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THESIS SUMMARY 

 

This research develops a methodology and model formulation which suggests locations for rapid 

chargers to help assist infrastructure development and enable greater battery electric vehicle (BEV) 

usage. The model considers the likely travel patterns of BEVs and their subsequent charging 

demands across a large road network, where no prior candidate site information is required. Using 

a GIS-based methodology, polygons are constructed which represent the charging demand zones 

for particular routes across a real-world road network. The use of polygons allows the maximum 

number of charging combinations to be considered whilst limiting the input intensity needed for the 

model. Further polygons are added to represent deviation possibilities, meaning that placement of 

charge points away from the shortest path is possible, given a penalty function. A validation of the 

model is carried out by assessing the expected demand at current rapid charging locations and 

comparing to recorded empirical usage data. Results suggest that the developed model provides a 

good approximation to real world observations, and that for the provision of charging, location 

matters. The model is also implemented where no prior candidate site information is required. As 

such, locations are chosen based on the weighted overlay between several different routes where 

BEV journeys may be expected. In doing so many locations, or types of locations, could be 

compared against one another and then analysed in relation to siting practicalities, such as cost, 

land permission and infrastructure availability. Results show that efficient facility location, given 

numerous siting possibilities across a large road network can be achieved. Slight improvements to 

the standard greedy adding technique are made by adding combination weightings which aim to 

reward important long distance routes that require more than one charge to complete. 

 

Keywords: electric vehicle, charging, infrastructure, location modelling, flow capture, GIS. 
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GLOSSARY OF TERMS 

BEV Battery Electric Vehicle – vehicle run entirely from its battery 

CABLED Coventry And Birmingham Low Emissions Demonstrators – a 27 month long BEV trial 

carried out in the West Midlands, UK 

CF Charging Facility – recommended locations where charging provision could be placed 

CO Carbon monoxide – a toxic gas if inhaled in high concentrations 

CO2 Carbon dioxide – a predominant greenhouse gas 

CZ Charging Zone – zone which represents the potential surface where BEVs could charge to 

complete their route 

FCEV Fuel Cell Electric Vehicle – vehicle powered by hydrogen (stored in on-board tank), 

which is converted to electricity via fuel cells 

FCHEV Fuel Cell Hybrid Electric Vehicle – similar to the PHEV, except that electric power 

generated from on-board hydrogen tank. Also can be run from gasoline engine 

GIS Geographic Information Systems – system used to capture, store, and analyse various 

layers of spatial data 

GPS loggers Global Positioning System loggers – in vehicle data loggers which record geographical 

location (and speed) of vehicle 

HC Hydrocarbons – a collection of toxic carbon based gases 

HEV Hybrid Electric Vehicle – predominantly gasoline vehicle with a supplementary battery 

powered from the engine 

ICEV Internal Combustion Engine Vehicle – where gasoline is the fuel 

MILP Mixed Integer Linear Programming 

NEDC New European Driving Cycle – standardised dynamometer drive cycle test performed on 

all vehicles in EU to replicate ‘typical’ driving conditions and fuel consumption 

NOx Nitrogen oxide – contributes towards air pollution and smog 

NP-hard Non-deterministic Polynomial time-hard – a process that increases in difficulty and 

computational intensity by a polynomial degree as it gets bigger 

NSFC Net Specific Fuel Consumption – equivalent to fuel economy in an ICEV 

NTS National Travel Survey – survey of ~16,000 individuals in England regarding their travel 

patterns over a week (results are then extrapolated across the year/population) 

(Department for Transport UK, 2013a) 

OD location Origin-Destination location – A distinct point representing a geographical area, denoted as 

a node on a network 

OD network Origin-Destination network – a network constructed from a set of OD locations connected 

by OD pairs 

OD pair Origin-Destination pair – a route from one OD location to another 

PFlow Potential Flow – flow designation indicating that a route needs more than one charge 

facility to make it feasible. Thus the placement of a single facility only has the potential to 
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enable the route 

PHEV Plug-in Hybrid Electric Vehicle – vehicle which can be run in battery only mode, or in 

combination with gasoline engine. Can be refueled via gasoline pump or via electric 

charging 

PM10 Particulates – air pollutants which can cause inhalation related diseases  

Rapid charging Charging facility that allows BEVs to recharge in a short time period (~30 minutes). For 

the purposes of this thesis, the provision of rapid charging is interchangeable with 

provision of methods which allow BEVs to replenish their battery en-route (which could 

include fast charging or battery swapping) 

SFlow Serviceable Flow – flow designation indicating that a route can be serviced by the 

placement of a single charging facility 

W0.5max Model output indicating a weighting of SFlow + 0.5*PFlow, and maximum deviations 

considered (up to 7.5km) 

W0min Model output indicating a weighting of SFlow + 0*PFlow, and minimum deviations 

considered (up to 2.5km) 

WFlow Weighted Flow – flow designation which describes a weighted combination of SFlow and 

PFlow 
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1 INTRODUCTION 
 

1.1 Overview of Research 
 

Funding for this research was made possible through concurrent work on the CABLED project – an 

ultra-low carbon vehicles trial in the West Midlands, UK. For these early adopters of electric 

vehicles, who leased the vehicle for a minimum of 12 months, several behavioural adjustments had 

to be made. The majority of these revolved around the dual issues of range and charging. For most, 

the ability to charge at home constituted a convenient advantage, but a limited range – at least 

compared to conventional vehicles – meant that charging had to be a more frequent practice than 

refuelling. With a little more planning and forethought, most adapted to this without problem, but 

the inability to travel beyond the vehicle’s normal range was restrictive for some. Based on this 

problem, the research described in this thesis was developed to offer a methodology as follows: 

Aim of Research: Determine a method for locating a network of rapid chargers to enable extended 

BEV (battery electric vehicle) journeys in order to assist research and development into 

encouraging uptake and usage of BEVs. 

 

The structure of this thesis is organised into 7 chapters. In this first chapter, a background to the 

battery electric vehicle (BEV) is provided, and its place within the wider transport sector is 

discussed (with reviews of combustion engine improvement, journey substitution methods, and 

hydrogen vehicle technology also provided). Findings from several real-world BEV trials are then 

introduced with discussions following on the continuing barriers to their uptake, including a review 

of current and future BEV cost, a discussion on vehicle range and how this affects journeys, and an 

assessment of current charging and infrastructure options. As a conclusion to this chapter, the 

research needs and objectives are established based on described observations from the industry, 

and a description for the following layout of the thesis is given. 

 

1.2 The Need to Reduce Vehicle Emissions 
 

The beginnings of the automobile, as we know it today, can be traced back to the end of the 19th 

century. Although the internal combustion engine (ICE) dominates road transport today, the picture 

was very different back in the 1880s. In 1881, Gustave Trouvé demonstrated a three-wheeled 
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electric-powered automobile at the International Exhibition of Electricity in Paris (Guarnieri, 

2013). Despite the invention of the ICE car a few years later, the electric vehicle actually outsold 

other modes of propulsion up until the early part of the 20th century thanks to their ease of use and 

high performance (Volti, 2006). ICE vehicles of this era, on the other hand, were not built for their 

performance. Carl Benz’s car of 1885 had a horse power of only 0.75, a limited top speed and 

required a vigorous turn of a crank handle to get it started (Eckermann, 2001). And, unlike today, a 

dedicated refuelling infrastructure was not in place. Petrol at this time could only be purchased 

from chemists and transported to the car via a jerry can (Lord, 1997). Despite the difficulties 

however, these early forms of road transport provided a drastic improvement in personal mobility, 

and it was this characteristic which spearheaded the car’s popularity (King, 2007). With the 

invention of the starter motor, an increasing availability of fuel and the introduction of the Ford 

Model-T in the 1910’s the automobile was made available to the masses, and since then ICE car 

ownership has boomed (King, 2007; Volti, 2006).  

 

In the century following Ford’s breakthrough, vehicle ownership increased throughout the 

developed world. In Britain, the expansion of the motorway network in the 1960’s helped connect 

the country like never before, and as towns and cities expanded, so too did peoples’ reliance on the 

car to get around (Charlesworth, 1984). As a result, road traffic across the country increased 

significantly – nearly 8 fold from 1950 – 1990 (Department for Transport UK, 2013b). Since then, 

the rate of increase has slowed, but in developing countries car numbers are expected to rise 

rapidly, leading to an increase in congestion, noise and air pollution around the world. In the year 

2000 for instance, there were only 7 cars per 1,000 people in China. By 2011 this figure had grown 

to 54 (The World Bank, 2014a) and by 2050 Farmer et al. (2010) predicts it to have grown to 363. 

Such inflation in car usage will increase emissions and lead to rising atmospheric pollution. A 

consequence of heavy car use is the release of CO2 into the atmosphere, which is directly correlated 

to fuel consumption and is a major contributor to greenhouse gas levels (An and Sauer, 2004; Great 

Britain. HM Government, 2011a). In 2010, transport accounted for 12% of the world’s CO2 

emissions, nearly 6 billion tonnes (The World Bank, 2014b). In the UK, where vehicle ownership 

is high, 20% (or 122 million tonnes) of CO2 released into the atmosphere comes from transport – of 

which passenger vehicles contribute more than half (68 million tonnes) (Department of Energy & 

Climate Change UK, 2014).  

 

Globally, the human-induced release of CO2 and other greenhouse gases into the atmosphere has 

been strongly linked to a rise in global average temperatures, according to the Intergovernmental 

Panel on Climate Change (Barker et al., 2007). From this they conclude that ‘warming over the last 
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three decades has likely had a discernible influence at the global scale on observed changes in 

many physical and biological systems’ (Barker et al., 2007, p. 72). CO2 however, is not the only 

damaging gas released by ICE vehicles. CO, HC, NOx and PM10 are all potentially harmful to 

either the atmosphere or human inhalation. Between 1997 and 2005, Gehring et al. (2010) ran a 

study in the Netherlands to measure the effect of traffic related pollution on the development of 

asthma in children. They asked nearly 4,000 parents whether asthma-related symptoms had 

developed in each of their child’s first 8 years, correlated the results with estimations of pollution 

levels around each address (Brauer et al., 2003), and reported the link to be statistically significant. 

Since then, improvements in vehicle technology and tightened regulation have helped reduce, but 

not eliminate, these emissions (André and Rapone, 2009) which suggests that ICEVs will continue 

to contribute to asthma and inhalation related incidences, especially if emissions reductions are 

offset by increases in traffic levels (as suggested above). Furthermore, ICEVs rely on oil and 

petroleum, and the future availability, cost, and reliability of these resources could become more 

problematic in years to come (Kemp et al., 2010; Rozenberg et al., 2010; Turton and Barreto, 2006; 

Vivoda, 2009).  

 

Given the need to reduce air pollution and cut CO2 emissions, a mandate of 34% reduction in CO2 

emissions by 2020, and 80% by 2050, from 1990 levels was set by the UK government in 2008 

(Great Britain. Climate Change Act, 2008). Further, this target fits within EU legislation and is part 

of a global effort to reduce emissions in the transportation sector. Figure 1-1 shows CO2 emission 

targets for road vehicles in several major world economies. Historical trends show that emissions 

have been falling steadily since 2000, but for long term goals to be achieved, the decarbonisation of 

the transport sector, enabled by a transition towards lower emissions vehicles, is seen as key by 

King (2007), Hansen et al. (2008), Great Britain. HM Government (2011b), and the Committee on 

Climate Change (2013). 
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Figure 1-1 - The downward trend in global emissions targets 

Figure Source: (Miller and Façanha, 2014) compiled from (International Council on Clean Transportation, 2014)  

 

1.3 Reducing Emissions in Road Transport 
 

Emissions from ICE vehicles are calculated by assessing the amount of fuel that is consumed and 

emitted at point of use. Before market release, each vehicle model must be assessed under a 

standardised driving cycle. Within the EU this is achieved using the New European Driving Cycle 

(NEDC), which measures the vehicle’s fuel economy and emissions outputs based on typical 

European driving patterns (European Commission, 2009). The simulated test comprises four urban 

cycles – characterised by moderate speeds and several stops and starts – and one extra urban cycle 

– which simulates highway driving with higher speeds and lower acceleration. The NEDC is 

carried out using a dynamometer, which allows the vehicle’s engine and wheels to be operated to 

this strict cycle whilst in a static position (Barlow et al., 2009). For a discussion on variations 

between the NEDC and real-world driving see section 1.5. For gasoline vehicles, the NEDC output 

is usually represented with an mpg (miles per gallon) figure, allowing customers to compare fuel 

economy between models, and an emissions rating, which is represented by the amount of CO2 

emitted per kilometre.  

 

The EU target for CO2 emissions, to which the UK is bound, is set to 95gCO2/km as a fleet average 

to be achieved by all new cars by 2020 (European Commission, 2014). Furthermore, although a 
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passenger car target has not yet been set for 2050, it is anticipated that a 95% reduction for 

emissions from all road transport from 1990 will be needed (Skea, 2012). This is because, even 

though individual vehicle emissions have been falling as demonstrated in Figure 1-1, overall 

emissions from road transport continued to rise until 2007 due to increasing vehicle miles 

(European Commission, 2014, 2012), meaning a proportionally greater reduction for individual 

vehicles is needed. Following the trend from Figure 1-1, average new car emissions in the UK fell 

to 128.3gCO2/km in 2013, down from 164.9 in 2007 and 181 in 2000 - according to the Society for 

Motor Manufacturers and Traders (2014a), who compile data on new vehicle registrations in the 

UK. Despite this, only 3.3% of registrations currently meet the 2020 target of 95g/km, of which 

approximately half were alternatively fuelled. Thus, for the current levels to reduce further, and to 

achieve reductions in particulate emissions, alternatives to the current ICE are needed (Office for 

Low Emission Vehicles UK, 2013). Figure 1-2 (replicated from (Department for Transport UK, 

2013c)) shows how new, improved technologies can reduce overall emissions. This demonstrates a 

lag effect of technology improvements on overall vehicle stock. Given this, the speed and uptake of 

new technologies could be crucial to emissions reductions.   

 
Figure 1-2 - Average CO2 emissions of licensed cars in the UK 

Figure Source: (Department for Transport UK, 2013c) 

 

Proposals for emissions reductions in road transport can be summarised into four broad categories: 

improving ICEV technology and fuel efficiency, utilising electric power via an on-board battery, 

advancing hydrogen fuel cell technology, and encouraging substitution of car journeys with 

alternatives such as public transport, cycling, and walking. Publications contributing to these fields 

are shown in Figure 1-3. Articles which compare the technologies in reference to emissions 

reductions are shown in the table below. 
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(Automotive Council 

UK, 2013) 

(Hoffmann et al., 2014) 

(Boretti, 2011) 

(Sprouse III and 

Depcik, 2013) 

(Berggren and 

Magnusson, 2012) 

(Reitz, 2013) 

 

(Rojas-Rueda et al., 

2012) 

(Piatkowski et al., 2015) 

(Redman et al., 2013) 

(Fishman et al., 2014) 

(Graham-Rowe et al., 

2011) 

(Fujii and Taniguchi, 

2005) 

 

(Mazloomi and Gomes, 

2012)  

(Fayaz et al., 2012) 

(Agarwal and Saxena, 

2014) 

(McDowall and Eames, 

2006) 

(Paster et al., 2011) 

(Eberle et al., 2012) 

(Yazdanie et al., 2014) 

(Eyre et al., 2003) 

(Hart et al., 2003) 

(Owen and Gordon, 

2002) 

 

(Kihm and Trommer, 

2014) 

(Office for Low 

Emission Vehicles UK, 

2013) 

(Helms et al., 2010) 

(Smith, 2010) 

(Boulanger et al., 2011) 

(Chan, 2007) 

(Doucette and 

McCulloch, 2011a) 

(Kammen et al., 2008) 

 

Comparison / review 

articles 
ICEVs Biofuels 

BEVs / 

PHEVs 
FCEVs 

Public 

transport 

Walking 

/ cycling 

(King, 2007)       

(Schäfer et al., 2006)       

(Van Mierlo et al., 2006)       

(Offer et al., 2011)       

(Torchio and Santarelli, 2010)       

(Doucette and McCulloch, 2011b)       

(Boureima et al., 2009)       

(Howey et al., 2011)       

(Pasaoglu et al., 2012)       

(Campanari et al., 2009)       

Figure 1-3  - Strategies from literature to reduce road transport emissions 

 

A mix of future vehicle technologies, like those summarised in Figure 1-3 is supported by King 

(2007) who suggests that advancements in various transport technologies and strategies will help 

contribute towards staggered, yet sustained emissions reduction. As such, it is possible that certain 

forms of transport will become more prominent in the future, as a new technology enters the 

mainstream and improves upon the status quo. This idea is demonstrated figuratively by the 

ICEV technology 

improvements 

Proposals for reducing emissions in road transport 

Car journey 

substitution 

Hydrogen fuel cell 

technology (FCEVs) 

Battery electric power 

(including PHEVs) 
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Automotive Council UK (2013)’s technology roadmap shown in Figure 1-4. The roadmap reflects 

the views and predictions of a panel of industry, government, and academic experts and was 

developed to help provide a unified strategy and timeline for the automotive industry to work to. 

As such, it provides an indicative opinion, highlighting possible pathways towards an emissions 

reducing future. The timescales in the roadmap are also supported by Van Mierlo et al. (2006) who 

suggests that battery electric and hybrid vehicles will contribute in the mid to long-term (up to 

2050), with hydrogen vehicles proposed for the long-term (perhaps being established by 2050). 

Similarly, Offer et al. (2011) believes that battery electric and hydrogen vehicles will start to 

become established in the mainstream by 2030, offering superior reductions in carbon emissions 

and being cost competitive with ICEVs at that stage. 

 

Figure 1-4 - Passenger car low carbon technology roadmap 
Figure Source: (Automotive Council UK, 2013) 

 

1.3.1 Improvements in ICE technology 
 

The Automotive Council UK (2013)’s technology roadmap suggests that improvements in internal 

combustion engine technology will play a vital role in reducing overall transport emissions, 

especially while emerging technologies are still establishing. Despite the fact they have been in 

development for over 100 years, Reitz (2013) stresses that the scope for ICE improvement still 

exists, stating that only 12% of the fuel tank energy is actually used to drive the wheels. 

Reportedly, 62% is lost through heat and waste in the engine and exhaust, 20% is lost by running 

accessories and idling, and a further 6% lost in the drivetrain. He also suggests that an additional 

20% of energy is required to get fuel from an oil well to a vehicle tank. Reitz (2013) compares the 

performance of various engine/injection types using computational fluid dynamics models – which 

are validated with direct engine experiments. He notes that the use of advanced engine modelling 
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allows exact identification of the fuel injection process, and thus identification of improvement 

opportunities. Using these processes he shows how advanced injection methods, such as Gasoline-

Direct-Injection and Reactivity-Controlled Compression Ignition can demonstrate 20% efficiency 

savings compared to standard diesel engines (and 40-50% improvements over conventional 

gasoline engines). The use of such processes could therefore reduce overall emissions – but it is 

unclear to what extent they may be adopted.  

 

Hoffman et al. (2014) also looks at the fuel injection system and argues that an increase in fuel 

system pressure can improve fuel economy and also reduce particulate emissions. Using a single-

cylinder test engine they assess various emissions under various fuel injection pressures, and report 

that fuel usage decreases with higher injection pressures. These results are replicated in Figure 1-5, 

where NSFC is equivalent to fuel economy. They explain that an increase in injection pressure 

improves fuel economy regardless of the injector used (they compare 6H and 5H injectors). 

However, the reported savings are minimal, with reductions of ~5% achieved. As such, 

implementation of higher fuel injection pressure may improve fuel economy, but the savings are 

unlikely to be substantial without other improvements. 

 
Figure 1-5 - The effect of fuel injection pressure 

Figure Source: Hoffman et al. (2014) 

 

Boretti (2011) on the other hand, proposes that efficiencies can be achieved through mechanical 

regenerative braking. He tests a kinetic energy recovery system on a 4l gasoline engine vehicle and 

reports that fuel consumption can be reduced by 25% based on the NEDC cycle (which is further 

described in section 1.5). However, it is unclear if this technology would be appropriate (and would 
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deliver similar reductions) for all ICEVs, given that the tests were carried out on a 4l engine as 

opposed to a vehicle with an average engine size of 1.7l (in the UK) (Department for Transport 

UK, 2013c). Sprouse III and Depcik (2013) review possibilities for exhaust waste heat recovery in 

an engine system. These methods, typically referred to as Rankine cycles, use excess engine heat to 

evaporate fluid and recycle energy in the engine system. Based on a review of the literature, they 

conclude that such systems can realistically achieve fuel economy improvements of 7-10%, and 

that the system cost can be paid back in 2-5 years (thanks to the fuel savings). A downside is that 

engine performance is slightly lessened (horse power reductions are reportedly observed between 

0.2-2.5%) due to the backpressure imposed in the exhaust system. 

 

Berggren and Magnusson (2012) investigate the effect of policy control on emissions reductions 

for ICEVs. They discuss how increased regulation and competition (for low-emission vehicles) 

from 2007 onwards helped provide the catalyst for reductions in the automotive sector (average 

emissions were reduced by 22gCO2/km from 1998-2007, yet a further 19 gCO2/km reduction was 

achieved between 2007 and 2010). As a case study, they report that pre-2007, Volvo focused on 

spacious family cars with high performance (and resultantly high emissions). However, as the 

market began to change with the introduction of regulation and competition from other 

manufacturers, whose low-emissions vehicles were selling well, Volvo commissioned their 

engineers to produce an eco-car. Within 18 months they had developed a low-emissions series with 

CO2 outputs of 99g/km (a 23% improvement on their best in class in 2007). As such, they argue 

that changes in performance measurement among manufacturers (from top-speed/size to emissions 

levels), instigated by tightened regulation, has led to improvements in ICEV emissions. In the long 

term they cite several avenues which can help the continuation of emissions reductions, including 

kinetic energy recovery (as described in Boretti (2011)), optimisation of the combustion system 

(such as those suggested by Reitz (2013) and Hoffman et al. (2014)), and waste heat recovery (like 

those reviewed by Sprouse III and Depcik (2013)) – but that innovation and improvement will only 

be achieved if continued stringent, and legally binding emissions levels are regulated. 

 

Given the potential for efficiency savings in ICE technology, it is likely that emissions reductions 

will continue to be achieved in this sector. As Berggren and Magnusson (2012) suggest, it may be 

that tightened regulation will continue to push manufacturers towards reduction. Simultaneously, 

competition from other technologies – such as those discussed in later sections – may help drive 

innovation. However, according to Berggren and Magnusson (2012), based on the improvement 

percentages discussed, and the initial efficiency of gasoline combustion, it is unlikely that 
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emissions can be reduced in line with alternative technologies, given that hydrogen, and battery 

electric vehicles – discussed in sections 1.3.3 and 1.3.4 have the potential to be zero-emission. 

 

1.3.2 Car journey substitution 
 

As well as improving emissions from passenger cars, substitution of journeys to other forms of 

mobility, such as public transport, cycling, and walking, may also provide emissions reduction in 

the passenger transport sector. Rojas-Rueda et al. (2012) for instance, highlights the emission 

reducing potential of cycling and public transport if journeys by these modes replace a certain 

number of car trips. Their study is based on traffic conditions in the wider Barcelona region, and 

they hypothesise several scenarios which could help reduce emissions. Using city council data, 

they report that 32% of journeys in the area are by car, 2% by bike, and 66% by public transport. 

Their reduction scenarios involve replacing either 20 or 40% of all car journeys with a mix of bike 

or public transport. These assumptions lead to reductions in CO2 emissions of ~100,000 tons (20% 

scenario) or ~200,000 tons (40% scenario) – figures which currently account for 0.75% or 1.25% 

of CO2 emissions in the transport sector in the region of Catalonia. Reductions of this scale 

therefore could provide an effective means to reduce CO2 levels (they also calculate benefits 

through the reduction of particulates, lower road mortality rates, and higher levels of fitness). 

However, no evidence is presented to support the assumed replacement rates of 20 or 40%, and it is 

unclear whether these could be achieved. It does though provide a benchmark for other policy 

workers to aim towards, and suggests emissions will be reduced if car drivers can be persuaded to 

use alternative modes of transport. 

 

To facilitate shifts away from car use, bike share schemes have been set up in many cities to 

encourage more sustainable travel. These schemes provide convenient bike rental throughout a city 

with people able to pick up and drop off bikes at docking stations. A series of these programs are 

reviewed by Fishman et al. (2014) who analyse the amount of CO2 reduction through trips which 

replace car journeys. They consider 5 bike share schemes around the world in Melbourne, 

Brisbane, Washington DC, Minneapolis, and London. For each scheme, users were asked, for their 

last bike share journey, which mode of transport they would have taken had the scheme not existed. 

The majority mode shift was reported to be from public transport, with car substitution making up 

only 19%, 21%, 7%, 19%, 2% in each city respectively. Fishman et al. (2014) used this data to 

calculate the reduction in vehicle kilometres travelled by car, having also analysed the docking data 

for each journey in the scheme. For instance, in London in 2012 they estimated the bikes covered 
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~32 million kms. However, since only 2% of those surveyed in London said the trip was 

substituting a car journey, only a reduction of ~630,000 car kilometres was achieved. Added to 

this, Fishman et al. (2014) analyse the data from the bike scheme operators (who create journeys 

when redistributing bikes by truck). In London, this service generated an additional ~1.4 million 

vehicle kilometres – thus overriding the positive effects from the bike/car substitution journeys. In 

all other cases however, the ratio was approximately 2 bike/car replacement kilometres to 1 

operational kilometre. This shows that emissions reduction can be achieved through such schemes 

– but only if a sufficient proportion of people are substituting these trips from cars. Fishman et al. 

(2014) conclude that this rate is linked to the proportion already driving in that city. They point out 

that between 70-76% of people travel to work by car in Melbourne, Brisbane, and Minneapolis. 

Thus, a substitution rate of 20% is more likely to be achievable. In London and Washington these 

figures are only 36% and 46%, meaning car substitution is less likely as many people are already 

using alternative transport. The substitution rates assumed by Rojas-Rueda et al. (2012) therefore, 

may only be likely if car usage in a city or region is already high.  

 

To realise the benefits of modal shift, as pointed out by Rojas-Rueda et al. (2012), it is important to 

understand the attributes which may encourage people to switch away from their car. To this end, 

Redman et al. (2013) reviews this field of work to identify which attributes are key to encouraging 

a shift from car use to public transport. They conclude that the most effective measures are often 

dependent on individual circumstances, perceptions, and motivations, which they concede are 

difficult to influence. Piatkowski et al. (2015) agree that walking and cycling provide sustainable 

travel alternatives, but conclude that car journey substitution is often overestimated, and suggest 

that the factors involved are extremely challenging and difficult to quantify. King (2007) also 

supports an increase in walking and cycling, but suggests that the dramatic increase in personal 

mobility provided by the car means it is likely to be around for many years to come. 

 

1.3.3 Hydrogen fuel cell technology 
 

Hydrogen within a vehicle can be used to convert the fuel from the on-board tank into electrical 

energy through fuel cells (Mazloomi and Gomes, 2012) (Fayaz et al., 2012). Given this, hydrogen 

powered vehicles are often referred to as fuel cell electric vehicles (FCEVs) as they are powered by 

an electrical motor from the energy in the fuel cells (Agarwal and Saxena, 2014). As discussed in 

section 1.3.4, this can mean that hydrogen vehicles emit no emissions at point of use (Torchio and 
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Santarelli, 2010). However, similar to electric vehicles, the production of the energy can influence 

the overall emissions of the vehicle.   

In relation to emissions, a principal issue identified by McDowall and Eames (2006), reviewing a 

series of published works in this area, is the generation, distribution, and storage of the hydrogen. 

Reported overall CO2 emissions (known as well-to-tank/wheels) from hydrogen vehicles can vary 

depending on production method, transportation distance (from generation to refuelling stations), 

station storage techniques, and vehicle specifications according to Paster et al. (2011). This is 

highlighted below in Figure 1-6, which is replicated from their work. They assess various hydrogen 

vehicle types (which they separate based on the pressure and size of the on-board fuel tank), and 

calculate the well-to-tank emissions for each of these under a scenario of 15% vehicle penetration 

in California, USA. Their reported findings suggest these issues can have a large impact on 

emissions levels from hydrogen vehicles. 

 
Figure 1-6 - Emissions levels of hydrogen vehicles split by generation and distribution 

Figure Source: (Paster et al., 2011) 

 

Yazdanie et al. (2014) reports that emissions levels from hydrogen production can vary from 0g 

CO2/km (based on on-site production using 100% renewable energy to power an electrolysis 

process) to ~550g CO2/km (based on electrolysis using coal-powered electricity). They also review 

other methods of hydrogen production, from gasification, to reforming, and oxidation, and report 

variations in emission levels between these figures. The underlying power used for hydrogen 

production appears therefore to effect the vehicle’s overall emissions, with similar findings 

presented by Eberle et al. (2012) and replicated in Figure 1-7. Although some of their data is from 

2004 (and so could be considered outdated), they report that hydrogen vehicles using energy 

produced from the EU grid mix could result in higher emissions than equivalent ICEVs and BEVs. 

However, if 100% renewable sources of energy are used, then FCEVs are considered by Yazdanie 
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et al. (2014) to be very low emission vehicles, which can offer similar potential reductions in line 

with BEVs. 

 
Figure 1-7 - Estimated well-to-wheels emissions by vehicle type 

Figure Source: (Eberle et al., 2012) compiled from (Brinkman et al., 2012; Edwards et al., 2004) 

 

Although hydrogen vehicles have the potential to reduce emissions, other issues have been raised 

about the technology by McDowall and Eames (2006), including: the absence of a sufficient 

refuelling infrastructure, high technology costs, and technological immaturity (no hydrogen 

vehicles are currently in production/on sale in the UK according to Gibbs (2014)). Given this, in 

line with the Automotive Council UK (2013)’s technology roadmap, Eyre et al. (2003), Hart et al. 

(2003), and Owen and Gordon (2002) suggest that the introduction of hydrogen vehicles may not 

have a positive impact on overall emissions until 2030-2050, once issues around hydrogen 

production and storage are addressed. Schäfer et al. (2006) also concur with this in respect to the 

emergence of hydrogen technology. They conclude that until the carbon releasing process of 

hydrogen production improves (which they don’t believe will be likely until at least 2030), then the 

ICEV or the BEV will provide a more likely means for emissions reduction.   

 

1.3.4 Battery technology 
 

As discussed previously, BEVs have been around for over one hundred years and in the 19th 

century outsold gasoline vehicles. In the 20th century however, the technology faded away. Its 

initial advantages were superseded by ICE vehicles, and its limitations, namely a restrictive range, 

were exposed. As the road network improved, the possibility for cars to be driven further led to the 
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electric vehicle’s demise. Since then various mini-revivals, brought about by oil shortages or 

environmental crises, have come and gone (Anderson and Anderson, 2009). Yet, over the last 10 

years or so, improvements in battery technologies, enabling BEVs to go further and last longer, and 

continued environmental concerns surrounding fossil fuel consumption and availability have 

renewed expectations in the electric car (Kemp et al., 2010; Office for Low Emission Vehicles UK, 

2013). As a result, development in the technology has increased, with most vehicle manufacturers 

now offering an electric or hybrid electric vehicle (Automotive Council UK, 2013; International 

Energy Agency, 2011), (Department for Transport UK, 2013c).  

 

As described by Van Mierlo et al. (2006),  King (2007), and Offer et al. (2011), the introduction of 

electric power into vehicles’ powertrains provides a pathway towards emissions reduction. This is 

because electricity can be considerably more efficient than combustion power within a vehicle – 

typically less than 40% of the energy combusted in a gasoline vehicle is used to drive the wheels, 

whereas electric motors can have efficiencies of 80-90% (Office for Low Emission Vehicles UK, 

2013). Electrification within a vehicle’s powertrain can take many forms, from mild-hybridisation 

(where an electric motor provides supplementary power to the ICE), to plug-in hybrids (which has 

an on-board battery and engine), to a full battery electric vehicle (which is wholly powered from its 

on-board battery) (Office for Low Emission Vehicles UK, 2013). As the ultimate form of 

electrification, the BEV thus provides the greatest potential for efficiency savings since at point of 

use it releases no emissions (Boureima et al., 2009; Helms et al., 2010; Howey et al., 2011). 

However, although the BEV can be described as zero-emission (Nissan, 2014), a more accurate 

representation can be determined by assessing the CO2 output from the electricity which powers the 

vehicle (Gabriel et al., 2014). This is often referred to as a well-to-tank calculation (Torchio and 

Santarelli, 2010), which when combined with the tank-to-wheels figure can provide an overall 

emissions assessment which can be compared across vehicle types.  

 

In their 2010 study, Torchio and Santarelli (2010) assessed data from various publications, and 

presented both well-to-tank (energy extraction/production) and tank-to-wheels (energy use in-

vehicle) figures for a range of vehicle types. For various emissions, they compiled data into 

separate vehicle/fuel categories assuming an averaged figure based on the NEDC test cycle. The 

data which is replicated in Figure 1-8 shows the tank-to-wheels figures for each vehicle type, with 

CO2 emissions represented in column 4. 
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Figure 1-8 - Tank-to-wheels calculations for a range of vehicle types 

Figure Source: (Torchio and Santarelli, 2010) compiled from (Concawe, 2012; European Commission, 2009, 2003) 

 

Based on this table, BEVs offer a reported advantage compared to most other fuel types with no 

emissions at point of use. This is especially relevant for particulate emissions which, as described 

in section 1.2, can induce health problems in urban/residential areas. Once the well-to-tank 

calculations are considered however, the reported picture is more even.  To calculate this, Torchio 

and Santarelli (2010) attempt to factor in many variables including the vehicle weight, and the 

pollution associated with fuel generation/extraction. They then combine these figures with the data 

in Figure 1-8 and produce a well-to-wheel index for the European Union, which is shown in Figure 

1-9. Several key assumptions underpin these calculations however. Firstly, to provide an equal 

comparison, they assume every vehicle has a range of 600km. For the BEV, such a range is 

currently unavailable (see section 1.5), and the effect of their assumption means the vehicle weight 

is greatly increased. Thus, for a more realistic comparison they later assume a BEV with a range of 

100km. In this case, the emissions output reduces by 30% (from 129 g/km in Figure 1-9 to 

90.3g/km). This ranks the BEV on par with the other top alternative fuels, and ahead of 

conventionally fuelled vehicles. Secondly, their calculation for biodiesel assumes that some CO2 is 

returned to the atmosphere in the growing process. This benefit has been questioned by Schlegel 

and Kaphengst (2007) however, who argue that the return of CO2 from biofuel crops can be 

outweighed by emissions resulting from land clearing, fertilisation, and associated deforestation. 

The EEA (2006) also question the growing of biodiesel crops, suggesting that the amount of land 

required can be detrimental to competing food sources. 
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Figure 1-9 - Well-to-well greenhouse gas emissions (CO2) for various vehicle types 

Figure Source: Torchio and Santarelli (2010) 

 

Torchio and Santarelli (2010)’s findings indicate that the emissions picture for various vehicle 

types is complex. They also assess the fuel types for NOx and PM emissions, reporting that biofuels 

perform the worst; and SOx emissions where BEVs perform the worst due to the associated sulphur 

release from coal power stations. In relation to BEVs, they identify two main factors which effect 

their emissions output. Firstly, BEVs are at the mercy of the electricity grid from which they draw 

their power. Not only can this vary from country to country, but also between seasons and times of 

the day (Lau et al., 2014). Thus, to decrease the emissions outputs from BEVs further, it is 

important to decarbonise the electricity grid. Furthermore, the weight of a vehicle has a measurable 

impact on its efficiency. As such, from an emissions perspective, it could be more prevalent to 

maximise BEV utility within a restricted range, rather than to produce vehicles which can match 

ICEV ranges but have a greater weight. 

 

As highlighted by Torchio and Santarelli (2010), the main factor affecting the well-to-wheel 

emissions of a BEV is the carbon intensity of the local electricity grid. According to Doucette and 

McCulloch (2011b), these variations have an effect on the environmental performance of BEVs 

and PHEVs. In their study, they analyse the carbon intensity of electricity grids in China, the USA, 

and France. In China, which produces the majority of its electricity from coal, the emissions gains 

for BEVs are marginal compared to ICEVs. This is highlighted in Figure 1-10 which shows the 
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anticipated emissions for CVs (conventional vehicles), EVs (BEVs), and PHEVs with varying 

battery ranges. Since the PHEV assumed by Doucette and McCulloch (2011b) (the Chevrolet Volt) 

has a lesser weight than the BEV (Tesla Roadster), their assumed emissions are lower at the start of 

a journey, since they can run in electric only mode. However, because of the high CO2 level of 

Chinese electricity, the reported differences between the three technologies range only between 6-

12 gCO2/km.  In France however, the carbon intensity of electricity is reportedly lower, meaning 

that BEVs can account for 12gCO2/km, which is nearly 10 times cleaner than their comparable 

ICEV  (Doucette and McCulloch, 2011b). This information is replicated in Figure 1-11.  

 
Figure 1-10 - CO2 emissions for distance travelled in China 

Figure Source: (Doucette and McCulloch, 2011b) 

 
Figure 1-11 - CO2 emissions for distance travelled in France 

Figure Source: (Doucette and McCulloch, 2011b) 
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Similarly, Holdway et al. (2010) calculate CO2 emissions of BEVs and ICEVs in the US, UK, and 

France. They calculate the average emissions from three BEV makes, using the average carbon 

content of each country’s grid mix. They also include distribution and BEV efficiency losses, and 

compare this to the existing fleet in the country (where well-to-tank calculations are also included 

for the ICEVs). Their results, which are replicated in Figure 1-12, suggest that BEVs can offer 

improvements compared with ICEVs. However, it should be cautioned that these figures are based 

on 2006 data (when ICEVs emissions were higher – see Figure 1-1), and an unlikely hypothetical 

scenario where each BEV model has replaced the entire vehicle fleet. 

 
Figure 1-12 - Comparison of well-to-wheels CO2 emissions between BEV fleet and existing fleet 

Figure Source: Holdway et al. (2010) 

 

Wilson (2013) extends the work of Torchio and Santarelli (2010) and Doucette and McCulloch 

(2011b) and compiles emissions figures for BEVs in 20 countries around the world. As well as 

assuming emissions resulting from electricity production Wilson (2013) incorporates a flat 

manufacturing emission cost of 70gCO2/km into the calculations for BEVs. This assumed figure is 

uncertain, due to variability in manufacturing processes and lifetime of the vehicle (they assume a 

BEV completes 150,000km in its lifetime, compared to an ICEV achieving 200,000km) – however, 

it represents a mid-range estimate from work presented by Notter et al. (2010), Hawkins et al. 

(2013), and Alexander et al. (2011) who assess a number of factors including manufacturing 

process, extraction of battery components, and driving utility, and so can be considered valid based 

on currently available work). This is then compared with equivalent petrol vehicles (where 

manufacturing emissions of 40 gCO2/km are assumed), and converted to an MPG figure. The 

figures replicated from Wilson (2013) in Figure 1-13 suggest that a BEV in the UK is equivalent to 
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a petrol vehicle with an MPG of 44 (currently similar to the most efficient new petrol vehicles 

available (Fuel Economy UK, 2014)). In countries such as India however, where electricity 

generation is largely fossil fuel based, BEVs could be equivalent to the worst performing ICEVs. 

On the other hand, in countries with a low carbon grid BEVs could represent the most efficient 

vehicles available (according to Wilson (2013)). 

 
Figure 1-13 - Equivalent MPG of BEVs in 20 countries 

Figure Source: Wilson (2013) 

 

Despite the variation in stated emissions figures of BEVs and ICEVs (which are dependent on year 

of study, country, assumed mileages, parameters included), the importance of electricity production 

in relation to BEVs is apparent. Given this, their success (from an emissions perspective) could be 

reliant on a move towards a more sustainable grid mix – incorporating wind, wave and other low 

carbon sources, which according to Thiel et al. (2010) will help the emissions gap between BEVs 

and ICEVs grow bigger in favour of the electric car. In the UK, the decarbonisation of the 

electricity grid is mandated in law (part of the wider 80% reduction by 2050) (Great Britain. 

Climate Change Act, 2008). And, although the speed and degree of this decarbonisation appears 

dependent on many variables (such as government policy, oil price, wider implementation of 

renewables, and uptake of BEVs among others), several authors suggest at least some 

decarbonisation is likely, even under conservative scenarios (Anderson et al., 2008; Kannan, 2009; 

Shackley and Green, 2007) meaning a further improved emissions outlook for BEVs is possible. 
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1.3.5 Summary of emission reduction in road transport 
 

Given the need to reduce emissions in road transport (Great Britain. HM Government, 2011b), it is 

likely that contributions from several technologies are needed (Automotive Council UK, 2013). As 

a part of this pathway, battery electric vehicles have the potential to reduce emissions in line with 

mandated targets and beyond (Doucette and McCulloch, 2011b). Furthermore, their impact will be 

boosted if a decarbonisation of the electricity grid continues (Anderson et al., 2008). For this to 

happen, it is key that BEVs become more widely used. Sales have increased recently; in the first 9 

months of 2014, 4,500 BEVs were sold in the UK, a 148% increase on the same period in 2013 

(The Society of Motor Manufacturers and Traders, 2014b). Yet, as an overall percentage of sales 

(<1%), these numbers remain low (The Society of Motor Manufacturers and Traders, 2014b), 

suggesting barriers to their uptake still exist. Given this, the following section explores the current 

issues limiting BEV use, and highlights the barriers that need to be overcome to help encourage 

their uptake and usage. 

 

1.4 Electric Vehicle Trial Usage and Perceived Barriers to Take-up 
 

To help pave the way for a developed BEV market, over the last few years several real-world trials 

have been carried out to investigate how people react and adapt to using a BEV over an extended 

time period. These trials have provided an early insight into the positives aspects of BEV use, and 

also highlighted issues which still need to be resolved if the technology is to reach the mainstream. 

The following section reviews these trials, describing how people adapted to BEV use, what they 

were comfortable with, and what they thought were continuing barriers to BEV uptake. Detailed 

discussions about these barriers are then provided in sections 1.5, 1.6, and 1.7. A summary of the 

trial information is described in Table 1-1. 

Table 1-1 –BEV trials 

Literature Country # of vehicles 
Data 

period 
Data collection 

(Technology Strategy Board UK, 

2011) 
UK 

340 (mix of 

private and pool 

users) 

3 months 

(2009-2011) 

GPS loggers, and 

interviews/focus 

groups. Collated from 8 

independent trials 

(Huebner et al., 2013) 

(Robinson et al., 2013) 

North 

East, UK 
44 

13 months 

(2011-2012) 

GPS loggers and 

interviews/focus groups 

(Neumann et al., 2010) 

(Cocron et al., 2011) 

(Franke et al., 2012a) 

Germany 40 12 months 

Experience diary, 

questionnaires, and 

interviews 



Enabling Long Journeys in Electric Vehicles: Design and Demonstration of an Infrastructure Location Model 

  

Laurence Chittock Page 32 

(Franke et al., 2012b) 

CABLED trial, summary information 

available from (Aston University, 

2011; Bruce et al., 2012; Coventry 

University, 2010) with some data 

presented for the first time in this 

thesis. Key findings also presented in 

(Coldwell et al., 2013; Morgan, L. et 

al., 2014; Strickland et al., 2014) 

West 

Midlands, 

UK 

96 
27 months 

(2009-2012) 

GPS loggers and 

interviews/focus groups 

(Schey et al., 2012) USA 

3,847 (collection 

of data from 

various trials 

across the US) 

3 months 

(2011) 

Charging information 

only 

(Speidel et al., 2012) Australia 11 
6 months 

(2012) 
GPS loggers 

(Richardson et al., 2013) Ireland 
2 (trialed by 8 

households) 

12 months 

(2011-2012) 

Charging information, 

and LV network data 

 

The trails presented in Table 1-1 were operated between 2009 and 2012, with journey and 

perception findings based on 351 BEVs, and charging information available from 4,240 BEVs. In 

the UK, the Technology Strategy Board commissioned 8 demonstration trials to test and analyse 

usage in several market, or near-market, ready low carbon vehicles, of which the majority were 

pure BEVs (Technology Strategy Board UK, 2011). Each vehicle in these trials was leased to either 

a private individual or company (where the vehicle was typically driven by one employee) for a 

minimum of 12 months. Data was collected via on-board GPS data loggers, which recorded 

journey times/distances, odometer reading, charging events/battery state and location; and through 

perception surveys, which aimed to measure drivers’ concerns regarding the use of their vehicle. 

