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Abstract

This paper presents a novel algorithm for medial surfaces extraction that is

based on the density-corrected Hamiltonian analysis of Torsello and Han-

cock [1]. In order to cope with the exponential growth of the number of

voxels, we compute a first coarse discretization of the mesh which is itera-

tively refined until a desired resolution is achieved. The refinement criterion

relies on the analysis of the momentum field, where only the voxels with a

suitable value of the divergence are exploded to a lower level of the hierarchy.

In order to compensate for the discretization errors incurred at the coarser

levels, a dilation procedure is added at the end of each iteration. Finally

we design a simple alignment procedure to correct the displacement of the

extracted skeleton with respect to the true underlying medial surface. We

evaluate the proposed approach with an extensive series of qualitative and

quantitative experiments.
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1. Introduction

The skeleton has proven to be a valuable and widely used shape descrip-

tor for a number of tasks such as 2-D and 3-D shape recognition [2, 3],

volumetric models deformation [4, 5], segmentation [6] and protein structure

identification [7]. The interest in this descriptor stems from its being a con-

cise representation of the original shape, which is topologically equivalent to

it, and invariant to several shape deformations.

When working in two dimensions, the skeleton, or medial axis transform,

is defined as the locus of the centers of the maximal inscribed circles bitan-

gent to the shape boundary. Alternatively, it can be defined as the set of

singularity points created by the inward evolution of the shape boundary

with constant velocity according to the eikonal equation
~B(t)
dt

= v ~N(t), where

~B(t) is the equation of the boundary at time t, v is the constant velocity

and ~N(t) is the normal to the boundary. Finally the skeleton can be seen as

the set of ridge points of the distance map [8] [9], where the distance map is

the function D(x, y) that assigns to every point in the interior of a shape its

distance to the closest point on the boundary.

1.1. 2D Skeleton Extraction

Over the years several methods have been proposed to compute the 2D

skeleton of a shape, but all of them can be basically divided into four main

categories.

The first class of methods are the thinning ones, which simulate Blum’s

grassfire transform by iteratively eroding layers from the shape [10] [11].
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During the thinning procedure care must be given not to change the object

topology and to ensure the correct geometrical position of the skeleton with

respect to the original shape, since the result is clearly dependent on the order

in which the erosion is performed. Unfortunately, while fast and simple to

implement, these algorithms are quite sensitive to Euclidean transformations,

so they typically fail to locating accurately the skeleton of the object.

The second class of methods exploits the fact that the skeleton coincides

with the local extrema of the Euclidean distance transform [9] [12] [13]. This

in turn relies on the computation of the Euclidean distance between each

point in the interior of the object and the boundary of the shape, which can

be done in linear time O(n), where n is the number of pixels of the image [14].

These approaches then attempt to detect the ridges of the distance map either

directly or by evolving a series of curves, such as snakes, under a potential

energy field defined by the distance map. Although these methods fulfill the

geometrical constraint, ensuring the topological correctness is not trivial.

A third class of methods is based on the Voronoi diagram of a subset

of the boundary points [15]. The idea of these approaches is that, under

appropriate smoothness conditions, the Voronoi diagram of a subset of the

boundary points converges to the skeleton as the number of the sampled

boundary points increases. These methods ensure topology preservation and

invariance under Euclidean transformations, in addition to locate the skeleton

with great accuracy, provided that the boundary of the shape is sampled

densely enough. However, if the object being skeletonized is not a polygon,

they obviously suffer from limitations due to the computational complexity

of finding the Voronoi diagram of the shape (or alternatively the Delaunay
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triangulation). Moreover, approximating a smooth shape with many straight

line segments introduces a lot of spurious branches, which then need to be

pruned with techniques typically based on heuristics.

The fourth, and final, class of methods is based on the analysis of the

differential structure of the boundary. In [16], the boundary is segmented at

points of maximal curvature and the authors show that the skeleton is a sub-

set of the Voronoi diagram of these segments. Despite its accuracy, the main

drawback of this approach is the need to estimate the boundary curvature

by fitting a curve to it, which is a computationally demanding and quite del-

icate task. A somehow similar approach is that of Leymarie and Levine [13],

which is based on the concept of active contours introduced in [17]. Kass,

Witkin and Terzopoulos cast the problem of boundary location into a curve

evolution framework, where the curve is evolved in a potential energy field

under certain smoothness constraints. By using the distance map as the en-

ergy function, Leymarie and Levine are able to estimate the shape skeleton

by simulating the grassfire transform and identifying the points where the

wavefront collapses as the skeletal points. Unfortunately, as in [16] this re-

quires an initial segmentation of the boundary at curvature extrema, which

is itself a challenging problem.

Another important method that belongs to this class stems from the

Hamiltonian analysis of the boundary flow dynamics [18]. Siddiqi et al. state

that the singular points where the system ceases to be Hamiltonian (i.e., an

energy conservation principle is violated) are responsible for the formation

of skeletal points. Unfortunately, their analysis fails to take into account

the effects of the boundary curvature, a problem which they only partially

4



solve in [19]. Subsequently, however, Torsello and Hancock [1] show how to

completely overcome the problem by performing a Hamilton-Jacobi analysis

of the flow under conditions where the flow density varies due to curvature.

1.2. 3D Skeletons

Although there exist a considerable number of algorithms for the extrac-

tion of skeletons from 2D shapes which yield reasonably good results, the

problem of medial surface extraction is still an open one. This is because the

addition of a third dimension makes the task of medial surfaces extraction

particularly challenging. At the same time, the wide availability of cheap 3D

scanning devices demands for a robust representation which provides a sim-

ple venue to perform shape analysis and representation under deformation

and articulation. For this reason, the design of efficient algorithms for 3D

skeleton extraction is of key importance.

Luckily, while in 2D the skeleton extraction needs to be preceded by a

segmentation of the image, in 3D it is common to model objects as distinct

meshes, and thus the skeletonization can be much more practical. However,

when a third dimension is added the task of medial surfaces extraction turns

out to be much more challenging than in 2D. The reason is threefold. First,

we observe an exponential growth of the number of voxels, which may render

the computation impracticable, especially if a high resolution is needed. Fur-

ther, while in 2D it is common to work with raster images, and thus there is

no need to discretize the shape, volumetric objects are usually represented as

triangle meshes, that may eventually need to be voxelized before any further

computation is done. Clearly, the result of this discretization depends on the

resolution chosen. Moreover, the topology itself may change as the resolu-
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tion changes. Finally, tasks that are almost trivial in two dimensions, such

as ensuring the topological correctness of the skeleton, i.e., the equivalence

between the object and its skeleton, require particular attention when a third

dimension is added.

