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Abstract
In this paper, we develop a new entropic match-
ing kernel for weighted graphs by aligning depth-
based representations. We demonstrate that this
kernel can be seen as an aligned subtree ker-
nel that incorporates explicit subtree correspon-
dences, and thus addresses the drawback of ne-
glecting the relative locations between substruc-
tures that arises in the R-convolution kernels. Ex-
periments on standard datasets demonstrate that
our kernel can easily outperform state-of-the-art
graph kernels in terms of classification accuracy.

1. Introduction
Graph kernels are powerful tools for structural analysis in
machine learning. The main advantage of using graph ker-
nels is that they provide an implicit embedding of graphs
in a high dimensional space where structural information
is better preserved. Most of the existing graph kernels are
instances of the R-convolution kernels proposed by Haus-
sler (Haussler, 1999). This is a generic way of defining
graph kernels by decomposing the input graphs into small-
er and simpler substructures and comparing the original
graphs in terms of these substructures. The R-convolution
kernels can be categorised into the following classes, name-
ly graph kernels based on comparing all pairs of a) walk-
s (Jebara et al., 2004), b) paths (Borgwardt & Kriegel,
2005), c) cycles (Aziz et al., 2013), and d) subgraph or sub-
tree structures (Shervashidze et al., 2009; Kriege & Mutzel,
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2012; Bai et al., 2014a;c). One drawback arising in the
R-convolution kernels is that they neglect the relative loca-
tions of substructures. This is because the R-convolution k-
ernels cannot establish reliable structural correspondences
between substructures. Moreover, most R-convolution k-
ernels cannot accommodate weighted graphs, i.e., a graph
where each edge is associated with a weight. This is be-
cause the distances between pairs of adjacent vertices de-
pend on the edge weight, and it is difficult to identify the
isomorphism for weighted (sub)graphs unless the weighted
information is discarded. These drawbacks limit the preci-
sion of graph kernel measures.

To overcome the shortcomings of existing R-convolution
kernels, we propose a novel aligned subtree kernel for
weighted graphs by aligning depth-based (DB) represen-
tations. In the literature (Crutchfield & Shalizi, 1999; Es-
colano et al., 2012), DB representations of un-weighted
and un-directed graphs are powerful tools for characteris-
ing graphs in terms of complexity measures. One approach
to computing the DB representation of a graph is based
on measuring the entropies on a family of K-layer expan-
sion subgraphs centred on the vertex having a maximum
topological distance K to the remaining vertices (Bai &
Hancock, 2014). Unfortunately, computing the DB repre-
sentations for edge-weighted graphs tends to be an elusive
task. This is because the distances between different pairs
of adjacent vertices depend on the edges weight, making it
harder to determine the K-layer expansion subgraphs. To
overcome this problem, for each vertex of a weighted graph
GW , we compute its DB representation, i.e., its entropic
representation. More precisely, we compute the entrop-
ic representation on the vertices of the quantum-directed
graph GD that is obtained from GW through the simula-
tion of a CTQW (Emms et al., 2009). We show that the
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CTQW can reflect rich characteristics (e.g., the topologi-
cal and the weighted information) of weighted graphs (see
details in Section 2.1). Thus, we show that the entrop-
ic representation of the vertices of GD reflects both the
topological and weighted information of GW . Moreover,
we define a new TI method to strengthen the vertex labels
in GW through GD. We show that each strengthened la-
bel of GW corresponds to a non-backtracking subtree in
GD. Based on the obtained entropic representations for
two weighted graphs, we develop a new entropic match-
ing and identify the correspondence between vertices hav-
ing the same strengthened labels. Finally, we compute the
matching-based kernel for weighted graphs by counting the
number of matched vertex pairs. We theoretically show the
relationship between our kernel and the classical all sub-
graph kernel. We demonstrate that the new kernel can be
seen as an aligned subtree kernel that incorporates explic-
it subtree correspondences. As a result, our kernel not only
accommodates both un-weighted and weighted graphs, but
also addresses the drawback of neglecting the relative lo-
cations between substructures arising in the R-convolution
kernels. Experiments on standard graph datasets demon-
strate that our kernel can easily outperform state-of-the-art
graph kernels in terms of classification accuracy.