Both the North East and West Midlands trials, listed in Table 1-1, were part of this wider program 

and collected data as described above. Findings from the North East trial are presented in Huebner 

et al. (2013), while results for the West Midlands trial were conveyed through quarterly TSB 

reporting with additional data analysis in sections 1.6 and 3.3, and (Coldwell et al., 2013; Morgan, 

L. et al., 2014; Strickland et al., 2014). A summary report commissioned by the Technology 

Strategy Board presents findings for the first three months of usage across the 8 UK demonstration 

trials. 

 

The North East trial collected data from 44 pure BEVs from April 2010 to June 2013 – with the 

majority being leased to local authorities or companies for use as pool or company vehicles. 

Perception data was also collected via questionnaires and focus groups with more than 300 

responses given throughout the trial (Huebner et al., 2013). The West Midlands trial, otherwise 

known as CABLED, ran from December 2010 to March 2013 and involved 96 BEVs leased to 
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participants for a minimum of 12 months each – of which 71% were leased to private individuals 

and 29% used as pool vehicles. As part of the project, all vehicles had access to a base charger (at 

home, or for the pool vehicles at their place of residence). Over this period, a total of ~97,000 trips 

were recorded. Perception data was collected by Oxford Brookes University via pre-trial and 3 

month questionnaires and interviews, with all participants responding (King, 2011). A post trial 

survey on charging behaviour was carried out by Coventry University, again with all participant 

responses gathered (Berkley, 2012). The age of the cohort ranged from 23-71 (with an average age 

of 48.24). 80% of the participants were male, and 91% had an income in excess of £41,000. This 

demographic is similar to those in Huebner et al. (2013)’s trial (78% were male, 50% older than 45, 

and 91% in full-time work). They suggest that these profiles are symptomatic of the trial 

conditions, with most vehicles leased to places of work, where the employees tended to be male. 

The cost of the lease also demanded a high income. Although these profiles don’t exactly match the 

wider population, they are perhaps indicative of early adoption BEV drivers, with the DfT 

(Department for Transport UK, 2012) reporting that 87% of those claiming the plugged-in subsidy 

for BEVs in the UK were male, over 40, and working full-time or retired. Comparatively, the 

National Travel Survey (Department for Transport UK, 2013d) reports that 55% of all surveyed car 

journeys were carried out by men, of which 70% were carried out by men over 40. Although 

women account for 45% of all car driving trips in the National Travel Survey, they only cover 36% 

of total miles driven (Department for Transport UK, 2013e). This indicates that males undertake 

more long distance trips, and as such, may have slightly higher range needs than women. 

Correspondingly, if BEVs become more widespread and are driven by a more representative share 

of the population, concerns about range may proportionally diminish. 

 

Feedback from participants in these trials highlighted several aspects of BEV ownership, from 

those which they found enjoyable and convenient, to situations which required more planning, and 

to BEV characteristics which they disliked or felt would inhibit wider take-up. A selection of these 

responses is given below. 

“I don’t think there was anything that took me a long time to get used to at all. It was very easy to 

make the change from a conventional car.” (King, 2011) – given during an interview after 3 

months with the car 

“It’s been a good drive, it’s been smooth, there have been no problems with it, it’s nippy when you 

put your foot down when you need to and you wouldn’t think it’s any different from any other car 

apart from the fact it’s so quiet.” (King, 2011) – given during an interview after 3 months with the 

car  
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“I thought it was very, very comfortable, very easy to drive.” (Huebner et al., 2013, p. 4) – post-

trial questionnaire 

“I found it was better than any car I’ve ever driven before.” (Huebner et al., 2013, p. 4) – post-trial 

questionnaire 

“I love driving that car, it’s easy to drive. The braking system I think is fantastic, and I find it a lot 

easier that way to slow down; gracefully so to speak. It’s a pleasure to drive and I find it easy to 

drive.” (Technology Strategy Board UK, 2011, p. 15) – given during an interview after 3 months 

with the car 

“It’s been really surprising actually. I’d thought it would take a bit more getting used to, but apart 

from little quirks of the car, that you know wouldn’t be any different if you were in a different 

model to your normal car, it’s been quite an easy sort of relaxed transition actually.” (Technology 

Strategy Board UK, 2011, p. 15) – given during an interview after 3 months with the car 

“It’s probably been better than I expected. Mostly because, I had quite high expectations, but it’s 

been much easier, the transition’s been much easier, the user friendliness and been much easier, 

the re-charging’s been easier than I expected. It’s been a very simple job to get in it and use it and 

I’ve been using it a lot. I’m trying to test what it can, so I’ve been using it to nip around town for 

meetings and things like that, so it’s been better than I expected.” (Technology Strategy Board UK, 

2011, p. 15) – given during an interview after 3 months with the car 

 

These responses indicate that transition to a BEV, and its general usability and performance was 

positive. This is further reflected in (Technology Strategy Board UK, 2011), with 95% of 

participants reporting after 3 months that BEV use was just as easy as in a conventional vehicle 

(compared to only 79% who thought it would be pre-trial). Of the concerns and perceived barriers 

to BEV use, a limited driving range was mentioned by the following participants. 

“I’d rather be safer than sorry. The last thing I want to do is go somewhere and not be able to get 

back – that would just be so embarrassing having to phone the breakdown people! The 

inconvenience of it!” (King, 2011) 

“I mean the biggest thing for me is purely the limitations of distance. If you run a diesel car out of 

fuel then it’s quite easy to ring someone as and say “Look, could you just pop round and get a 

diesel can for me and we’ll be on our way?” but with a vehicle like this you have to knock on the 

nearest person’s house and say “Do you mind if I plug in my car for four hours just so I can get 

going? I don’t think people would be quite so accommodating.” (King, 2011) 
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For the Technology Strategy Board (Technology Strategy Board UK, 2011)’s study, participants 

were asked how their perceptions had changed after 3 months of driving, and what changes they 

had had to make to adjust from their previous car. Some of these responses described the degree to 

which people had to plan for longer journeys. One respondent explained:  

“In terms of the practicalities, the only real thing that you have to do is bigger journey planning, 

you really do need to think about where you’re going and plan things in advance so that you know 

you’ve got enough charge in the car to be able to use it. Not come into it an hour before you need 

to go out and find you haven’t got enough charge to get there.” 

and another said: 

“Well the main difference is having to think more isn’t it? I mean really I have to think every day 

and even the night before I have to think more of what I’m doing before I know where I’m going or 

yeah, what I’m likely, where I’m likely to go, you know distance wise really and am I going to be 

able to charge.” (Technology Strategy Board UK, 2011, p. 19). 

These sentiments are reflected in the overall questionnaire findings after 3 months, with 74% of 

drivers reporting that journeys in BEVs require more planning compared to a normal car (a slight 

decrease from the pre-trial response of 80%). A predominant reason for planning trips more 

carefully in BEVs is to avoid running out of charge prior to reaching a destination. Although such 

situations would arise as a result of the limited driving range, it appears that users are more 

concerned with the fear of running out of charge and being left stranded. This phenomenon is often 

dubbed ‘range anxiety’, when drivers feel insecure completing intended journeys with the available 

range (Acello, 1997; Nilsson, 2011). Before the (Technology Strategy Board UK, 2011) trial began 

this fear was expressed by all respondents; 100% were more concerned about reaching their 

destination in a BEV compared to a conventional vehicle. After 3 months however, this feeling was 

only held by 35% of drivers. Clearly therefore, direct experience of a BEV can help alleviate some 

range fears. As the Technology Strategy Board (2011) point out however, a source of anxiety 

around the vehicle’s range remains but drivers learn to adapt and become more confident managing 

their journey needs.  

 

In the German BEV trial, Franke et al. (2012b) also reports similar findings. They asked their users 

how often they encountered a range-related stressful situation, reporting that these occurred on 

average 1.09 times per month. Consequently, Franke et al. (2012b) conclude that ‘users 

experienced range somewhat more like a problem-solving task rather than a stressful encounter’. 

This was based on further findings which report that 90% of users felt the current range of their 
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BEV was sufficient for everyday use. Continuing on the issue of range, drivers across the 

Technology Strategy Board (2011)’s programmes were asked what range they deemed suitable for 

daily needs, and what was more than sufficient for all journey needs. Before the trial, private 

drivers on average quoted 76 miles as being adequate for daily needs. For all journeys they felt 232 

miles was sufficient. After 3 months however, these figures changed to 92 and 206 respectively.  

 

Huebner et al. (2013) questioned their participants to find out which perceived barriers were the 

most important for them, and which they thought would most likely hinder uptake (the results of 

which are replicated in Figure 1-14). Although the particular categories were provided by the 

interviewer, it is clear that some are viewed as more important than others. From this, Huebner et 

al. (2013) summarised the major barriers to BEV uptake into three categories: the cost of the 

vehicle, a limited driving range, and concerns about charging. 

 

Figure 1-14 - Importance of various BEV attributes to trial participants 
Figure Source: (Huebner et al., 2013) 

 

One respondent reemphasised the issue of range by saying: “I would say that the range must be 

probably the biggest barrier. If it’s your only mode of transport then it probably is a problem, but 

not if it’s for use as a second vehicle.” (Huebner et al., 2013, p. 4) 

This sentiment is reflected in another questionnaire response, which asked users ‘would you 

consider buying a BEV?’ On completion of their trial, 46% of drivers said they would only 



Enabling Long Journeys in Electric Vehicles: Design and Demonstration of an Infrastructure Location Model 

  

Laurence Chittock Page 37 

consider buying a BEV as a second vehicle, with 16% willing to purchase one as a primary vehicle, 

and 38% not willing to buy. Although it is unlikely that ‘consideration’ will translate into genuine 

purchase in all cases, the high incidence of those who would only consider a BEV as a second 

vehicle suggests that range and lack of charging availability are the biggest barriers. As suggested 

by the respondent above, if a household has an alternative mode of transport available (presumably 

a gasoline car), then the issue of range can be managed more easily. Without this back-up, owners 

must either use alternative modes of transport or find a way to extend the range of their BEV. 

 

Based on Huebner et al. (2013)’s reported findings about the perceived barriers to BEV take-up and 

use, the following sections review the current situation for cost, range and charging, and explores 

how these issues manifest in reality and their possible impacts on a larger proportion of the 

population.  

  

1.5 BEV Cost and Batteries 
 

1.5.1 Total cost of ownership and price forecasts 
 

As highlighted by Huebner et al. (2013) the up-front cost of a BEV is an important determining 

factor for consumers. A primary reason they are more expensive than their ICEV equivalents is due 

to their battery. As King (2007) pointed out back in 2007, the future success of BEVs will largely 

depend on battery technology and the ability to lower the cost to density ratio. Currently, batteries 

have a lower energy density than other fuel types, such as gasoline or hydrogen, resulting in a 

lesser range. Therefore, to improve this range a larger battery is needed (Thackeray et al., 2012), 

which results in a higher cost (Scrosati et al., 2011). This is highlighted in Figure 1-15 which shows 

a series of current BEVs with their stated EPA ranges (US Department of Energy, 2014) and US 

retail price (Ingram, 2014; Plug In America, 2015; PluginCars.com, 2014; Tesla Motors, 2015). An 

explanation of how vehicle ranges are calculated is provided in section 1.6. Although the prices 

shown are retail costs, a relationship between vehicle range and cost (of which the battery is a 

major constituent part) can be seen. The precise proportion of battery cost to retail price is not often 

declared by the manufacturers (Crist, 2012). Using an example of the Renault Kangoo ZE in 2011, 

Crist (2012) reported that the battery constituted 43% of the retail price for this vehicle. This is 

based on the fact that Renault gave the option to buy the battery separately (although this does 

assume that margins are equivalent for both parts). 
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Figure 1-15 - Comparison between vehicle range and retail cost 

Data Source: vehicle ranges (US Department of Energy, 2014) 

Data Source: US retail prices, compiled from (Ingram, 2014; Plug In America, 2015; PluginCars.com, 2014; Tesla Motors, 2015) 

 

Although BEVs are currently more expensive than their ICEV counterparts (Egbue and Long, 

2012), King (2007) reviewed the costs of fuel production and supply for various vehicle types and 

identified that the BEV is often the cheapest to refuel (depending on taxes). Thus, for the consumer 

the cost of ownership of a BEV could be cheaper than for alternative vehicles, but despite this the 

total cost of ownership – which includes purchase price – is currently not in favour of the BEV, 

according to Al-Alawi and Bradley (2013) and Plotz et al. (2012). Over the coming years however, 

this could change, which would likely decrease the significance of this barrier (Egbue and Long, 

2012). 

 

Weiss et al. (2012) suggest that price parity with ICEVs might be achieved by 2032. They base this 

forecast on application of experience curves, which assume that costs decline based on economies 

of scale, manufacturing experience, and technological innovation. As a proxy for cost decline they 

use data and experience from the HEV market. These vehicles have been established in the market 

longer than BEVs, and share similar manufacturing processes (albeit with a smaller battery 

component). As such, they represent a useful ancillary to show how costs might decline for full 

battery technology vehicles. As a base, they compare prices with ICEVs by converting costs to 

engine power (kW-1) and assume that 82% (±4) of an ICEV’s retail price results from ancillary 
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costs (i.e. not the powertrain) (cited from Lipman and Delucchi, 2003). They also assume that 

ancillary costs are equivalent between vehicle types (they disapply tax costs for instance), and thus 

can deduce the cost of electrification in HEVs and BEVs based on the price differential to ICEVs. 

Historical cost data is presented for three prominent vehicle markets, the USA, Germany, and 

Japan from 1997 to 2010, and is shown diagrammatically in  Figure 1-16, taken from (Weiss et al., 

2012, p. 348). 

 

Figure 1-16 - Historical price decline of HEVs and ICEVs 
Figure Source: (Weiss et al., 2012, p. 378) 

 

Based on the data presented in Figure 1-16, Weiss et al. (2012) show that the cost of HEVs 

declined between 19%-38% from 1997 to 2010, and that the price differential between ICEVs and 

HEVs declined between 69%-78%. These declines are principally linked to improvements in the 

battery technology. For instance, since 1997, Toyota managed to improve the capacity of their 

battery by 50% yet reduce its size by 33% and its cost by 75%. Based on the markets they study, 

they derive an average year-on-year learning rate for HEVs (i.e. the rate of cost decline) of 7% 

(±2%). This value is then converted to assume a future learning rate for BEVs. To do this, Weiss et 

al. (2012) attempt to identify the learning rate for the battery/electrification component only of 

HEVs (since a decrease in battery cost in a HEV only provides a partial decrease for the whole 

powertrain). Thus, they assume that the differential in learning rates between ICEVs and HEVs 

represents the rate of decline which can be attributed to the battery component. Thus, they calculate 

the assumed learning rate for the BEV powertrain as 23% (±5%). Extending these calculations, 

they forecast how prices may decline for BEVs, HEVs, and ICEVs up to 2036 based on vehicle 

take-up rates predicted by the International Energy Agency (2011). The results from the price 

decline forecasts are shown in Figure 1-17. 
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Figure 1-17 - Forecast of vehicle cost decline based on assumed technology learning rates 
Figure Source: (Weiss et al., 2012, p. 382) 

 

Weiss et al. (2012)’s work suggests that BEVs may reach price parity with HEVs by 2026, and 

with ICEVs by 2032 – but as indicated in Figure 1-17, there is a large amount of uncertainty with 

this. For instance, they cite the weakness associated with experience curves, namely that costs 

decline by a fixed percentage year-on-year. Over a reasonably long period, it is possible that this 

average rate will apply, but from year-to-year a smooth decline is unlikely. For instance, a major 

early breakthrough in battery technology may well accelerate this process, or conversely an 

improvement plateau might be reached (see section 1.5.2 for a wider discussion on battery 

technology). Also, Weiss et al. (2012) assume that cost of production is correlated with retail price. 

They perform sensitivity analyses and show that a good correlation tends to exist where pricing 

data is known, but often production cost data is kept confidential (Junginger et al., 2010). This may 

be especially true in a new market, where manufacturers may subsidise production cost to help 

develop a sales base (Wene, 2000). As such, current BEV production costs could be higher than 

assumed, meaning prices may have further to fall to reach a competitively sustainable level. 

Furthermore, their assumptions are based on a prediction of BEV take-up which they use to infer 

economies of scale, and likely technology development spending. Consequently, this adds another 

level of uncertainty. However, the two facets are interlinked: technology improvement, and vehicle 

take-up; and as such it is likely that a change in the first will cause change in the second. Whereas a 

slowdown in battery progress may stunt take-up rates, a major breakthrough in battery technology 

may make BEVs more attractive to consumers and encourage faster take-up, which in turn may 

help costs decline (through economies of scale), creating a snowball effect. 
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Despite the uncertainty that surrounds Weiss et al. (2012)’s forecast (or indeed any prediction), the 

recent trends they present suggest that BEV costs are likely to decline at a faster rate than ICEVs. 

They cite the speed of this decline to be largely dependent on improvements in battery technology, 

and the rate of BEV uptake – which can be linked to the overall attractiveness and viability of the 

vehicle for the consumer. In the meantime, government offered subsidies can help reduce the 

burden of higher initial costs, according to Kley et al. (2012), who suggest that initial purchase 

subsidies are a more effective encouragement for drivers than continuing subsidies (such as yearly 

tax reductions). To this end, the UK government has been offering a £5,000 upfront subsidy on 

BEV purchase price since 2011 (Office for Low Emission Vehicles UK, 2014). Despite this, and 

many similar subsidies offered throughout Europe, only subsidies in Denmark and Norway 

currently make the BEV cost comparable to ICEVs, according to Kley et al. (2012) who review 

subsidies and taxes across vehicle types in Europe.  

 

1.5.2 Battery technology 
 

In 2010 Kemp et al. (2010) presented a review of existing battery technologies and their relative 

energy densities. This work is replicated below in Figure 1-18. 

 
Figure 1-18 - Summary of battery options, and energy density 

Figure Source: Kemp et al. (2010) 
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Kemp et al. (2010)’s review suggests that there are many options for battery technology within 

vehicles, and that energy density (i.e. the capacity to size ratio) is key to the overall range of a 

vehicle. Given this, at a time when Lead-acid and NiMH (Nickel Metal Hydride) batteries were the 

norm, King (2007) recommended that advances in battery density would be needed for electric 

vehicles to become viable transport options. In 2015 however, Lithium-ion technology has become 

the prominent battery choice thanks in part to their superior energy density. This is evidenced by a 

review of currently available BEVs in the market which are all offered with Lithium-ion batteries 

(of varying sub-chemistries) - (Blanco, 2014; BMW, 2015; BYD, 2015; Chevrolet, 2015; Fiat, 

2015; Ford, 2015; Honda, 2015; Nissan, 2015a; PluginCars.com, 2014; Smart, 2015; Tesla Motors, 

2015). Similar to the comparison between vehicle range and purchase cost, current vehicles are 

supplied with batteries of varying sizes (where kWh refers to the capacity/energy potential of the 

battery). In relation to range there appears to be a relationship between battery capacity and the 

overall expected distance capability of the vehicle as is shown in Figure 1-19. 

 
Figure 1-19 - Variation in battery size and vehicle range for a set of BEVs 

Data Source: vehicle ranges (US Department of Energy, 2014) 

Data Source: battery sizes (Blanco, 2014; BMW, 2015; BYD, 2015; Chevrolet, 2015; Fiat, 2015; Ford, 2015; Honda, 2015; Nissan, 

2015a; PluginCars.com, 2014; Smart, 2015; Tesla Motors, 2015) 

 

Figure 1-19 shows a set of currently available BEVs with their battery capacities shown in kWh 

(where various options were available for the model, the standard option is shown), and their 

expected ranges as stated by the EPA combined duty cycle (US Department of Energy, 2014). This 

data suggests that for vehicles with a larger battery, their range is greater. However, the relationship 
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is not perfect, with increases in battery size not directly proportional to expected range. This could 

be due to, as suggested by Torchio and Santarelli (2010), the additional weight that a larger battery 

induces. As such, it is possible that to increase range, a disproportionately larger, and thus more 

expensive, battery is needed. In the coming years, it is possible that technology improvements will 

allow for an increased energy density, and thus improved range will not be as effected by increased 

weight. Possible technologies which could provide this breakthrough include Lithium-air batteries, 

which have the potential to offer improved energy density levels since some of the catalysing 

chemistry is integrated from the ambient air (Park et al., 2012) (Scrosati et al., 2011) (Jung et al., 

2012). However, as Gallagher et al. (2014) and McCloskey et al. (2012) point out, there are still 

many obstacles to overcome before the technology can be successfully implemented (such as 

integration of on-board air filtration systems, and risk containment of pressure and catalyst 

systems). Given this, in the next two sections range is discussed in reference to driver’s needs, and 

charging provision is suggested as an alternative means to provide extended range. 

 

1.6 BEV Range 
 

One of the major barriers to BEV uptake, highlighted in section 1.4 is the perceived range 

inadequacy associated with these vehicles. To fully understand this sentiment it is firstly important 

to understand people’s prior expectation of range, and thus why this can create a problem. A 

breadth of BEV ranges will then be compared with driver’s actual usage habits, highlighting where 

possible ancillary services might be needed.  

 

1.6.1 Description of range 
 

Prior to a discussion on vehicle range, it is important to identify what is meant by the term, how it 

is calculated, and how it can vary under different circumstances. In the context of mobility, range 

describes the total distance a vehicle can travel when starting with a full tank or battery and driving 

until empty. Calculation of this figure is often derived from the fuel economy, which describes the 

distance that can be achieved given a certain amount of energy (and is sometimes referred to as the 

mpg-e, which is a conversion from gasoline efficiency to electricity) (Society of Motor 

Manufacturers and Traders, 2011). Using this figure combined with the battery’s capacity, the full 

range of the vehicle can then be calculated – for instance, if 1kWh is consumed with four miles of 

driving then a vehicle with 20kWh of driveable capacity can be assumed to have a range of around 
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80 miles. The measurement of fuel economy is mandated in European legislation, requiring that 

each vehicle model be tested with the NEDC drive cycle before release (Barlow et al., 2009). 

Originally, the legislation was brought in for gasoline vehicles as a means of comparing and 

controlling emissions standards (André and Rapone, 2009). Basing vehicle range on such test 

cycles has come under criticism however, principally because an average, simulated value cannot 

sufficiently represent variability in real world driving (André and Rapone, 2009; Samuel et al., 

2002). This phenomenon is particularly acute for electric vehicles, where a 10% change in expected 

range is likely to have more severe consequences than with ICE vehicles; adding another facet to 

the problem of range anxiety (Steinhilber et al., 2013). Thus, when determining charging provision 

for electric vehicles based on range, it is important to consider how potential variability in this 

figure will affect the solution. Several of these factors have already been explored in the literature, 

historically for ICE vehicles, but more recently in some cases for BEVs. For instance, on the matter 

of driving cycles, many authors have shown that a single and simplistic driving cycle provides a 

poor representation of actual fuel use. The reasons for this discrepancy are manifest, ranging from 

variations in driver behaviour, traffic conditions, road type/topology, ambient temperature, use of 

ancillary devices, and additional weight to the vehicle. Pelkmans and Debal (2006) assess emission 

and fuel consumption for a range of gasoline vehicles comparing the NEDC to actual driving. They 

report that, when compared to a series of real driving data, the NEDC underestimates fuel 

consumption (and thus range) by 10-20%. Similarly, Huo et al. (2011) reports that fuel economy in 

a real setting decreases 15.5% compared to a standard driving cycle, and Zhang et al. (2014) 

observes a 10% (±2%) real-world decrease in fuel economy compared to the NEDC.  

 

1.6.2 Variation in range 
 

A gasoline vehicle, driving in heavily congested urban areas typically consumes more fuel per km 

compared to highway driving as reported in (André, 2004; André and Rapone, 2009; Hu et al., 

2012). For electric vehicles, the opposite tends to be true. This is largely a result of the fact that 

BEVs consume much less energy when idling – a scenario that is more likely in an urban setting, 

according to Montazeri et al. (2013) who show that 48% of time can be spent idling in congested 

traffic.  To demonstrate how different driving condition effect range Figure 1-20 shows the ranges 

for a series of BEVs based on the EPA calculated rating. The EPA (US Environmental Protection 

Agency) implement similar legislation as the EU, requiring that fuel economy figures are 

calculated using a standard driving cycle (US Department of Energy, 2014). The ranges shown are 

the city range (based on an urban drive cycle), a highway range, and a combined range (similar to 
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the NEDC). For each vehicle the variation in these stated ranges is shown. In most cases the city 

range is greater than the highway range (on average 14% higher).  

Figure 1-20 - Variation in range for a selection of BEVs 
Data Source: (US Department of Energy, 2014) 

 

Clearly, the range of different vehicles vary – but typically, the range of an individual vehicle is 

quoted as a fixed figure (Lintern et al., 2013). Strictly however, the achievable range in a vehicle is 

not fixed and can vary as a result of many factors. This is demonstrated by Walsh et al. (2010) who 

tested a Smart ED (original 2007 model) BEV on a test track with 6 different drivers and various 

driving scenarios. The scenarios tested are used to simulate variety in real-world topology, with 

routes designated as ‘hill route’, ‘handling circuit’, ‘city course’, and ‘high speed circuit’. Using 

on-board telemetry in the vehicle, Walsh et al. (2010) study the amount of energy used by each 

driver over each section of the course, with their results replicated in Figure 1-21. Based on the test 

track results they report that both driver and topological variation can have an effect on BEV 

energy consumption (and consequently range). 
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Figure 1-21 - Variation in BEV energy consumption 

Figure Source: (Walsh et al., 2010)  

 

Given that variation is evident in energy consumption, Walsh et al. (2010) also analyse how these 

variations may affect overall range by studying the energy consumption of 4 Smart EDs on trial in 

the North East of England. Their reported findings are replicated in Figure 1-22, which show the 

assumed overall range of the vehicle based on energy consumption from various journeys. 

Although the average of this distribution is 72km, variation in journeys indicate that range could 

vary up to 40kms either way. Basing range calculations on an extrapolation does assume that the 

style of one journey would be replicated over its whole range, and that energy consumption is 

linear throughout the battery’s state, but the results suggest that variations in real-world conditions 

can have an impact on the achievable range of a BEV.  

 
Figure 1-22 - Variation in assumed range of a BEV 

Figure Source: (Walsh et al., 2010) 
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Similar work is also carried out by Neaimeh et al. (2013) who assess the energy consumption of 

vehicles in the North East BEV trial (described in section 1.4). They assess a number of dynamic 

energy consumption parameters and devise a model to estimate the amount of energy needed for 

various routes (based on the anticipated speed, traffic conditions, and gradient of a route, and 

previous driver behaviour). They then use this information to predict and recommend a least energy 

cost route between Newcastle and Edinburgh, assuming various capacity, or traffic, levels on each 

road (15, 60, or 90%). For this test route, they show that route choice, and consequently 

topological, speed, and traffic conditions affect energy consumption. For instance, two possible 

routes are 159 and 155km in length respectively. However, when light traffic is assumed (15% 

capacity) Neaimeh et al. (2013) predict that energy consumption will be 15.95 and 11.75kWh 

respectively for the two routes (a potential difference of 17.5% in battery capacity used, assuming a 

Nissan Leaf with a 24kWh battery). Another variable which appears to affect vehicle range is 

temperature. This condition was tested by Strickland et al. (2014) using journey data from the 

CABLED project. Figure 1-23, replicated from Strickland et al. (2014), shows the decrease in state 

of charge, or SoC, for a BEV undertaking the same journey (from home to work) on several 

different occasions. Although topological and driving style variations are partially accounted for by 

selecting the same driver/route, the use of ancillary devices such as heating is not accounted for 

(although an attempt to limit these effects is made by focusing on temperatures between -5o and 

20o). Based on this repeat journey, a trend in temperature effects on energy consumption can be 

observed (between 13% SoC used and 25% for the same 22km route). 

 
Figure 1-23 - Energy consumption (SoC used) at given temperatures 

Figure Source: (Strickland et al., 2014) 
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1.6.3 Range needs 
 

The work presented by Walsh et al. (2010), Neaimeh et al. (2013), and Strickland et al. (2014) 

suggests that variation in range exists between different routes, drivers, and temperatures, while 

Figure 1-20 shows how range can vary between vehicle makes. But despite the fact that superior 

range is available within the BEV market and that range may sometimes be higher than stated, 

overall range is much lower than with equivalent ICEVs. This is demonstrated in Figure 1-24. 

 
Figure 1-24 - Range disparity between BEVs and ICEVs 

Data Source: (US Department of Energy, 2014) 

Vehicle ranges calculated from provided combined duty cycle figures (101 ICEV set) 

 

Figure 1-24 compares the expected ranges (based on a combined duty cycle) of several current 

BEVs with the average fuel tank range of a typical ICE vehicle. The ICEV ranges are based on a 

set of 101 current ICE vehicles, where range has been calculated using the same combined cycle as 

with the BEVs (US Department of Energy, 2014). From this dataset, the average (mean) value, 90th 

percentile, and 10th percentile of range values are shown. From this data, it is apparent that current 

BEVs do not offer the same single-battery/tank range capability as ICEVs. And, although the 

technology is likely to improve, providing more miles for a lower upfront cost, it is unlikely that 

battery range will be able to match ICE range in the near-future according to  (Gerssen-Gondelach 

and Faaij, 2012; Vyas et al., 1998; Weiss et al., 2012). 
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The consequence of this mismatch is explored by Franke et al. (2012b) who, reporting on findings 

from the German BEV trial, suggest that many drivers’ expectations of vehicle range are anchored 

by prior experience of ICEVs. Thus, when assessing a BEV’s range suitability, potential drivers 

often desire a distance capability comparable to their last ICEV, rather than a range which would 

prove suitable for their journey needs. However, although BEV range is lower than with ICEVs, 

journey patterns may mean that a superior range is not needed in all cases. Indeed, most journey 

needs can be adequately satisfied with the full range of a BEV. Figure 1-25 shows the distribution 

of journey distances by car in England based on results from the National Travel Survey 

(Department for Transport UK, 2013f). Also overlaid is a typical BEV’s range (median of 

combined range from Figure 1-24) (US Department of Energy, 2014) which highlights the 

proportion of trips which could be achieved with a full battery.  

 

Figure 1-25 - Average frequency of car journeys by distance (England, 2013) 
Data Source: (Department for Transport UK, 2013f) 

Data Source: (US Department of Energy, 2014) 

Typical BEV range set as median value from data presented in Figure 1-24 

 

Figure 1-25 shows that BEVs can typically satisfy 98% of all trips, providing they are fully charged 

before use. Thus, for most daily journey needs the BEV can provide the same functionality as a 

gasoline vehicle. This idea is exemplified by reported findings from the Technology Strategy Board 

(2011), who report average daily mileages across the demonstration trials of 24.3, 25, and 23.3 in 

the first three months respectively. Car (ICEV) driving respondents to the Department for 

Transport’s (2013a) national travel survey – which surveyed ~16,000 individuals from England 

about their travel patterns for a week – reported a yearly mileage between 8,100-8,300 for the same 

period; equivalent to a daily distance of ~22.5 miles. Findings from the CABLED trial are also 
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consistent with this figure – with an overall average daily mileage of 24.51. Further to this, the 

distribution of individual trip distances from the CABLED trial is largely consistent with the travel 

survey data presented in Figure 1-25. This comparison is shown in Figure 1-26, with the percentage 

of trip distances from each dataset shown.  

 
Figure 1-26 - Single trip lengths - CABLED and NTS 

Data Source: (Department for Transport UK, 2013f) 

 

Aside from a high proportion of short trips (<1 mile) in the CABLED dataset – many of which may 

not have been self-reported in a travel survey – a difference can be observed for journeys greater 

than 50 miles. Although these journeys only account for 2.22% of all national car trips, 50 mile+ 

trips were only observed 0.35% of the time in the CABLED data. If it is assumed that the 

CABLED cohort are representative of the population (their daily averages and high male 

proportion even suggest they travel more than the national average), then it could be concluded that 

they would ordinarily have carried out more 50 mile+ trips had they not been restricted by a limited 

range and a dearth of charging options. Given this, it is likely that the BEV drivers in the CABLED 

trial had to use alternative transport around 2% of the time. As pointed out by Franke et al. (2012b) 

based on the German trial, for BEV drivers who switch from using a gasoline vehicle, they tend to 

feel a greater sense of loss in functionality compared to what they might gain. For BEV owners 

with a second (gasoline) car, losing 2% of journey functionality is not likely to pose much of a 

problem, as it is likely they could easily swap to their gasoline vehicle. Single-car BEV drivers 

however, would have to change their travel arrangements on these occasions – an off-putting 

inconvenience that is observed in Huebner et al. (2013)’s reported findings – when asking if people 

would consider a BEV in the future. Consequently, as well as this issue being decreased if overall 

range is improved, options which can help satisfy these trips, such as replenishing a BEV’s range 

en-route, may be needed. 
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1.7 Charging and Public Infrastructure 
 

Trial participants in Huebner et al. (2013)’s study responded that access to quick chargers is very 

(40%) or quite important (40%) to BEV use, and access to public standard chargers is very 

important (~50%) or quite important (20%). However, comprehensive coverage and access to 

chargers was not available at the time of the study, and as a result, over 90% of participants 

responded that a ‘limited availability of charge points’ was an important barrier to usage. Given 

therefore, that charging provision is seen as key to enabling further BEV use, the following section 

highlights the different options that are available for charging. A review of the impact that BEVs 

might have on the electricity network, via public and private infrastructure, will then be given (in 

section 1.7.2) with a discussion on how this might affect locating capacity provision. Additionally, 

a summary of the current locations of chargers and the strategies used to place these will be 

provided (in section 1.7.3). 

 

1.7.1 Charging options 
 

“I found the charging very easy: plug it into the mains, put the other bit into your own electric 

point. That’s it; that is all you have to do and walk away. Wake up in the morning and it’s all done. 

Unplug it, take the thing out, put the cable in the boot of the car and away I go. Takes me 30 

seconds in the morning to get the car up and running.” (Technology Strategy Board UK, 2011, p. 

29) 

 

Yilmaz and Krein (2013) categorise charging options based on electrical supply and the rate of 

delivery. Based on the electricity markets in the US and the EU they define these as level 1 (which 

they describe as a convenience outlet, such as those available in most homes), level 2 (which they 

say is the predominant dedicated ‘slow’ charging option for private and public locations), and level 

3 (intended for public/commercial locations with a three phase supply). Their summary is 

replicated in Figure 1-27. 
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Figure 1-27 - Charging options for BEVs 

Figure Source: Yilmaz and Krein (2013) 

 

Veneri et al (2012) also categorise charging options – but split them into four ‘modes’ based on the 

maximum electrical current delivered. Their summary is replicated in Figure 1-28. 

 
Figure 1-28 - Charging current for BEVs 

Figure Source: Veneri et al (2012) 

 

Both of these works present charging times for a variety of charging options ranging from 5 

minutes to 36 hours. Veneri et al (2012) cite the potential for the ‘ultra-fast’ 5 minute charge from 

Dhameja (2001) who explains that 5-15 minute charges are possible, but the high delivery of 

required current can induce destructive temperatures to the battery. More recently, Kang and Ceder 

(2009) also describe potential methods to charge in 5 minutes, but they explain that such systems 

are not currently commercially available and may be limited by electrical capacity constraints 

(180kW would be needed to recharge a 15kWh battery in 5 minutes). Such constraints are 

discussed further in section 1.7.2. 

 

Analysis of real-world rapid charging times indicates that the values presented by Veneri et al 

(2012) and Yilmaz and Krein (2013) aren’t unreasonable, but that charging times beyond half an 
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hour can occur. The data is based on rapid charging (43 & 50kW) usage in the Midlands in the UK, 

with Figure 1-29 showing the amount of time taken for each rapid charging event. A further 

description of this data is provided in section 4.1. Based on this, the average charging time was 24 

minutes, with 95% of all charges less than 45 minutes.  

 
Figure 1-29 - Variation in charging time 

Data Source: Cenex charging data – see section 4.1 

 

Kemp et al (2010) define two main types of charging based on charging times: ‘en-route charging’, 

or ‘charging at home or away’. For en-route charging, they describe four options which could make 

this possible: rapid charging, battery swapping, charging at a destination, and use of a gasoline 

engine through hybridisation. Rapid charging – which for the purposes of clarity is taken to 

describe level 3 or mode 4 charging from above – can replenish a battery by delivering a high level 

of current in a short time (as shown in Figure 1-27 and Figure 1-28). For instance, a top-up in 15-

45 minutes is currently achievable (Botsford and Szczepanek, 2009; Chan, 2007) and could allow a 

BEV driver to stop off, recharge and continue onto their destination much as they would in a 

conventional ICEV. 

 

Another option highlighted by Kemp et al (2010) for ‘en-route charging’ could be not to charge at 

all, but instead exchange a near empty battery for a fully replenished one. This method, pioneered 

by Better Place (Better Place, 2011), enables the BEV to be driven into a specialised battery 

exchange station, have its depleted battery robotically removed and then replaced with a fully 

charged new one. This whole process can take as little as 3 minutes – a time akin to, if not less 

than, refilling a petrol tank. This method of ‘recharging’ has several advantages as well as 

disadvantages compared to conventional charging. Firstly, the battery is not inherently tied to the 
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vehicle and could potentially be owned on a lease basis (Kley et al., 2011). This may avail a 

cheaper purchase price, since the battery forms a significant cost of any BEV; but it also means that 

any maintenance, upgrade or replacement is the responsibility of the battery provider. However, as 

Kemp et al (2010) point out the logistical efforts needed to provide a sufficient battery swapping 

provision may be difficult to implement. Positively, this option may mean multiple battery 

recharging could also be managed more effectively, from a grid perspective, providing the operator 

with an additional revenue stream (Coldwell et al., 2013; Kempton and Tomić, 2005). As an 

alternative to rapid charging, battery swapping offers similar challenges regarding infrastructure 

provision. Given this, the work in this thesis could also be applicable for the provision of battery 

swapping, albeit with different practical considerations, so for the purpose of this thesis battery 

swapping is regarded as synonymous with rapid charging. 

 

The other options mentioned by Kemp et al (2010) for en-route charging are also likely to play a 

role in enabling electric vehicle use, however, for the purposes of this study the provision of 

recharging is seen as more important for BEVs (as they do not have an ancillary engine to extend 

range as in a PHEV). Destination charging can also be described as being similar to charging at 

home or work or where a long stoppage en-route occurs (e.g. an overnight stay). Since many of the 

long journeys that this thesis is concerned with are completed within the course of a day, these 

options along with slow charging are not considered as part of this work.  

 

1.7.2 Capacity for charging stations 
 

Given that charging stations are connected to, and rely on, the electricity Network, it is important to 

consider the impacts BEVs might have in this regard, and what constraints may be applicable. In 

this field, there have been a number of studies and subsequent reviews on the impact of electric 

vehicles on the distribution grid system (Cheng et al., 2014; Papadopoulos et al., 2012; Yilmaz and 

Krein, 2013). Impacts of vehicle charging on the electricity Network could include: exceeding 

ratings of equipment (transformers and cables) and going outside of statutory limits (voltage and 

harmonics). Due to the low penetration of electric vehicles to date these impacts have not been 

validated through the use of real world data and, as such, authors have had to use modelling tools to 

hypothesise these impacts. Modelling in this area can be split into four main areas as shown in 

Figure 1-30. Here, Network is referred to as the electrical grid network, as opposed to an OD 

network. 
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Modelling Impact of BEVs on the 

distribution network in relation to 

charging site capacity 
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modelling using 

practical scenarios 

at pre-determined 

locations 

 

For example; 

Single charging 

station (Bae and 

Kwasinski, 2012) 

Shopping centre 

(Ghiasnezhad 

Omran and 

Filizadeh, 2014) 

 

 IEEE test network 

modelling 

For example; 

IEEE34 model 

(Clement-Nyns et 

al., 2010, 2009) 

 

Feeder model 

including IEEE 

models (Moses et 

al., 2012) 

 

 “Typical” 

distribution network 

modelling using a 

generic model 

 

For example; 

Typical feeder model 

(Qian et al., 2011), 

(Shao et al., 2009) 

Typical Feeder 

Network (range 

10kV to 15kV) 

(Farmer et al., 2010; 

Lopes et al., 2011; 

Pollok et al., 2009; 

Valsera-Naranjo et 

al., 2011; Zhao et al., 

2010) 

 Economic/Carbon 

modelling 

 

For example; 

Effect on 

generation dispatch 

(Lojowska et al., 

2012), (Coldwell et 

al., 2013) 

Effect on CO2 

levels (Robinson et 

al., 2013) 

EV Charging 

location  

(Meng and Kai, 

2011) 

Figure 1-30 - Capacity impacts of electric vehicles on the distribution Network 
 

Within the Network modelling (IEEE or “typical” distribution modelling) fields, the location of the 

BEV charger on the Network has been pre-determined. This location is chosen through 

probabilistic or deterministic methods where no pre-assumed impacts of the physical charger 

location within a real world situation are taken. Results from these studies need to be treated as 

indicative and in many cases results are alluded to through numerical examples. Impacts from 

studies with between 10% and 30% penetration of BEVs using uncontrolled charging  result in the 

following prediction of issues: cable and transformer overloads (Farmer et al., 2010) and harmonics 

and voltage levels (Putrus et al., 2009) at higher levels. Those that consider fast charging, such as 

Shao et al. (2009), and Pollok et al. (2009) indicate that the effects might be felt earlier and that up 

to 2.5% penetration could result in problems, again if charging is uncontrolled. 

 

The small scale modelling examples each consider a specific physical location (which is pre-

determined). Given they are based at just one location, the results are localised and the constraints 

are mainly due to the demand determination at that location studied. Thus, these examples are 

constrained based on the specific fixed transformer rating (to which they are connected) as opposed 

to effects on the broader Network. Examples from the ‘Economic/Carbon modelling’ section, 

where cost and location are used, primarily consider generation or renewable costs, for example, 

the impact of a high BEV penetration in a country and the effect on generation dispatch across 
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Europe (Lojowska et al., 2012). Similarly, the effects on generation dispatch have been studied in a 

UK context using charging profiles from the CABLED trial (described in section 1.4) (Coldwell et 

al., 2013). Additionally, the carbon content of electricity has been calculated based on the charging 

behaviours of drivers in the North East trial (Robinson et al., 2013). This highlighted the 

importance of measures to encourage off-peak, or low carbon, charging – patterns which weren’t 

observed in an uncontrolled charging situation. An example where the impact on the electricity 

network is used to help determine BEV charging locations from a set of sites is based on a game 

theory approach (Meng and Kai, 2011). A set of relevant factors are chosen such as: government 

planning, views of surrounding residents, distribution of electric vehicles around, land use 

situation, traffic conditions, geographical conditions, weather conditions, fire-proof and explosion 

proof conditions, station harmonic pollution problem, electricity network situation, station load and 

charging pattern, total investment and management costs. Game theory is applied such that a 

hierarchy analysis based on these factors and a number of pre-determined charging stations allow a 

‘pay off’ strategy to be formulated and used to determine the solution set. This method relies on 

pre-determining a set of charging stations prior to undertaking this analysis. Although not explicit, 

the strategy for deciding electric vehicle demand is based on a median model, where locations are 

preferred near BEV drivers’ homes (the impact of this approach is discussed in section 2.1). 

Results are generated based on simulated parameters, so it is currently unclear how this strategy 

may be used to help determine sites based on Network constraints. 