According to the analysis that we need to perform on the shape, in the

literature there are two competing 3D generalizations of the skeleton: the

curve (or line) skeleton [20, 21] and the medial surfaces. The curve skeleton

provides a minimal yet efficient representation for shape analysis and recog-

nition. The medial surfaces, on the other hand, carry enough information to

accurately reconstruct the original shape from the skeleton. In fact, while

the line skeleton is a lossy simplification of the shape, the medial surface is

topologically equivalent to the original shape, i.e., it is possible to map its

segments, considered as two oriented surfaces, to the original mesh through

a homotety. In some degenerate cases, moreover, the curve skeleton turns

out to be ill-defined. Consider for example the shape of a cup, which clearly

cannot be abstracted in terms of a medial axis. For these reasons, in this

paper we decide to concentrate on the extraction of medial surfaces from

triangulated meshes.

Recently, Arcelli et al. [22] proposed a distance-driven algorithm for me-

dial surfaces extraction. Although the algorithm proves to be effective and

it is shown to preserve the topology of the original shape, it works only on

voxelized objects, and as a consequence cannot cope with high resolution

inputs. The work of Siddiqi et al. [3] bears some similarities with the present

paper, as it generalizes to three dimensions the Hamilton-Jacobi skeleton.

However, it suffers from the same limitations of its two-dimensional counter-
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part, since it doesn’t take into account the effects of boundary curvature. A

more robust algorithm is that of Reniers et al. [23], where both the curve and

the surface skeletons are located by means of an advection-based importance

measure. Unfortunately this measure turns out to be well defined only for

genus 0 shapes, and both [3] and [23] share again the problem of requiring a

complete voxelization of the space, which makes the use of these algorithms

limited to low resolution objects.

In order to cope with increased spatial and time complexity, Bai et al. [24]

and Quadros et al. [25] propose to use adaptive octrees, which allow some

parts to be discretized more densely while the rest is analyzed at a coarser

scale. However, both these approaches work on a precomputed octree, where

the grid refinement criterion is based on simple heuristics. In [24] the authors

propose to increase the grid resolution on those voxels that are roughly at the

center of the shape, where the medial surface is more likely to be located.

Anyway, they clearly state that the design of an optimal grid adaptation

criterion for skeleton computation is beyond the scope of their paper, and a

more efficient heuristic should be used instead. In [25] the octree nodes are

generated according to the vertices and centroids of the facets of an input

CAD model, therefore the density of the nodes is higher in the presence of

small features or regions of high curvature. The resulting skeleton, however,

is disconnected, and it is composed of sets of nodes at different levels of

resolution.

Finally, Yoshizawa et al. [5] and Hisada et al. [26] propose a generaliza-

tion of the Voronoi-based approach to three dimensions. These approaches

work directly on the original mesh by approximating the medial surface with
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a skeletal mesh which has the same number of vertices and connectivity as

the original mesh. More precisely, the QuickHull algorithm [27] is used to

extract the Voronoi diagram of the mesh vertices, then for each mesh vertex

v they define a skeletal point p at a distance d along v’s normal, where the

displacement d is computed as the distance from v to the arithmetic mean

of the Voronoi vertices of the Voronoi region containing v. The connectivity

between skeletal vertices is then defined according to the connectivity be-

tween the corresponding mesh vertices. These approaches are fast and do

not require an initial voxelization, but extract only an approximation of the

skeleton and are extremely sensitive to small perturbations of the boundary.

Recently we [28] proposed a hierarchical skeletonization algorithm where

the refinement criterion is based on the density-corrected Hamiltonian anal-

ysis [1]. In order to deal with the discretization errors incurred at the coarser

levels, we proposed to dilate the skeleton at each step of the hierarchical

refinement. Although this procedure clearly increases the quality of the ex-

tracted skeleton, some discretization artifacts remain unsolved. In particular,

due to the discrete nature of the voxelization procedure, the center of the

final skeletal voxels tend to be displaced with respect to the true underlying

medial surface. This in turn will affect the quality of the extracted skeletal

mesh.

1.3. Our Contribution

Our purpose in this paper is to extend the work by Rossi and Torsello [28].

We propose a novel algorithm for medial surfaces extraction that is based

on a generalization to three dimensions of the density-corrected analysis of

Torsello and Hancock [1], while taking an adaptive octree-based approach for
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the discretization of the initial mesh in a manner that is similar to that pro-

posed by Bai et al. [24] and Quadros et al. [25]. Contrary to these approaches,

we decide not to precompute the whole octree in advance, but instead we

keep the original mesh, that is used for distance computations, and we itera-

tively decide whether to refine a voxel or not based on the local value of the

divergence of the momentum field, i.e., the confidence we have in that point

being skeletal. Finally we design a simple alignment procedure to correct the

displacement of the extracted skeleton with respect to the true underlying

medial surface. We evaluate the proposed approach with an extensive series

of qualitative and quantitative experiments, comparing our method against

other approaches in the literature under varying mesh conditions.

2. Preliminaries

In this section we review the two-dimensional continuous formulation of

the Hamilton-Jacobi skeleton [18] and its density corrected counterpart [1],

where the latter will form the basis for our medial surface extraction algo-

rithm.

2.1. Hamilton-Jacobi Skeleton

Let the distance map D be a function that assigns to each point in

the interior of the shape its distance to the closest point on the object

boundary ~B, and let ~F = ∇D be the corresponding velocity field, where

∇ = (∂/∂x, ∂/∂y)T is the gradient operator. We define the outward flux of

~F through the boundary ∂A of an arbitrary area A as φA(~F ) =
∫
∂A
~F · ~n dl,

where ~n denotes the normal to ∂A and dl is the length differential on ∂A.
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Under the assumption that the vector field ~F is conservative everywhere ex-

cept on the skeleton, the skeletal points can be identified by looking for those

points where the system ceases to be conservative. Since the net flux of ~F

through the boundary of the shape is positive, by virtue of the divergence

theorem the interior of the shapes contains a set of sink points, i.e., the

skeletal points. Hence, in their original formulation, Siddiqi et al. propose

to label as skeletal those points in which the divergence of ~F is non-zero [18].

