and can be replaced with other measures capable of dealing with

uncertainty as will be shown in section 3. A simpler weight function, often used in the

literature is where T tends to infinity such that W = A. These weights are then used to
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compute the graph Laplacian [39]:

L =W −G,

where G is a diagonal matrix with entries Gii = ∑
N
j=1Wi j. In order to preserve the range

of eigenvalues to create a standard embedding framework, and therefore a standard

co-ordinate range, the Laplacian is then normalised:

L′ = G−
1
2 LG−

1
2 .

This ensures the eigenvalues are within the range 0≤ λ≤ 2 [40]. Two Laplacians for

entirely different graphs can then be compared without the issue of rescaling; only

co-ordinate rotations need to be considered. The embedding error to be minimised is:

ELE =
1
2

N

∑
i, j=1
‖yi−y j‖2

2Wi j, (2.14)

subject to Y GY T = IP×P, ensuring that the error cannot be minimised by the arbitrary

rescaling of Y . This error can be minimised by computing the eigendecomposition of

L′ =UΛUT . The embedded co-ordinates are found by taking the smallest P+1

eigenvectors and discarding the smallest eigenvector (since the above constraint forces

the eigenvalue to be 0). This is because the error function in equation (2.14) can be

re-written as ‘tr (Y L′Y )’, the solution of which is given by the same eigen-formulation.

The remaining eigenvectors, Û (of dimensions P×N) give the embedding as:

Y = ÛG
1
2 .

Figure 2.8 shows the embedded Open Box computed by LE. The graph was constructed

with four neighbours (creating a fully connected graph) as with Isomap and LLE;

however, here the visualisation space remains largely unchanged with increasing k. The

temperature parameter used here is set to unity, as is common in the literature, but tests

were also run with increasing T (values uniformly sampled in the range (1,106)),
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Figure 2.8: Open box embedded by Laplacian Eigenmapping with four neighbours. The
algorithm has successfully unfolded the box from the open section. The box lid on the
right hand side is separated from the bottom and front face. The front surface undergoes
a level of squashing which is unrepresentative of the observations and the other two open
sides to a lesser degree as well. The global and neighbourhood structure has however
been preserved faithfully.

resulting in no change in the visualised coordinates. This is likely due to the relatively

small and identical Euclidean distances between local points in the observation space,

ensuring T in the heat kernel plays a relatively insignificant role. The artificial curvature

imposed here appears on first inspection to have distorted the mapping. However, the

algorithm has successfully unfolded the box from the open section. The box lid on the

right hand side is separated from the bottom and front face. The front surface undergoes

a level of squashing which is unrepresentative of the observations and the other two open

sides to a lesser degree as well. The global and neighbourhood structures have however

been preserved faithfully.

2.4 Latent Variable Models

The approach for generating visualisation spaces in Latent Variable Models (LVMs) is

altogether different to that of dissimilarity preservation and graph-based mappings.

LVMs assume a generative process in which observations are treated as the functional

output and the latent points, (representing the visualisation space) which most likely
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generated those observations, are found. In this sense PCA is also a LVM. LVMs

therefore seek to learn the inverse function to dissimilarity preservation mappings. As

such there are rigid assumptions with each method. There will be a change in notation

from the previous sections; denoting observations by Y and latent points by X such that

Y = f (X), consistent with that of the literature (e.g. [7],[2],[8]). Two LVMs are

discussed below; the Generative Topographic Mapping and the Gaussian Process Latent

Variable Model. A currently popular LVM called the Deep Gaussian Process [13] is

described in Appendix B and not here as it is not topographic.

2.4.1 Generative Topographic Mapping

The probabilistic extension of Kohonen’s Self Organising Map [41] is known as the

Generative Topographic Map (GTM) [7]. It is a generative model assuming data

observations are created by a latent grid, often assumed rectangular.

The distribution of observations, p(yi|x,W,β) are spherical Gaussian kernels,

N (m(x,W ),β−1I). The precision of each Gaussian is β and the mean given by a

parameterised mean function with weights W , m(x,W ). The distribution is therefore:

p(yi|x,W,β) =

(
β

2π

) l
2

exp
[
−β

2
‖yi−m(x,W )‖2

]
, (2.15)

where l is the dimensionality of the observations. The prior distribution over the latent

grid, p(x), is given by:

p(x) =
1
c

c

∑
r=1

δ(x−g(r)) =

 0 if x 6= g(r),
1
c if x = g(r),

(2.16)

where the c points g(r) are on a (rectangular) grid. Visualisation of the grid requires

knowledge of p(x|y,W,β) which by Bayes’ rule is:

p(x|yi,W,β) =
p(yi|x,W,β)p(x)

p(yi|W,β)
.
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In order to compute this posterior, the marginal likelihood must be calculated:

p(yi|W,β) =
∫

p(yi|x,W,β)p(x)dx.

This integral is typically analytically intractable for many prior choices but since the

prior is a grid of delta points, the marginal likelihood becomes:

p(yi|W,β) =
1
c

c

∑
r=1

p(yi|g(r),W,β).

The data log-likelihood is given by:

L(W,β) =
N

∑
i=1

log(p(yi|W,β)) .

The mean function, m(x,W ), in equation (2.15) is typically taken to be an RBF network

as described in appendix A. Other extensions using Gaussian Processes (GPs) and mean

field approximations for the marginal likelihood have also been proposed [42]. Using an

RBF network in this framework allows for an Expectation-Maximisation (EM)

optimisation procedure outlined in Appendix C.

Visualisation

In order to generate the visualisation space, summary statistics of the posterior must be

used. The mean can be approximated by:

x̂i =
c

∑
r=1

g(r)p(g(r)|yi) =
c

∑
r=1

g(r)Pir(W opt ,βopt).

The posterior can be multimodal, which is revealed by a comparison of the mean and

mode of the distribution, where the mode is given by:

x̂i = argmax
g(r)

p(g(r)|yi) = argmax
g(r)

Pir(W opt ,βopt).
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Figure 2.9: Open box embedded by GTM. The global structure has been unfolded from
the open top, but the box front (cyan) and lid (red) are clearly squashed. It is clear that the
mapping has torn the corners of the box open leading to a separation of naturally close
observation points but the box floor (dark blue) and side connecting the floor to the lid
(yellow) are faithfully represented.

Large discrepencies between means and modes of latent visualised points will indicate

that a less reliable distribution has been created.

The GTM visualisation of the Open Box dataset is shown in figure 2.9 using a 10 × 10

latent grid and a 4 × 4 grid of basis functions with mean points shown, following the

mapping procedure of [17]. The global structure has been unfolded from the open top,

but the box front (cyan) and top (red) are clearly squashed. It is clear that the mapping

has torn the corners of the box open, leading to a separation of naturally close

observation points. On the other hand the box floor and side connecting the floor to the

lid are faithfully represented. The posterior distribution is multimodal, causing many of

the modal points to be separated from the mean. Many of the mode points sit atop each

other which reinforces the notion that clusters in observation space are not ideally

represented. The analysis was repeated with larger latent grids (20 × 20 and 30 × 30)

where the transition between faces becomes smoother, but the tears appear in the same

regions. Even with these larger latent grids the distribution is still multimodal.

Finally, the magnification factors [43] of the latent grid mapping are superimposed into

the visualisation, showing which areas of the observation space have been magnified or
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Figure 2.10: Open box embedded by GTM with points superimposed upon the mag-
nification factors. These magnification factors indicate that the areas well preserved in
visualisation space (the box bottom and connecting side) have been magnified more than
the corners and lid indicating the trustworthiness of the mapping.

shrunk to accomodate the data. These magnification factors indicate that the areas well

preserved in visualisation space (the box bottom and connecting side) have been

magnified more than the corners and lid indicating the trustworthiness of the mapping in

these regions.

GTM offers an interesting alternative to data visualisation when compared with the

methods described above but there are certain drawbacks:

• The noise model of isotropic Gaussians is not a realistic situation due to the

geometry of Gaussians in high dimensions. This will be more thoroughly

explained in chapter 3.

• The rectangular grid is an unrealistic latent space and is limited to a 1 or

2-dimensional visualisation.

• The number of kernels for interpolation of data is limited to be at maximum the

size of the latent grid. This ensures the learning phase is quick and not relatively

complex or highly parameterised whereas the ideal situation would allow N

kernels such as in NS.

On reflection the weaknesses of GTM are shared largely with all generative methods of
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visualisation. In order to assume a generative model, restrictions must be placed upon

the observations, latent space and mapping functions. These restrictions can often be too

restrictive for real world observations. In order to preserve observations in a topographic

way, the latent grid should be as large as is possible whilst keeping the number of basis

functions low, to avoid overfitting in the regression framework (m(x,W )). This should

circumvent the short circuiting in the training phase where two points close in

observation space sit directly atop of one another in latent space.

2.4.2 Gaussian Process Latent Variable Model

The Gaussian Process Latent Vatiable Model (GPLVM) is a probabilistic model using a

latent space similar to that of GTM. The two main differences between GTM and

GPLVM are:

1. The mapping function from latent to observation space is restricted to a Gaussian

Process (GP).

2. The latent space is no longer restricted to a lattice of delta functions.

A short introduction to GPs in the context of the GPLVM will now be given; a thorough

introduction is given in [2] and [44]. For observations Y ∈ RM: yi = f (xi)+ εi. GP

outputs are scalar by nature, but some methods for extending to ‘multiple output GPs’

(vector outputs) exist (for example [45],[46] and [13]). The GP used by the GPLVM uses

a much simpler notion to create vector outputs, demanding that output dimensions are

independent using separate mapping functions: ym
i = fm(xi)+ εm

i . In the GP formulation

p(εi) = N (εi|0,β−1). The GPLVM specifies an independent prior over the latent space,

X , such that: p(X) = ∏
N
i=1 N (xi|0, I). The likelihood p(Y |X) is assumed to be zero

mean in general and can be written as:

p(Y |X) =
M

∏
m=1

p(ym|X) =
M

∏
m=1

N (ym|0,K NN +β
−1I), (2.17)

where ym is a column vector containing the N entries from Y for dimension m. K NN

represents an N×N kernel matrix, the most popular choice for which being the squared

40



Chapter 2 BACKGROUND

exponential (SE), or Gaussian, kernel:

K (xi,x j) = σ
2
f exp

(
−1

2
(xi−x j)

TW (xi−x j)

)
, (2.18)

where σ2
f is the process variance and W an automatic relevance detection (ARD)

diagonal weight matrix. The ARD matrix learns the dimensions of X which are

significant in the mapping process. In the standard regression case where X is observed

as well as Y , the parameters are learned using gradient descent in a maximum likelihood

(ML) fashion from the likelihood equation (2.17). In the GPLVM case X must be learned

as well as the kernel hyperparameters, for which there are two main methods:

1. [8] Iterative optimisation of the kernel hyperparamters based on the ML approach

for the current X , then optimising p(y|x,σ2
f ,W,β) with respect to X .

2. [47] In a fully Bayesian framework a variational lower bound is used to optimise

the marginal likelihood p(Y ) =
∫

p(Y |X)p(X)dX . This integral is in general

analytically intractable due to the nonlinear interactions in the kernel functions.

The automatic training of the ARD parameters in W allows for the dimension of X to be

larger than two and only the two most relevant dimensions visualised. As with RBFs,

GPs with SE kernels are infinitely smooth but are not topographic without imposing a

‘back constraint’. This back constraint involves the addition of the Sammon STRESS

error function from equation (2.9) to the GP likelihood with a multilayer perceptron

(MLP) network used to minimise this error [48]. A formal definition of MLP networks is

given in chapter 7, all that is important to note here is that it optimises over the STRESS

function with respect to the latent points Y and the observations, X . The use of the MLP

and imposition of the STRESS measure ensures that the latent points learned are

topographic.

Figure 2.11 shows the GPLVM visualisation of the open box using back constraints to

ensure the mapping learned is topographic. The algorithm unfolds the structure from the

open top and curves all sides to preserve the topological ordering. The points from the

box floor remain relatively uniform in the mapping which is an improvement on the
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Figure 2.11: Open box embedded by GPLVM with back constraints. It is clear that the
algorithm has unfolded the structure from the open top and curves all sides to preserve
the topological ordering. The points from the box floor remain relatively uniform in the
mapping. The points from the lid appear to have been squashed into a relatively small
area, in the top-left of the latent space, compared to that of the sides and bottom, but are
still correctly ordered and their relative distance within the lid points is preserved. The
box front (cyan) is not well mapped with the vertical dimension of points almost placed
directly atop of one another and the entire front face is placed unusually far from the rest
of the box.

GTM mapping. The points from the lid appear to have been squashed into a relatively

small area, in the top-left of the latent space, compared to that of the sides and bottom,

but are still correctly ordered and their relative distance within the lid points is preserved.

Each row of points which make up the front face is removed from their local

neighbourhours on the other faces of the box. The box front is not well mapped with the

vertical dimension of points almost placed directly atop of one another and the entire

front face is placed unusually far from the rest of the box. The GPLVM also allows for

computation of the posterior probability P(X |Y ) which can be superimposed into the

visualisation of the box, as shown in figure 2.12. The areas of higher posterior

probability are shown in pink; with blue denoting low probabilities. This probability

map indicates that the GPLVM has not faithfully interpolated the data space as there are

regions of apparent high probability which contain either a low density, or no points. The

box lid has the opposite problem of significantly high density of points with a low

posterior probability of observation. This is contrary to the fact that the box lid was
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Figure 2.12: Open box embedded by GPLVM with back constraints with posterior prob-
ability surface shown. The areas of higher posterior probability are shown in red with
blue denoting low probability. This probability map indicates that the GPLVM has not
faithfully interpolated the data space as there are regions of apparent high probability
which contain either a low density or no points. The box lid has the opposite problem of
significantly high density of points with a low posterior probability of observation.

uniformly generated with the same number of points as the other sides.

Compared to GTM this approach is more robust, but it still suffers from restrictions of

independence between dimensions of Y and between latent points X . The assumption

that all observations, Y , are normally distributed is typically taken to be realistic. The

extent to which this is true depends on the application. The concept of the visualisation

of posterior probabilities is useful for judging expected location of visualised datapoints.

However, even in this simple case of a 3-dimensional embedding the probability surface

has been incorrect and misleading. An interesting note about the back constraints

imposed here is that the distance measures used for dx and dy have not been explicitly

specified. The Euclidean distance used in the algorithm in [22] can be deemed

appropriate for the latent variables X as the priors over X are isotropic, unit covariance

Gaussians. For this case of distribution many dissimilarity measures incorporating

uncertainty reduce to the Euclidean distance. On the other hand, the observations Y are

learned with specific covariance measures - the main benefit between Gaussian

Processes over other Machine Learning tools. Therefore, taking the Euclidean distance

as dy wastes this additional learned information. Other methods for visualisation
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incorporating uncertainties such as probabilistic NeuroScale (outlined in Chapter 3)

allow for user-specified dissimilarity measures.

2.5 Quality Criterion

The mappings discussed in this chapter all work in different ways and optimise separate

objective functions. To this end, it is difficult to assess how well one algorithm performs

in generating a visualisation compared to another, particularly since it is easy for

visualisations to appear to have structure when there is none [49]. The different open box

embeddings show this; some researchers favour the Isomap embedding over the Sammon

map. This section will outline some quality criteria which can offer a comparison

between mappings based on data ranking. For a more thorough guide see [24].

2.5.1 Rank

The notion of rank, R(i, j), is outlined in [50]. R(i, j) is defined as the number of

observations closer to i than j is. Formally this is:

Rdata(i, j) =
∣∣∣{k : DO

ik < DO
i j

}
∪
{

k : DO
ik = DO

i j,k < j
}∣∣∣ , (2.19)

where U is the union between sets, |.| denotes set cardinality and DO
i j is the dissimilarity

between observations i and j. The rank of points i and j in the latent visualisation space

is:

RLatent(i, j) =
∣∣{k : DL

ik < DL
i j
}
∪
{

k : DL
ik = DL

i j,k < j
}∣∣ , (2.20)

where DL
i j is the dissimilarity between latent visualised points. Note that

Rdata(i, i) = Rlatent(i, i) = 0 and Rdata(i, j) 6= Rlatent(i,k) even when Dik = Di j but j 6= k.

2.5.2 Trustworthiness and Continuity

Two important ways to characterise whether a visualisation is topographic were

introduced in [51]. Firstly, an error in visualisation occurs when dissimilar observations
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become close in observation space, impairing the trustworthiness (T) of the embedding.

The opposite case being where similar observations are made dissimilar in visualisation

space, causing a loss in continuity (C).

Using Nk
data(i) and Nk

latent(i) to define the set of the k nearest neighbours of points i in

data and latent spaces respectively. In order to define both T and C, neighbourhood

intruders and leavers must first be defined. Intrudersk(i) is the set of points in the

k-neighbourhood of observation (i) in latent space but not in the original observation

space:

Intrudersk(i) = Nk
latent(i)\N

k
data(i),

where ’\’ represents the intersection of the relative complement of the set. Consequently

the Leaversk(i) are the set of observations in the k-neighbourhood of (observation) i in

the observation space but not in the latent space:

Leaversk(i) = Nk
data(i)\N

k
latent(i).

Trustworthiness can now be defined as:

T (k) = 1− 2
ΓTC

N

∑
i=1

∑
j∈Intrudersk(i)

(Rdata(i, j)− k) , (2.21)

and Continuity as:

C(k) = 1− 2
ΓTC

N

∑
i=1

∑
j∈Leaversk(i)

(Rlatent(i, j)− k) , (2.22)

where:

ΓTC =

 Nk(2N−3k−1) if k < N
2 ,

N(N− k)(N− k−1) if k ≥ N
2 .

(2.23)

Better projections are characterised by higher values of T and C indicating less

intrusions and extrusions from the neighbourhood. T and C are combined into one
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quality measure described in [24] as:

QTC(k) = 2
T (k)C(k)

T (k)+C(k)
. (2.24)

As with the individual T and C measures, a higher value of QTC indicates a better

mapping.

2.5.3 Mean Relative Rank Error

Working similarly to the T and C measures, mean relative rank error (MRRE) [17]

compares the ranks of the observation and visualisation spaces:

MRREdata(k) =
1

ΓMRRE

N

∑
i=1

∑
j∈Nk

data(i)

|Rlatent(i, j)−Rdata(i, j)|
Rdata(i, j)

, (2.25)

which corresponds to trustworthiness. On the other hand, continuity relates to

MRRElatent :

MRRElatent(k) =
1

ΓMRRE

N

∑
i=1

∑
j∈Nk

latent(i)

|Rdata(i, j)−Rlatent(i, j)|
Rlatent(i, j)

, (2.26)

where:

ΓMRRE = N
k

∑
u=1

|2u−N−1|
u

.

Better visualisation quality is indicated by lower values of MRRE. The values are zero

when Rlatent(i, j) = Rdata(i, j). MRRE weights rank error, unlike T and C. As with QTC

the two MRRE measures are combined in [24]:

QMRRE(k) = 2
(1−MRREdata)(1−MRRElatent)

(1−MRREdata)+(1−MRRElatent)
. (2.27)

The higher QMRRE is, the better the embedding.
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2.5.4 Local Continuity Meta-Criterion

The continuity measure, C, looks at global continuity, whereas the local continuity

meta-criterion (LCMC) [52] measure is interested in strict neighbourhoods:

LCMC(k) =
1

Nk

N

∑
i=1
|Nk

data(i)∩N
k
latent(i)|−

(
k

N−1

)
, (2.28)

where |.| denotes set cardinality and ‘∩’ the intersection of two sets. The higher LCMC

is, the more truthfully representative the visualisation is. Whereas QTC is concerned with

the number of intruders and leavers of a neighbourhood, LCMC is concerned with what

they actually are.

2.5.5 Quality of Open Box embeddings

In this thesis QTC, QMRRE and LCMC from equations (2.24), (2.27) and (2.28) will be

used to quantitatively assess the performance of the visualisation algorithms used.

Figures 2.13a, 2.13b and 2.13c show the QTC, QMRRE and LCMC respectively for the

Open Box embeddings in this chapter.

The QTC for GTM, LE, GPLVM and LLE are similarly grouped, decaying steadily for

low neighbourhood sizes and then more rapidly from a neighbourhood of size 150. This

is due to the tight clustering of sections of the box, for instance the lid in the GPLVM,

corners in the GTM, front face in LE and the overlapping of the sides in the LLE

visualisation. These clusters cause high levels of T and C for within cluster

neighbourhoods but rapidly decay when outside points are not preserved in relative

distances. Isomap with eight neighbours is more trustworthy than with four neighbours

for neighbourhoods smaller than 220, but beyond this point the opposite holds. This may

be caused by the curvature in the sides and front face of the k = 8 mapping, stretching

the distances between points compared to the more flat and overlapping sides in the

k = 4 case. The Sammon map outperforms all topographic mappings for neighbourhoods

greater than thirty. The mapping is trustworthy on both a local and global scale, as

opposed to the four grouped mappings (GTM, LE, GPLVM and LLE). PCA performs
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Figure 2.13: (a) QTC, (b) QMRRE and (c) LCMC quality criteria for visualisations of the
Open Box dataset. Higher values (1) indicate better performance than lower values (0). (a)
It can be seen that all algorithms perform similarly in terms of QTC up to neighbourhood
sizes of 150, following which the Sammon map, Isomap and PCA perform better than the
other algorithms. The global trustworthiness of PCA is superior, with LLE performing
the worst. (b) GTM and GPLVM perform well in terms of QMRRE for small to medium
neighbourhoods, with Sammon mapping achieving the best global results. LLE performs
poorly and the remaining algorithms achieve good performance with a QMRRE score above
0.9 for the entire structure. (c) GTM and GPLVM preserve local structures well but for
neighbourhoods greater than 110 the Sammon mapping preserves local continuity better
than the other algorithms. LLE and LE achieve the worst global representations of the
Open Box structure.
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surprisingly well given the simple underlying generative model. This is largely due to

the fact that the visualisation space is a squashed version of the structure which has, in

this case, preserved the topological ordering of points, leading to a high measure of QTC.

The MRRE values shown in figure (2.13b) paint a different picture than that of the QTC.

LLE performs the worst out of the methods used, again due to the fact that two of the

box sides and floor are essentially superimposed, leading to large differences between

data and latent ranks. LE preserves local structures well, but for neighbourhood sizes

greater than ten this performance decays rapidly. The overlapping front face and tightly

clustered lid are the cause of this. The Isomap embeddings achieve similar results with a

steady decay for expanding neighbourhood sizes. The k = 8 mapping is superior to that

of k = 4 where relative rank errors are considered. Both the GTM and GPLVM

visualisations behave similarly, outperforming the other algorithms for neighbourhoods

of less than 170 and 75 respectively. The rank errors are positively impacted by the

clusters used in GTM and the good preservation of topological ordering in the GPLVM

mapping. As with the QTC measure, the Sammon map is best at preserving global

structures and rankings. Again PCA performs surprisingly well, comparable with the

results of Isomap (k = 8) due to the squashed nature of the mapping.

The LCMC values are shown in figure (2.13c). The results are largely similar to those of

the QMRRE . For more local neighbourhoods GTM and GPLVM outperform the Sammon

map (110 and 70 respectively) but their performance decays rapidly beyond this point.

LLE achieves poor results again, due to the poor preservation of local structures in the

overlapping of the box sides. The performance of LE is comparable to that of Isomap

initially but quickly decays past a neighbourhood size of eighty. The two Isomap

embeddings behave similarly in terms of LCMC but again the k = 8 mapping is better

than that of k = 4. PCA achieves similar results to that of Isomap and the Sammon

projection preserves global structure the best.

An additional quality criterion is the STRESS measure as it describes how well relative

dissimilarities are preserved. This measure is not as reliable as the three outlined above,

since the Sammon mapping optimises over STRESS it is naturally expected to

outperform other algorithms. Table 2.1 shows these values for the various mapping
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Method STRESS
PCA 0.0875
LLE 0.9947
Sammon 0.0810
Isomap (k = 4) 1.7984
Isomap (k = 8) 0.4002
LE 0.9986
GTM 0.5035
GPLVM 0.8788

Table 2.1: STRESS measures for Open Box mappings. It is clear that the Sammon map
visualisation offers the lowest STRESS, as expected. PCA also performs well with these
two measures, almost an order of magnitude better than GTM and Isomap (k = 8). The
worst performance is seen in the Isomap (k = 4) visualisation, likely due to the difference
between geodesic and Euclidean distances in the mapping process.

functions on the Open Box dataset. It is interesting to note that Isomap with k = 8 is

considerably better than with k = 4, a difference which is not clear when assessing the

quality criteria of figure 2.13. Here LLE outperforms Isomap with k = 4 and LE which is

surprising given the poorer results of the other quality measures. Naturally the Sammon

map outperforms the other visualisations in terms of STRESS. Again we see that PCA

performs surprising well on this dataset, but this success is not typically seen in other

visualisations.

2.6 Conclusion

The chapter has introduced popular topographic mapping techniques for visualisation of

high-dimensional data. The Open Box dataset was used as a comparative standard here,

as it was in [24] and [17]. Of the mappings discussed LLE performs poorly, largely

because the manifold is uniformly distributed. The algorithm is less effective when

observed points are equidistant making neighbourhood reconstruction difficult. LE

performs very similarly to LLE in terms of QTC, has identical gradient structure for

QMRRE and the same LCMC quality beyond neighnourhoods of approximately 120.

GTM performs well on this dataset, using performance measures, but the visualisation is

very poor; backed up by looking at STRESS in table 2.1. The STRESS values for GTM
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are twice that of the Sammon map due to the broken structure in the corners of the

manifold.

The quality measures introduced in this chapter are indicative of which mappings

achieve good topographic preservation, but not necessarily the best visualisations. For

this dataset, PCA performs well, but Isomap is visually more representative of the

original manifold. Even using back constraints with GPLVM, the quality of the

visualisation generated using the Sammon mapping is globally better.

This example is a toy dataset, but serves the purpose to compare an easily,

humanly-interpretable manifold in 3-dimensions, where it can be judged whether or not

the visualisations ‘makes sense’. The results would likely be different for a cluster-based

mapping, favouring LLE and LE, such as the twin peaks or three clusters, used for

instance in [15].

The deterministic topographic methods mentioned above will be extended in chapter 3 to

incorporate uncertaintes in both observation and visualisation spaces. The GPLVM will

be used as a comparison with these extensions in chapters 5 and 6. For reasons which

will be made clear in chapter 3, GTM is deemed unsuitable for these types of situations,

especially when the concept of high dimensional visualisation is considered.
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3 Incorporating Observation

Uncertainty into Visualisations

‘Geometry is not true, it is advantageous.’

- Henri Poincaré

3.1 Introduction

The purpose of a visualisation space is to provide a representation of observational data

such that structure and anomalies can be interpreted. Feed-forward projection methods

for visualisation are trained using prototype data generating the ‘expected’ space, i.e. the

optimum visualisation space given our current state of knowledge. This chapter

introduces and extends the principles of probabilistic visualisation mappings,

incorporating current knowledge. The first such method we introduce is Probabilistic

NeuroScale [33]. This method attempts to utilise uncertainty in observations in an

isotropic sense, generating distributions as opposed to points in the visualisation space.

This method will be extended to account for elliptical distributions with non-isotropic
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covariance matrices characterising uncertainty. A similar extension is then made for

three other popular topographic mapping methods - Locally Linear Embedding, Isomap

and Laplacian Eigenmaps.

Constructing a probabilistic visualisation space is more computationally demanding than

a pointwise mapping, but there are two significant benefits:

1. It is a more robust measure of dissimilarity between uncertain observations than

treating the observations as noise-free datapoints.

2. Visualising data with Uncertainty Surfaces, accounting for expected data

positions, provides human users with more information about observations. This is

particularly important for real world applications such as SONAR and hospital

patient monitoring systems where complex systems offer unnacceptably high false

alarm rates, but the nature of the uncertain high dimensional data makes it

impossible for a human to analyse the raw data, comparing to ‘normal’ behaviour.