 

As well as electrical capacity, there is also likely to be temporal capacity constraints. Part of this 

issue is highlighted in Figure 1-29 in section 1.7.3.2 which shows that rapid charging times can be 

45 minutes or longer, even if the overall average charging time is 24 minutes, or 30 minutes quoted 

in section 1.7.1. Given this, it is possible that – without sufficient provision or prior knowledge of 

availability – queues could form at charging stations. The likelihood of more than one driver 

requiring the same charging point is likely to be dependent on demand throughout the day. This can 

be exampled in Figure 1-31 which shows the frequency of rapid charges that took place in the 

Plugged-In Places Midlands network throughout the day (a description of this data is given in 

section 4.1). As a comparison, the frequency of journeys in progress from the National Travel 

Survey (Department for Transport UK, 2013f) is also shown. This is based on ‘long journeys’ in 

cars/vans that were in progress by time of day. In the Plugged-In Midlands data, there is a clear 

peak in the afternoon and early evening. As pointed out by Pollok et al. (2009) this could have 

implications on the distribution network – but only if, as they suggest, BEV penetration exceeds 

2.5%. As a means of handling queues at charging stations, scheduling systems like those suggested 

by Gerding et al (2013) and Stein et al. (2012) could be used to handle multiple demands, which 

would require BEV drivers to ‘pre-commit’ or book a slot to use the service. 
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Figure 1-31 – Rapid charges by time of day 

Data Source: (Department for Transport UK, 2013f) 

Data Source: Cenex charging data – see section 4.1 

 

The evidence presented based on capacitated Network constraints suggest that noticeable effects on 

the overall distribution Network are unlikely to be observed with <10-30% BEV penetration. For 

rapid charging, issues may be observed with a lesser penetration, but this will be dependent on 

overall Network demand, times of rapid charging usage, and peak load management. At an 

individual site level, constraints are sensitive to the particular rating of the local transformer, 

meaning that capacity can vary from site to site. Additionally, demand may vary throughout the 

day and by location. Given this, it is likely that a site specific capacity constraint will have to be 

considered, rather than a network average. This detailed analysis of electricity Network constraints 

in conjunction with charging location is considered outside the scope for this work due to the 

difficulties of getting suitable data across the whole Network, but is considered an area for further 

work in chapter 6. 

 

1.7.3 Current charging infrastructure 
 

Based on the discussions in section 1.7.1, two types of battery replenishment for BEVs can take 

place: those which are non-time critical, such as slow home or work charging, or destination 

charging (where there is not an immediate need to start another journey), and those which are time 

critical, such as rapid charging and battery swapping. In the following two sections, a discussion on 

the current and potential provision for these two types of charging (referred to as slow charging, 

and rapid charging), is given. 
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1.7.3.1 Slow charging 

 

In the UK, there are currently 8259 public charging posts – split across 3183 sites, according to 

Zap-map.com (Lane, 2015) who have compiled a comprehensive database of the UK’s charging 

infrastructure from the National Charge Point Registry (NCR, 2015) and Open Charge Map (Open 

Charge Map, 2015). The number of posts that have been installed in the last two years in the UK – 

including the type of charger (where fast is equivalent to level 2 charging as in Figure 1-27) is 

shown below in Figure 1-32.   

 
Figure 1-32 - Number of charging points in the UK 

Figure Source: (Lane, 2015) 

 

As suggested in section 1.7.1, slow charging is likely to play a key role in enabling BEV use. These 

figures show that this is currently the most populous form of charging provision (if ‘fast’ is 

included in this category) – with only about 1 in 8 being rapid chargers. As well as the number of 

public chargers available, many charging points have been installed in private locations, such as 

homes or workplaces (OLEV, 2013). Robinson et al. (2013), reporting on findings from the North 

East trial (see section 1.4), reports that private BEV owners predominantly charged at home 

overnight. However, they also reported that most pool vehicles (usually parked at a workplace) 

tended to be charged throughout the day – which could have implications on the electricity network 

(see section 1.7.2). In the North East and CABLED trials, most private BEV drivers had access to a 

home-based charger – and for these users it was found that this was their predominant charging 

location. However, access to a home-based charger may not always be possible for all future BEV 

drivers. In such circumstances, these drivers may have to rely on regular top-ups at work, or at 

public locations (for which rapid chargers could feasibly be used). The use of home-based charging 

however was seen as a positive convenience for BEV drivers (see example statement at start of 
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section 1.7.1). Given this, a primary consideration for potential BEV consumers may be whether or 

not they could have access to a charging post at home. In the US, Axsen and Kurani (2012) 

conducted a web-based survey in 2007 of 2373 new car buying households and reported that half of 

the cohort have potential access to a dedicated level 1 charging outlet. In the UK, the English 

Housing Survey (Department for Communities and Local Government UK, 2012) carried out a 

physical inspection of ~16,000 homes (and a further ~16,000 by interview) to determine the state of 

the housing stock in the country. They report that 40% of dwellings had access to a garage, and a 

further 26% off-street parking. Given the requirements for charging, it is feasible that these 

locations could constitute suitable slow charging sites for future BEV drivers. When split by tenure 

type, the percentage of homes with a garage or off-street parking is greater in owner occupied 

home (see Figure 1-33 below). 

 
Figure 1-33 - Parking provision by tenure 

Figure Source: (Department for Communities and Local Government UK, 2012) 

 

Based on these figures it is likely that home-based charging could be made available in the majority 

of cases (potentially 66% or more). For people who do not have access to a home charger, BEV 

ownership may be more difficult (although, based on the trials reviewed in section 1.4 this is 

largely untested). Given this, it is possible that future BEV owners may self-select themselves 

depending on their circumstances. Analysis of Census data carried out by Campbell et al. (2012) in 

Birmingham, UK suggests that the early adopters of BEVs are more likely to have a higher income, 

be owner occupiers, and have access to a garage/off-street parking. Given this, a solution which 

allows BEV drivers – like those in the trials reviewed in section 1.4 – to extend their range 

occasionally, whilst being able to recharge at home is seen as a key need. 
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1.7.3.2 Rapid charging 

 

There are currently 1074 rapid chargers in the UK, according to Zap-map.com (Lane, 2015) who 

have compiled a comprehensive database of the UK’s charging infrastructure from the National 

Charge Point Registry (NCR, 2015) and Open Charge Map (Open Charge Map, 2015). 

 
Figure 1-34 - Locations of current UK rapid chargers 

Data Source: (Zap-map.com, 2015) 

 

The majority of the rapid charging locations shown in Figure 1-34 have been funded through 

regional infrastructure bodies, coordinated by the UK government’s Office for Low Emission 

Vehicles (OLEV, 2013). The regional schemes that have been funded are: 

- The East of England (Source East, 2015) 

- Greater Manchester 
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- London (Source London, 2015) 

- Midlands (Cenex, 2015) 

- Milton Keynes (Milton Keynes Council, 2013) 

- North East England (Charge Your Car, 2015) 

- Northern Ireland (Department for Regional Development (Northern Ireland), 2013) 

- Scotland (Greener Scotland, 2015) 

 

According to OLEV (2013), these schemes have match funded the installation of over 4,000 

charging points (of which 65% are publically accessible). However, given the funding mechanisms 

in place, the location planning coordination of the network has mainly been ad-hoc in nature – 

since funding was supplied to businesses/public consortia based on those who applied/wanted a 

provision of charging points in their locale (Cenex, 2015). Given this, it is possible that provision 

for BEV journey purposes has not been strategically considered. Additionally, since the schemes 

have largely been coordinated at a local level, it is likely that the strategic location planning for a 

national network has been piecemeal. 

 

1.7.3.3 Feasibility for future rapid charging sites  

 

Given the constraints of installing a rapid charger (electricity network, land availability/cost), it is 

likely that detailed planning will be required for the provision of future sites. However, it is also 

likely that there is still plenty of scope for the expansion of the network, even with these constraints 

considered. For instance, in the UK there are currently ~1,000 rapid chargers compared to an 

estimated 11,000 petrol stations (RAC Foundation, 2013). Furthermore, within the current layout of 

sites, there are certain locations which have more charging options than others. Consider Figure 

1-35 and Figure 1-36 below which show the current provision of rapid charging stations in the 

Milton Keynes area, and the Birmingham area (both are shown at the same scale and are replicated 

from (Zap-map.com, 2015)). Within the Milton Keynes area, there are currently 34 rapid charging 

sites – yet in the Birmingham area there are only 12, indicating that a further provision of sites 

could be possible, given locating constraints.  
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Figure 1-35 - Current rapid charging sites around Milton Keynes 

Data Source: (Zap-map.com, 2015) 

 

 
Figure 1-36 - Current rapid charging sites around Birmingham 

Data Source: (Zap-map.com, 2015) 

 

1.8 Summary 
 

Given the need to reduce emissions in road transport as set out in section 1.3, alternatives to the 

status quo are needed. One such alternative, the BEV, has the potential to contribute towards 

reduction targets in line with a decarbonisation of the electricity grid (Doucette and McCulloch, 

2011b) (Anderson et al., 2008) (Shackley and Green, 2007). Currently however, despite the fact 

many models are available in the market (US Department of Energy, 2014), sales are still low (The 

Society of Motor Manufacturers and Traders, 2014b) suggesting barriers to their uptake exist. 

Based on the reported findings from several real-world trials (section 1.4), the main barriers to 

uptake and usage were identified as cost, range, and charging (Huebner et al., 2013). As described 
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in section 1.5, the upfront cost of any vehicle is a important determining factor in its purchase 

(King, 2007). And, although BEVs are operationally cheaper than ICEVs, a greater upfront cost – 

stemming from high battery costs (Scrosati et al., 2011) – means they are not cost competitive, 

even if the total cost of ownership is taken into account (Alawi and Bradley, 2013; Plötz et al., 

2012). Thus, for BEVs to become a viable alternative it is seen as key that their relative cost comes 

down (Egbue and Long, 2012). Forecasts suggest that this is likely to happen over the coming years 

– with cost competitiveness perhaps being achieved by 2032 (Weiss et al., 2012). Given this, it is 

important that the other barriers to BEV use are addressed by this time. Although the range of a 

BEV, and the availability and ease of charging are described separately, the two are intrinsically 

linked, since a vehicle’s range dictates the frequency with which it must be recharged. Thus, an 

improvement in either vehicle range, or charging provision, will likely minimise the problems of 

both. As described in section 1.5 increases in battery capacity would help, but currently this comes 

at a higher cost (as illustrated in Figure 1-15). This is particularly relevant given that the actual 

usage of this additional range is likely to be minimal (based on current travel patterns observed in 

the National Travel Survey – see Figure 1-25). Furthermore, if an improvement in range increases 

the weight of the vehicle then the emissions benefits of BEVs may be reduced (Torchio and 

Santarelli, 2010). Given this, an expansion in charging offers an alternative method to enabling 

greater BEV use, and might negate some of the need for larger batteries, and in turn make BEVs a 

more cost-effective alternative.  

 

In the context of charging and journeys, two main needs exist. The first can be classified as non-

time critical replenishment (such as at home or work). This form of charging could be sufficient for 

98% of journeys (Department for Transport UK, 2013f) (and Figure 1-26), and so is likely to 

represent the most frequent type of charging activity. However, a need exists to satisfy the other 

2% (or more), such that BEVs can reach utility levels nearer current ICEVs. One form of charging 

which could satisfy these journey needs can be classified as range extension. This describes the 

need for recharging when the immediate range of a BEV is insufficient to carry out a long journey. 

Solutions which allow for this include rapid charging and battery swapping as they can provide 

additional range capacity in a short period of time (Kemp et al., 2010).  

 

1.9 Research Aims and Objectives 
 

Current UK charging locations, as shown in Figure 1-34, have largely been match funded through 

public grant schemes and business and public sector consortia (OLEV, 2013), and arranged through 
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regional bodies such as Cenex (Cenex, 2015). To date minimal location co-ordination between 

installers and/or regions has occurred through OLEV (OLEV, 2013), and this has mostly been ad-

hoc in nature due to the funding mechanisms provided. To maximise the benefits of public 

spending in this area, it is desirable to locate rapid chargers as part of a more cohesive strategic 

plan so that investment is tied to locations which will offer high utilisation and value for money 

(Lumsden, 2012), (Arup, 2012). To do this it is necessary to determine a method of locating rapid 

chargers that is relevant to current and future BEV drivers’ usage patterns, and is expandable to 

cover national areas. The focus of this research is based on the need to extend the immediate range 

of BEVs. As described in the previous section, the provision or availability of non-time critical 

replenishment is also seen as critical, however, due to the differences in habitual patterns between 

these two forms this is considered outside of the scope for this research. 

 

Given this, this research addresses the issue of determining an appropriate location strategy for the 

needs of BEVs with the following aim: 

 Determine a method for locating a network of rapid chargers to enable extended BEV 

journeys in order to assist research and development into encouraging uptake and usage of 

BEVs. 

Based on the needs of this aim, the developed method should incorporate the following features: 

a) Be geographically representative 

b) Expandable 

c) Take into consideration range and habitual journey patterns of BEVs 

d) Be realistic and applicable to real-world networks 

To achieve these aims the following objectives need to be met: 

Objective 1: Understand how location modelling has previously been applied for similar purposes, 

and identify the assumptions and short comings inherent in these methods. 

Objective 2: Develop a model and appropriate methodology to recommend sites for a charging 

network, and overcome issues with previous work in this area. 

Objective 3: Apply this model to a real world network and analyse its outputs against current 

charging usage. 

Objective 4: Demonstrate differences in modelling outcomes based on comparison between 

national infrastructure plan and a smaller regional like plan. 
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To meet these objectives it is necessary to conduct original and novel research, especially in 

regards to objectives 2, 3, and 4 where the following key areas of contribution to knowledge 

include: 

- Development of a location model specific to battery electric vehicles 

- Development of a methodology to allow the location model to be applied in a practical 

context 

- Validation of the model and method using empirical data 

- Understanding scaling issues between regional and national size models 

Chapter 2 deals with objective 1 and investigates the advantages and disadvantages of previous 

location models in this field. Based on this a set of more specific modelling objectives are proposed 

and described in section 2.7. 

Chapter 3 proposes and describes methodologies and options to deal with objective 2. 

Chapter 4 describes a novel process of real world data validation.  

Chapter 5 demonstrates the methods on a large scale and compares this to a smaller area to meet 

objective 4.  

Chapter 6 discusses the implications for this work, the context in which it can be applied, and 

directions for future work; and Chapter 7 provides a conclusion and summary to the findings from 

the research. 
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2 INFRASTRUCTURE MODELLING 
 

Objective 1: Understand how location modelling has previously been applied for similar purposes, 

and identify the assumptions and short comings inherent in these methods. 

A key issue for infrastructure strategy and planning is that of location determination (Hickford et 

al., 2015), and the ability to answer questions such as ‘Where can we locate our infrastructure 

provision to help achieve our objective?’. On this basis the field of location modelling exists to 

help an infrastructure planner determine where to ‘site (their) facilities in some given space’ 

(ReVelle and Eiselt, 2005). Location modelling therefore can be used to represent the real world 

and help provide location-based decisions. As such, an important step for any location plan is to 

determine how to represent complex spaces and behaviours in a form that can be modelled, 

manipulated, and analysed (Church, 2002; Murray, 2003). Given this, a trade-off between realistic 

representation and problem complexity must be made depending on the needs of the study. This is 

highlighted below, where a series of location modelling decisions are defined based on the inherent 

complexity of representing a real-world space. 

Non-spatial networks  Realistic, continuous space 

Small problem scale  Large problem scale 

Single facility Complexity Multiple facilities 

Static demand  Variable demand 

Single decision variable  Multiple decision variables 

Fast/dynamic implementation  Slow, one-off implementation 

 

Depending on the requirements of the study, some conditions may be simply defined, leaving room 

for greater complexity in other areas. For instance, it may be desirable to determine the most 

appropriate warehouse site from two possible options. Given the requirements of this problem, 

there is no need to model the facilities in a continuous space, at a large scale, or to choose the best 

set of multiple facilities. As such, a factor rating system may be appropriate (Ertuğrul, 2011). This 

approach is not necessarily location orientated, and involves tabulating and assessing each site on a 

defined set of parameters, applying a score to each element, and then weighting the parameters to 

determine which site is more suitable. Given that many elements of this approach are simple, 

complexity can be introduced in one area – in this case involving multiple decision variables.  
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In other approaches, such as agent-based modelling (which is described further in section 2.1.6), 

the use of complex aspects such as assigning multiple decision variables to each agent, may mean 

that simplicity is needed elsewhere (to make the model computationally manageable), such as using 

a non-spatial network and applying it to a small study area only. For this study, the aim is to 

‘determine a method for locating a network of rapid chargers to enable extended BEV journeys’. 

As such, two basic requirements of the model are to: represent a road network (on which BEVs can 

be assumed to travel), and recommend locations for a set of facilities (which could allow BEVs to 

recharge). Given this, the next section reviews a series of location models which share one, or both, 

of these requirements. For road representation most previous models have been built using an 

Origin-Destination (OD) network. An OD network can provide a representation of roads, and 

travel, by assigning to a space a set of nodes (origins, destinations, road junctions) and arcs (road 

sections) (de Dios Ortúzar and Willumsen, 2011). In the context of representing range-limited 

vehicles, an OD network can be used to determine the distance from one location to another, and 

can thus help determine the amount of range that is needed for each route. A more in-depth 

discussion on OD networks and how they can be constructed is provided in section 2.2. 

 

2.1 Facility Location Modelling 
 

Location models are built to assist a planner in their decision process and help them find the best 

location or set of locations for a facility, given their particular needs and constraints (Hamacher and 

Drezner, 2002). In this research the aim is to ‘determine a method for locating a network of rapid 

chargers to enable extended BEV journeys’. Based on this, the field of facility location modelling 

is deemed appropriate for this study. Church (1999) states four main categories in facility location 

modelling; median, coverage, capacitated and competitive. Since then another form of modelling, 

flow-based, has become particularly relevant for siting alternative fuel networks – an idea initiated 

by Hodgson (1990), applied to refuelling networks by Kuby and Lim (2005), and compared to 

traditional models by Upchurch and Kuby (2010) and Nicholas (2010). The definitions of these 

five model types vary by how demand is attributed and satisfied, although it should be noted that 

more complex models can use a combination of the above and often employ more than one 

objective. Also, as noted by Current et al. (2002), location models are typically designed to solve a 

particular problem. As such, throughout the literature many models exist which are similar in 

design, but vary slightly in their objective or application (Hamacher and Drezner, 2002). The 

following review therefore, identifies models which broadly fit into the five categories mentioned 
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above and assesses their relevance for the specific challenge of siting recharging points for electric 

vehicles. A summary of this information is provided in section 2.1.7. 

 

2.1.1 Median models 
 

Median models, like the p-median model initially described by Hakimi (1964), locate a given 

number of facilities that minimise the total distance, or cost, travelled by customers to facilities. 

These models are particularly relevant for analyses such as warehouse location, where it is 

desirable to place a depot that minimises the distance to a set of delivery points. It has also been 

used in the context of locating, or rather vindicating the location of, gasoline stations (Goodchild 

and Noronha, 1987) based on the assumption that they are preferred near customers’ homes – an 

idea adopted from (Kitamura and Sperling, 1987). In this case, the median model is used to 

evaluate the location of gas stations by calculating the distance a set of customers have to travel to 

refuel from their homes. Since it is assumed that people choose the closest station, it follows that 

the highest ranking stations are located in areas of high population and where there is less 

competition.  

 

In their (2011) paper, Fang and Torres use a median-type model, adopting the premise that drivers 

wish to refuel near their home, to test a design strategy for a possible hydrogen refuelling network. 

Initially, they place a set of 248 candidate refuelling stations throughout the study area. They are 

placed based on three criteria: at 10 mile intervals on highways where traffic count is greater than 

50,000 vehicles per day, in metropolitan areas with a population density greater than 1,000 people 

per square mile, and at locations where current hydrogen refuelling exists. The study area, 

Connecticut in the US, is populated from Census data; and citing computational efficiency they 

aggregate the initial 2000 Census zones into 275 TAZs (Traffic Analysis Zones). They then apply a 

median model to minimise the total vehicle miles to hydrogen stations across the region. They 

report that hydrogen stations tend to be recommended in urban centres (reducing travel times for 

the majority). This approach thus assumes that people prefer to refuel near their homes – a concept 

that was initially tested by Kitamura and Sperling (1987), who reported that refuelling near to home 

was a stated preference of gasoline drivers.  

 

Chen et al. (2013) apply a median type model to determine suitable sites for BEV slow charging. 

For this, they identify TAZs where parking demand is currently high and combine it with 

household travel survey data (for which they also have trip purpose information) in Seattle, USA. 
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They use this data to determine public parking duration times based on instances of consecutive 

trips (that end and start at the same location), and exclude instances where duration is less than 15 

minutes (which they deem an insufficient time to slow charge). To recommend charging sites they 

implement the median model to minimise the walking distance of BEV drivers from a charging 

station to their destination.  In their test case, they recommended sites for 80 chargers (throughout 

the 900 TAZs in Seattle) and report that recommended locations are correlated to trip purpose 

(work and education). They additionally apply a constraint that chargers must be placed at least 1 

mile apart (to avoid cannibalisation, which is further described in section 2.1.5). Based on this, 

their model assigns chargers to locations with the highest parking demand/duration (and where 

walking distance is minimised). However, this approach assumes that BEV charging demand is 

directly correlated with parking demand (i.e. a driver always needs to charge whenever they park). 

As such, it does not account for the battery state (i.e. how many miles range it has left) and whether 

the driver has genuine recharging need. Additionally, by spacing stations 1 mile apart, they assume 

that where demand is high, BEV drivers are willing to drive to the next station if needed. 

 

2.1.2 Coverage models 
 

Coverage models aim to maximise the total number of customers served by a facility within a given 

maximum distance (Church and ReVelle, 1974). This model is useful in emergency service 

planning where it is desirable to serve a proportion of the neighbourhood within a given time 

frame. Unlike median models, which ‘prefer’ to capture customers close to facilities – i.e. minimise 

the total distance travelled - coverage models are concerned with capturing as many customers as 

possible, as long as they fall within a facility’s range. With coverage models therefore, all 

customers can be described as either captured or uncaptured, with a demand point on the outskirts 

of a facility’s range as important as one much closer. This type of model might be pertinent if 

locating slow BEV chargers. For instance, it would be possible to place a charge facility so that the 

number of BEVs within a vehicle range from the facility is maximised. In this case, the coverage 

distance is determined by the range of the vehicle. Thus, the facility could be accessible for every 

BEV within a given range, but not necessarily accessible to those beyond a BEV’s range. The 

complication however, when treating BEVs as demand points is that the vehicles are not always 

stationary, and thus could have shifting ranges which must be modelled. 

 

Lam et al. (2013) used a coverage type model to devise a network strategy for charging points (the 

type of which is not mentioned) in Hong Kong, China. They construct their model to maximise the 
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number of BEVs that can be served within a maximum distance (the vehicle range). Furthermore, 

they set a condition that means that every charging site is reachable to and from every other site by 

the range of a BEV. This approach ensures that an even coverage of points is available throughout 

the island city, and that all journeys to and from a charging site to another are possible. However, 

the approach ignores the direction of journeys that might take place. Thus, although all journeys 

can be completed, the deviations involved might be considerable (since it may be necessary to 

travel from one charging site to another just to recharge, even if it is a long way out of the way for 

the driver). 

 

Wang and Lin (2009) apply a coverage type model to the island of Taiwan. Their approach mimics 

many of the range constraints developed in alternative flow-based models (described in section 

2.1.5) – but unlike these approaches, where the objective is to maximise the number of trips that 

could be made, Wang and Lin (2009) set their objective to minimise the installation cost of the 

network. Their approach then finds the minimum cost of a network which can service 100% of the 

island (based on several ranges). Although their approach services 100% of their network, this is 

more likely due to the network composition of their representation of Taiwan. The road network 

they choose is elliptical – with no cross island routes modelled. This means that routes from most 

nodes can only go in two directions (either clockwise or anticlockwise). Given this, a facility only 

need be placed so that nodes in either direction can access it – and so an even spread of facilities, 

approximately every 100km (or the equivalent range of the BEV) is sufficient to service the 

network in this case. However, it is unlikely that this approach will work on more complex 

networks (where route choices are more diverse). They do report that cost can have an impact on 

the location of facilities – but effectively variation in cost just means that the configuration of 

recharging sites is shifted round in either a clockwise or anticlockwise direction. 

 

2.1.3 Capacitated models 
 

Capacitated models are often applied to maximal covering models or median models, with the 

addition of placing a limit on how much service can be supplied from a facility (Current and 

Storbeck, 1988) (Hamacher and Drezner, 2002). This could describe a limit on the number of 

customers a facility can serve, or a limit on its production output, i.e. from a factory or warehouse. 

Typically, capacitated models then follow a median model whereby the objective is to minimise the 

distance to each facility given a supply limit, or a maximal covering model where the objective is 

to serve as many ‘customers’ within a given distance, and an upper limit of service capability 
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(Toregas et al., 1971). Upchurch et al. (2009) considered capacity at hydrogen refuelling stations 

by setting a limit on the amount of hydrogen available in each refuelling tank, and applied this 

constraint to a flow-based model (discussed in section 2.1.5). If demand outweighs capacity at a 

certain station then additional customers are assigned to the next-best facility in the network. In the 

context of electric vehicle charging infrastructure, capacity could be determined either by localised 

network constraints, or temporally defined queueing and dual demand for service. These issues are 

discussed in detail in section 1.7.2. 

 

2.1.4 Competition models 
 

Competition models consider scenarios where there are several stakeholders competing against one 

another (Eiselt et al., 1993). Often therefore, the objective is to maximise a share of the market with 

facilities placed to target an unsupplied region or directly compete with other facilities to acquire 

some of their customer base (Daskin, 2011). Unlike the capture of customers in median or coverage 

models, the assignment of customers to a competitive facility is not necessarily exclusive. 

Customers can be assigned proportionally, either based on where they live (i.e. half of a population 

zone might go to one facility, and the other half to another) (Tobin and Friesz, 1986), or temporally 

(i.e. at a certain time of the day, one facility might be more attractive that another), representing the 

fact that people’s choices may vary depending on circumstances (Berman et al., 1995; Huff, 1964). 

In an immature market, such as a recharging network (OLEV, 2013), direct competition is less of 

an issue with the priority being to provide for new, rather than existing, portions of the market. 

Fang and Torres (2011) and Chen et al. (2013), for instance, used this idea to deliberately avoid 

competition between facilities. However, the awareness of potential future competition might be 

important, since it is possible that an initial infrastructure provider who starts out with an ‘optimal’ 

network could have their market share subsequently eroded by future competitors (Redondo et al., 

2008).  

 

2.1.5 Flow based modelling 
 

Most classic location models deal with satisfying demand based at fixed nodes, because in most 

cases demand is assumed to be resident in one location for a long period of time  (Hamacher and 

Drezner, 2002). This implies that the purpose of a trip from a demand node to a facility is 

exclusive. However, in some cases this may not always be true. For instance, an ice-cream 
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salesperson does not always wish to set up at a location which minimises their average distance 

from a group of customer homes (i.e. fixed demand points), rather, they wish to find a location that 

is near to or on the way to a more prominent attraction. This phenomenon can also be observed in 

the usage of convenience stores or gasoline stations, where passing demand is more relevant than 

fixed demand (Berman et al., 1995). In his 1990 paper, Hodgson introduced the Flow-Capturing 

Location Model (FCLM) which was designed to ‘capture’, or assign to a facility, demand as it 

passes by as flow in a network. The structure of this network relies on an Origin-Destination 

matrix. Each Origin represents the starting point for a vehicle on the network, and each OD pair is 

connected along its shortest path via a series of arcs and nodes, which are usually assumed to be 

candidate sites. Since each OD pair generates a separate demand, or flow, the route can 

subsequently be considered captured if a facility is located at any node along its shortest path. The 

overall objective of the FCLM is to locate a given number of facilities such that the amount of flow 

captured is maximised. This is achieved by quantifying the passing flow at every node, or 

candidate facility, in the network and choosing each site in a greedy manner. In effect, this equates 

to choosing the node with the greatest through flow, as opposed to one that lies in, or near to, a 

population centre (Church et al., 2004).  After each site has been chosen, and since demand can be 

spread across many nodes, the total linear weight from each serviced OD pair must be removed 

from the whole network. This avoids the problem of double-counting, or cannibalisation, since an 

OD pair can be fully serviced with just a single facility. Thus, each subsequent facility is chosen 

from the continually updated set of uncaptured flow, rather than from the initial flow network. 

 

Berman (1997) also adopts a flow-intercepting model and combines it with a more classical fixed 

node model. This is applicable for cases where the visit to a facility may sometimes be exclusive 

(i.e. to a supermarket), or occasionally, en-route to another destination. The idea is developed 

further in Berman and Krass’s (1998) paper where they propose a flow-intercepting spatial 

interaction model that considers demand arising from nodes on the network and connecting paths 

between nodes. They also incorporate facility attractiveness into the model, an attribute commonly 

used in competition models. This process applies a weighting to each site based on an 

attractiveness measure (which could include the convenience of its ancillary services). Customers 

are therefore assigned proportionally to a facility based on both its desirability and travel distance 

from a node or path. Additionally, Berman and Krass (1998) assume that customers are prepared to 

deviate from the shortest path, and use an exponential decay function to express the proportion of 

customers willing to do so, an idea first utilised in (Berman et al., 1995).  
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Hodgson (1990) and Berman and Krass (1998) assume that an OD pair’s flow is captured by a 

single facility placed anywhere along the route. Whilst this is acceptable in many situations, it does 

not always hold true for the case of alternatively-fuelled vehicles (AFVs), which includes BEVs. 

Since AFVs are range limited, refuelling only once on a journey may not be sufficient. 

Additionally, the spacing of a refuelling station along a route is important; a facility at the mid-

point of a path is more likely to be appropriate than one at either end. Thus, Kuby and Lim (2005) 

identified the applicability, and limitations, of previous flow capturing models and created the Flow 

Refuelling Location Model (or FRLM) to specifically consider the refuelling needs of range-

limited vehicles. Similar to the approach of Hodgson (1990), the FRLM is designed to optimally 

place facilities at nodes on an OD network, with each OD pair representing the travel, or flow, of 

AFVs between two locations. The FRLM does not consider single purpose trips and thus assumes 

that refuelling is a necessary part of, but not the sole purpose for, long range journeys. Unlike the 

models discussed above, Kuby and Lim (2005) define an OD pair as representing a round trip. This 

is relevant because there may not always be a refuelling point at the destination, D. In such cases, it 

is necessary for the driver to arrive at their destination with at least 50% fuel remaining so that they 

have sufficient range to return to the last refuelling point which they used on their outward journey. 

Furthermore, they assume that all vehicles start new journeys with a half tank, thus guaranteeing 

that an adequate refuelling service is provided in all cases. This is acceptable in circumstances 

where all refuelling points can be accounted for and incorporated into the model. However, 

assuming a range that is half of what can be achieved may mean that an overprovision of service is 

recommended. 

 

The formulation of the FRLM begins by creating a set of all combinations which can refuel each 

path, given the limited range of the vehicle (which they define algebraically, rather than 

numerically) and the need to be able to return to the origin and complete a round trip. It is 

important to note that each route combination (which is defined as routes with sufficient refuelling 

provision) is made up of a discrete set of fixed nodes, or candidate sites, which must be pre-

selected by the model implementer. The process is constrained so that no combination contains 

more refuelling points than necessary; however it is possible that one path may have many different 

combination possibilities. On routes where it is necessary to refuel more than once, Kuby and Lim 

(2005) note the importance of considering the set of facilities that is needed to refuel a route. 

Where more than one refuelling point is needed, the flow on that route cannot be considered 

‘captured’ until two or more sufficient points have been placed. Therefore, when using a greedy 

algorithm which places points sequentially, the flow from a long route can only be counted as 

‘captured’ once both points are in place. In the case of a large or complex network, and if every 

node is considered a candidate site, the number of combinations of facilities for each OD pair could 
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be large – a problem that is discussed in Capar and Kuby (2011) who devise a heuristic approach to 

determine the set of all combinations for the FRLM. 

 

An argument for using flow-based modelling rather than fixed-point modelling to capture as many 

en-route journeys is presented in Upchruch and Kuby’s (2010) paper. They compare results 

between the flow-based FRLM and a fixed demand p-median model (like those described in 

section 2.1.1) and report that, in the context of providing refuelling services to range-limited 

vehicles, the FRLM performs better. They measure this as the amount of journeys which can be 

provisioned given a fixed number of facilities placed. When used in this context, they report that 

the p-median model places points within large population centres but not along highways to capture 

intercepting flows. By contrast, since the FRLM allows demand to exist at one of many nodes 

along a path, it tends to place facilities in more network central locations (rather than population 

centres). Thus, successful facilities serve flow from many different routes which intercept at 

common points. However, this process is only carried out as a comparison on a small simulated 

network, and so it is unclear how this may apply in realistic settings. 

 

In the formulation of the original FRLM an algorithm is implemented which identifies all possible 

refuelling combinations for an OD pair. Each combination describes a distinct strategy for an AFV 

to complete the route via one, or more, candidate refuelling sites. Whilst it is possible that several 

combinations can refuel a single path, the FRLM only considers sites which fall directly on the 

shortest path. Thus, even if a site is close to the shortest route, it will not be considered. To address 

this limitation, Kim and Kuby (2012) developed the Deviation Flow Refuelling Location Model (or 

DFRLM). This model inherits the basic design of the FRLM but accommodates the assumption 

that drivers can deviate from their shortest path, similar to Berman et al. (1995). They constrain 

possible deviations by ensuring a path can still be traversed within a vehicle’s range, and by setting 

a maximum deviation threshold to limit the extent of detours. This bound can be varied by the 

modeller to represent the maximum distance drivers are willing to deviate. However, although all 

the set of all deviation paths are feasibly considered, Kim and Kuby (2012) limit the DFRLM to 

only generate one deviation path for each OD pair. This moderates the computational intensity 

required to generate and store every combination – a factor which would be exacerbated in a 

complex network. Yet, in doing so many other potential paths and facilities, which could help 

improve the network performance, are ignored. 
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Once the set of deviation paths has been generated, Kim and Kuby (2012) apply a decay function to 

represent the loss in flow likely to occur on a deviation path. Without access to information about 

the willingness of AFV drivers to deviate from their route to refuel, they propose four different 

decay functions which they use to assume deviations patterns: linear, exponential, inverse distance, 

and sigmoid. Each function allows the modeller to adjust the rate at which flow is likely to drop-off 

in relation to deviation distance. In all cases, this task necessitates the consideration of partial flows 

– whereby a certain number of drivers are considered willing to deviate to refuel, and a certain 

number are not. Thus, the partial provisioning of routes – which might not have been serviced at all 

– extends the flow-capturing capabilities of the DFRLM in comparison to the FRLM. 

 

The models presented in this section have been built on representative networks and either 

evaluated individually or compared to previous work. However, the models are untested against 

empirical data which could mean their approaches are not representative of realistic behaviours or 

are not scalable. The methods that are used to solve these models and/or mathematically validate 

their approach are presented in section 2.6. 

 

2.1.6 Alternative models 
 

As well as models broadly fitting the categories defined in section 2.1, alternative models have also 

been produced to develop infrastructure recommendations. Tan and Lin (2014) introduce the idea 

of stochastic flow into their OD network. This assumes that flow between the same OD pair can 

vary over time – and thus more realistically represents traffic patterns. However, they base their 

model on a coverage type problem, which as described in section 2.1.2 does not always necessarily 

enable feasible trips. This is illustrated in Figure 2-1, which they use to describe their model. For 

every facility, they construct a ‘covering’ circle around it, which is equivalent in radius to the range 

of a vehicle. They then suggest that a route from A to Z1 can be serviced, by a deviation to B – but 

a route from A to Z2 cannot because a facility does not overlap this route. However, this approach 

ignores the fact that a vehicle’s range reduces as it travels. Thus, by the time the vehicle departing 

from A reaches the radius of B it may not have enough charge/fuel to actually reach B. 

Nonetheless, their approach to consider stochastic flows could have validity. To account for these, 

they initially implement the model once assuming a fixed flow for each route. They then alter the 

flows based on random scenarios and run the model again and see if the solution set can be 

improved. This approach therefore, requires that the model can be optimally solved and run many 

times without computational intractability. In their solution, they test the approach on a small 
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simple non-spatial network. As such, based on this demonstration it is unclear whether their 

approach is scalable. 

 
Figure 2-1 - A coverage modelling approach 

Data source: Tan and Lin (2014) 

 

Another approach that has been used is agent-based modelling (Sweda and Klabjan, 2011), (El-

Banhawy et al., 2012). Similar to modelling stochastic flows, this type of modelling creates 

‘agents’ who travel throughout a network based on a defined set of behaviours (Brown et al., 

2005). These agents can be defined to represent individuals or aggregated groups of people. These 

models can therefore be more detailed that a discrete approach and can reflect human behaviours 

more realistically at a micro level (Grimm et al., 2006). Sweda and Klabjan (2011) assign groups of 

agents who behaviours are defined by a set of errands (local trips, work trips, and distant trips). In 

this approach they assume that BEVs can recharge at home, and choose to do so whenever is 

convenient. For longer trips BEVs can charge where facilities are available – but in their scenario 

the network is small (4 boroughs of Chicago) and does not consider the need for range extended 

journeys. As such, charging facilities (which they load into the model as existing and proposed 

sites) are assessed based on the inconvenience of making special-purpose trips to recharge. 

Although they do not provide an evaluation of the current recharging network, it is feasible that this 

approach could be used to determine which set of potential charging facilities are likely to receive 

the most usage. However, for a national scale model it is not clear if this approach could be 

implemented given the computational power that would be needed to model interacting behaviours 

of potentially thousands of agents – a reason most agent based models have currently been applied 

to micro level networks (Heppenstall et al., 2011). 

 

El-Banhawy et al. (2012) suggest an agent-based approach that could be used to assess the 

provision of an existing infrastructure (in the North East of England). They suggest that the agents’ 

behaviours could be modelled based on historic behaviours of BEV drivers collected through travel 
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survey, and that BEVs could have charging needs at home, at work, or at on-street locations in 

public (slow charging). However, they do not present any results based on these suggestions, so it 

is unclear if this approach would be applicable at a larger scale. Given the inherent complexity in 

the models reviewed in this section – they have currently only been tested on small simulated 

networks – their applicability to larger networks (as required in the objectives) is unclear. On the 

subject of using models with stochastic flows for facility location, Berman and Krass (2002) state 

that the ‘problem combines the complications of ‘classical’ location problems (most of which are 

known to be NP-complete) with the complicated dynamics of queueing systems – resulting (nearly 

always) in ‘intractable’ models.’ (Berman and Krass, 2002, p. 329). Despite this, stochastic or 

agent-based approaches may have applications for city wide infrastructure provision, or for larger 

networks if computing power increases or efficient heuristics can be developed. 

 

2.1.7 Summary of model types 
 

The models reviewed in this section vary based on whether demand is assumed fixed (such as with 

median models), or moving (such as with flow-based or agent-based models). In relation to the aim 

of this study, an approach is desired which can enable long range BEV journeys where charging is 

required en-route. As such, median models are not deemed suitable given that trips to recharge are 

assumed to be exclusive, and that distances are minimised for travel from home/work regardless of 

direction. For BEV drivers who can charge at home, as discussed in section 1.6.3, it is unlikely that 

non-time critical charging near their home will be necessary. However, for BEV owners who 

cannot charge at home, median models could be used to provide service for every day needs. For 

instance, a rapid charger that is placed in a neighbourhood with many flats (that might not have 

charging facilities) could provide a lot of service with minimum inconvenience to the drivers. 

Alternatively, slow chargers could be placed near to customers’ homes so that overnight charging 

could take place. In this scenario, it would be desirable to minimise the walking, or perhaps cycling 

distance that drivers would have to cover to get home.  

 

Coverage models have also been proposed as a means to provide service for recharging. These 

assume that a facility has a service buffer, which can ensure that another charger could be reached 

if it falls within this area. This approach might be suitable in some circumstances – such as a 

‘circuit’ type network like Taiwan – but in most, coverage models ignore the fact that vehicle range 

can decrease throughout a journey, and that the direction of the nearest charger may be out of 

someone’s way. Flow-based models assume that traffic moves throughout a network, and as such 
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that routes could be serviced on-the-way to a destination. An awareness of changing vehicle range 

can also be incorporated to determine where on a route a vehicle needs to charge. As such they 

provide a means to model service that is applicable to the needs of this study. Advances on this 

type of model include agent-based and stochastic models, where demand is assumed to be dynamic 

and can have varying behaviours other than just charging needs. However, as described in section 

2.1.6, these models have not yet been tested at a relevant scale due to their inherent complexities. 

Given this, a flow-based approach is deemed appropriate for the needs of this study, given that it 

has been shown to be expandable. The following sections therefore describe in more detail the 

choices made in the construction of these models, with a review of the current gaps and 

shortcomings, and a proposal for new objectives provided in section 2.7. 

 

2.2 Network Choice 
 

For the purposes of location modelling, network construction can either be non-spatial and/or 

simulated, or based on realistic geographies (Melo et al., 2009; Taniguchi et al., 2001). If the 

purpose of the model design is purely theoretical then it may be sufficient to use a fictitious or 

simulated network. This option was chosen by Hodgson (1990), Kuby and Lim (2005), and Kim 

and Kuby (2012) – using a simulated 25-node network originally presented by Simchi-Levi and 

Berman (1988). As described in section 2.1.5, this allowed the authors to simply demonstrate the 

fundamentals of their model and highlight differences in the outputs based on the design of the 

network. However, since the network does not attempt to represent the real world, the results 

produced cannot be used in a practical sense, and thus only theoretical conclusions can be drawn. 

Furthermore, the design of a model on a simple network may not account for issues which become 

more pronounced in a complex network. Thus, if the model is later applied to a realistic network, 

issues of intractability may arise. This was a problem encountered by Kim and Kuby (2012) who 

initially developed their DFRLM model on a small simulated network. Their theoretical approach 

allowed the set of all deviation routes to be considered for each OD pair, increasing the locating 

feasibility in the model (see section 2.1.5). However, when applied to a full scale network they 

reported that the complete viability of this method was not tractable. Thus, to manage the increased 

complexity in the realistic network they restricted the model to only choose one deviation path, 

instead of the full set. This proposal offered a reported improvement over a non-deviating model – 

in terms of locating options in a comparative modelling setting – but not to the same extent as had 

been possible in the simplified model. Thus, the use of this type of network allows a model to be 

developed and tested theoretically, however further developmental work may be required to make 

it practical in a realistic sense. 
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Another option for network choice is to build a network based on representative road and 

geographical data for a particular area. This allows researchers to test their model in a realistic 

environment, and draw conclusions that may be applicable for infrastructure planning decisions in 

that region. This approach has been used by Chen et al. (2013), who developed a model to 

recommend slow-charging locations in Seattle, USA; Lines et al. (2007) who developed a network 

for Florida to test the FRLM; and Wang and Lin (2009) who demonstrated their model on a 

representation of the island of Taiwan. As employed by Lines et al. (2007), the first stage of 

realistic network development is to obtain road, and population, or traffic, data for the geographical 

region – given that this is a road transport problem. Lines et al. (2007) developed their network for 

the state of Florida and obtained population data from the 67 administrative counties, and a GIS 

layer of the highways in the state. From these 67 counties, they disaggregated (split up) those with 

large urban areas into separate zones and also aggregated (joined together) a few small rural 

counties together. They then assigned Origin-Destination nodes to each of the zones to coincide 

with major junctions in the road network (although the precise methodology for how this was 

achieved is not presented). Their resulting network is presented in Figure 2-2, showing the 74 node 

and highway network they used to represent Florida. Thanks to the initial layout of the counties, 

which were all of a fairly even size, and the further aggregations employed, this design created an 

even spread of OD locations across the regions. Although Lines et al. (2007) did not calculate the 

aggregation distances for each OD point, the even dispersal of the network ensures that these 

distances are unlikely to be too high. However, depending on the layout of the input data, an even 

spread of OD locations, and thus a network with minimal aggregation distances, may not always be 

immediately available. This issue is explained further in section 2.3. 
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Figure 2-2 - OD network design for Florida 

Figure Source: Lines et al. (2007) 

 

As well as choosing the locations for a network of OD points, it is also necessary to assign traffic 

flow for each route. McNally (2008) describes this process via the widely used four-step model, 

(initially described in Manheim (1979) and expanded upon in Florian et al. (1988)). The four-step 

model involves assigning a trip generation rate for each origin location (1), assigning a trip 

attraction for each destination location (2), defining the modal split of traffic (3), and generating 

travel flows for each route based on a traffic assignment method (4). This process assigns traffic 

flows throughout a network by assuming each location has a trip generation and trip attraction rate. 