However, under a compressing front, the divergence can be negative also at

non-skeletal locations. More precisely, the density of the compressing front

changes during its inward evolution in a way which is proportional to the

boundary curvature, and as a result the velocity field is no longer conserva-

tive. Initially, Siddiqi et. al tried to overcome this problem with the intro-

duction of the concept of normalized flux. They show that by normalizing

the flux of the velocity field by the perimeter of a circular integration area, as

the radius of the circle approaches zero so does the value of the divergence, if

the point is not skeletal. Due to the discrete structure of the lattice, however,

the integration radius has a lower bound of one pixel. Since the divergence of

the velocity field in ~p depends on the local boundary curvature, assuming an

integration radius of one pixel, the value of the normalized flux at ~p will be

NφA(~F )(p) = −1
2
k(~p), where k(~p) is the curvature of the evolving boundary

at ~p and NφA(~F ) denotes the normalized flux of ~F . The problem is that near

the endpoints of the skeleton the value of the curvature will tend to infinity,

thus the discrete normalized flux diverges in their proximity.
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2.2. Density-Corrected Analysis

Based on the observation that when the front is curved the average linear

density is not constant over time, Torsello and Hancock [1] propose to change

the problem into a mass conservation one. More precisely, they state that,

rather than the velocity field, it is the momentum field ~M = ρ~F that is

conservative, where ρ is a scalar field that assigns to each point along the

inward-evolving boundary front its linear density. As a result, the divergence

of the momentum field is zero at any non-skeletal point, i.e., ∇ · (ρ~F ) = 0,

and thus also φA(ρ~F ) = 0 for any region A not containing a skeletal point.

The density of the inward-evolving boundary can then be determined by

applying the rule of product differentiation to the conservation equation and

setting σ = log(ρ), thus yielding

∇σ · ~F = −∇ · ~F . (1)

Finally, this can be further reduced to the system of ordinary differential

equations along the path of boundary points
∂
∂t
σ(s(t)) = −∇ · ~F (s(t))

∂
∂t
s(t) = ~F (s(t))

(2)

where s(t) is the trajectory of a boundary point under the eikonal equation.

3. Hierarchical Skeletonization

Our algorithm works as follows. We are given a triangulated mesh, a

starting resolution resmin and a desired resolution resmax. Initially we com-

pute a complete voxelization of the shape at resolution resmin. Given this

11



Figure 1: Steps to refine the skeleton: a) computation of the gradient and Laplacian of

the distance map; b) integration of the log-density in the voxels with a full neighborhood;

c) alternating thinning and dilation step to detect skeletal voxels at the current level of

the octree.

initial coarse discretization, we compute the distance transform D, its gra-

dient ~F = ∇D and the divergence ∇ · ~F , then we integrate the density

σ = log (ρ) and finally we compute the divergence of the momentum field

∇·(ρ~F ). With this information to hand, we are able to extract a first approx-

imation of the medial surface. Assuming that a very low starting resolution

resmin is given as input, we now wish to further refine the extracted skeleton

up to a resmax resolution.

To this end, we iteratively increase the resolution by subdividing the

leaves of the octree with a large value of ∇ · (ρ~F ), i.e., those voxels that

are most likely to contain skeletal points. The Hamiltonian analysis is then

carried over the newly created octree level and the refinement process is

iterated until the required resolution resmax and octree level log8(resmax) is

reached.

In order to carry over the Hamiltonian analysis at a lower octree level the

following steps must be undertaken (see Fig. 1):

1. Velocity field computation. For each voxel ~v at the current resolu-
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tion level we compute its distance to the shape boundary. Given the

distance map, we first compute its gradient in ~v by fitting a hyperplane

in a least squares sense on the voxel neighbors, then we determine

its Laplacian by computing the flux of ~F through the surface of the

convex-hull bounded by the neighbours of ~v, divided by its volume.

2. Integration of the front-density. For each voxel at the current

resolution level we compute the density of the evolving front by eval-

uating Eq. 2. We integrate the density starting from the current level

boundary inward, under the assumption that the initial boundary has

a complete 26-neighborhood where the value of the density is inherited

from the parent voxels.

3. Thinning and dilation. With the divergence information to hand,

we iteratively remove the current level boundary voxels in distance

order when the value of the divergence is under a certain threshold. In

order to guarantee the preservation of the object topology, we remove

a voxel only if it is simple, i.e., if its removal does not alter the object

topology by disconnecting the shape or introducing a hole [34]. Once

the thinning procedure is completed, we dilate the skeleton to partially

compensate for discretization errors incurred at the coarser levels. We

alternate the thinning-dilation process until no voxels can be added to

the thinned skeleton. Finally a last dilation is performed to guarantee

that the exploded points have a complete neighborhood around each

skeletal point.

With this high-level overview in mind, we will now present all the com-

putational ingredients needed by the proposed approach.
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3.1. Distance Computation

The distance transform computation is certainly one of the most expen-

sive operations that we need to perform. We decide not to compute the

distance map with respect to a discretized boundary, instead we keep the

original mesh and we make distance queries with respect to it. In particular,

the input mesh is saved on an Axis Aligned Bounding Box (AABB) tree [29],

a common data structure that is used to make distance queries faster. A

voxel is assigned either to the interior or exterior of the shape by casting a

ray from the center of the voxel to a random direction and computing the

number of intersections with the mesh. If the number of intersections is

odd, the point is classified as interior, otherwise it is classified as exterior.

We acknowledge that better algorithms for computing the signed distance

transform have been proposed in the literature (e.g., [30]), but we also want

to stress that the distance map issue is completely incidental to the main

problem of skeletonization, which is the one we are addressing in this paper.

3.2. Gradient and Laplacian Computation

Once the distance map is to hand, its gradient and divergence can be

determined. Note, however, that while in the beginning all the leaves of the

octree are at the same level and thus the gradient and the Laplacian can be

approximated using the finite difference method, as the skeleton is refined

there will be several voxels at different levels of resolution. For this reason

we need to resort to a different approximation method that is able to cope

with a non-uniform grid setting.

Note that in the remainder of the paper we will operate on different

neighborhoods of a voxel, according to the type of operation that we intend
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to perform. This includes the 6−, 18− and 26− neighborhoods, where n−

refers to the adjacency relation between the voxels. Recall that two voxels

are 6-adjacent if they share a face, 18-adjacent if they share a face or an edge

and 26-adjacent if they share a face, an edge or a vertex. In particular, we

will always assume that a 26-neighborhood is used, with the exception of a

few cases. As explained later in the text, when computing the laplacian of the

distance map we only use local information and thus we restrict ourselves to a

6-neighborhood. On the other hand, during the integration of the density, we

will use the subset of the 26-neighbors that have already been visited by the

inward-evolving boundary. Finally, when ensuring the topology preservation,

we will refer to the work of Malandain et al. [34], where the 6−, 18− and

26− neighborhoods are used to characterize the voxels.