The notion of Uncertainty Surfaces will be defined in chapter 4.

With these benefits in mind, current popular topographic mapping methods will be

extended accounting for observation uncertainty. Given the probabilistic nature of the

visualisation spaces, the terms visualisation space and latent space will be used as

synonyms, in keeping with the terms of GTM and GPLVM.

3.2 Current approaches to uncertainty mappings

Amongst the mappings outlined in chapter 2 the only algorithms which incorporate data

uncertainty are GTM and GPLVM. Here, Probabilistic NeuroScale will be outlined

before an explanation of the underlying geometric assumption that is made by the two

mappings.
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3.2.1 Probabilistic NeuroScale

Standard NeuroScale uses an RBF network to minimise the STRESS measure:

E = ∑
i6= j

(
dx(Xi,X j)−dy(Yi,Y j)

)2

dx(Xi,X j)
, (3.1)

where it is assumed each observation, Xi, is subject to an uncertainty σi. The

observations can be treated as being the mean of a probability distribution with variance

σ2
i . Here each observation is a Gaussian distribution, N (Xi,σ

2
i ), and this then maps to a

generated Gaussian distribution in the visualisation space. The visualised Gaussian is

centred at Yi with variance given by σ2
i , N (Yi,σ

2
i ). Observation uncertainties are

preserved, allowing decisions based on the mapping to be more informed than those of

merely point-wise mappings. This is ensured by altering the STRESS measure of

equation (3.1) to incorporate dissimilarities between distributions:

E = ∑
i, j

(
KL(N (Xi,σ

2
i ),N (X j,σ

2
j))−KL(N (Yi,σ

2
i ),N (Yj,σ

2
j))
)2

KL(N (Xi,σ
2
i ),N (X j,σ

2
j))

, (3.2)

where KL in equation (3.2) is the Kullback-Leibler divergence:

KL(P1,P2) =
∫

P1(x) log
(

P1(x)
P2(x)

)
dx,

with P1(x) and P1(x) two probability distributions. In the case these are isotropic

Gaussians as in equation (3.2) is:

KL(N (Xi,σ
2
i ),N (X j,σ

2
j)) =

1
2

(
σ2

i +(X j−Xi)
T (X j−Xi)

σ2
j

−O+O log(
σ2

j

σ2
i
)

)
,

where O is the observation dimension. KL(N (Yi,σ
2
i ),N (Yj,σ

2
j)) is of the same form

with O = 2 for a 2-dimensional visualisation space. It is clear that the dissimilarity is no

longer reliant only on the observations, as it is in the Euclidean distances of standard NS.

The scaling of the dissimilarities and the ‘O log(
σ2

j

σ2
i
)’ term ensure that the relative

uncertainty of each observation is taken into account. Although this is a large

improvement on standard mappings, it has a deficiency due to the nature of isotropic

Gaussian distributions geometrically. Clarification of this fact will follow.
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3.2.2 Geometry of hyperspheres

An isotropic Gaussian is a probability distribution in O dimensions with equiprobable

contours. Geometrically this becomes a hyper-sphere, centred at the mean of the

Gaussian. Despite the probability distribution having infinite support, we often consider

uncertainty as a finite quantity, expressed in terms of one or two standard deviations.

This then gives meaning to the radius, r, of the hyper-sphere in terms of uncertainty. In

fact, the amount of uncertainty, whether one or two standard deviations, is strictly

arbitrary as far as r is concerned. The volume of a hypersphere with radius r is given by

[53]:

Vh−s(r) =
π

O
2 rO

Γ(1+ O
2 )

, (3.3)

where Γ is the Gamma function, Γ(z) = (z−1)!. As O grows large we see that equation

(3.3) tends towards 0. More significantly we can compute the relative volume of a thin

hyper-spherical shell:

Vs−shell =
Vh−s(r)−Vh−s(r(1− ε))

Vh−s(r)
=

(1)O− (1− ε)O

(1)O , (3.4)

where ε� 1. Again as O grows this ratio tends to 1, stating that the thin shell contains

the entire volume of the hyper-sphere. In effect, for any arbitrary uncertainty, r, a high

dimensional observation is then seen with almost exact certainty on the surface of the

imposed hyper-sphere. This physically means that an observation, Xi, with isotropic

Gaussian uncertainty, σi, occurs with probability approaching 1 on the surface of the

hypersphere and with probability approaching 0 elsewhere, including where the actual

observation was made. The radius of the hypersphere is dictated by σi, typically 2σi.

Isotropic uncertainties are therefore insufficient to characterise observations where the

dimension of observations is high.

This deficiency in high dimensional isotropic Gaussians is problematic not just for the

current implementation of Probabilistic NeuroScale but also for GTM. Another popular

mapping which generates probabilistic visualisation spaces is the Deep-GP (outlined in

appendix B) where the covariance matrices of the high dimensional observations are
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restricted to diagonal entries only. In some fields of signal processing the requirement of

independence between features is unrealistic, but it is acknowledged that this avoids the

deficiencies of isotropic Gaussians, as can be shown by considering the geometry of

hyper-ellipsoids.

3.2.3 Geometry of hyper-ellipsoids

In order to circumvent the deficiencies of hyper-spheres, distributions of a

hyper-elliptical nature can be used. The equation of a hyper-ellipsoid can be expressed

as:

(x− c)A(x− c) = 1, (3.5)

where c is the centre of the hyper-ellipsoid and A is a positive semidefinite matrix whose

eigenvalues are the lengths of the prinicipal sub-axes of the hyper-ellipsoid. The

hyper-ellipsoid can again be thought of as a probability distribution where the elements

of A are given by the covariance matrix through the relation A = Σ−1. The volume of a

hyper-ellipse [54] is given by the equation:

Vh−e(A) =
πO/2

Γ(1+ O
2 )

O

∏
i=1

ai, (3.6)

where ai is the length of the principal sub-axes for dimension i and Γ is the Gamma

function. These can be found through an eigendecomposition of A or these elements in

equation (3.6) can be rewritten as: ∏
O
i=1 ai = |A|= |Σ−1|. In the same fashion to the

calculation above we now explicitly write the formula for a thin elliptical shell:

Ve−shell =
Vh−e(Σ

−1)−Vh−e((Σ
−1− ε1))

Vh−e(Σ−1)
=
|Σ−1|− |Σ−1− ε1|

|Σ−1|
, (3.7)

where 1 is a square matrix in O dimensions where all the elements are unity and ε� 1.

Equation (3.7) can be simplified by using the Sylvester determinant theorem [55] which

states that for column vector c1 and row vector c2:

det(A+ c2c1) = det(A)(1+ c1A−1c2), (3.8)
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where A is any m×m invertible square matrix and c1 is a 1×m vector where the

elements are all −
√

ε and c2 =−cT
1 . Equation (3.7) therefore reduces to:

|Σ−1|
|Σ−1|

− |Σ
−1|(1+ c1Σc2)

|Σ−1|
= 1− (1+ c1Σc2). (3.9)

We have the requirement that since Σ is positive semi-definite, and therefore Σ−1 is also,

that (−c1Σc2)≥ 0. Now since ε� 1 and the expression (−c1Σc2) can be rewritten as:

−ε∑i, j Σi j which, for finite values of Σi j, is approximately equal to zero. Equation (3.9)

therefore tends to zero for large O.

This shows that in general the volume of a thin hyper-elliptical shell, even in high

dimensions, is approximately zero. The difference between the volumes of

hyper-ellipsoids and hyper-spheres is seen when the identity matrix is used for Σ in

equation (3.7), where the second determinant in the numerator tends quickly to zero.

Numerical tests with uniformly random generated covariance matrices, Σ, (i.e.

Σi j ∈ (0,1)) in equation (3.7) showed that determinants for dimensions as low as 1000

are numerically infinity (computed by MatLab), forcing the numerator to be 0, contrary

to when the identity matrix is used where it is equal to 1. The importance of this result is

that all of the probability for a high dimensional isotropic Gaussian distribution will be

contained within a thin shell at the surface of the hyper-sphere. This amounts to an

observation occuring at the surface of the hyper-sphere with probability approximately 1.

This contradicts the traditional reasoning behind using isotropic Gaussians where the

most likely location of an observation within the (hyper) sphere is the centre, i.e. the

observation itself. On the contrary, the approximately empty shell at the surface of a

hyper-ellipsoid is the least-probable location of an observation, as would be expected.

This result serves as the motivation for the extensions on uncertainty mappings which

follow in this chapter. The isotropic uncertainty measures relying on hyper-spherical

geometry are extended to full rank uncertainty matrices which translate to

hyper-elliptical probability distributions.
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3.3 Elliptical Gaussian Probabilistic NeuroScale - N-NS

The natural extension of the isotropic Gaussian-based Probabilistic NeuroScale

described previously, is to a non-isotropic, elliptical O-dimensional observed and

P-dimensional visualised Gaussian distribution. For the purpose of visualisation in this

chapter it will be assumed that P = 2. This will be called Normally-distributed

NeuroScale (N-NS) in this thesis. The framework for this model begins with an

observation Xi with some uncertainty given by the matrix Si. In practice the uncertainty

of an observation and its covariance matrix are treated as the same. Si is used here

instead of Σi since it will most likely be a sample covariance matrix for real world data.

The dissimilarity matrix dx is constructed by computing the dissimilarities between the

observations and their uncertainties. In [28] the dissimilarity measure in data space is

based solely on the uncertainty matrices corresponding to each observation:

dx(Xi,X j) = tr[S−1
j Si]+ log

(
|Si|
|S j|

)
. (3.10)

This measure is motivated by the data where only uncertainties for each observation (Si)

were given. As such the dissimilarity measure specified was the Kullback-Leibler

divergence between zero mean multivariate Gaussians. Other measures could have been

used and this does not impose a Gaussian distribution over the uncertainties; it merely

allows comparison between the covariance matrices in two popular ways. Once the

dissimilarity matrix dx is constructed an initial set of latent distributions with means yi

and covariance matrices S̄i are generated. The entries of S̄i are given by the low rank

approximation of the observation uncertainty matrix using singular value

decompositions:

Si =UΛV T ⇒ S̄i = ŪΛ̄V̄ T ,

where Ū consists of the first two left singular vectors from U , likewise for V̄ . Λ̄ is the

2×2 upper left square of the Λ matrix, therefore containing the first two singular values

in the diagonals. This low rank approximation can be used to reduce the dimensionality

of any matrix whilst preserving the matrix structure in a mean-square error (MSE) sense.
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An eigendecomposition can be performed, but the SVD is typically more numerically

stable. An alternative is to use the information contained within all principal axes of Si,

such that S̄i = |Si|I2 with |Si| the determinant of Si and I2 the 2×2 identity matrix. The

issue with this latent covariance matrix is that it forces the visualised distributions to be

isotropic, when in fact S̄i from the SVD approach can have prominent elliptical

extrusions. The impact of these ellipses will be seen in the visualisations in chapters 5

and 6.

A natural measure for dissimilarity between latent distributions in the visualisation space

is the Kullback-Leibler divergence between distributions, and specifically between two

Gaussians:

KL(Ni‖N j) =
1
2

[
tr(S̄−1

j S̄i)+(y j−yi)
T S̄−1

j (y j−yi)−K− log
(
|S̄i|
|S̄ j|

)]
,

where K is the dimensionality of the visualisation space, in this thesis taken to be two. In

the case of the Kullback-Leibler divergence between Gaussians the gradients required

for training can be analytically computed as:

∂E
∂yi

= ∑
j

2(
dy

dx
−1)S̄−1

i (yi−y j), (3.11)

With E given by equation (3.2). In this form the weights of the RBF network used for

visualisation could be optimised in a gradient descent fashion using:

∂E
∂W

=
∂E
∂yi

∂yi

∂W
=

∂E
∂yi

Φ.

Alternatively, as with NS, the weights can be learned through the iterative shadow targets

scheme from section 2.2.3. This specifies a set of deterministic hidden targets, ti, in the

visualisation space to be learned:

ti = yi +η
∂E
∂yi

.
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and updating the weights with W = Φ†T using T to denote the matrix set of shadow

targets. Here however, the targets cannot be deterministic since the latent space consists

of a set of Gaussians, N (yi, S̄i), and as such the shadow targets must account for these

probabilistic changes. In the same approach as [33], each shadow target, ti, can be fit

with a full rank Gaussian kernel function:

φ(ti|Xi) = ((2π)
K
2 |S̄i|

1
2 )−1 exp

[
−1

2
(ti−y(Xi))

T S̄−1
i (ti−y(Xi))

]
. (3.12)

We seek to update the mapping parameters by optimising over the shadow targets to fit

the latent distributions appropriately. Differentiation of the log-likelihood over the

distribution in visualisation space gives:

E = ∑
i
− log(φ(ti|Xi)),

∂E
∂yi

= S̄−1
i (yi− ti),

ti = yi− S̄i
∂E
∂yi

. (3.13)

Replacing ∂E
∂yi

from equation (3.13) with that of the STRESS measure in equation (3.11)

the shadow targets updating rule is given by:

t̂i = yi− S̄i ∑
j

2(
dy

dx
−1)S̄−1

i (yi−y j). (3.14)

Since the NeuroScale approach utilises RBF networks to create projections to the

visualisation space, the visualised means, yi, are given by:

yi = Φ [Xi,C]W,

where Φ is a matrix, with dimensions N×M, consisting of nonlinear basis functions

over the dissimilarity between Xi and the M centres, C. W comprises the weight matrix

where there are M×K weights. When the network is trained over N O-dimensional

observations the matrix T , of dimension N×K, is denoted as the matrix comprising the
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N shadow targets, i.e. T = {ti, i = 1 . . .N}. Due to the linear-output nature of the

network, the mean-square error optimum parameters are found using the Moore-Penrose

pseudo inverse:

Ŵ = Φ
†T,

where Ŵ represents the updated weight matrix. The iterative updating rule alternates

between learning the shadow targets, T , and the new weights, Ŵ . This provides the

framework for constructing a projection between observations, Xi, with uncertainties, Si,

to a new set of elliptical Gaussian distributions in the visualisation space.

3.4 Elliptical T-distributed NeuroScale - T-NS

In this section the distributions governing the visualised variables, Y , are modified from

being elliptical Gaussians to multivariate T-distributions. T-distributions have been used

as part of a visualisation framework in [14], extending the Stochastic Neighbour

Embedding to approximate dissimilarities with a T-distribution. Other probabilistic

modelling areas use the T-distribution in regression and modelling tasks to account for a

finite number of degrees of freedom; distinguishing it from the Gaussian distribution, for

instance the extension to GPs; the t-process [56]. The probability density function (PDF)

of the T-distribution in K dimensions is given by [57, p. 1]:

P(z|µ,Ω,ν) =
Γ(ν+K

2 )

Γ(ν

2)ν
K
2 π

K
2 |Ω| 12

[
1+

1
ν
(z−µ)T

Ω
−1(z−µ)

]− ν+K
2

, (3.15)

where the mean of the distribution is µ, the covariance, Ω = ν

ν−2 S̄, for observation

uncertainty S, and degrees of freedom ν > 2. As usual, K is expected to be two for a

visualisation space.

Using the above framework, an RBF network can be utilised to map the observations, X ,

and uncertainties, S, to find the optimum means of the T-distributions, µ, with fixed

covariances, Ω. The observational dissimilarity measure, dx, can be the same as the

above described case for N-NS since only the dissimilarity and uncertainty matrices are

required for the mapping. Given the distribution from equation (3.15) for the mapping
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process, a dissimilarity measure for each of the distributions over the latents, P(Yi)

corresponding to observation Xi, is required. The notation P(Yi) here is used to ensure

the model is flexible enough to use different distributions for each observation. In the

case of the multivatiate T-distribution this corresponds to each observation having a

unique degree of freedom, νi.

Due to there only being a recent interest in applications of the multivariate T-distribution,

there has been little work in the literature concerning dissimilarity measures between the

distributions. The Shannon entropy of a multivariate T-distribution was computed in [58]

as:

H(Pi) =− log

(
Γ(νi+K

2 )

(πνi)
K
2 Γ(νi

2 )

)
+

(
νi +K

2

)[
Ψ

(
νi +K

2

)
−Ψ

(
νi

2

)]
+

1
2

log |Ωi|,

(3.16)

where Ψ is the digamma function. The only aspect of the above expression which

changes between distributions i is: 1
2 log |Ωi|, under the realistic assumption that the

degrees of freedom do not change between distributions, Pi. This allows for a more

efficient calculation of H(Pi) when νi = ν ∀ i, but to allow for flexibility in T-NS the

subscript i (and also j) in νi are kept when calculating the cross entropy.

An asymptotic approximation to the cross entropy between distributions is given in [59].

It is asymptotic in the sense that as the values νi and ν j grow, the approximation

approaches the true cross entropy. In [59] it is shown that for νi = ν j = 5 the absolute

error between the Kullback-Leibler divergence and asymptotic Kullback-Leibler

divergence is 0.1 in the 1-dimensional skew-T distribution case. It is therefore assumed

that the approximation made by the asymptotic Kullback-Leibler divergence is reliable

for the implementation in T-NeuroScale. The asymptotic cross entropy is given as:

CH(Pi,Pj)≈ 1
2 log((2π)K|Ω j|)+

+1
2

(
ν j+K

ν j

)[(
νi

νi−2

)
tr(Ω−1

j Ωi)+(µi−µ j)
T Ω
−1
j (µi−µ j)

]
.

(3.17)
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From equations (3.16) and (3.17) dy(Yi,Yj) can be written as:

dy(Yi,Yj) = KL(Pi‖Pj) =CH(Pi,Pj)−H(Pi).

In order to optimise the weights in NeuroScale, the STRESS given by equation (3.1)

must be minimised. Re-writing the error as:

E = ∑
i j

(
dx(Xi,X j)−2dy(Yi,Yj)+

dy(Yi,Yj)
2

dx(Xi,X j)

)
,

and therefore:
∂E
∂dy

∂dy

yi
= 2

(
dy

dx
−1
)(

∂dy

yi

)
.

Differentiating the cross entropy in equation (3.17) with respect to yi (after substituting

yi for µi) it is clear that:

∂CH(Pi,Pj)

∂yi
=

(
ν j +K

ν j

)
Ω
−1
j (yi−y j).

Since H(Pi) in equation (3.16) is independent of yi,
∂dy
yi

=
∂CH(Pi,Pj)

∂yi
. Making use of the

linearity in weights of the RBF the gradients can now be evaluated as:

∂E
∂yi

= ∑
j

2(
dy

dx
−1)

[(
ν j +K

ν j

)
Ω
−1
j (yi−y j)

]
, (3.18)

∂yi

∂W
= Φ, (3.19)

which can be summarised as:
∂E
∂W

= Φ
∂E
∂yi

. (3.20)

This expression can then be used in the optimisation of W using gradient descent

methods such as steepest descents or scaled conjugate gradients (SCG).
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3.4.1 Shadow Targets for T-NS

For the Shadow Targets process a T-distributed kernel is specified:

φ(ti|Xi) = Pi(ti|y(Xi),Ωi,νi).

As with the Gaussian kernel approach of section 3.3, the negative log-likelihood function

can be written as:

E = ∑
i
− log(φ(ti|Xi)) = ∑

i

{
C+

(
ν+K

2

)
log
[

1+
1
ν
(ti−y(Xi))

T
Ω
−1
i (ti−y(Xi))

]}
,

where C represents a set of additive constants independent of y(Xi) which will disappear

during the differentiation step which follows:

∂E
∂yi

=

(
ν+K

2

) 2
ν
Ω
−1
i (yi− ti)[

1+ 1
ν
(ti−yi)

T Ω
−1
i (ti−yi)

] . (3.21)

It should be noted that the i subscript has been removed from ν under the assumption

that the degrees of freedom do not change, but re-introducing different ν values for each

observation does not change the end result. Equation (3.21) can be solved as follows.

Replacing ∂E
∂yi

with ui in order to simplify notation we have:

ui =
(ν+K)Ω

−1
i (yi− ti)[

ν+(ti−yi)
T Ω
−1
i (ti−yi)

] ,
through factoring out

(1
ν

)
from the denominator.

ui
[
ν+(ti−yi)

T
ΩiΩiΩi
−1(ti−yi)

]
= ((ν+K))Ω

−1
i (yi− ti),

which is expanded to give:

ui
(

ν

ν+K

)
+uitT

i Ω
−1
i ti

( 1
ν+K

)
−ui

( 2
ν+K

)
yT

i Ω
−1
i ti

+uiyT
i Ω
−1
i yi

( 1
ν+K

)
= Ω

−1
i yi−Ω

−1
i ti.
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Multiplying through by u†
i and collecting terms in ti gives:

tT
i Ω
−1
i ti +

[
(ν+K)u†

i Ω
−1
i −2yT

i Ω
−1
i

]
ti

+
[
ν+yT

i Ω
−1
i yi

]
− (ν+K)u†

i Ω
−1
i yi = 0,

(3.22)

which is a quadratic in ti. By completing the square we see that:

(ti +Ωib)T
Ω
−1
i (ti +Ωib) =

(
bT

Ωib− c
)
,

b =
[
(ν+K)uT

i Ω
−1
i −2yT

i Ω
−1
i

]
,

c =
[
ν+yT

i Ω
−1
i yi

]
− (ν+K)uT

i Ω
−1
i yi,

with b and c used as auxiliary variables from equation (3.22). Making use of an

eigendecomposition of Ω
−1
i =V ΛV T where Λ is a diagonal matrix of eigenvalues and V

an orthogonal matrix of eigenvectors:

z =V T (ti +Ωib) ,

which gives:

zT
Λz =

(
bT

Ωib− c
)
. (3.23)

Despite there being infinitely many solutions sitting on the circle of equation (3.23) in 2

dimensions, which can be solved for z = [z1,z2], a suitable solution can be found by

fixing z1 then finding z2 by:

z2
2 = λ2

[(
bT

Ωib− c
)
−

z2
1

λ1

]
,

and finally ti is given by:

ti =V z−Ωib. (3.24)

It is useful to ensure that the value found for z2 is real by ensuring the z1 chosen is less

than
(
bT

Ωib− c
)

by, for example, subtracting a suitable uniform random number.
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Once the shadow target value is obtained it can be used to amend the training process. It

is apparent that the form of the target in equation (3.24) is far from that of the N-NS case

in equation (3.14). Since the target itself has no physical meaning it can be thought of as

a pointer for the new location of the latent points. With this in mind the proposed

RBF-updating rule is:

W = Φ
† [Y +η(T −Y )] ,

where η is the learning rate and (T −Y ) gives the difference between the shadow targets

and current latent points. This net difference allows for a more incremental but efficient

momentum-style updating scheme for the network than the standard gradient descent

procedure of equation (3.20). This extension to NS using T-distributions will be called

T-NS in this thesis.

3.5 Probabilistic Locally Linear Embedding - PLLE

LLE as introduced in section 2.2.2 is a local method based on pointwise neighbourhood

reconstruction. The method assumes local neighbourhoods are Euclidean, in a similar

way to other topographic methods such as Riemannian Manifold Learning [15]. The

combination of Euclidean dissimilarity measures and neighbourhood reconstructions

makes LLE sensitive to noise and uncertainty. As such, LLE can be extended to

incorporate uncertain data in a similar way to N-NS.

The first step in the LLE algorithm is to find the neighbourhood structure of each

observation on the manifold. Since each observation, in this framework is (assumed)

uncertain it can characterised with a PDF, Pi. The probabilistic LLE (PLLE) process

requires a dissimilarity measure over distributions. The most popular measure used is the

Kullback-Leibler divergence:

Di j = KL
(
Pi(Xi)‖Pj(X j)

)
,

Naturally other measures for comparing dissimilarities can be used, but the benefit of

using the Kullback-Leibler divergence becomes clear when the neighbourhood weight

matrix is constructed. The dissimilarity matrix D is then used to find the k-nearest
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neighbours of the observation. The original LLE error:

E(W ) = ∑i |Xi−∑ j Wi jX j|2,

can be adapted for distributions as:

E(π) = ∑
i

f

(
Pi(Xi),∑

j
πi jPj(X j)

)
, (3.25)

where f is some dissimilarity measure. The weights πi j for the observations X j not in the

k-neighbourhood of Xi are then set to 0. This is equivalent to comparing the distribution

Pi(Xi) to a mixture model made up of its neighbours. The Kullback-Leibler divergence

between mixture models is analytically intractable, however a variational approximation

is described in [60]:

KL
(
Gi‖G j)

)
≥ KLvar = ∑

a
π

Gi

a log
∑α πGi

α e−DKL(Gi
a‖Gi

α)

∑b πG j

b e−DKL(Gi
a‖G

j
b)
, (3.26)

where Gi and G j are two mixture models with weights πGi

a and πG j

b respectively. An

upper bound is also presented in [60] for the Kullback-Leibler divergence measure, and

in [61] it is shown that the mean of these bounds is a robust estimator for the true

Kullback-Leibler divergence. The reason for not using the upper bound in the PLLE

algorithm, other than increased computational complexity, is that the upper bound relies

on using a product of Gaussians approximation for the Kullback-Leibler divergence

between two Gaussian Mixture Models (GMMs) and does not appear to naturally extend

to arbitrary distributions like that of equation (3.26). The only requirement for using the

lower bound in equation (3.26) is that one can analytically compute the Kullback-Leibler

divergence between individual distributions used in the mixture. A useful trait of KLvar

above is that the mixtures Gi and G j are not required to be of the same order, particularly

when ε-ball neighbourhoods are used. This allows for incorporation into equation (3.25).

The mixture Gi will now be the observation Pi(Xi) with only one mixture component

such that πGi = 1. The mixture G j will be made up of the neighbours of Pi(Xi) where the

weights are to be determined. The initial PLLE error of equation (3.25) can be re-written
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as:

E(π) = ∑
i

KLvar

(
Pi(Xi),∑

j
πi jPj(X j)

)
= ∑

i

(
− log∑

j
πi je−DKL(Pi(Xi)‖Pj(X j))

)
. (3.27)

In chapter 5 the distributions are always Gaussian, i.e. Pi = Pj = N , but this is not a

requirement as shown in chapter 6 and as such the subscripts are retained here. In

contrast to standard LLE, these weights cannot be learned using an exact process but

must be learned by gradient descent. A Lagrange multiplier is introduced to ensure the

mixture weights sum to unity:

E(π) = ∑
i

(
− log∑

j
πi je−DKL(Pi(Xi)‖Pj(X j))

)
+λ(∑

j
πi j−1), (3.28)

following which the gradients are given by:

∂

∂πi j
∑

i

(
− log∑

j
πi je−DKL(Pi(Xi)‖Pj(X j))+λ(∑

j
πi j−1)

)
,

giving:
∂E(π)
∂πi j

=− e−DKL(Pi(Xi)‖Pj(X j))

∑ j′ πi j′e
−DKL(Pi(Xi)‖Pj′(X j′))

+λ = 0.

As with standard EM of GMMs multiplying this expression by πi j and summing, it is

clear that λ = 1. The gradients for πi j are then given by:

∂E(π)
∂πi j

= 1− e−DKL(Pi(Xi)‖Pj(X j))

∑ j′ πi j′e
−DKL(Pi(Xi)‖Pj′(X j′))

. (3.29)

Since the divergence terms in (3.29) have already been calculated in finding the

neighbourhood structure, the gradients are relatively inexpensive to compute and often

require only a small number of iterations to achieve a minimum. An important adaptation

to the mapping is that the dissimilarities DKL can be large depending on the numerical

order of the covariance matrices. As such the exponential term in equation (3.27) can

quickly tend towards zero, causing dependence on only one neighbour, even when k is

chosen to be much larger. To avoid this issue the DKL should be scaled so that the
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maximum value of DKL
(
P(Xi)‖P(X j)

)
is 1. Once the weights, π, have been optimised

they are fixed and used to construct the embedding. The reconstruction error is given by:

E(Y ) = ∑
i

KLvar

(
Q(Yi),∑

j
πi jQ(Yj)

)
, (3.30)

where Q is the embedding distribution. The different notation here is to show that P and

Q need not be the same probability distributions, particularly in the case of dimension

reduction where the dimensionality of the distribution plays a significant role. As in the

case of N-NS the distribution of each embedding Yi can be restricted to be a Normal

distribution with covariance resembling that of the original observation.