From this, traffic flows can be modelled across the network to describe the expected number of 

people who will travel from A to B. The first two steps, generating trip generation and trip 

attraction rates, can be derived from known behaviours, travel surveys, or population data (Purvis, 

1997; Ruiter and Ben-Akiva, 1978). The modal choice step involves filtering the assigned data 

travel mode (McNally, 2008). The final step of traffic assignment defines the route choice (and 

magnitude) between an origin and a destination and throughout the network. The first aspect of this 

is to define how people choose a route. In most transport applications, it is expected that people 

take the least-time route (de Dios Ortúzar and Willumsen, 2011), which can be calculated using 
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Dijkstra’s algorithm (Dijkstra, 1959). Other behaviours can also be assumed for people who may 

take the least-distance path (Zhan and Noon, 1998), the most scenic route (Colenutt, 1969), or the 

most efficient route in a BEV (Neaimeh et al., 2013). The next choice is to define whether people 

always take the same route (between the same points) – which is known as all-or-nothing 

assignment (Spear, 1996), or whether route choice varies between drivers, time of day, or traffic 

conditions etc (Fisk, 1980). A common dynamic approach is the equilibrium assignment (Sheffi 

and Powell, 1982). This method attempts to minimise the travel time in the network by assuming 

that drivers take the least time route, given the set of all other vehicles that may cause congestion 

and so increase travel time on a route. In facility location, or transport planning, this can help avoid 

a facility causing congestion once it is put in (which may happen with the all-or-nothing 

assignment). However, for this research problem, most previous authors assume, at least initially, 

that BEVs are only likely to represent a small portion of the overall traffic and as such will not 

create their own significant source of congestion (given that in the UK, BEVs represent <1% of 

passenger vehicles (The Society of Motor Manufacturers and Traders, 2014b)). Finally, it is also 

necessary to define the proportion of trips from each origin to each other destination. As well as the 

equilibrium assignment, a typical approach in transportation forecasting is to use a gravity model 

(Erlander and Stewart, 1990; Evans, 1976; Wills, 1986), which assigns vehicles between an OD 

pair based on their relative production, attraction, and distance apart. For infrastructure modelling 

demonstration, this approach has also been used by Lines et al. (2007), Kuby and Lim (2005), 

Hodgson (1990), and Wang and Lin (2009).  

 

Another approach for traffic assignment can involve the use of empirical traffic count data (Bera 

and Rao, 2011; Cascetta and Nguyen, 1988; Cascetta and Russo, 1997; Yang et al., 1992). These 

methods involve assimilating traffic link counts (often recorded via major road cameras or sensors) 

and assigning the data throughout the network based on either gravity-type models, least squares 

methods, or Bayesian estimators (Cascetta and Russo, 1997). Although traffic count data can be 

used to estimate route assignment (if trip generation and attraction rates are known within the four-

step method), it is often used as an corroborating technique, where prior assignments have been 

derived using other methods (Cascetta and Russo, 1997). A more advanced alternative to the four-

step model (also known as trip-based models), is the activity based model (Bowman and Ben-

Akiva, 2001; Dong et al., 2006). Activity based models, are often constructed in a similar manner 

to the four-step model, but at a more disaggregate level (often at an individual level rather than 

zonal level) (Kitamura, 1988). As such, rather than a single trip generation rate, journeys can be 

modelled to originate based on activity purpose and by time of day, often based on information 

from travel diaries (Axhausen and Gärling, 1992). 
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Several of the approaches mentioned in this section and the previous one tested their model on a 

realism-based OD network – but the addition of this meant that several other factors had to be 

considered, such as the modelling scale (described in section 2.3), platform choice (described in 

section 2.4), and candidate site selection (described in section 2.5). 

 

2.3 Modelling Scale 
 

One of the fundamental challenges for location modelling is the problem of digitally representing 

spatial data (Church, 2002; Murray, 2003).  Traditionally, location modelling deals with demand 

and facility data by representing them as fixed points. Thus, questions such as ‘how many 

households are there within 5km of this retail store?’ are easy to answer. For vehicles however, this 

representation can be more problematic. Because they are mobile, they cannot always be 

represented by a fixed point. To combat this, models like the FCLM (Hodgson, 1990) and FRLM 

(Kuby and Lim, 2005) treat demand as moving flow, which can be represented by a single linear 

feature. This enables the quantification of demand to occur at many points/nodes – rather than just 

one. Thus, questions such as ‘how many vehicles are passing by (through) this retail store?’ can be 

answered. Kim and Kuby (2012) introduced the idea of deviation of travel to the FRLM. This 

implies that many alternate routes are feasible between two points – meaning the representation of 

demand as a single linear feature is no longer applicable. Instead, they devise a methodology to 

choose one alternate deviation path – and thus store demand as two linear features. However, as 

described in section 2.1.5 and since this approach cannot represent all demand in one feature, 

computing, storing and analysing every possible route becomes more complex as the size of the 

network increases. To maintain ease of spatial representation therefore, the only way to store all 

feasible routes in one feature is to extend the representation of demand to the next spatial level: 

areas. Figure 2-3 below illustrates how this might be achieved.   
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Figure 2-3 - Representing multiple routes with one feature 

 

Typically, areas are used to represent continuous features, such as land cover, where the same 

attribute is assumed at every internal point. For routing options, however, this would not be the 

case. Instead, the area could be used as a holding feature which contains underlying demand, 

observable as lines (any contained road), or points (any network node). Representing a series of 

individual data points as a single areal unit, is well established in the literature (Church, 2002; 

Murray, 2003) – notably as a means of storing and representing Census data. 

 

Another factor when transforming the real-world into location modelling, is the problem of spatial 

aggregation (Current et al., 2002; Murray and Tong, 2007). For features such as Census blocks, this 

has particular relevance. As described in section 2.1.1 (regarding TAZ generation from Census 

blocks), a Census unit may consist of several thousand individual households. Thus, answering the 

question ‘how far is it from each household in Census district A to each household in Census 

district B?’ could be computationally exhaustive. If households are therefore represented by a 

single areal unit, then the question becomes ‘how far is Census area A from Census area B?’ 

Although the problem is easier, the ability to answer it is not, since the distance between two areas 

is multivariate (edge of A to centre of B, centre of A to internal point of B etc.). Thus, to 

realistically answer the question, it is necessary to aggregate the area into a single point (Church, 

2002; Murray, 2003). This could be achieved by aggregating to the geographic centroid. Hence, the 

answer to the question would be found by determining the distance from the centre of A to the 

centre of B. By consequence however, an aggregation error would be introduced (Francis et al., 

2009). Thus, when considering a location model over a large scale, it is important to note the 

spatial and aggregation errors that are present and understand their effect on the outcome.  
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If the aggregated space is exactly circular, like in the p-median problem (Current et al., 2002), then 

the error can be taken as the radius of the space aggregated. However, for non-regular shapes, 

determining the aggregation error is problematic. As a result, analysing data which is non-regular 

in shape, such as Census districts, can be difficult. This is typically referred to as the modifiable 

areal unit problem (MAUP) (Openshaw, 1983). Occasionally therefore, it is beneficial to reassess 

the underlying data in complex shapes and, where possible, re-aggregate to a more manageable 

composition.  

 

For the infrastructure provision models reviewed in section 2.1, aggregation scale has not been 

explicitly considered. For small networks the unconsidered aggregation error may be negligible, 

however, as the size of the problem increases the aggregation errors are likely to increase (Francis 

et al., 2009), meaning that the disparity between what is modelled and what is real also increases. 

Additionally, in previous infrastructure provision models, demand has only been quantified at fixed 

points. Given this, Capar and Kuby (2011) report that, in a large network, the number of fixed 

locations where demand is represented can be large, and that the storage and computation of these 

combinations could be intractable. As such, representation of this demand could be better managed 

if stored in a higher spatial level (as described in Figure 2-3). This option is discussed further in 

section 2.7.2. 

 

2.4 Platform Choice 
 

For location modelling there are two main options regarding the platform, or software choice, in 

which to construct and solve a model: non-spatial networks and graph structures, and spatial 

databases, which allow for a geographical representation of data (Hamacher and Drezner, 2002).  

 

Typically, spatial databases are referred to as Geographical Information Systems (GIS), which 

allow a user to store, edit, analyse, and visualise spatial data (Church, 2002). Thus, data which has 

been registered to specific locations or areas can be combined with other spatially-referenced data 

and analysed using a consistent geographical reference system. As such, a GIS provides a platform 

for the implementation of location models. Unlike non-spatial networks and graph structures, data 

in a GIS can be represented in the context of its spatial surroundings, as it is embedded in the plane 

– i.e. a continuous surface. This feature has many advantages, and in the case of this research, 

allows candidate sites to be considered anywhere – not just at specific points on a network. Data 



Enabling Long Journeys in Electric Vehicles: Design and Demonstration of an Infrastructure Location Model 

  

Laurence Chittock Page 85 

within a GIS can be stored in two principal formats: raster or vector. A raster model divides a space 

into a continuous grid of equally sized squares (Maguire, 1991) and typically represents a space 

which can be defined into binary categories (i.e. suitable candidate site, or not). Vector data on the 

other hand can represent data as points, lines or areas which are stored as separate features (Church, 

2002). This format is particularly relevant for the construction of networks – which are made up 

from a series of points/nodes (junctions), and lines/arcs (roads). And, although areas are not 

implicit in networks, they can be used to define the limits of certain sections of road, i.e. a zone can 

be extended around a road to identify all other roads within a 5 minute drive-time. Once inside a 

GIS, spatial relationships can then be used to carry out queries, such as ‘how far is node A from 

node B as the crow flies?’, or ‘how many routes fall within this geographic area?’ 

 

2.5 Candidate Site Selection 
 

In facility location science, GIS can be applied to choose the best site, or set of sites (Brandeau and 

Chiu, 1989). Often, this is done using a top-down approach, excluding candidate options from an 

initially wide choice. Several layers, with specific criteria, can thus be integrated into a GIS and 

used to reject inappropriate sites (Church, 2002). For instance, if it is necessary for all sites to be 

located within 1km of a road, then a GIS road layer can be used to filter out sites which do not 

match this criterion. This type of analysis represents continuous space methods, where potential 

sites can be considered anywhere in the study area (Murray and Tong, 2007). Discrete methods, on 

the other hand, represent cases where a finite set of potential locations is already known. In such 

cases, the best set of sites is selected, typically based on a scoring strategy, from a restricted input 

list. When locating facilities for AFV refuelling, decisions should be made depending on whether 

the model will be used to solve particular instances (i.e. choosing sites from the set of all land space 

owned by a particular supermarket – discrete), or used to support wider strategic decision-making 

(continuous). In some situations the approach used depends on the stage at which the model will be 

implemented. For instance, most of the location models reviewed in previous sections utilise a 

discrete candidate set (Hodgson, 1990; Kuby and Lim, 2005). This could be the  prevalent choice 

when siting gasoline or hydrogen stations, where locations are particularly restricted (i.e. a site 

must be found in a location where it is appropriate to submerge, and transport, a flammable and 

toxic fuel) (Nicholas, 2004; Shinnar, 2003). Given this, by the time a facility location model is run, 

it is assumed that a degree of ‘pre-screening’ has already taken place. However, such a process may 

restrict the later facility model to only choose from a handful of appropriate sites. For the FRLM 

(Kuby and Lim, 2005), the nodes of the network are initially considered adequate locations for 

facilities, since a flow can be captured anywhere on the shortest path. However, as pointed out in 
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Kuby and Lim (2005) and Kuby et al. (2005) this set of candidate sites may not always be 

sufficient. Consider the route in Figure 2-4. 

 

Figure 2-4 - Refuelling a Network path 

 

Figure 2-4 shows an OD path which is 180km in length. There are three existing nodes on the path 

a, b and c which are considered candidate sites. Assuming a vehicle has 100km range and sets out 

from O fully charged, it is clear that it will not be able to reach D via any of the existing nodes on 

the path. Even if a top-up charge is carried out at a, the vehicle will run out of charge 20km before 

it reaches b. Thus, if this path is to become viable, the addition of further candidate sites is 

necessary. 

 

In their (2007) paper, Kuby and Lim seek to address this problem by adding candidate sites onto 

arcs on the network. They propose three methods for doing so, but note that they are not able to 

find a finite dominating set of candidate sites, or a method to solve a continuous network location 

version of the FRLM. Their first method adds candidate sites to the mid-points of path segments 

and the other two add sites based on the Added Node Dispersion Problem (ANDP) (Kuby et al., 

2005). The algorithms they develop identify relevant segments where an additional point is needed. 

Firstly, their mid-point method adds candidate sites to segments which cannot otherwise be 

traversed (there and back again) without at least one more refuelling point. Candidate sites are 

subsequently added into the network at the mid-point of these segments. They also propose 

minimax and maximin methods such that the longest arcs in the network are minimised (minimax), 

or the shortest arcs are maximised (maximin). These additions ensure that every route is 

traversable, but in all cases, the finite dominating set of candidate sites cannot be achieved, 

meaning alternative placement may yield better results (see Figure 2-5). Furthermore, the 

procedure of adding new candidate sites requires the modeller to spend time pre-processing their 

network, possibly without the knowledge of whether or not the additional candidate sites are viable. 

This is an important consideration for planners since they are restricted by many real-world 

constraints. For example, land price, planning restrictions or infrastructure availability may disable 

them from carrying out the initial model suggestions. If this is the case, then the results from the 

model could be void, since it would not be possible to move sites in the network without re-running 

the solution. 
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Figure 2-5 - Refuelling a path using a Segment 

 

Figure 2-5 shows an OD path of length 180km where facilities exist at points O and D and 

candidate sites exist at a, b, c and d. Unlike in Figure 2-4 this route is feasible – via d and b, or d 

and c. It would not therefore be considered for further added nodes in Kuby and Lim (2007). 

However, an alternative option is available which allows the route to be traversed via only one 

facility. This can be achieved if a facility is placed anywhere in the segment from 80 to 100km, 

since a BEV with a 100km range could reach the 100km limit on the way out and the 80km limit 

on the way back. Thus, as long as a facility could feasibly be placed anywhere in this range, the 

infrastructure planner could service the route for half the cost (assuming all site and facility costs 

are equal). Furthermore, the provision of a range of siting options provides the planner with greater 

locating flexibility, a key attribute when siting facilities in the real-world. 

 

When considering feasible sites for rapid charging a planner has two main constraints: land 

availability/cost and access to electricity supply (Arup, 2012). A description of the electrical 

network constraint is given in section 1.7.2, while the consideration of land availability is 

considered outside the scope for this research. Given these unknowns therefore, it may be 

preferential to adopt a continuous candidate approach such that a modeller can visualise universal 

demand, from which specific sites could be reviewed after suggestion by the model – rather than 

the other way round.  

 

In this section two types of candidate site selection were considered: discrete, and continuous. The 

benefits of using a discrete set mean that the size of the problem space can be much smaller, and 

the number of feasible solutions to the model can, in small networks, be manageable. However, the 

input of a discrete set relies on the planner having pre-assessed every option. And, since the input 

candidate set must be larger than the planned number of facilities (Current et al., 2002), the number 

of sites that must be reviewed could be large. A continuous approach on the other hand, does not 

necessarily require an input candidate set and as such can be considered a valid approach when 

precise data about land availability etc. is not known. This option was also considered appropriate 

for similar location models by Redondo et al. (2008), Redondo et al. (2012), and Brimberg and 

Drezner (2013), albeit not for flow-capturing purposes. 
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2.6 Solving Models 
 

Most of the location models discussed in sections 2.1 are deterministic in nature. This implies that 

the input data is fixed and believed to be accurate and representative of most cases. This process is 

typically utilised as a way of representing the natural world in a more simplified manner, enabling 

large-scale location models to be formulated without overly intensive computing power required 

(see section 2.1.5). In turn, this allows models to be run and have solutions generated in a short 

time-frame. The following section therefore describes how the location models in section 2.1 are 

solved and, where applicable, describes the implication of the result. However, it should be 

cautioned that since location models are typically used as forecasting tools, the ability to validate 

the outcome is often difficult (Murray, 2003; White et al., 1999) Thus, even if a model provides 

mathematically optimised results, its affect in practice may not be, due to variations in input data 

accuracy, unrealistic modelling assumptions, or an inefficient processing time. 

 

As described in section 2.1.5 Hodgson’s (1990) Flow-Capturing Location Model is solved by 

choosing sites in a greedy manner. This implies that the first point chosen corresponds to the 

location with the highest demand (Benati and Laporte, 1994; Daskin, 2011). Because it is additive 

in nature, the algorithm only consults the information which it is presented with at time of choice. 

Thus, by definition, it is not forward thinking, and instead takes the greedy choice at each step. 

Since Hodgson (1990) defines that a single site can satisfy the flow from a whole route, the 

resultant captured flow is removed from the model at each stage to avoid the same site, or nearby 

site, being chosen. The network is then reassessed and the process continues until the required 

number of facilities has been placed. 

 

For the FRLM (Kuby and Lim, 2005), once the set of combinations has been tabulated, the model 

attempts to solve the problem so that captured flow is maximised, given a prescribed number of 

facilities. Each candidate node in the network is effectively assigned the weight from each flow 

route passing through it. For longer routes, the flow can only be considered captured if all nodes in 

the combination are open – i.e. serviced. To solve the FRLM, Kuby and Lim (2005) define a 

mixed-integer linear program (MILP). This process effectively scrolls through every combination 

of p-facilities and evaluates it against the objective function. Thus, if it is beneficial to service a 

multi-stop route because it offers greater flow than two individual routes requiring one-stop, then it 

will do so. Within the framework defined, this solution provides the optimum solution, given that 

every feasible combination is compared to every other. However, as they note, as the size of the 

network increases, the number of combinations which must be evaluated also increases. Thus, in 
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large (i.e. real-world scale) networks this process is considered intractable. As a result, they also 

test a greedy-adding heuristic which is capable of solving large instances of the problem. Similar to 

the approach used by Hodgson (1990), facilities are chosen greedily one-by-one and flow is 

removed after each step. They report that this approach performs sub-optimally in relation to the 

MILP procedure and cite the fact that unlike the FCLM, the consequence of having multi-stop 

routes introduces problems. Specifically, because these routes require two or more facilities, the 

greedy-adding approach struggles to link them up in combination. Indeed, the flow from these 

routes cannot really be considered in the model until all but one of the required facilities has been 

placed. At this point, one additional facility will service the route, and thus add to the objective 

function, but the probability of this happening is not guaranteed. Thus, there is a reliance on initial 

facilities being placed conveniently, albeit without knowledge, to help enable multi-stop routes.  

 

To evaluate their model, Kim and Kuby (2012) test the DFRLM on the same 25-node network 

presented in Kuby and Lim (2005). Because the number of paths, and the number of refuelling 

combinations are stored separately, the problem size of the DFRLM increases dramatically 

compared to the FRLM. This is especially evident as the vehicle range and maximum deviation 

distance increase. Thus, they conclude that the DFRLM may be limited to small networks – unless 

efficient heuristics are developed. However, solving of the DFRLM on the 25-node network 

produces an improved solution in comparison to the FRLM. In most cases, when placing up to 25 

facilities, the DFRLM can service the same amount of flow with one or two fewer facilities. The 

rate at which flow is captured is dependent on the parameters specified; for instance, there are 

marked performance improvements if the deviation threshold is increased from 10% of the 

shortest-path distance to 50%. As in the FRLM, the greater the vehicle range, the faster the rate of 

flow-capture. In conclusion, their results show how the consideration of deviations – even if small 

– can improve the flow-capturing gains of a prospective refuelling infrastructure. They also cite the 

importance of determining driver deviation habits with empirical data. 

 

In their 2010 paper, Lim and Kuby developed several heuristic approaches to solve the FRLM and 

improve the results of the greedy-adding approach. As such, they propose two methods and 

compare the results against the greedy-adding technique and the optimal solution (generated by the 

MILP formulation). Firstly, they implement a greedy-adding with substitution method. This 

process initially chooses a site greedily, but after each addition attempts to find a better solution via 

substitution. Specifically, each current site in the solution set is removed individually and replaced 

with the greedy optimum identified at that point. If the overall objective is improved, the heuristic 

moves onto the next substitution. This process continues until the user-defined number of 
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substitutions has been implemented, or if no substitution improves the solution. Furthermore, they 

generate and implement a genetic algorithm. As the name suggests, this approach is inspired by 

genetic variation – with the idea being to generate and manipulate a suitable ‘gene pool’ (Jaramillo 

et al., 2002; Koyonagi et al., 2006). In application for the FRLM, the genetic algorithm is designed 

to create an initial population of facilities and then vary this solution through genetic, specifically 

chromosomal, diversity (Lim and Kuby, 2010). Mutations of the solution are run and cross-overs 

are implemented until the problem converges towards the optimum. Finally, comparison of all 

three results is presented based on a 25-node test network and a 302-node (74 OD) network of 

Florida. These show that the genetic algorithm performs optimally on the test network at every 

stage of the heuristic. The greedy-adding with substitution also performs optimally, but only for the 

first half of the solution. Interestingly, the greedy-adding technique, which is sub-optimal to start 

with, overtakes the substitution method after the 11th facility and remains optimal from then on. 

This indicates the existence of many alternate-optimums. Generally however, the substitution 

method is close to optimal for the whole process. The number of substitutions defined (1-4) make 

little difference, with one substitution appearing sufficient. On the real-world Florida network 

however, the performance of the genetic algorithm drops in comparison to the greedy approaches. 

To begin with (i.e. for solution up to p=20), the genetic algorithm underperforms in comparison to 

the greedy solutions. When more facilities are placed in the network, the genetic algorithm 

provides a slightly improved solution but at the cost of time. For instance, when p=25 the genetic 

algorithm captures 0.53% more flow in comparison to the greedy-adding approach, but the time 

needed to solve is 100 times greater. The greedy substitution methods provide an occasional 

improvement compared to the greedy only technique – but again the improvement is minor and the 

time to process is longer (up to 18 times greater). 

 

Thus, in conclusion, it is found that most location models of this type require an efficient heuristic 

to be able to handle large scale and complex networks. This is likely due to the problem of having 

to solve a model given multiple combinatorial options – referred to as being NP-hard – meaning 

that it is often impossible to solve optimally, and a solution can only be approximated with a 

heuristic (Garey and Johnson, 1979). While several alternative methods provide improvements to 

the standard greedy-adding technique, it is generally reported that solution time increases 

exponentially in proportion to the gain in optimality. Furthermore, although the reviewed models 

have been solved heuristically, and in some cases optimised mathematically, their results have not 

been validated against real-world usage patterns. 

 



Enabling Long Journeys in Electric Vehicles: Design and Demonstration of an Infrastructure Location Model 

  

Laurence Chittock Page 91 

2.7 Development of Modelling Objectives 
 

Based on the findings from previously published work certain shortcomings need to be overcome 

to help meet the aim. These are discussed in the following section, with proposed modelling 

objectives derived from the requirement. 

 

2.7.1 Network choice/design 
 

If the model were just to be tested theoretically, it may be adequate to demonstrate its use on a 

simple simulated network. However, given the need to quantify the results in a realistic setting, and 

compare them to real-world usage data, it is necessary that the model can be built, computed, and 

solved on a realistic network. As described in section 2.1 several authors have built, or adopted, a 

realistic network on which to demonstrate their model. Usually, because of the size of the network 

they are analysing, the time/data they have available, and the complexity of modelling many routes 

for the same OD pair (for problems encountered, see section 2.6), modellers in this field have 

chosen a simple traffic assignment technique which assumes all-or-nothing route choice, and can 

be computed at a large scale. These options are discussed further in section 3.2.2. 

 

An additional facet of network choice and design is the problem of aggregation. As described by 

McNally (2008), to be able to represent a geographic area as nodes and arcs in a network, it is 

necessary to aggregate zones into sources for the origins and destinations. This implies that certain 

regions or areas are simplified and represented by a single point (usually the centroid). This process 

can help provide more generalised meanings to the outputs, i.e. rather than saying 1 person travels 

from house A to office B, an aggregated network could describe 1000 people travelling from town 

A to town B. However, the scale of this aggregation is linked to the feasibility and efficiency of the 

resulting model. Since individual routes must be computed for every OD pair, the number of OD 

locations exponentially affects the amount of computing that is required. Thus, if the aggregation 

scale is very small, the number of OD pairs that must be generated is very large. Conversely, if the 

scale is too big, spatial errors are introduced and enhanced (Francis et al., 2009).  

 

In many cases these errors may not be significant to the problem in hand, or may be negligible in 

the context of the greater distances involved in the network. For a location model concerning 

limited range vehicles however, aggregation error could cause a problem. Consider Figure 2-6 
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which shows a 90km route from O to D. Both point O and D represent zones with a radius of 

15km, such that a potential journey could commence or finish up to 15km away from O or D. 

Assuming a BEV has a full range of 100km and if aggregation errors are not considered (as with 

previous work in this field), then a journey from O to D would be possible without the need for an 

intermediate charge. In reality however, someone who lives 15km from O would feasibly have to 

drive 15km first before undertaking the 90km route. In this case, the journey may not be possible 

without an en-route charge. Thus, if aggregation errors are considered fully, the length of this route 

could range from 60km – 120km (assuming someone on the edge of area O nearest D travels 

directly towards D). 

 
Figure 2-6 - Aggregation error in an OD network 

 

Kuby and Lim (2005) in part account for this by setting the starting range of the vehicle to 50% of 

its full capability. In practice this means aggregation error will not be a problem unless it is greater 

than half a vehicle’s range – however, applying this concession means that range is represented 

conservatively meaning for zones with smaller aggregation distances, vehicles will arrive at their 

origin with an excess of range – which in practice may mean modelling recommendations are 

overprovisioned. In many other cases (Fang and Torres, 2011; Hodgson, 1990; Wang and Lin, 

2009) aggregation scale and error is not accounted for. Given this, the following modelling 

objective is proposed to account for aggregation error, without overly compromising the feasible 

range of the vehicle. 

Modelling Objective a: Develop a method to represent source/destination areas in the model, such 

that OD aggregation scale is considered and accounted for in the modelling procedure.  

 

2.7.2 Modelling choice - Representing demand 
 

In previous work, demand is only quantified at fixed points in a network. This means, in a 

modelling sense, that for every other location in the network (such as arcs and areas) demand is not 

quantified. As an alternative the use of areas was discussed. Typically, areas are used to represent 

continuous features, such as land cover, where the same attribute is assumed at every internal point. 
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For routing options, however, this would not be the case. Instead, the area could be used as a 

holding feature which contains underlying demand, observable as lines (any contained road), or 

points (any network node). Representing a series of individual data points as a single areal unit, is 

well established in the literature (Church, 2002; Murray, 2003) – notably as a means of storing and 

representing Census data. With a continuous approach to demand evaluation, quantification can be 

assessed at every point on the network, allowing for enhanced flexibility when comparison across a 

network is made. This approach thus extends flow-based modelling, which allows demand to be 

represented along lines (albeit only quantifiable at nodes). As such, based on these needs, the 

following modelling objective is proposed: 

Modelling Objective b: Represent demand for charging across two-dimensions, such that a 

potential demand surface can be generated. 

The development of this objective is also relevant in relation to the proposal in the next section. 

 

2.7.3 Candidate site selection 
 

Based on the reported findings in sections 1.4, 1.6.3, and 1.7.3.3 it is likely that a BEV will be able 

to carry out most of its journeys needs if there is access to a home-based charger. For those who 

cannot charge at their home location, public charge points may be needed nearby. To assist the 

process, point-based location models could be used. However, because BEV recharging can take a 

long time – potentially too long for someone to wait (see section 1.7.1) – it will be necessary to 

model journey impedance as walking distance, or some other form of transport, similar to Chen et 

al. (2013). This may allow a BEV owner to park nearby to their home, charge overnight and return 

to their fully replenished vehicle the next morning. In all other cases, a BEV is restricted by at least 

its half-range (where no charging opportunity exists at the destination), and at most by its full-

range. Given this, a provision of rapid charging sites to enable journeys beyond these ranges is 

required. As discussed in section 1.7 the locations for these chargers can be constrained by many 

factors, however, alongside the road network there is still likely to be considerable scope for new 

locations. Therefore, and based on the fact that detailed land/electricity data is not available, the 

following objective is proposed to allow the model to be implemented without this prior 

knowledge. 

Modelling Objective c: Create a modelling procedure which relaxes the need for an input 

candidate set, instead choosing from the continuous plane. 
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2.7.4 Solving models 
 

Based on the reported findings from section 2.6, it is unlikely that a model which needs to be 

expandable (need b in section 1.9) and realistic (need d) will have a solution that can be found 

optimally. Given this, it may be necessary to employ solving heuristics which can approximate the 

optimum solution. Additionally, given the need to maximise service provision, it may also be 

desirable to improve the initial solution. Based on this, and the needs in section 1.9, the following 

objective is proposed: 

Modelling Objective d: Employ solving heuristics to ensure the method is computationally 

manageable on a large scale. 

For the purposes of this thesis, suitable solving heuristics are applied to: maximise the number of 

extendable BEV journeys, given a number of facilities to be placed (which is defined as the fitness 

function). 

 

2.8 Summary 
 

In this section, a summary of chapter 2 will be given in relation to objective 1 below. 

Objective 1: Understand how location modelling has previously been applied for similar purposes, 

and identify the assumptions and short comings inherent in these methods. 

 

Based on the objective, the field of location modelling – which can provide an efficient means to 

‘site facilities in some given space’ (ReVelle and Eiselt, 2005) – was identified as an appropriate 

infrastructure planning tool, and reviewed throughout chapter 2. Of the various types of location 

model available, flow-based modelling was recognised as a suitable means to represent non-

stationary demand (such as vehicles) – since, unlike fixed demand models, flow modelling can 

quantify and represent demand at several locations throughout a network (which is key to 

understanding range and habitual journey patterns of BEVs). Application of these models is reliant 

on Origin Destination networks as these provide an awareness of full route distance, which is 

important in the context of range limited vehicles. These ideas have been used for several 

applications, most notably by Kuby and Lim (2005), and Kim and Kuby (2012) who developed 

ideas from Hodgson (1990) and Berman et al. (1995) to create location models which can 

recommend sites for alternative fuel infrastructure (applied to a hydrogen refuelling context). 
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However, models of this type have not previously been validated with empirical usage data or real 

world behaviours. In addition, based on the identified shortcomings in these published works 

additional novel requirements for the modelling process are defined in section 2.7. In the next 

chapter, these objectives are explored given a number of options with possible solutions proposed 

to meet these requirements.  
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3 MODEL DESIGN 
 

3.1 Modelling Considerations 
 

In section 1.9, the research aims and objectives were established. The first objective to: 

‘Understand how location modelling has previously been applied for similar purposes, and identify 

the assumptions and short comings inherent in these methods’ was undertaken and discussed in 

chapter 2. A summary of this literature was then used to highlight advantages and disadvantages of 

certain approaches, and formulate specific modelling objectives. In the previous chapter, the 

modelling objectives were developed as a means to help achieve the aims. In this chapter the 

designs of the location model are considered and proposed to meet the following objectives: 

Modelling Objective a: Develop a method to represent source/destination areas in the model, such 

that OD aggregation scale is considered and accounted for in the modelling procedure.  

Modelling Objective b: Represent demand for charging across two-dimensions, such that a 

potential demand surface can be generated. 

Modelling Objective c: Create a modelling procedure which relaxes the need for an input 

candidate set, instead choosing from the continuous plane. 

Modelling Objective d: Employ solving heuristics to ensure the method is computationally 

manageable on a large scale (where suitable solving heuristics are applied to: maximise the number 

of extendable BEV journeys, given a number of facilities to be placed.) 

 

Specifically, these objectives relate to objective 2 in section 1.9, which is: 

Objective 2: Develop a model and appropriate methodology to recommend sites for a charging 

network, and overcome issues with previous work in this area. 

 

Given these objectives, and the considerations discussed in chapters 1 and 2, a framework for the 

modelling process, with inputs, formulations (which are needed to meet the objectives), and outputs 

(which can be used to meet the objectives 3 and 4 and are discussed further in chapters 4 and 5) is 

shown in Figure 3-1. In the next two sections, the inputs into the model are studied with a 

consideration of available options discussed. The formulation of the model is then proposed in 

sections 3.4-3.8. 
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Figure 3-1 - Modelling inputs and design 
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3.2 Creating an OD network 
 

As shown in Figure 3-1 an OD network is a key input for a location model, providing a platform 

for formulation and demonstration. As discussed in section 2.1 the use of an Origin-Destination 

(OD) matrix provides knowledge about how many people are expected to travel throughout a 

network. For the development of a charging network, it details how many people are travelling 

from one specific location to another. As such, it provides the means to calculate likely distances 

for each journey, and in turn infer whether charging facilities are needed for that route or not. 

Given the purpose of an OD network – to represent travel patterns across a geographic region 

(Magnanti and Mirchandani, 1993) – there are two main considerations in its design; 1) the 

representation of the geography in a network form, and 2) the definition of traffic flow throughout 

the network. These are denoted respectively as ‘Network layout’ and ‘Route flow assignment’ in 

Figure 3-1. The following section therefore describes the options available in the use and design of 

an OD network, and the consequences these decisions may have on the model performance. 

 

3.2.1 Network layout 
 

Given the options around network layout choice (reviewed in section 2.2), and the proposal given 

in section 2.7.1, this section explores the development of a network such that zone to node 

aggregation distances can be considered in an OD network and tailored for use in an electric 

vehicle infrastructure model. In particular, a method which can meet the following objective is 

required: 

Modelling Objective a: Develop a method to represent source/destination areas in the model, such 

that OD aggregation scale is considered and accounted for in the modelling procedure.  

To demonstrate the following methods the British mainland is used as a case study. The 

development of this network also allows a comparison with real data – which was collected in the 

UK (and is presented in chapter 4) – however, it should be noted that the following techniques can 

be applicable to any region or network design where sufficient data exists.  

 

The British mainland has an area of ~225,000 km^2 and a north to south length of ~1,000km. In the 

UK, road network data is available from the Ordnance Survey, and is digitised into the Meridian 2 

GIS layer (Ordnance Survey, 2012). This network represents the entire physical road network in 

the area – although dual-carriageway lanes and one-way systems are not modelled. As with Lines 
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et al. (2007), most of the road network is maintained, except for minor roads below B-road 

categorisation. This ensures the network maintains overall integrity from the real world and can be 

used to represent longer journeys which tend toward major routes. The network was loaded into the 

ArcGIS 10.1 software (ESRI, 2012a) with simplification of the remaining road network carried out 

to reduce the size of the GIS layers. This involved the straightening of all road segments between 

two nodes, with the original distance transposed to the new road section. In addition to this, speeds 

were assigned to each road type (which affects the route flow assignment described in section 

3.2.2). This information is presented in Table 3-1. 

Table 3-1 - UK road network composition 

Road type Frequency 
Total length 

(kms) 

Avg Length 

(kms) 

Speed 

(kmph) 
Speed (mph) 

Motorway 1200 3,508 2.92 96 60 

A-road (major) 23996 45,370 1.89 60 38 

B-road (minor) 10543 28,968 2.75 41 26 

Total 35739 77,845 2.18     

Road junctions 22435     

 

Table 3-1 shows the composition of the road network used in the analysis. The frequency 

represents the number of edges between junction nodes for each road type. The speed shown 

represents a typical average speed for each road type (UK Government, 2015). This network is 

displayed graphically in Figure 3-2. 
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Figure 3-2 - UK road network (Study Area) 

 

Population and boundary data for the region is available from the 2001 UK Census and is published 

online by the UK Data Service (UK Data Service, 2012). This data is separated into several 

available aggregation zones – from Output Areas, the smallest representation of population of 

which there were 218,038 – which are aggregated into districts, of which there were 403, through 

Reproduced by permission of Ordnance Survey on behalf 

of HMSO. © Crown Copyright. All rights reserved. 
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to aggregated regions, of which there were 13. As described in section 2.2, the number of OD 

locations used in the network is exponentially proportional to the number of OD pairs which must 

be generated between them. Given this, the Census Output Areas (COAs) layer is deemed to too 

large to form an OD network. On the other hand, the number of regions is too small to be 

considered since the aggregation distance to the centroid would be excessive. As such, the districts 

layer is initially used to form the basis of an OD network. These areas represent administrative 

zones and are generally formed based on population, such that many districts exist in densely 

populated areas and only a few exist in sparsely populated regions (Martin, 2000). For each zone in 

the layer, a centroid point is generated in ArcGIS which represents the geographic centre of each 

area.  The same process is also carried out for the COA layer, with both presented in Figure 3-3.  
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Figure 3-3 - UK Census data - Districts layer & Output Areas 

Data Source: Census data from (UK Data Service, 2012) 

 

The 403 district points shown in Figure 3-3 could represent OD locations from which to build the 

network. However, the effect of the aggregation from area to point implies that, in a modelling 

sense, every vehicle assigned to the location is actually resident there too. In fact as is shown in the 

layout of the COA points, people are spread around the aggregation point and thus, must travel to 

their designated OD location to implicitly take part in the model. In cases where this distance is 

large, a proportion of the population will not be accounted for in the model. If the resulting model 

is constructed based on these populations, then there is likely to be an overestimation of those who 
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will use the network. To negate this effect, it may be sufficient to place the centroids in the 

population weighed mean of the area (ESRI, 2015a). This could be achieved using the lower level 

COA points which more accurately represent where people live, and would improve the solution 

for the majority – since the centroid would be placed closer to more people. However, many on the 

region’s periphery would still be excluded. In the extreme case, households in large districts, 

furthest from the centroid, would effectively be locked out of the model because they would be 

unable to reach their assigned centroid. This phenomenon is exampled in Figure 3-4. 
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Figure 3-4 - Census district aggregation 

Data Source: Census data from (UK Data Service, 2012) 

 

Figure 3-4 shows an area of the study region where differences in aggregation distance could have 

a large impact. Population in the south of the region is relatively dense and, as a result, is divided 

into several small district areas. Further to the north however, population is disparate and is thus 

aggregated into larger districts. For instance, the central district area shown in Figure 3-4 is 
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~120km in length from north to south (as the crow flies). In the Census aggregation, all COA level 

data is accumulated and assigned to the district it falls in. As such, COA points are assigned to their 

designated district even though a closer point may be available. The example above illustrates this. 

The blue line represents the shortest path route (in journey time and coincidentally, distance) from 

a COA point on the outskirts of a district to its centroid. The journey distance is 88km, which if 

undertaken in a BEV with a range of 100km, would leave the vehicle’s battery virtually depleted. If 

the model does not consider aggregation, the assumption is that a journey starts from the Origin 

point (district centroid) with a full battery. Thus, if the intended destination, or an interim charge 

point, were more than 12km from the Origin (in the opposite direction) the outlying COA 

population could, by consequence, be unable to take part in the model. In reality therefore, it makes 

more sense for the COA point to be assigned to the much closer district point to the south. 

However, in some situations even this may not be sufficient. For instance, vehicles leaving some 

COA points in the very north of Scotland (and the north of the study area) would need to travel 

over 200km to reach their nearest district point – which would inhibit their ability to participate in 

the model. 

 

One option, to meet the objective, is to calculate the current spread of population (COA points) 

around the district centroid to determine how far people must travel to reach this point. As 

described by Martin (1989), this aggregation distance could then be applied by adding a decay 

function, or a fixed value, to the centroid so that all (or a proportion) of the population can be 

incorporated into the model. In the context of an infrastructure location model, this could mean 

calculating the distance which would incorporate 95% of population and adding it to any journeys 

leaving that point. This possibility is examined for the British mainland, with standard distances 

calculated for each district and its assigned set of COA points. The results are shown 

geographically in Figure 3-5 and statistically in Figure 3-6. 
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Figure 3-5 - Population spread around UK district centroids 

Data Source: Census data from (UK Data Service, 2012) 

 

Figure 3-5 shows how distances from a district centroid to the population in that zone vary. For 

each district the standard distance was calculated in ArcGIS to determine how far a proportion of 

the population was from the centroid (as the crow flies). The standard distance describes the 

distance limit for each standard deviation away from the centroid and assumes the population is 

Normally distributed (ESRI, 2015b). In Figure 3-5, the purple circles represent the area around the 
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centroid which encapsulate approximately 68% (or 1 standard distance) of the population. The 

green circles represent 2 standard distances from the mean, and thus represent the distance which 

covers approximately 95% of the population. Thus, for the Highlands district (the largest circles in 

the north of the study area), if representing 68% of the population was sufficient, a distance of 

65km would have to be added into the model. Similarly, if 95% population representation was 

required, then an aggregation distance of 130km would need to be added. The spread of these 

distance limits are also shown in Figure 3-6 (where each column represents the number of districts 

whose standard distance falls in the distance categories shown). This confirms what is shown in 

Figure 3-5, that the spread of population around most districts is small. In some cases though, these 

distances are large – to the extent that added aggregation distances may undermine the feasibility of 

the model. Despite this, the aggregation distances calculated could, in most cases be added into the 

OD network formulation so that a proportion of the population is considered. However, since these 

distances are calculated as the crow flies, it is likely that the actual road distances involved would 

be more substantial. As such, an alternative method which incorporates the road network and a 

greater proportion of the population may be more suitable. 

 
Figure 3-6 - Standard distances around district centroids 

 

Given this problem, an alternative method of reassignment of COA points to more appropriate OD 

locations is proposed. The premise for reassigning is to choose aggregated OD locations which are 

geographically weighted, instead of population weighted. This will ensure a greater coverage, 

increasing the number of points in sparsely populated areas and reducing the number in heavily 

populated areas. Additionally, the maximum aggregation distance from a COA point to its nearest 

Origin location can be limited so that all modelled journeys are feasible. For a geographical 

reassignment, a coverage model like those described in section 2.1.2 is deemed most suitable. This 

ensures that the distance between COA points and OD locations does not exceed a given maximum 
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limit, and that sparsely populated areas are realistically represented, whilst dense areas will likely 

be assigned to fewer OD points – thus reducing the number of locations in the network.  

 

Most conventional coverage models require a set of candidate sites to which the demand points will 

be assigned; in this case the COA points. Since a general coverage is desired across the UK, a 

satisfactory solution may be to place a uniform, or random (as in (Brimberg and Drezner, 2013)), 

grid of points across the country. The spacing of these could correspond to the desired aggregation 

distance so that no COA point is out of reach. However, because the OD network must be 

traversable by road, every candidate site must also be accessible by road. As such, a uniform 

placement of points across a region is unlikely to place points directly onto the network. Even if the 

candidate locations are subsequently snapped to the network, the preservation of distance integrity 

may be lost. Preferably therefore, the candidate locations should correspond to points on the 

network and have context within the road network. The COA locations themselves could be used, 

but computing a model which assigns a set of 200,000+ points to a corresponding set of 200,000+ 

would prove too intensive. For these reasons an alternative, ready-made set is chosen which 

contains a computationally manageable number of points which are already spread across the 

network in relevant locations. Along with a digitised road network of the UK, the Ordnance Survey 

also publishes a GIS layer termed ‘settlement points’ within the Meridian 2 dataset (Ordnance 

Survey, 2012). There are 1,285 of these points on the British mainland meaning a detailed coverage 

is provided. As their name suggests, they represent points of settlement and were created for 

mapping purposes, rather than from an aggregation of Census data collection areas. Thus, they tend 

to lie at confluences in the road network and be in areas of known population. Figure 3-7 shows a 

subset of these candidate sites consistent with the area shown in Figure 3-4.  
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Figure 3-7 - Set of potential candidate sites for OD allocation 
Data Source: Census data from (UK Data Service, 2012) 

 

The suggested locations shown in Figure 3-7 represent areas of known population and as such, 

already provide a good fit for the COA locations. As with the district aggregation shown in Figure 

3-4, the number of potential sites is greater in heavily populated areas. However, this set also 

provides a greater choice of points in the less populated, rural areas. This should enable the 

majority of COA points to be assigned to a location that is close, both as-the-crow-flies and in 

network terms.  
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For the coverage model, as well as the choice of candidate set, a maximal covering distance must 

be specified (Church and ReVelle, 1974). This distance represents the maximum aggregation 

distance that is desired in the network. Although, any suitable distance could be chosen based on 

the range limitations of the vehicles being studied, and the size of the desired network, it may be 

pertinent to choose an aggregation that is not greater than one quarter of the vehicle range. This is 

demonstrated in Figure 3-8 which shows a diagram of an aggregation zone. In an origin-destination 

network, an OD route cannot be generated between the same point (the distance would be 0). 

Therefore, since journeys within a single OD zone cannot be modelled, it is necessary that they do 

not require any infrastructure provision.  Thus, all return journeys within a zone must be possible 

without the need for en-route charging. Figure 3-8 shows an OD zone and a feasible return journey 

from one side to the other. In this case the aggregation distance must be covered four times, twice 

on the way out and twice on the way back. Therefore, if a vehicle undertakes this journey with a 

full battery (this assumption is explored further in section 3.3), it can be completed without the 

need to charge en-route if the aggregation distance equals ¼ the vehicle range. The incorporation of 

a maximum threshold also minimises the inconvenience encountered by someone whose actual 

destination is located en-route before the model destination. In such situations, a BEV may need to 

go beyond its destination so that it can charge and come back again – but in all circumstances, this 

is accounted for and the inconvenience is limited to a quarter of the vehicle’s range. 