2. Preliminary Concepts
2.1. A Quantum-directed Graph through The CTQW

The CTQW represents the quantum counterpart of the
continuous-time random walk (CTRW) (Emms et al.,
2009). The advantages of using the CTQW are three-
fold. First, unlike the classical CTRW, the CTQW is re-
versible, non-ergodic and does not possess a limiting distri-
bution. As a result, the CTQW reduces the tottering prob-
lem arising in the CTRW (Kempe, 2003). Second, the C-
TQW uses qubits rather than bits as the basic representa-
tional unit (Nielsen & Chuang, 2000). Thus, the CTQW
can capture rich topological information in a graph struc-
ture (Aubry et al., 2011; Rossi et al., 2013b; Suau et al.,
2013). Third, the CTQW is not dominated by the low fre-
quencies of the Laplacian spectrum, and thus is able to dis-
criminate better among different graph structures.

LetGW (V,E) be a weighted graph with vertex set V , edge
set E, and a weight function ω : V × V → R+. If
ω(u, v) > 0 (ω(u, v) = ω(v, u)), we refer to (u, v) as
an edge of GW , and we say that u ∈ V and v ∈ V are
adjacent. Using the Dirac notation, the basis state corre-
sponding to the CTQW being at a vertex u ∈ V is de-
fined as |u〉. A general state of the CTQW at time t is
|ψt〉 =

∑
u∈V αu(t) |u〉, where the amplitudes αu(t) ∈ C.

The probability of the CTQW visiting a vertex u ∈ V
at time t is given by Pr(Xt = u) = αu(t)α∗u(t), where
α∗u(t) is the complex conjugate of αu(t). Let A be the ad-

jacency matrix of GW , which satisfies A(u, v) = w(u, v).
The degree matrix D is a diagonal matrix whose elements
are given by D(u, u) = du =

∑
v∈V A(u, v), where du

is the degree of u. We compute the Laplacian matrix as
L = D − A. The spectral decomposition L = Φ>ΛΦ
of the Laplacian matrix L is given by the diagonal ma-
trix Λ = diag(λ1, λ2, ..., λ|V |) with the ordered eigenval-
ues as elements (λ1 < λ2 < ... < λ|V |) and the matrix
Φ = (φ1|φ2|...|φ|V |) with the corresponding ordered or-
thonormal eigenvectors as columns.

Given an initial state |ψ0〉, the Schrödinger equation gives
us the state of the walk at time t, i.e.,

|ψt〉 = Φ>e−iΛtΦ |ψ0〉 . (1)

In this work, to compute the initial state of the CTQW for
the weighted graph GW (V,E), we first transform GW into
an un-weighted graph G by ignoring the edge weighted in-
formation, i.e., for each pair of adjacent vertices v ∈ V and
u ∈ V we have ω(u, v) = ω(u, v) = 1. We use the rooting
of the vertex degree distribution of G as the initial state.

In quantum mechanics, a pure state can be described as
a single ket vector. A quantum system, however, can al-
so be in a mixed state, i.e., a statistical ensemble of pure
quantum states |ψt〉, each with probability pt. The den-
sity matrix (or density operator) of such a system is de-
fined as ρ =

∑
t pt |ψt〉 〈ψt|. Let |ψt〉 denote the state cor-

responding to a CTQW that has evolved from |ψ0〉 until
a time t. Using Eq.(1), we can define the time-averaged
density matrix (i.e., mixed density matrix) ρTG for G as
ρTG = 1

T

∫ T
0

Φ>e−iΛtΦ |ψ0〉 〈ψ0|Φ>eiΛtΦ dt. Let φra and
φcb denote the (ra)-th and (cb)-th elements of the matrix
of eigenvectors Φ of the Laplacian matrix L. When we let
T → ∞, Rossi et al. (Rossi et al., 2013b) have shown that
the (r, c)-th element of ρ∞G can be computed as

ρ∞G (r, c) =
∑
λ∈Λ̃

∑
a∈Bλ

∑
b∈Bλ

φraφcbψ̄aψ̄b, (2)

where Λ̃ is the set of distinct eigenvalues of the Laplacian
matrix L, and Bλ is a basis of the eigenspace associated
with λ. The mixed density matrix ρ∞G is a |V |×|V |matrix.
For a weighted graphGW , the time-averaged probability of
the CTQW to visit a vertex v ∈ V at time T →∞ is

pQ(v) = ρ∞G (v, v). (3)

Interestingly, despite the non-stationary behaviour of the
CTQW, we have that as T → ∞ the time-averaged prob-
ability converges. Moreover, Eq.(1) indicates that the evo-
lution of the CTQW relies on the spectral decomposition
of the graph Laplacian, which encapsulates the weight in-
formation residing on the edges. As a result, the proba-
bility pQ(v) not only reflects rich interior topology infor-
mation but also captures the edge weighted information
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of GW . Note that, the CTQW also accommodates un-
weighted graphs. For an un-weighted graph, we just need
to guarantee that each entry of the adjacency matrix is 1
if the corresponding pairwise vertices are adjacent, and 0
otherwise. See details in the literature (Bai et al., 2014d).