Similarly to the weight parameters, minimisation of this error function is not as

well-posed a problem as that of standard LLE, hence gradient based optimisation is

again required. The gradients with respect to the embedding error in equation (3.30) are

given by:
∂E(Y)

∂Yi
=

∑ j πi je−DKL(N (yi,S̄i),N (y j,S̄ j))(yi−y j)S̄
−1
j

∑ j πi je−DKL(N (yi,S̄i),N (y j,S̄ j))
+Ui, (3.31)

with Ui given by the contribution made by the distribution N (yi, S̄i) in the mapping of

N (y j, S̄ j):

Ui =
∑ j 6=i π jie−DKL(N (y j,S̄ j),N (yi,S̄i))(y j−yi)S̄

−1
i

∑ j π jie−DKL(N (y j,S̄ j),N (yi,S̄i))
,

- i.e. Ui is greater than 0 when Yi is in the k-nearest neighbours of Yj. These gradients

can be solved by any standard nonlinear optimiser, for instance quasi-Newton or Scaled

Conjugate Gradients. Optimisation time can be reduced when Y is initialised by using

standard LLE with weights, wi = πi. This step is, in general, computationally

inexpensive.

The LLE algorithm was extended in [62] to incorporate out of sample data by using

eigenfunctions to create a kernel in an empirical Hilbert space. However, that extension

did not incorporate uncertainties in observations. It also did not allow the imposition of

arbitrary distributions in the visualisation space as PLLE does. Despite the changes to

the mapping procedure, PLLE still has the main purpose of LLE at heart. LLE looks at
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the local weighting of observed neighbourhoods, as does PLLE with distributions Pi.

These observations are then reconstructed in a visualisation space using the same

neighbourhood weighting scheme in both cases.

3.6 Probabilistic Isomap - PIso

In contrast to the case of LLE, the incorporation of uncertainty into the Isomap

framework is straightforward given the previous work. The dissimilarity between

observations and their k-nearest neighbours can be given by the Kullback-Leibler

divergence. The remaining elements of D can be found using Djikstra’s algorithm,

providing a connected graph is achieved, similar to the approach of Isomap outlined in

section 2.3.1.

The standard Isomap algorithm seeks a topographic mapping by preserving the inner

products of observations via MDS. In order to preserve the dissimilarity between

distributions in the visualisation space, MDS no longer suffices in creating a topographic

map as it does not account for observation uncertainty. In order to preserve these

dissimilarities a pseudo-STRESS measure must be used:

EPIso = ∑
i, j

(dx(i, j)−dy(i, j))2 . (3.32)

This method essentially reduces to the N-NS case (currently without the RBF network)

where the dissimilarity matrix dx is given by geodesic dissimilarities as opposed to the

Kullback-Leibler divergence over all observations. This is seen in the gradients since:

∂EPIso

∂yi
= ∑

j
2(dx−dy)S̄−1

i (yi−y j).

PIso can also be viewed as a probabilistic extension to the Geodesic Nonlinear Mapping

(GNLM) [10] with the un-normalised STRESS error function.
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3.7 Probabilistic extension to Laplacian Eigenmaps - PWNM

Extending Laplacian Eigenmaps into a probabilistic framework is again different to the

extension of LLE and Isomap. Interestingly, as will become clear, the method no longer

relies on the graph Laplacian and is not created using eigen-mapping. It does, however

have the same initial dissimilarity and weighting process as well as a similar error

function to be minimised. This ensures the ability to learn nonlinear manifolds using

weighted neighbourhoods is preserved. Due to these changes to the algorithm the new

method will be called Probabilistic Weighted Neighbourhood Mapping (PWNM).

Firstly, a dissimilarity measure operating on distributions must be specified, following

which the weight matrix, W , is found; as described in section 2.3.2. For the case that

P(Xi) = N (Xi,Si), the Kullback-Leibler divergence is an appropriate choice for

constructing D. Following this stage only the k lowest elements of Di are kept and the

rest set to zero. The error function minimised by the standard LE algorithm is:

ELE = 1
2 ∑i j ‖yi−y j‖2

2Wi j.

Similarly to PLLE this Euclidean Norm can be replaced with another measure. Again

here the Kullback-Leibler divergence can be utilised. The error function can be

re-written as:

EPWNM =
1
2 ∑

i j
KL
(
Qi(Yi)‖Q j(Yj)

)
Wi j. (3.33)

As with PLLE, this function is no longer solvable via eigendecomposition, therefore

gradient based optimisation is used. In the same fashion as PLLE the gradients are given

by:
∂EPWNM

∂Yi
=

1
2 ∑

j

(
yi−y j

)
S̄−1

j Wi j +Ui, (3.34)

where again Ui accounts for the contributions of yi in the error of y j where Wi j is greater

than zero:

Ui =
1
2 ∑

j

(
yi−y j

)
S̄−1

i Wji.

As with PLLE, the gradient descent procedure in PWNM can be improved by initialising
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Y with standard LE once W has been fixed in the probabilistic framework.

3.8 Overview

In this chapter it has been demonstrated that isotropic uncertainties are insufficient to

geometrically capture the nature of high dimensional data. The benefit of utilising

elliptical uncertainties, namely full rank covariance matrices to characterise the shape in

high dimensions, has been geometrically shown.

The original Probabilistic NeuroScale was extended to account for full rank, elliptical

Gaussian distributions. The Shadow Targets updating rule was reformulated in the

Gaussian visualisation representation to allow for efficient updating of the RBF network

in training. This method was also extended to the multivariate T-distribution where an

approximation to the Kullback-Leibler divergence was described allowing for a

projection to T-distributed visualisation spaces. It should be noted that despite the degree

of freedom, ’ν’, essentially being a free parameter, the results in the parametric extention

of T-SNE in [63] show that results are better for models where ν is specified and not

learned. As a simple rule of thumb the degrees of freedom in the model could be set

either to the observation dimension, O, or the number of parameters which make up the

means; namely (N×P). It should be noted that the purpose of this thesis is to describe

T-NS and not to define the optimum ν, which should be application specific. Table 3.1

outlines the standard, deterministic cost functions for the algorithms outlined in chapter

2 compared to the proposed extensions from this chapter.

In the next chapter the importance of the underlying distributions generated in the latent

visualisation spaces will be explored. PLLE, PIso and PWNM will be incorporated into

a generalised RBF framework allowing for interpolation to new observations. Chapters 5

and 6 will show the results of these new algorithms based on vectorial and time series

observations respectively.
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Standard Cost Function Proposed Cost Function

NS (dx(Xi,X j)−dy(Yi,Y j))
2

dx(Xi,X j)
N-NS (dx(Xi,X j)−KL(N (Yi,S̄i),N (Y j,S̄ j)))

2

dx(Xi,X j)

NS (dx(Xi,X j)−dy(Yi,Y j))
2

dx(Xi,X j)
T-NS (dx(Xi,X j)−KL(P(Yi,Ωi,νi),P(Y j,Ω j,ν j)))

2

dx(Xi,X j)

LLE ∑i |yi−∑ j∈N(i)Wi jy j|2 PLLE ∑i KLvar
(
N (Yi, S̄i),∑ j πi jN (Yj, S̄ j)

)
Isomap

(
dx(Xi,X j)−dy(Yi,Yj)

)2 PIso
(
dx(Xi,X j)−KL(N (Yi, S̄i),N (Y j, S̄ j))

)2

LE 1
2 ∑

N
i, j=1 ‖yi−y j‖2

2Wi j PWNM 1
2 ∑i j KL

(
N (Yi, S̄i)‖N (Yj, S̄ j)

)
Wi j

Table 3.1: This table summarises the deterministic and proposed probabilistic cost func-
tions for the algorithms outlined in this chapter. All five new algorithms are flexible as to
the dissimilarity used in observation space. The links between N-NS, T-NS and PIso are
clear. There is also a link between PLLE and PWNM, as there is between LLE and LE.
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4 Interpreting Uncertainties In

Visualisations

‘As far as the laws of mathematics refer to reality,

they are not certain; and as far as they are

certain, they do not refer to reality.’

- Albert Einstein

4.1 Introduction

Naturally, given a probabilistic latent space, it is desirable to not only convey a set of

points in the visualisation space that describe the observations, but a measure of the

uncertainty of these observations which can be interpreted. In this chapter a standard

method for how the visualisation space should be analysed incorporating both

observation and mapping uncertainties is explored. Observation uncertainties

corresponding to the training data (or network centres) in, for instance, N-NS can be

visualised. These uncertainties are 2-dimensional distributions and can be combined to
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form an ‘Uncertainty Surface’. This chapter will formally define the notion of the

Uncertainty Surface, upon which the visualised points sit. Following this a method for

quantifying the uncertainty generated by the curvature of the mapping function will be

outlined, using Fisher Information. This improves the ability of mappings to detect

anomalies in the projections. Finally, to use these methods of uncertainty, three of the

new probabilistic mappings outlined in Chapter 3 (PLLE, PIso and PWNM) are

extended to use RBF networks in order to generate visualisation spaces.

4.2 Uncertainty Surfaces

This section introduces the method used to generate an ‘Uncertainty Surface’ across the

visualisation space. When training the RBF network required for the N-NS and T-NS

mappings, a number of centres, either specially selected prototypes or simply multiple

randomly chosen representative observations, are used. The network centres characterise

the visualisation space and can determine its shape and the way it is interpreted. These

centres serve a pivotal role in the nature of the latent representation. For this reason, it is

proposed that when the means of the mapped observations are generated in the

visualisation space they should sit upon an Uncertainty Surface. This surface is the

underlying density of the centres’ distribution.

For the case of N-NS, the Uncertainty Surface, f (Y1:M, S̄1:M), consists of an M-th order

Gaussian Mixture Model (GMM), where M is the number of network centres (or the

number of training data observations):

f (Y, S̄) =
1
M

M

∑
l=1

N (yl, S̄l), (4.1)

or in the case of T-NS:

f (Y,Ω,ν) =
1
M

M

∑
l=1

Pt(yl,Ωl,νl). (4.2)

It has been established that the mappings created by NS vastly improve in quality when

as large a number of centres as possible is used in training, i.e. when M = N; contrary to

normal weight-based models [32]. There are methods for constructing the optimum set
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of centres in RBF networks, which has an anology with the prototype selection methods

in Dissimilarity Spaces [64]. It was shown in [65] that better classification results could

be obtained using a specific subset of data as prototypes. An interesting by-product of

the research was that when using less than two hundred prototypes for medium sized

datasets (typically 400-1000 observations), random selection of prototypes often

achieved better classification results, through a richer feature space, than purpose-chosen

prototypes from the popular methods outlined in [65].

4.2.1 Similarities with GTM and GPLVM

In GTM the distribution in the latent space is given by [7]:

P(x) =
1
K

K

∑
i=1

δ(x−xi), (4.3)

where the xi’s are equally spaced on a rectangular grid. The responsibilities of each xi

form the GTM equivalent to the Uncertainty Surface. The resolution of the equivalent

Uncertainty Surface here is governed by the value of K (the size of the latent grid),

whereas for N-NS and T-NS, the resolution is governed by the number of centres used in

the training of the RBF. Since NS-based methods using RBF networks with the STRESS

error do not overtrain, the Uncertainty Surface can appropriately span the full dataset.

On the other hand, in GTM it is unlikely that K = N as this limits the interpolation

ability of the RBF network, potentially leading to overtraining. The Uncertainty Surface

is therefore a more intuitive and useful representation of the observation uncertainties

than the latent grid in GTM.

In GPLVM the equivalent plot to the Uncertainty Surface is the posterior probability

distribution, p(X |Y ). This distribution is determined largely by the fit of the observation

likelihood, p(Y |X), which is sensitive to the kernel choice. In addition to this, the

posterior is fixed by the prior choice, which in GPLVM is restricted to a product of

Gaussians:

p(X) =
N

∏
i=1

N (xi|0, I).

76



Chapter 4 INTERPRETING UNCERTAINTIES IN VISUALISATIONS

It is obvious that a product of Gaussians is less flexible than a mixture of Gaussians, of

the same order, in the latent space. The GPLVM mapping, like the regression-based RBF

network used in GTM, can overtrain. As such the number of training points must be low

to avoid this, limiting the interpolation ability of the GP. The GMM distributions used by

the five methods discussed in chapter 3 are capable of expressing full rank elliptical

covariance structures and not only Isotropic Gaussians. The impact of these two

restrictions on the GPLVM are a potential reason why the posterior probability surfaces

shown in chapters 5 and 6 are less informative, and sometimes have a negative impact on

the interpretability when compared to those of the other methods. In the next section a

method for quantifying how informative a projected observation is, when combined with

the uncertainty surface, is discussed.

4.3 Mapping Uncertainty

When mapping from observations to the latent space we may wish to convey the of

uncertainty imposed upon the visualisation of an observation, Xi. This can be physically

explained as the curvature imposed on the mapping process from Xi→ Yi, or in the

probabilistic case p(Xi)→ p(Yi). When assessing curvature the natural measure to be

used is Fisher Information, as such it will be an integral part of characterising mapping

uncertainty. Fisher Information is an approach to measure the degree of order or

structure in a system which pre-dates the use of Shannon Entropy [66]. The use of Fisher

Information over other entropy-based measures, like Shannon Entropy or the

Kullback-Leibler divergence, is not based solely on the curvature, but because it is a

local measure [67, p. 35-39] and involves derivatives in its integrand calculation,

making it a better descriptor for physical systems than Shannon Entropy [67].

Fisher Information allows for the measurement of the amount of information that an

observable random variable, X , carries about an unknown parameter, θ, upon which the

probability of X depends. For the 1-dimensional case, the Fisher Information is given by
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[2]:

I (θ) = E

[(
∂

∂θ
logP(X ;θ)

)2
∣∣∣∣∣θ
]
=

∫ (
∂

∂θ
logP(X ;θ)

)2

P(X ;θ)dX . (4.4)

It can be derived from first principles by considering the information uncertainty relation

given by the Cramer-Rao bound. This is outlined in Appendix D. The univariate

expression above has been extended to the multiparameter case where I (θ) is now a

Fisher Information Matrix (FIM) with the elements (I (θ))i j given by:

(I (θ))i j = E
[(

∂

∂θi
logP(X ;θ)

)(
∂

∂θ j
logP(X ;θ)

)∣∣∣∣θ] . (4.5)

Fisher Information was used extensively in [67] as a fundamental methodology to unify

physics and to re-derive the fundamental equations of quantum and statistical physics. In

particular these results rest on the establishment of the Cramer-Rao bound [68]. The

bound states that the variance, or covariance matrix, of an unbiased estimator is given by

the inverse of the Fisher Information (or FIM). For an unbiased estimator of θ, T (X), we

have that:

covθ(T (X))≥ I(θ)−1. (4.6)

This provides a minimum uncertainty bound which can be implemented in the

visualisation mapping. To this end, this added level of uncertainty is automatically

integrated into the mapping for interpretation. The Uncertainty Surface, onto which

projected means are plotted, is used only to convey observation uncertainty. The FIM for

the multivariate Normal distribution is well known to be given by:

(I (θ))i j =
∂µT

∂θi
Σ
−1 ∂µ

∂θ j
, (4.7)

where Σ(θ) = Σ is independent of the mapping parameters, θ. In N-NS the mean of each

Normal distribution in the visualisation space is determined by an RBF network

mapping:

µ = φφφW, (4.8)
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where the parameters of the mapping are the weights contained in the matrix W . The

covariance, for example Σ in equation (4.7), is the covariance matrix associated with the

visualised mean, yi, and therefore given by the rank-reduced covariance matrix Si

corresponding to observation Xi. As seen in Appendix A, φφφi is given by:

φφφi = φ(d(Xi,C)),

such that φφφ is an 1×M vector which is a nonlinear function, φ, over the dissimilarities,

d(Xi,C). The derivative of µi, given in equation (4.3), with respect to the parameters W ,

corresponding to observation Xi, from equation (4.7) is given by:

∂µi

∂W
=

φφφi 0

0 φφφi

 , (4.9)

where 0 is a 1×M vector of 0’s. The matrix in equation (4.9) is of dimensions 2×2M

for a 2-dimensional visualisation space. Using this expression in equation (4.7) the FIM

for observation i, I(θ)i, can be written as:

I(θ)i =

φφφi 0

0 φφφi


T

S̄−1
i

φφφi 0

0 φφφi

 . (4.10)

The FIM is therefore formed of outer products of the φφφ vectors, with dimensions

2M×2M. For the special isotropic case, where S̄i is given by a scalar, I2σ2
i , I(θ)i

becomes a block diagonal matrix:

I(θ)i =

( 1
σ2

i
)φφφT

i φφφi O

O ( 1
σ2

i
)φφφT

i φφφi

 , (4.11)

where O is an M×M matrix with all entries 0. In order to characterise mapping

uncertainty, a scalar measure is required which describes the FIM of equation (4.10), or

(4.11) for the simplified case. This observation-specific quantity is denoted FIi.

For the elements of the FIM here there are no other free parameters since network

centres and therefore input dissimilarities are fixed. D-Optimality [69] is a popular
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criterion in optimal design utilising the determinant:

FIi = |(I(θ)i)|,

with model fit improving by maximising the determinant. In practice it has been found

that the determinant of the FIM for uncertainty visualisation mappings is always zero

which offers no insight to the relative uncertainty of mapped observations. The reason

for this is that I(θ) is formed by the outer product of the φφφi vectors. An outer product

matrix only has rank unity since for any arbitrary vector z:

(φφφiφφφ
T
i )z = φφφi(φφφ

T
i z),

which is the scalar (φφφT
i z) multiplied by φφφi. A rank one matrix has only one non-zero

eigenvalue and using the fact that:

|(A)|= ∏
i

λi,

where λi is the i-th eigenvalue of a matrix A, it is clear the zero eigenvalues will force the

determinant to be zero.

It is therefore preferred to use the A-optimality [69] criterion:

FIi = tr
(

I(θ)−1
i

)
, (4.12)

a suitable lower bound for equation (4.6). As above, the matrix I(θ) is rank one and

therefore not numerically stable for inversion. It is proposed that the pseudo-inverse,

I(θ)†, can be implemented to circumvent this issue. An alternative is to use a jitter-based

inversion, but the resulting matrix will depend heavily on the level of jitter and as such

the resulting values of FIi could be unreliable. In the simplified case, where the

observation uncertainty is given by a scalar, the block diagonal nature of the FIM allows

this computation to be made more efficient. The inversion of a block-diagonal matrix

FIM, where the off-diagonal blocks are matrices consisting only of 0’s, is given by:
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I(θ)i =


(
( 1

σ2
i
)φφφT

i φφφi

)−1
O

O
(
( 1

σ2
i
)φφφT

i φφφi

)−1

 ,
and as such only one of the diagonal blocks requires inversion. For a 2-dimensional

visualisation space FIi is given by:

FIi = 2tr
(

Ī(θ)†
i

)
,

where Ī(θ) is the block matrix.

On a practical note, this measure is an absolute quantity of mapping uncertainty. Due to

the nature of mappings constructed to preserve relative dissimilarities, it is proposed that

a relative measure of A-optimality is used. A softmax modification of this uncertainty

measure or a simple scaling to maximum unity allows the relative uncertainties to be

interpreted, offering a more useful anomaly detection-based quantity. In this thesis the

scaling to unity approach has been used to avoid over-penalising lower values. For

functions, φ, monotonically increasing on d(Xi,C) (for example splines), the values of φφφ

will be larger for more dissimilar observations, Xi and therefore the trace of the inverse,

used in the calculation of FIi, should be lower than for expected observations. The

converse happens for monotonically decreasing functions, φ, for example the squared

exponential function. Anomalies are however often found to have a higher observed

variance than expected data. As such, large levels of mapping uncertainty are indicated

by larger values of FIi. An important addendum to this is the case where the uncertainty,

or variance, of observations is shared over all data; as is seen in chapter 7. In this special,

but not uncommon, case lower values of FIi indicate anomalies. With this in mind both

large and small values of FIi should be investigated in visualisations. Later, we will use

this mapping uncertainty to quantitatively indicate informative ’surprise’ of an

observation projected into the visualisation space.
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4.4 Feed Forward Visualisation Mappings

Currently this use of mapping uncertainty through Fisher Information has been described

only in the case of the RBF network used by N-NS for visualisation. In order to apply

the mapping uncertainty to PLLE, PWNM and PIso outlined in chapter 3, these models

must be extended to the form of an RBF network. Extensions of the standard LLE, LE

and Isomap are given in [62] using Kernel methods and Eigenfunctions. There are two

main differences between the RBF approach derived here and that of [62]:

1. In this thesis the mapping functions are provided explicitly.

2. Extension to new points in a mapping does not require new eigen-analysis in an

RBF framework as the weights are fixed after training.

There are five parts to the RBF framework for visualisation which must be addressed:

1. What is d(Xi,C j)?

2. What is the nonlinear function or functional φ?.

3. How are the weights, W , optimised to find Y from the training data minimising the

relevant error function?

4. What is d(X∗,C j), where X∗ is a new observation?

5. How is the mapping uncertainty, FIi, using Fisher Information for an observation

Xi characterised?

We address these five points in the following sections.

4.4.1 RBF PLLE

Of the three new probabilistic methods discussed in section 3, PLLE is the most

awkward to fit into the RBF framework of:

yik = ∑
j

Wjkφ(d(Xi,C j).
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It will become obvious that the ‘nonlinear basis function’ φ is somewhat abused to work

with PLLE (and PIso) in the following sections.

1. Since PLLE, like LLE, is only concerned with neighbourhoods (k), d(Xi,C j) can

be given by:

di j = d(Xi,C j) =

 KL(Xi‖C j) if C j ∈ Nk(i),

0 otherwise

2. Once the dissimilarity matrix D is computed the function φ is used to fit the

weights. This is written as:

φ(di j) =

 0 for di j = 0,

πi j for di j 6= 0.

where πi j is found by gradient descent of equation (3.5). Following this stage the

Φ matrix is fixed for training.

3. The natural process for determining the network weights, W , is found by following

the shadow targets process in section 3. The derivatives of the error in equation

(3.30) with respect to the visualised parameters Y are given in equation (3.31).

Since Y = ΦW and ti = yi−ηS̄−1
i

∂E
∂y (as in N-NS the parameters of W are given by

W = Φ†T ). Gradient descent modification of the learning rate η can be used until

convergence of the error with respect to W .

4. The propagation of a new observation through the network is relatively trivial here:

Y ∗k = ∑
j

Wjkφ(d(X∗,C j)),

where d and φ are used as in the training phase and W is the fixed matrix of

network weights.

5. The mapping uncertainty given by the Fisher Information Matrix in equations
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(4.7) and (4.10) for the PLLE RBF is:

I(θ)i =

πππi 0

0 πππi


T

S̄−1
i

πππi 0

0 πππi

 ,
a sparse matrix of the square neighbourhood weights penalised by the observation

uncertainty. In the special case where S̄i is given by the identity matrix, FIi is

bounded from below such that 1≤ FIi. The equality in the constraint occurs when

an observation is characterised entirely by one neighbour. The converse, where FIi

is large, occurs when the weights, πi j, for observation Xi are all equal to 1
k . Both

cases can be thought of as anomalous. In reality it is low values of FIi that are of

interest, particularly when FIi = 1. This can occur in one of two scenarios. Firstly,

when an observation, both in terms of its mean and uncertainty, are identical to one

of the network centres. Secondly, when an observation is far from all network

centres and therefore found numerically to be well characterised by only one

centre. Of the two scenarios this extrapolation scenario is expected to be far more

likely, under the assumption that exact replicas of observations are not expected. It

is assumed that observations characterised entirely by one neighbour will be

subject to a higher level of uncertainty than other observations within densely

populated neighbourhoods.

4.4.2 RBF PWNM

Due to the use of the nonlinear heat kernel function (commonly called the Gaussian

function) in Laplacian Eigenmaps the framework is more naturally paired with the RBF

than that of PLLE.

1. The neighbourhood graph is constructed with d(Xi,C j) similar to that of PLLE:

di j = d(Xi,C j) =

 KL(Xi‖C j), if C j ∈ Nk(i),

0, otherwise.
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2. With the dissimilarity matrix, D, φ can be implemented as:

φ = exp
(
− D

2σ2

)
,σ2 = (max(D)× s),

where s is the sigma parameter specified in standard LE, s ∈ (1,∞). The Φ matrix

is then fixed so that W can be learned.

3. Minimising the PWNM error from equation (3.33) can again be performed with

Shadow Targets learning. The weight matrix, W , is computed as for PLLE.

4. In feed forward mode the new observation, X∗, is projected to:

Y ∗k = ∑
j

exp
[
−

d(X∗,C j)

2σ2

]
Wjk,

where σ is fixed from the first stage.

5. The mapping uncertainty here is similar to that of N-NS given by equation (4.10).

In the special case where S̄i is given by the identity matrix the bound on FIi is

determined by the choice of s. Writing the elements of φφφ as

φφφ j = exp
(
− di j

max(di j)(2s)

)
so φφφ is bounded from below by zero and from above by:

0≤
di j

2max(di j)
≤ 1

2
⇒ 0≤ φ j ≤ exp(−1

2
s),

where s here is a free parameter greater than 0 (with popular choices being 1 or ∞).

For large values of s, φ j approaches 1 and FIi⇒ 1
k where k is the neighbourhood

size. The information then becomes the same for all observations and therefore

uninformative. For fixed di j, FIi grows for decreasing s. With this in mind it is

preferable to fix s to be low.

4.4.3 RBF PIso

In Isomap and PIso, geodesic dissimilarities are used to construct the neighbourhood

graph which must be reflected in the RBF implementation:
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1. Finding di j = d(Xi,C j) must be performed in a two step process. Firstly,

constructing the k-ary neighbourhood graph:

Di j = d(Xi,C j) =

 KL(Xi‖C j), if C j ∈ Nk(i),

0, otherwise.

Secondly, passing D to Dijkstra’s algorithm to find the remaining dissimilarities:

Di j = d(Xi,C j) =

 KL(Xi‖C j), if C j ∈ Nk(i),

di jkstra(Xi,C j), otherwise.

2. Following the standard Isomap algorithm the nonlinearity φ(di j) should square the

dissimilarities: φ(di j) = (di j)
2.

3. Minimising the PIso (also classical MDS) error function of equation (3.32) turns

out to be an almost identical shadow targets process to that of N-NS except with

the slightly altered error; now optimising over ∑i j
(
dx(Xi,X j)−dy(Yi,Yj)

)2.

4. The projection of a new observation, X∗, to its mean, Y ∗, in the visualisation space

requires the calculation of its dissimilarity with respect to the network centres.

This should again be done in the two step fashion. Depending on the algorithmic

implementation, the computation of the Dijkstra dissimilarity may require the

squared dissimilarity matrix to find geodesic distances (for instance the

implementation in [20]). The matrix should be constructed as follows:

D∗ =

 D 0

d(X∗,C) 0

 ,
with the geodesics d(X∗,C j), j /∈ k nearest neighbours of X∗ computed. Padding

the matrix with a column vector, 0, prevents the algorithm from recomputing the

neighbourhood dissimilarities using the new observation. The mapping process is

then given by: Y ∗ = d(X∗,C)W .
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5. The computation of the mapping uncertainty for an observation is given by

equation (4.10). This is not bounded from above since di j has no upper bound, as

with N-NS, but bounded from below by zero, provided di j is.