 
Figure 3-8 - Choosing an aggregation distance to match vehicle range 

 

To demonstrate the use of a coverage model to re-aggregate population data, the British mainland 

data is used as an example. Firstly, so that actual driving distances can be considered, the road 

network is loaded into the ArcGIS Network Analyst (ESRI, 2015c). This allows travel distance and 

time (based on the speeds described in Table 3-1) to be calculated based on the configuration of the 

road network. Using the Ordnance survey settlement points as a candidate set, a coverage model is 
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run such that the maximum distance from any COA point to its assigned OD location does not 

exceed 25km. Based on the explanation above this assumes a vehicle range of 100km or more – 

however, in general this parameter can be varied by the model implementer depending on their 

needs. An example of this output is shown in Figure 3-9. 

 
Figure 3-9 - Assignment of COA points to candidate sites 

Data Source: Census data from (UK Data Service, 2012) 
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Figure 3-9 shows a set of results from the reassigning coverage model. COA points have been 

assigned to the candidate locations which can capture the greatest number of people within a 25km 

limit. The blue squares represent the chosen OD locations, whilst the red squares represent the 

points which were rejected. Each green line symbolises the route from a COA to its chosen OD 

point. Straight lines are used here for visual clarity, although the actual, non-straight, network 

routes were calculated in the model.  

 

Reconfiguring the layout of an OD network in this way means a greater proportion of the 

population can reach their OD point within an achievable distance. As a result, 99.75% of the total 

population is able to participate in the model with at least ¾ of their range available when they 

reach their nearest OD point (based on a range of 100km). The remaining 0.25% is not assigned to 

the network because a few COAs are out of reach of the road network used. This is because the 

minor roads were removed from the network leaving a small percentage of the COAs isolated. In 

the completed OD network, the population at each OD node is attributed the sum of the populations 

from each assigned COA location. Additionally, the aggregation distance is set as the distance to 

the furthest COA point. Figure 3-10 shows the complete set of newly assigned OD locations 

throughout the study area. A comparison to the original district aggregation is also provided. In 

both cases, the OD points are symbolically represented in relation to their assigned population. 
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Figure 3-10 - OD aggregation comparison 

Data Source: Census data from (UK Data Service, 2012) 

 

The output from the coverage model produces a more even dispersion of OD locations, compared 

to the original district layout. Thus, COAs in rural/remote areas are not neglected and are 

represented by a similar number of OD points as in urban areas. Consequently, urban OD points in 

this new aggregation have a much greater population weight than remote ones. This transformation 



Enabling Long Journeys in Electric Vehicles: Design and Demonstration of an Infrastructure Location Model 

  

Laurence Chittock Page 114 

means that the OD network is more geographically weighted, instead of population weighted as 

with the districts set. Information from the three methods to consider aggregation distance is shown 

in Table 3-2. 

Table 3-2 - Comparison of OD network aggregation methods 
OD Location 

comparison 

Number 

of 

locations 

Max distance 

to population 

Proportion of 

population 

included 

Advantages Disadvantages 

Census – 1 

standard 

distance 

403 65km to reach 

limit (as the 

crow flies) 

<68% Aggregation distance 

small for most OD 

locations 

Large portion of 

population 

excluded 

Census – 2 

standard 

distances 

403 130km to 

reach limit (as 

the crow flies) 

<95% Higher proportion of 

population considered 

than 1 St dist 

High 

aggregation 

distances in 

some cases 

means further 

population may 

be excluded 

Re-

aggregation 

using 

coverage 

model 

300 25km (by 

road) 

99.75% High proportion of 

population 

considered, 

aggregation distance 

minimal, smaller set 

of OD points required 

Aggregation 

distance 

increased 

slightly for 

majority 

 

So that the objective – to develop a method to represent source/destination areas in the model, such 

that OD aggregation error is considered and accounted for in the modelling procedure – can be met, 

three methods are proposed in this section. In all cases, it is necessary to have a more disaggregated 

layer of population so that information about how far people reside from the centroid can be 

calculated. The first two methods proposed involved maintaining the input data layout, in this case 

the districts layer used in the UK Census (UK Data Service, 2012). As described by Martin (2000) 

the layout of this dataset was generated for administrative purposes and population division. As a 

result, areas with sparse population tend to be assigned to a large district area, and areas where 

population is dense are assigned small districts. This means, if a single centroid is used to represent 

the population, the aggregation distance varies considerably throughout the dataset (as shown in 

Figure 3-6). Attempting to account for this – by adding the distance on to the OD routes – would 

mean in some cases that a BEV in practice could not reach their OD point, or continue on to the 

nearest charging point. Thus, it may be possible to add a smaller aggregation distance at the known 

expense of a portion of the population. The two methods described show how this could be done so 

that ~ 68% or 95% of the population could be integrated into the model. These techniques mean 

that the input layer can be preserved; however, the use of standard distances assumes that 

population is Normally distributed around the centroid – which is not necessarily the case, and that 
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a trade-off must be made between aggregation distance and the proportion of population that is 

maintained. An alternative to this involves re-aggregating the input layer such that the aggregation 

distance can be minimised and the majority of the population is incorporated into the model. 

Although this involves further work for any model implementer: to find a suitable candidate set, 

and implement the coverage model; it ensures that the network will be more inclusive and the 

outputs are likely to be more representative of the input data. Based on these advantages and given 

the specific layout of the UK Census data, this final option is deemed most appropriate for the case 

study area. However, the actual choice between these options does not affect the model 

formulation, and so, in the following sections it is just assumed that an OD network is available.  

 

3.2.2 Route flow assignment 
 

Although a specific objective/novel contribution is not defined for route flow assignment, as 

described in Figure 3-1 a central input into an OD network is the assignment of ‘flow’, or demand 

across a region. Section 3.2.1 described how an OD network can be generated and amended to 

meet the requirements of the model with this layout representing the geographical study area in 

network form. The next step involves the generation and distribution of traffic flow across the 

network to represent the movements and travel patterns of vehicles. Depending on the availability 

of data, time, and the outputs desired, this could be achieved in several ways (as described in 

section 2.2). Given this, a variety of options are considered that have been used by previous authors 

to populate flow across a network. 

 

1) Use an existing OD network with flows already assigned (such as the network available for 

Scotland produced by (National Records of Scotland Web, 2013)) 

a. Advantages: Assignment and population of network has already been carried out – 

more data/resource may have been used to construct network which might not be 

available to model implementer.  

b. Disadvantages: The model is restricted to the use of a pre-assigned OD network, 

meaning that aggregation error may not have been considered and the network 

cannot be changed. The particulars of traffic assignment technique, relevant for 

BEVs may not have been considered in a pre-made network. 

2) Simulate traffic flows by random (such as the 25-node network produced by Simchi-Levi 

and Berman (1988)). 
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a. Advantages: This is likely to be a fast method which allows for a quick 

demonstration of modelling procedure. Random flows can be regenerated and the 

model can be run many times to test for sensitivities. 

b. Disadvantages: The model is not based on realism and so no real 

decisions/conclusions can be made from the results.  

3) Implement a simple traffic assignment model – such as an ‘all-or-nothing’ gravity model 

(such as in the Florida network constructed by Lines et al. (2007)). 

a. Advantages: Realism can be added to the demonstration of the model by using 

population and/or other widely available data. The assignment is likely to be 

reasonably fast to implement and replicate. Traffic between each OD pair is only 

assigned to 1 route, so computational intensity can be minimised, especially 

important if the model will be run at macro level.  

b. Disadvantages: Dynamic/stochastic movement of flow, and traffic levels are not 

considered. Flow may be over-assigned to certain types of routes based on ‘all-or-

nothing’ implementation, meaning traffic is assumed to travel down similar roads. 

4) Implement a complex traffic assignment model – such as dynamic flow models, 

equilibrium models, route assignment based on alternative method, such as ‘most efficient 

route’ like that suggested by Neaimeh et al. (2013), or traffic count conversion models.  

a. Advantages: Assignment can consider variation in flow at times of day/week etc. 

Equilibrium models assume traffic is aware of network conditions and splits 

directions of routes to minimise travel time based on traffic levels. Traffic count 

models consider real historic traffic flow patterns. High level of detail and realism 

in these types of models provides increased realism in results.  

b. Disadvantages: Splitting of traffic between several routes may increase computing 

and storage demands. Complications may be introduced regarding the capture of 

flow – i.e. if flow from one OD pair is split between 3 routes and a charging 

facility is placed on 1 route, would the other drivers ignore the ‘equilibrium’ rules 

and choose the serviced route? Approach suited to more micro level applications 

such as city wide scenarios where high level of detail is required. Computational 

intensity could become exhaustive at macro level. From traffic count data – it is 

not always apparent where vehicles have come from and are going to. Some routes 

might observe a high traffic count where many people are driving short routes (and 

hence wouldn’t require charges). Other routes may be more likely to observe long-

range journeys (but this difference wouldn’t be obvious from data). 

The choices for route flow assignment within a network suggest that advantages and disadvantages 

exist for each one. Thus, depending on the needs of the study, and the data that is available, a 
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certain approach may be deemed more appropriate than another. However, for the purposes of 

general model design, route flow assignment choice can be considered exogenous to the process. 

As such, any of the methods discussed could be used to populate a network. For methods not using 

an ‘all-or-nothing’ assignment the following processes discussed in this chapter would be more 

computationally difficult to implement. Additionally, as suggested above, rules about how flow 

might be split before and after charge placement would have to be defined. Thus, for this reason, 

the following sections assume an ‘all-or-nothing’ assignment approach is used (meaning everyone 

travelling between the same Origin and Destination is assigned to the same route). Alternatives to 

this approach are discussed in chapter 6. 

 

3.3 Parameter Choice and Assumptions 
 

Section 3.2 described the creation and population of an OD network onto which a location model 

can be built. The following sections details the methodological design of the model based on the 

requirements presented in section 1.9, and how this can help achieve the aim. Before this, the input 

parameters which the model requires, and the assumptions on which it is built, are discussed in this 

section. Similar to previous location models in this field, each version of the model is discrete 

(based on the discussions about computational times in 3.2.2), meaning inputs parameters are fixed 

for each simulation. However, in a general sense, the methodology is developed to be applicable on 

any OD network, meaning these parameters can be varied depending on the situation and needs of 

the study. As well as parameters, the model is constructed with several assumptions about BEV use 

– and so the distinction between variable parameter and fixed assumption will be made clear. 

 

3.3.1 Journey lengths (Vehicle range) – Parameter 
 

As shown in Figure 3-1, one of the main inputs into the model regards the distance range of BEVs 

and how this is interpreted in the model. In this sense range relates to the assumed journey 

capabilities of the vehicles modelled in the network. Given this, a single range value must be used 

to represent these vehicles and to describe which routes can be carried out without charging, and 

which require provision. As with the FRLM (Kuby and Lim, 2005), and since the value of range 

must be discrete, it follows that range is a function of distance. 
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As described in section 1.6, the total range of a vehicle describes how far it can travel with a full 

battery. However, this value can vary depending on, among other things, vehicle make, ambient 

temperature, road topology, and driving style. Such that a suitable value can be chosen, an 

awareness of this variation is needed. Figure 3-11 shows a mix of BEV makes which were sold in 

the UK in 2014. Statistics from the Department of Transport (2015), who collect vehicle 

registration details for every vehicle in the UK, are combined with vehicle range calculations from 

the US Department of Energy (2014) (where data is available from both). The range calculations 

shown are calculated using the EPA with figures for city, combined, and highway driving 

(explained in section 1.5). Thus, in effect, these figures already partially account for topological 

and driving style variations (as dictated by the general type of roads travelled). As demonstrated by 

Walsh et al. (2010), Neaimeh et al. (2013), and Strickland et al. (2014) greater variations may be 

observed in some cases (such as aggressive driving style, heavy traffic, or low temperatures), but at 

a network wide scale such variation may be difficult to model, and may compromise the 

requirements of the majority. Additionally, based on current sales figures, it is clear the Nissan 

Leaf (with ranges varying from 74-92 miles) is the most popular BEV in the market. Given this, a 

choice could be made between covering every range and vehicle type possibility, and representing 

the majority. Although precise variation in range is unclear in all cases (due to the number of 

parameters), it could be that this variation follows a Normal distribution (a description of which is 

given in Steel (1960)), and can also be observed in Figure 1-22. If this is the case, then it is 

prevalent to choose a value that is slightly conservative (to cover most of the variation), but 

perhaps not one that covers 100% of variation. This will ensure that the majority of vehicles can 

arrive at charging points and destinations as modelled, with some, but not most, of their excess 

capacity remaining. Thus, a range value which incorporates the majority of the market, under the 

majority of driving conditions should ensure that practical implementation of the modelling results 

represents expected utilisation.  
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Figure 3-11 - EV registrations in UK with stated ranges 

Data Source: Vehicle ranges based on EPA tests from (US Department of Energy, 2014) 

Data Source: UK BEV registrations (2015) 

Vehicles shown include those available in both data sources. ‘Others’ vehicles include Chevrolet Spark EV, Fiat 500e, Ford Focus 

Electric, and Toyota Rav4 EV 

 

Because the value of range can be varied depending on conditions, in the general formulation 

described in this chapter, this parameter will be referred to as R. In chapters 4 and 5 a 

demonstration of the model is carried out with a suitable value for R chosen. Discussion on 

alternative values and the implication on the results is presented in chapter 6. 

 

3.3.2 Starting range – Assumption 
 

The total range describes how far a vehicle can travel starting with a full battery. However, 

depending on charging availability it may not always be possible to start long journeys with a full 

range. In the FRLM, Kuby and Lim (2005) set the starting range of hydrogen vehicles to 50% of 

their full capacity. Implicitly, this ensures that most vehicles can reach their nearest OD point and 

continue on to refuel from there. However, given that aggregation distance can be considered in 

this model, it may not be necessary to constrain the starting range to 50%. To determine what 

figure may be applicable, journeys from the CABLED dataset are studied. Although rapid charging 

was not available for this cohort, some long journeys were undertaken (which required enough 

available charge). Figure 3-12 shows all journeys >10 miles from the CABLED BEVs, where state 

of charge (SoC) data was available. The starting SoC for each journey is shown along the x axis 

with the number, and distance, for each subsequent journey shown on the y axis. The main 

observation is that most journeys – regardless of their distance – were started with a >90 SoC %. 
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This suggests that most people plugged in their BEV whenever slow charging was available, even 

if they didn’t specifically need to charge for following journey requirements. On occasions when 

people didn’t start their journeys with a full, or near full, battery the subsequent journeys weren’t 

that long (and it is likely the drivers anticipated this in advance, given there were no reports of 

people being stranded mid-journey during the trial). For long journeys, such as those greater than 

40 miles, people started with 90% SoC+, 92% of the time (as opposed to 52% for all journey 

lengths). This suggests that people deliberately plan their charging based on knowledge of their 

subsequent journeys – a sentiment which is reflected by other BEV users, reported in section 1.4. 

Given this, an assumption that BEV drivers will start long-range journeys (which require en route 

charging) with a full, or near full, battery is deemed appropriate for the modelling in this research.  

 
Figure 3-12 - Starting SoC% based on following journey distances 

Data Source: CABLED trial – see section 1.4 

 

3.3.3 Charges per trip – Assumption/Parameter 
 

Explored in many transport routing systems is the idea of minimisation, such as in the vehicle 

routing problem (Toth and Vigo, 2001) where it can be desirable to minimise the number of stops 

(or time, or distance etc) a fleet of delivery vehicles must make to deliver a number of parcels; or in 

a transit route network (Zhao and Ubaka, 2004) where the number of transits, or the directness of 

the route, may be minimised. In reference to charging along a route, similar to delivery vans, a 

BEV driver may wish to minimise the number of times they need to stop and recharge. For 
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alternatively fuelled vehicles, this idea is developed by Kuby and Lim (2005) who develop the 

minimum refuelling route – which removes the possibility of stopping at facilities that are 

redundant to achieve the route. In a practical sense, if refuelling stations were placed every 5km 

along a road, a driver could stop at each one and top up with a small amount of fuel. However, 

from a journey completion point of view, many of these stops could be considered redundant. The 

opposite of this would be to assume that drivers stop a minimum number of times to refuel. In these 

cases, redundant stops are not considered, and only those which are core to the completion of the 

route are utilised. Based on this assumption, the location model can be used to enable as many 

routes as possible and avoid recommending sites that could be redundant or end up receiving a 

fraction of anticipated demand. 

 

Additionally, if it is assumed that drivers wish to minimise the number of charges they carry out, it 

follows that they may avoid journeys where many charges are necessary. For instance, based on the 

charging time needed to use a rapid charger, a BEV driver may find it inconvenient to carry out 

long multi-charge journeys (charging 4 times on a route could add at least 2 hours to the journey 

time). As such, if a BEV owner wishes to undertake such a journey, they may employ another 

mode of transport. Consider Figure 3-13 below which shows results from the National Travel 

Survey regarding long-distance trips by mode of transport (Department for Transport UK, 2013f).  

 
Figure 3-13 – Long distance trips based on the National Travel Survey 

Data Source: (Department for Transport UK, 2013f) 

 

Results from the National Travel Survey suggest that for very long journeys (150 mile+), people 

switch from their car to other modes of transport, such as bus, train, or plane. Additionally, the 

frequency of trips decreases as distance increases. For instance, out of all 50 mile+ trips, only 2.8% 

are greater than 250 miles, and carried out in a car. When combined with all trips, of which 2.37% 

of car journeys are greater than 50 miles (Department for Transport UK, 2013f), journeys greater 

than 250 miles represent ~0.07% of all car trips. As suggested above, for BEV drivers this 

percentage may be even lower given the added inconvenience of recharging time. 
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3.3.4 Deviation willingness – Parameter 
 

Explored in Berman et al. (1995) and Kim and Kuby (2012) is the notion of someone’s willingness 

to deviate away from a shortest path in order to reach a service. In both cases, deviation is 

considered an inconvenience. As such, it follows that a BEV driver would wish to minimise the 

deviation they must make to reach a charge point. In previous work, this has been applied 

experimentally; however, following the CABLED trial Berkley (2012) asked the opinions of all 

BEV drivers in the trial (whose profiles are discussed in section 1.4) regarding their willingness to 

deviate. 

When asked the question ‘If you were planning a long journey (beyond your EV's range) and a 

rapid charge point is not on the direct route, how far would you be willing to deviate off the direct 

path?’ 14.5% said they would be willing to deviate up to 5 minutes, 32% would be willing to 

deviate up to 10 minutes and 32% would be willing to deviate up to 15 minutes. The remaining 

21.5% said they would not use their BEV for a journey requiring a rapid charge and would instead 

seek alternative transportation. Because each threshold is inclusive of the previous one, it is 

assumed that of all the people prepared to deviate; they are all willing to deviate up to at least 5 

minutes. It is also assumed that a 5 minute deviation represents the total maximum time spent 

travelling off the shortest path (not including the charge itself) for each charge needed. Thus, a 5 

minute deviation equates to a 2.5 minute one-way detour. In addition, it is assumed that 40% are 

willing to deviate up to 10 minutes for each charge, and a further 40% are willing to deviate for 15 

minutes. As with other parameters, the future application of the method can take into account 

alternative values or thresholds, based on the data and information available. As such, in section 

3.5, deviation is described in the general case, where the limiting factors are the driver’s tolerance 

to deviate, and also the remaining charge needed to complete the route. As a case study example, 

the above deviation limits are applied in chapters 4 and 5 (with simulations assuming both 

minimum and maximum deviation tolerance). Furthermore, since route measurements are 

calculated in kilometres, the limits are also converted to this unit – assuming an average deviating 

speed of 60 kmph (which is equivalent to the modelled speed for A-roads). Thus, in the case study 

examples, a 5 minute deviation equates to a one-way deviation distance of 2.5km. 

 

3.3.5 Candidate site selection – Parameter 
 

Described in section 2.7.3 is the requirement to allow siting of charging stations throughout the 

plane. The formulation of this idea is detailed in section 3.7 with charging demand being 



Enabling Long Journeys in Electric Vehicles: Design and Demonstration of an Infrastructure Location Model 

  

Laurence Chittock Page 123 

quantifiable and serviceable across an area. As such, it is feasible to quantify demand at any 

location in the study area. However, as is later discussed in section 3.7, it is prevalent to represent 

these areas with a grid to make the computations more manageable. Because this process is similar 

to rasterisation, the main condition dictates that demand is constant across each individual cell. As 

such, when choosing the size of the grid squares it is important that demand and distance variations 

within each cell can be considered negligible. On the other hand, if the grid squares are very small, 

the amount of processing required to quantify demand at each one is intensified (the number of 

cells in a grid assuming a size of 500*500m is four times greater than those with a size of 

1km*1km). Thus, this decision must be taken depending on the vehicle range (i.e. is the grid size 

negligible compared to the vehicle range?), and the processing power available. 

 

Because a grid can be applied across a continuous area, the grid squares do not necessarily have to 

represent specific candidate sites. However, in some applications it may be desirable to reduce the 

size of the grid based on a set of criteria. In chapter 4, the model is compared directly to a set of 

existing locations. As such, it is only necessary to evaluate the model at these locations, so in such 

situations the demand grid can be reduced to reflect just these points. In chapter 5 however, the 

model is run assuming only one candidate criteria: that the locations are on, or just off, the road 

network. This is likely to always be a criteria as the sites must be reachable by car, meaning 

demand cannot exist away from roads. There is freedom therefore to run the model with a fully 

continuous candidate grid (the road network) or with a specific set of sites, or any combination in-

between. 

 

3.3.6 Capacity at charging stations – Parameter 
 

Capacity, in an infrastructure sense, refers to a set of constraints which may limit a facility’s ability 

to provide service (Daskin, 2011) – in this case, the number of BEVs that could charge in a locale. 

In previous infrastructure modelling, capacity has been defined as a function of the available 

amount of fuel on site. Upchurch et al. (2009) therefore set a constraining element into their model 

which limited the number of vehicles that could be served at one site, based on the amount of fuel 

contained within a hydrogen tank. For electric vehicles, the analogous is the amount of available 

electrical capacity and the impact this might have on the wider network. As discussed in section 

1.7.2, the use of charging is unlikely to affect overall electricity Network capacity until BEVs reach 

a higher level of penetration (and this assumes that all charging is carried out in an uncontrolled 

manner). However, localised constraints may have to be applied. 
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As a general means of handling this in this location model – as highlighted above, it is unlikely that 

overall Network constraints and/or reinforcement will be needed. Capacity therefore, could be set 

based on specific spare transformer capacity at each location. Coupled to this is an appreciation of 

the variation in travel peaks which will have consequences on service provision. As a way of 

handling this practically, several charging sites within a locale may be able to handle capacity 

based on Network constraints and temporal variation. For the location model, this can be handled 

by inputting a fixed service capability to each site. The solving of the location model is described 

methodologically in section 3.8 and empirically in 5.3. Thus, based on the site recommendation 

given, the amount of flow removed from the model could be set to the capacity limit. However, 

given that in-depth localised Network information is not available – in the empirical example in 

section 5.3, capacity constraints are not implemented into the model, but could form future work as 

discussed in chapter 6. 

 

3.4 Defining a Charging Zone 
 

Modelling Objective c: Create a modelling procedure which relaxes the need for an input 

candidate set, instead choosing from the continuous plane. 

 

As described in sections 2.5 and 2.7.3, previous location models in this field have assumed that a 

candidate set is already available and can be inputted into the model. Based on this, demand is 

quantified at each specific candidate site rather than across the network. If a candidate set is not 

provided, then it is necessary to define everywhere in the network where demand could arise. 

Given this, as well as an understanding of where traffic is flowing (generated by the assignment of 

flow – as in section 3.2.2), it is important to understand how many charging facilities may be 

needed along each route, and where these could be placed to enable the journey. This idea is 

explored in Figure 3-14 which gives an example journey between two points O and D:

 

Figure 3-14 - An OD route requiring 1 rapid charge 

 

Assume a vehicle with Range (R=100) sets off from O with 100% charge towards a point D 120 

away. Clearly, without a charge facility (CF) en-route the vehicle will not be able to reach the 
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destination, D. It is therefore important to firstly define how many CFs are needed to satisfy the 

route and then to find the range of possible locations for each CF. As illustrated in Kuby and Lim 

(2005) it is sometimes important to consider the round trip as well – since, if a CF at the destination 

does not exist, the requirements of the return trip may not be symmetrical to those on the way out. 

For instance, if a charge facility A was placed at 30 distance units along the route, a BEV would be 

able to leave O, charge en-route and arrive at D successfully. However, it would not be possible to 

return to O because its battery would be near empty at D and the remaining range would not be 

sufficient for a return to A. Conversely, if a CF were placed at 80 distance units, the vehicle could 

charge at this point and arrive at D (40 units from the CF) with 60% capacity remaining. This 

would be sufficient to allow for a return to the CF and then back to O. Because of this 

phenomenon, routes where a destination charger does not exist must be treated slightly differently 

to those where one does exist. 

 

Number of CFs needed for routes with a destination charger 

If a destination charger exists (slow or otherwise), it means that a vehicle can arrive at D with a 

near empty battery and recharge there. It is then assumed that a full charge will be carried out and 

they can set off again with 100% capacity. In effect, if a destination charger exists, the need to 

consider the round trip is made redundant. This therefore, provides greater possibility when placing 

a rapid charge point along the route, since it can be placed anywhere within a full range from the 

destination. Additionally, since candidate sites are not required, complete locating freedom is 

possible within a set of limits along the route. In Figure 3-15 an upper bound limit, for a CF which 

can satisfy the entire route, exists at 100 (since the vehicle can reach this point from O but go no 

further without a charge). Similarly, the lower bound limit can be defined as being one full range 

backward from D. A CF therefore, could be placed anywhere along the route between 20 and 100, 

allowing a vehicle to rapidly charge once for each leg of the journey.

 

Figure 3-15 - The Charge Zone limits for a route with a destination charger 

 

To calculate the number of CFs needed for any route, the following formula can be derived: 

Number of CFs = ceiling ( ( d – R ) / R) 
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where: 

d = distance of route 

R = range of vehicle 

ceiling = rounds up to the nearest integer 

 

d – R effectively calculates the position of the lower bound from point D, i.e. it is possible to travel 

from the lower bound to D and then fully recharge there. If this position is within one range of the 

vehicle, then no additional charges are needed before the lower bound is reached. On longer 

journeys it may be necessary to charge before reaching the destination’s lower bound. The number 

of CFs needed to get to the lower bound is a function of the range, since it is assumed that the 

battery is fully replenished at each CF. Thus, the number of CFs needed for a route is calculated by 

defining the need for a CF at the lower bound, plus the number of CFs needed to get to the lower 

bound. For short journeys where d < R, d – R is < 0 and thus no charge points are needed. 

 

Number of CPs needed for routes without a destination charger 

To be able to complete the return trip, it is necessary for the vehicle to have at least 50% charge 

when arriving at D (Kuby and Lim, 2005). This ensures that the vehicle can return to the previous 

CF from D within one range and hence return to O. Because of this necessity, the position of the 

lower bound is defined as d – (R/2) meaning it must be placed within a ½ range of the destination. 

Thus from the example shown in Figure 3-15 the lower bound limit is set at 70 (50 away from D) 

and the upper bound limit remains at 100. 

The formula for finding the number of CFs can therefore be amended to allow for situations with 

no destination charger: 

Number of CFs = ceiling ( (d – (R/2) ) / R) 

where: 

d = distance of route 

R = range of vehicle 

ceiling = rounds up to the nearest integer 

 

Defining the Lower and Upper Bounds of a Charging Zone 
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If one CF is needed for a route, the upper bound constitutes the distance furthest from the Origin 

where a CF can be placed to enable the route. If it is assumed that a BEV leaves the origin with full 

capacity, R, then the position of the upper bound can be defined as: 

Upper Bound (UB) = R 

where  

R is the range of the vehicle 

 

Similarly, if a charger exists at the Destination (D), then the lower bound equates to the furthest 

position away from D along the shortest path which can be reached within the range of the vehicle. 

Thus: 

Lower Bound (LB) = d – R 

where  

d is the distance from O to D and 

R is the range of the vehicle 

 

For journeys which require more than one charge a UB and LB can be defined for each charging 

zone. 

Since the Upper Bound defines the furthest point reachable from the Origin on the way out, 

subsequent UBs can be defined as an additional iteration of R from the last UB. 

Hence: 

UBi  = (R * i) 

where 

R is the range of the vehicle and 

i is the CZ number in the sequence (i.e. for the 2nd CZ, i would be set to 2) 

 

Similarly, subsequent LBs can be defined as an iteration of R from a previous LB in the sequence, 

such that: 

LBi  = d – (R * ( (CF# + 1) – i) ) 
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where  

d is the distance from O to D, 

R is the range of the vehicle, 

i is the CZ number in the sequence and 

CF# is the total number of CFs needed for that route 
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Figure 3-16 displays the extent of charging zones on a long route which requires multiple charges. The Destination (D) is 420 away from O and the vehicle range 

is assumed to be 100. This solution requires 1 CF to be placed in each CZ so the journey from O to D can be completed. There are many different ways CPs can 

be placed to allow this journey to take place; however there is not complete freedom when it comes to locating the CFs within each CZ. For instance if a CF is 

placed at the LB of CZ1 (i.e. 20), then every other CF also needs to be placed at the LB of each CZ, since the range of the vehicle would not allow travel from 20 

to the next UB (i.e. 200). Thus, it is necessary to dynamically adapt the size of each CZ after each CF has been placed. Effectively, once a CF has been placed, its 

location represents a lower and upper bound such that subsequent LBs and UBs must be within R of the this point. Alternatively, the CZs could be narrowed so 

that infinite locating freedom is possible within each individual CZ. However, this process would narrow the width of the charging zones by a factor of CF# (total 

number of CFs required) and would deny the model a lot of its initial locating freedom. 
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Figure 3-16 - Example of a route requiring multiple charge facilities 
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Defining Lower and Upper Bounds for Routes with no Destination Charger 

If no destination charger is present then it is necessary to restrict the position of the lower bounds 

such that the LB of the last CZ is positioned ½ R from D. Since it is assumed that full charges are 

carried out at every CF, the position of subsequent LBs can be placed in multiples of R away from 

the last LB. 

Thus, if there is no destination charger the position of each LB is defined by: 

LBi  = d – (R * ( (CF# + ½) – i) ) 

where  

d is the distance from O to D, 

R is the range of the vehicle, 

i is the CZ number in the sequence and 

CF# is the total number of CFs needed for that route 

 

It should be noted that this method constructs CZs such that the total number of CFs needed for 

each route is minimised. However, the positioning of the CFs may enable the round trip to be 

completed with one less instance of charging. For instance, if ½ R < d < R (where d is the route 

distance and R is the vehicle range) then feasibly the round trip could be driven with a CF visited 

just once (rather than once on the way out and once on the way back at the same location). In this 

instance, if the CF were placed just before D, then it would be possible to drive beyond the CF and 

reach D without needing to charge. Since d > ½ R, it would not be possible to return to O without a 

charge, and so, one must be carried out before the battery is depleted. Whilst this phenomenon 

might slightly aid the driver, being able to charge an odd amount of times on a round trip is not 

considered in the model, since doing so would restrict the locating possibilities for CFs. However, 

if ½ R < d < R then the positioning of the UB is restricted to the location of D. For instance, if the 

distance from O to D is 70 and the vehicle has 100 range, then the UB is set to 70 rather than 100. 

This avoids the situation of a CF being placed beyond the destination.  

Therefore, the positioning of UBs for routes without a destination charger can be defined as: 

If  (R * i) – ½ < d < (R * i) 

and if  i = CF# 

then  UBi = d 



Enabling Long Journeys in Electric Vehicles: Design and Demonstration of an Infrastructure Location Model 

  

Laurence Chittock Page 131 

otherwise UBi = (R * i) 

where 

d is the distance from O to D, 

R is the range of the vehicle, 

i is the CZ number in the sequence and 

CF# is the total number of CFs needed for that route 

 

This section defined how charging demand along routes can be constructed into segments. These 

segments represent potential sections of a route, where if charging provision was located, could 

enable a long-range journey in a BEV. Given this, a specific set of candidate sites (see modelling 

objective b) may not be needed – as potential segments where facilities could be placed are now 

known. The formulae provided allow the creation of demand segments for any OD network based 

on an input vehicle range. Currently however, this formulation assumes charging demand can only 

be satisfied on the shortest path. As such, an extension of these formulae is provided in the next 

section to allow for the possibility of deviation from the shortest path. 

 

3.5 Adding Allowable Deviations to a Route 

 

Considering deviation increases the realism of the model and more closely simulates the possibility 

of drivers leaving the shortest path in order to charge (Kim and Kuby, 2012). Thus, a method which 

allows for this and extends the formulations of the last section is sought. This objective is described 

in section 2.7 as: 

Modelling Objective b: Represent demand for charging across two-dimensions, such that a 

potential demand surface can be generated. 

In the previous section a definition for charging segments along routes was established. These 

define where, on the shortest path, charging demand may exist so that journeys can be completed 

with a minimum number of charges. To be able to expand this so that vehicles can deviate away 

from the shortest path, it is necessary to understand their remaining range at each point along a 

route. With this considered, if a BEV departs from the shortest path to access a CF it must be able 

to do so without running out of charge. Similarly, having reached the CF and replenished its range 

there, the BEV must be able to return to the shortest path and drive to the next facility (or 
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destination) within a full range. Thus, if deviations are to be implemented, range limits must be 

extended in two dimensions across the plane. Consider the diagram in Figure 3-17.



Enabling Long Journeys in Electric Vehicles: Design and Demonstration of an Infrastructure Location Model 

  

Laurence Chittock Page 133 

 

Figure 3-17 - Defining deviation possibilities for a route 

 

Figure 3-17 represents a route from O to D. The BEV range is 100 and the journey distance is 140. A slow charger is present at point D. As proposed in section 

3.4, one CF is sufficient if it is placed within the limits between 40 and 100. After setting off from point O, a BEV’s range diminishes until it reaches 0 – 

coincident with the upper bound limit (at point 10). Similarly, on the return journey, the BEV departs D with a full battery and its remaining range diminishes 

until it reaches the lower bound (at point 4). Thus, if a deviation is to be taken, sufficient remaining capacity must be available at the point the vehicle leaves the 

shortest path. At point 7, on both legs of the journey, the BEV’s remaining range is 30. Thus, the BEV could potentially leave the route at this point and deviate 

up to 30 away from the shortest path. If it is to do so, a CF must be reached within this limit with a full charge carried out. This would allow the BEV to return 

back to the shortest path (if needs be) and carry on to its destination with enough range remaining. 
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A route where a destination charger exists is considered symmetrical; since the range constraints on the way out are mirrored on the way back. Thus, departing 

from point 7 which is the midpoint of the route, allows for the greatest deviation in both directions. Consequently, any other deviation from the shortest path can 

be measured as a deviation from the midpoint, minus the distance between these points. For instance, point 8 is 10 away from point 7 and so, the allowable 

deviation from point 8 is 20 (30 – 10). Because of this effect, the limit of deviation around the shortest path can be constructed as a circle with radius R – (d/2) 

around the midpoint. Thus, the circle (not to scale) shown in Figure 3-17 contains the set of location possibilities where a CF could be placed. Additionally, the 

construction of the circle, or charging zone, can be forced to adhere to network topology such that it contains all areas within an allowable driving distance from 

the midpoint. If this is done then every node and road edge within the charging zone can be considered a candidate site.  

 

Figure 3-18 - A route with deviation limits applied 

 

If a deviation threshold is set, it is necessary to limit the charging zone such that it does not exceed this distance (or time) from the shortest path. Consider Figure 

3-18, which shows how a deviation threshold would limit the construction of a charging zone. Similar to Figure 3-17 the zone intersects the lower and upper 

bounds – a constraint determined by the vehicle range. Around the midpoint, a BEV can deviate in any direction up to their deviation willingness limit. Indeed, 

this limit acts as the main constraint until the time to the upper or lower bound is less than the limit. For instance, if it is assumed that a driving is willing to 

deviate 5km in one direction (see section 3.3 for a further discussion on such assumptions), then the range of the vehicle will only affect its ability to deviate 

2.5km 
5km 
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when the upper or lower bound is within this distance along the shortest path. Therefore, to construct the charging zone it is necessary to extend a buffer around 

the central portion of the shortest path by a radius of the deviation limit. For example, in Figure 3-18 the shortest path zone extends from the lower bound at 40 to 

the upper bound at 100. If a deviation limit of 5km is set (i.e. total deviation of 10km), a buffer of radius 5km should be extended around the portion of the route 

from 45 to 95. This would result in a charging zone which intersects the shortest path at the lower and upper bounds and does not allow deviation beyond a 

distance of 5km.
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3.6 Charge Zone Creation 
 

In the previous section, general formulae were presented to allow demand to be represented across an area such that a demand surface can be generated. In this 

section, information on how these processes can be applied in a modelling sense is given, with a series of demonstration examples shown. To apply demand 

across the network, as described in sections 3.4 and 3.5 it is necessary to define the demand limits for each route in the network. Using the input of all feasible 

OD pairs it is therefore necessary to create the charging zone(s) for each route which contains the set of all potential facility locations. An example of how these 

limits are applied practically, assuming a value of R of 100km, is shown in Table 3-3. 

Table 3-3 - Charging Zone measures applied to OD routes 

Route ID 
Route Length 

(metres) 
Destinatio

n CF? 
#CFs 

Needed 
Origin 

Aggregation 
Destination 
Aggregation 

Lower 
Bound 1 

Upper 
Bound 1 

Deviation 
Limit 

Lower 
Measure 1 

Upper 
Measure 1 

1 55,000 No 1 22,000 23,500 28,500 55,000 5,000 33,500 50,000 

2 102,514 No 1 16,000 21,954 74,468 84,000 4,766 79,234 79,234 

3 108,735 No 2 20,500 24,374 0 79,500 5,000 5,000 74,500 

4 112,562 No 2 23,450 24,261 0 76,550 5,000 5,000 71,550 

5 162,671 No 2 22,376 23,054 35,724 77,624 5,000 40,724 72,624 

6 223,217 Yes 2 24,200 24,704 47,921 75,800 5,000 52,921 70,800 

7 251,291 No 3 21,843 24,673 25,963 78,157 5,000 30,963 73,157 

8 199,301 Yes 2 22,013 21,639 20,940 77,987 5,000 25,940 72,987 

9 249,372 No 3 19,000 23,647 23,019 81,000 5,000 28,019 76,000 

10 188,528 Yes 2 20,000 20,701 9,228 80,000 5,000 14,228 75,000 
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Using the output from the list of OD routes, which contains an identification attribute and the route 

length, the limits for each CZ can be calculated in a spreadsheet (or similar). Using the formulae 

presented in section 3.5, the number of CFs needed for each route is calculated. As an addition to 

this formula, the aggregation distances from both the Origin and Destination are taken into account 

and effectively added to the journey length. As described in section 3.2.1 this ensures that the 

majority of the population are considered in the model.  To ascertain the location of the charging 

zones, the lower and upper bound is found for each route. Due to the aggregation effect, the 

feasible bounds could exceed the actual journey length. For example, a vehicle departing on route 

ID 1 would arrive at the Origin with at least 78km of range left. It could then reach the model 

destination with at least 23km of range intact. Thus, it would be possible to drive a further 23km 

distance before a charge is necessary. However, since the actual destination locations are variable, 

the extent of the charging zone beyond the modelled destination would need to be circular to reflect 

the fact onward drivers might travel in any direction. To avoid the likely inconvenience this could 

cause, charging zones are restricted to fall within the shortest path limits. For routes requiring more 

than one CF, subsequent bounds are also calculated (although not shown in this table). Finally, the 

limits needed to create the charging zone in the GIS are calculated by adding (to the LB) and 

subtracting (from the UB) the deviation limit. Thus, for route ID 1, the charge zone can be created 

by setting a buffer of 5km around the portion of the shortest path from 33.5km to 50km. For routes 

where UB – LB < 2 * Deviation Distance, the remaining vehicle range becomes the overriding 

constraint. As such, a buffer is taken from the midpoint of this segment such that it intersects the 

LB and UB, as in route ID2. 

 

A separate instance of this table can be produced for each deviation limit and be imported into 

ArcGIS. Based on the set of OD shortest paths, portions of each route can be cut out to represent 

charging segments using linear referencing (ESRI, 2012b), which can be used to identify a single 

point of reference on a non-spatially orientated 1-D route (Scarponcini, 2002). The application of 

linear referencing in a GIS can convert the non-spatial attributes presented in Table 3-3 and define 

where, geographically; the charging bounds exist for each OD route. These bound limits (taken 

from the Measures column in Table 3-3) define the segment of the route to which the deviation 

buffer can be applied. Thus, a charging segment can be created by extending a buffer of the 

‘Deviation Limit’ distance around the segment. Importantly, the buffer is created such that it 

represents the impedance distance around the route, instead of the ‘as the crow flies’ distance. This 

process was achieved using the ArcGIS Service Area creation in the Network Analyst toolkit 

(ESRI, 2014a), which can create buffers based on network impedance.  
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An example of this process is shown in Figure 3-19 where the set of charging zones for a particular 

route are shown. The left-hand side shows the entire OD route with two CZs positioned along it. 

The right-hand side shows the extent each deviation threshold can capture. Because the buffer 

complies with network impedance, certain sections are only apparent around junctions; but it 

should be noted that each zone also includes the contained portion of the shortest path. 

Additionally, since each zone includes all areas up to the threshold, the higher deviation limits also 

include the smaller zones. Thus, a CF placed anywhere within the inner deviation limit could 

capture all flow from the route. 
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Figure 3-19 - Charge Zone creation in GIS 

 

Since CZs are represented as areas, the entire set of potential sites for each route can be contained 

within a maximum of 9 zones (3 for each deviation threshold and up to 3 for each CF needed). The 

route displayed in Figure 3-19 requires 6 CZs, since two CFs are needed to enable the route. Based 

on the upper deviation charging zone, the first CZ (shown on the right-hand side of Figure 3-19) 

contains 63 road junctions which can be reached from the shortest path; the second CZ contains 19 

Reproduced by 

permission of 

Ordnance Survey 

on behalf of HMSO. 

© Crown Copyright. 

All rights reserved. 
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junctions. If the set of all node based combinations is sought, as in the DFRLM, this example 

would produce 692 distinct and feasible combinations. Thus, rather than storing and processing 

hundreds of CF combinations for each route, the use of polygonal charging areas means all 

combinations are contained in 9 or less zones. 

 

In this section, an example of how charging zones can be created was given using the 

methodologies developed in sections 3.4 and 3.5. The creation of charging zones, as in Figure 3-19, 

can be replicated for each OD route which requires service. The resultant set of polygon zones can 

then be used to define the charging demand for the whole network.  

 

3.7 Charge Demand Mapping 

 

Given the production of charging zones for each route, detailed in section 3.6, this section 

demonstrates how a demand surface can be generated across the network. This can be achieved by 

overlaying all of the individual demand routes/charging zones. An example of this type of 

overlaying is shown in the diagram in Figure 3-20, and is part of meeting modelling objective b (to 

represent demand for charging across two-dimensions, such that a potential demand surface can be 

generated). 

 
 

 

Two OD routes, AB and CD, require one CF to enable the route. Following the methodology 

described in section 3.6, Figure 3-20 shows the positioning of a charging zone around each route. If 

Figure 3-20 - The intersection between two routes 
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these zones are overlaid within a GIS, four distinct zones can be defined. Clearly, if a charging 

facility were placed in either Zone 1, 2, or 4, it would only service one of the routes. However, a 

CF placed in Zone 3, which forms the intersection between the two charging zones, enables both 

routes to be serviced. 

 

In a small scale network, it is possible to perform intersections in the GIS, which create separate 

distinct zones – such as in Figure 3-20. The flow attributes from each underlying route can be 

summed to define the available demand in that location. For instance, if the BEV flow along each 

route is assumed to be 10, then the demand in Zones 1, 2, and 4 would be 10. Zones 3 on the other 

hand, would produce a demand of 20. However, as the size of the network increases, the 

computational power needed to segment each individual zone becomes onerous. This issue 

becomes particularly marked along sections of major highways, which are used by which many 

routes. If the positioning of multiple charging zones do not exactly overlay (which is unlikely, 

given that each route has a different start and end point, and that route measures are not rounded), 

then it was found that the creation of distinct zones becomes difficult. Typically, the problem 

manifests in the creation of many fragmented polygons which become repeatedly sub-divided. This 

effect is illustrated in Figure 3-21, which shows a section of road where many routes, and charging 

zones, meet. Although a problem of this size would be manageable, it is apparent that several 

‘slithers’ are created. In a large and complex network, this effect is exacerbated to the point where 

the tiny polygons created do not physically constitute realistic charging sites.  