Quantum-directed graph: Let GW (V,E) be a weighted
graph. Its quantum-directed graph GD(VD,

−→
ED) is estab-

lished by replacing each edge by a directed edge through
a CTQW (for T = ∞) and ignoring the weighted infor-
mation residing on the edge. More specifically, we simu-
late a CTQW on GW and we associate with each vertex
v ∈ V the time-averaged probability pQ(v). The quantum-
directed graph GD(VD,

−→
ED) is defined as{

VD = V,
−→
ED = {

−−−→
(u, v)| (u, v) ∈ E, pQ(u) ≥ pQ(v)}.

(4)

The structure of GD is represented by a |VD| × |VD| adja-
cency matrix AD as follows

AD(ud, vd) =

{
1 if (u, v) ∈ E and pQ(u) ≥ pQ(v),
0 otherwise. .

(5)
where ud ∈ VD, vd ∈ VD, ud = u and vd = v. �

From Eq.(4) and Eq.(5), we observe that the directed-
quantum graph GD has the same vertex set of its origi-
nal weighted graph GW . Moreover, the directed edges of
GD are established by comparing the probabilities of the
CTQW visiting each pair of adjacent vertices in GW . S-
ince the probability of the CTQW visiting each vertex on
GW depends on the edge weights information of GW , the
quantum-directed graphGD can not only preserve the main
topological information of the weighted graph GW , but al-
so reflect the edge weighted information of GW through
the transformed directed edges from GW .

2.2. A Tree-Index Method for Weighted Graphs

In this subsection, we introduce a new non-backtracking
TI method for strengthening the vertex label of a weight-
ed graph GW (V,E) through its quantum-directed graph
GD(VD,

−→
ED) (V = VD). In other words, we compute the

strengthened label for a vertex vD ∈ VD, and use this as the
strengthened label for a vertex v ∈ V which corresponds
to vD (i.e., v = vD). Each strengthened label of GW will
corresponds to a subtree on GD. We commence by com-
puting them-sphere neighbourhood for each vertex ofGD.
For each iteration m, the strengthened label for vD is com-
puted by taking the union of the original label of vD and
the original labels of the m-sphere neighbourhood vertices
of vD. Moreover, We use a Hash function to compress the
strengthened label list into a new short label, and use this
as the new label of the corresponding vertex v of GW . The

pseudocode of the TI algorithm is shown in Algorithm 1,
where the m-sphere neighbourhood of a vertex vD ∈ VD
is denoted as N (vD) = {uD ∈ VD|S(vD, uD) = m} and
S(vD, uD) is the shortest path length between vD and uD.

Algorithm 1 Vertex labels strengthening procedure
1: Initialisation.

• Input a weighted graph GW (V,E), transform GW into the
quantum-directed graph GD(VD,

−→
ED).

• Set m=0. For each vertex vD ∈ VD (vD = v ∈ V ), assign
the original label as the initial label Lm(vD).

2: Update the label for each vertex.

• Set m=m+1. For vD , assign it a new label list as

Lm(vD) = ∪uD∈N (vD){L0(uD),L0(vD)}, (6)

where Lm−1(vD) is at the end of L0(vD), and L0(uD) is
arranged in ascending order.

3: Compress strengthened label lists into new short labels.

• Using the Hash function H : L → Σ, compress Lm(vD)
into a new short label for vD as Lm(vD) = H(Lm(vD)).

• The strengthened label for v ∈ V at m iteration is

Lm(v) = Lm(vD). (7)

4: Repeat steps 2 to 4 until m achieves a pre-specified value.

Note that, in step 4 we use the same function H for all
the graphs. This guarantees that all the identical labels of
different graphs are mapped into the same number. More-
over, for the weighted graph GW (V,E) and its quantum-
directed graph GD(VD,

−→
ED), each strengthened label of a

vertex v ∈ V corresponds to a subtree of height m rooted
at the corresponding vertex vD ∈ VD (v = vD) of GD, and
the subtree consists of the m-sphere neighbourhood of vD
and the shortest paths from vD to the neighbourhood. For a
pair of vertices u ∈ V and v ∈ V , if the strengthened labels
Lm(u) and Lm(v) are equivalent, the corresponding sub-
trees rooted at uD ∈ VD (u = uD) and vD ∈ VD (v = vD)
are seen as approximately isomorphic. The new TI method
is an inexact TI method. In fact, for a vertex on GD, there
may be more than one shortest path from the root to each
vertex in its m-sphere neighbourhood. Moreover, the la-
bels of the vertices in the shortest paths are also discard-
ed. However, compared to the existing TI methods in (Bai
et al., 2014d; Shervashidze et al., 2011) which cannot avoid
or limit the notorious tottering problem, our TI method can
completely avoid the tottering problem. This is because the
shortest paths from the root to its m-sphere neighbourhood
are non-backtracking structures. Note finally that, for iter-
ation m, if |N (vd) = {ud ∈ VD|S(vd, ud) = m}| = 0, we
say that there is no strengthened label for the vertex vd and
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the corresponding subtree of heightm rooted at vd does not
exist. In other words, the strengthened label of v = vd for
the original weighted graph GW also does not exist.