4.4.4 Mapping Uncertainty with T-NS

T-NS introduced in section 3.4 requires a slight alteration to the mapping uncertainty

equation (4.7) as the latent distributions are T-distributed and not Normally distributed.

As such, the FIM needs to reflect the difference. Firstly it must be noted that Ω = ν

ν−2 S̄

where S̄ is the covariance matrix relating to the observation. The FIM can be calculated

from the KL divergence as the second derivative with respect to the parameters:

(I(θ))i j = lim
P′→P

∂2

∂µi∂µ j
KL(P‖P′),

which for T-distributions, using the KL approximation from equations (3.16) and (3.17)

it is given that:

(I(θ))i j =
1
2

(
ν+2

ν

)(
ν

ν−2

)−1
∂µT

∂θi
S̄−1 ∂µT

∂θi
,

which can be summarised as:

(I(θ))i j =

(
1
2
− 2

ν2

)
∂µT

∂θi
S̄−1 ∂µT

∂θi
. (4.13)

This can be implemented to describe the mapping uncertainty for T-NS by calculating

FIi; as in equation (4.12).

4.5 Conclusion

This chapter has introduced two methods for representing uncertainty in visualisation

spaces. The use of an Uncertainty Surface allows for simple human interpretation as to

how likely an observation is, based upon the network centres used in training. It is

important to note that visualisation spaces do not behave like classification targets. For

certain tasks when a specific anomaly-detection operation is required, specifically
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chosen centres are required. An example of this is the work of [27] in the SONAR

domain where the anomalies are, for instance, unseen ship and submarine contacts.

The second measure, mapping uncertainty, utilizes Fisher Information to describe how

surprising an observation is compared to the network centres. This measure, by

construction, incorporates the observation uncertainty. It was found in [70] that more

sensitive target detection of observations in N-NS is indicated by higher FIi than by the

corresponding location of a visualised mean on the Uncertainty Surface. This is caused

by the imposed curvature of the mapping function between observation and visualisation

spaces. It should be noted that in [32] it is shown that the learning process in NS is more

robust, in terms of both interpolative accuracy and reduced curvature, when the Shadow

Targets algorithm is used than when the latents, Y , are learned and treated as supervised

targets in a regression context.

The extension of PLLE, PIso and PWNM to use RBF networks allows for feed-forward

mappings of unseen data. These measures of uncertainty will be used to create an

informative probabilistic visualisation space of six distinct datasets in chapter 5, for

vectorial observations, and chapter 6, for time series observations.
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5 Visualisation of Vectorial

Observations

‘In mathematics you don’t understand things.

You just get used to them.’

- John von Neumann

5.1 Introduction

The purpose of this chapter is to generate visualisations of vectorial datasets using the

algorithms and uncertainty measures developed in chapters 3 and 4. It will be

demonstrated that the extended algorithms can map structures faithfully when creating a

dissimilarity space. As a comparison the GPLVM algorithm will be used on the three

datasets. However, for this model the points will be treated as deterministic in

observation space since GPLVM is incapable of mapping specific uncertainties in its

standard form. Following the discussion in chapter 3 on the unsuitability of isotropic

Gaussians in representing high dimensional observations GTM is not used as a
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comparison in this thesis. The three datasets to be used are:

• the MNist handwritten digits database - an example of real world data with a

single shared uncertainty measure [71],

• an artificially generated 4-cluster dataset with cluster specific observation

uncertainties,

• an artificially generated punctured sphere dataset where each observation has its

own uncertainty.

The visualisation spaces created by each of the five probabilistic methods from chapter 3

(N-NS, T-NS, PLLE, PIso and PWNM) as well as GPLVM will be discussed. The kernel

functuion used for GPLVM is a compound kernel combining the commonly used

squared exponential kernel, a bias term and additive noise process learned from the data.

The quality criterion from section 2.5 will be compared for the five new mappings.

GPLVM will not be included in this comparison as it only creates deterministic points in

latent space and observes deterministic points in data space. As such, GPLVM is

performing a different task to the other mappings. Comparison between GPLVM and the

other mappings in any way other than the qualitative visualisations generated is therefore

not informative.

In chapters 5 and 6 observations are plotted as circular points, representing the means of

the latent distributions. These means sit atop the Uncertainty Surface, f , for that

mapping which is evaluated over the visualisation space. f is shown as a heatmap with

pink indicating areas of high probability and blue indicating areas of low probability. To

indicate the level of mapping uncertainty for an observation, FIi in the visualisations in

chapters 5 and 6, the size of points will be increased to reflect the higher levels of FIi.

These points should be interpreted as being more anomalous than the more certain

observations. In order to avoid confusion in chapters 5 and 6 mapping uncertainty will

be referred to as ‘mapping surprise’ so that it is not misinterpreted as a reference to the

Uncertainty Surface.
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(a) Example observations
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Figure 5.1: (a) Examples of nine images taken from the MNist dataset and (b) histogram
of dissimilarities (right). The structure of the characters is clear. However, as seen in
the lower-left "7", there are joins and discrepancies in the images. The dissimilarities are
spread considering the scale of 108 along the x-axis. The distribution over dissimilarities
could be approximated by a single truncated Gaussian or Gamma distribution.

5.2 MNist Dataset

The first vectorial dataset used in this thesis is the MNist dataset [71]. The dataset

consists of 60,000 training and 10,000 test images of handwritten digits (0 - 9). Figure

5.1a shows nine sample images taken from the dataset. This dataset is traditionally taken

as a deterministic pointwise analysis problem to test classifiers. Despite this, there is an

intrinsic covariance matrix observable in the data. The images are 28×28 pixels and are

therefore treated as a 784-dimensional vector observation. The visualisation spaces in

this thesis consist of a very small subset of the data, mapping fifty "0"’s, fifty "1"’s and

fifty "6"’s to a 2-dimensional visualisation space.

The uncertainty given by the sample (784-dimensional) covariance matrix is shared

across all observations. It should be noted that this is not the typical approach used in the

literature and is only used as a proxy to describe the uncertainty, or spread, of

observations. Dissimilarity matrices were constructed using the Kullback-Leibler

divergence between observations which, due to the shared covariance matrix, reduces to
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Figure 5.2: Dissimilarity matrix for 150 sample subset of the MNist database incorpo-
rating uncertainty. Is is seen that there is a more subtle dissimilarity between "0"’s (ob-
servations 1 to 50) and "6"’s (observations 101 to 150) than with "1"’s (observations 51
to 100). The within-class dissimilarities are much lower for "1"’s compared with the
other two clusters, most likely since there is often little variation in how "1"’s are drawn
compared with the other two characters.

a weighted Euclidean distance:

di j = (xi−x j)
T

Σ
−1(xi−x j). (5.1)

A histogram of the dissimilarities is shown in figure 5.1b and the dissimilarity matrix is

shown in figure 5.2 showing separation but relative similarities between the three groups.

It was established in chapter 2 that the Sammon map produces reliable visualisation

spaces in terms of both local and global neighbourhoods. As a benchmark reference,

figure 5.3 shows the visualisation generated by a Sammon mapping of the 150 samples

to illustrate how these images can be represented in a low-dimensional space. There is a

clear separation between the "1"’s (grey) to the "0"’s (white) and the "6"’s (black).

However, there is an overlap between the "6"’s and "0"’s due to the circles present in

both. There is a greater similarity between "6"’s and "1"’s than "0"’s and "1"’s due to the

presence of an unjoined straight line not present in the "0"’s. The equivalent probabilistic

maps will now be shown to compare the advantages of using distributions in the latent

space.

All of the six visualisations in figures 5.4, using N-NS, T-NS, PLLE, and 5.5, using PIso,
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Figure 5.3: Sammon mapping for 150 samples from MNist database accounting for un-
certanties in observations. "0"’s are plotted as white, "1"’s as grey and "6"’s as black
circles. There is clear separation of the cluster of "1"’s and a level of overlap between the
"0"’s and "6"’s due to the similarities between the shapes of the numbers.

PWNM and GPLVM, distinguish between the three classes, successfully segmenting the

"1"’s from the other two clusters. In N-NS and T-NS (figures 5.4a and 5.4b respectively)

an identical overall structure is observed where the clusters of "1"’s and "6"’s are closer

than the "0"’s and "1"’s. Both latent spaces have the same outliers from the "6"’s

contained within the general cluster of "0"’s. The mapping surprise highlights the "1"’s

as being the most anomalous group and all other observations occuring within a

relatively small range of uncertainties. The PIso visualisation (figure 5.5a) is similar to

that of N-NS as it optimises a similar objective function. A connected graph was found

for k = 8 neighbours so the parameter was fixed to this. The use of geodesics as

dissimilarities has created a further separation between the "1"’s and the other two

clusters. These two clusters have become more spread but remain overlapping with the

most uncertain observations belonging to the class of "6"’s. As with PIso, the PLLE

mapping was generated using k = 8 neighbours with different consequences. The cluster

of "1"’s is much more spread out than in the other mappings and there is a clear

separation between the "1"’s and "0"’s thanks to the intermediary cluster of "6"’s. As

with the NS-based methods the "1"’s appear to have the highest level of mapping

surprise which indicates their location is subject to observation inaccuracies. On the

other hand, the outliers from the "0" class in the lower left have a low level of mapping
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(a) N-NS

 

 

(b) T-NS

(c) PLLE

Figure 5.4: Visualisations of the MNist data using (a) N-NS , (b) T-NS and (c) PLLE.
The observations are plotted as circles, coloured by class, with size given by the relative
level of mapping surprise. These points sit upon the Uncertainty Surface density map
with pink indicating regions of high probability and blue, low probability. All three visu-
alisations separate classes with an overlap between "0"’s and "6"’s as in the Sammon map
of figure 5.3. N-NS and T-NS generate identical visualisations with "6"’s mapped closer
to "1"’s than "0"’s. Due to the relatively high precision of each observation, the Uncer-
tainty Surface in the N-NS mapping appears flat. The T-NS Uncertainty Surface shows
that "1"’s appear in higher probability regions than "6"’s and "0"’s. In PLLE "6"’s are the
most probable observations and "1"’s are, in general, more anomalous, appearing largely
in the purple region. The mapping surprise level for these visualisations is approximately
constant, except for the "0" and "6" outliers in the on the left of the mappings.
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(a) PIso

(b) PWNM

(c) GPLVM

Figure 5.5: Visualisations of the MNist data using (a) PIso, (b) PWNM and (c) GPLVM.
The structure of the PIso mapping and its’ Uncertainty Surface are almost identical to that
of N-NS in figure 5.4a. The PWNM visualisation space appears to show a ’V’ shaped
manifold where "6"’s are seen as anomalous in terms of both the location on the Uncer-
tainty Surface and relative mapping surprise (shown by the larger points than the other
two classes). The centre of the Uncertainty Surface (pink) appears unpopulated, but the
shape is correctly summarised by the 150-order GMM in the visualisation space. The
GPLVM mapping is similar to the Sammon map of figure 5.3 with the same separation
and overlapping clusters. The posterior probability surface is uninformative showing ar-
eas of high probability between observations in separated patches. This is an indicator of
poor interpolation of the observation space by the kernel function.
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surprise indicating a level of precision in their locations. An altogether different structure

is found by PWNM (again with k = 8 neighbours) in a ’V’ shape. As with PLLE the

cluster of "1"’s is separated from the "0"’s by the "6"’s along the ’V’ manifold. However,

here the outliers from the "6" cluster have been placed away from the "0"’s off the

manifold with a high level of mapping surprise. The GPLVM mapping performs better

than PLLE, finding a tighter cluster of "1"’s and some discrimination between the two

other classes. However, the Posterior Probability Surface, the GPLVM equivalent to the

Uncertainty Surface, is ’fractured’ with multiple regions of isolated high-confidence

areas with no supporting data points.

The inherent covariance matrix for the observations is reduced from R784×784 to an

uncertainty matrix in R2×2 using SVD rank reduction described in chapter 3, with 35%

of the variance from observation space preserved in this process. The inverse of this low

rank matrix, known as the precision matrix, indicates that the uncertainty surrounding

each latent mean is small. For this reason, the Uncertainty Surfaces for the N-NS (figure

5.4a) and PIso (figure 5.5a) appear to be flat and uninformative. The distributions in this

case reduce almost to a series of delta peaks for each observation. The Uncertainty

Surface in the case of the T-NS mapping is more informative due to the penalisation of

the precision matrix by the degrees of freedom, set here to three (chosen for the number

of classes). This surface states that given a new observation it is most likely to be a "1"

and sit within the higher probability area (pink). Two smaller high density parts of the

surface are present in the cluster of "6"’s, having a tighter distribution than that of the

spread of "0"’s. The latent spaces generated by PLLE and PWNM have more informative

Uncertainty Surfaces since the initialised points prior to optimisation are set using LLE

and LE respectively. These two initialisations use constraints to set the relative scale of

points (described in chapter 2) and as such the points in PLLE and PWNM visualisations

are closer in terms of absolute distance than the NS-based methods. Since the

covariances of each latent distribution are the same for each mapping (except for the

penalised T-NS case) the closer proximity of the means of these distributions in PWNM

and PLLE, in terms of absolute distances, causes the combined Uncertainty Surface to

appear more spread than that of N-NS. The PLLE Uncertainty Surface indicates there
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(b) QMRRE
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Figure 5.6: Quality criteria for visualisations: (a) QTC, (b) QMRRE , (c) LCMC as a func-
tion of neighbourhood size. PWNM has the worst performance for the dataset, achieving
low neighbourhood rank preservation and trustworthiness. Visualisations generated by
N-NS, T-NS and PIso are on the other hand the best performing with good overall relative
rank preservation (QMRRE). The drop in terms of trustworthiness and local continuities oc-
cur beyond neighbourhoods of 50 since other classes are included in the neighbourhoods.
Local continuity is poor for neighbourhoods of 100 and over since the actual neighbour-
hoods are not preserved; only neighbourhood rankings. PLLE achieves the average per-
formance of all the mappings considered with neighbourhood preservation similar to the
global methods of N-NS, T-NS and PIso. This is expected since it enforces neighbour-
hood preservation through its’ cost function. On the other hand, the trustworthiness for
larger neighbourhoods is similar to PWNM.
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are anomalies in the class of "0"’s and that the most certain class is "6". This seems

intuitive since the algorithm trains on the structures of the circles in "0"’s and the lines of

"1"’s and "6"’s can be thought of as a combination, making them theoretically the best

understood class. The contrary occurs with PWNM (figure 5.5b) where "6"’s are outliers

compared to the more probable "0"’s and the most probable "1"’s. An interesting

consequence of the equal weighting of the (overspecified) Uncertainty Surface seen here

is that the highest probability regions of the surface are relatively unpopulated. The

GPLVM equivalent of the uncertanty surface is the underlying posterior probability

distribution (figure 5.5c) which indicates isolated islands of higher probability between

observations. This information is more confusing than the flat Uncertainty Surfaces. So

much of the unpopulated latent space appears to have a high probability of observation,

preventing anything from being inferred regarding the distributions of the latents.

The quality criterion plots (as described in section 2.5) are shown in figure 5.6. Of the

mappings shown, PIso and N-NS/T-NS perform the best, in terms of the rank based

criteria, for creating trustworthy visualisations. The results for the three criteria are

largely the same, penalised dissimilarities (geodesics in PIso and the use of degrees of

freedom in T-NS) generate mappings where neighbourhoods are better preserved. The

PLLE mapping is a middle ground of the five methods. Beyond neighbourhoods of 50

points each of the algorithms seems to suffer from some level of performance decay.

This is because neighbourhoods of greater than 50 points will definitely include more

than one observation from a separate cluster. The quality improvements in terms of

LCMC between neighbourhoods of 10 and 50 is due to the fact that the classes are better

reconstructed in terms of all neighbours, whereas some of the smaller inter-class

neighbourhood clusters are not appropriately grouped.

The probabilistic mappings developed in chapter 3 have performed well in learning the

structure of the MNist data. The visualisation spaces are similar to the Sammon map

shown in figure 5.3 with greater between-class separation. This is due to the dissimilarity

measure here being a form of weighted Euclidean distance as opposed to the isotropic

Euclidean distance. It should be noted that perfect separation between classes is not

expected since not all "6"’s and "0"’s belong to their respective clusters in observation

98



Chapter 5 VISUALISATION OF VECTORIAL OBSERVATIONS

(a) Data-space

0 2 4 6 8
0

50

100

150

200

250

300

350

400

Dissimilarity

F
r
e
q
u
e
n
c
y

(b) Dissimilarity Histogram

Figure 5.7: (a) The four artificial clusters from section 5.3 in 3-dimensional observation
space and (b) histogram of dissimilarities. Three of the clusters are closely located; one
(dark grey) situated between two more spread clusters (white and black). The fourth clus-
ter is entirely separated from the group (light grey) with a lower level of class spread. A
successful visualisation should keep the light grey cluster separated from the other over-
lapping clusters. The close proximity of the three clusters in observation space ensures
that the dissimilarities between these points is low with larger dissimilarities caused by
the separated cluster.

space. This is seen in the dissimilarity matrix and Sammon mapping of the observations.

5.3 Four Clusters Dataset

An artificially generated set of four 3-dimensional clusters was created where each of the

four groups has a unique uncertainty. This could be typical of the errors experienced in

measurement systems where uncertainties can be impacted on a global scale by, for

instance, location or time. The dataset consists of four clusters of 30 observations, each

sampled from a separate Gaussian distribution with mean and full rank covariance

matrices known. The scatterplot of the original data is shown in figure 5.7a.

There are two widely spread clusters (black and white) with a tighter central cluster

(dark grey) and a completely separated cluster (light grey). Each cluster is sampled from

a Gaussian distribution in 3-dimensional space with a class-specific covariance matrix.

The 120 observations are then treated as a Gaussian distribution with observed mean and
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Figure 5.8: Dissimilarity matrix for the four clusters dataset incorporating uncertainty.
The separated cluster (observations 30 to 60) is significantly more dissimilar to the other
three clusters than they are to one another. Clusters 3 and 4 (observations 60 - 90 and 90 -
120 respectively) are closely located in dissimilarity space as they are in close proximity
in observation space.

known class covariance matrix, i.e.:

P(X j
i ) = N (Xi,S j),

where each observation, i from class j, is characterised by the Gaussian distribution with

covariance matrix, S j, from class j. The measure used to compare the dissimilarity

between the uncertain observations is again the Kullback-Leibler divergence. It should

be noted that the dissimilarity is not symmetrised as it was in [33] by design. There is no

particular reason to impose a metric space on observations, particularly when they are

often better characterised by non-metric distances such as those used in Isomap. The

work in [64] showed that better classification, and therefore discriminative power, was

found by not imposing these standard spaces using instead, for instance,

Psuedo-Euclidean or Krein spaces. The dissimilarity histogram (figure 5.7b) shows that

there is a large concentration of low dissimilarities, caused by the small within class

dissimilarity contributions and close proximity of three of the clusters. The dissimilarity

matrix in figure 5.8 shows that three of the clusters are closely located in dissimilarity

space as well as observation space.

100



Chapter 5 VISUALISATION OF VECTORIAL OBSERVATIONS

It is assumed that the covariance matrices characterising each cluster are known a-priori

(methods to estimate these exist, for instance, the GP-based approach of [72]). This may

seem like an unlikely scenario, but this could be the case in a measurement-specific

application, for instance the seasonal variations in the uncertainties of weather

measurement devices. Using the Kullback-Leibler divergence to compare observations,

the visualisations in figures 5.9 and 5.10 were generated.

A connected graph was achieved using k = 8 neighbours so the neighbourhood sizes for

PLLE, PIso and PWNM were fixed to this value. There are many similarities between

the N-NS (figure 5.9a), PLLE (figure 5.9c), PIso (figure 5.10a) and PWNM (figure

5.10b) visualisations shown. The distinct separation of the light grey cluster is as

expected from the original plot in figure 5.7a. The treatments of this distinct cluster, as

being contained in a region of high probability from the Uncertainty Surface, indicates

the accuracy of the mapping of this cluster. The three remaining clusters are located

almost identically in the PWNM and PLLE visualisations (black - dark grey - white).

The order is switched with the N-NS and PIso mappings (dark grey - black - white). The

mapping surprise is relatively uninformative for the PWNM and PLLE latents. This was

expected since all of the observations were generated using similar, relatively precise

uncertainties, ensuring the relative dissimilarity and covariance is small. The T-NS

mapping found using ν = 4, since there are four clusters, appears as a linear relationship

except for the dark grey cluster (central in the observation space). Even with the linear

relationship there is separation between the light grey cluster and the black cluster. The

level of overlap between the black and white clusters here is comparable with that of

N-NS, despite the self-imposed linear manifold limitation. The GPLVM visualisation in

figure 5.10c separates the clusters in a similar way to PLLE and PWNM. However, the

Posterior Probability surface is indicating the unpopulated areas as high probabilities of

observations which seems unbelievable.

Figures 5.11a, 5.11b, 5.11c show the QTC,QMRRE and LCMC respectively for the

mappings of the clusters dataset. In terms of trustworthiness and continuity, the

mappings are largely the same, except for the superior performance of PWNM. The QTC

decays for neighbourhood regions of greater than 90 observations. This is likely due to
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(b) T-NS
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Figure 5.9: Visualisations of the four clusters data generated by (a) N-NS, (b) T-NS and (c)
PLLE. N-NS and PLLE group the clusters in close proximity in observation space, with
greater levels of spread given to the groups with the largest degree of spread in observation
space (white and black). All three of the above place the separated cluster (having the
highest level of precision) on the highest density area of the Uncertainty Surface. T-NS
finds a largely linear structure with the central overlapping cluster separated. This cluster
is situated in the lower probability region. The most anomalous observations come from
the separated clusters in N-NS and T-NS. The mapping surprise for PLLE is largely the
same, showing no surprising observations. The neighbourhood size of k = 8 is therefore
large enough to weight neighbourhoods in the 30 observation clusters without achieving
equal weightings.
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Figure 5.10: Visualisations of the four clusters dataset using (a) PIso, (b) PWNM and (c)
GPLVM. PIso and PWNM map the separated cluster far from the others, whereas GPLVM
leaves a smaller gap between it and the black cluster. In the PIso visualisation the black
cluster is spread far, overlapping with both the dark grey cluster (as in observation space)
and with the white cluster (unlike in the observation space). The dark grey and light grey
clusters are mapped to high probability areas on the Uncertainty Surface, as with PWNM.
The mapping surprise in PIso highlights the separated cluster as being anomalous, caused
by the large geodesic distances between the black clusters’ points in the far right of the
space. The mapping surprise is less spread in PWNM but the cluster separation and
groupings appear faithfully preserved. The GPLVM latent space has prevented the dark
grey cluster from overlapping with the white cluster as it did in observation space and it
has disconnected high probability islands of certainty away from data points.
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(b) QMRRE
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Figure 5.11: Quality criterion for visualisations: (a) QTC, (b) QMRRE and (c) LCMC.
PWNM outperforms the other mappings in terms of neighbourhood rankings and the
trustworthiness is higher for neighbourhoods less than 90. There is a decay in QTC for
all visualisations beyond this point as it concerns the relationship between the three con-
nected clusters and the separated cluster. The worst performance is seen in N-NS and
PIso due to the loss in continuity between the overlapping clusters which are forced to
go from dark grey to black to white instead of being centered at the dark grey cluster.
The QMRRE results are, however, better than the performance on the MNist dataset and
appear constant beyond neighbourhoods of 60 relating to two adjoining clusters. Overall,
PWNM and PLLE have generated the most reliable visualisation spaces.

104



Chapter 5 VISUALISATION OF VECTORIAL OBSERVATIONS

the fact there are four clusters each consisting of 30 points with three of those in close

proximity, causing a loss in T and C when the final separated cluster is considered. The

visualisations are considered truthful with a QTC of almost 0.9 for three quarters of the

dataset. The QMRRE results (figure 5.11b) paint a similar picture with all mappings

performing well in preserving the data ranking of observations. There is a steady drop in

performance of neighbourhood sizes between 3 and 60 before approaching a constant

rank error. As with QTC, PWNM performs the best for this dataset; followed by PLLE.

These methods use only local graph structures to embed observations which will have

benefitted the clustered nature of the dataset. PIso and N-NS perform the worst in terms

of all measures, possibly due to the global focus of the training procedure which has

changed the topological ordering of points. The geodesic distances in PIso appear to

have disproportionately extended the dissimilarities between some observations, causing

neighbourhood links to be broken. The results for the LCMC (figure 5.11c) shows steady

performance decays for neighbourhoods greater than three as well. PWNM boasts the

best results for neighbourhoods of between 8 and 60 observations, neighbourhoods of

greater than 60 become relatively indistinguishible for the methods used.

The quality measures indicate the best mapping was produced using the PWNM

algorithm. The latent space is visually appealing, showing the four clear clusters

appropriately with a representative Uncertainty Surface. The mapping surprise performs,

for the most part, intuitively highlighting the separated cluster as the most anomalous.

5.4 Punctured Sphere Dataset

The Punctured Sphere dataset is an artificially generated structure in 3-dimensional

space shown in figure 5.12a using the mani toolbox [73]. It is a popular test for

topographic mapping techniques as many struggle with appropriately mapping the sparse

sampling region compared to the densely populated open top. The hole at the sphere top

also poses a problem and can cause different mappings for geodesic versus Euclidean

based dissimilarity mappings, for example in [15]. The sphere used here was generated

with 350 observations in a deterministic way. These points were then subjected to
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(b) Dissimilarity Histogram

Figure 5.12: (a) The punctured sphere observation space and (b) histogram of dissimi-
larities. Plotted points are coloured from observation 1 (white) at the sphere base to 350
(black) at the open top of the manifold. The open top of the sphere structure is clear with
the densely-sampled region of black points here. The uncertainties imposed on the man-
ifold make some points appear to be perturbed and separated from the smooth structure.
The histogram of dissimilarities shows that many of the observations are close in dissim-
ilarity space as many are concentrated towards the top of the densely populated structure.
The larger dissimilarities are caused by the sparsely sampled observations at the base of
the sphere.

data-specific uncertainties from randomly created covariance matrices such that each

observation is a full-rank elliptical Normal distribution with observed mean. The

covariances were generated as:

Si = AAT +0.1tr(AAT )I3,

where A is a 3×3 matrix where entries are randomly generated numbers in the interval

[0,0.5]. This interval was chosen such that the overall structure of the manifold is not lost

by these perturbations. The right hand term above ensures that the matrix is numerically

stable for inversion. A Tikhonov regularization scheme could also have been used in the

case the matrix is not stable for inversion. As with the previous two examples in this

chapter the mappings are performed with the uncertainties assumed known.

The dissimilarity between observations is again taken to be the Kullback-Leibler

divergence between the observed Normal distributions. The histogram of dissimilarities
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Figure 5.13: Dissimilarity matrix for the uncertain punctured sphere dataset. Low values
for the Kullback-Leibler divergence are seen in the bottom right and top left of the dis-
similarity matrix, relating to the observations at the open top of the sphere. The larger
dissimilarities are found at the observations from the sphere base (observations 1 to 50)
with some anomalies appearing throughout the dataset, e.g. the dissimilarities with re-
spect to observation 149 are higher than expected due to an unusual covariance structure.
The matrix is not symmetric as would be expected since the Kullback-Leibler divergence
is not symmetrised, as in section 5.3. It may not be clear, but the diagonal elements of the
matrix (the self-dissimilarities) are all zero. The larger dissimilarities seen in the horizon-
tal lines are numerical artefacts from the inversion of some of the matrices, having larger
values than the rest of the matrices.

in figure 5.12b emphasises the densely populated region at the top of the sphere. The

larger dissimilarities are caused by the sparsely populated base of the sphere. This is also

seen in the dissimilarity matrix of figure 5.13 where there are few observations with high

levels of relative dissimilarity.

The visualisation spaces generated from the above described sphere are shown in figures

5.14 and 5.15. A fully connected graph was created by using k = 8 neighbours and

therefore used for PIso, PLLE and PWNM. The degrees of freedom is fixed to ν = 3 in

T-NS as the observations are in 3-dimensional space.