Following [31], we compute the gradient by performing a 4D linear re-

gression over all the neighbors of ~x. More formally, given a set of points

{(xi, yi, zi, di)}mi=1, where (xi, yi, zi)
T is a neighbor of ~x and di its distance to

the boundary, we look for the coefficients A,B,C,D so that the hyperplane

d = Ax+By+Cz+D best fits the samples in a weighted least squares sense.

Minimizing

E(A,B,C,D) =
∑
i

wi(Axi +Byi + Czi +D − di)2 . (3)

the gradient is then ~F (~x) = (A,B,C)T

||(A,B,C)T || , where as a weight wi we used the

inverse of the distance of the point (xi, yi, zi)
T .

Note that this approach has a problem whenever the skeleton crosses

the convex hull of the neighborhood, as we integrate across a singularity

resulting in erroneous computation of the gradient. A common solution to
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this problems is to perform one-sided computations to avoid crossing the

singularity, however one-sided computations usually exhibit larger bias. Here

we chose to perform a two-sided computation of the gradient as we are not

interested in its value close to the singularity as we are adopting a one-sided

process for the computation of the momentum field. The experiments will

show, that even with this possible instability due to the possibility of crossing

a singularity in the computation of the gradient, the momentum field is well

conserved outside the skeletal branches resulting in a well localized skeleton.

As for the laplacian of the distance map, i.e., the divergence of the ve-

locity field, we compute it using a discretization of the divergence theorem

around the convex hull of the 6-neighborhood of each point. Note that even

if the leaves are not guaranteed to be at the same level, and thus we cannot

guarantee to have a complete 26- or 18- neighborhood, due to the octree

construct we always have at least a 6-neighborhood. Doing a linear approx-

imation of ~F (~x) over the faces of the convex hull, we can approximate the

flux

ΦU(~x) =

∫
δU

~F (s) · ~n(s) ds ≈
8∑
t=1

1

3
At~nt ·

∑
~p∈Vt

~F (~p)

 , (4)

where U is the convex hull of the 6-neighbors of ~x and At, ~nt, and Vt are

respectively the area, the normal, and the set of vertices of the (triangular)

faces of U . Due to the divergence theorem, we have
∫
U
∇ · ~F (~x) dx = ΦU(~x),

from which we obtain the following discretization for the divergence:

∇ · ~F (~x) ≈ ΦU(~x)

|U |
≈

∑8
t=1

1
3
At~nt ·

(∑
~p∈Vt

~F (~p)
)

|U |
. (5)
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Figure 2: Integration of the density along the boundary path.

3.3. Integration of the Momentum Field

Once the distance, gradient and Laplacian have been computed, we can

integrate the density in the newly subdivided skeletal points.

It is of key importance that the density integration is carried out only

on those points that have a complete 26-neighborhood, i.e., those with a

homogeneous neighborhood. The voxels with a non-homogeneous neighbor-

hood, on the other hand, will simply inherit the value of the density and

divergence fields of their parent node. The reason for this is that an inhomo-

geneous neighborhood induces a higher discretization error to the direction

of the gradient which will severely affect the accuracy of the integration step.

Thus, before refining the skeleton to a higher resolution level, we perform

a dilation of the skeletal voxels in order to guarantee that all their children

will indeed have a complete neighborhood. Then, after the refinement, there

will be a 1-voxel thick boundary of voxels with non-homogeneous neighbor-
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hood that will be children of the dilation voxels, rather than of the skeletal

voxels. Note that this dilation can simply be considered a part of the last

thinning/dilation step of the refinement of the previous level, which will be

described later.

In order to compute the momentum field over the interior of the shape we

need to solve Eq. 2. A common approach in this case is that of solving the

linear system obtained by rewriting Eq. 2 as a system of difference equation.

The problem here is that the skeleton is a set of singularities of momentum

field, i.e., we expect the density field to have different values at opposite sides

of a medial surface. Consequently, the linear system has no solution. Even

looking for an approximate solution using a gradient descent method would

result in oscillations near the skeleton, so a different approach is needed.

As proposed by Torsello and Hancock [1], we decide to integrate the

equation in the time domain. The critical point is to ensure that when we

compute the log-density σ of boundary points at time t we reference only

the values of σ calculated at points already crossed by the inward-evolving

boundary. In order to do so, we opt to find a numerical solution of Eq. 2

using a Crank-Nicolson approximation [32].

Assume that there exists a family of surfaces ~Bt representing the inward

evolution of the boundary ~B, that can be locally parametrized as ~Bt(u, v)

around any point ~x. Then, we have

σ( ~Bt(u, v)) = σ( ~Bt−1(u, v)) +
1

2
[∇ · ~F ( ~Bt(u, v)) +∇ · ~F ( ~Bt−1(u, v))] (6)

In the spatial domain, if ~x = ~Bt(u, v) we have ~Bt−1(u, v) ≈ ~x − ~F (~x),
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which, substituted into Eq. 6, yields

σ(~x) = σ(~x− ~F (~x)) +
1

2
[∇ · ~F (~x) +∇ · ~F (~x− ~F (~x))] (7)

Unfortunately the point ~x − ~F (~x) is not guaranteed to belong to the

cubic lattice, so we actually need to interpolate it using the values at the

eight vertices of the cube containing it. Once again we should ensure that

the interpolation doesn’t cross the medial surfaces. Luckily, ~x is the last of

the eight vertices visited by the evolving boundary, so this requirement is

met. Thus we can safely use the trilinear interpolation which yields

σ(~x) =
(
σ(~x− ~F (~x))− (1− |F1|)(1− |F2|)(1− |F3|)σ(~x) (8)

+1
2
[∇ · ~F (~x) +∇ · ~F (~x− ~F (~x))]

)
/(1− (1− |F1|)(1− |F2|)(1− |F3|))

where, F1, F2, and F3, are the three components of ~F (~x) and, due to the

fact that we use trilinear interpolation, σ(~x− ~F (~x))− (1−|F1|)(1−|F2|)(1−

|F3|)σ(~x) does not depend on the value of σ(~x). As Fig. 2 shows, the point

~x − ~F (~x) does not belong to the cubic lattice. We then interpolate it using

the values of the log-density on the eight corners of the cube containing the

point. Note that ~x is the last of the eight vertices which is visited during the

boundary evolution, and thus we are guaranteed that all the points that we

use for the interpolation are on the same side of the medial surface.