3. Entropic Matching for Weighted Graphs
3.1. The Entropic Representation for Weighted Graphs

In this subsection, we compute the DB representation,
namely the h-layer entropic representation, around a ver-
tex of a weighted graphGW (V,E). The advantage of using
this representation to characterise graphs is that it not on-
ly reflects dominant depth complexity information around
each vertex of a graph but it also represents the graph or the
corresponding vertex in a high dimensional space (Crutch-
field & Shalizi, 1999; Bai & Hancock, 2014). Unfortunate-
ly, as we have stated, directly computing this representa-
tion tends to be elusive, since it is difficult to determine the
required expansion subgraphs based on the pairwise dis-
tances between vertices of a weighted graph. To address
this problem, we transform GW into a quantum-directed
graph GD(VD, ED) through the CTQW. We compute the
h-layer entropic representation of GW on GD.

We commence by computing the h-layer un-directed D-
B representation on the un-directed graph GU (VU , EU ),
which is established by replacing the directed edges of GD
with bidirectional edges. In other words, GU can also be
seen as a transformed graph of GW where edge weighted
information is ignored. The h-layer DB representation has
been previously introduced by Bai et al. (Bai et al., 2014b),
by generalising the DB complexity trace or representation
around the centroid vertex (Bai & Hancock, 2014).

The h-layer un-directed DB representation: For
GU (VU , EU ) and a vertex vU ∈ VU , let a vertex setNK

vU be
defined as NK

vU = {uU ∈ VU | SG(vU , uU ) ≤ K}, where
SG is the shortest path matrix of GU and SG(vU , uU ) is
the shortest path length between vU and uU . For GU , the
K-layer expansion subgraph GKvU (VKvU ; EKvU ) around vU is{

VKvU = {uU ∈ NK
vU };

EKvU = {uU , wU ∈ NK
vU , (uU , wU ) ∈ EU}.

(8)

For GU , the h-layer un-directed DB representation around
vU ∈ VU is

DBhGU (vU ) = [HS(G1
vU ), · · · , HS(GKvU ), · · · , HS(GhvU )]>,

(9)

where (K ≤ h). HS(GKvU ) is the Shannon entropy of GKvU
associated with the steady state of the random walk (Bai &
Hancock, 2013) defined as

HS(GKvU ) = −
∑

uU∈VKvU

P (uU ) logP (uU ). (10)

Here, P (uU ) = DGKvU
(uU , uU )

∑
wU∈VKvU

DGKvU
(wU , wU )

is the probability of the random walk visiting uU ∈ VKvU ,
and DGKvU is the diagonal degree matrix of GKvU . �

Note that the h-layer un-directed DB representation
DBhGU (vu) can reflect the entropy-based information con-
tent flow rooted at each vertex on the original weighted
graph GW in terms of the topological information. To cap-
ture the weighted information, we also compute the DB
representations on the quantum-directed graph GD.

The h-layer directed DB representation: For GW (V,E)

and its quantum-directed graph GD(VD,
−→
ED). We first

establish the K-layer directed expansion subgraph of GD
through GU (VU , EU ) and the K-layer expansion subgraph
GKvU (VKvU ; EKvU ) on GU . The K-layer directed expansion
subgraph GKvD (VKvD ;

−→
E KvD ) around vD ∈ VD is{

VKvD = {uU | uU ∈ VKvU };−→
E KvD = {

−−−−−−→
(uU , wU ) ∈

−→
ED| (uU , wU ) ∈ EKvU }.