 

 

To overcome this issue, the application of a grid across the network – similar to Mennis (2003), 

allows the assignment of zone flow to demand map to be tractable. Demand quantification can be 

maintained by summing all underlying zone attributes and assigning them to each grid square. 

Although a grid can be maintained in vector format, so it can hold multiple attributes, the process 

of creating a continuous demand surface is synonymous with rasterization (Maguire, 1991). As 

described in section 3.3.5, each grid square could be equivalent to a candidate site (although this is 

not necessary as a feasible site could be made up of more than one grid square). However, since 

attribute information from all underlying zones is assigned to the grid square, it is implied that a 

facility placed within the square must be reachable. Consequently, the size of each square should 

not create an additional range constraint. For these reasons, the resolution size chosen is 500m x 

Figure 3-21 - Multiple overlapping charging zones 
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500m. Thus, if a CF is placed in the middle of the grid square, the additional distance which may 

need to be travelled can be considered negligible. Feasibly, larger squares would also be 

permissible, but following tests (which involved summing attributes to a grid with these size cells 

over the British mainland network) the computational power required to process the model with 

500m^2 squares was not deemed excessive. 

 
Figure 3-22 - Application of a grid to quantify route flow demand 

 

Figure 3-22 shows how an example of how a grid can be applied to the route diagram presented in 

Figure 3-20. The grid has been overlaid onto the network and trimmed to exclude squares which 

are not intersected by road. The underlying route attributes are then joined to the intersecting grid, 

such that each square contains the route flow demand at that point. Assuming each route has a flow 

of 10, the diagram shows the resultant demand at each point. Thus, for flow capture to be 

maximised with a single facility, one of the 7 red grid squares could be chosen. The fact that 7 sites 

are available shows the benefits of the candidate-free approach. Rather than just being restricted to 

choose the road junction at the intersection, a quantified choice of any other point on the network is 

possible. Hence, if it is more practical to place a facility away from the junction, the precise cost (in 

terms of demand lost) can be estimated, without the need to re-run the model to consider an 

alternative site.  Figure 3-23, in section 5.8, also provides a demonstration of this. 

 

Additional considerations of this methodology could include the application of filters or constraints 

to limit the number of sites in the grid. For instance, a filter could be applied such that only sites 

within a particular region are considered (as in section 5.8). Alternatively, a GIS layer containing 
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land registry information could be overlaid onto the map. Certain filters could then be executed 

which would either exclude a category of site, or adjust the likelihood of them being chosen, by 

assigning a weight. This would be particularly relevant if the cost of land at various sites were 

known. Weights could be assigned to each site proportional to its cost of purchase/rent. Thus, 

expensive sites would only be chosen if the expected demand would make the facility viable. 

Finally, if a strict set of specific candidate sites are known, then these can be used as the ‘grid’. In 

this case, the model would only choose from the limited set defined. An example of this process is 

given in section 4.4. 

 

In this section two possible options to meet the objective (represent demand for charging across 

two-dimensions, such that a potential demand surface can be generated) were considered. The first 

considered a direct intersection of every charging zone in the network. In this situation, precise 

quantification throughout the network can be calculated, and in turn a demand surface – in vector 

form – could be generated. However, as discussed, in a large network an intersection of many 

overlapping polygons was found to be computationally intractable. As a means to overcome this, 

an alternative method, which borrows properties from rasterisation was proposed. This process 

involves overlaying a grid onto the network and summing the attributes from every intersecting 

charging zone. However, this method introduces some loss of spatial accuracy – both 

geographically and in a network topology sense. As a result, it is important that the size of these 

grid squares is not too excessive (this is discussed in section 3.3.5). Using this transformation, from 

vector polygons to raster style grid, still maintains the possibility for a demand surface to be 

generated – like that shown in Figure 3-22 (thus meeting the objective). A full scale demonstration 

of this process is given in section 5.2. 

 

3.8 Solving the Model 

 

Modelling Objective d: Employ solving heuristics to ensure the method is computationally 

manageable on a large scale (where suitable solving heuristics are applied to: maximise the number 

of extendable BEV journeys, given a number of facilities to be placed.) 

 

In a single-facility problem, such as the network presented in Figure 3-22, the location which best 

satisfies the objective (to maximise the number of extendable BEV journeys) corresponds to the 

area with the highest demand in the network. In this case, the highest demand area covers 7 
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individual sites. Thus, choosing either one of these sites will result in the optimal solution. 

However, as demonstrated by Kuby and Lim (2005), Lim and Kuby (2010), Lam et al. (2013) and 

Snyder (2007), once problems of this type are expanded, they become NP-hard, to the point where 

the optimality cannot be found. If more than one facility is required in the network, to solve the 

location model with a MILP it would be necessary to assess every zone in the network in 

combination with every other zone. Clearly, since this model can be utilised as candidate-free, this 

would prove an impossible task. Thus, in the context of solving, models such as the FRLM can be 

considered more relaxed versions of this one – since they include many of the same constraints, but 

do not choose from as large a set. As such, it is necessary to develop an efficient heuristic which 

can be used to solve the problem.  

 

As described in section 2.6, the application of various algorithms and heuristics has been used to 

successfully solve locations models. The performance of these methods is largely dependent on the 

network analysed and size of problem involved. More advanced techniques, such as the use of a 

genetic algorithm, can provide optimal solutions at a small scale. However, as shown by Lim and 

Kuby (2010), as the size of the problem increases, the time needed to run complex algorithms 

increases exponentially. In addition, as well as a compromise in solving time, the performance gap 

of such techniques also decreases in comparison to a greedy-adding approach. As a result, the use 

of a greedy-adding approach is deemed appropriate to solve a large-scale version of this location 

model. Further heuristics are also developed and evaluated in sections 5.4 - 5.7 in an attempt to 

improve the fitness function as described in the modelling objective d. 

 

As shown in section 3.7, when solving a model using a greedy-adding approach, the location with 

the highest demand is chosen based on the underlying charging demand grid. Within the GIS, the 

maximum flow grid square is selected, and can at this point be inspected to assess whether it 

constitutes a feasible site. If, due to practical constraints, a facility is unable to be placed at a 

recommended site a set of near-optimal sites could be considered instead. This scenario is 

presented in Figure 3-23. At each step of the solving process, the top percentage of high demand 

sites could be found. Ideally to capture the greatest amount of flow in this example, it is necessary 

to place a facility in one of the sites with 2.01% of network demand (the darkest red areas). 

However, if this is not possible, then the next best site in the network could be chosen, given any 

practical constraints. The chosen facility can then be fixed into the model and the process can be 

continued.   
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Figure 3-23 - Charge Facility Location Options 

 

Once a site is deemed suitable (and all unsuitable sites are removed), the heuristic is then 

developed to assign a facility to the chosen grid square and select all underlying flow (using a 

spatial join (ESRI, 2013a)). Similar to Hodgson (1990) these captured routes are removed to avoid 

cannibalisation. At this point, if all routes in the network were single-charge, then it would be 

sufficient to remove the captured flow and update the demand map to reflect this. The next facility 

1.36% - 1.47% 

1.48% - 1.74% 

1.75% - 2% 

2.01% 
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could then be chosen in a greedy fashion and the process would continue until a certain number of 

points have been placed, or the model captures a designated amount of flow. 

 

However, as with the FRLM (Kuby and Lim, 2005), it is recognised that some routes may require 

multiple charges to be completed. In these cases, the placement of a single facility is not sufficient. 

Thus, to handle longer routes, flow is designated as either ‘potential’ or ‘serviceable’. Serviceable 

flow is so called because it is immediately serviceable; that is, one facility placed in a route’s 

charging zone is sufficient to service the whole route at that moment. Multi-charge routes on the 

other hand, are designated potential flow because the placement of a facility in one of its charging 

zones only has the potential to service the route. Not until the final facility is placed (the second 

point for two-charge routes, or the third for three-charge routes) can the route be considered 

properly captured. Thus for two-charge routes, flow is initially handled as ‘potential’. If a facility is 

placed in one of the charge zones along its route, it is considered partially satisfied. At this point, 

because only one more facility is needed, the designation of flow switches from potential to 

serviceable. 

 

In the greedy-adding algorithm, a demand search only seeks areas with maximum serviceable flow. 

Initially therefore, provision is only granted to single-charge routes. For longer routes to become 

captured, there is a reliance on an initial facility being placed to partially satisfy the route. 

However, because the greedy approach does not recognise potential flow, multi-charge routes are 

dependent on the placement of single-charge routes to help enable them. A more detailed 

explanation about this relationship is given in section 5.4. 

 

The charging zone configuration for multi-charge routes is presented in section 3.4 and shown 

graphically in Figure 3-16. This layout was chosen to maintain as much locating freedom as 

possible, given the need to minimise the number of facilities required for each route. However, as 

shown in the description accompanying Figure 3-16 – arranging charging zones like this enables 

many distinct combinations to be placed. Because every lower, and upper, bound is separated by R 

(one full vehicle range), the configuration of subsequent facilities is dependent on the first one 

placed. For instance, if a facility is placed exactly on the lower bound, then the remaining facilities 

must also be placed on the lower bound of every other charging zone. This implies, that if a route is 

partially satisfied, its charging zones must be dynamically updated such that no portion of the next 

charging zone is >R. An example for how this can be managed is shown in Figure 3-24. 
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Figure 3-24 - Cutting a charge zone 

 

Figure 3-24 shows an example of how multi-charge routes are managed in the location model. 

After the placement of a facility, a spatial join (ESRI, 2013a) is run to identify all ‘captured’ zones. 

In the case above, the route shown requires two charge points to enable it. Once the first facility has 

been placed, the underlying charging zone can be removed. To ensure that the next facility in the 

route can be adequately reached, the remaining charge zone needs to be cut. To do this a buffer of 

radius R is extended around the facility placed. This buffer represents the driveable distance of R 

from the facility – and so guarantees that any point within it can be reached by the BEV that has 

just charged. For every route which is partially serviced, the remaining zones are selected, and a 

‘clip’ function is performed (ESRI, 2013b). The clip is used to effectively cut the remaining zone, 

such that one portion of it can be reached from the facility and the other portion cannot. Having 

identified the inaccessible portion of the charging zone, this piece can be discarded from the model. 

The remaining portion is kept and represents the updated possibility of locating options. In this 

example, because only two charges are needed, the flow in the remaining ‘cut’ zone is redefined as 

being serviceable. Thus, this charge zone can be recognised by the greedy-adding algorithm and 

provisioned accordingly. For routes which require three facilities, a second buffer of 2*R is also 

extended around the facility. If a mid-sequence zone is serviced (i.e. if a facility is placed in the 

second zone on a route), only the 1*R buffer is needed and a cut is performed in both directions.  

Reproduced by permission of Ordnance Survey on behalf 

of HMSO. © Crown Copyright. All rights reserved. 
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To conclude, once a facility is placed, the following processes are enacted to ensure that all zones 

and flow in the network are up-to-date: 

- Identify all zones captured by the facility. 

- Remove all zones with ‘serviceable’ flow – these routes can be considered fully serviced. 

- For all zones with ‘potential’ flow identify their sister charging zones. Having done this, 

remove the captured zone. 

- Extend a buffer of 1*R and 2*R around the facility. Perform a ‘clip’ to cut all sister zones 

identified in step 3. Discard portions of these zones outside of the buffers. 

- Re-evaluate the charging demand grid such that it represents the newly updated set of 

charging zones. 

- Select maximum demand zone in the grid and place new facility. Repeat through steps 1 – 

5 until number of desired facilities is reached. 

 

3.9 Summary 
 

This chapter developed a model suitable for determining rapid charging locations for BEV journey 

needs. Key to this was the requirement to meet new objectives, as described in chapter 2, to 

overcome shortcomings in existing methods. The following section provides a summary of how 

these objectives were approached and met. 

 

Modelling Objective a: Develop a method to represent source/destination areas in the model, such 

that OD aggregation scale is considered and accounted for in the modelling procedure. 

For objective a, three approaches were proposed which could allow for a consideration of 

aggregation scale within the network and be applicable into the modelling procedure (see section 

3.2.1). Based on the test case studied (the Census district points within the British mainland), a re-

aggregation of the network was deemed appropriate to maximise the potential population that could 

realistically be considered in the model. In the modelling procedure (see section 3.6), the 

aggregation error can be added to route lengths to ensure that all assigned population can modelled. 

Given that the aggregation scale was set to ¼ vehicle range – which ensures that all internal 

‘origin’ journeys can be completed with a full charge and without rapid charging – it is deemed that 

the approach developed sufficiently achieves the objective. 
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Modelling Objective b: Represent demand for charging across two-dimensions, such that a 

potential demand surface can be generated. 

For objective b, the methodology described in section 3.6 – which defined demand along linear 

segments – was extended to allow demand to be stored as an area (and represented by multiple 

nodes/junction and arcs/roads). Given this, a methodology was proposed which can be used to 

create these areas, or ‘charging zones’, in a GIS by defining the limits which may constitute the 

furthest someone can travel or deviate before they need to recharge. As such, all areas within these 

limits can be defined as demand zones. The next step involved merging demand from each route 

across the network. One option to do this could involve running a GIS intersection (ESRI, 2013c) 

across all zones to split demand based on the underlying flow attributes. However, after conducting 

small scale tests this operation proved computationally excessive resulting in process error (and 

termination). This is because the created charging zones did not overlap in a homogenous fashion, 

resulting in multiple ‘slivers’ where attribute information was subtly different to nearby areas. As a 

result, another process was tested which incorporates features from rasterization. For this approach, 

a grid was overlaid onto the network with underlying charge zone attributes assigned to separate 

grid squares. Tests on this process were found to be manageable, since complex splitting of spatial 

features was not required. The resulting output is shown in Figure 3-22 (and demonstrated at a full 

scale in section 5.2). Based on this, the above objective is deemed to be met, and a representation 

of a demand surface can be generated.  

 

Modelling Objective c: Create a modelling procedure which relaxes the need for an input 

candidate set, instead choosing from the continuous plane. 

The meeting of this objective is tied to the outputs from objective b. In previous location models in 

this field, demand was only quantified at single points in the network. As a result, only these 

locations could be recommended for facility placement (since demand is not known elsewhere in 

the network). For candidate options to be considered across the plane it is therefore necessary to 

have a quantification of demand across a continuous area. Based on this, every location in the 

network can feasibly be considered as a candidate site. The only constraint that is employed in this 

process is the idea that all sites must be on, or just off from, the road network (as it is necessary that 

sites are reachable by vehicle). If this is considered, then the objective is met where sites are 

‘chosen from the continuous plane’ and are coincident to the road network.  

 

Modelling Objective d: Employ solving heuristics to ensure the method is computationally 

manageable on a large scale 
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where suitable solving heuristics are applied to: maximise the number of extendable BEV journeys, 

given a number of facilities to be placed. 

In section 3.8 the definition of this objective was considered such that a potential site can be chosen 

where the number of extendable BEV journeys is maximised. In a greedy process, this involves 

selecting the next site which satisfies this objective. Other heuristic types were considered, such as 

genetic algorithms, or greedy-adding with substitution. However, previously published literature 

showed that other techniques offered little additional optimisation benefit and were 

computationally detrimental in solving models as complex as the one developed in this research. A 

further exploration of this objective, where attempts to improve the heuristic solutions are made, is 

presented in sections 5.5 – 5.7. 

 

Based on the development of the novel methodologies in this chapter, the solutions presented for 

the four modelling objectives are deemed to meet the following objective from section 1.9: 

Objective 2: Develop a model and appropriate methodology to recommend sites for a charging 

network, and overcome issues with previous work in this area. 

 

To test the efficacy of the developed model, one of the most important aspects of the work is the 

ability to validate the model and method behind its use. Previously published literature in this field 

has not been validated with real world data. Given this, a novel method of validating the model is 

discussed in chapter 4. 
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4 MODEL CREATION AND VALIDATION 
 

In the previous chapter, formulation of the model was developed to meet overall objective 2, and 

the subsequent modelling objectives a, b, c, and d. In this chapter a demonstration of the model is 

applied to a real-world network, with expected outputs compared to observed usage at current 

charging locations. As such, the following objective will be addressed: 

Objective 3: Apply this model to a real world network and analyse its outputs against current 

charging usage. 

Initially, in sections 4.1 and 4.2, an introduction and analysis of observed charging data across a 

network is given. Given the need to compare this observed usage with the modelling outputs, a 

demonstration of the modelling technique is carried out in section 4.3 such that it can be applied at 

a macro level (need b in section 1.9). Further examples of this process are also provided in chapter 

5. In section 4.4 the model is used to evaluate the network of existing sites, with a comparison 

between the two datasets provided in section 4.5. Further discussion of the comparison results is 

provided in chapter 6. 

 

4.1 Real World Charging Data 
 

The data used to validate the modelling outputs was collected as part of the Midlands Plugged-in-

Places project (Plugged-In Midlands, 2015), a government backed scheme to roll-out and support 

electric vehicle charging infrastructure in the Midlands area in the UK (which covers the 

geographical regions of the East and West Midlands). Since 2010, a network of over 700 charging 

points has been deployed throughout the region to help encourage electric vehicle take-up and use. 

Of these, 47 chargers are rapid, all of which were installed after the CABLED project finished in 

March 2012. Most of the points have been installed at motorway services in partnership with 

Ecotricity (Ecotricity, 2015), or at Nissan car dealerships (Nissan, 2015b). The points can be used 

by anyone who is a member of the Plugged-In Midlands scheme, which allows unlimited and free 

at use application of the points for a £25 annual fee. Membership ID cards (which operate and 

allow access to the charging points) are available to anyone via a website. Parking fees at sites can 

apply, although in the case of most rapid charge points, parking is free for the first 2 hours – a time 

sufficient to complete a full charge (Ecotricity, 2015). Recent roaming agreements are also in 

place, which allow customers on similar schemes to use the points using their own ID card from a 

different region. Agreements are currently in place with Source London (covering the Greater 
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London area), Source East (covering East Anglia), and individual Ecotricity members (nationwide, 

for use at Ecotricity service points). This means that someone from London could travel into the 

Midlands region, recharge there, and then head back. However, since specifics about individual 

drivers is anonymised (for data protection reasons), it is not known to what extent inter-region 

travel takes place. Additionally, information regarding members’ home and work addresses is 

unavailable – meaning a clear idea of origin-destination patterns cannot be established.  

 

The charging usage data across the network is compiled by Cenex (Cenex, 2015) – who run and 

manage the Plugged-In Midlands scheme. Each charging event is recorded by the local charge 

point and relayed to a main database. For each event a record is taken indicating the charge point 

location, the time and date,  the charge duration, the amount of energy transferred (in kWh), and an 

anonymous ID for each vehicle card holder. An example of the data storage is shown in Table 4-1.   

Table 4-1 – Example of layout of Plugged-In Midlands charging data 

Charging 

Event ID 

Unique 

User ID 

Charge 

Point ID 

Charger 

type 
Location 

Start 

time/date 
Duration 

Total kWh 

transferred 

2876 CA4536 12 Rapid 

Welcome Break 

Warwick M40 

South 

08:35 

12/01/14 
00:26 20.3 

 

4.2 Charging Data Preparation 
 

To achieve a comparison between the charging data and the model outputs, it is necessary to 

represent each dataset across the same geographical region and format.  As described above, 

charging data is available for the Midlands region, thus to compare the results to the location model 

it is necessary to evaluate its outputs at these locations. This process is explained schematically in 

Figure 4-1. 
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Figure 4-1 - Charging usage data comparison flow process 

 

Figure 4-1 provides a diagrammatic explanation of the processes undertaken to validate the 

location model. The input charging data, like that exampled in table 4.1, details the number of 

recorded charging events that took place in the Midlands region up to the end of June 2014. 8 posts 

were installed near to, or after this date (3 in May, 4 in June, and 1 in August) – and so are 

excluded from the analysis due to a lack of sufficient data. Similarly, many posts were installed 

throughout 2013 – meaning the charging data for this period is uneven. Thus, the period considered 

covers the first 6 months of 2014 – when most of the charging posts were installed, operational, 

and recording reliable data. The second step described in Figure 4-1 involved aggregating the data 

from each post into similar locations. In this context, charging stations located on opposite sides of 
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a motorway carriageway are considered as the same site (this allows comparison to the modelled 

data which doesn’t include individual carriageways). Thus, from the 39 rapid chargers in the 

dataset, 33 were identified as distinct sites. For posts sharing a site, the charging data was summed 

to generate the total usage at each site. Given that charging posts were operational at 33 sites, these 

locations are fed into the model to determine the amount of demand that is expected at each site. 

This process, including generation of the location model, is explained in detail in section 4.3.  

 

Even though charging was possible at 33 sites, data pertaining to their usage throughout the study 

period was only available at 25 sites (it is understood that this was due to back 

office/communications faults in several of the posts). Hence, as explained in Figure 4-1 although 

33 sites are loaded into the location model, as this reflected the actual useable network at the time, 

only the 25 sites with data are taken forward into the comparison. A geographical representation for 

the 25 sites is provided in Figure 4-2.  

 
Figure 4-2 - Plugged-In Places charging points with recorded data 

 

Reproduced by permission of Ordnance Survey on behalf 

of HMSO. © Crown Copyright. All rights reserved. 
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Based on data from these 25 sites, a total of 3922 rapid charges were recorded by Cenex in the 

study period. On average, this equates to 157 charges per site, or just less than 1 charge per site per 

day. Individual details of users were not known, but unique IDs show that 577 drivers charged at 

least once in the period. Most of these users were not frequent chargers however, with 83% not 

charging more than 10 times in the 6 months. This supports the assertion that rapid charging could 

be an infrequent component of BEV ownership.  

 

The data presented in Table 4-2 shows that the total number of charges varied considerably across 

the region from ID14, which recorded 474 events (approximately 2½ each day), to ID13, which 

only received 31 visits. This is further highlighted by an observed deviation of 119 between all the 

sites. On closer inspection of the data it was also observed that the total number of different users 

who visited each site varied considerably (by a standard deviation of 40). Although the identities 

and origins of each user were not known, a unique record for each was available. Thus for certain 

sites a low diversity of users was noticed. For instance, charging site 5 was visited 69 times by the 

same user (which accounted for all its usage). Similarly, charging site 1’s 77 charges were carried 

out by just 4 repeat users. On the other hand, site 2 was visited by 93 different users, indicating the 

location has a more broad appeal and is useful for a lot of different people – as opposed to 

convenient for a few. Clearly therefore, and given that this dataset represents an early stage of 

infrastructure use, the behaviours of one or two drivers can heavily skew the outlook. To determine 

if this skew has an effect, the number of visits from each user is separately limited to a maximum 

of 10 and 20 visits (i.e. the 69 visits to site 5 by one user are restricted to 10 and 20 respectively). 

The justification for this is presented in Figure 4-3 which shows that the number of visits per user 

per site is generally small – except for a few heavy users at the far end of the distribution. This 

method of partial filtering still maintains 71% and 80% of all charges respectively, but discounts 

the heavy skewing affects from one or two individuals. The results of this process are denoted by 

the ‘Limitation of heavy users to 10 (and 20) charges’ in Table 4-2. Further to this partial limiting 

of the effects of heavy users, their data is also completely excluded from the analysis (i.e. all users 

who charged 10/20 or more times are excluded) – this is shown in the last two columns in Table 

4-2 for comparison.  
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Figure 4-3 - Number of times each user visited each charge point 

 

Table 4-2 - Recorded Charging Events in the Plugged-In Midlands region 

Charging 

Site ID 

Total 

charging 

events 

Number of 

different 

users who 

visited site 

Limitation 

of heavy 

users to 10 

charges 

Exclusion of 

heavy users 

(10+ visits 

to the same 

site) 

Limitation 

of heavy 

users to 20 

charges 

Exclusion of 

heavy users 

(20+ visits 

to the same 

site) 

1 77 4 40 0 68 28 

2 240 93 195 175 206 186 

3 108 41 95 75 106 86 

5 69 1 10 0 20 0 

6 100 7 17 7 27 7 

8 259 81 227 177 246 226 

9 70 35 70 70 70 70 

10 363 85 182 132 222 142 

11 136 39 105 95 115 95 

12 311 95 198 168 210 190 

13 31 5 24 14 31 31 

14 474 151 352 322 377 337 

16 51 30 50 50 50 50 

18 177 86 155 135 173 153 

19 205 53 172 112 191 171 

20 174 74 158 128 174 174 

21 106 6 44 4 64 24 

22 376 113 243 213 266 226 

23 154 75 151 131 153 153 

25 35 16 35 25 35 35 

27 153 36 108 58 141 101 

28 150 37 78 58 98 58 

29 70 12 43 13 57 37 

30 5 3 5 5 5 5 

31 28 9 28 28 28 28 
Standard 
deviation 119 40 87 80 93 86 
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Further to the charging events listed in Table 4-2, data at 8 sites appears ambiguous since no 

charging events were recorded during some months. It is not clear if this is an accurate 

representation of events, or a function of communication and/or data storage issues. For this 

erroneous data, the analysis will be conducted both with and without these sites present to 

understand the potential impact they have on the correlation. The data pertaining to the ambiguous 

sites is listed in Table 4-3. The removal of such data is commonly referred to as ‘case deletion’, and 

is often employed in similar statistical applications (Donders et al., 2006; Rubin, 1976; Scheffer, 

2002). The correlations for all of these sets of data compared against the expected model outcomes 

are presented in section 4.5. 

Table 4-3 - Potential missing data at sites 

Charging 

Site ID 

Total number of charges (2014) 

Jan Feb Mar Apr May Jun 

ID3a 12 1 0 0  0 0 

ID3b 19 26 20 7 10 13 

ID5 0 0 0 9 3 57 

ID9 39 23 0 0 0 8 

ID16 1 0 0 1 21 28 

ID25 23 12 0 0 0 0 

ID29 11 37 22 0 0 0 

ID30 0 3 2 0 0 0 

ID31 11 6 11 0 0 0 

 

4.3 Model Preparation 
 

4.3.1 Network choice 
 

Chapter 3 describes how the location model proposed in this thesis is formulated and can be 

applied, in general, to any network. This section provides demonstration of this process on a 

specific real world network and validates its outputs by comparing to data recorded from current 

rapid charging locations. The modelled network considered for this analysis covers the British 

mainland (i.e. all areas directly accessible from London via road). This is because the Plugged-in 

Midlands scheme had roaming agreements in place, meaning people travelling from outside this 

region could feasibly use one of the Midlands posts (the only criteria required to apply for a usage 

card was to be UK resident). Thus, for comparative purpose, it is necessary to construct the model 

to allow for this, such that journeys starting outside the region would be recognised. Given this, the 
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network and method of re-aggregation as described and discussed in section 3.2.1, is deemed 

appropriate to allow for comparison with the real world network. 

 

4.3.2 Route flow assignment 
 

Based on the discussion of options regarding route flow assignment in sections 2.2 and 3.2.2, and 

the needs of the study (i.e. to be realistic, and expandable), the objective in this chapter, and the 

availability of data (access to an existing populated OD network was not available), the 

implementation of a traffic assignment method as described by point 3 in section 3.2.2 is deemed 

appropriate. However, to provide validation of the method used, a comparison with traffic count 

data recorded by the Department of Transport (2014) will also be implemented. Most route 

assignment methods follow the four-step method as described by McNally (2008). This involves 

assigning a trip generation rate for each origin location (1), assigning a trip attraction for each 

destination location (2), defining the modal split of traffic (3), and generating travel flows for each 

route based on a traffic assignment method (4).  

 

Based on this approach, the production and attraction rates are defined for each OD point using the 

underlying Census data (UK Data Service, 2012) in the current network. This process, discussed by 

Purvis (1997) can utilise a range of Census statistics to define these rates, such as population, 

household income (although this is not specifically attributed in the UK Census), number of cars 

etc. However, given that precise geographic data on BEV ownership/residence is unknown – and 

the demographics for future BEV drivers is uncertain, the production rate is assumed proportional 

to the resident population. As described in section 3.2.1, a population count for every COA point is 

known based on the 2001 UK Census (UK Data Service, 2012). Following the re-aggregation of 

these points to new OD locations, the corresponding populations are also assigned and summed 

such that an overall population for each OD location is known. Potentially, measures which 

indicate a future geographic spread of BEV take-up could be used as a weight, such as those 

defined by Campbell et al (2012). However, this work was theoretical and only applied to the 

Birmingham region, so it is unclear whether these trends would be observed in reality/across the 

rest of the country. If empirical data did become available, more accurate representation could be 

incorporated by updating this production rate.  
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For the attraction rate, a combination of statistics was deemed appropriate, since the population 

figure alone may not wholly define which locations received the most visitation (Purvis, 1997). 

Thus, to achieve a more appropriate attraction figure travel-to-work statistics are used in 

combination with destination population levels – a technique that has also been applied by 

Theriault et al. (1999). For the UK Census, the travel-to-work statistic is available in an assimilated 

matrix containing a count of people who travel from one COA to another to visit their place of 

work (UK Data Service, 2012). Statistics relating to long journey origins and destinations may be 

more appropriate, but this data is not available in the UK Census, and so travel-to-work statistics 

are used a proxy for general destination attraction. However, a mode of transport statistic is 

available for this dataset such that the matrix can be filtered to provide this. Based on this, the total 

number of visiting ‘car drivers’ can be summed for each COA point and assigned to their local OD 

point. This process is equivalent to the third step in the four-step model: mode choice. As well as 

the travel-to-work count, the destination population is also used as a weight, and combined in the 

ratio 2:1. Applying this technique therefore, produces a total weight for each OD location that can 

be used to represent its relative attraction (compared to other points in the network). Additionally, 

the attraction rate is normalised with the production rate such that the total outgoing demand is 

equal to the total incoming weight. This ensures that, across the network, the total production rate 

is equal to the total attraction rate (i.e. for every location that produces a journey, a destination 

somewhere in the network receives one).  

 

For the fourth step of the route assignment, as described in section 2.2, the least-time routes are 

calculated for every OD pair and an all-or-nothing assignment is chosen to avoid the complications 

described in section 3.2.2.  In this network, because there are 300 OD points, an initial set of 

89,700 routes is created (300 x 299 – since a route is not created between the same OD point). 

Further, a gravity model is applied as described in Erlander and Stewart (1990) to estimate the 

possible weight of traffic between each location. This process is exampled below, where a small 

network of three nodes is used to show how production and attraction weights are combined with 

the route distance to create the flow weights. Consider Table 4-4 which shows the production and 

attraction rates for this set of (example) OD nodes. 

Table 4-4 - OD production and attraction assignment 

OD node 
Production 

Rate 
Attraction 

Rate 

A 10000 11000 

B 13500 10000 

C 9000 10000 
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As described in Erlander and Stewart (1990), the gravity model estimates the flow weight between 

two pairs using the following formula: 

Route weight (Index) = Origin Production Weight * Destination Attraction Weight 

Route Length (kms) ^ 2 

 

To example this, data from Table 4-4 is combined with the set of OD pairs and the gravity formula 

is applied. This results in the production of a route weight index, as in Table 4-5. The weightings 

themselves do not signify actual traffic flow (i.e. a number of vehicles travelling between each OD 

pair). However, it can be used as a comparison between routes; for instance, RouteID 1 is assumed 

to have 4 times the flow of RouteID 2 since their respective route weights are 10,000 and 2,500. 

Also note that the weight between an OD pair is not necessarily the same in both directions. This is 

because each route is based on a round trip being available. Hence, A-B-A constitutes a different 

route to B-A-B (with potentially different drivers using the route). As such, using the gravity 

model, route A-B-A produces a route weight of: 10,000 (production rate at A)*10,000 (attraction 

rate at B) / 100 (route distance) ^2 = 10,000. 

Table 4-5 - OD pair route list 

RouteID 
Origin 
node 

Destination 
node 

Route Distance 
(kms) 

Route 
Weight 

Index 
Weight 

1 A B 100 10000 25.11% 

2 A C 200 2500 6.28% 

3 B A 100 14850 37.29% 

4 B C 150 6000 15.07% 

5 C A 200 2475 6.21% 

6 C B 150 4000 10.04% 

   Total 39825 ~100% 

 

To carry out this process in practice, each OD point, and the road network described in section 

3.2.1 is loaded into ArcGIS Network Analyst (ESRI, 2015c), such that the set of 300 OD locations 

(shown in the right hand side of Figure 3-10) is connected via the road network (derived from 

(Ordnance Survey, 2012) as described in section 3.2.1). This network consists of 35,739 arcs 

(roads) and 22,435 nodes (junctions). The least time routes are calculated using the ‘OD cost 

matrix analysis’ in ArcGIS (ESRI, 2014b), which implements Dijkstra’s algorithm (Dijkstra, 1959) 

to find the fastest route between a set of OD pairs. The layout of the OD network is shown in 

Figure 4-4. 
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Figure 4-4 - UK OD network 

 

Reproduced by permission of Ordnance Survey on behalf 

of HMSO. © Crown Copyright. All rights reserved. 
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4.3.3 Parameter choice 
 

As described in section 3.3, several parameters can be set (based on available data) and used for 

each instance of the model. As an example of the modelling process, the following parameters are 

chosen based on the discussions in section 3.3, and the best available data. 

 

Journey lengths: As discussed in section 3.3.1, the range of a vehicle can vary due to differences in 

vehicle make, driver behaviour, road topology, and ambient temperature, but for modelling 

purposes it may be pertinent to choose a range that covers most situations such that the majority of 

drivers will be able to carry out their journey. Therefore, based on the available data presented in 

section 3.3.1, the range of a Nissan Leaf is deemed representative (80% of vehicles shown in 

Figure 3-11 are Nissan Leafs), and a 25% conservatism is applied to cover variations observed by 

Walsh et al. (2010), Neaimeh et al. (2013), and Strickland et al. (2014) (albeit not over the whole 

range of a BEV in every case), and the likelihood that a higher proportion of long journeys may 

take place on highways (which has been shown to decrease overall range). As such, a range of 63 

miles (84 mile combined range of Nissan Leaf as in Figure 3-11 - 25% conservatism) is deemed 

representative.  

Starting range: Based on the findings in section 3.3.2, the starting range for long journeys is set to 

100% (minus the aggregation error which is described later). 

Charges per trip: Because of the increased overall journey time resulting from necessary charging, 

journeys requiring 4 or more charges (~ equivalent to routes >250 miles) are deemed excessive for 

BEVs. In practice (based on National Travel Survey Results (Department for Transport UK, 

2013f), this may affect up to 0.07% of trips).  

Deviation willingness: Based on the sample survey results presented in section 3.3.4, deviation 

thresholds are set as described in this section. 

Candidate site selection: Because the purposes of this implementation of the model are to compare 

the expected demand at a set of existing locations, a candidate set is not required. Given this, only 

the current charging layout is evaluated (see Figure 4-6 in section 4.4). 

Capacity at charging stations: For the current set of charging sites, electricity Network constraints 

were not known. In addition, from the data, it is not clear if queues formed at any time, or whether 

BEV drivers went elsewhere to charge. As such, capacity constraints are not considered in this 

implementation of the model. 
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4.3.4 Charge demand creation 
 

Based on the generation of shortest paths and the weighting of flow as described in section 4.3.2 

and shown in Figure 4-4, routes not meeting core criteria on journey distance are excluded from the 

list. As such, routes in excess of 250 miles are excluded (leaving a set of 45,534 routes). In 

addition, routes with negligible flow – as determined by the gravity model are also excluded. This 

threshold is set so that only routes with less than 0.002% of the total network flow are excluded. 

Based on this therefore, these routes could be considered an insignificant source of charging 

demand until there are 50,000 daily BEV journeys requiring rapid charging taking place in the 

network (something which is unlikely based on current BEV numbers as shown in Figure 3-11). 

 

Given the remaining set of OD routes, the position of charging zones are defined for each route 

based on the developed methodology described and exampled in section 3.6 (where aggregation 

distances are also added). Furthermore, charging zones are created within ArcGIS (also as 

described in section 3.6) to define the regions where charging demand may exist for each route. 

Unlike the process described in section 3.7, which applies a grid across the whole surface, grid 

squares are only generated for the specific locations of existing chargers. For a visualisation of this 

demand across the whole network (where the assumptions used are the same) see section 5.9. As 

described in section 2.2, in addition to gravity model assignment (or another assignment 

technique), traffic count data can be used to partially assess the validity of the generated network. 

In the UK, traffic count data is compiled by the Department for Transport (Department for 

Transport UK, 2014) using traffic counting cameras or sensors on every junction-to-junction link 

on the A-road and motorway network. These sites (17,600) are loaded into the GIS, and are shown 

in Figure 4-5 below. Using a spatial join (ESRI, 2013a), each traffic counter is assessed in relation 

to the underlying road (where the roads are buffered by 500m to ensure adjacent traffic counters are 

captured). Thus, for every traffic counter (where part of an OD route lies) an equivalent flow 

weight can be determined. Based on this, a ranked correlation can be calculated to determine the 

relationship between the expected flow weight and the number of cars recorded by each traffic 

counter. For the 8,446 traffic counters that lie on, or near, a set of OD routes, the Spearman Rank 

(Spearman, 1904) correlation coefficient between the two datasets is 0.34 (2 d.p). A further 

description of the process to generate a Spearman Rank correlation is provided in section 4.5. 

Overall, this suggests that there is a positive (but weak) correlation between the two datasets. If the 

data is filtered for motorway only counters, the correlation improves to 0.49 (2 d.p) based on a set 

of 849 counters. This suggests that the parameters used in the network design more accurately 

represent motorways than A-roads. A principal cause for this could be the speed definitions which 
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are applied across the network. Because road-specific speed or congestion data is not available in 

the Meridian 2 network (Ordnance Survey, 2012), road speeds are set homogenously across road 

types (see Table 3-1). For motorways, this is not an unusual assumption, but for A-roads speeds 

can vary greatly (UK Government, 2015). This problem is discussed further in the discussion 

(section 6.1.2).  
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Figure 4-5 - Annual traffic count 

Data source: (Department for Transport UK, 2014) 
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4.4 Real World Charging Sites Evaluated in the Location Model 
 

Based on the generated network described in section 4.3 (and visualised in section 5.9), demand is 

evaluated for the existing 33 sites in the network to determine the level of expected demand at each 

location. A geographical representation of this layout is shown in Figure 4-6. In cases of conflict, 

or cannibalisation – i.e. where two or more sites could service a route, demand is assigned wholly 

to the site which requires the least deviation from the shortest path. If the deviation distance is the 

same for two or more sites, typically for facilities located directly on the same shortest path, then 

demand is divided proportionally between them. From this, the expected demand at each site is 

calculated – based on the capture of passing demand. Long distance journeys requiring two or more 

charges are considered, but only if they can be wholly satisfied via a combination of Plugged-In 

Midlands charging posts. Charging posts outside this region are not loaded into the model, and as 

such journey-charge combinations which require external facilities are not considered to be 

satisfied (and hence demand from these routes is not assigned to facilities within the Midlands 

region).  
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Figure 4-6 - Location of all rapid charging stations in the Midlands 

 

Figure 4-6 shows the 33 rapid charging sites across the Midlands region, loaded into the model. 

Since all of these points were known to be operational, they are all considered equally in the model. 

Ancillary services at sites, such as availability of refreshments, toilets, and other amenities are not 

considered in the model; as such, sites are only distinguished by their location in reference to the 

road network and passing traffic flow. The points are evaluated based on their capture of passing 

demand – as described in section 4.3. Deviation is considered, up to 7.5km; but if more than one 

location is available, it is assumed a driver chooses the site which is nearer to their shortest path. 

The evaluation of demand across the network reveals the proportion of service expected at each 

location. The split of demand expected by the model is shown in Table 4-6 (where percentages are 

Reproduced by permission of Ordnance Survey on behalf 

of HMSO. © Crown Copyright. All rights reserved. 
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given as a portion of the demand that is expected to be serviced, rather than the total demand that 

could exist in the Midlands). 

Table 4-6 - Expected demand captured at each charging site 

Charging Site ID 
Percentage of expected 

demand captured at site 
Charging Site ID 

Percentage of expected 

demand captured at site 

1 1.32% 18 2.81% 

2 9.56% 19 1.61% 

3 7.14% 20 6.67% 

4 2.12% 21 0.00% 

5 1.32% 22 5.15% 

6 0.04% 23 5.41% 

7 0.49% 24 0.00% 

8 7.65% 25 5.78% 

9 3.71% 26 1.82% 

10 3.96% 27 1.82% 

11 1.55% 28 2.42% 

12 3.50% 29 0.64% 

13 0.35% 30 0.73% 

14 8.05% 31 1.05% 

15 5.37% 32 2.78% 

16 3.26% 33 0.86% 

17 1.08% Total 100% 

 

The site which the model expects to receive the most demand is ID2, located in the north of the 

region on the M1 motorway. The site is located conveniently to link population centres in the 

Midlands, such as Leicester, Nottingham, and Derby with those in the North, such as Leeds, 

Doncaster, and Sheffield, such that only one en route charge is needed. It is relatively isolated in 

comparison to others, meaning it does not have to ‘share’ its service with other sites as much; and 

is located near the confluence of two major routes – the M1, leading to Leeds, and the M18, 

leading to the A1(M) and the North East. This attribute, being located on a major motorway near 

prominent junctions, is also observed in the other top ranking sites. Indeed the top 12 sites are all 

located along motorways, indicating the model’s preference for such routes. Conversely, the two 

lowest ranking sites are not expected to receive any service. Both are located just off the motorway 

(7.3 and 3.9 kilometres respectively), near other facilities which are located along the motorway. 

Consequently the model tends to attribute demand to the motorway sites, since this is where most 

passing traffic is expected to flow without need for deviation. 
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4.5 Comparison of Model Results and Real World Observations  
 

Objective 3: Apply this model to a real world network and analyse its outputs against current 

charging usage. 

 

To determine if observed usage is correlated to location, and to validate the formulation of the 

location model, the two datasets are compared. An appropriate tool that can be used to assess a 

correlation between observed and modelled data is the Chi-squared test (Pearson, 1956; cited in 

Plackett, 1983) and the Spearman rank correlation (Spearman, 1904). These tests can be used to 

determine if the expected dataset sufficiently represents the observed one, and by extension has not 

been generated by random. As with the Chi-squared test, Spearman’s rank correlation determines 

how well two datasets are correlated, taking into account the ranked order of values instead of the 

scalar frequencies. This test is particularly useful for comparing datasets measured at different 

times or in a different manner (Iman and Conover, 1982). For the correlation between the numeric 

charging data (which was recorded in 2014) and the model results (which are generated from a 

proportion of origin-destination flows based on 2001 Census data) the specific values are 

comparable if expressed as ranked percentages. Based on this, the ranking of each charging site 

within its distribution can be used to determine a correlation. For instance, if a corresponding 

location is the highest ranked in both datasets, and another is the second highest in both, and so on, 

then the two datasets have a perfect Spearman’s rank correlation. 