Given this formulation, we can integrate the value of the log-density over

the interior of the shape, starting from the most external voxels inwards. At

the first level the most external voxels will be the boundary boxes, which have

a unit density, and thus a null log-density. At all other steps, the external

voxels will be the voxels with irregular neighborhood that inherit the log-

density from their parents. Once the log-density has been integrated, we can
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proceed to compute the divergence of the momentum field in each point of

the interior of the shape. The value of ∇· (ρ~F )(~x) is given by approximating

Eq. 1 as follows

∇ · (ρ~F )(~x) = ∆σeσ(~x)− 1
2

∆σ (9)

+1
2

[
∇ · ~F (~x− ~F (~x))eσ(~x−~F (~x)) +∇ · ~F (~x)eσ(~x)

]
where ∆σ = σ(~x)−σ(~x− ~F (~x)). Note that, since the equations introduced in

this section are to be evaluated at different levels of resolution, the integration

step is actually dependent on the corresponding voxel size.

3.4. Skeleton Extraction

With the divergence information to hand, we can select the voxels that are

likely to contain skeletal points and that will be further subdivided to form

the next level in the octree. The skeleton extraction is based on a thinning

process guided by the value of the divergence of the momentum field at each

voxel.

3.4.1. Divergence Driven Thinning

In [33] Torsello and Hancock show that the field ρ~F is conservative outside

skeletal branches, while its flux through a 1-voxel circle centered on a skeletal

point is proportional to dl/ds, i.e., the ratio between the boundary length dl

and the skeletal segment length ds. This means that theoretically, skeletal

branches can be detected by checking voxels with negative divergence of the

momentum field. However, adopting any spatial discretization to compute

the flux results in a spread-out of the divergence-based signal.

Following Torsello and Hancock, we thin the shape by iteratively remov-

ing boundary points in decreasing order of divergence. That is to say that
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without any further control on the thinning process we might actually end

up introducing holes in the skeleton or even splitting it into disjoint parts.

Recall that one of the key properties of the skeleton is that of having

the same topology of the original shape. While for some approaches like the

Voronoi-based ones this comes at no cost, the voxel-based methods should

always take into account whether if the removal of a voxel would disconnect

the shape, introduce a hole or erode it by deleting the endpoints. Unfor-

tunately, when dealing with volumetric objects, ensuring that this property

holds is not always an easy task. Hence, in this paper we resort to the voxel

classification of Malandain et al. [34], which allows us to efficiently identify

removable voxels by exploring the connectivity of their neighborhood. More

precisely, Malandain et al. show how to classify a 3D point ~x in a cubic lat-

tice by computing two features. Let Nn(~x) denote the n-adjacent neighbors

of ~x. Then C∗(~x) and C̄(~x), are defined as follows.

Definition 1. C∗(~x) is the number of the 26-connected components 26-

adjacent to ~x in B ∩N∗26(~x), where B is the set of object points.

Definition 2. C̄(~x) is the number of the 6-connected components 6-adjacent

to ~x in W ∩N18(~x), where W is the set of background points.

With this result to hand, we can easily identify the simple points of

the medial surface [34], i.e., those points whose removal does not alter the

topology of the object. We can then proceed with the thinning process by

iteratively removing all simple points in decreasing order of divergence. More

precisely, the conditions for a point to be removed are that 1) it is simple, 2)

it is not an endpoint and 3) it is characterized by a negative divergence of the
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Figure 3: The dilation process is needed to regain details lost at lower levels, although care

must be given not to change the shape topology. The left figure shows a two-dimensional

example where the discretization of a horse shape results in the loss of those details that

are too fine to be captured by the chosen discretization grid. The right figure shows a

voxel (marked with an exclamation mark) whose addition would alter the object topology.

momentum field. Note, however, that due to the errors introduced by the

discretization of the shape, after the first thinning process the medial surface

can be two-voxel thick in certain regions. To ensure thinness at the highest

resolution level we further thin the shape by removing all those points that

are simple but not endpoints of the surface, regardless of their divergence.

Following [3], we decide to restrict our definition of an endpoint to a 6-

neighborhood. In this case, it can be shown that a necessary condition for a

point to be an endpoint is to have three 6-adjacent background voxels [3].

3.4.2. Skeleton Dilation

With the proposed hierarchical approach, once a voxel is flagged as non

skeletal at any level, all its descendants will inherit the property. A problem

with this is that fine details might be lost at coarser level, resulting in parts of

the skeleton that will be missing at all levels (see Fig. 3). Further, note that

the skeletal voxels detected at the coarsest level are not even guaranteed

to be connected and, since all further processing is topology preserving, a
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Figure 4: A box shape and its medial surface.

disconnected skeleton will remain disconnected at all levels.

We address the latter problem by keeping only the largest component,

while the missing detail is addressed by dilating the skeleton after it has been

computed at each new level. This way, once the voxels are small enough to

capture the detail, the skeleton will regrow into the missing parts. Note that

since the dilation adds new voxels to the current medial surface, we need to

ensure that the topology is preserved, thus we dilate only into voxels that

would become simple after the dilation (see Fig. 3).

Let V denote the set of voxels before we start thinning the current level

of the tree, and let U be the subset of V formed by the boundary voxels

of V . We then thin V to reveal the skeletal voxels as previously described.

After the thinning step, we check if some voxel v ∈ U has been selected as

skeletal. If that is the case, we dilate it and we compute D, ~F , ∇ · ~F , ρ,

∇ · (ρ~F ) on the dilated set. Then, we apply the thinning process again. The

dilation-thinning process is iterated until the thinned skeleton contains no

boundary voxels. This process gives us an adaptive dilation which adds only

new candidate skeletal voxels with a large value of ∇ · (ρ~F ) and thus can

be skeletal. Fig. 4 shows the special case of a box shape, together with the
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Figure 5: Dilating the skeleton recovers details lost in the coarser levels.

extracted medial surface. Initially, the whole set of voxels in the interior of

the cube belongs to V , while the boundary voxels on the faces, edges and

vertices of the cube belong also to U . Because of the negative value of the

divergence, the voxels on the edges of the cube will survive the first thinning

step, and thus will be selected as skeletal. Since these voxels belong to U ,

they will be dilated, as explained above. Note that U will also be updated

in order to include the new dilated boundary of V . However, the following

thinning iteration will remove all the voxels in U , and the dilation-thinning

process will finally converge. Note that during all these steps we always

ensure that the topology of the object is not altered by adding or removing

only simple points.

With this improvement, we are able to recover small details that might

have been lost during the first discretizations, as well as longer skeletal seg-

ments. Fig. 5 shows how critical this procedure is. The eagle model in the

figure clearly needs a very dense voxelization in order to capture details such

as the claws, or even entire parts such as the wings. With the proposed

approach, one can simply start from a lower and less computationally in-

tensive resolution and then refine the extracted skeleton to a certain desired

resolution.