It is clear that there are many similarities between the mappings of N-NS (figure 5.14a),

PLLE (figure 5.14c), PIso (figure 5.15a). The sphere has been compressed from above at

an angle in a similar way to the Sammon mapping in [15]. The sparser sampled sides of

the structure are peeled away on the left hand side with larger separation than that of the

top of the original structure. The seven observations from the bottom of the structure are
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(a) N-NS

 

 

(b) T-NS
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Figure 5.14: Visualisations of the uncertain punctured sphere dataset using (a) N-NS, (b)
T-NS and (c) PLLE. The N-NS visualisation appears to be a side view of the sphere with
the bottom observations torn to the left side of the visualisation space. The Uncertainty
Surface is flat as with the MNist dataset because of the relatively high precision of each
observation. The mapping surprise highlights some of the observations from the side
of the structure as being anomalous due to them being located off of the surface of the
sphere in the observation space. T-NS has found an entirely linear structure to represent
the data, tearing the manifold along the side. This introduces a discontinuity and impacts
the mapping quality in figure 5.17. The PLLE visualisation is a more top-down view than
the N-NS, highlighting similar anomalies. The Uncertainty Surface intuitively highlights
more densely populated areas as being expected. This is caused by the LLE initialisation.
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Figure 5.15: Visualisations of the uncertain punctured sphere dataset using (a) PIso, (b)
PWNM and (c) GPLVM. The PIso mapping has preserved the topological ordering of
the dataset with observations from the base of the sphere pulled to the far left of the
visualisation space. The mapping surprise highlights the same anomalies as the N-NS
mapping and the Uncertainty Surface appears flat. The PWNM visualisation unfolds the
sphere from the open top, placing the densely sampled top on the higher probability region
of the Uncertainty Surface. Higher mapping surprise is seen in the sparsely sampled base
of the structure. The mapping surprise is distorted by the uncertainties of a small number
of observations. The GPLVM latent space squashes the structure in a similar way to PIso
but separates along the middle. The posterior probability surface is again misleading,
finding both high and low probability regions in the densely populated regions.
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placed within the centre of the N-NS and PIso manifolds. Interestingly, the PIso and

N-NS mappings place the latent means in almost identical relative positions. The PLLE

mapping is found by squashing the sphere from above with the left hand side points

being spread, leaving the right hand side points in microclusters with the higher top

points. The Uncertainty Surfaces from N-NS and PIso are uninformative. This is caused

by the large relative dissimilarities between observations which ensures the means are

separated in terms of absolute positions. This separation is at a level where the precision

of the uncertainty matrices appears as a set of delta peaks along the surface. On the other

hand, the PLLE mapping often places the means closer together in terms of their

absolute positions since the cost function does not relate directly to the observation

space. The Uncertainty Surface for PLLE appropriately described the densely populated

areas in latent space as higher probabilities (pink). It is apparent that the covariance

matrices of the latent distributions are not simply isotropic, due to the visible horizontal

striations on the Uncertainty Surface. This emphasises the benefits of choosing the SVD

approach for embedding a covariance matrix in a 2-dimensional space over the

determinant-based method described in section 3.3. The determinant-based embedding

of Si would result in large isotropic uncertanties which are not present in the original

covariance matrix, replacing the striations with circles of equivalent size. T-NS (figure

5.14b) again minimises its STRESS measure by tearing the structure open directly down

the side and finding a linear latent relationship between the observations. The latent

means are often placed atop of one another and the Uncertainty Surface is uninformative.

With this in mind, the visualisation is considered to be poor for this dataset. PWNM

(figure 5.15b) tears the structure open from the open top creating a continuous circle of

the top-most observations with the sparser sampled sides contained within this circle.

The denser areas of the visualisation space are contained within higher probability areas

of the Uncertainty Surface with the horizontal lines similar to those in PLLE. The

mapping surprise highlights similar points in N-NS, PIso and PLLE as being unusual,

often the points from the side where the sparser sampling from observation space begins.

Interestingly, PWNM highlights the central points using the Fisher Information measure,

making them larger, which, one would naturally assume, are the most dissimilar
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observations. The GPLVM mapping (figure 5.15c), based on deterministic points as

observations, seems to tear the structure in half prior to enforcing a squashing motion.

The points in the two halves are clustered appropriately but this will have a significant

impact on the trustworthiness and rank error of the mapping. This illustrates that the

noisy structure is not a simple manifold to visualise, as the deterministic version in [15]

is. The posterior distribution in the latent space is again difficult to understand with high

point density areas occuring in low probability spaces and low point density areas

occuring in high probability spaces. As with the T-NS mapping, the tearing motion is

hard to interpret and the underlying latent distribution makes the GPLVM visualisation a

poorer mapping of the dataset than most of the other probabilitic mappings above.

Given the entirely linear structure found by T-NS, the experiment was re-run increasing

ν gradually. The mapping results improved until ν = 35. Beyond this point the mapping

becomes algebraically similar to N-NS and therefore the choice of latent distributions

should be Gaussian instead of T-distributed. Figure 5.16 shows the mapping of the

punctured sphere with ν = 35 degrees of freedom. A linear structure is still present, but

the curvature is also imposed when the top-most observations from the sphere are

considered. This mapping was re-run with different initialisations, in an attempt to test if

this was a poor local minima, without change. The Uncertainty Surface is informative in

a similar way to that of PWNM, with higher probabilities over the denser regions.

Mapping surprise considers the bottom-most observations as anomalous, but also some

of the top-most observations at the start of the puncture. This mapping, although not as

visually appealing as the others, is a vast improvement upon the original T-NS mapping.

The quality criterion for the punctured sphere dataset are shown in figures 5.17a, 5.17b

and 5.17c. The results are shown for the above mappings including the ν = 35 mapping

of T-NS for comparison. The performance for QTC decays for neighbourhoods greater

than 60 for all mappings. The results for N-NS are best, with PIso behaving similarly

until the general performance drop. The T-NS (ν = 3) mapping is the poorest in terms of

all criterion, however for ν = 35 the mapping is only slightly worse than the N-NS and

PIso despite the largely linear reconstruction of many observations. This steady decay

for all mappings indicates a good global reconstruction (better than the MNist dataset
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Figure 5.16: T-NS mapping of the uncertain punctured sphere dataset with ν = 35. The
mapping is more representative of the observation space with a more circular structure
than the original mapping in figure 5.14b. The mapping surprise finds the observations
at the base of the structure anomalous as is expected. The more informative Uncertainty
Surface indicates nearly all observations occur in the high probability region.

reconstruction for instance). The QMRRE and LCMC criterion behave the same for each

of the mappings, except that the performance for QMRRE decays slowly, almost to a

constant, past neighbourhoods of size 20 and the LCMC decays quickly beyond

neighbourhoods of size 25. These results are also an improvement on the MNist dataset

despite the increased difficulty caused by the multiple covariance matrices and larger

dataset for the punctured sphere structure. Interestingly, the mapping generated by

PWNM is similar to that described in [15] as being a best case scenario for the dataset,

found by unfolding the sphere from the open top. However, the quality criterion rank the

performance of this mapping worse than NS-based methods, resembling the Sammon

map of the original dataset shown in [15]. The N-NS and PIso visualisations perform the

best in terms of the quality criterion.

5.5 Overview

This chapter has implemented the probabilistic algorithms developed in chapter 3 with

the uncertainty measures of chapter 4 on three vectorial datasets. The datasets consist of

uncertain observations initially with one global uncertainty measure for the MNist

dataset. The same algorithms are then implemented on the four clusters dataset with

class-specific covariance matrices. The final dataset, the punctured sphere, involved
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(b) QMRRE
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(c) LCMC

Figure 5.17: Quality criterion for visualisations of the uncertain punctured sphere dataset:
(a) QTC, (b) QMRRE and (c) LCMC. PIso and N-NS perform almost identically achieving
high rank preservation (QMRRE) and better trustworthiness (QTC) than all other mappings.
T-NS with ν = 35 performs almost as well, despite part of the visualisation being approx-
imately linear. T-NS with ν = 3 achieves poor results as expected. PLLE ahieves the
middle results for the group again.

observation-specific covariances in the mappings. Overall, the mappings perform

similarly for all three tasks with T-NS being the most unusual. The choice of the

neighbourhood size, k, make PLLE, PIso and PWNM more awkward to set, but PIso

seems to perform as well as N-NS with connected graphs. The visualisation spaces
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Dataset Best Worst
MNist N-NS / T-NS PWNM
Four clusters PWNM PIso
Punctured Sphere N-NS T-NS(ν = 4) / PWNM

Table 5.1: Best and worst performance of visualisation quality criterion for vectorial
datasets

generated are similar, but N-NS does the best at conveying different levels of mapping

surprise, indicating good data interpolation. PIso can overestimate the dissimilarities by

using geodesic distances. GPLVM generates interesting visualisation structures but the

posterior probability maps (the GPLVM version of the Uncertainty Surfaces) have a

negative impact on the interpretation of the visualisations when compared to the RBF

counterparts. The lack of mapping surprise here offers the other five algorithms an

additional benefit over visualisations generated using GPs.

Table 5.1 shows the best and worst performance results for the datasets used in this

chapter. The best visualisations of the proposed methods appear to be generated using

N-NS and PIso, however the quality of these visualisations for the four clusters dataset is

the worst, as shown in figure 5.11. PLLE consistently achieves the average performance

with relatively useful and informative Uncertainty Surfaces. This is an interesting result

since in [17] LLE performs poorly compared to many other algorithms when tested on

datasets such as those used in this chapter. A T-distributed latent space in PLLE may

improve these surfaces, for instance like the T-NS visualisation of the MNist dataset. On

the other hand, the mapping surprise is relatively uninformative for PLLE compared with

N-NS and PIso for these datasets. It should be noted that T-NS is introduced in this

thesis as an alternative to N-NS and not necessarily as an improvement. As such, the

paramter choice of ν should be application specific and no grounded methods for the

choice are proposed in this thesis. It is clear that no single mapping outperforms the

others in all cases. This is a general result comparable with that of classifiers in machine

learning, such that no single topographic visualisation algorithm is ‘best’ in all scenarios.

The merits and pitfalls of each individual algorithm must be taken into account when

choosing which visualisation algorithm to use.

In future work the sensitivity of the mapping surprise measure in PLLE will be tested on
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more diverse datasets. The next chapter introduces the concept of Residual Modelling, a

novel approach for generating dissimilarity matrices from time series observations.
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6
Visualisation of Time Series:

The Method of Residual

Modelling

‘The shortest path between two truths in the real

domain passes through the complex domain.’

- Jacques Hadamard

6.1 Introduction

Unlike the previous chapter, uncertainties in time series cannot be treated simply as

observations with a mean and covariance matrix. The purpose of this chapter is to show

how time series observations, even deterministic, can be transformed to where they can

be described in terms of a dissimilarity matrix. A new technique, outlined in [28] and

[70] which is named Residual Modelling in this thesis, states that the most important part

of an observed time series is not the deterministic signal, but the changes in residual

distributions over time.
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The assumption of Residual Modelling is that data observations are the result of an

underlying, unobserved generator. This generator is typically stochastic and, during the

observation stage, the subject of an unknown noise process. Assuming that the noise

process, and therefore the generator, can be estimated is optimistic and unrealistic for

most data scenarios. As such, it is proposed that when searching for anomalies in time

series we can characterise how unusual an observation is based upon the fluctuations in

the residual model, comprising both incorrectly estimated signal and additional noise

components. To paraphrase John Wheeler; ‘the generator is in the fluctuations’. This

runs counter to traditional signal processing. The advantage of Residual Modelling is

that it does not require an accurate signal model and is not reliant on any unrealistic

assumptions as other areas are, for instance the Gaussian Process Time Series model

[74].

The intended application of this work is for human visualisation of complex data for

anomaly detection. This is particularly important in certain domains, for example;

defence, such as the detection of submarine signatures in SONAR [27]; healthcare, with

the detection of patients’ critical care anomalies in time series [75]; and other integrated

critical systems. As more of these systems are becoming automated, problems such as

high false alarm rates and reliability arise. With this in mind, the human interpretation of

data is vital. As such, humans should be able to visualise and utilise as much information

as possible from data, placing them at the heart of the decision making process.

6.2 Residual Modelling

Core to the principle of Residual Modelling is the fact that an observed noisy time series

can be described in terms of a deterministic signal and the residual then described

through a noise distribution. In traditional time series modelling, for example in [76], an

observation is described as an Auto-regressive Moving Average (ARMA) model. The

AR components, of delay length m, are first fixed and Gaussian distributions are used as

the MA components. AR components of a specified time delay (model order) are fit

using the Yule-Walker equations to minimise the mean-square error (MSE). In the case
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where the model order is unknown the partial auto-correlation function (PACF) is used.

The PACF fits models of different time delays to a set of training data and the model

order minimising the MSE is selected.

Traditional linear models are often incapable of appropriately characterising and

interpolating real-world observations. As such, the AR model can be replaced with a

nonlinear AR (NAR) model. The coefficients should be fit by a suitably adaptive

deterministic nonlinear interpolator. RBF networks and Support Vector Machines

(SVMs) are popular choices for this task. One typically thinks of SVMs in a two-class

classification setting, however they can be set in a regression context in the same

‘maximum margin’ framework for instance in [77] ([2] provides an introduction to SVM

regression). Despite often outperforming RBFs in classification tasks, SVMs are not as

well suited to the regression required by Residual Modelling. The gradient descent

optimisation over the nonconvex SVM cost function can cause an SVM to fit the same

observation differently depending on parameter initialisation. This can lead to a

significant change in residuals which will create an artificial anomaly. Therefore

regression SVM’s are not suitable base models for approximating the time series

generator. As such the direct pseudo-inverse optimisation of RBF networks makes them

well suited to this task.

The State Space model for observations, xt , of dimensions 1×K, can be written as:

xt = θθθtW +εεεt , (6.1)

where θθθt is a vector consisting of a nonlinear functional over the delay matrix of

observations. The delay matrix is denoted Xt−m:t−1, a matrix where the rows consist of a

delay of xt from t−m to t−1, namely [xt−m, . . . ,xt−1]. The length of the delay, m, is

known in this chapter as the model order. As such, the dimensions of Xt−m:t−1 are

(m−1)×K. W in the above equation are the weights, and εεεt is a 1×K vector, relating to

a noise process. θθθ is determined by a nonlinear function:

θθθt = f(Xt−m:t−1) , (6.2)

118



Chapter 6VISUALISATION OF TIME SERIES: THE METHOD OF RESIDUAL MODELLING

which is approximated by some interpolation tool. Traditionally the εεεt term is

incorporated into the nonlinearity f such that the process becomes a NARMA model,

however that is not a requirement here. NARMA models often suffer from basic

assumptions such as Gaussian noise and the sensitivity to the choice of ‘f’.

Once the observations are concatenated into a delay matrix then f, θθθ and W can be fit

using a variant of the PACF. In the RBF case, θθθt = f(Xt−m:t−1) = φ‖Xt−m:t−1−C‖2

where C is the matrix set of network centres and φ a nonlinear basis function, for

example a spline or squared exponential function. The weights, W , in equation (6.1) are

then optimised as W = Θ
†
t Xm:t , with Xm:t representing t−m training observations in K

dimensions and Θ is the matrix set concatenating θθθi for i = m : t. The dimensions of θθθt

are 1×M, for M network centres, and W is of size M×K. Repeating this process for

different delay lengths, m, performs the same role as the PACF and allows for m to be

fixed.

With the deterministic signal model characterised, the noise process can be assessed.

Since εεεt is the residual noise process it seems natural to look at the squared errors:

E
[
εεε

2
t
]
= (xt−ΘtW )2 , (6.3)

but the outliers may distort the distribution of εεεt . As such, it is preferable to look at the

absolute error:

E [εεεt ] = |xt−θtW |. (6.4)

It is obvious that P(E [εεεt ]) will, in general, be non-Gaussian. In order to visualise the

observed time series in a topographic way, a dissimilarity matrix must be constructed.

The approach we take is to base the dissimilarity calculatation for time series around the

‘distances’ between the distributions. P(E [εεεt ]) can be estimated in one of three ways

depending on the observations:

1. Univariate observations with Gamma noise, with no prior knowledge of

background noise process,

2. Univariate observations with application driven noise model,
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3. Multivariate observations with noise proxy (the reason for using a proxy instead of

a distribution will become clear in section 6.4).

The Gamma distribution is chosen for the standard univariate observations since E [εεεt ] is,

by construction, greater than zero and should, for a suitably interpolated time series, be

distributed close to zero. This shows why a Gaussian distribution is not appropriate and

in general a Gamma distribution fits this framework. The noise proxy in the third case is

used instead of attempting to estimate the residual distribution and will be properly

justified in section 6.4. The following section will demonstrate the first case, using data

taken from Dutch power consumption from 1997. The third case will then be used to

visualise pre-seizure EEG data. Finally, the second case will be tested on real world

SONAR data with a physically motivated compound mixture model. The SONAR

application is an extension to the standard Residual Modelling framework since for the

Dutch Power and EEG datasets we are searching for anomalies in a single signal. In the

SONAR domain there are multiple signals to search across for anomalies and as such the

relative changes in the predicted generator, as well as in the residuals, must be analysed.

In its current form the GPLVM cannot generate a latent space from arbitrary

dissimilarity matrix observations. In order to generate comparative visualisations, the

dissimilarity matrices formed for the above datasets will be used to create a vector

observation space, Ȳ ∈ RN , i.e. the dimensionality of the embedded points is the number

of observations, N. The Sammon map can take these dissimilarity matrices as input, dx,

and generate a set of pseudo-observations, Ȳ of dimension N, in a lossless way.

Following this phase, the pseudo-observation vectors, in the artificial high dimensional

space, can be visualised using GPLVM. As with chapter 5, GTM is deemed unsuitable

for mapping high dimensional observations, particularly when the pseudo-observations

are of dimension N. Other methods do not construct a latent distribution and as such do

not provide an informative comparison to the proposed methods.

The figures in this chapter are to be interpreted as those from chapter 5 were. Each

observation is plotted as a circular point, in this chapter shaded from observation 1

(white) to the final observation (black). The points sit upon the Uncertainty Surface
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Figure 6.1: (a) Sample week of the Dutch Power dataset signal and (b) the histogram
of dissimilarities. The sample signal is taken from the second week in January showing
typical power consumption for the weekdays (Monday to Friday) with fluctuating levels of
lower consumption over the weekend. The weeks start on a Wednesday for this analysis
since January 1st 1997 was a Wednesday. The histogram of dissimilarities shows the
observed week-long signals are closely located in dissimilarity space, largely concentrated
between 0 and 0.5.

heatmap with pink indicating high probability and blue low probability regions. The size

of each point is given by the mapping uncertainty, FIi, defined in chapter 4 for each of

the models. Again, to avoid confusion between mapping uncertainty and the Uncertainty

Surface, the term ‘surprise’ will be used instead of mapping uncertainty, FIi.

6.3 Univariate Time Series: Dutch Power Data

The dataset taken from [78] consists of electrical power consumption measurements for

1997 in Holland. There were 96 measurements per day taken for the 365 days in the

year. The visualisations will be used to identify weeks (672 samples) where the power

consumption is anomalous. Figure 6.1a shows a typical week’s power consumption; the

second week in January. Using the framework of Residual Modelling we first need to fit

the dynamics with a model, estimate the residual distribution function, and then use the

Kullback-Leibler divergence between distributions to visualise dissimilarities between

each week’s power consumptions.
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Figure 6.2: (a) Nonlinear PACF coefficients for the Dutch Power dataset and (b) sample
residuals for one week of observation data with Gamma distribution fit plotted in red. The
MSE-minimising NAR order is 13. The residual histogram for the sample week shown in
figure 6.1a is modelled with a Gamma distribution, achieving a satisfactory fit.

The deterministic signal is fit with an NAR model by an RBF network with 30 centres

(similar models were trained with up to 100 centres with no change in PACF) and an

‘r log(r)’ nonlinearity. The nonlinear PACF errors are shown in figure 6.2a for m = 2 to

14. The MSE minimising NAR order over the typical week training period from figure

6.1a is 13, fixing m. This value does not seem to have any significant physical meaning.

Following this, the weights from the state space model are fixed. Each week’s

observations are propagated through the RBF network such that the set of residual

samples for each week, εt can be found. A typical week’s residual (E [εεεt ]) histogram is

shown in figure 6.2b. We assume the residuals are sampled from a distribution function

which we need to identify and estimate. A Gamma distribution:

Gam(z|α,β) = β
αzα−1

(
1

Γ(α)

)
exp(−zβ) ,

is used to characterise the residuals. This is plotted as the red line for the histogram in

figure 6.2b.

The parameters of the distribution are re-estimated from the residuals each week.

The dissimilarity between observations is given by a dissimilarity between these Gamma
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Figure 6.3: Plot of the values of α against β fit to the Dutch Power dataset. There is a
clear correlation between the two variables in addition to several outliers which will be
identified in the dissimilarity framework of Residual Modelling.

distributions. The Kullback-Leibler divergence is the standard choice [79]:

KLGam
(
Pi(αi,βi)‖Pj(α j,β j)

)
= (αi−α j)Ψ(αi)− log(Γ(αi))+ log

(
Γ(α j)

)
+

+α j
(
log(βi)− log(β j)

)
+αi

(
β j−βi

βi

)
,

(6.5)

where αi,βi represent the Gamma parameters for the residuals of week i. The resulting

dissimilarity matrix is shown in figure 6.4.

Each week has an inherent observation uncertainty; given by the variance of the Gamma

distribution:

Var(z) =
α

β2 ,

which will be used to generate isotropic Gaussians in the 2-dimensional visualisation

spaces. A neighbourhood size of k = 5 creates a fully connected graph and is therefore

fixed for PLLE, PIso and PWNM. The resulting visualisation spaces are shown in figures

6.5 and 6.6.

Separately from this work, in [80], the HOT-SAX anomaly detection algorithm identifies

three irregularities:

• Week 20, Ascension Thursday on 8th May,

• Week 13, Easter Sunday with adjoining bank holiday,
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Figure 6.4: Dissimilarity matrix for the Dutch Power dataset. Weeks 13,20 and 51 are
highlighed as moderately anomalous. In addition to this, weeks 18, 19, 21, 26 and 27
are indicated as very dissimilar from the remainder of the dataset. The matrix is not
symmetric since the dissimilarity measure over the residuals, KLGam, is not symmetric.

• Week 51, Christmas period.

The visualisations identify these three periods and also indicate other weeks as more

anomalous due to a lower weekend power usage in addition to the low power

consumption over the non-working weekdays above.

The N-NS and T-NS visualisations of the power consumption data in figures 6.5a and

6.5b respectively have a general cluster where the most visible points are the later weeks

(black). Weeks 13 and 20 are outside of the main cluster in a microcluster. Beyond these

points are the other anomalous weeks as mentioned above (weeks 18,19,21,26,27) with

week 51 (Christmas) contained in the low probability region. PIso (figure 6.6a) performs

similarly to N-NS and T-NS but the geodesic distances seem to overestimate the

dissimilarities for weeks 34 and 46, placing them in the low probability regions

seemingly without cause. In PLLE (figure 6.5c), there is much less clustering, however

all weeks that are anomolous are contained in the light blue region, including weeks

13,20 and 51 as those listed above. The lack of a general cluster makes this

representation less visually appealing than the others, assuming that anomaly detection is

the purpose of the analysis, however, all observations can be seen as opposed to being

placed atop one another as in N-NS. PWNM (figure 6.6b) finds an approximately

quadratic relationship between the observations. Structures of this sort are typical in LE
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Figure 6.5: Visualisations of the Dutch data using N-NS, T-NS and PLLE. N-NS finds an
approximately linear relationship over the observations with weeks 18,19,21,26,27 and 51
being identified as significantly dissimilar from the general cluster of observations. The
surprise is higher for these weeks and the Christmas period of week 51 is mapped to the
low probability region on the far right in N-NS. T-NS finds a similar mapping to N-NS
except that weeks 16,23 and 32 are removed from the general cluster and located in the
top-left of the visualisation space. These weeks are given the highest levels of surprise
for no apparent reason. PLLE (mapped with k = 5 neighbours) provides a more spread
mapping than N-NS and T-NS, with the same weeks as N-NS identified as anomalies and
located in the light blue region. The level of surprise appears to be fairly constant for all
observations, indicating that no single weeks are poorly described by their neighbours in
data space.

125



Chapter 6VISUALISATION OF TIME SERIES: THE METHOD OF RESIDUAL MODELLING

Week 51

Week 34

Week 46

Week 28

(a) PIso

Week 18
Week 34

Week 27

Week 19

Week 26

Week 21

Week 13

Week 51

(b) PWNM

Week 18

Week 43

Weeks 
19 & 26

Week 38

Week 51

(c) GPLVM

Figure 6.6: Visualisations of the Dutch data using PIso, PWNM and GPLVM. The data
representation of PIso is poorer than that of all other new probabilistic mappings. Weeks
46 and 34 are placed in low probability regions on the upper-right and bottom of the visu-
alisation space respectively. The anomalies indicated in the dissimilarity matrix of figure
6.4 are not well separated from the general cluster of weeks and given a low level of
surprise. PWNM finds an altogether different mapping with an approximately quadratic
relationship between observations. The anomalous weeks indicated by both low probabil-
ity locations on the Uncertainty Surface and higher surprise agree with the dissimilarity
matrix and N-NS, T-NS and PLLE. The GPLVM latent space identifies the weeks iden-
tified by the dissimilarity matrix as less likely than the more predictable observations.
Interestingly, the Christmas period is seen as more likely than many of the more ‘normal’
weeks; contrary to the results of the dissimilarity matrix.
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and PWNM visualisations due to a local reconstruction of the squared exponential curve.

The most dissimilar observation is identified as week 18 with the other listed weeks as

well as 13,20 and 51 contained within the purple region of lower probabilities of

observation. The GPLVM visualisation (figure 6.6c) finds a similar set of anomalies and

uncertainties as PWNM in addition to other weeks such as 43 and 38. These two weeks

are also identified as unusual in the purple region on the left, again without apparent

cause. The Christmas period is separated from the cluster on the right side. Each

visualisation appears to be a useful representation of the data highlighting anomalies

differently, but largely in agreement on which weeks’ consumptions are unusual.

The QTC results in figure 6.7a show the mappings are largely the same, except those for

T-NS, in terms of trustworthiness, achieving a good mapping up until a neighbourhood

size of 44. The decay for the last eight weeks is caused by the mapping of the eight

anomalous weeks described above; 18,19,21,26,27 found with Residual Modelling and

20,13,51 found by HOT-SAX as well as Residual Modelling. N-NS slightly outperforms

the other algorithms for medium sized neighbourhoods. The similar mapping of T-NS

performs poorly compared to the other algorithms. The visualisation space appears

similar to that of N-NS but the observations placed above the general cluster are not

contained in the same microcluster as in N-NS, causing increases in the number of

neighbourhood leavers. This is also likely the cause for the drop in QMRRE seen in figure

6.7b. The other algorithms perform well, achieving a relatively constant rank error from

neighbourhoods of size 20 and greater. The same situation is seen in the LCMC results

from figure 6.7c except that the quality decays steadily for neighbourhoods greater than

10. Overall N-NS outperforms the other algorithms in terms of visualisation quality,

whilst achieving an informative representation of the data. The surprise levels are

relatively flat, but the anomalous weeks are still highlighted.