(11)

where vD ∈ VD, vU ∈ VU , and vD = vU . In other words,
GKvU can be seen as a transformed graph of GKvU (VKvU ; EKvU )
of GU associated with the directed edges in GD. For GD,
the h-layer directed DB representation around vD ∈ VD is
−−→
DBhGD (vD) = [HM (G1

vD ), ...,HM (GKvD ), ...,HM (GhvD )]>

(12)

where HM (GKvD ) is the mixed entropy of GKvD defined as

HM (GKvD ) = HV (GvD ) +HE(GvD ). (13)

Here,HV (GvD ) is the approximated directed von Neumann
entropy of GvD (Ye et al., 2013) defined as

HV = 1− 1

|
−→
E KvD |

−

∑
−−−−−−→
(uD,wD)∈

−→
E KvD

{
1

do(uD)di(wD)

}

2|
−→
E KvD |2

,

(14)
where do(uD) is the out-degree of uD ∈ VKvD and di(wD)
is the in-degree of wD ∈ VKvD . And HE(GvD ) is the Shan-
non entropic signature of Gvd defined as

HE(GKvD ) = −
∑

uD∈VKvD∧uD∈V ;

PQ(uD) logPQ(uD),

(15)
where PQ(uD) is the probability of the CTQW visiting vD
in the original weighted graph GW (V,E). Note that, the
Shannon entropic signature HE(GKvD ) is not a strict Shan-
non entropy measure, since it is not computed by using all
the CTQW probabilities of the vertices in GW (V,E). �

The h-layer directed DB representation
−−→
DBhGD (vD) not

only captures directed information residing on the edges of
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the directed-quantum graph GD, but also encapsulates the
probability information of the CTQW visiting the vertices
on the original weighted graph GW . As we have stated,
both the probabilities of the CTQW visiting the vertices in
GW and the directed information residing on the edges in
GD can reflect the weighted information on the edges in
GW . The h-layer directed DB representation DBhGD (vD)
thus captures the weighted information on GW .

The h-layer entropic representation: For the weight-
ed graph GW (V,E) and its quantum-directed graph
GD(VD, ED), we compute the h-layer entropic represen-
tation EhGW (v) around each vertex v ∈ V by summing the
h-layer un-directed DB representation on the un-directed
graph GU (VU , EU ) transformed from GD(VD,

−→
ED) and

the h-layer directed DB representation on GD(VD,
−→
ED).

For GW (V,E) and v ∈ V , EhGW (v) is defined as

EhGW (v) = DBhGU (vU ) +
−−→
DBhGD (vD), (16)

where v = vU (vU ∈ VU ) and v = vD (vD ∈ VD). 2

Discussion: Eq.(16) indicates that for the weighted graph
GW (V,E) the h-layer entropic representation around each
vertex not only reflects the original topological information
of GW through the un-directed DB representation, but al-
so captures the weighted information of GW through the
directed DB representation. As a result, the h-layer en-
tropic representation provides a convenient way of mea-
suring the information content flow (i.e., the DB informa-
tion (Escolano et al., 2012)) around a vertex for a weighted
graph, and can be seen as a vectorial entropic signature for
the vertex. Furthermore, note that, for GW (V,E) and it-
s quantum-directed graph GD(VD, ED), the strengthened
label of a vertex v ∈ V at the m iteration of the TI method
(defined in Algorithm 1) corresponds to a subtree of height
m rooted at vD ∈ VD (v = vD). Eq.(11) indicates that
the K-layer directed expansion subgraph GKvD (VKvD ;

−→
E KvD )

rooted at vD from GD encapsulates the subtree structure,
if K ≥ m. As a result, the h-layer entropic representa-
tions also offer us an elegant way of identifying the corre-
spondence information between a pair of subtrees in GD
by aligning the the h-layer entropic representation of GW ,
i.e., aligning the subtrees rooted at vertices.

3.2. The Entropic Weighted Graph Matching

We propose a new entropic graph matching method for a
pair of weighted attributed graphs by aligning their entrop-
ic representations. Our matching method is similar to that
previously introduced by Scott et al. in (Scott & Longuet-
Higgins, 1991) for point set matching, that computes an
affinity matrix in terms of the distances between points (i.e.,
for a pair of graphs, we commence by computing the vec-
torial signature for each vertex as the point coordinate of
the vertex, and compute the distance measures between the

point coordinates of pairwise vertices to establish the affin-
ity matrix). For a pair of weighted graphs GW ;p(Vp, Ep)
and GW ;q(Vq, Eq), we use the h-layer entropic represen-
tations EhGW ;p

(vi) and EhGW ;q
(uj) as the point coordinates

for the vertices vi ∈ Vp and uj ∈ Vq , respectively. For
GW ;p and GW ;q , we compute the Euclidean distance be-
tween EhGW ;p

(vp) and EhGW ;q
(uq) as the elementR(i, j) of

their affinity matrix R, and R(i, j) is

R(i, j) = ‖EhGW ;p
(vi)− EhGW ;q

(uj)‖2. (17)

where R is a |Vp| × |Vq| matrix. R(i, j) represents the dis-
tance between the vertex vi in Gp and the vertex uj in Gq .
Furthermore, for the affinity matrix R, the rows index the
vertices of Gp, and the columns index the vertices of Gq .