Finally, once the iterated dilation-thinning process gives us the final skele-

ton, we perform one final dilation step to ensure the presence of a complete
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(a) Before Thinning (b) After Thinning

Figure 6: The final iteration of the thinning procedure removes all the simple points which

are not endpoints. In this way, however, it can introduce small bumps on the surface, as

shown in (b). Here we would like to remove the vertex marked with Y, but since this

voxel satisfies the endpoint condition it cannot be deleted.

26-neighborhood around the new set of voxels on which we need to compute

ρ and ∇ · (ρ~F ). At the last resolution level, the final dilation process is

substituted with the endpoint-driven thinning that gives us a 1-voxel thick

medial surface.

3.5. Medial Surface Alignment

At the end ot the thinning process, we obtain the set of voxels most likely

to contain the medial axis, thus placing vertices at the center of the voxels,

and deriving the mesh connectivity from the adjacency information of the

voxels, will result in a fine approximation of the medial surface in the form of

a triangulated mesh. There are, however two sources of noise that limit the

quality of the extracted surface, but that can effectively be addressed with a

post-processing step.

The first is an artifact due to the limited control over the order in which

the thinning process eliminates the voxels. The final iteration of the thinning

25



(a) Before Alignment (b) After Alignment

Figure 7: Due to the voxelization, the centers of the voxels are very likely to be displaced

with respect to the true underlying medial surface (left). Hence, the medial surface align-

ment procedure is needed to achieve a better approximation of the skeleton (right). Here

the color of each voxel is proportional to its distance to the shape boundary.

procedure removes all the simple points which are not endpoints, however,

thinning order, and the topology and endpoints preservation rules might

prevent us from choosing the correct skeletal voxels as candidate for elim-

ination, while preferring some adjacent voxel which are not endpoints and

whose removal doesn’t alter the object topology (see Fig. 6). As a conse-

quence, depending on the spatial order of the thinning, we might introduce

little bumps on the surface. Due to their formation process, these bumps

can be detected easily by comparing their distance to the surface to that of a

nearby voxels. Let d(v) be the distance of candidate point v from the shape’s

surface, let ~F (v) be the gradient of the distance map in v, and let w be the

neighbor of v in the direction of ~F (v), i.e., closest to the line v + t ~F (v). If

d(w) > d(v) then we v is a bump and we simply remove v from the set of

skeletal voxels and mark w as skeletal.

The second limit is a result of the discrete nature of the grid: the centers

of the skeletal voxels will be actually slightly displaced with respect to the
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true underlying medial surface. We address this issue by allowing the final

vertices to move within the voxel from the central position to one that is most

likely to lie in the skeletal surface, resulting in a higher precision skeletal mesh

even at low voxel resolution (see Fig. 7).

Hence, given a voxel v, we compare the orientation of its velocity field

(gradient of the distance transform) with that of its 26-neighbours, in order

to determine which voxels lie on the other side of the medial surface. We

call this set Ov. Note that thanks to the previous refinement step, we are

sure that at least one of v’s neighbours will indeed lie on the other side of

the medial surface. With the set of voxels to hand, we proceed by computing

for each voxel w ∈ Ov belonging to this set the intersection between the true

medial surface and the line connecting w and v. Let sv and sw be the surface

points closest to v and w respectively, we look for the point pw = αv+(1−α)w

along the line connecting v to w, for which ||pw − sv|| = ||pw − sw||, i.e., is

equidistant from the closest surface points. This point pw is likely to be very

close to the medial surface, but it displacement from the original position is

not limited to the direction of inward motion of the surface and has also a

tangential component. We eliminate this by interpolating the position over

all the neighbors in Ov.

Fig. 8 illustrates the interpolation process. Let Ov = {w1, · · · , wk} and let

p1, · · · , pk be the corresponding estimated points on the medial surface, we

interpolate between their position using Shepard’s inverse distance weighting

method [35]. Shepard’s interpolation method is a generalized barycentric

interpolation approach designed for sparse data. It reconstruct the position
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Figure 8: The location of the realigned skeletal point is estimated performing an inverse-

distance weighted interpolation of the points pi obtained finding the bitangent point along

the lines connecting v to its neighbors on the other side of the skeletal surface.

of a point as a linear combination of the samples pi

p∗ =

∑k
i=1 wipi∑k
i=1wi

(10)

where the weights wi are a function of the inverse distance di of the inter-

polant p∗ to the samples pi, usually wi = 1
d2i

.

In order to apply Shepard formula we need to estimate the (squared)

distances of the points pi to the interpolant p∗. To this end we make the

simplifying assumption that the gradient of the distance map ~F is approx-

imately orthogonal to the medial surface at p∗. Under this assumption we

note that di = ||pi − v|| sin θi, where θi is the angle between ~F (v) and ~vpi,

and thus

wi =
1

d2
i

=
1

||pi − v||2 sin2 θi
=

1

||pi − v||2(1− cos2 θi)
=

1

||pi − v||2 −
(
(pi − v)T ~F (v)

)2 . (11)

Fig. 7 shows the result of the alignment procedure on the voxels of a

medial surface segment. Perhaps the major advantage of the proposed pro-
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(a) Low Resolution Without Alignment (b) High Resolution Without Alignment

(c) Low Resolution With Alignment (d) High Resolution With Alignment

Figure 9: The proposed alignment procedure yields a faster convergence speed, in the

sense that we are able to get a good approximation of the real underlying medial surface

even at low levels of resolution.

cedure is that it yields a faster convergence speed for the medial surface

extraction algorithm. Fig. 9 clearly shows that when we skip the alignment

step we need to increase the depth of the hierarchical refinement considerably

in order to get a decent approximation of the underlying medial surface. On

the other hand, if we align the skeletal voxels as described in this Section we

can stop the hierarchical refinement earlier and still get a good result.

29



Figure 10: The medial surface of a shape with genus greater than 0.

4. Experimental Results

In this section we evaluate the quality of the proposed algorithm1 with

a wide series of experiments. Here we present quantitative and qualitative

comparison with three different approaches, namely the Hamilton-Jacobi al-

gorithm of Siddiqi et al. [18], the multiscale algorithm of Reniers et al. [23]

and the Voronoi-based approach of Yoshizawa et al. [5]. Note that the first

two methods work on a voxelized 3D shape, while the latter works directly on

the mesh. The analysis has been performed on a selection of 40 shapes from

the Princeton Shape Benchmark [36] and the SHREC 2010 database [37]. All

skeletons are extracted with resmin = 16 and resmax = 1024, unless other-

wise stated. Fig. 11 shows some sample skeletons extracted at various stages

of hierarchical refinement. Note also that the proposed approach works in-

dependently of the shape’s genus, and our dataset include shapes with genus

greater than zero (see for example Fig. 10).
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(a) 32× 32× 32 (b) 64× 64× 64 (c) 128× 128× 128

(d) 256× 256× 256 (e) 512× 512× 512 (f) 1024× 1024× 1024

Figure 11: The hierarchical refinement of the medial surfaces. The skeletal points are

meshed for ease of visualization.