6.4 Multivariate Time Series: EEG Seizure data

Electroencephalography (EEG) recordings were taken from [81] for the purpose of

multivariate Residual Modelling. Three separate hour long segments of the dataset for
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Figure 6.7: Quality criterion for visualisations of the Dutch Power data: (a) QTC, (b)
QMRRE and (c) LCMC. The trustworthiness of the mappings is high for the dataset until
the decay for the final eight neighbours of the dataset. These neighbourhoods definitely
include all weeks defined as anomalous by the Residual Modelling process. As such, their
placement in the visualisation space is a difficult task. QMRRE is approximately constant
beyond neighbourhoods of 20. The LCMC decay is steady beyond neighbourhoods of
ten, likely due to the close proximity of many observations mapped to a general cluster
as in N-NS, T-NS and PIso. T-NS performs worst over the dataset, most likely due to the
placement of the points above the general cluster. The best global performance is seen in
the N-NS visualisation, however the PWNM performance is similar to that of N-NS with
better QTC and QMRRE for neighbourhoods smaller than five. These results are interesting
given the very different visualisations generated.
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Figure 6.8: (a) Sample of observed signals for the EEG dataset and (b) histogram of dis-
similarities. The signals for each of the 15 dimensions are plotted as different colours and
show a varying dynamic structure over each observed dimension. The dissimilarities be-
tween each observed minute are multimodal with most of the dissimilarities concentrated
between 2.5 and 10 and a tighter cluster centered at 15 relating to the comparison between
all normal and anomalous observations.

one patient are used for visualisation in this section. The first hour segment was used to

train the Residual Modelling RBF interpolator and the RBF networks for visualisation.

The remaining two segments are a separate uneventful hour and a pre-seizure hour of

observations. The pre-seizure data consists of the sensor recordings for 65 to 5 minutes

prior to the seizure episode. The purpose of the dataset is to develop new early warning

seizure prediction algorithms. The recordings were made using a 15 lead EEG with a

frequency sampling rate of 5000 samples per second. Successful visualisations will

highlight the third segment as being anomalous, preferably early on in the recording. An

example of the time series taken from the initial training segment is shown in figure 6.8a.

The 15-dimensional time series is fit with a nonlinear vector auto-regressive (NVAR)

process using an RBF network. The nonlinearity used is again ‘r log(r)’ with 150

centres; training the weights on 20 minutes worth of data. Models were also fit with 250

and 500 centres with no significant change in MSE or in PACF coeffecients, except for

the increase in computational complexity. The nonlinear PACF coefficients are shown in

figure 6.9 and a NAR order of five is chosen to minimise the MSE. The parameters of the
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Figure 6.9: Nonlinear PACF errors for the EEG dataset. An RBF NAR order of five
minimises the MSE over the training dataset. Larger NAR orders cause increasing MSE
which indicates overfitting.

RBF are then fixed. The residuals, εεεt can be defined as in equation (6.4), however

specifying noise distributions in a multivariate case is not the same as for the univariate

case in the preceding section.

Estimating probability distributions in high dimensions is not a straightforward task, as

described in [82], therefore a proxy for a noise model was introduced in [28]. Since

anomalies in the model fit behave differently for different dimensions the residual

sample covariance matrix, S, contains the required information:

S =
1

(N−m)
(X−ΘW )T (X−ΘW ) , (6.6)

where Θ is the concatenated matrix set of θθθ vectors, W the weight matrix and X the

matrix set of observations. The dimensions of X is 4995×15 for each second (given by

the frequency, 5000, less the delay length, 5), Θ is 4995×150 (given by the 150 centres)

and W is 150×15 (given by the 150 centres and the 15-dimensional observations). Each

multi-sensor observation can now be described by a stationary, or quasi-stationary,

covariance matrix, S, of dimensions 15×15. For the EEG data, the NVAR models each

minute by a non-overlapping window of 5 time series samples per dimension, creating

60 covariance matrices per hour long data segment. For this learning task the RBF

extensions from chapter 4 will be tested. The first normal dataset will be used to train the
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Figure 6.10: Dissimilarity matrix for the EEG dataset. The data used in the RBF inter-
polation over new data is the leftmost 60 × 180 thin matrix, separated by the black line.
Large dissimilarities are observed when comparing the dissimilarity between the normal
segments (observations 1 to 60 and 61 to 120) and the pre-seizure segment (observations
121 to 180).

visualisation RBF networks then, using these mappings in feed-forward mode, the other

normal and pre-seizure segments will be interpolated (or potentially extrapolated).

Visualisation of the three sections reduces to creating an RBF mapping for visualising

the relative dissimilarities between the 60 covariance matrices. Following this, the next

120 covariance matrices from the two test data sections were propagated through this

network. The dissimilarity between covariance matrices can be computed as in equation

(3.10). For this dataset the dissimilarties are concentrated in entirely disjoint regions of

dissimilarity space, presenting a problem for visualisation algorithms. These disjoins can

force the mappings to sit multiple latent means atop of one another. To avoid this, a

logarithmic transform can be imposed upon d(Xi,X j). The resulting histogram is shown

in figure 6.8b and the dissimilarity matrix is shown in figure 6.10.

The neighbourhood graph is connected at k = 8 and the degrees of freedom are indicated

by the observation dimensionality (ν = 15), fixing these values for the relevant

mappings. Visualisations generated from the training set (plotted as white circles) with

test sets (light grey for normal and dark grey/black for pre-seizure) superimposed for

comparison are displayed in figures 6.11 and 6.12.

All mappings place the original normal training data in the high probability areas of the
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Figure 6.11: Visualisations of the EEG data using N-NS, T-NS and PLLE. The points rep-
resent one minute of data with 60 white (representing trained ‘normal’ data), 60 light grey
(representing interpolated ‘normal’ data) and 60 dark grey/black (represnting interpolated
pre-seizure data). N-NS and T-NS both map the normal datasets to higher probability
areas of the Uncertainty Surface and identify the pre-seizure segment as anomalous. The
surprise in both cases highlights the initial observations as these have precise covariance
structures and average levels of dissimilarity with respect to the RBF centres used for the
mapping. The PLLE mapping clusters the two normal segments and maps 65-60 min-
utes prior to the seizure to the low probability region of the Uncertainty Surface. The
pre-seizure segment is mapped with larger spread however, it is placed in the higher prob-
ability region of the visualisation space.

132



Chapter 6VISUALISATION OF TIME SERIES: THE METHOD OF RESIDUAL MODELLING

Pre-seizure

(a) PIso

Pre-seizure
65 – 55 & 
5 minutes 
prior

(b) PWNM

Normal

(c) GPLVM

Figure 6.12: Visualisations of the EEG data using PIso, PWNM and GPLVM. PIso maps
the three EEG data segments to tight distinct clusters, often placing multiple observations
atop of one another. The highest surprise is found by the second normal segment, contrary
to all other visualisations. The pre-seizure segment is all mapped to the low probability re-
gion which, although potentially correct for the dissimilarity matrix, the anomalies within
the segment are not clearly identifiable. PWNM finds a higher level of similarity between
the two normal data segments than the general pre-seizure segment. Minutes 65-55 and 5
preceding the seizure are also mapped to the low probability region. These observations
are also highlighted as surprising. The GPLVM latent space has tight clustering of the
first two segments, similar to PIso, with a single unexpected outlier and a much larger
degree of spread given to the pre-seizure segment.
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Uncertainty Surface, as expected. There is some separation from the main cluster of

training data to the first set of observations, made obvious in the N-NS, T-NS and

PWNM mappings of figures 6.11a, 6.11b and 6.12b respectively. The normal test set is

placed within the higher probability areas (pink/purple) in all mappings, close to the

training data as expected. T-NS and N-NS find more unusual structures than the clusters

in the other mappings as the observations appear to be moving in a circular (T-NS) or

curved (N-NS) trajectory. N-NS, T-NS and PIso map the pre-seizure data to an entirely

disjoint low probability region as desired. PLLE and PWNM map the pre-seizure data to

a separate region of the high probability area on the Uncertainty Surface, visually

identifiable as different to the ‘normal’ data segments. The larger separation between

anomalies in PIso is caused by the geodesic distances artifically increasing the

dissimilarities. The surprise indicates the initial observations as unusual, possibly due to

unusual patient activity in their ‘normal’ EEG segment or to overtraining in the NVAR

signal model. PWNM is the only mapping which identifies the anomalies as having a

high surprise, particularly the 65-55 and 5 minutes prior to the seizure. On the other

hand, the other mappings find the anomalies to have low surprise, but sit in the low

probability area of the Uncertainty Surface. All of the mappings created can be

considered as good visualisations as they are informative and highlight the pre-seizure

data, despite the challenging interpolation task that has been used. The GPLVM mapping

was trained on all observations and as such is not performing the same interpolation task

of the other mappings. The tight clustering of the two normal segments (apart from the

unusually placed observation in the top right) are somewhat similar to the clustering

effect seen in PIso. The pre-seizure data is spread throughout the latent space, largely

mapped to high probability regions of the posterior probability surface. This spread and

latent probabilities of the pre-seizure data run contrary to the self-similarities of the

dissimilarity matrix, in particular the lower left corner of figure 6.10.

The QTC rankings for the visualisations shown in figure 6.13a show almost identical

performance for all algorithms over all neighbourhoods. T-NS has a lower

trustworthiness over local clusters however, the interpolation to new points in

neighbourhoods greater than 60 is slightly better than the other mappings. N-NS has a
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Figure 6.13: Quality criterion for visualisations: (a) QTC, (b) QMRRE , (c) LCMC. The
quality criterion for the EEG dataset presents some unusual results not seen on other
datasets in this thesis. The trustworthiness of the mappings is good for the within segment
quality (up to 60 neighbours) and decays up to neighbourhoods of 140 following which
it increases up to 180 for all mappings except N-NS. Within this increasing section of
QTC, T-NS outperforms the other mappings. Surprisingly, in terms of QMRRE and LCMC,
PIso performs the best despite the tight clusters and uninformative visualisation space.
Considering the mappings were generated by training the RBF networks on the first 60
minutes of observations and extrapolating to the other two segments, the quality of the
visualisations is overall very high.
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rapid decay when all observations are considered, indicating the final neighbours are not

well preserved in the mapping. The trustworthiness of all mappings over the dataset is

surprisingly high, comparable to other datasets considered in this thesis. PIso

outperforms the other mappings in terms of QMRRE (figure 6.13b), all of which achieve a

steady decay in rank error from a neighbourhood of 10 onwards. Despite being worse

than the QMRRE on other datasets, the results are still good when the interpolation of

unseen data is taken into account. The T-NS mapping performs much worse than the

other mappings, indicating the circular trajectories have not caused a good rank

reconstruction of the observations. The same results are apparent in the LCMC criterion

(figure 6.13c) with a rapid decay from neighbourhoods greater than 60.

This dataset provides an example of where the visualisation space and quality measures

must be used in conjunction to justify which mapping is ‘best’. Given the above

mappings and similar performance of the mappings other than T-NS and PIso, the

PWNM mapping offers the most informative representation of the data. Due to the good

trustworthiness and rank-based results it can be concluded that the GPLVM mapping is a

poorer representation of the observations than the probabilistic methods introduced in

this thesis. The quality criterion for the proposed algorithms show the robustness of the

learned mappings. There is no significant performance decay beyond the training data

sizes (60) when compared to other datasets and as such the RBF extensions from chapter

4 appear to be reliable.

6.5 Univariate Time Series & Noise Model: SONAR dataset

The simple univariate framework from section 6.3 is not always applicable to real-world

observations. The cause of this is the assumed Gamma distribution over residuals. In

[83] samples were compared in a dissimilarity framework using their histograms, but

this can be very sensitive to outliers. Kernel density estimation can be used to smooth

out this effect, however the kernel-based distributions are often still too simple, or too

generalised to optimise for the characterisation of residuals in, for instance the SONAR

domain. GMMs provide a flexible framework for describing arbitrary distributions and
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can be compared using equation (3.26), but the order of the GMM is not always

straightforward to choose. Dirichlet-based schemes can assist in tuning the model order,

but these can require Gibbs sampling [84], such as in [85], or a MAP approximation

[86]. These points aside, it is preferable in the Signal Processing field to use a realistic

noise model wherever possible. This section will outline one such model for the SONAR

domain.

The SONAR dataset used in this section was supplied by the Defence Science and

Technology Laboratory (Dstl). It consists of a 32-hydrophone recording from a line

array in Portland bay. These 32-hydrophone time series are then linearly beamformed,

creating 33 beams (artificial sensors), as is typical in RADAR and SONAR systems, for

analysis. The sampling rate is 394 Hz and the weather conditions were all fine with only

wave backscatter and some surface ships present. During the recording a speedboat

travelled parallel to the array repeatedly with another ship intermittently present. In this

thesis the time series analysis and visualisation will only consider one second of data,

but the methods used can consider longer time segments or extrapolate to continuous

data analysis as required. In order to summarise the activity across the beams, figure

6.14a shows the total signal energy over the period of time we will analyse:

Energy(K) =
T

∑
t=1

(xK
t )

2,

where xK
t represents the observed time series in beam K at time t. From this plot it is

clear there are two contacts centred in beams 3 (unknown ship) and 21 (DSTL exercise

ship). These two contacts have similar observed energies and similar, but not identical,

signal characteristics.

In the SONAR domain individual beams are visually compared by human operators

using time-frequency plots called LOFARgrams (a rotated Spectrogram) in order to

analyse and localise separate contacts. In keeping with this single-beam analysis

framework, the observed time series are treated as 33 univariate observations to be

visualised instead of a 33-dimensional observation as in section 6.4 (this approach was
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Figure 6.14: (a) The SONAR signal energy in observation space and (b) histogram of
dissimilarities. The high signal energies in beams 1 to 5 and 21 to 25 indicates that two
contacts are present. The histogram of dissimilarities shows a wide spread of observations
since 0≤ di j ≤ 2 with only the self-dissimilarities (dii) being zero.

implemented in a deterministic visualisation scheme in [28]). Following the first step of

the Residual Modelling process, a signal model is fit to the time series prior to the

residual characteristication. A nonlinear model is required to properly characterise the

time series and as such a NAR model is fit to the data. The NAR RBF uses 30 centres

with a thin plate spline, ‘r2 log(r)’, nonlinearity. The nonlinear PACF orders are shown

in figure 6.15a showing 14 as the optimal order. The nonlinearity was chosen as it

outperformed the ‘r log(r)’ basis function on training data. An example of the residuals’

histogram for beam 21 is shown in figure 6.15b.

A fifth-order GMM is a suitably flexible model to characterise these residuals, however a

more realistic noise model from [28] will be introduced to describe the residuals. The

known physical noise sources, and their respective probability distributions, can be

combined to better represent the residuals from a background additive noise perspective.

A fifth-order compound mixture model is used for this task, consisting of:

1. Extraneous signals - Laplace distribution. Any prominent signals not well fit by

the NAR model should appear in a small area of residual space and as such the

sharply peaked Laplace distribution, with parameters given by ‘Laplace(x|µ,b)’, is
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Figure 6.15: (a) The SONAR nonlinear PACF and (b) histogram of dissimilarities with
noise mixture model fit plotted in red. The MSE is minimised by an RBF NAR order
of 14, with more complex models achieving a better fit over the training data. The fit of
the noise model to the histogram of residuals is satisfactory with the effects of outliers
smoothed out. The sharp peaks in the zero to one range are modelled tightly by the model
due to the Laplace and Normal distributions.

an appropriate choice.

2. Clutter - K and Rayleigh distributions. It is well etablished in the SONAR

literature that K, with parameters given by ‘K(x|ν, l)’, and Rayleigh, with

parameters given by ‘Rayleigh(x|σ)’, distributions are suitable for describing

background clutter such as biological and environmental effects in the underwater

environment [87].

3. Rain - Gamma distribution. Typically in the literature the Poisson distribution is

used to describe rain [88], however the other distributions in this mixture are

continuous and therefore the Gamma, with parameters given by ‘Gamma(x|α,β)’,

which behaves similarly to the Poisson, is chosen.

4. Remainder - Normal, with parameters given by N (x|m,s). Any leftover residual

elements can be fit with a Normal distribution.
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Figure 6.16: Negative log-likelihoods for the mixture model fit to one second of SONAR
data. The ML fit is on average better than that of the GMM with a lower standard devia-
tion. The MAP fit of the noise model is an improvement on the ML ensuring a smoother
likelihood fit over adjacent beams.

The overall compound mixture model is given by:

P(x|λ)= π1Laplace(x|µ,b)+π2Rayleigh(x|σ)+π3K(x|ν, l)+π4Gamma(x|α,β)+π5N (x|m,s),

using λ to denote the set of hyperparameters. This model can be implemented in a

Maximum Likelihood (ML) framework or, provided appropriate priors are specified, a

more robust Maximum-a-Posteriori (MAP) scheme can be employed. In this thesis the

mixture components are fit using a hybrid version of gradient descent. This is required

since optimising the parameters of the K-distribution using gradient descent often leads

to unrealistic parameters [89]. In order to remedy this, the parameters of the K

distributions are first fit to the residuals in a Bayesian scheme introduced in [90] before

fitting the remaining parameters, mixture weights and hyperparameters, in the MAP

mixture case, using gradient descent over the negative log-likelihood. Appendix E

describes the gradient descent procedure for the MAP scheme of the 24 parameters.

Figure 6.16 shows a comparison between the negative log-likelihood of the GMM, ML

and MAP of the mixtures fit.

The ML and MAP mixtures fit the residuals better than the GMM. The MAP fit is

smoother and more reliable than the ML. The mixture coefficients, the distributional
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Figure 6.17: Mixture weights for the mixture model fit to one second of SONAR data. The
weighting for the K-distribution is highest since the other weather conditions typically
modelled by the other mixture components were not present in the dataset. The weighting
of each distribution changes smoothly over the beams as expected.

weights, for the five probability distributions are shown in figure 6.17. All parameters

here are fit with SCG and as such are subject to local minima. The local minima in the

optimisation can force the distributions to swap mixture weights without necessarily

changing the overall shape of the distribution, typically for the Gamma and

K-distributions as they can have similar shapes. K-distributions are useful for

characterising wave backscatter and as such is the dominant distribution for this DSTL

dataset. It should be noted that the purpose of this noise model is not to infer the weather

condition based on the residual distribution.

The residuals for each beam are compared using a suitable dissimilarity measure over

the mixture models. The K-distribution is difficult to involve in many dissimilarity

measures and other combinations, such as the integrals over Laplace and Rayleigh

products, are analytically intractable. This prevents even variational bounds, for instance

over the Kullback-Leibler divergence as in equation (3.26). Without the possibility of a

variational approach, a sampling scheme must be considered to solve the integrals

required for dissimilarity measures. As with variational techniques, a similar problem

arises since inversion of the K-distribution required for many sampling schemes is not

analytically tractable either. Fortunately, a biased sampling approach can be

implemented, evaluating the mixtures at regular intervals as if it were a deterministic
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function. The SONAR noise mixture undergoes biased sampling to generate a

1000-dimensional probability vector for each beam’s mixture model. Instead of standard

entropy measures, the similarity between mixtures is more important in terms of their

overlap. In order to compare the overlap between distributions, the Bhattacharyya

distance is used:

dBH(i, j) = ∑
l

√
ql

iq
l
j, (6.7)

where ql
i represents dimension l of the biased sampling vector, qi, for beam i. In SONAR

there are a wide variety of observable signals which may cause spurious values of

dBH(i, j). This could cause the Residual Modelling process to highlight beams with any

contact present to be seen as anomalies. On the contrary, they may be unimportant

merchant vessels, for instance. In the one-contact case this is useful, however as multiple

contacts are often present the NAR signal model must be incorporated into the

dissimilarity framework to avoid this effect. Signals in the SONAR domain are often

periodic and as such analysed in the Fourier domain to distinguish the difference

between contacts. The squared Euclidean distance between the Power Spectral Densities

of the predicted (NAR) signals is useful for segmenting different types of targets [27]:

dPSD(i, j) = (si− s j)
T (si− s j), (6.8)

where ‘si = |
∫ T

0 xi
t exp{− j2πt}dt|’ (with j the imaginary number

√
−1) is the Fourier

vector corresponding to the observed time series xi
t . The two dissimilarity measures from

equations (6.7) and (6.8) can be combined once normalised (to be at maximum

d(i, j) = 1) so that one does not far outweigh the other:

dSONAR(i, j) = (λd)dPSD(i, j)+(1−λd)dBH(i, j), (6.9)

where λd is a dissimilarity weighting parameter greater than zero, set to 0.5 in [28]. The

histogram of dissimilarities is shown in figure 6.14b and the beam dissimilarity matrix in

figure 6.18. Large relative dissimilarities are observed in the groups associated with the

signal energy plot (beams 1-5 and 21-25 containing contacts). It is clear that the contact
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Figure 6.18: Dissimilarity matrix for the SONAR dataset. The dissimilarity matrix is
symmetric due to the symmetric pairwise dissimilarity measures used. The beams identi-
fied in the Signal Energy plot (figure 6.14a) as containing contacts (1 to 5 and 21 to 25)
are significantly dissimilar from the other beams. The two contacts are similar but not
identical.

centred in beam 21 is not identical to that centred in beam 3, due to the low, but nonzero,

entries in the dissimilarity matrix.

The visualisations of the SONAR dataset are shown in figures 6.19 and 6.20. Connected

graphs were achieved for k = 5; fixing the parameter for PIso, PLLE and PWNM. This is

a realistic neighbourhood parameter in the SONAR domain since a signal from a

reasonably quiet target, such as a submarine, would be expected to be contained within

five beams, with larger and louder contacts often visible in larger sections of the array.

Since the observations are made in a 33 beam beamformed array, the degrees of

freedom, ν, in T-NS is fixed to 33.

The N-NS visualisation (figure 6.19a) places the bulk of beam observations in a cluster

of high probability, with beams 3 and 4 on the border of a low probability region (light

blue) and the contact centred in beams 21 and 22 in the low probability area of the

Uncertainty Surface. The surprise highlights this as an anomaly compared to the other

observations. As such, this is considered a good representation of the data. T-NS (figure

6.19b) performs similarly to N-NS, isolating beams 3,4,21 and 22 as anomalous by

locating them in the lower probability region. These observations are given a slightly

higher level of surprise than the noise-only beams. PLLE (figure 6.19c) clusters both
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Beams 21 & 22

Beams 3 & 4

(a) N-NS

Beams 21 & 22

Beams 3 & 4

(b) T-NS

Beams 21 - 27

Beams 1 - 6

(c) PLLE

Figure 6.19: Visualisations of the SONAR data using (a) N-NS, (b) T-NS and (c) PLLE.
The N-NS visualisation highlights the beams containing contacts as unusual, locating
them on the right side of the low probability region. The surprise indicates these beams
as more anomalous than the noise-only beams. T-NS finds a very similar mapping to N-
NS. PLLE clusters the beams with contacts in the bottom of the visualisation space. The
noisy beams are more spread and mapped to a slightly higher probability region of the
Uncertainty Surface. The surprise levels are relatively flat, indicating a good linear recon-
struction of observations by their neighbours. This clustering is a useful representation
for creating summaries of the dataset, however the spread of beams as in N-NS and T-NS
is not reflected here.
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Figure 6.20: Visualisations of the SONAR data using (a) PIso, (b) PWNM and (c)
GPLVM. PIso maps the observations to a curved structure with contacts placed on the
left hand side and noisy beams on the right hand side. The beams with contacts are placed
in the lower probability region with a low level of surprise. This is caused by the large
geodesic dissimilarity between these observations resulting in a low FIi. The PWNM
mapping clusters the noisy beams and maps the interesting beams on a trajectory towards
the low probability region of the Uncertainty Surface. The surprise indicates these beams
as anomalous as one would expect. The GPLVM mapping locates the noisy beams in the
centre and lower left and right corners. The other beams are separated from the cluster,
but not easily indicated as anomalous. The posterior probability surface is misleading,
assigning high probabilities to regions where there are no observations.
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contacts and noise only beams together in the low probability area. The noise-only

beams are less clustered but occur in a higher probability region than the

signal-containing beams. The surprise here is again uninformative. PIso finds a similar

visualisation to T-NS but with a more continuous, curved latent shape. The

signal-containing beams leave the higher probability areas of the Uncertainty Surface on

the left hand side. Higher surprise is given to beams 20 and 25; the edges of the second

contact. PWNM maps the observations to a general cluster of noisy beams and locates

the signal-containing beams into the low probability region. The neighbourhood size has

caused the two separate contacts to be considered as almost identical, placing the means

in close proximity to one another. Higher surprise here is given to beam 21, where the

second contact is centred. This mapping is an interesting summary of the observation

space separating signal and noise characteristics in an intuitive way. The GPLVM

mapping is very spread out with the noise-containing beams in the centre and lower parts

of the latent space. The remaining points represent the beams observing the contacts.

The clustering here is representative of the dissimilarity matrix. However, the posterior

probability surface shown is confusing and unbelievable, given that there are no

observations contained within the high probability regions. It is also not clear which

points represent unusual observations.

Figure 6.21 shows the quality criterion for the above visualisations of the SONAR

dataset. With similar latent spaces the N-NS, T-NS and PIso results are very similar,

outperforming PLLE and PWNM in all mapping criteria. The results for these three

mappings indicate that the visualisation spaces are very good recreations of the observed

data and therefore reliable. The large clusters in PLLE and PWNM have lowered the

trustworthiness and rank errors compared to the other mappings. This is, however, an

example of where the visualisations themselves must be taken into account as well as the

quality criteria, since these representations are more useful for the sole purpose of

anomaly detection and decision making processes involving humans.

146



Chapter 6VISUALISATION OF TIME SERIES: THE METHOD OF RESIDUAL MODELLING

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Neighbourhood Size

Q
T
C

 

 

N−NS

T−NS

PLLE

PIso

PWNM

(a) QTC

5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

0.9

1

Neighbourhood Size

Q
M
R
R
E

 

 

N−NS

T−NS

PLLE

PIso

PWNM

(b) QMRRE

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Neighbourhood Size

L
C
M
C

 

 

N−NS

T−NS

PLLE

PIso

PWNM

(c) LCMC

Figure 6.21: Quality criterion for visualisations: (a) QTC, (b) QMRRE and (c) LCMC. The
trustworthiness of the mappings is lower for PLLE and PWNM due to the clustering of
contact-filled and noisy beams respectively. The performace for N-NS is better than the
other mappings with a very high result for both QTC and QMRRE . The decay in LCMC
for N-NS, PIso and T-NS is at a far lower rate than for other datasets used in this thesis.
This is in part due to the smaller dataset used here with only 33 observations, but also due
to the better separation between observations in the dissimilarity matrix. T-NS performs
surprisingly well on this dataset, potentially due to the high degrees of freedom (ν = 33)
which allows the mapping to be less constrained than in the small ν case and generate
similar visualisation spaces to N-NS. The geodesic dissimilarities in PIso allow the sepa-
ration between contact-filled and noise-filled beams to be greater than in N-NS, damaging
the mapping quality.
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Dataset Best Worst
Dutch Power N-NS T-NS
EEG PIso T-NS / PLLE
SONAR N-NS PLLE

Table 6.1: Comparison of mapping quality criteria for time series datasets. The best
mappings are found by N-NS in two of the datasets, with PIso achieving similar mappings.
T-NS and PLLE achieved the worst mappings on the Dutch and EEG datasets. PLLE also
achieved far worse mapping results for the SONAR dataset but the T-NS mapping was
improved on this dataset, potentially due to the higher degrees of freedom used.

6.6 Overview

In this chapter the framework of Residual Modelling has been introduced for

transforming observed time series into a dissimilarity framework. These time series,

even when deterministic, can be visualised whilst incorporating the model and

observation uncertainties.

Three distinct datasets from different fields of signal processing have been analysed with

the Residual Modelling methodology. Anomalies in the Dutch Power and SONAR

datasets were highlighted as expected. Additional outliers were identified in the Dutch

Power dataset which were not found by the popular HOT-SAX anomaly detection

algorithm. The multivariate EEG dataset was successfully analysed, predicting seizure

behaviour up to one hour in advance.

From the dissimilarity matrix output of the Residual Modelling process, the probabilistic

mappings from chapter 3 were used to visualise the data. The visualisation spaces were

all informative, trustworthy and preserved rank well. Table 6.1 shows the best and worst

mapping performance for the three datasets used in this chapter.