If R(i, j) is the smallest element simultaneously in row i
and in column j, and the strengthened vertex labels Lm(vi)
and Lm(vj) are the same, we say that there is a one-to-
one correspondence between vi and uj , i.e., vi and uj are
matched. We record the correspondence using the corre-
spondence matrix C(m) ∈ {0, 1}|Vp|×|Vq| that satisfies

C(m)(i, j) =


1 if R(i, j) is the smallest element,

both in row i and in column j,
Lm(vi) and Lm(uj) exist,
and Lm(vi) = Lm(uj);

0 otherwise.
(18)

where the parameter m indicates that the affinity matrix is
computed in terms of the strengthened vertex labels from
the m-th iteration of Algorithm 1. Eq.(18) indicates that if
C(m)(i, j) = 1, the vertices vi and vj are matched.

Note that the vertex of a graph may have more than one
matched vertex from the other graph. We propose to as-
sign a vertex to at most one matched vertex. One way to
achieve this is to update the matrix C(m;h) using the Hun-
garian algorithm (Munkres, 1957), following the strategy
proposed in (Bai et al., 2014b). Unfortunately, the Hungar-
ian algorithm usually requires very expensive computation-
s. An alternative strategy is to randomly select a subset of
the matched vertices. In other words, given the correspon-
dence matrix C(m), we select a random entry with value 1,
and we set every other element of that row and column of
C(m) to 0. Based on our evaluations, this strategy does not
influence the effectiveness of the resulting kernel in Section
4, while keeping the computational complexity low.

4. A Graph Kernel from Entropic Matching
4.1. The Entropic Matching Weighted Graph Kernel

Let Gp(Vp, Ep) and Gq(Vq, Eq) be a pair of weighted
graphs. Based on the entropic matching in Section 3.2, we
commence by computing the correspondence matrix C(m).
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The entropic matching kernel k(M)
EM is

k
(M)
EM (Gp, Gq) =

M∑
m=0

|Vp|∑
i=1

|Vq|∑
j=1

C(m)(i, j), (19)

where M is the greatest value of the parameter m (i.e., m
varies from 0 to M ). Eq.(19) indicates that k(M)

EM (Gp, Gq)
counts the number of matched vertex pairs betweenGp and
Gq over the M correspondence matrices C(m). Intuitively,
the entropic matching kernel k(M)

EM is positive definite. This
is because k(M)

EM counts pairs of matched vertices over the
M correspondence matrices C(m). 2

4.2. Relation to the Existing Classical Kernel

The entropic matching kernel can be re-defined in another
manner that elucidates its effectiveness, compared to the
classical all subgraph (AS) kernel on sample graphs, i.e.,
the graphs are un-weighted and un-directed. To commence,
we review the definition of the AS kernel. Let Ga(Va, Ea)
and Gb(Vb, Eb) be a pair of un-weighted and un-directed
graphs. The AS kernel is defined as

kAS(Ga, Gb) =
∑

SavGa

∑
SbvGb

kI(Sa, Sb), (20)

where

kI(Sa, Sb) =

{
1 if Sa ' Sb,
0 otherwise.

(21)

As a result, the AS kernel is computed by counting the
number of isomorphic subgraph pairs between Ga and Gb.

We re-define the entropic matching kernel for weighted
graphs in a manner which is similar to that of the AS kernel
between sample graphs. Let a pair of weighted graphs be
Gp(Vp, Ep) and Gq(Vq, Eq), and their quantum-directed
graphs be GD;p and GD;q . Since the entropic matching
kernel k(M)

EM for weighted graphs is defined by counting
the number of matched vertex pairs, that have the same
strengthened vertex labels from the m iteration of Algo-
rithm 1. Moreover, each strengthened label of a weight-
ed graph corresponds to a subtree on its quantum-directed
graph. k(M)

EM (Gp, Gq) can thus be re-written as

k
(M)
EM (Gp, Gq) =

∑
SpvGD;p

∑
SqvGD;q

kI(Sp, Sq), (22)

where

kI(Sp, Sq) =


1 if Lm(vp) corresponds to Sp,

Lm(uq) corresponds to Sq,
vp and uq are matched, and
Lm(vp) and Lm(uq) exist;

0 otherwise.
(23)

where vp ∈ Vp and vq ∈ Vq . Eq.(22) and Eq.(23) in-
dicate that the entropic kernel k(M)

EM can be seen as a k-
ernel that counts the number of isomorphic subtree pairs
on quantum-directed graphs. Each pair of isomorphic sub-
trees are corresponded by a pair of matched or aligned ver-
tices that have the same strengthened labels on the origi-
nal weighted graphs. In other words, we establish the reli-
able locational correspondence between the pair of isomor-
phic subtrees. As a result, the entropic matching kernel is
essentially an aligned subtree kernel that counts aligned
isomorphic subtree pairs on the quantum-directed graphs
transformed from the corresponding weighted graphs.