4.1. Qualitative Evaluation

Here we propose a qualitative evaluation of our algorithm by comparing

it with the Voronoi-Based approach of Yoshizawa et al. [5], the Multiscale

algorithm of Reniers et al. [23] and the standard Hamilton-Jacobi method.

Both the implementations of [5] and [23] were downloaded from the authors

websites, while we implemented the Hamilton-Jacobi algorithm simply by

dropping the density integration procedure in our framework.

Fig. 12 shows a qualitative comparison between the four methods. The

Voronoi skeleton is clearly the noisiest one and in most cases fails to provide

an acceptable approximation of the medial surface, although it is computa-

tionally significantly less expensive than the other algorithms. The Multiscale

1Code available at http://www.cs.bham.ac.uk/~rossil/#Software
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Hierarchical Hamilton-Jacobi [18] Multiscale [23] Voronoi-Based [5]

Figure 12: Comparison of our approach against a standard Hamilton-Jacobi algorithm, the

Multiscale algorithm of Reniers et al. [23] and the Voronoi-Based approach of Yoshizawa

et al. [5]. Note that the voxels are colored according to the distance from the boundary

of the shape.

approach on the other hand performs quite well, although due to the com-

plexity of processing a complete voxelization of the shape it was not able to

reach the level of detail of our method. Finally, the Hamilton-Jacobi skele-

tons exhibit a few spurious skeletal segments due to the lack of the correction
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(a) Hierarchical (b) Hamilton Low Threshold (c) Hamilton High Threshold

Figure 13: A magnified view of the head and torso of the medial surface of a human

shape. The standard Hamilton-Jacobi algorithm produces spurious segments which can

be removed by setting a stricter threshold, although this results in a loss of details of the

torso.

of the curvature effects. Fig. 13 provides a magnified view of the torso and

head of a selected medial surface extracted with our algorithm and the stan-

dard Hamilton-Jacobi method, respectively. As Fig. 13(b) shows, the head

of the human shapes contains some spurious segments which are located as

expected in the areas of higher curvature. Although setting a stricter thresh-

old eliminates these spurious branches, it also results in a loss of details in

the torso, as highlighted in Fig. 13(c).

4.2. Skeleton Localization

The Hamilton Jacobi framework [18, 19] is based on the principle that

the (normalized) flux around an infinitesimal area not containing a skeletal

branch is zero, while it is non-zero over the skeleton. This guarantees the

divergence-based thinning approach to converge to the exact location of the

skeleton points. However, as noted in [1], this analysis is true only for the

normalized flux and only in the limit. Adopting any spatial discretization
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(a) single level (b) multi-level (64)

(c) multi-level (32) (d) multi-level (16)

Figure 14: Distribution of the voxels as a function of both divergence and distance to the

skeleton. The starting resolution ranges from 128 × 128 × 128 to 16 × 16 × 16, while the

maximum resolution remains fixed at 128× 128× 128. Note that the points with non-zero

divergence are all located near the skeleton, while the points that are far from the skeleton

have a value of the divergence equal to zero. We note a decrease of the total number of

points that are located far from the skeleton, which is in line with the decrease of total

voxels created. We also observe a little noise due to the propagation of numerical errors,

which is typical of hierarchical algorithms.
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to compute the normalized flux results in non-zero values also outside the

skeleton that is proportional to the curvature of the inward evolving front.

This results in a spread-out of the divergence-based signal especially close to

skeletal endpoints, severely affecting the localization of the skeletal branches

and also resulting in the creation of small spurious branches [1]. The curva-

ture correction process [1], on the other hand, localized the non-zero values

of the divergence much better, resulting in better localization and avoiding

the creation of spurious branches.

In this section we evaluate the localization properties of the skeletons ex-

tracted with our algorithm and we compare it against the standard Hamilton-

Jacobi approach. To evaluate the localization properties of the density cor-

rection we plot the distribution of the voxels as a function of both divergence

and distance to the skeleton. In order to evaluate the loss in localization

caused by the hierarchical approach, we compare this distribution for shapes

at the same target level but at different starting levels. In particular, the

histograms in Fig. 14 plot the average distribution of skeletons extracted at

the maximum resolution of 128× 128× 128, with starting resolutions going

from 128×128×128 (single level), to 16×16×16 (multi-level (16)), thus all

the skeletons were extracted with varying levels of hierarchical refinement.

First we note that when the hierarchical approach goes through more

levels, the points tend to be more concentrated around the skeleton. This is to

be expected since there is a decrease in the total number of voxels expanded.

In general we see that the proposed algorithm yields a good localization of

the skeleton, since the points with non-zero divergence are all located near

the skeleton, while the points that are far from the skeleton have a value of
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Figure 15: Comparison between the momentum field (top) and the velocity field (bottom).

The top histogram shows a good localization of the skeleton, while in the bottom histogram

we observe a non-negligible tail of distant points with non-zero divergence.

the divergence equal to zero. However, we do observe a little noise due to the

propagation of numerical errors, which is typical of hierarchical algorithms.

Nonetheless, the distribution remains tightly peaked, with very few points

far from the skeleton with a non-negligible divergence of the momentum field.

Fig. 15 compares the localization of the divergence of the momentum

field against that of the velocity field as used by Siddiqi et al. [18]. As

previously reported by Torsello and Hancock [1], even in 3D the momentum

field localizes the skeleton much more tightly than the velocity field.
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Here we show also a slice of the shape voxelization in order to reveal its

interior, where the voxels are colored according to the value of the divergence,

i.e., low values correspond to white while high (negative) values correspond

to black. Recall that the value of ∇ · ~F in a point p depends on the local

boundary curvature and thus its value tends to infinity as p moves closer to

a skeleton endpoint, even if p is not skeletal.

As a consequence of this, we observe some blurred areas around the end-

points of the medial surface. On the other hand, in the density-corrected

slice we see a much sharper localization of the skeleton.