Surprisingly, having been the consistently average mapping quality for vectorial datasets

PLLE is the worst algorithm for time series visualisation. The reason for this is the

subject of further research, however it may be the case that dissimilarity matrices require

larger neighbourhoods than those which create a fully connected graph.

The next and final chapter shows how the thesis’ central tenet of

visualisation-through-dissimilarity, can be used as a ‘deep-learning’ architecture. This
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new method, the Cascading RBF, circumvents several problems of the traditional

approach, but with a performance better than the current world-best.
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7 Cascading RBFs

‘With four parameters I can fit an elephant, and

with five I can make him wiggle his trunk.’

- John von Neumann

7.1 Introduction

Classifiers in Machine Learning such as RBFs or Multi-layer Perceptrons (MLPs) have

been used successfully as black-box tools. The generalisation properties and accuracy

made them particularly popular in the 1980’s and 1990’s. In the late 1990’s relational

kernel models such as the support vector machine (SVM) were favoured over Artificial

Neural Networks (ANNs) such as MLPs and RBFs. Their results were due to the

expansion of the data space using the kernel trick outlined in, for example, [2]. This

involves expanding the dimension of observations processed by these algorithms as they

perform operations on dissimilarity (kernel) matrices instead of on the observations. The
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concept of stacking MLPs was attempted in the literature, for example in [91], but

always resulted in poor local minima. In 2006 Hinton and Salakhutdinov [92] revived

the idea of ‘deep learning’ where each layer of a stacked, many multiple-layer

architecture is pre-trained using a dimensionality reduction technique known as the

Auto-Encoder (AE) [93]. In this chapter a similarly motivated approach to training a

deep classifier consisting of RBFs is used. The cascaded approach uses a topographic

form of dimension reduction instead of the AE approach. This new functional mapping

is then tested on the MNist handwritten digits database in a classification task.

7.2 Background

We first consider the two mainstream approaches of deep learning based on the MLP and

the Convnet, before introducing the new Cascaded RBF model.

7.2.1 Deep MLPs

The current approach [94] to constructing a deep MLP consists of stacking multiple AEs

and a final single layer classifier. The AE relies on the use of an MLP network, typically

expressed as:

Y =W 2
φ(XW 1),

where W 1 and W 2 are learned through gradient descent of the network error. φ is a

nonlinear activation function, typically the hyperbolic tangent function (tanh). X are the

observations and Y the targets. The AE is given by the relation:

Y = f(X), X̂ = f(Y ),

Y =W 2
φ(XW 1), X̂ =W 4

φ(YW 3) =W 4
φ(W 2

φ(XW 1)W 3), (7.1)

where W l is a weight matrix for layer l, X are observations and X̂ the reconstructed

version of X . This architecture is depicted in figure 7.1a. The weights are optimised by
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AE

AE

AE

Classifier

Output

Input

(a) Pre-Training Phase

Output Error

(b) Back-propagation Training

Figure 7.1: Training procedure for deep MLPs. The inputs are propagated through mul-
tiple AE layers before a final layer classifier is trained to map from the final AE layer to
the observed targets, creating the network outputs (left). Once pretraining is complete,
the misclassification error between the network outputs and observed targets is backprop-
agated to each of the weight matrices in each AE layer and the classifier layer (right).

minimising the squared error:

EAE =
N

∑
i=1
‖xi− x̂i‖2, (7.2)

using gradient descent. It is clear from section 2 that this is a nonlinear extension to

PCA. As such, the AE is incapable of creating a topographic map since relative

dissimilarities are not preserved. The Y layer is used as a feature space descriptor of the

observations. In order to prevent the weights from approaching the identity matrix,

modifications to the AE such as weight decays, the Denoising AE [95] and Sparse AE

[96] have been implemented.

The Y feature space can then be used as input for a classifier, in a two layer deep MLP, or

another AE, in a deep MLP with greater than two layers. Figure 7.1a shows a four layer

deep MLP in the pre-training phase. Once each AE is trained to map from layer to layer,

the final layer is trained as a standard classifier based on minimising the MSE. These
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pre-trained weights are used as the starting point for a deep MLP classifier:

X0 −−→
W 0

X1 −−→
W 1

X2 −−→
W 2

X3 −−→
W 3

Y,

Now all weights are trained to minimise the MSE on the classification task using

backpropogation of the error derivatives; shown in figure 7.1b. Note that the AE does not

always need to reduce dimensionality. Successful results such as in [97] where a five

layer network has feature spaces with dimensions: 784-500-500-2000-30. The final layer

here is a nearest neighbour classifier, but the AE training and backpropagation remain

the same. Using a deep MLP reduced the misclassification error for the MNist database

from 2.45% [98] to 0.83% [99].

7.2.2 Convnets

A popular network used for image classification tasks is the Convolutional Neural

Network (Convnet) [100]. The main difference between a Convnet and a deep MLP is

that Convnets use weight convolutions and multiplications:

X1 =W 2(X0 ∗W 1),

X2 =W 4(X1 ∗W 3),

Y =W 6(X2 ∗W 5),

where ∗ represents the convolution operator in the above 2-layer Convnet. Since their

creation Convnets have been used in a deep architecture to mimic the biological model

for the human visual system. The best MNist results based on Convnet classification is a

0.23% misclassification error [101]. This used 35 Convnets in a committee with a two

layer deep MLP used for data fusion. This network is an extremely complex

parameterised model (almost 109 free parameters) requiring a sophisticated training

procedure and observation alterations which improves the robustness and accuracy. The

observations undergo a noising process at each layer in order to improve robustness and
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Figure 7.2: Adversarial example showing an image classified correctly as a panda (57.7%
confidence) with random noise, classified as a nematode (8.2% confidence) which when
added still appear to be a panda but is incorrectly classified as a gibbon (99.3% confi-
dence)

artifically extend the size of the dataset to ensure there are enough different observations

to train the large networks upon. Interestingly, the reasons for the success and focus of

Convnets are not reliably known, as shown by the results of [102].

7.2.3 Issues

The results achieved using deep MLPs and Convnets are impressive. However, some

issues with the learned mappings have been discovered. Two significant problems are

outlined in [103] and [104].

Firstly, the mappings define unstable functions in the observation space. Networks

trained on the MNist and CIFAR [105] image recognition databases were used to map

and classify two sets of images. The first set of images was selected from the training

data which was correctly classified with high confidence. The other set of images was

created by perturbing the first set of images by an amount so small that the difference

was visually imperceptible. The second set of images was incorrectly classified with high

confidence, i.e. very small perturbations of input data result in large output deviations.

Two of the images from [104] used to demonstrate this point are shown in figure 7.2.

This example is not unique. The so called ‘adversarial example’ is constructed
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specifically to generate this effect. Algorithms exist to replicate this effect for deep

MLPs and Convnets for any training image [104]. The cause of this problem is the

fractured input space created by the deep learning techniques. The observations are not

smoothly interpolated, causing regions in the neighbourhood of an observation to be

cracked, leading to incorrect interpolation in the data space and therefore incorrect

classification. This is seen in the creation of adversarial examples, which search for a

classification boundary in the neighbourhood of an observation by moving in the

opposite direction of the decreasing cost function. In the case of smooth interpolation

this boundary should be between two observations of different classes, not in the

neighbourhood of observations of the same class, as found in [105]. In the following

section it will be shown that this issue can be avoided by using smooth interpolating

mappings, for instance, an RBF network.

The second issue with current deep learning machines is that of unreliable mappings. In

[103] it was shown that not only is the input space fractured, creating instabilities, but

that MLPs and Convnets can be easily ‘fooled’. Trained networks were made to classify

random noise and other artificially generated images that bore no resemblance to the

class given at the output (for example the random image in figure 7.2). In the following

sections, mapping uncertainty, motivated by Fisher Information as outlined in chapter 4,

will be integrated with the Cascading RBF network. The purpose of this is to help

prevent both of these failings in Deep Learning Machines.

7.3 The Cascading RBF

7.3.1 The Process

The main functional difference between the deep MLP and the Cascading RBF [106] is

that the RBF structure uses topographic mappings optimised against STRESS measures

as intermediate layers in the pre-training phase. RBF networks are in themselves a linear

combination of a set of random basis functions over observed dissimilarities. In a

shallow context RBF networks have been shown to be resistent to adversarial examples
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Figure 7.3: Schematic for a three layer cascading RBF structure mapping inputs, X0, to
predicted class labels, X3. The mapping consists of two NS mappings with large feature
spaces (A and B) and a classifier with a small feature space (C).

[107]. It should be noted that weights in the context of the Cascading RBF will be

denoted Λ as opposed to W to signify the difference in approach from the use of weight

matrices in classical Deep Learning Machines. For illustration of the basic principles,

the example of a three layer cascaded model is used. The extension to further layers will

be obvious. This model, illustrated in figure 7.3, can be expressed as:

• C: Y = Λ3Φ
(
d(X2,C2)

)
,

• B: X2 = Λ2Φ
(
d(X1,C1)

)
,

• A: X1 = Λ1Φ
(
d(X0,C0)

)
.

With the weights, Λl , Φ, the matrix of nonlinearities over the dissimilarities between

feature space (or observation), X l , and centres Cl . The A,B and C notations relate the

above equations to figure 7.3. As with standard RBFs described in Appendix A, the

network centres can be fixed using distributions over the feature spaces, X l , or randomly

drawn from the space. The pre-training phase for the three layer network consists of:

1. Select network centres C0 and use NeuroScale to map from X0 to X1. Any

typically nonlinear basis function Φ used in ANN regression can be used.

However, in light of the effectiveness of non-metric dissimilarity measures as

introduced in [64], particularly measures which can have negative dissimilarities,

splines or terms containing logarithms should be avoided since these require inputs
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to be positive. The dissimilarity measure, d(X l,Cl) should be differentiable with

respect to the inputs, preferably efficiently. Since this layer is trained using

NeuroScale, the weights cannot overtrain and the mapping benefits from a large

feature space, Φ. The cardinality of C0 should be as close to that of X0 as is

feasible. X1 is then fixed in the pre-training process.

2. Select network centres, C1 and use NS to map from X1 to X2 as above. X2 is then

fixed in the pre-training process. The dimensionality of X1 and X2 should be large

since a level of information is invariably lost in the NeuroScale mapping of

dimension reduction. Since NeuroScale does not overtrain, there is no reason for

the dimensionality to be small. In addition to this it is well known that models with

a high number of parameters are better classifiers (typically such models overfit,

but this is not of concern here).

3. Train a classifier to map from X2 to Y to minimise the MSE:

Y = Λ
3
Φ
(
d(X2,C2)

)
⇐ Λ

3 = Φ
(
d(X2,C2)

)†
T,

where T is a matrix of the true class labels. As a classifier, this feature space and

therefore the weight matrix Λ3, should be small to avoid overtraining. The

network has now been pre-trained and two options exist for training the entire

Cascading RBF as a classifier.

(a) As with deep MLPs and Convnets, the weights Λ1,Λ2 and Λ3 can be

re-trained using backpropagation of gradients with respect to the error.

Weight regularisation, such as an L2 penalty, is normally used here to

discourage overtraining.

(b) As discussed in section 2.3.2, the training of the RBF weights in the NS

framework is more efficient when the Shadow Targets algorithm is used than

with standard gradient based methods. In contrast to the network outlined in

section 2.3.2, an adapted Shadow Targets algorithm can still be implemented

in the Cascading RBF. Firstly, the current error is given by:
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ECRBF =
N

∑
i=1
‖Y i−T i‖2,

then the feature space X1 is updated as:

X1← X1−η
∂ECRBF

∂X1 ,

where η is a learning rate. The weight matrix is updated as:

Λ
1 = Φ

(
d(X0,C0)

)†
X1.

The inputs X0 are then mapped to Y to test whether the error has been

reduced. The learning rate, η, is adapted to allow for a steepest descents

approach such that η grows if the ECRBF reduces and vice versa. After some

iterations Λ1 is fixed. The training then moves onto Λ2:

X2← X2−η
∂ECRBF

∂X2 Λ
2 = Φ

(
d(X1,C1)

)†
X2,

again mapping the inputs to Y using the learning rate in a gradient descent

optimisation procedure to minimise the error. Following some stopping

criteria, such as maximum iterations or error convergence rates, Λ2 is then

fixed. Finally, Λ3 is then re-learned in a one step update:

Λ
3 = Φ

(
d(X2,C2)

)†
T.

For the MNist dataset discussed in the next section the retraining of Λ1

required only 20 iterations and Λ2 required 30 iterations to converge to

minima.

The layer-wise gradients are given in Appendix F. We now discuss a practical

implementation of Cascading RBF’s and compare with current state-of-the-art deep

learning techniques.
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Figure 7.4: Schematic for a three layer Cascading RBF structure used on the MNist
dataset, mapping inputs, X0, to predicted class labels, X3. The dimensions of each part
of the mapping are shown at the bottom of the figure. The first two layers are pre-trained
using NS and as such have a larger feature space than the final layer, pre-trained as a
classifier.

7.3.2 The Test: MNist

The MNist database, as described in section 5.1, was used to construct a Cascading RBF.

Since the database contains 60,000 training images there are computational constraints,

particularly the storing, multiplying and pseudo-inversion of a 60,000 ×M matrix, where

M is the number of centres in C0. With this in mind, a Cascading RBF was trained on

sets of 3,500 samples of the training set. In order to make a fully representative classifier

separate Cascading RBFs were trained on disjoint training sets and then subsequently

combined with a fusion of outputs. The dissimilarity measures used were the squared

Euclidean distances, which were more computationally convenient to compute than the

standard Euclidean distance. The images X0
i ∈ R28×28 were treated as 784 dimensional

vector observations, as is typical in the literature. The Cascading RBF architecture used

on this dataset is shown in figure 7.4.

The initial NS mapping takes X0 as 3,500 vectors using 2,800 of these as network

centres. The 784 dimensional X0 is mapped to X1 ∈ R100. The desired nonlinear effect

was a cubic over Euclidean distances so φ = d
3
2 .

The second NS mapping from X1 ∈ R100 uses another randomly chosen 2,800 centres in

X1 to map to X2 ∈ R75. The nonlinearity used is again φ = d
3
2 . The final layer is the

classifier mapping from X2 ∈ R75 to Y ∈ R10. 1,050 of the points from X2 are used as
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network centres with the same nonlinearity as the previous layers. The weights in all

layers are then recomputed using the cascading Shadow Targets algorithm outlined

above.

The Cascading RBF structure was repeated six times on disjoint sets of 3,500 training

samples. The average training error was 0.11% and the average test error, based on the

10,000 test samples, was 4.63% . An equivalent deep MLP using Denoising AEs was

trained using the Deep Learning Toolbox [108] which achieved training and test errors of

21.79% and 20.4% respectively. This performance shows the network is incapable of

appropriately mapping between observations and class labels, matching the accuracy of

the Cascading RBF. MLPs are traditionally considered better classifiers than RBFs as

they perform nonlinear functional learning, focussing on the class boundaries. On the

other hand RBF classification is linear in its weights, focussing on class centres. This is

often a more difficult classification problem for complex observations.

As with the MCDNN described in [101] a fusion model was used to combine the six

Cascading RBFs using an MLP. This nonlinear fusion model then draws on the strengths

of each of the networks, trained on a total of 21,000 data observations. The fusion MLP

took the concatenated Cascading RBF outputs as its input, Ȳ 2 ∈ R60 with a large hidden

layer, H ∈ R50 and output layer Y 2 ∈ R10. The fusion model was trained on all training

examples (60,000) and used a ‘tanh’ nonlinearity. This fusion model achieved a training

error of 0.14%, based on the 60,000 training images, and test error of 0.09%, based on

the 10,000 unseen images. This is a new world record over previously reported results.

These results, along with other published record misclassification rates, are shown in

table 7.1. The topographic mapping of intermediary layers and smoothness in input

space helps the Cascading RBF to generalise well to out of sample data leading to the

impressive results.

7.3.3 Unstable Functions

A simple way to test the instability of the Cascading RBF in a similar way to that of

[105] is to inject small magnitude random noise into a known observation. This
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Approach Test Error
RBF [98] (1998) 3.6%
MLP [98] (1998) 1.6%
MLP [109] (2003) 0.7%
CNN [98] (1998) 0.7%
Virtual SVM [110] (2002) 0.56%
CNN [96] (2006) 0.39%
Deep MLP [111] (2010) 0.35%
CNN Committee [112] (2011) 0.27%
MCDNN [101] (2012) 0.23%
Cascading RBF [106] (2014) 0.09%

Table 7.1: Misclassification rates for several leading MNist classification methods with
years in brackets. The Cascading RBF is a significant improvement over the previous
world record.

observation should be correctly classified and, ideally, the perturbed images should also

be correctly classified. The level of perturbation used is chosen to be at maximum the

distance, di j, to the nearest neighbour j of an observation i (for the MNist dataset this is

18.5481). Perturbations larger than this could easily move the image beyond a class

boundary and appear to be mapped incorrectly to a different class when the mapping is

in fact correct. The example used on a Cascading RBF is a ‘5’ shown in figure (7.5a).

The image undergoes 10,000 separate random perturbations with Gaussian random noise

(σ = 9.2740) with the resulting class predictions shown in figure (7.5b). It can be seen

that the perturbations have not altered the output class as they can do with deep MLPs

and Convnets.

A more thorough approach to proving the stability of the Cascading RBF networks is to

prove that the functions are smooth, as the standard RBF is.

Theorem The Cascading RBF is of class C∞ and therefore smooth.

Proof We can show that the Cascading RBF is smooth by illustrating that the

derivatives of all orders, with respect to the inputs, exist and are continuous. The

derivatives calculated layer-by-layer using the chain rule are contained in Appendix F.

It is clear that the first order derivatives of each individual element exist and are

continuous. Furthermore, it can be shown that derivatives of higher orders exist due to
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Figure 7.5: Adversarial examples with the original image (left) and classification based
on 10000 individual perturbations of the image. The predicted class labels do not change,
ensuring the perturbed images are correctly classified.

the fact that differentiating φ with respect to D in each layer yields a continuous function.

Lemma The above proof relies on the infinite differentiability of φ. Typical functions

used in RBF regression are polyharmonic splines
(
∑ j z j log(z)

)
, polynomials or

Gaussians. In order to preserve the smoothness of the Cascading RBF, preferred

functions are Gaussians or polyharmonics and polynomials should be avoided.

Proposition The deep MLP is a subset of the Cascading RBF with d(X ,C) = XC and

φ = tanh(z). This dissimilarity measure is observed in the case of the Euclidean distance

where the norm of X and C are unity. The cause of the fractures in the input space in

deep MLP’s is the discontinuities caused in the derivatives of the tanh or sigmoid

functions typically used in MLPs. The discontinuities are observed as the functions

approach step functions in the large derivative limit, with obvious discontinuities.

It can be concluded that the function defined by the Cascading RBF is contained

within C∞ and therefore smooth, preventing unstable mappings.
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7.3.4 Unreliable Mappings

Despite being more complex than the standard RBF network used for N-NS, the

mapping uncertainty described in chapter 4 can still be applied. The mapping

uncertainty was given by tr(I(θ)−1) where I(θ) is the Fisher Information Matrix. For a

Normal Distribution with constant scalar variance:

(I(θ))i j =
∂yT

∂θi

(
1

σ2

)
∂y
∂θ j

. (7.3)

The Cascading RBF used here is a pointwise mapping, using the probabilistic alternative

mapping based on N-NS is possible and potentially more accurate, but more

computationally demanding. As such, each output has no individual uncertainty or

corresponding covariance matrix. In order to apply the mapping uncertainty to the

deterministic Cascading RBF, a global variance can be found through the training

process as the MSE:

σ
2 = ECRBF =

1
2N

N

∑
i=1
‖Yi−Ti‖2, (7.4)

describing the uncertainty of a class prediction from all trained observations. This global

variance will be used in the calculation of I(θ) from equation (7.3). The gradients with

respect to the weight parameters Λ1,Λ2 and Λ3 are given in Appendix F. To test the

reliability of a Cascading RBF, 100 training images, 100 test images and 100 images of

random noise at differing intensities were propagated to generate outputs. The resulting

mapping uncertainties, given by FIi = tr(I(θ)−1), for each of these datapoints are shown

in figure 7.6. The mapping uncertainty for the random noise is less than for the standard

images. This is because the dissimilarities between each of the network centres are

approximately equal, and much larger than those of the real images, ensuring

φ(d(Xi,C j)) in each layer is large. This forces the trace of the inverse matrix as given by

equation (4.12) to be lower than for standard images. Typically it is expected that a high

level of mapping uncertainty indicates an anomaly, however this is because such an

observation is usually coupled with a high level of uncertainty. This is not the case here

due to the shared global variance, σ2. It should be noted that the mapping uncertainty
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Figure 7.6: Histogram of mapping uncertaintes for the trained, test and random images for
the MNist dataset Cascading RBF. The random noise images are clearly separated from
the training and test images in terms of their mapping uncertainty. Due to the global vari-
ance used in the caluclation of FIi the anomalies are indicated by a low level of mapping
uncertainty.

can also be implemented at the first layer of the Cascading RBF network acting upon Φ0,

since the anomalous mappings are identified such that the elements of D0 are outside of

the expected range for which the network is trained. This is computationally less

demanding than the calculation of the total mapping uncertainty, but can be a less

sensitive method of anomaly detection than assessing the compounded mapping

uncertainties.

It is clear that the random noise is outside of the expected region of uncertainty. A

Gaussian distribution can be fit to the trained mapping uncertainties providing a

confidence probability. The choice of distribution will be data dependent but a GMM

could be adapted to any dataset as required. Thresholding these probabilities can provide

a simple way of making a ‘null’ classification, for instance, that the observation is

unclassifiable. This is particularly useful since it not only prevents the failings of deep

MLPs and Convnets but provides a simple solution to the difficult problem of

automatically deciding that an observation has no known class. Training classifiers to try

and perform this with random noise has not worked in the literature [104].
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7.4 Overview

Deep learning provides unparalleled results on classification tasks and is the current

topic of research for many in the field of Machine Learning. The failings of the two main

deep architectures currently in use have prompted their reliability to be questioned. The

use of RBF networks as building blocks for creating a Cascading RBF structure, using

dissimilarity-based pre-training motivated from topographic visualisation, avoids these

shortcomings. The Cascading RBF has also been shown to achieve world record

performance when tested on the MNist handwritten digits database. Further work will

incorporate the probabilistic N-NS framework into the network in combination with the

mapping uncertainty measures to build a robust and informative network.
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8 Conclusions

‘Mathematics is written for mathematicians.’

- Nicholaus Copernicus

This chapter will provide a review of the thesis, re-iterate the contributions made and

suggest avenues for ways in which the work presented could be extended.

8.1 Review Of Thesis

An introductory background to some of the popular methods in the field of data

visualisation was given in chapter 2. This review is in no way exhaustive, but provides

the required detail for knowledge of popular methods, particularly those pertinent to the

later work in this thesis. Three criteria for quantitatively analysing visualisation

performance were also outlined. A quantitative approach to assessing quality in

visualisations is particularly important as low-dimensional representations can easily be
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poorly interpreted. It is easy for mappings to create visualisations which appear to have

structure when in fact there is none [49]. In addition to this, different mappings generate

different representations and researchers are not in agreement as to which mapping

creates the ‘best’ visualisations. This highlights the requirement for these performance

criteria.

Chapter 3 extended the deterministic mappings outlined in chapter 2 to allow for

observation uncertainty. This avoids the deficiencies in certain mappings in the presence

of noisy data. The extensions also allow for distributions, instead of points, in the

visualisation space, ensuring they are as representative of the observations as possible.

Chapter 4 proposed a method for representing both the uncertainties generated by

observations and the visualisation mapping itself. These allow for an informative data

respresentation such that outliers can be easily identified. The proposed mappings from

chapter 3 were incorporated into the framework of an RBF network, allowing for

feed-forward projection of new data.

In chapter 5 the new methods of chapters 3 and 4 were implemented on three vectorial

datasets, accounting for data uncertainty. The representations were intuitive, informative

and reliable, as judged by the quality criterion used in this thesis. In the case of the

MNist dataset the probabilistic mappings generated a latent representation with a greater

degree of separation between classes, a desirable property in pattern recognition.

A process for visualising anomalies in time series data, Residual Modelling, was

introduced in chapter 6, following which it was demonstrated on three different datasets.

The novel approach focussed on deviations from an expected signal, and as such fitted

perfectly into the probabilistic visualisation framework.

In contrast to the other areas of the thesis, chapter 7 combined topographic mapping with

a deep learning machine in a classification setting. It was shown that the new Cascading

RBF, when considered as a committee, outperformed other state-of-the-art classifiers, in

addition to possessing other desirable properties such as smoothness and reliability.
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8.2 Contributions

The contributions of this thesis include:

• Probabilistic extensions to NeuroScale, Locally Linear Embedding, Isomap and

Laplacian Eigenmaps were introduced, accounting for observation uncertainty.

• A framework for interpreting observation and the imposed mapping uncertanty in

visualisation spaces was outlined.

• A novel method for detecting anomalies in time series data using topographic

visualisation, Residual Modelling, was described.

• A new form of Deep Learning Machine, the Cascading RBF, consisting of

topographically pre-trained RBF networks was implemented in a classification

setting

8.3 Future Work

1. It was found in chapters 5 and 6 that visualised data observations appear in

clusters; and as such the Uncertainty Surface can have a level of redundancy. This

is caused by the crowding of several of the latent distributions in a relatively small

area of visualisation space. A summary of the mixture distributions which

generate the Uncertainty Surface could be used, also reducing the number of RBF

network centres. The impact of this will be the subject of future research.

2. The representations generated using T-NS appeared to be of worse quality than

those of N-NS. This is possibly due to an incorrectly chosen ‘ν’ parameter

describing the degrees of freedom, however further experimentation on other

datasets is required to prove this.

3. The other probabilistic mappings of chapter 3, PLLE, PIso and PWNM, can also

be extended to allow for a T-distributed latent space instead of the Gaussian latents

used in the current forms. The different error functions of PLLE and PWNM in
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particular may allow for better representations in this instance than those of T-NS.

Other, parameterless, multivariate distributions such as the Multivariate Laplace

[113] will also be considered.

4. The extension of metric MDS using Bregman divergences in [24] showed that the

local mapping quality was improved by altering the standard error functions.

Other divergences were applied to SNE in [114] with significant changes to the

visualisation space. It is expected that these changes and benefits will transfer to

the newly proposed N-NS, T-NS and PIso.

5. It is typical in the literature that dissimilarities in the visualisation space are the

Euclidean distance. In this thesis all probabilistic dissimilarities in the visualisation

space are the Kullback-Leibler divergence. The impact of different dissimilarity

measures is untested and as such will be the subject of future research.
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A Radial Basis Function

networks

A Radial Basis Function (RBF) network [115] is a form of Artificial Neural Network

performing nonlinear interpolation using a combination of basis functions and linear

weights. A historical overview of RBF networks is given in [116]. The network inputs,

Xi, are compared to a series of network centres, C j, such that:

yl
i = ∑

j
Wl jφ

[
d(Xi,C j)

]
, (A.1)

where l is the output dimension and d some dissimilarity measure. In the case that Xi is

vectorial, Xi = xi and C j = c j. Typically d is taken to be the Euclidean distance, but other

measures can be used, particularly if the observations are non-vectorial. The network

centres are treated as prototypes, sampled from the data for example by Gaussian

Mixture Models or randomly chosen from the data. The matrix formed by d(Xi,C j) over

multiple observations, i, can be considered as a dissimilarity space as described in [64].