 

To generate this correlation it is necessary to order the values within each dataset. Table 4-7 shows 

the 5 statistical counts derived from the observed usage data. The corresponding expected 

percentages from the location model (as in Table 4-6) are also shown, with the rankings calculated 

based just on these 25 points. As described in Figure 4-1, only the sites where observed data is 

available are compared. Each ID within the datasets is ranked in order from lowest to highest 

(where a rank of 1 = the lowest value). In cases where frequencies are the same, the rank is split 

equally between them. To determine the goodness of fit for the expected ranks compared to the 

observed ones, the correlation can be evaluated as a coefficient between -1 and 1, where -1 

represents a perfect negative correlation, 1 a perfect positive correlation, and 0 

uncorrelated/random data relationship (Zar, 1998). The Spearman’s rank correlation coefficient can 

be calculated using Equation 1 (Zar, 1998): 

𝑝 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 1 
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where    𝑑𝑖
2  =  the squared difference between matching pair’s ranks 

  𝑛 = the number of pairs in the correlation 

Table 4-7 - Ranked comparison of charging data 

Chargi

ng Site 

ID 

Total # 

charge

s 

Rank 
Limit 

to 10 
Rank 

Exclud

e 10+ 
Rank 

Limit 

to 20 
Rank 

Exclud

e 20+ 
Rank 

Expected 

(%) 
Rank 

1 77 9 40 7 0 1.5 68 10 28 5.5 1.32% 7.5 

2 240 20 195 21 175 22 206 20 186 21 9.56% 25 

3 108 12 95 13 75 14 106 13 86 13 7.14% 22 

5 69 6 10 2 0 1.5 20 2 0 1 1.32% 7.5 

6 100 10 17 3 7 5 27 3 7 3 0.04% 2 

8 259 21 227 23 177 23 246 23 226 23.5 7.65% 23 

9 70 7.5 70 11 70 13 70 11 70 12 3.71% 16 

10 363 23 182 20 132 19 222 22 142 16 3.96% 17 

11 136 13 105 14 95 15 115 14 95 14 1.55% 9 

12 311 22 198 22 168 21 210 21 190 22 3.50% 15 

13 31 3 24 4 14 7 31 5 31 7 0.35% 3 

14 474 25 352 25 322 25 377 25 337 25 8.05% 24 

16 51 5 50 10 50 10 50 7 50 10 3.26% 14 

18 177 18 155 17 135 20 173 17 153 17.5 2.81% 13 

19 205 19 172 19 112 16 191 19 171 19 1.61% 10 

20 174 17 158 18 128 17 174 18 174 20 6.67% 21 

21 106 11 44 9 4 3 64 9 24 4 0.00% 1 

22 376 24 243 24 213 24 266 24 226 23.5 5.15% 18 

23 154 16 151 16 131 18 153 16 153 17.5 5.41% 19 

25 35 4 35 6 25 8 35 6 35 8 5.78% 20 

27 153 15 108 15 58 11.5 141 15 101 15 1.82% 11 

28 150 14 78 12 58 11.5 98 12 58 11 2.42% 12 

29 70 7.5 43 8 13 6 57 8 37 9 0.64% 4 

30 5 1 5 1 5 4 5 1 5 2 0.73% 5 

31 28 2 28 5 28 9 28 4 28 5.5 1.05% 6 

Totals 3922  2785  2195  3133  2613  85.5%  

 

The Spearman rank correlation coefficient is calculated separately between the location model 

results and the 5 counts from the charging data. The coefficient between the total number of 

charges and the model is shown in Equation 2. The ranked scatted plot for this correlation is shown 

in Figure 4-7. 

𝑝 = 1 −
6 × 1040

25(625 − 1)
 =  0.60 (2 d. p) 

2 
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Figure 4-7 – Ranked scatter plot between total number of observed charges and model expectations 

 

The resultant correlation coefficient and scatter plot suggests a positive relationship exists between 

the total number of observed charging events and the expected model results. This suggests that the 

location model can forecast whether a charging point will observe a relative low or high usage 

based on its location. However, as noted by Cohen et al. (2013) a degree of caution must be applied 

when analysing correlations. They explain that a positive correlation does not imply that one 

predicts the other; merely that a link between them exists. The degree to whether this link has been 

generated by a true relationship between the datasets, or by random, can be evaluated by finding 

the significance of the coefficient (Washington et al., 2010). This process is explained in Zar 

(1998) who details the method of finding significance levels for independent variables (in this case, 

the two datasets can be viewed as independent as no implied knowledge from the usage data has 

been used in the formulation of the model). For the Spearman rank correlation, Zar (1998) 

recommends the Student’s t-test (Haynes, 2013), which with the use of lookup tables can be 

applied to determine the significance of Spearman’s correlation. The formula to calculate the t-test 

score is given in equation 3 (Zar, 1998). 

𝑡 =
𝑟𝑠

√(1 − 𝑟𝑠
2)/(𝑛 − 2)

  
3 

where    𝑟𝑠  =  the Spearman rank correlation coefficient 

  𝑛 = the number of pairs in the correlation 

Given the correlation coefficient from equation 2, and n based on 25 paired values, the t-score is 

3.60 (2 d.p). Using the significance table lookups from Zar (1998), the correlation between the 

model and the total number of charges can be deemed significant to >99.92%. Such a value 
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provides confidence to the existence of a relationship, and the significance is well within 

acceptable limits in transportation fields, according to Washington et al. (2010), meaning the 

chance that the relationship exists randomly is small.  

 

Further to the correlation between the total number of charges and the model, coefficients are also 

found for the remaining counts presented in Table 4-7. This data is presented in Table 4-8 for the 

full 25 site dataset (p), and the 17 site set (p2) where ambiguous data from Table 4-3 has been 

removed. In all cases the confidence levels for these correlations exceed 99.9%. 

Table 4-8 - Correlation coefficients between observed data and expected model outcomes 

Data comparison (with 

expected values) 
Sample size (p/p2) 

Correlation coefficient 

(p) 

Correlation coefficient 

with data from Table 

4-3 removed (p2) 

Total # of charges 3922 / 3486 0.60  0.78 

Users limited to 10 

charges 
2785 / 2449 0.73 0.83 

10+ charge users 

excluded 
2195 / 1929 0.78 0.87 

Users limited to 20 

charges 
3133 / 2762 0.70 0.83 

20+ charge users 

excluded 
2631 / 2302 0.77 0.87 

 

The correlations presented in Table 4-8 show that the effects from heavy repeat users had an impact 

on the relationship with the model outcomes. If these effects are negated, either by limiting these 

users to 10 or 20 charges, or excluding them from the analysis completely, then the correlation 

coefficient improves from 0.60 to 0.70-0.78. Further improvements are also observed if sites with 

ambiguous data – shown in Table 4-3 – are removed from the analysis (from 0.78-0.87). This effect 

can be observed by studying the differences between Figure 4-7 and Figure 4-8, where the 

ambiguous data hasn’t, and has, been removed respectively. In Figure 4-7, several outliers are 

observed in the top-left of the scatter plot. These sites all received a lot less actual usage than was 

expected by the model – suggesting either that the model overestimated, or that the usage data was 

underreported. For 4 of these sites, ID3, 9, 16, and 25 it is likely the latter is true as there was a 

possibility that data was underreported from these sites, as shown in Table 4-3.  
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Figure 4-8 – Ranked scatter plot between 20+ charge users excluded and model expectations 

 

With the missing data sites removed from the analysis, the coefficient for each count improves. 

This further strengthens the results, suggesting that the location model can provide an efficient 

means to evaluate demand, and thus by extension recommend future locations where high demand 

could be expected. In addition, the occurrence of missing data is effectively predicted by the 

modelled results, indicated by a higher expected usage. However, although most sites fit the 

correlation well (once anomalous data is removed), demand at a few sites is still either slightly 

under, or overestimated compared to what was observed. For instance, sites ID 20, 2, and 23 

received slightly less usage than the model expected, while ID22, 12, and 18 received slightly more 

usage than was expected (ranked differences of 4, 3, and 3 in both cases). The reasons for these 

discrepancies cannot directly be evidenced within the data, and as such a discussion on some 

possible causes is provided in chapter 6.  

 

4.6 Alternative Midlands Network 
 

In the previous section a validation of the modelling outputs was provided by comparing the model 

expectations with observed real-world data, as reported by Cenex. Based on the correlation 

observed, the location model appears to be suitable for use as a predicting, and therefore 

forecasting, tool to suggest expected usage throughout a network (given the various inaccuracies in 

both datasets, which are discussed in section 6.1). In this section, the location model is used to 

demonstrate its applicability, and the differences that can be observed, assuming a blank canvas 

and a continuous plane approach.  
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Based on this requirement, a layout for an alternative network is produced using the modelling 

procedures described in chapter 3 and detailed more explicitly in chapter 5. A demand output is 

generated throughout the network (an equivalent of which is shown in Figure 5-2), and the model is 

solved using a greedy adding approach (referred to as method W0 in chapter 5). Unlike the output 

network shown in Figure 5-3, this model is restricted to only consider sites within the Midlands 

region (contained by the red border). To evaluate the comparison, the model is run until the same 

level of expected service is provided. The result from this process is presented in Figure 4-9.  

 
Figure 4-9 - Alternative charging location layout for the Midlands network 

 

Figure 4-9 shows an alternative layout to the Midlands network if a continuous plane approach is 

assumed. The set of 33 current charging sites is also shown for comparison. Based on the 

definitions of flow capture described previously, it is found that the alternative layout could 

potentially have served the same number of vehicles with 15 locations (where location is defined as 

in section 4.2 – i.e. possibility for several sites within the locale/on opposite sides of a carriageway) 

compared to the current layout of 33. As expected, the continuous plane method places key 

Reproduced by permission of Ordnance Survey on behalf 

of HMSO. © Crown Copyright. All rights reserved. 
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charging locations close to the major motorways in the region (the M1 and the M6). In general, a 

more coverage based network is recommended compared to the existing layout, with sites 

suggested at spaced intervals along main routes. It is anticipated that a fixed capacity constraint 

would affect this layout and require multiple sites close to each other similar to the current 

layout. These factors suggest that the current network is well designed (based on the assumptions in 

the model), given that the continuous plane approach is free to recommend sites anywhere (without 

the restrictions of land, electricity constraints etc. as described in section 6.1). In effect, this 

model’s outputs from a continuous plane approach could potentially be used as a benchmark from 

which to find feasible sites that are close by to try and maximise demand capture. 

  

4.7 Summary  
 

Previous works on location modelling for BEV charging determination have validated their method 

through mathematical optimisation and discussion. The work presented in this chapter proposes a 

novel methodology to validate modelling work with empirical rapid charging usage data. This has 

been achieved by comparing the ranking of model evaluated locations against used locations as 

reported by rapid charging operators. It was found that the modelled outputs can provide a good 

approximation to the observed usage data, and can even identify possible discrepancies in the data 

itself. In addition, the model was implemented without constraint over the same region to identify 

differences in the approach. The findings suggest that the proposed model can be representative of 

empirical usage and approximate similar locations to current sites which received high usage. 

Based on this, alternative networks could be planned, with levels of demand estimated. The 

alternative network recommended in this chapter may not be practically implementable, but the 

demonstrated methodology indicates the sort of coverage that might be suitable and could 

potentially be used as a benchmark from which a feasible solution could be generated. 

 

The next chapter explores the option for full scale implementation of the model, showing how the 

methodology could be used to estimate and recommend future sites, or areas, in a network, giving 

the potential to enable more long range BEV journeys. Examples of this process will be given to 

demonstrate the plan for wide-scale infrastructure provision starting from scratch, and to highlight 

potential differences in networks planned at a regional or national level. 
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5 MODEL DEMONSTRATION AND IMPROVEMENT 
 

In the previous chapter the location model was applied to show how the methodology can be used 

to evaluate the expected demand at a specific set of existing sites within the Midlands. The 

comparison with Cenex reported usage data at these locations suggest that the model can be used to 

represent charging demand throughout a network. In this chapter, the location model is 

demonstrated to show how it could be used in future, or under alternative scenarios (such as for a 

region which is not currently provisioned at all). Additionally, a full scale implementation of the 

location model is undertaken to understand issues around scaling, which may lead to impacts 

regarding national infrastructure policy. An investigation around the UK network offers the 

opportunity to look at a large network with the additional complexity of considering internal 

borders. 

Specifically, the following objectives are addressed in this chapter: 

Objective 4: Demonstrate differences in modelling outcomes based on comparison between 

national infrastructure plan and a smaller regional like plan. 

Modelling Objective d: Employ solving heuristics to ensure the method is computationally 

manageable on a large scale (where suitable solving heuristics are applied to: maximise the number 

of extendable BEV journeys, given a number of facilities to be placed.) 

 

5.1 Network Preparation 

 

Given the objective to demonstrate the model on a macro level network, the OD network is built 

using the methodology and parameters described in section 4.3. Following the application of 

possible route flow assignment onto the network (see section 4.3), 6,668 routes are deemed to 

contain non-negligible flow. The remaining routes are presented as an OD network in Figure 5-1. 

Of these routes, 3,066 can be completed with just one charge. 2,574 and 1,028 routes require two 

and three charges respectively. The amount of possible flow contained within single and multi-

charge routes is shown in Table 5-1. 
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Table 5-1 - Single and multi-charge routes in the UK network 

Number of CPs 
needed 

Number of 
routes 

Potential route 
flow weights 

Average flow 
per route 

1 3066 68.7% 0.022% 

2 2574 24.1% 0.009% 

3 1028 7.2% 0.007% 

Total 6668 100% 0.015% 

 

For single charge routes, the flow contained is deemed ‘serviceable’, since the placing of one 

charge point will immediately service that whole route. For longer routes, the flow is termed 

‘potential’. In such cases, placing one charge point only has the potential to enable the whole route; 

but cannot be fully serviced until the last charge point is placed.  
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Figure 5-1 - Origin-Destination Network for UK study area 

 

 

 

2.01% 
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5.2 UK Charging Demand Map 

 

In the modelling procedure, assumptions about a driver’s willingness to deviate can be varied, as 

this quantity is not explicitly known. Because the allowance of deviation has been shown to have 

an effect on capturing flow (Kim and Kuby, 2012), three deviation bands were chosen. The bands 

chosen were 2.5, 5 and 7.5 minutes, which represent the maximum time someone is willing to 

deviate from their shortest path in order to carry out each charge, based on survey results presented 

in 3.3.4. Although time could be incorporated into charge zone creation and used as impedance, for 

ease of use all times are converted to distances. This enables the interface between deviation and 

range limits to be more easily managed. Thus, the bands used in this evaluation (described in 

section 5.9) are 2.5km, 5km and 7.5km with percentages of flow willing to deviate to these limits 

of 100%, 80%, and 40% respectively, as discussed in section 3.3.4. In practice, these limits could 

be varied – especially if more empirical data becomes available. 

 

To be able to benchmark the effect deviation has, it is necessary to firstly evaluate the modelling 

solution assuming minimum deviation. Strictly a limit of no deviation could be used, but if this 

were the case then the band would encompass the area 0km from the shortest path, i.e. the linear 

portion of the route only. Whilst it is possible to model this theoretically, the practical implication 

would mean a charging facility would have to be built directly on the road itself. Therefore, a small 

deviation must always be carried out, even if it might not be deemed a ‘deviation’ in practice. For 

this reason, the smallest band of 2.5km is taken to mean minor deviations. In practice, this allows 

someone to temporarily exit the road they are on and charge at a stationary location. If this nearby 

location is signposted off the main road, the implication is that a BEV driver could exit their route 

without having necessarily planned this deviation before they set off. For longer deviations, it is 

likely that a degree of pre-trip planning would need to take place so that the driver knows when and 

where to exit their original path. 

 

The amount of flow at any one point can be quantified by summing the attributes from many 

overlaying charging zones. Replicated across the whole network, this process produces a ‘hotspot’ 

map, identifying locations with high flow. Since longer routes are reliant on a combination of 

charge points, only the shortest routes are guaranteed to contribute to the objective (capturing the 

most flow) if facilities are placed one at a time. Hence, to ensure the capture of flow without having 

to rely on a combination ‘falling into place’ it is necessary to initially target serviceable flow only. 

Figure 5-2 shows the UK network represented as a hotspot map. Only minimum deviations have 
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been considered and only serviceable flow is shown. Areas of high flow are shown in red, whereas 

areas of low flow are shown in green. Attributes for longer routes, including potential flow, are 

included in the network but are not shown directly in this map.  
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Figure 5-2 - UK charging demand map (W0min) 

 

The highest demand area in the UK is located in and around central London. Because of its high 

attraction rate, demand is generated by journeys from the populous outer suburbs and surrounding 
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regions where a single charge is needed to enable a round trip. High demand can also be observed 

in the north-west of England where large population centres like Manchester, Liverpool and Leeds 

are spaced such that one rapid charge sufficiently enables BEV journeys between them. In Scotland 

demand is generated by journeys between Glasgow and Edinburgh and surrounding towns. 

However, this area appears somewhat ‘cut-off’ from England to the south, since it is unlikely that a 

journey between population centres such as Manchester in England, and Glasgow in Scotland can 

be completed with a single charge. For such routes to become connected, it is necessary that an 

initial facility is placed in one of its multiple charging zones. Since the model only considers 

serviceable flow, such a facility will only be placed if there ‘happens’ to be sufficient demand from 

other single charge routes. Unless this happens, longer routes do not have an impact in the model 

and thus will not become serviced.  

 

As described in section 3.7 the hotspot map can be used as a visual aid, allowing the visualisation 

of areas where BEV demand for charging is likely to be at its highest. Assessments can be made on 

the types of areas or roads with high demand and used to shape overall siting strategy. 

Identification of these zones may lead to an investigation on candidate locations which may 

otherwise not have been considered. However, if further candidate criteria are known beforehand, 

they can be used to trim the model at this stage. Individual sites or GIS layers which share a 

common candidate criterion could be added to the map and used as a filter to limit the model to 

only select sites within these areas. 

 

5.3 Solving the Model 

 

Modelling Objective d: Employ solving heuristics to ensure the method is computationally 

manageable on a large scale (where suitable solving heuristics are applied to: maximise the number 

of extendable BEV journeys, given a number of facilities to be placed.) 

 

As described in section 3.8, the model can be solved by placing charge facilities additively in a 

greedy manner. Simply, the first point to be placed corresponds to the location with the highest 

flow in the network. The model can then be reassessed, with flow completely, or partially, serviced 

by the first point removed. If the removal of partial flow leaves just one charge zone from a route 

unsatisfied, the designation of potential flow is changed to serviceable flow such that it becomes an 

active part of the model. The placement of the second facility therefore corresponds to the highest 
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demand area in the reassessed network. Using this approach, a number of theoretical BEV journeys 

could be extended if the recommended sites were placed. However, at this point, it is unclear to 

what degree this number (i.e. the flow capture) is approaching the maximum feasible solution. 

 

Figure 5-3 shows the placement of the first 10 charging facilities (CFs) across the UK network 

based on the charging demand map shown in Figure 5-2. Sites are placed in the optimal locations at 

each stage – i.e. no constraint is placed on site location. The order in which the CFs are placed is 

noted by numeric labels. 
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Figure 5-3 - First 10 Charge Facilities (W0min) 

 

As identified in Figure 5-2, the location with the highest demand is in central London, and thus the 

first CF is placed there (servicing, in the model, a potential 3.75% of network flow). The second 

point is placed just north of Manchester, in the same location as the first CF in the sub-national 

Order of facility placement 

 

 

Reproduced by permission of Ordnance Survey on behalf 

of HMSO. © Crown Copyright. All rights reserved. 
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network (Figure 5-13), servicing a potential 3.12%. The fact that this amount of demand was still 

available for this location shows that the placement of the first CF had no impact in this area (i.e. it 

didn’t enable the service of any multi-charge routes). This is unsurprising considering the second 

CF is placed more than 300km from the first. Subsequent points are placed on the motorway 

network around London and other large cities. A more detailed description of this placement 

accompanies Figure 5-4. 
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Figure 5-4 - Charge network (W0min) and UK population density 

Data source: (UK Data Service, 2012) 

 

Figure 5-4 shows the network output after 100 CFs have been placed. The size of the facility shown 

on the map indicates the magnitude of flow serviced at that point. Also shown are the UK district 

areas, colour coded to represent their population density. It can be seen that the large majority of 

points are placed in, or in-between, the most populous regions in the country. Facilities have 

Route flow captured 
 
 0.228% - 0.543% 

0.543% - 0.815% 

0.815% - 1.63% 

1.63% - 3.75% 

 
 

Reproduced by permission of Ordnance Survey on behalf 

of HMSO. © Crown Copyright. All rights reserved. 
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typically been suggested along the major arterial highways. This is partly a result of the use of the 

shortest path algorithm, which tends to choose motorway dominated routes, and also a reflection of 

the fact that many routes are likely to converge onto these paths, often in the middle of their 

journey, which is where charging provision are most effective. 

 

Table 5-2 shows the total amount of flow that is deemed captured by the model depending on the 

number of CFs placed. The model is solved for 300 CFs, by which point 95% of the total network 

flow is deemed captured.  

Table 5-2 - Flow captured by W0 CF network 

# of CFs % of total 
% 
Increase 

10 24% 24% 

25 42% 18% 

50 60% 18% 

100 77% 17% 

150 86% 9% 

200 90% 4% 

250 93% 3% 

300 95% 2% 

 

 
Figure 5-5 - W0 CF network flow capture rate 

 

Figure 5-5 shows the cumulative increase in flow captured as each successive CF is placed in the 

model. The logarithmic shape of the curve is indicative of most greedy algorithms, where the aim is 

to select the highest demand point followed by the next highest point and so on. Hence, each 



Enabling Long Journeys in Electric Vehicles: Design and Demonstration of an Infrastructure Location Model 

  

Laurence Chittock Page 188 

additional point typically contributes less to the total than the previous one. This is highlighted in 

Table 5-2 which shows that the first 100 CFs capture 77% of the total flow and the placement of a 

further 200 points only captures an additional 18%. With this approach of solving, successive 

placement of charging stations results in a lesser increase in the capture of overall flow. While this 

rule generally holds true for the network above, there are a few instances where a subsequent 

facility captures more flow than previous ones. For instance, the 14th CF services 1.59%, whereas 

the 12th and 13th CFs only service 1.53% and 1.51% of the flow respectively. This phenomenon 

occurs when longer routes become partially satisfied within the network. If a route then only needs 

one more CF placed to enable it, it can be fully captured and the flow from the entire route is 

assigned to the last CF placed by the algorithm. Therefore, in the example above, the placement of 

the 13th CF partially satisfied several routes such that the 14th point could fully enable them.  

 

However, this process took place somewhat by chance. That is, the algorithm was not aware that by 

placing the 13th CF, it would enable the 14th point to capture more flow. The objective, when 

placing the 13th point, was to enable as many single-charge routes as possible. Thus, the fact that 

longer routes were partially satisfied was not intentional. Overall, a flow capturing improvement 

like this – caused by an inadvertent servicing of PFlow - occurred for 22 out of the 300 CFs placed.  

 

5.4 Considering Potential Flow 

 

Modelling Objective d: Employ solving heuristics to ensure the method is computationally 

manageable on a large scale (where suitable solving heuristics are applied to: maximise the number 

of extendable BEV journeys, given a number of facilities to be placed.) 

 

Section 5.3 demonstrates the solving performance of this research method on a large and complex 

real-world network. It is clear that the success of each additional CF placement is dependent on the 

composition of the network and the amount of flow available. For instance, the more expansive the 

network, the greater the number of facilities required to fully satisfy all of the flow. However, as is 

evident in this network, if the majority of flow is concentrated in main corridors then it is likely it 

can be satisfied with a minimal number of points. If the flow in the remaining areas is dispersed, 

then many points are needed to capture diminishing amounts. Additionally, since long routes are 

not initially considered, their position in the network is crucial to the likelihood of them becoming 

serviced. Consider the route in Figure 5-6. 
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Figure 5-6 - Servicing multi-charge routes 

 

Figure 5-6 shows a major route (Birmingham to London) which requires two charge facilities. As 

was pointed out in section 5.3, the model can only service a multi-charge route if it happens to 

become partially serviced first. Consequently, the multi-charge route is reliant on the placement 

and composition of single-charge routes in the network to help initiate its capture. In this example, 

it is likely the Birmingham to London route will become serviced thanks to the positioning of 

Milton Keynes (MK). If there is sufficient demand between either London and MK, or Birmingham 

and MK then a CF will be placed in one of the coloured charging zones (CZs). Providing this 

location corresponds to one of the Birmingham to London CZs then the long route will become 

partially serviced. Then, with only one more charge facility required, the flow from this route 

would be designated serviceable. At this point, the model would recognise the demand in the 

remaining CZ and place a CF to fully enable the route. 

 

In its current form, this approach is designed to select the location with the highest SFlow 

(Serviceable Flow) in the network. As a result, single-charge routes are weighted more than multi-

charge ones. However, if a more balanced weighting is applied, the location and significance of 

longer routes can be considered. Proposed in this section therefore, is an alternative to the original 

solving method, which attempts to influence the heuristic process by attributing some weight to 

longer routes, and thus improve the fitness function as stated in modelling objective d. The balance 

which provides the best results (capturing the most flow) could be variable and may depend on the 

composition of the network. This idea is explored in the diagram in Figure 5-7. 
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Figure 5-7 - Multi-charge route network 

 

Figure 5-7 shows a figurative network with two single-charge routes and two multi-charge routes. 

The elliptical shapes on each route represent their charging zones. The overlapping zones represent 

the unique locations where a CF could be placed and are denoted by z. Route AB has a flow of 80 

and requires two CFs; route CD has a flow of 110 and also requires two CFs; routes EF and GH 

only require one CF and have flows of 50 and 60 respectively. In the initial formulation of the 

model, only the charge zones from EF and GH would be assigned any SFlow. Thus, the greedy 

algorithm would select either zone 4 or 5 (randomly), which would contribute 60 to the flow total. 

The next point would be placed in either zone 8 or 9 and would capture a further 50. Depending on 

the placement of the first two points, the last point could be placed in z3 and would capture the 

remaining 190 flow in the network. Table 5-3 proposes four new greedy heuristic methods which 

assign different weightings to each zone. Method 1 describes the incumbent technique, which 

considers SFlow only. The second method considers only the PFlow (potential flow). The third, 

fourth, and fifth methods use a combined weighting of SFlow and PFlow.  

 
Table 5-3 - Weighted flow heuristic proposals 

Method 1 2 3 4 5 

Zone Wflow 
= Sflow 

Wflow = 
Pflow 

Wflow = 
Sflow + 
Pflow 

Wflow = 
Sflow + 
(0.5*Pflow) 

WFlow = 
SFlow + 
(0.2*PFlow) 

1 0 110 110 55 22 

2 0 80 80 40 16 

3 0 190 190 95 38 

4 60 0 60 60 60 
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5 60 110 170 105 82 

6 0 110 110 55 22 

7 0 80 80 40 16 

8 50 80 130 90 66 

9 50 0 50 50 50 

 

In Table 5-3 WFlow describes the weighted figure which can be used by the greedy heuristic to 

choose each location. In this heuristic procedure, once a point is placed, the table can be updated to 

reflect the removal of some of the flow. The next highest demand zone can then be chosen from the 

updated list. This example helps to describe a shortcoming in the method described in section 5.3, 

namely that multi-charge routes are not initially considered in the model. Thus, as the model is 

scaled up to a larger network where many multi-charge routes exist, it is important to implicitly 

consider these routes in the solving heuristic.  

Table 5-4 - Weighted heuristic results 

Greedy Heuristic approach 

CP# Approach 1 Approach 2 Approach 3 Approach 4 Approach 5 

 ZoneID 
Flow 
captured ZoneID 

Flow 
captured ZoneID 

Flow 
captured ZoneID 

Flow 
captured ZoneID 

Flow 
captured 

1 4 (or 5) 60 3 0 3 0 5 60 5 60 

2 9 (or 8) 110   5 170 3 170 3 170 

3 0 (or 3) 300   8 300 8 300 8 300 

 

Table 5-4 shows how each approach from Table 5-3 could be solved. Using approach 1 (SFlow 

only), the entire network flow could be captured by placing points at 5, 8 and then 3. Feasibly 

however, the first two points could be placed in z4 and then z9 (since the SFlow values at these 

points are the same as in z5 and 8). If this happened, then the network would be left with no SFlow 

and as such the heuristic would stop with only 110 flow captured. A similar result would occur 

with approach 2. Z3 would initially be chosen, capturing 190 PFlow (but crucially no SFlow). The 

flows in z5-8 would then switch from PFlow to SFlow leaving no further available PFlow in the 

network. The heuristic would therefore stop, having captured 0 serviceable flow. Approach 3, 4, 

and 5 however guarantee the capture of flow by combining SFlow and PFlow. Approach 3 weights 

PFlow the same as SFlow, therefore designating potential flow charge zones just as importantly as 

serviceable zones. Using this approach, a CF would first be placed in z3 and would capture 0 flow 

(only potential flow would be captured). Two subsequent points would then be placed, capturing all 

the flow in the network. Approach 4 uses a weighting which designates SFlow twice as importantly 

as PFlow. Unlike approach 3, this method places its first point in z5 – capturing 60 flow. Two 

further points are then needed to capture the remaining flow. Similarly, approach 5 considers 
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PFlow but only marginally in comparison to the SFlow. Solving with this weighting produces the 

same outcome as approach 4, with flow captured with each facility placed.  

 

By comparing the results from Table 5-4 it can be seen that methods 4 and 5 outperform (or match) 

the other heuristics at each CF stage for this example – i.e. they capture the most amount of flow 

after the placing of each CF. Weighting the SFlow higher than the PFlow implies that the model 

will favour zones with a greater proportion of single-charge routes over multi-charge routes. 

However, where the difference in Sflow is marginal, the heuristic chooses the location with greater 

potential flow. In doing so, an improved chance of capturing greater flow with subsequent CFs is 

possible; but the immediate objective to capture as much flow as possible isn’t neglected. Thus, a 

weighted heuristic may help ensure facilities are placed to service both short and long routes. 

Ultimately, this may lead to flow being captured at a faster rate with the same number of facilities, 

or may provide a method to provision for longer routes (if this was a desirable policy) without 

hindering the number of BEV journeys that could be serviced. 

 

5.5 Weighted Flow Heuristics 

 

Modelling Objective d: Employ solving heuristics to ensure the method is computationally 

manageable on a large scale (where suitable solving heuristics are applied to: maximise the number 

of extendable BEV journeys, given a number of facilities to be placed.) 

 

To test the hypothesis presented in section 5.4, as in Table 5-3, and to try and improve the fitness 

function as defined above, weightings of SFlow + (0.5*PFlow) and SFlow + (0.2*PFlow) are 

separately applied to a charging demand map (see Figure 5-8).  The overall objective for the 

heuristics remain the same: to fully capture as much flow as possible, given a set number of CFs; 

but the approach is adjusted so that initial flow gains are slightly sacrificed in favour of longer 

routes. The rest of the process also remains the same; once a facility is chosen, serviced flow is 

removed from the model and the network is reassessed such that a new facility can be placed. 

Weighting this part of the heuristic therefore, only adjusts the location selection process with the 

amount of flow captured dependent on the number of routes serviced in that instance. 

 

Figure 5-8 shows a heuristic demand map with a weighting of SFlow + 0.5*PFlow (left-hand side) 

and SFlow + 0.2*PFlow (right-hand side) applied. By definition, both of these maps are fairly 



Enabling Long Journeys in Electric Vehicles: Design and Demonstration of an Infrastructure Location Model 

  

Laurence Chittock Page 193 

similar to the one shown in Figure 5-2. The weighting given to the SFlow is the same in all maps so 

the difference shown represents the effect of the PFlow. Noticeably, as the PFlow weight increases, 

demand along the motorway network becomes heavier, indicating that longer routes tend to these 

roads. As such, it is likely that CFs will be placed along the motorway network sooner in the 

0.5*PFlow heuristic procedure. Unlike in Figure 5-2, Scotland no longer appears cut-off from 

England with charging routes between the two active in the model from the start. These locations 

may still not be joined up, but this will more likely be down to the flow weight between them. For 

instance, the percentage of network flow between Glasgow (the major conurbation in Scotland) and 

Manchester (a major city in northern England) is only 0.033% – representing the fact that journeys 

of this magnitude may not be carried out by drivers on a regular basis. A combination of charge 

facilities placed just south of Glasgow, just north of Manchester and about halfway between the 

two could service this route, but judging by the demand colouration shown in the map, this is 

unlikely to happen until late in the heuristic procedure. 

 

As with the unweighted heuristic, both of these methods can be solved in a greedy manner – with 

the WFlow (Weighted Flow) determining the sequence of points chosen, instead of the SFlow. An 

output showing the location of the first 10 CFs in each network is shown below with the scale 

indicating the magnitude of flow captured (i.e. completely serviced routes). 
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Figure 5-8 - Charging demand maps (W0.5min & W0.2min) 

 

Figure 5-9 shows the output of the weighted heuristics for the first 10 CFs in the network (referred 

to as W0.5 and W0.2). When compared to Figure 5-3 (referred to as W0), the difference in solving 
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approach can be seen. In the W0.5 heuristic the first point is placed on a motorway junction on the 

outskirts of London, as opposed to central London with W0 and W0.2. The second point is also 

placed differently, this time closer to the first CF, thereby potentially providing a combination of 

chargers for long routes. The remaining points are then distributed across the network and end up 

in similar, but not identical, locations as those placed with a 0 PFlow weighting.  
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Figure 5-9 - First 10 CF network (W0.5min & W0.2min) 

 

The results from the 0.2 PFlow weighting, unsurprisingly, provide an intermediary solution 

between W0 and W0.5. The first two CFs are placed in the same location as W0 (Figure 5-3) but 
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the third CF is placed in the same location as CF1 in the W0.5 heuristic. The remaining facilities 

are placed relatively evenly in the corridor from the South-East to the North-West.  

Table 5-5 - Comparison of heuristic results – First 10 CFs 

  W0 
Wflow = 

Sflow 
  W0.5 

Wflow = Sflow + 
(0.5*Pflow) 

W0.2 
Wflow = Sflow + 

(0.2*Pflow) 

CP# Sflow Pflow Wflow 
Total % 

Captured 
Sflow Pflow Wflow 

Total % 
Captured 

Sflow Pflow Wflow 
Total % 

Captured 

1 3.75% 2.18% 3.75% 4% 2.65% 5.57% 5.43% 3% 3.75% 2.18% 4.18% 4% 

2 3.12% 1.38% 3.12% 7% 2.91% 3.05% 4.43% 6% 3.12% 1.38% 3.40% 7% 

3 2.64% 1.00% 2.64% 10% 3.18% 2.33% 4.36% 9% 2.40% 4.66% 3.34% 9% 

4 2.45% 4.37% 2.45% 12% 3.12% 1.38% 3.82% 12% 2.48% 2.80% 3.04% 12% 

5 2.40% 4.09% 2.40% 14% 2.36% 2.35% 3.53% 14% 2.72% 0.92% 2.90% 14% 

6 2.37% 2.93% 2.37% 17% 2.71% 0.85% 3.13% 17% 2.35% 2.36% 2.83% 17% 

7 2.10% 0.71% 2.10% 19% 2.43% 0.73% 2.79% 19% 1.65% 2.00% 2.05% 18% 

8 1.86% 1.08% 1.86% 21% 1.65% 2.00% 2.65% 21% 1.85% 0.88% 2.03% 20% 

9 1.79% 2.57% 1.79% 22% 1.83% 0.98% 2.30% 23% 1.83% 0.98% 2.01% 22% 

10 1.66% 1.07% 1.66% 24% 1.50% 1.32% 2.15% 24% 1.92% 0.29% 1.98% 24% 

 

Table 5-5 compares the flow capturing results for the first 10 CFs using the W0, W0.5 and W0.2 

heuristics. For W0, the greedy heuristic selects solely from the SFlow column. Consequently, it is 

more likely that each subsequent point captures less flow than the previous one. Indeed, this is 

entirely true for the first 10 points. CF placement with W0.5 however, does not follow this pattern. 

The first two points effectively sacrifice short-term flow capture in pursuit of greater flow-

capturing potential later on. The manifestation of the sacrifice is fairly immediate with higher flows 

recouped by the third and fourth points. By the time 6 CFs have been placed the W0.5 heuristic 

compares similarly to the W0 approach.  

Table 5-6 - Flow captured by 300 CF networks - W0, W0.5 & W0.2 

  W0 W0.2 W0.5 

# of CFs % of total % of total % of total 

10 24% 24% 24% 

25 42% 44% 43% 

50 60% 60% 61% 

100 77% 77% 78% 

150 86% 86% 86% 

200 90% 91% 91% 

250 93% 93% 94% 

300 95% 95% 96% 

 

Table 5-6 shows the performance of W0.5 and W0.2 in comparison to W0 considering the 

placement of up to 300 CFs in the network. As with the W0 method, the general flow capturing 
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trend of the W0.5 and W0.2 heuristics is logarithmic in nature, with a point placed at the beginning 

capturing more flow than one placed at the end. However, thanks to the weighting of potential flow 

this upward trend is less uniform. For instance, in the W0.5 heuristic there were 112 occasions out 

of 300 when a CF captured more flow than a previous one in the heuristic sequence, compared to 

just 22 times for W0. This alternating capture effect occurs when a point is placed in an area with 

high potential flow but low serviceable flow. Many multi-charge routes become partially serviced 

and thus the next few points placed can complete some of these routes and capture a greater 

amount of flow. Generally, the application of the W0.5 heuristic performs similarly or better than 

the basic W0 capturing one. Likewise, after the placement of the first 10 CFs the W0.2 heuristic 

captures a similar amount of flow compared to the others. However, after the placement of the 12th 

CF the W0.2 heuristic begins to slightly outperform W0 and continues to do so until termination. 

Thus, the gamble taken by the heuristic is justified – since the initial flow-capturing sacrifice is 

recouped and the performance marginally bettered. 

 

The use of a weighted heuristic demonstrates how longer routes can be considered with more 

importance - but without compromising the solving performance of the model. However, 

depending on the composition of the network and the number of points to be placed, the relative 

success of the weighting applied may vary. In general, the scale factor chosen forces the heuristic 

to consider longer routes with more or less importance. Thus, the greater the weighting the more 

likely the model is to choose areas with high potential flow in the gamble that this partial unlocking 

of routes will pay back later. However, if the weighting is too strong it is likely that the heuristic 

will over-sacrifice completing routes, in the pursuit of partially satisfying them. As shown in Table 

5-6, these heuristics offer alternative approaches which consider longer, multi-charge routes with 

greater importance. Although these approaches do not offer a significant demonstrable 

improvement over the initial greedy approach, they do not appear to hinder the overall performance 

of the model. Given this, these heuristics offer alternative location methods which could be used to 

weight longer routes more strongly without compromising the overall efficiency of the solution. 

 

5.6 Decreasing Weight Heuristic 

 

The techniques presented in section 5.5 attempt to address a weakness associated with additive 

greedy algorithms, namely that facilities are only placed in the ‘best’ location one at a time. The 

effect therefore that each point has on the future optimisation of the network is not anticipated. 

Consequently, satisfying longer routes, which require more than one charge, cannot easily be 



Enabling Long Journeys in Electric Vehicles: Design and Demonstration of an Infrastructure Location Model 

  

Laurence Chittock Page 199 

considered because the greedy technique is only searching for the next best location; not set of 

locations. However, by applying a weighting to longer routes, the model is forced to consider 

locations which don’t immediately optimise the objective (to service as much flow as possible). 

Instead, a sacrifice is made in the hope that flow can be recouped later on in the heuristic sequence. 

 

Thus far, the model has been run to additively place charging facilities with no particular limit in 

mind. That is to say, that the solving procedure does not have an awareness of how many points 

will eventually be placed. However, it is possible to adapt the performance of the heuristic so that 

the number of CFs is taken into account. For instance, if only one point is to be placed, then the 

optimum technique is to choose the one location with the most SFlow. This point may not remain 

optimum if the heuristic is continued, but it is known to be optimal in this case because it is the last 

point placed. Thus, regardless of the heuristic chosen, the optimum solution for the last point will 

always be to choose the location with the most SFlow; since there is no point seeking out potential 

flow given the heuristic is halting immediately afterwards.  

 

As shown in section 5.5, a better result can be achieved if potential flow is considered at the start of 

the heuristic. However, as the procedure progresses the positive effect of choosing high PFlow 

areas diminish; since there is less chance that all the routes partially satisfied will be captured 

before the heuristic stops. As such, a method which considers PFlow at the start of the heuristic but 

not at the end is desirable. Table 5-6 shows that a PFlow weighting of 0.5 produces marginally 

better results for the placement of the first 25 CFs. Its peak (i.e. the point at which it performs 

proportionally better than the other two methods) occurs at the placement of the 30th CF. From this 

point onwards its performance diminishes with respect to the other heuristics, indicating that a 

weighting of 0.5 is no longer optimal (within the set suggested). As has been determined, the ideal 

weighting for the very last point is SFlow + 0*PFlow. Given this, before each iteration within the 

heuristic, it is possible to recalculate the value for WFlow so that a different criterion is used to 

select the next CF. A formula, using some sort of diminishing function, is therefore needed which 

transforms the weighting of 0.5 to 0 as the heuristic progresses. Proposed here is a simple linear 

function which decreases the weighting applied to the PFlow proportional to the number of CFs to 

be placed in the procedure. 

 

Thus, WFlow can be expressed as: 

WFlow = SFlow + (PFlow * (IW – ( (CF#-1) / ( (CFs-1) / IW) ) ) ) 
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where  

IW = Initial Weighting applied to the PFlow 

CF# = The iteration value of the next CF to be placed 

CFs = The total number of CFs planned 

 

This formula ensures that the weighting applied to the PFlow begins at IW and then, with each 

iteration of the procedure, decreases in a linear fashion to 0. To test this approach, a value of 0.5 is 

taken for IW, the CF# sequence starts at 1 and the total number of CFs planned is 300. Thus, the 

initial numerical application of the weighting is: 

SFlow + (PFlow * (0.5 – ( (1 – 1) / (598) ) ) = SFlow + (PFlow * 0.5) - W0.5 –> 0 

And for the final iteration: 

SFlow + (PFlow * (0.5 – ( (300 – 1) / (598) ) ) = SFlow + (PFlow * 0) 

Results from this procedure are presented and compared to heuristic W0, W0.5 and W0.2 in Figure 

5-10 below. 

 
Figure 5-10 - Graphical comparison of flow capturing heuristics 

 

Figure 5-10 shows the results from each method proposed so far (PFlow weighting of 0.5, 0.2 and 

0.5->0 respectively) as an improvement compared to the original heuristic (PFlow weighting of 0). 

The graph shows the cumulative estimated percentage improvement in terms of total flow available 

in the network. It can be seen that the W0.2 heuristic appears to perform better than W0 over a low 

number of charge points placed. The W0.5 and W0.5 –> 0 heuristics initially produce similar 
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results to this since they both start with a PFlow weighting of 0.5. This higher weighting has a more 

tumultuous impact compared to W0.2. Initially, a greater amount of flow is sacrificed as locations 

which satisfy longer routes are sought. However, the payback for doing so appears after a low 

number of locations are placed (12 CFs). By around the 40th point placed, the heuristic approaches 

appear to converge, and can be considered similar. The rate of the convergence for the W0.5 –> 0 

method however is slightly lower than the for W0.5 method only. As the heuristic progresses, the 

decreasing PFlow weight enables the model to immediately capture as much flow as it can, without 

sacrificing performance in the hope of future gains. This effect is particularly noticeable towards 

the end, where the performance gap between W0.5 and W0.5 –> 0 widens in favour of the 

decreasing weight heuristic, albeit marginally. Overall however, as more facilities are placed, the 

more the results converge. This is likely due to the fact that even without a weighted search, the 

W0 method eventually places enough points to satisfy most multi-charge routes, as well as the 

single-charge routes it was aiming for. 

 

5.7 Placing a Fixed Number of Charging Facilities 

 

The methods presented in section 5.3 and 5.5 all use a fixed PFlow weighting which remains 

constant throughout the heuristic. As a result, their performance is independent of the desired 

number of charge facilities set. The advantage of this is that the heuristic can be run beyond the 

actual number of facilities that are initially desired. Doing so provides a potential insight into the 

future, allowing the creation of a potential master plan which could be built and implemented in 

stages if desired. However, as the result from heuristic W0.5 –> 0 shows, applying a constant 

weighting can be detrimental if the heuristic is ended prior to capturing of the network flow. If an 

intended number of charge facilities is known, solving the heuristic with this in mind could 

improve its performance – especially as it reaches termination. To further test this hypothesis, the 

number of charge facilities is fixed to 50 and the formula presented in section 5.6 is used so that the 

PFlow weighting decreases to 0 upon termination. An initial weighting of 0.5 is used, producing 

the formula below: 

WFlow = SFlow + (PFlow * (0.5 – (CF# - 1) / 98))  -  W0.5 –> 0 

where: 

CF# is the iteration value of the next CF to be placed. 
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Figure 5-11 - Comparison of flow-capturing methods for first 50 CFs 

 

Figure 5-11 shows the performance of every heuristic in relation to W0 for the first 50 CFs placed. 

It can be seen that the decreasing weight heuristic slightly outperforms all other techniques and, 

upon termination, has captured 1% more flow. This could mean – if the decreasing weight heuristic 

were used – that the same amount of flow could be captured with up to 3 charging facilities less. 

However, given the number of variable parameters used in the model (notably the flow amounts 

and the network composition) it is not felt that this is a significant result which would guarantee 

improved performance. In reference to objective d (improving the fitness function), the application 

of a decreasing weight heuristic can therefore be described as an alternative approach, which could 

have the potential to improve the model performance in situations where a fixed number of 

charging facilities are planned.  