4.3. Sensitivity to Mesh Resolution

We now evaluate the sensitivity of the proposed approach to different

samplings and sampling densities of the mesh. Given a mesh, we compute 3

increasing simplifications where the number of triangles is decreased respec-

tively to 50%, 25% and 10% (see Fig. 16). For each of these, we extract the

medial surfaces using our approach, the standard Hamilton-Jacobi one, the

Voronoi-Based approach of Yoshizawa et al. [5] and the Multiscale [23] al-

gorithm. We then compute the average nearest neighbour distance between

the voxels of the medial surfaces of the simplified meshes and those of the

original medial surface.

Table 1 shows the average cost for different levels of simplification and

different skeleton extraction methods. As we can see, our approach yields

the minimum average distance, hence showing that it is less sensitive to the

mesh resolution than the other methods. Note that under a 50% mesh sim-

plification the Hamilton-Jacobi algorithm performs similarly to our method,

as by removing 50% of the triangles the mesh quality is only slightly altered,
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(a) Original (b) 50% Simplification

(c) 25% Simplification (d) 10% Simplification

Figure 16: Medial surfaces of increasingly simplified meshes extracted, where the number

of triangles is reduced to 50%, 25% and 10% respectively. All the medial surfaces are

extracted using the proposed algorithm.

and hence we don’t observe the formation of new spurious branches. On

the other hand, as we further simplify the mesh, its surfaces becomes less

smooth and this in turns yields the formation of some spurious segments

which induce a higher average nearest-neighbour distance. As expected, the

Voronoi-based approach turns out to be the most unstable. It is known, in

fact, that in the case of Voronoi-Based skeletonization algorithms the quality

of the extracted medial surface greatly depends on the mesh resolution and

on how densely it is being sampled. It is hence clear that by simplifying the
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Mesh Simplification 50% 75% 90%

Our Method 0.0009 0.0012 0.0017

Hamilton-Jacobi 0.0008 0.0014 0.0024

Multiscale [23] 0.0004 0.0019 0.0021

Voronoi-Based [5] 0.0032 0.0044 0.0051

Table 1: Average nearest neighbour distance between medial surface of the original shape

and its simplified counterparts. Note that our methods is less sensitive to mesh quality

when compared to the standard Hamilton-Jacobi approach, the Voronoi-Based approach

of Yoshizawa et al. [5] and the Multiscale [23] algorithm.

shape we are inevitably altering the quality of the resulting medial surface,

as Table 1 clearly shows. Finally the Multiscale algorithm seems to perform

slightly better than us when the number of triangles is decreased by 50%,

while for higher levels of mesh simplification our approach is achieving better

results.

4.4. Robustness Against Noise

A good skeletonization algorithm should also be able to deal with mod-

erately noisy inputs. To this end, we approximate the skeletonization of

the diffused shape by smoothing the distance map as in [1]. Hence, given

a voxel and its neighborhood, we update the local value of the distance by

interpolating the values of the distance function on its neighbors [38].

Fig. 17 shows the robustness to noise of the proposed approach. The

results obtained by our algorithm and the Multiscale one are comparable.

Note, though, that in the latter the robustness is achieved thanks to a fine

tuning of the importance threshold, comes at the cost of losing some detail
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Our Method Hamilton-Jacobi Multiscale Voronoi-Based

Figure 17: Effects of noise. The first row shows the skeletons extracted from the original

object, while the second and the third rows show the skeletons after random vertex dis-

placement of respectively 10% and 20% of the average edge applied to the shape. From

left to right: our approach, Hamilton-Jacobi, Multiscale [23] and Voronoi-based [5].

in the finer parts. On the other hand the Voronoi-based algorithm is unable

to cope with the noise on the mesh boundary and thus performs much worse

than the other approaches. Finally, the presence of noise clearly increases

the formation of spurious branches in the Hamilton-Jacobi algorithm.

In order to evaluate quantitatively the robustness to noise, we compute

again the average nearest neighbour distance between the medial surface ex-

tracted from the original mesh and the medial surfaces extracted from the

noisy shapes. The results are shown in Table 2. As the qualitative exper-

iments suggested, the Voronoi-based approach is clearly performing worse

than all the other methods, while the Multiscale approach and the proposed

algorithm yield similar results, although we know that in the Multiscale ap-
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Mesh Noise 10% 20%

Our Method 0.0010 0.0014

Hamilton-Jacobi 0.0013 0.0033

Multiscale [23] 0.0009 0.0018

Voronoi-Based [5] 0.0112 0.0146

Table 2: Average nearest neighbour distance under increasing mesh noise. Compared to

the standard Hamilton-Jacobi approach and the Voronoi-Based approach of Yoshizawa

et al. [5], our methods is less sensitive to noise, while it performs similarly to the Multi-

scale [23] algorithm.

proach this comes at the cost of losing fine details. Finally, once again the

importance of the density correction is highlighted by the decreased perfor-

mance of the standard Hamilton-Jacobi approach.

4.5. Time and Spatial Complexity

Perhaps the most obvious advantage of our algorithm is the decrease of

space and time requirements. As for theoretical complexity, it is governed by

the sorting of points with respect to their distance to the boundary that takes

place before the density integration, which is O(n log (n)), where n is the

number of leaves of the octree. Anyway, while in the case of a complete grid

n = m3, where m is the final skeleton resolution, in the proposed approach

the growth is only quadratic, i.e., n = m2, since the voxels are refined only

around the two-dimensional medial surfaces.

Fig. 18 shows the memory and time requirements for the extraction of

a series of skeletons from a wide variety of shapes. Note that because of

the higher memory requirements of the complete discretization, the machine
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Figure 18: The plots show the memory and time requirements for the computation of a

series of skeleton with different levels of refinement. Our approach clearly outperforms the

standard algorithm where the space is completely discretized.

on which the experiments were performed, which is equipped with 20 GB

of RAM, couldn’t afford resolutions beyond 256 × 256 × 256. On the other

hand, using the hierarchical approach we could easily reach resolutions as

high as 1024× 1024× 1024, which would have required 1,073,741,824 voxels

if we were to voxelize the shape uniformly.

5. Conclusion

In this paper we presented a novel algorithm for medial surfaces extraction

that is based on the density-corrected Hamiltonian analysis [1]. In order to

cope with the exponential growth of the number of voxels, we compute a first

coarse discretization of the mesh which is iteratively refined until a desired

resolution is achieved. The refinement criterion relies on the analysis of the

momentum field, where only the voxels with a suitable value of the divergence

are exploded to a lower level of the hierarchy. In order to partially compensate

for the discretization errors incurred at the coarser levels, a dilation procedure

is added at the end of each iteration. Finally we designed a simple alignment
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procedure to correct the displacement of the extracted skeleton with respect

to the true underlying medial surface. We evaluated the proposed approach

with an extensive series of qualitative and quantitative experiments.
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