Discussion: Eq.(20) and Eq.(23) indicate that both the k-
ernels kAS and k(M)

EM need to identify pairs of isomorphic
subgraphs or subtrees. For kAS and k

(M)
EM , each pair of

isomorphic subgraphs or subtrees will add an unit value
to the kernel function. However, Eq.(20) and Eq.(23) also
highlight the following difference between kAS and k(M)

EM .
a) For k(M)

EM , only the subtrees that correspond to a pair
of aligned vertices are evaluated with respect to being i-
somorphic. For kAS , any pair of subgraphs are evaluated
for identifying the isomorphism. As a result, the compu-
tational efficiency of k(M)

EM is faster. b) For k(M)
EM , all pairs

of isomorphic subtrees are identified by a corresponding
pair of matched vertices. Thus, we ensure locational corre-
spondences between the isomorphic subtrees in the global
graphs. By contrast, a pair of subgraphs having no location
correspondence may also be seen as isomorphic by kAS .

4.3. Discussion and Related Work

The entropic matching kernel is related to the DB represen-
tation defined in (Bai & Hancock, 2014). However, there
are two significant differences. First, the DB representa-
tion in (Bai & Hancock, 2014) can not be performed on
weighted graphs. This is because the distances between
pairs of adjacent vertices in a weighted graph are not equiv-
alent. As a result, it is difficult to determine the expansion
subgraphs around the centroid vertex. By contrast, the en-
tropic representation can not only capture the topological
information for weighted graphs through the h-layer DB
representation, but also reflect the edge weighted informa-
tion through the directed h-layer DB representation on the
quantum-directed graph. As a result, the h-layer entropic
representation can accommodate weighted graphs. Second,
the DB representation from the centroid vertex is a vecto-
rial signature of a graph, i.e., it is an embedding vector for
the graph. Embedding a graph into a vector tends to ap-
proximate the structural correlations in a low dimensional
space, and thus leads to information loss. By contrast, the
entropic matching kernel aligning them-layer entropic rep-
resentation represents graphs in a high dimensional space
and thus better preserves graph structures.
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The DB matching kernel developed in (Bai et al., 2014b)
is also related to the DB representation in (Bai & Hancock,
2014). Moreover, similarly to our entropic matching ker-
nel, the DB matching kernel can also better preserve graph
structures by kernelizing the h-layer DB representation on
sample graphs (i.e, un-weighted and un-directed graphs).
However, similar to the DB representation in (Bai & Han-
cock, 2014), the DB kernel also cannot be performed on
weighted graphs, because of the similar reason. Moreover,
according to the definition in Section 3.1, the required h-
layer DB representations for the DB kernel is just the h-
layer DB representations for our entropic matching ker-
nel by ignoring the weighted information residing on the
edges. By contrast, the required h-layer entropic represen-
tations for the entropic matching kernel are computed not
only from the h-layer DB representations using the Shan-
non entropy associated with the steady state random walk,
but also from the h-layer directed DB representations us-
ing the approximated directed von Neumann entropy thor-
ough the quantum-directed graph and the Shannon entropic
signature from the probabilities of the CTQW visiting ver-
tices. Since the CTQW can be performed on both weighted
and un-weighted graphs, and capture rich topological in-
formation in a graph structure. The h-layer entropic repre-
sentation for a vertex reflects richer characteristics than the
h-layer DB representation. As a result, the entropic match-
ing kernel can capture more information for graphs than the
DB matching kernel, even on un-weighted graphs.

Moreover, Bai (Bai, 2014) has demonstrated the relation-
ship between the DB matching kernel and the AS kernel.
The DB matching kernel can also identify the locational
correspondence between isomorphic substructures (i.e., the
h-layer expansion subgraphs), and count the number of i-
somorphic substructure pairs. Thus, similar to our entropic
matching kernel, the DB matching kernel also reflects the
locational correspondence between each pair of identified
isomorphic substructures. Unfortunately, the identified i-
somorphic substructure pair number of the DB matching
kernel is less than that of our entropic matching kernel.
For a pair of sample graphs each having x vertices, the D-
B matching kernel can only identify x pairs of isomorphic
substructures at most. By contrast, the entropic matching
kernel can identify Mx pairs of isomorphic substructures
(i.e., subtrees) at most. Furthermore, the DB matching k-
ernel ignores the vertex labels. By contrast, the entropic
matching kernel accommodates the strengthened vertex la-
bels from the TI method defined in Algorithm 1. These
again demonstrate that our entropic matching kernel cap-
tures more information than the DB matching kernel.