 

5.8 Analysing a Network with Closed and Unclosed Borders 

 

Objective 4: Demonstrate differences in modelling outcomes based on comparison between 

national infrastructure plan and a smaller regional like plan. 

Given the above objective, a comparison is needed between a geographically restricted area (such 

as the British mainland) and an artificially enclosed area (such as the regions mentioned in section 

1.7.3).  Based on this, an artificial network is constructed using the same methodology as before. 

However, only the OD flows within this network are specifically considered – essentially 

insinuating it has a closed border. This network is shown in Figure 5-12. 
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Figure 5-12 – A fictional closed border network 

 

Figure 5-12 shows a fictional area within the UK that could be considered to have a closed border. 

If this area represented a region where a planner had jurisdiction to place charge facilities, the 

typical approach would be to create and solve a network for this study area only. However, this 

policy may result in a sub-optimal network which is isolated in relation to bordering areas. 

Assuming travel into and out of the area is possible then it is prevalent to consider the effect of 

external flows. Without this consideration, charge facilities would be placed to serve the internal 

regional journeys only. Thus, a proportion of the market could be missed. If however, the demand 

OD locations within region 

Regional jurisdiction area 

 
 

Reproduced by permission of Ordnance Survey on behalf 

of HMSO. © Crown Copyright. All rights reserved. 
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in this region is ‘cut out’ from the national network, the effects of external flow can be considered. 

Cutting and solving a sub-network in this way holds certain advantages over creating a network 

solely at the regional level. Figure 5-13 shows the difference between the two methods and presents 

the results if 5 facilities are placed in the region. The upper map shows charging demand built from 

regional data only. Only journeys which start and end at the OD locations shown in Figure 5-12 are 

considered. The lower map shows the same area but with charging demand retained from the 

national model described in section 5.2. Thus, rather than just internal journeys, those which are 

travelling into, or out of, the region are considered. The difference between this approach and that 

in section 5.2, is that the model is only solved in the area described, meaning that charging facilities 

are only placed in this zone, but can service routes which are partially external. 
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Figure 5-13 - Comparisons of modelling scale – Regional level or Sub-national level 

 

The differences in the two maps presented in Figure 5-13 are particularly marked around the 

region’s periphery. The regional-only network is effectively a ‘closed island’ with demand tending 
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to flow through the centre. In the sub-national model, where incoming and outgoing flows are 

considered, demand is much stronger around the area’s edges. The most noticeable effect can be 

observed in the north of the region where demand is heavily influenced by strong flows to and from 

large population centres just outside the region to the north-east. With the objective to capture as 

much serviceable flow in a greedy manner (i.e. the same as that described in section 5.3), the first 

facility would be placed on the northern edge of this area and could service 3.12% of total network 

flow in the model (British mainland). In the regional-only network, this point would not be chosen 

first – as only 49 flow is recognised (i.e. approximately 5/6 of flow at this point is partial regional 

flow). The highest demand point in the closed border network on the other hand, would be placed 

centrally and would capture 2.01%. The same location in the sub-national network would only 

capture 2.05%. Overall, evaluating the regional-only network provides service for a potential 

5.34% of the total national flow if 5 CFs are placed. The sub-national solution however, could 

provide service to 11.14% of flow with the same number of facilities. If external flows are later 

considered on the regional network, the solution proves sub-optimal in comparison with only 

5.49% of the network flow captured, compared to 11.14% (an improvement of 103%). 

 

Deciding which method to employ may depend on the objective of the model implementer. If the 

objective is to only service journeys which originate in their region, building the smaller network 

would suit their purpose. For instance, if a subscription system was utilised – whereby a user pays 

an annual fee to have access to the charge points – then the regional method would likely be 

sufficient (users who only occasionally drive into the region are unlikely to pay for the 

subscription). Similarly, regions with closed borders or standardisation differences could be 

considered as isolated entities. However, if charge points allow universal access and border 

movement is possible, consideration of external flows provides a planner with a better knowledge 

of overall demand and could improve the usage rates if they implemented this design. 

 

5.9 Considering Maximum Deviations 

 

Thus far, the model has been built and solved assuming a maximum deviation of only 2.5 km. This 

allows a driver to depart from their shortest path and make a minor deviation to a nearby charging 

facility. The model is constructed such that the BEV has enough capacity allowance to return to the 

shortest path and continue onward to their destination or the next charge point on their route. As 

discussed in section 3.5, allowing greater deviations could give the model more locating freedom 

and could increase the chance of multiple charge zones converging to a single area. Thus, if greater 
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deviations are incorporated, the model should be able to capture flow at a faster rate – facilities 

placed on a common shortest path will still be suitable, but the chance of capturing additional flow 

from nearby paths may be increased. 

 

Using the methodology discussed in section 3.5, this chapter presents results where deviations of 

up to 7.5km are allowed (based on the parameter definition in section 3.3.4). The deviations are 

split into distinct bands and the flow from each route is assigned proportionally between them. The 

three bands considered are: up to 2.5km (minor deviations), up to 5km (medium deviations) and up 

to 7.5km (long deviations). Flow is assigned such that 100% of drivers are assumed to be willing to 

deviate up to 2.5km only, 80% up to 5km and 40% up to 7.5km – again, based on the parameter 

assumptions discussed in section 3.3.4. It is also assumed that deviations are only taken if 

necessary – i.e. 100% of the flow from a route will be captured if a facility is placed on its shortest 

path. 

 

As in section 5.2, overlaying all of the charge zones and summing their attributes creates a hotspot 

map which represents flow as demand across the network. Figure 5-14 shows the charging demand 

map for the UK where deviations are considered as described above, and only the effect of the 

SFlow is shown.  
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Figure 5-14 - UK charging demand map (W0max) 

 

Figure 5-14 shows the charging demand map for the UK considering deviations of up to 7.5km. 

Similar to W0min (Figure 5-2), a PFlow weighting of 0 has been applied meaning all demand 

shown is immediately serviceable. As such, the distribution of demand is very similar to W0min 

with hotspot areas coincident between the two. However, the spread of demand is much wider 

thanks to the allowance of greater deviation. This means that previous hotspot corridors now 
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encompass a broader area, and nearby roads carry greater significance, thus providing a wider 

option of potential sites which could be considered. 

 

This instance of the model is solved for the first 10 CFs and presented in Figure 5-15. The 

approach used is identical to the solution presented in Figure 5-3. Visual results show that facility 

location is similar (although not identical) between the two outputs. The first CF in both cases is 

placed in central London, and subsequent facilities are located on the motorway network around 

London and towards the North-West of England. However, the flow-capture rate when considering 

maximum deviations is marginally improved. 
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Figure 5-15 - First 10 CF network (W0max)  

 

 

 

 

 

 

Order of facility placement 

 

 

Reproduced by permission of Ordnance Survey on behalf 

of HMSO. © Crown Copyright. All rights reserved. 
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Table 5-7 - Flow-capture performance - W0max vs W0min 

  W0max 
Maximum 
Deviations 

  W0min 
Minimum 
Deviations 

% 
Improvement 

CP# Sflow 
% 

Captured 
CP# Sflow 

% 
Captured  

1 4.79% 5% 1 3.75% 4% 1% 

2 3.16% 8% 2 3.12% 7% 1% 

3 2.66% 11% 3 2.64% 10% 1% 

4 2.58% 13% 4 2.45% 12% 1% 

5 2.60% 16% 5 2.40% 14% 2% 

6 2.38% 18% 6 2.37% 17% 1% 

7 2.02% 20% 7 2.10% 19% 1% 

8 1.86% 22% 8 1.86% 21% 1% 

9 1.85% 24% 9 1.79% 22% 2% 

10 1.67% 26% 10 1.66% 24% 2% 

 

Table 5-7 shows the performance of the model when the deviation limit is increased from 2.5km 

(W0min) to 7.5km (W0max). The captured percentage rates show how much of the network flow 

has been cumulatively serviced by each stage. The improvement rate shows the amount of 

additional flow captured by the W0max model compared to the W0min method, as a percentage of 

total network flow (i.e. Captured % column 1 – Captured % column 2). It can be seen that, 

compared to the W0min method, assuming greater deviation marginally improves the performance 

of the output, and could service 1.43% more network flow after the placement of 10 facilities. 

Additionally, at each stage the WOmax method provides a slightly greater cumulative flow total.  

 

Similarly to section 5.5, weighted heuristics are also applied to the solution when considering 

maximum deviations. The charging demand maps for these outputs, although not shown, follow a 

similar composition to their minimum deviation predecessors. Roads where long routes are more 

abundant, such as major highways, are more pronounced than in maps where potential flow is not 

considered – similar to Figure 5-8. The resultant 10 CF output for these maps is shown in Figure 

5-16. 
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Figure 5-16 - First 10 CF Network (W0.5max & W0.2max) 
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Figure 5-17 - Flow-capturing improvements of weighted heuristics vs W0max 

 

Figure 5-16 shows the locations of the first 10 CFs in the network when solved considering 

maximum deviations and application of the W0.5 and W0.2 heuristics. Similar to previous results, 

charging facilities are located around London and towards the North-East – showing robustness for 

this layout. Figure 5-17 shows the results of these two heuristics in comparison to W0max. 

Additionally, two decreasing weight heuristics are applied, identical to the ones showcased in 

section 5.6. The heuristic is run to place 300 CFs – such that the PFlow weighting begins at 0.5 and 

ends at 0 for the 300th CF. Similarly, the model is solved for a limited facility placement of 50. All 

results show a degree of improvement compared to W0max (except for W0.5 which provides a 

near identical solution for 300 CFs). The rates at which they do so are fairly consistent with the 

minor deviation results. The W0.2 heuristic performs relatively consistently, with a minor sacrifice 

made followed by a steady improvement. The W0.5 heuristic is more extreme, with slight 

improvements made before a tail-off in the performance gap. The decreasing weight heuristics both 

provide marginally better solutions for the number of facilities placed. 

 

Overall, results show that consistent flow-capturing improvements are possible if greater deviations 

are considered, although the improvements observed in this study are marginal. In the case of 

minor deviations, this allowance enables facilities to be considered just off from a major junction or 

highway. When allowing for greater deviations, it is possible that a facility can be placed in-

between two major routes, thus capturing flow from both paths. However, in a candidate-free 

setting, the likelihood – given that location siting remained similar – is that a greater deviation 

simply allowed more routes to reach the same points. This relationship – between applying small 
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deviations, which don’t penalise drivers too much, and greater deviations which allow superior 

accessibility but penalise drivers more – will thus have to be managed carefully. 

 

5.10 Summary 
 

This chapter looked at the complexity of expanding a network to cover a nationally sized area. 

Although it was not possible to validate the whole network against empirical usage data at this 

time, a series of key learning points have been identified which have not previously been reported 

in the literature. These are: 

 Solving techniques were developed to account for a possible weakness in greedy adding 

approaches used to solve this model. This involved weighting multi-charge routes so that 

they could be identified in the solving procedure. A series of novel adaptations have been 

suggested which allow alternative solving heuristics to be implemented, and these were not 

found to be detrimental to the result. 

 Deviation parameters were varied to ascertain if allowing greater deviation tolerances 

could improve the flow capturing potential of the model at a large scale. Although the use 

of a greater deviation limit (up to 7.5km) improved the flow capturing result, this increase 

was marginal. In addition, although the application of both methods was possible, the 

creation of larger deviation tolerances was found to be more computationally intensive than 

the smaller ones. Thus, given the high level of uncertainty around deviation tolerance, 

driver behaviour, and computational intensity, it is recommended that minimal deviations 

(up to 2.5km) are considered until more concrete data becomes available, given that there 

was a low level of calculated benefit between the two assumptions.  

 To help identify issues around regional infrastructure developments, a network was 

constructed with a ‘closed’ border such that only internal journeys were considered. The 

same area was also evaluated without the border, and the suggested locations from each 

demonstration were compared. The modelling results suggest that considering a regional 

network design in isolation from the whole network results in likely sub-optimal location 

placement, and that consideration of how the region fits within the wider national network 

is important. 

This chapter has demonstrated that the model and methodology in this thesis can be expanded up to 

national infrastructure level, and that there appears to be a benefit in planning at this level rather 

than regionally. Depending on the circumstances, minor alterations to the solving procedure might 

also be considered.   
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6 DISCUSSION  
 

Chapters 1 and 2 discussed previous methods for locating rapid charging networks and identified 

key issues and shortcomings in these works. In chapter 3 novel methods were developed to 

overcome some of the shortcomings in currently published work, and in chapter 4 a practical 

validation of this research was undertaken by comparing modelled findings with empirical usage 

data. In chapter 5 the novel location model was tested to consider issues regarding expansion to a 

national level, with several alternative solving procedures proposed and tested. Within the methods 

proposed, and for any complex analysis of real world systems, there exist trade-offs and 

simplifications. In this chapter a discussion into the lessons learnt from this research will be 

presented which highlights these trade-offs and recommends possible avenues for future work. 

 

6.1 Data Impact on Accuracy 
 

Chapter 3 defined the necessary input data and potential range and variability of alternative values 

which can be used within the model. The use of these input parameters is primarily application 

specific, given they can be varied by anyone wishing to implement the model depending on the 

circumstances of their study. Within chapters 4 and 5, a specific application on the British 

mainland was chosen to demonstrate the modelling processes involved and validate against 

empirical data collected within this area. The methods applied appear to work well for this 

application and the parameters chosen are deemed appropriate given the availability of data. 

However, there are several inherent assumptions and considerations regarding the method chosen 

and the data which this requires: 

 

6.1.1 Aggregation of population into an OD network 
 

The aggregation of population into a coverage based network can help ensure realism and inclusion 

into the modelled results. In other environments this procedure could still be used, but in some 

cases the layout of the geography may affect how this manifests. For instance, in a more population 

sporadic environment, setting the aggregation distance to a percentage of vehicle range could result 

in either a higher number of OD points, or a greater exclusion of the population. In these cases, a 

trade-off between computational efficiency and desired population coverage for an infrastructure 

plan must be made. 
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6.1.2 Road network 
 

In the methodologies described in chapters 4 and 5, it is assumed that people take the shortest 

(time) path between two points. Although this assumption is consistent with previous work, the 

application of this method is dependent on declared road speeds and congestion levels. A key 

shortcoming of the implemented method is that road speed is fixed for each road type. This results 

in a skew of assumed traffic towards routes where speeds limits are higher than the speeds which 

might be achieved on these roads in practice. This is highlighted in Figure 5-2, which shows a high 

potential demand through London. In this implemented case congestion is not considered, and so a 

route through the city is deemed faster than one around it. To help assess this process, traffic count 

data was compared with expected route flows (discussed in section 4.3.4). These results suggest 

that traffic assignment to A-roads was not as good as to motorways (since road speed varies 

considerably across A-roads, unlike the majority of motorways). However, the use of traffic count 

data might not perfectly represent expected flow along routes. This is because, in the model, 

journeys less than ½ of the vehicle range are not considered. Thus, when implemented (given the 

set parameters) only journeys greater than 50km are acknowledged. The majority of traffic from 

the count however, will likely be undertaking trips less than this distance. As a result, some routes 

might have a higher proportion of short trips compared to other routes. To overcome these general 

issues, ideally each road would be accompanied by a bespoke speed limit and congestion levels. 

However, as discussed in section 2.2 and 3.2.2, the inclusion of stochastic elements such as 

congestion may make the model more difficult to implement, given the likely increase in 

computational intensity that would result. 

 

6.1.3 Route flow assignment 
 

Within the implementations of the developed model in this work, a gravity model was used to 

assign traffic flow across the network. Although travel-to-work statistics were used to improve this 

implementation, a general shortcoming of gravity models is that they estimate journey needs based 

on node attraction and generation, and the distance between them. In addition, Census data used to 

populate implementations of this model were derived from the 2001 UK Census, and as a result the 

currency of the data is likely to have affected the results. In practice, traffic systems and journey 

choices are more complex than the one modelled in this thesis. Although an ‘all-or-nothing’ 

assignment is deemed appropriate to avoid unmanageable combinations in the model, a more 

accurate representation of traffic flow could be used. Origin-Destination networks, with pre-
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populated routes can be bought or commissioned from many private companies or government 

organisations (such as the network available for Scotland produced by (National Records of 

Scotland Web, 2013)). The flow assignment technique used within this body of work was chosen 

as a means to demonstrate the developed methods within the financial constraints of the PhD. It is 

likely that a commercial package could produce different results, but the assumptions inherent in 

these networks (such as aggregation scales) may not be publicly available, and as such, may not be 

adaptable for an electric vehicle infrastructure application. An issue with commercially available 

OD networks, and the one presented in this thesis, is that they are built based on the travel patterns 

and geographic distribution of ICEVs. However, attributes of early BEV adopters, such as income 

level, environmental awareness, or niche travel patterns, may not be consistent geographically and 

across the whole population. Although this consideration is not currently incorporated into the 

results presented, this factor could be included within the research if data became available. The 

aim of including this would be to lead to a time dependent location strategy with uptake. Allowing 

early user needs to be met while ensuring that future users are catered for at the same time without 

too much cost penalty.  

 

6.1.4 Parameters 
 

Parameters which can be inputted into the model can vary depending on changes in time of day, 

temperature, road topology, driver behaviour, land availability, land cost, and electrical network 

capacity as discussed in section 3.3. The choice of these parameters is likely to impact on model 

implemented accuracy. The parameters chosen in the demonstrations of this model appeared to 

represent an effective set in conjunction with the model to allow validation of the approach. In 

general however, it is likely that results will vary depending on these parameters in the following 

ways: 

- Range: In previous models, increases in range resulted in fewer locations being needed to 

capture flow in the network (where capacity wasn’t assumed a constraint).  

- Deviation willingness: Increases in deviation willingness presented within this thesis 

appeared to provide a slight increase in the amount of routes which could be serviced with 

a given number of locations. However, as discussed in section 6.3, it would be beneficial to 

test this relationship further. 

- Candidate site selection: A novel approach in this thesis is the ability to quantify demand 

throughout the network and evaluate candidate sites for any location. In practice, additional 

site constraints will also apply (see section 6.2 for a wider discussion on this). As a 
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consequence, the results produced by this model will vary greatly depending on the 

candidate options chosen, but in all cases, the method will recommend the best sites (in 

order) from the given input set. 

- Capacity at sites: In the modelling procedure, capacity can be set as a limiting constraint on 

any site. Given the variability in capacity constraint this is likely to have an effect on the 

output if the data is known (see section 6.2 for a wider discussion on this). In the solving 

procedure, a capacitated site could be placed and, depending on the capacity constraint, 

could only capture a portion of the flow in that area. As such, at a later point in the 

procedure a site nearby to the original location might be recommended to help service all 

of the demand in that area.  

 

6.1.5 Inherent assumptions 
 

One inherent assumption in the modelling approach is that it is expected drivers will wish to 

minimise the number of times they need to recharge on a route. This may not accurately represent 

driver behaviour under all situations, but without data to this effect, this assumption is deemed 

appropriate.  

The modelling technique developed in this thesis assumes that drivers will choose a recharging site 

based purely on their journey/range needs. However, in actuality drivers may not always choose 

sites in relation to their location. Additional ancillary services at sites may draw in customers who 

then charge. Alternatively, drivers may choose a charging site based on a perceived range need 

(such as when their state of charge falls below 50%) even if an alternative combination, which may 

allow them to recharge fewer times, exists. 

 

Additionally, it is assumed that vehicles start long journeys with 100% state of charge in their 

battery. This possibility is evidenced by findings from the CABLED trial (see section 3.3.2), but 

due to the size of the sample this assumption might not apply in all other cases. As suggested in 

section 1.7.3, it is likely to be more applicable to BEV owners who can charge at home. As a 

means of handling variations in this assumption, conservatism was added to the range. In doing so, 

it is likely in some cases where a vehicle does not start with 100% range their journey needs could 

still be handled by the model. 
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Although not an inherent assumption, in the implementation of the model in chapters 4 and 5 routes 

requiring 4 or more charges are excluded. This could impact the provision for these routes in the 

future, however as suggested in 3.3.1 there is unlikely to be significant demand for these journeys 

(possibly representing 0.07% of all trips (Department for Transport UK, 2013f)). 

 

6.1.6 Validation data 
 

Empirical rapid charging usage data was reported by a number of operators and collated by the 

regional infrastructure manager, Cenex. Within this data there existed slight data anomalies. 

Following discussion with the operator, the majority of these errors were identified as data 

recording issues (where charging took place but no data was recorded), and corrected for 

accordingly in the analyses. However, variations in driver behaviour and the billing mechanisms in 

place may also have introduced deviations in expectations. 

For instance, driver behaviour was likely influenced by the free-at-point of use scheme available 

for these rapid chargers. It was noted within the data that some users took advantage of this and 

appeared to charge with a regularity not normally associated with long journeys. In future, such 

billing systems might be replaced by pay-at-use schemes, and if so different usage patterns might 

be expected. 

 

In addition, the cohort of people using these sites was relatively small (given <1% of passenger 

vehicles are BEVs in the UK (The Society of Motor Manufacturers and Traders, 2014b)). As such, 

certain points could have received greater usage simply because they happened to be convenient for 

one or two drivers. In future, the skewing effect on charge point usage is likely to be less, and as 

such an approach to control for this was introduced into the analysis (see section 4.2). 

 

The use of models and data within this thesis are derived from different sources with varying levels 

of accuracy. Although not perfectly representative, it has still been possible to validate this work in 

a novel way, and the method of modelling appears to stand up to scrutiny given these constraints. 

However, further validation on a national scale with more data, and with higher usage rates would 

offer a stronger validation case. The ultimate validation approach would be to design a network, 

build and install it as per the modelled recommendations, and then gather sufficient data regarding 

usage of the network.  
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6.2 Practical Considerations 
 

The aim of this research was to ‘determine a method for locating a network of rapid chargers to 

enable extended BEV journeys in order to assist research and development into encouraging uptake 

and usage of BEVs.’ Given this, an appropriate application of this research is for infrastructure 

developers to use as a planning tool. Such that the model recommendations can be considered fit 

for purpose, several practical considerations will have to be implemented by the planner. An 

advantage of the approach developed in this research is that the model can be implemented 

candidate-free. Given this, a planner can introduce many constraints and factors and determine the 

best set of sites given these considerations. 

 

6.2.1 Land availability and cost 
 

The main practical constraint for an infrastructure developer is the availability of land. Because of 

the flexibility of the approach developed within this thesis, available sites could be chosen in one of 

two ways. Firstly, a planner may have a set of defined sites that they have access to, and may wish 

to place charging facilities at some of these sites. In this scenario, the model could be restricted to 

choose only from these sites and recommend the ones most likely to receive higher BEV usage. 

Alternatively, in a more open-plan approach a number of filters could be applied to the network 

that could restrict the site options based on a variety of options. In these cases the model can be 

used to recommend a selection of sites, with which the planner may choose to develop based on 

land availability or cost. In addition, if suitable parameters are assigned, the model could be used to 

suggest likely numerical demand at each site, which in turn could be used to form a possible 

expected revenue stream (assuming charging is billed for). As such, a cost vs revenue trade-off 

could be determined by the planner and used in the decision making process. 

  

6.2.2 Site specific constraints 
 

As discussed in section 3.3.6, capacity at a site could vary depending on electricity network 

constraints or the number of drivers who could be serviced each hour. In the modelling procedure 

capacity is handled by assigning a limit to the number of BEVs who can be served at any site. 

Because the precise nature of these constraints is not known, a fixed parameter was not set in the 

model implementations in chapters 4 and 5. However, in reality this constraint could be applied 
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either as a fixed limit across the network, or individually as per the capacity at each site. This 

would depend on the local electricity network constraint, which may be defined by transformer or 

cable thermal ratings and the cost of re-enforcing these if required at a location. To include this 

type of data an electricity network model would need to be interfaced with the current model 

(which could be possible within GIS software). Most electricity constraints occur at peak time – so 

the capacity could be set to account for this. In addition, it may be beneficial for the infrastructure 

supplier to provide a booking scheme for their charging points. This may help avoid some temporal 

demand situations where queues could form. 

 

6.2.3 Existing sites and competition 
 

The idea of competition was not specifically considered in this research as the aim was to provide 

charging services to as much of the population as possible. However, it is likely that competition 

between operators might exist (especially as the market expands). A degree of competitive 

advantage may be achieved through pricing and business models (i.e. if the charging provided is 

cheaper than a competitor). However, a tenet in this research is that location matters, and given that 

this form of charging may be infrequent for some drivers, it is likely that convenience and range 

need satisfaction will be the principal motivators in their choice. Given this, being able to provide a 

service that suits the range needs of its customers may be key. As such, the location model in this 

research could be used by a planner to seek a competitive advantage, in terms of customer service 

provision, compared to its rivals. This could be achieved by loading existing sites into the location 

model (as in chapter 4) and identifying areas that are either under-provisioned, where service could 

be improved, or in locations that might ‘take’ users from a competitor. 

 

In this section, practical constraints were discussed which would need to be considered if the 

developed method were used in an applied setting. These include a planner being aware of, and 

having data for, electricity network constraints, land availability and cost, and knowledge of 

competitors or other sites in the network. In the next section directions for future research 

progression in relation to this work are discussed. 
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6.3 Directions for Future Work 
 

As discussed at the start of chapter 2, a trade-off exists in location modelling between accurately 

representing real world systems and managing the inherent complexity of optimising a large, 

complex non-linear system with many constraints that are not easily defined by simple 

mathematical definitions. This means it can be difficult to formulate a method and optimise its 

results under all scenarios. This section uses the understanding gained from this research to suggest 

areas for further research to help build increasingly robust models and methods for location 

determination of rapid charging stations. 

 

In order to improve the robustness of the methodology, a future research program investigating 

different aspects which impact the method and its validation is suggested below. These suggestions 

are subdivided into: Accuracy of parameter determination, Modelling strategy, Collaboration with 

other research fields, and Progressing BEV take up. 

 

6.3.1 Accuracy of modelling inputs 
 

In this research a complex location model was developed with flexibility in mind. Given this, the 

model can be replicated by any practitioner and used on a different OD network with inputs and 

parameters set depending on their requirements. To demonstrate this process however, the model 

was run on a particular network with several parameters chosen. Depending on availability of 

data/known behaviour, these parameters or assumptions could be varied and/or improved in several 

ways: 

- Deviation preferences applied in this research are based on survey results from a cohort of 

real-world electric vehicle users. To fully understand peoples’ tolerances and behaviours, it 

would be desirable to have empirical data about drivers’ true willingness to deviate. For 

instance, the method currently considers deviation in threshold bounds – but, perhaps the 

penalty function for deviation is more continuous in nature (similar to (Kim and Kuby, 

2012)). The impact of this could be evaluated and compared to the current method. 

- All long distance journeys are assumed as likely as those in ICE cars. Long range travel 

patterns in BEVs are likely to be different, but there is currently little data to show this. If 

data becomes available, it could be included with the research and compared to ICE 

behaviour to understand the difference and limitations regarding network planning.  
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- As mentioned previously, electrical or temporal capacity may be a determining factor in 

location choice. Research which combines the modelling techniques within this thesis with 

a detailed Network dataset (where ratings are known for every relevant transformer), and 

information about demand profiles throughout the day would be beneficial.  

 

Similar to previously published location models, inputs for this research are mainly deterministic in 

nature (although the model is run several times with different solving procedures). Future research 

could look in more detail at a stochastic approach. There are two variations of this that could be 

considered: 

- Stochastic data – Vehicle range varies with a number of factors including battery 

chemistry, vehicle manufacturer, driving behaviour, road topology, and weather conditions. 

A means which could assign variable range across the network, such as seasonal change, 

would enable a wider set of scenarios to be investigated and the differences between them 

could inform future field trials or input to inform facility location guidance. Since this 

research proposes a method that generates a demand surface, stochastic flows could be 

used to generate a more complex demand surface – with different instances of vehicle 

range perhaps weighted according to available data. Other inputs that could be treated in 

this manner include flow distribution, or deviation tolerance.  

- Static data but with run model several times – for example, repeating the process 

undertaken in this research with a higher BEV range to simulate improved battery 

technology and also with a minimum range to simulate an inefficient driver in winter with 

a degraded battery. This would allow the variation in locations due to extreme conditions 

to be compared and analysed. 

 

The use of more formal optimisation techniques could lend themselves to the addition of 

constraints within this method. Research could look at including, for example, electricity network 

constraints, space constraints, traffic conditions, geographical consideration, investment and 

operating costs. 
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6.3.2 Modelling strategy 
 

There are three main methods of improvement which are felt could be promising avenues for future 

modelling strategy: better models based on existing data, changing the model to solve in a different 

way, and expanding the model to deal with additional constraints. 

 

For instance, agent based modelling could be a promising avenue for future research and may 

provide a more realistic solution – as BEV behaviour could be varied to reflect real-world 

differences. However, more in-depth information would be needed regarding BEV charging 

patterns/desires, travel habits etc. Results from trials like CABLED could be used to infer these 

patterns and variations, but since rapid charging was not available, the inference of long-range 

travel would be difficult.  ICEV patterns could be used as an alternative – but again their use as a 

direct proxy to BEVs would need to be explored. Additionally, agent based modelling can be 

computationally intensive, since every BEV (or small set of BEVs) must be modelled. The 

planning of a rapid charge network requires a macro level approach, which is not currently believed 

to be suitable for agent-based modelling application. 

 

Alternative approaches to infrastructure location strategy could also be developed. For example, the 

exact formulation and success of the method relies on the input from an OD network. Figure 5-4 

shows that a relationship could exist between charge point placement, population density and major 

highways. Potentially therefore, these patterns could be used to inform candidate selection – 

possibly by identifying road sections with a high traffic count. A comparison of the two methods as 

part of a future research program would provide insight and recommendations could be used to 

inform general siting strategy and policy. 

 

Currently, the model developed has several tasks which are carried out exogenously. Although 

most processes are automated, the integration of them into one program would be beneficial from a 

usability point of view. Such a development could be used to make the method available for other 

users. In addition, the development of a universal model and method as described previously to 

help analyse different methods and models could be beneficial.  

 

Another option could be to expand the areas where demand is considered. In the method proposed 

in this research, the model finds the finite dominating segment for each OD path. In doing so, the 
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minimum number of facilities needed to refuel a path can be considered. However, in some cases 

this may not represent the minimum number of points which can refuel a network. Consider Figure 

6-1. 

 
Figure 6-1 - The finite dominating set for a route 

 

For a path 160km in length where facilities exist at O and D, the finite dominating segment for 

vehicles with 100km range is between 60km and 100km. Thus, a facility placed at b (or anywhere 

within the segment) would refuel the path with the minimum number of facilities possible. 

However, if facilities happen to get placed at positions a and c – placed because they serve other 

paths – then a facility at b is technically not needed. With a and c in place a vehicle can traverse the 

whole round trip successfully, even though it needs to stop and charge once more than might be 

necessary. To manage this with the methodology, it may be necessary to dynamically update the 

sizing of charging zones as the heuristic progresses. For instance, if a point gets placed at a, then 

the charging zone could be extended to the 130km limit. This would mean that a later point, placed 

anywhere between 60km and 130km, would enable the route to be captured.  

 

Due to the complexity of the algorithms, the model was solved using a greedy algorithm as a 

traditional and reliable method along with the addition of weighted heuristics. Since a problem of 

this size and complexity is NP-hard, finding the truly optimal solution is difficult. However, other 

solving techniques could be explored and compared in an attempt to improve the output 

performance. With these methods comes the difficulty of formulation and time span to solution. An 

alternative solving procedure that has been used in other field is genetic algorithms. Genetic 

algorithms may provide a better solution, but the intensity of choosing sites from a set >120,000 

and computing subsequent permeations, may prove too exhaustive. A greedy adding method with 

substitution (where initial site recommendations are substituted out) may also avail a better result 

and could feasibly be managed within the current method. However, its use may have to be 

restricted to cases where a restricted set of sites is used, rather than an open candidate network as 

developed in this work. 

 



Enabling Long Journeys in Electric Vehicles: Design and Demonstration of an Infrastructure Location Model 

  

Laurence Chittock Page 226 

6.3.3 Collaboration with other research fields  
 

The work undertaken in this thesis has the potential to impact and inform other fields of research to 

enhance understanding across the field. Several examples of how this research could be used within 

other fields of research are described below.  

 

The issue of infrastructure provision is often referred to as the ‘chicken and egg’ problem (Browne 

et al., 2012). Without charge points in place consumers are loathed to commit to a technology 

which isn’t necessarily sufficient for all their needs. Similarly, infrastructure providers are reluctant 

to invest in a market that is not currently established. The pitfalls of doing so are exampled by 

Better Place, who invested heavily in building a recharging/battery swapping network, but were 

unable to make a return through customer usage (Reed, 2013). Hence, it is prudent to plan an 

infrastructure roll-out carefully, and consider when and where the likely market will come from. In 

this research, demand is assigned to routes based on likely journey requirements, but it should be 

noted that the demand cannot manifest itself unless appropriate charge facilities exist. Thus, if the 

overall take-up of vehicles is dependent on the roll-out of infrastructure, then a lag from 

infrastructure provision – to market confidence – to actual take-up of vehicles may be observed. 

The economics and logistics behind the roll-out is an example where results from this research 

impact on areas of other research such as economics, planning, and logistics who need to 

understand the relationship between charging stations, numbers of users and likely locations of user 

demand to best impact policy. 

 

Work on likely demand/location patterns of electricity usage could also be used to inform 

researchers into smart grids and demand side management to understand if rapid chargers can be 

integrated into the smart grid. Ideally this should be quantified with real world data. This data could 

also help researchers into battery technology to understand issues such as capacity fade (both 

calendric and usage based). 

 

6.3.4 Progressing BEV take up 
 

The ultimate aim of the research is to help towards alleviating range fears of BEV drivers and 

encouraging take-up to reduce CO2 emissions. To make this happen the research needs to continue 

in line with this aim. Additional further research to help towards this aim includes: 
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- Continued work to address some of the barriers to BEV uptake mentioned in chapter 1, 

such as purchase cost and battery development. 

- Continued research into electricity network decarbonisation, which if implemented, will 

strengthen the CO2 case for BEVs. 

- Research into the provision of slow charging, which could be used in conjunction with this 

work. In particular, solutions which allow adequate charging for drivers who cannot charge 

at home should be sought. 

- Development of common data collection, security and storage strategies of field trial data 

(both existing and new) to enable real field trial validation across wide platforms.  

- Encouraging user and vehicle recovery participation in projects to understand specific 

issues that may influence location such as history of incidences of running out of battery 

charge. 

Mentioned here are a few suggestions of where this research could expand, and be used in 

conjunction with other work to help meet the overall aim of reducing CO2 emissions. The next 

chapter provides a conclusion to this thesis and assesses how the research fits within the wider 

research, and global, field. 
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7 CONCLUSION 
 

Given the need to reduce emissions in road transport, alternatives to the status quo are presented 

within this thesis. One such alternative, the BEV, has the potential to contribute towards reduction 

targets in line with a decarbonisation of the electricity grid. Currently however, despite the fact 

many models are available in the market, sales are still low suggesting barriers to their uptake exist. 

Based on the reported findings from several real-world trials the main barriers to uptake and usage 

were identified as cost, range, and charging. For BEVs to become a viable alternative it is seen as 

key that their cost comes down. Forecasts suggest that this is likely to happen over the coming 

years, and as such it is important that other barriers to BEV use are addressed by this time. 

Following an extensive literature search undertaken as part of this research the range of a BEV and 

the need to recharge were found to be intrinsically linked, and thus an improvement in either is 

deemed likely to minimise the problems of both. Given this, one method, which is the focus of this 

research, is to expand charging provision in order to enable long range journeys in BEVs. 

 

In the context of charging and journeys, two main needs were identified. The first can be classified 

as non-time critical replenishment (such as at home or work). This form of charging could be 

sufficient for most needs, but for long journeys a different provision is needed. One form of 

charging which could satisfy these journey needs can be classified as range extension. This 

describes the need for recharging when the immediate range of a BEV is insufficient to carry out a 

long journey. Solutions which allow for this include rapid charging and/or battery swapping as they 

can provide additional range capacity in a short period of time. Within the UK, a number of rapid 

chargers have already been installed through public grant schemes and business and public sector 

consortia. To maximise the benefits of public spending in this area, it is desirable to locate rapid 

chargers as part of a more cohesive strategic plan so that investment is tied to locations which will 

offer high utilisation and value for money. To help achieve this it was necessary to determine a 

method of locating rapid chargers that is relevant to current and future BEV drivers’ usage patterns, 

and is expandable to cover national areas. The focus of this research was therefore based on the 

need to extend the immediate range of BEVs.  

 

7.1 Meeting the Objectives 
 

Given the need to provide a method to help enable BEV journeys, this research addressed the issue 

of determining an appropriate location strategy for a recharging network with the following aim: 
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 Determine a method for locating a network of rapid chargers to enable extended BEV 

journeys in order to assist research and development into encouraging uptake and usage of 

BEVs. 

Based on the needs of this aim, the developed method incorporated the following features: 

- Geographically representative: The approach taken allowed the model to be representative, 

consider variations in population spread, and be adaptable for any region. 

- Expandable: The model was tested and developed at a large scale, with slight adjustments 

recommended to make this feasible (such as application of a raster grid to represent 

demand, and minimisation of the number of OD points). 

- Consider range and habitual journey patterns of BEVs: This approach identified the types 

of journeys which are likely to require rapid charging, and devised formulae to suggest 

where on routes charging demand could occur. 

- Realistic and applicable to real-world networks: The method in this research was 

demonstrated on a large, realistic network and could be applicable in similar cases. 

Although the direct implementation of the OD network was not perfect, due to lack of 

sufficient data, based on the findings of the traffic count data analysis, it was found that 

certain improvements could have been made, such as assigning road speeds and average 

congestion levels to each road segment separately. 

To achieve the aims and needs of this study, the following objectives were addressed: 

Objective 1: Understand how location modelling has previously been applied for similar purposes, 

and identify the assumptions and short comings inherent in these methods. 

Objective 2: Develop a model and appropriate methodology to recommend sites for a charging 

network, and overcome issues with previous work in this area. 

Objective 3: Apply this model to a real world network and analyse its outputs against current 

charging usage. 

Objective 4: Demonstrate differences in modelling outcomes based on comparison between 

national infrastructure plan and a smaller regional like plan. 

To meet these objectives it was necessary to conduct original and novel research, especially in 

regards to objectives 2, 3, and 4 where the following key areas of contribution to knowledge 

included: 

- Development of a location model specific to battery electric vehicles (objective 2) 
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- Development of a methodology to allow the location model to be applied in a practical 

context (objective 2/3) 

- Validation of the model and method using empirical data (objective 3) 

- Understanding scaling issues between regional and national size models (objective 4) 

 

Based on the needs of objective 1, location modelling was identified as the primary tool to help 

recommend rapid charging networks. Of the various types of location model available, flow-based 

modelling was recognised as the most suitable means to represent non-stationary demand (such as 

vehicles) – since, unlike fixed demand models, flow modelling can quantify and represent demand 

at several locations throughout a network (which is key to understanding range and habitual 

journey patterns of BEVs). Application of these models is reliant on Origin Destination networks 

as these provide an awareness of full route distance, which is important in the context of range 

limited vehicles. However, models of this type have not previously been validated with empirical 

usage data or real world behaviours. In addition, based on the identified shortcomings in these 

published works novel requirements for the modelling process were defined.  

Modelling Objective a: Develop a method to represent source/destination areas in the model, such 

that OD aggregation scale is considered and accounted for in the modelling procedure. 

Modelling Objective b: Represent demand for charging across two-dimensions, such that a 

potential demand surface can be generated. 

Modelling Objective c: Create a modelling procedure which relaxes the need for an input 

candidate set, instead choosing from the continuous plane. 

Modelling Objective d: Employ solving heuristics to ensure the method is computationally 

manageable on a large scale (where suitable solving heuristics are applied to maximise the number 

of extendable BEV journeys, given a number of facilities to be placed). 

 

Within this thesis a method was defined which allowed necessary location modelling to be 

undertaken and developed. Key to this (modelling objective a) was the development of a method to 

integrate aggregation error into the model. Furthermore, a novel method of generating a solution 

that is not bounded by candidate sites was developed to improve flexibility and represent charging 

demand across 2-dimensions (modelling objectives b and c). Additional contributions looked at 

how the model can be solved heuristically, given different priorities and with more complexity 

(modelling objective d). In this regard, it is felt that objectives 1 and 2 have been addressed 

sufficiently, with identified shortcomings overcome through the proposals in this thesis. In 
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addition, the developed method has allowed the relevant needs to be met as described above 

(geographically representative, expandable, conscious of BEV journey needs, and applicable in 

realistic settings).  

 

In relation to objective 3, to test the efficacy of the developed model, an important aspect of the 

work was the validation of the model and method behind its use. Previously published literature in 

this field has not been validated with real world data, and as such the proposals in this thesis 

represent a significant novel contribution. The method of validating the model was achieved by 

comparing empirical rapid charging usage data with modelled results. As such, objective 3 was 

achieved by comparing the ranking of model evaluated locations against used locations as reported 

by rapid charging operators. It was found that the modelled outputs can provide a good 

approximation to the observed usage data, and can even identify possible discrepancies in the data 

itself (such as underreported usage). In addition, the model was implemented without constraint 

over the same region to identify differences in the approach. The findings suggest that the proposed 

model can recommend similar locations to current sites which observed high usage. Based on this, 

alternative networks could be planned in any area, with levels of demand estimated. The alternative 

network recommended in this thesis may not be practically implementable, but the demonstrated 

methodology indicates the sort of coverage that might be suitable and could potentially be used as a 

benchmark from which a feasible solution could be generated. 

 

The final part of this thesis (objective 4) looked at the complexity of expanding a network to cover 

a nationally sized area. Based on these findings, a series of key learning points were identified 

which have not previously been reported in the literature: 

 Solving techniques were developed to account for a possible weakness in greedy adding 

approaches used to solve this model. This involved weighting multi-charge routes so that 

they could be identified in the solving procedure. A series of novel adaptations are 

suggested which allow alternative solving heuristics to be implemented – based on desired 

strategy, and these were not found to be detrimental to the result. 

 Deviation parameters were varied to ascertain if allowing greater deviation tolerances 

could improve the flow capturing potential of the model at a large scale. In regards to these 

tests, and development of further heuristics, slight improvements in the performance of the 

model were observed. These were found to be computationally manageable in the tests 

undertaken (thus meeting modelling objective 4), but the improvement in performance is 

not deemed significant given the trade-off in computational effort (for deviations).  
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 To help identify issues around regional infrastructure developments, a network was 

constructed with a ‘closed’ border such that only internal journeys were considered. The 

same area was also evaluated without the border, and the suggested locations from each 

demonstration were compared. The modelling results suggest that considering a regional 

network design in isolation from the whole network results in likely sub-optimal location 

placement, and that consideration of how the region fits within the wider national network 

is important. As such, objective 4 is deemed to have been met, but it is recommended that 

further tests are undertaken to identify the impacts on policy decision. 

 

7.2 Achievements of the Research 
 

Based on the summary in the previous section, it is felt that this research has met the original 

objectives necessary to meet the aim ‘to determine a method for locating a network of rapid 

chargers to enable extended BEV journeys in order to assist research and development into 

encouraging uptake and usage of BEVs’. Key to this have been some innovative developments in 

this research field, including: 

- Improvements to location modelling specific to electric vehicle charging infrastructure, 

such as: 

- Integration of aggregation scale into a developed model such that realistic range and 

journey options can be considered. 

- Allowing demand to be represented across areas, such that evaluation can be considered at 

any point in the network. 

- Facilitating a candidate-free approach that can be used to consider siting options with 

increased freedom. 

In addition, the application and demonstration of the model developed within this research has 

allowed: 

- The determination of insight into the complexity around model expansion and scaling. 

- Validation of the location modelling process against empirical usage data, indicating that 

the developed model is fit for purpose. 

Given the achievements of this research, it is hoped that the methodologies developed can be used 

to assist further research work. In addition, it is felt that the practical implementation of this model 

could be used to inform effective charging network layouts, which in turn may allow for greater 
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journey satisfaction for electric vehicles. In line with other developments in this sector, this 

research contributes towards improvements for the viability of electric vehicles, which in turn 

could encourage uptake and usage. This transition towards electrification in transport will help 

reduce emissions, and in turn be beneficial for peoples’ health and the environment. 
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