Methods for prototype selection in these spaces are outlined in [65] but it is particularly
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worthy of note that random selection outperforms many measures for low numbers of

prototypes (e.g. N
2 ) for many datasets. The RBF outputs from equation (A.1) can also be

written in matrix form:

Y = ΦW. (A.2)

The network weights are optimised to minimise the Mean-Square Error (MSE):

ERBF =
1
2 ∑

i
‖ti−yi‖2 =

1
2
‖T −ΦW‖2, (A.3)

where T are the true observed targets. This error function is minimised by setting

W = Φ†T . Minimisation of ERBF is relatively insensitive to the choise of φ, but Splines

(thin plate or Polyharmonic) and Gaussian activation functions are a popular choice. The

nature of the flexibility of the feed-forward RBF and its ability to use any dissimilarity

measure, d, make it suitable for implementation in topographic mappings. It should be

noted that the network is radial because of the radial symmetry in the Euclidean distance.

Despite d sometimes being non-radial in this thesis it will still be referred to as an RBF

as the learning procedure and nature of the centres remains the same.
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B Non-Topographic Visualisation

Mappings

B.1 Introduction

This appendix will introduce three popular visualisation algorithms, T-distributed

Stochastic Neighbour Embedding (T-SNE), the AutoEncoder (AE) and the Deep

Gaussian Process (Deep GP) and justify why they are not used comparatively in this

thesis. The focus of this thesis is on topographic mappings, largely because if a

visualisation is not topographic it can easily lead to unrealistic and untrue interpretations

of the observations. Firstly T-SNE will be outlined and then a comparative example will

show why it cannot map observations topographically. The reasons for which the AE

and Deep GP are not topographic is fairly obvious and therefore do not require the same

level of detail.
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B.2 T-SNE

T-SNE [14] is an extension to the concept of LLE. A distribution is specified over

neighbourhoods such that the probability that an observation j is a neighbour of another

observation i is:

p j|i =
exp{−‖xi−x j‖2/2σ2

i }
∑k 6=i exp{−‖xi−xk‖2/2σ2

i }
, (B.1)

where σi is induced by the distribution over neighbours, called the perplexity:

σi = Perp(pi) = 2H(pi),

H(pi) =−∑
j

p j|i log2(p j|i).

The conditional distribution p j|i can be symmetrised to give pi j:

pi j =
exp{−‖xi−x j‖2/2σ2}

∑l ∑k 6=l exp{−‖xk−xl‖2/2σ2}
. (B.2)

In the original approach to Stochastic Neighbour Embedding (SNE) [117] a Gaussian

distribution is used to model the latent dissimilarities, however this resulted in the

‘crowding problem’. This isue is that moderately distant points in the observation space

will not be given a sufficiently large enough space in a two-dimensional (or

low-dimensional) mapping, compared with the mapping space allocated to nearby

observations. As such T-SNE uses a t-distribution to create a mismatch between the

neighbourhood distributions’ tails of observations (pi j) and visualised points (qi j):

qi j =

(
1+‖yi−y j‖2)−1

∑k 6=l (1+‖yk−yl‖2)
−1 . (B.3)

The mapping error for T-SNE attempts to match qi j and pi j using the Kullback-Leibled

divergence:

ET NSE = KL(P‖Q) = ∑
i

∑
j

pi j log
(

pi j

qi j

)
. (B.4)
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The visualised points, yi, are learned through gradient descent using:

∂ET−SNE

∂yi
= 4∑

j
(pi j−qi j)(yi−y j)(1+‖yi−y j‖2)−1. (B.5)

The error function is nonconvex, often with many poor local minima. As such, the

gradient learning phase requires the use of a momentum term to try and avoid these local

minima. There are three issues with T-SNE which prevent it from mapping

topographically. Firstly the assumption of dissimilarities in observation space being

approximately Gaussian distributed is not suitable for many real world problems. All

datasets considered in this thesis in sections 5 and 6 do not follow this assumption, they

are more closely related to a Gamma distribution. This will cause a poor dissimilarity

representation in observation space, ensuring that the matching T-distribution in latent

space will not topographically map the data.

Secondly the minimisation of the KL between a Gaussian and a T-distribution behaves

strangely when the parameter is the dissimilarity. Ignoring the normalisation constants

the integral is approximately:

KL(P‖Q)≈
∫

exp{−1
2

di j} log

(
exp{−1

2di j}
(1+d∗i j)

−1

)
, (B.6)

where di j and d∗i j represent the dissimilarities in observation and visualisation spaces

respectively. This integral is analytically intractable however, numerical integration

shows the error is reduced when d∗i j� di j, tending towards a constant value (-0.6267 for

the un-normalised integral (B.2)). This issue is equivalent to the possibility of the error

in LLE from equation (2.8) being reduced by artifically rescaling the axis, except that in

LLE there is a constrainty, YY T = I, used to prevent this. This is why the

recommendation in [117] to set the initial neighbourhood probabilities to P← 4P,

artificially increasing the observed dissimilarities, helps in the optimisation process. This

will force qi j to be larger at the initial stages of the training process, attempting to

prevent this problem. Thirdly the T-SNE mapping uses global dissimilarities, similar to

the Sammon Map and as such should preserve global relationships. This is not the case
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Figure B.1: Open box embedded by T-SNE. The mapping has unfolded the box from the
open top. The sides of the structure have been split from the top down with most of the
points joined to the front face. The lid is approximately mapped to a square as in the
observation space. There are however tears in the mapping, with some observations not
evenly spaced along the latent shape of the front face as would be expected. Two points
from the side of the bottom and connected side in visualisation space are incorrectly
separated from their neighbours.

in practice, as will be shown with the Open Box and a randomly generated dataset. The

T-SNE embedding of the Open Box dataset is shown in figure B.1.

It is clear that each face of the box has been preserved at the cost of the global continuity

by tearing open the structure. Figure B.2 shows a comparison of the quality criterion of

the T-SNE box versus the Sammon mapped box.

The local rank errors are better for T-SNE, illustrated by the higher QMRRE and LCMC

however, the poor global trustworthiness of the T-SNE compared to the Sammon box is

concerning. This is caused by the tearing and the imposed curvature of the box faces.

A further illustrative example is that of a series of randomly organised 2-dimensional

points sat on a flat plane in 3-dimensional space (the values of the third dimension are all

0). Both the T-SNE and Sammon Map visualisations should be able to retain the relative

local and global neighbourhoods well in a 2-dimensional visualisation space.

Figure B.3a shows the 3-dimensional observation space in a 2-dimensional view (since

the third dimension is empty). The T-SNE visualisation is shown in figure B.3b and the

Sammon visualisation in (B.3c).
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(b) QMRRE
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Figure B.2: Quality criterion: (a) QTC, (b) QMRRE and (c) LCMC for T-SNE and Sammon
(figure 2.4) mappings of the Open Box dataset. The QTC results for the Sammon visualisa-
tion is far better than the T-SNE mapping for neighbourhoods greater than 60 represting
the inter-face neighbourhoods (each box face consists of 60 points on a 2-dimensional
plane). This worse result for the trustworthiness in T-SNE is caused by the tearing of the
sides and unfolding motion of the mapping compared to the more rigid structure of the
Sammon visualisation. The rank-based performance in terms of QMRRE and LCMC for
T-SNE is slightly better than that of the Sammon map since T-SNE focuses more on the
reconstruction of close neighbourhoods. These results for T-SNE for neighbourhoods up
to 150 are better than all other mappings considered in chapter 2.

189



Appendix B NON-TOPOGRAPHIC VISUALISATION MAPPINGS

           
 

 

 

 

 

 

 

 

 

 

 

(a) Observation Space

(b) T-SNE

(c) Sammon Map

Figure B.3: Visualisations of a randomly generated 2-dimensional dataset embedded in
3-dimensional space. (a) Original points in 3-dimensional space viewed from above, (b)
T-SNE visualisation in 2-dimensional space and (c) Sammon visualisation. The Sammon
reconstruction has preserved both the topological ordering of points and neighbourhood
structures since points in the 2-dimensional space, e.g. the two brown points and the
dark blue point in the bottom left of the 3-dimensional and Sammon mapping are still
close neighbours. The Sammon visualisation has shrunk the relative size of many neigh-
bourhood regions due to the local focus of the STRESS measure. The T-SNE generated
2-dimensional space appears to have randomly re-ordered the points with no logical rea-
son for this. The algorithm was run multiple times achieving this mapping as optimum.
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The Sammon mapping has preserved the topological ordering and local neighbourhoods

of observations. Some points are placed closer or atop one-another which is caused by

the local focus of the Sammon map. A more accurate representation could be found with

the un-normalised metric MDS error, E = ∑i j(dx(i, j)−dy(i, j))2. On the other hand

T-SNE appears to order points in a filled circle, apparently randomly without preserving

nearest neighbours or global neighbourhood structures.

For these three reasons it is concluded that T-SNE is not topographic and therefore not

considered as a comparative method in this thesis. In its’ defence T-SNE does perform

very well in clustering tasks in 2-dimensional spaces, for example the MNist and CIFAR

visualisations found in [118].

B.3 AutoEncoder

The AutoEncoder, as introduced in chapter 7, is a nonlinear extension to PCA using

MLP networks. As such there is no constraint that the mapping is smooth and that

neighbours are preserved, prevent the AE from mapping topographically. The nonlinear

mapping also prevents it from having the dual relationship with MDS as PCA does. As

such, it is also not included in this thesis as a visualisation algorithm.

B.4 Deep Gaussian Process

With the surge in research in deep learning since 2006 using stacked Autoencoders the

parallel using stacked GPs was made in [13]. The training becomes very complex

compared to that of the GPLVM. Model parameters are trained by optimising over the

model evidence in a Bayesian framework:

log [p(Y )] = log
[∫

p(Y |X)p(X |Z)p(Z)dXdZ
]
,

which is analytically intractable. The integral above characterises a 3 layer deep GP with

mappings from Z⇒ X ⇒ Y . The optimisation procedure requires the use of a variational
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lower bound to separate the integral and to introduce approximations to the distribution

p(Z). The asymptotic behaviour of the deep GP is analysed in [119] where it is shown

that arbitrarily deep structures such as this show deficiencies. The dependence of each

layer rests almost entirely on the layer above and the final layer Z often bears no

resemblence to the original observations. The solution proposed to solve this deficiency

allows the deep GP to map complex nonlinear manifolds (still dependent on diagonal

covariance matrices and independent observations and latents). Although it is a

complicated mathematical solution to the problem of deep learning it is incapable of

topographically mapping observations the same way as the GPLVM with back

constraints is and therefore is not discussed further in this thesis.
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C Optimisation of GTM

This appendix details the Expectation-Maximisation (EM) algorithm optimisation of

GTM. The distribution of observations, p(yi|x,W ) are spherical Gaussian kernels,

N (m(x,W ),β−1I). The precision of each Gaussian is β and the mean given by a

parameterised mean function with weights W , m(x,W ). The distibution is therefore:

p(yi|x,W,β) =

(
β

2π

) l
2

exp
[
−β

2
‖yi−m(x,W )‖2

]
, (C.1)

where l is the dimensionality of the observations. The prior distribution over the latent

grid p(x) is given by:

p(x) =
1
c

c

∑
r=1

δ(x−g(r)) =

 0 if x 6= g(r),
1
c if x = g(r),

(C.2)
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where the c points g(r) are on a (rectangular) grid. Visualisation of the grid requires

knowledge of p(x|y,W,β) which by Bayes’ rule is:

p(x|yi,W,β) =
p(yi|x,W,β)p(x)

p(yi|W,β)
.

In order to compute this posterior, the marginal likelihood must be calculated:

p(yi|W,β) =
∫

p(yi|x,W,β)p(x)dx.

This integral is typically analytically intractable for many prior choices but since the

prior is a grid of delta points, the marginal likelihood becomes:

p(yi|W,β) =
1
c

c

∑
r=1

p(yi|g(r),W,β).

The data log-likelihood is given by:

L(W,β) =
N

∑
i=1

log(p(yi|W,β)) .

The mean function in equation (C.1) is typically taken to be an RBF network as

described in appendix A. Other extensions using Gaussian Processes (GPs) and mean

field approximations for the marginal likelihood have also been proposed [42]. Using an

RBF network in this framework allows for an Expectation-Maximisation (EM)

optimisation procedure:

E-step

Calculate the responsibilities P of each latent point wrt. each observation i:

Pi,r(W,β) = p(g(r)|yi,W,β),

= p(g(r)|yi,W,β)p(g(r))
∑

c
s=1 p(g(s)|yi,W,β)p(g(s)) ,

= p(g(r)|yi,W,β)
∑

c
s=1 p(g(s)|yi,W,β) ,

=
N (yi|m(g(r),W ),β−1I)

∑
c
s=1 N (yi|m(g(s),W ),β−1I)

.
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Finally the diagonal matrix G is given by:

Gr,r(W,β) =
N

∑
i=1

Pi,r(W,β),

which defines the total responsibility of each latent point.

M-step

The parameters W,β are updated as follows:

• Ŵ = Y PΦT (ΦGΦT )−1 where Φ is the matrix of basis functions from the RBF

network.

• (β̂−1) = 1
Nc ∑

c
r=1 ∑

N
i=1 Pir(Ŵ ,β)‖yi−m(g(r),Ŵ )‖2.

Convergence can typically be achieved following a few tens of iterations [120].
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D Derivation of Fisher

Information

This appendix derives Fisher Infromation and the Cramer-Rao bound from first

principles. The derivation is taken from [67, p. 29-30].

Consider the class of estimators θ̂(z) that are unbiased, obeying:

〈θ̂(z)−θ〉 ≡
∫

dz[θ̂(z)−θ]p(z|θ) = 0. (D.1)

The PDF p(z|θ) describes the fluctuations in data values z in the presence of the

parameter value θ. PDF p(z|θ) is called the “likelihood”. Differentiation of equation

(D.1) with respect to θ gives:

∫
dz(θ̂−θ)

∂p
∂θ
−

∫
dzp = 0. (D.2)

Using the identity:
∂p
∂θ

= p
∂ log p

∂θ
,
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and the fact that p obeys normalisation such that the right term in equation (D.2) is equal

to one, equation (D.2) becomes:

∫
dz(θ̂−θ)

∂ log p
∂θ

p = 1. (D.3)

By splitting the integrand into two seperate factors we have that:

∫
dz
[

∂ log p
∂θ

√
p
][

(θ̂−θ)
√

p
]
= 1. (D.4)

Squaring equation (D.4) and using the Schwarz inequality gives:

[∫
dz
(

∂ log p
∂θ

)2

p

][∫
dz(θ̂−θ)2 p

]
≥ 1. (D.5)

The left factor is defined to be the Fisher Information, I(θ):

I(θ)≡
∫

dz
(

∂ log p
∂θ

)2

p≡

〈(
∂ log p

∂θ

)2
〉
, p≡ p(z|θ), (D.6)

where the notation 〈〉 is an average operator. The right factor in equation (D.5) defines

the mean-square error:

e2 ≡
∫

dz[θ̂(z)−θ]2 p≡ 〈[θ̂(z)−θ]2〉. (D.7)

Substituting equations (D.6), (D.7) into equation (D.5) gives the important result:

e2I(θ)≥ 1,

which is more commonly stated as the Cramer-Rao bound:

e2 ≥ 1
I(θ)

. (D.8)

Practically this means that the variance of an unbiased estimator of θ is bounded by the

inverse of the Fisher Information of p(z|θ). This inequality holds for the multiparameter
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case, where the covariance of an unbiased estimator of θθθ based on an observation system

T (X):

covθθθ(T (X))≥ I(θ)−1. (D.9)

In the A-optimality scheme used in section 4.3 the trace of the inverse of the information

matrix, I(θθθ)i j, is taken as a suitable lower bound to the error:

∑
i j

covθ(T (X))i j ≥ tr
(
I(θθθ)−1) . (D.10)

This reduces the computational complexity and neglects poor estimators of

cross-covariances, i.e. I(θ)i j for j 6= i. The mapping uncertainty definition in section 4.3

is reliant on the Fisher Information, given by equation (D.6), and the A-optimality

approximation to the Cramer-Rao bound in equation (D.10).
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E Gradients for SONAR Noise

Model

This chapter describes the gradients used for optimistation of the SONAR compound

mixture model outlined in section 6.5.

The known physical noise sources from the SONAR environment, and their respective

probability distributions, are combined to represent residuals from a background additive

noise perspective. A five-order compound mixture model is used for this task, consisting

of:

1. Extraneous signals - Laplace distribution. Any prominent signals not well fit by

the NAR model should appear in a small area of residual space and as such the

sharply peaked Laplace is an appropriate choice.

2. Rain - Gamma distribution. Typically in the literature the poisson distribution is

used to describe rain [88] however, the other distributions in this mixture are

continuous and therefore the Gamma, which behaves similarly to the Poisson, is

chosen.
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3. Clutter - K and Rayleigh distributions. It is well etablished in the SONAR

literature that K and Rayleigh distributions are suitable for describing background

clutter such as biological and environmental effects in the underwater environment

[87].

4. Remainder - Normal. Any leftover residual elements can be fit with a Normal

distribution.

This model can be implemented in a Maximum Likelihood (ML) or, provided

appropriate priors are specified, a more robust Maximum-a-Posteriori (MAP) scheme.

This appendix outlines the MAP mixture gradient descent process.

The mixtures are fit using a hybrid version of gradient descent. This is required since

optimising the parameters of the K-distribution using gradient descent often leads to

unrealistic parameters [89]. In order to remedy this, the parameters are fit to the residuals

in a Bayesian scheme introduced in [90] before fitting the remaining parameters, mixture

weights and hyperparameters, in the MAP mixture case, using gradient descent over the

negative log-likelihood.

The priors specified for each distribution were initially set as the conjugate priors,

however some of these were found to be a poor fit for the optimised parameters on real

datasets. As such, the distributions were chosen as to be representative of the real world

data described in section 6.5. It should be noted that there are no priors specified over the

mixture weights as this has only been found to slow convergence of the gradient learning

procedure.

Firstly the individual distributions and their relevant priors will be defined, following

which the gradient learning procedure will be described.
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E.1 The Model

Laplace distribution

The PDF of the Laplace distribution is:

P(x|µ,b) = 1
2b

exp
[
−|x−µ|

b

]
.

The priors over µ and b are Laplace and Gamma distributions respectively, i.e:

• P(x|µ,b) = Laplace(x|µ,b),

• P(µ|µ0,b) = Laplace(µ|µ0,b),

• P(b|αb,βb) = Gamma(b|αb,βb).

Rayliegh distribution

The PDF of the Rayleigh distribution is:

P(x|σ) = x
σ2 exp

[
− x2

2σ2

]
.

The prior over σ is a Gamma distribution:

• P(x|σ) = Rayleigh(x|σ),

• P(σ|aσ,bσ) = Gamma(σ|aσ,bσ).

K-distribution

The K-distribution is optimised using the procedure from [90].

Gamma distribution

The PDF of the Gamma distribution used in the SONAR noise model is:

P(x|α,β) = 1
Γ(α)

β
−αx(α−1) exp(− x

β
).
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The prior over β is again a Gamma distribution:

• P(x|α,β) = Gamma(x|α,β),

• P(β|aβ,bβ) = Gamma(β|aβ,bβ).

There is no closed form conjugate prior for α and the distribution over α appears to

change on each fit. As such, there is no prior over α.

Normal distribution

The PDF of the Normal distribution is given by:

P(x|m,s) =
1√

2πs2
exp
[
−(x−m)2

2s2

]
.

The priors over m and s are Normal and Gamma distributions respectively:

• P(x|m,s) = N (x|m,s2),

• P(m|m0,s) = N (m|m0,s2),

• P(s2|as,bs) = Gamma(s2|as,bs).

Likelihood

The probabilistic model can now be written as the maximisation of:

P(x|θp)P(θp|θh)

where P(x|θp) is the data likelihood of x given the parameters θp and P(θp|θh) is the

prior distribution of the parameters, θp, given the hyperparameters, θh. The data-log

likelihood is given as:

P(x|θp) = ∑i[log(π1Laplace(xi|µ,b)+π2Rayleigh(xi|σ)+π3K +π4Gamma(xi|α,β)

+π5N (xi|m,s2)+N(∑ j π j−1))],
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where π j are the mixture weights and N(∑ j π j−1) relates to the lagrange multiplier

used to ensure that the π′js sum to unity.

Optimisation in the Maximum-a-Posteriori (MAP) context involves maximising the

posterior distribution, typically ignoring the effects of the unknown distribution P(x),

known as the model evidence. In reality it is often the case that the negative

log-likelihood and negative log-prior distributions are analysed. Denoting the set of

parameters and hyperparameters θ = {θp,θh} the optimisation involves evaluating the

gradients for each θi:
−∂ logP(x|θp)

∂θi +
−∂ logP(θp|θh)

∂θi ,

in order to find a minimum. This is often performed using a nonlinear gradient optimiser,

such as SCG. It should be noted that many of the above distributions require the

parameters to be greater than zero and as such the computational implementation of the

derivative was taken with respect to the square root of the parameter, following which it

was then squared. This notation is ommitted here to keep the expressions as simple as

possible.

E.2 The Gradients

Laplace parameters and hyperparameters

The parameters and hyperparameters relevant to the Laplace distribution are

{µ,b,µ0,αb,βb} with the following derivatives:

• ∂

∂µ =

 −
1

P(x|θp)

(
1

2b2 exp
[
|x−µ|

b

])
π1− (−1)h 1

b , if x≥ µ,

1
P(x|θp)

(
1

2b2 exp
[
|x−µ|

b

])
π1− (−1)h 1

b , if x < µ,

• ∂

∂b = 1
P(x|θp)

(
− 1

2b2 +
|x−µ|
2b3

)
exp(−|x−µ|

b )π1−
[

1
b −

|µ−µ0|
b2 + 1

2β2
b
(2b−2αb)

]
,

• ∂

∂µ0
=−1

b ,

• ∂

∂αb
= 1

2β2
b
(−2b+2αb).

where h is the Heaviside function, h = 1 if µ < µ0 and h = 0 if µ≥ µ0.
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Rayleigh parameters and hyperparameters

The parameters and hyperparameters relevant to the Rayleigh distribution are {σ,aσ,bσ}

with the following derivatives:

• ∂

∂σ
= 1

P(x|θp)

(
x3

σ5 − 2x
σ3

)
exp
[
−x2

2σ2

]
π2−

[
bσ

σ2 +
aσ

σ
+ 1

σ

]
,

• ∂

∂aσ
=− log(bσ

σ
)+Ψ(aσ),

• ∂

∂bσ
= 1

σ
− aσ

bσ
.

Gamma parameters and hyperparameters

The parameters and hyperparameters relevant to the Gamma distribution are

{α,β,aβ,bβ} with the following derivatives:

• ∂

∂α
= 1

P(x|θp)
(log(x)− log(β)−Ψ(α))

(
1

Γ(α)x
(α−1)β−α exp

[
−x
β

])
π4,

• ∂

∂β
= 1

P(x|θp)

(
1

Γ(α) exp
[
−x
β

]
(xαβ(−2−α)− x−1+ααβ−1−α)

)
π4 +

[
− (aβ−1)

β
+bβ

]
,

• ∂

∂aβ

=− log(β)− log(bβ)+Ψ(aβ),

• ∂

∂bβ

= β− aβ

bβ
.

Normal parameters and hyperparameters

The parameters and hyperparameters relevant to the Normal distribution are

{m,s,m0,as,bs} with the following derivatives:

• ∂

∂m = 1
P(x|θp)

(
(x−m)√

2πs3 exp
[
−(x−m)2

2s2

])
π5− (m−m0)

s2 ,

• ∂

∂s2 =
1

P(x|θp)

(
−1√
2πs2 +

(x−m)2

s4

)
exp
[
−(x−m)2

2s2

]
π5 +

[
1

2s2 −
(m−m0)

2

2s4 − bs
s4 +

as
s2 +

1
s2

]
,

• ∂

∂m0
= (m0−m)

s2 ,

• ∂

∂as
=− log(bs

s2 )+Ψ(as),

• ∂

∂bs
= 1

s2 − as
bs

.
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Mixture Coefficients

The derivatives with respect to the mixture coefficients, {π j, j = 1 : 5} are given by:

• ∂

∂π1
= Laplace

P(x|θp)
−N,

• ∂

∂π1
= Rayleigh

P(x|θp)
−N,

• ∂

∂π1
= K

P(x|θp)
−N,

• ∂

∂π1
= Gamma

P(x|θp)
−N,

• ∂

∂π1
= N

P(x|θp)
−N,

where the left term in each derivative is the relative responsibility of the mixture weight

and the N (number of datapoints) term is given by the Lagrange multiplier constraint.

These terms for the parameters and hyperparameters can be used by any standard

nonlinear optimisation algorithm to fit the noise distribution outlined in section 6.5, the

implementation in chapter 6 uses SCG.
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F Gradients for the Cascading

RBF

This appendix derives the gradients for the 3-layer Cascading RBF outlined in chapter 7.

It also uses these gradients to show that the Cascading RBF is a smooth mapping.

Starting with the initial error:

E(Y ) =
1
2

N

∑
i=1
‖Yi−Ti‖2, (F.1)

the gradients for Λ3, Λ2 and Λ1 are given as follows.

Λ3 Gradients

The gradients for Λ3 which map from X2 to Y are given by:

∂E(Y )
∂Y (Φ2)

= (Y −T ),
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∂Y
∂Λ3 = Φ

2.

In the cascaded Shadow Targets optimisation procedure outlined in chapter 7 the

gradient with respect to Λ3 is not explicitly required, since the MSE optimum parameters

are given by pseudo-inverse of Φ2 as in standard RBF learning.

Λ2 Gradients

The gradients for Λ2 which map from X1 to X2 are given by:

∂E
∂Y (Φ2)

= (Y −T ),

∂Y
∂Φ2(D)

= Λ
3,

∂Φ2

∂D(X2,C2)
=

3
2
(D)

1
2 ,

∂D
∂X2(Φ1)

= ∑
i

X2
i −C2

j ,

∂X2

∂Λ2 = Φ
1.

This is assuming the form of Φ and D are those specified in chapter 7, namely that

φ = z
3
2 and D is given by the square Euclidean distance.

Λ1 Gradients

The gradients for Λ1 which map from X0 to X1 are given by:

∂E
∂X2(Φ1)

= (Y −T )
(
Λ

3)(3
2
(D)

1
2

)(
∑

i
X2

i −C2
j

)
.

The three right hand terms are the recursive elements which can be used successively

when constructing arbitrarily deep layers.

∂X2

∂Φ1(D)
= Λ

2,
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∂Φ1

∂D(X1,C1)
=

3
2
(D)

1
2 ,

∂D
∂X1(Φ0)

= ∑
i

X1
i −C1

j ,

∂X1

∂Λ1 = Φ
0.

This is again assuming the form of Φ and D are those specified in chapter 7, namely that

φ = z
3
2 and D is given by the square Euclidean distance for both layers.

CRBF Smoothness

In order to prove that the CRBF is smooth it must be shown to be infinitely differentiable

with respect to the inputs, X0. The layer-wise gradients are given by:

∂E
∂X1(Φ0)

= (Y −T )
(
Λ

3)(3
2
(D)

1
2

)(
∑

i
X2

i −C2
j

)(
Λ

2)(3
2
(D)

1
2

)(
∑

i
X1

i −C1
j

)
,

∂X1

∂Φ0 = Λ
1,

∂Φ0

∂D(X0,C0)
=

3
2
(D)

1
2 ,

∂D
∂X0 = ∑

i
X0

i −C0
j .

Each of these parts are in-themselves continuous and as such the product will be

continuous. The derivatives of higher orders could be calculated to prove the infinite

differentiability, however this is not required. It is clear that, since the basis function

used to construct Φ is infinitely differentiable, that the gradients found using the chain

rule will not allow ∂Φi

∂D(X i,Ci)
to vanish. This is seen in the Cascading RBF used in chapter

7 with φ(z) = z
3
2 . This will ensure that the gradient at each layer exists and as such it is

infinitely differentiable with respect to X0, ensuring smoothness.
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