Another kernel related to ours is the subgraph matching k-
ernel (Kriege & Mutzel, 2012). Although this kernel can
handle both node and edge attributes, in order to achieve a
polynomial computational time, the authors decide to count

the number of matchings between subgraphs only up to a
fixed size. In contrast, the computation of our kernel re-
mains polynomial even when we let the h-layer expansion
subgraph grow to the size of the whole graph. As a con-
sequence, we are able to capture richer structural informa-
tion. In general, note that any graph kernel what can deal
with continuous node attributes (Neumann et al., 2012; Fer-
agen et al., 2013) can be adapted to work on edge weighted
graphs by replacing the original graph with its correspond-
ing line graph, effectively moving the weights from the
edges to the nodes. However, in the case of dense graphs
with n nodes the line graph would have O(n2) nodes, thus
making the computation of the kernel measure harder.

Finally, the idea of using CTQW to measure the similarity
between graphs has also been used by Rossi et al. (Rossi
et al., 2013a; 2015). Given a pair of graphs, the authors
simulate two quantum walks on the union of the graphs and
to exploit quantum walk interference effects to measure the
similarity between the graphs. However, the union graph
is established by roughly connecting all vertex pairs of the
graphs and thus lacks vertex correspondence information.

4.4. Computational Analysis

For a pair of graphs each of which has N vertices, com-
puting the entropic matching kernel (i.e., the aligned sub-
tree kernel) requires time complexity O(N3 + hMN2).
This is because computing the CTQW for each graph re-
lies on the Laplacian spectrum decomposition, and thus
requires time complexity O(N3). Transforming a graph
into the quantum-directed graph requires time complexity
O(N2). Performing the TI method and establishing the ex-
pansion subgraph on the directed-quantum graph both re-
ly on the shortest path computation, and thus require time
complexity O(N3). For an (un)directed expansion sub-
graph, computing the directed von Neumann entropy, the
Shannon entropy associated with the steady state of the ran-
dom walk, and the Shannon entropic signature through the
probabilities of the CTQW visiting vertices requires time
complexity O(N2), O(N2) and O(N), respectively. Thus,
computing the h-layer entropic representations around the
V vertices for a graph requires time complexity O(hV 3).
Computing the M affinity matrices requires time complex-
ity O(hMN2). Identifying the vertex correspondences
through the M affinity matrices requires time complexity
MN2. As a result, computing the entropic matching kernel
requires time complexity O(N3 + hMN2). This indicates
that our kernel can be computed in polynomial time.

5. Experimental Results
BAR31, BSPHERE31 and GEOD31: The SHREC 3D
Shape database consists of 15 classes and 20 instances
per class, for a total of 300 shapes (Biasotti et al., 2003).
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Table 1. Classification Accuracy (In % ± Standard Error) Using C-SVM.
Datasets ASK DBMK WLSK SPGK GCGK UQJS JSGK JTQK

BAR31 73.10± .67 69.40± .56 58.53± .53 55.73± .44 23.40± .60 30.80± .61 24.10± .86 60.56± .35
BSPHERE31 60.30± .44 56.43± .69 42.10± .68 48.20± .76 18.80± .50 24.80± .61 21.76± .53 46.93± .61

GEOD31 46.21± .69 42.83± .50 38.20± .68 38.40± .65 22.36± .55 23.73± .66 18.93± .50 40.10± .46
MUTAG 87.50± .65 85.27± .69 82.88± .57 83.38± .81 82.04± .39 83.11± .80 82.72± .44 85.50± .55

Table 2. Runtime of Computing the Kernel Matrix.
Datasets ASK DBMK WLSK SPGK GCGK UQJS JSK JTQK

BAR31 520” 682” 30” 11” 1” 630” 1” 88”
BSPHERE31 760” 720” 25” 14” 1” 828” 1” 95”

GEOD31 487” 649” 15” 11” 1” 519” 1” 77”
MUTAG 20” 270” 3” 1” 1” 20” 1” 3”

This is an usual benchmark in 3D shape recognition.
From the SHREC 3D Shape database, we establish three
graph datasets named BAR31, BSPHERE31 and GEOD31
through three different mapping functions. These func-
tions are a) ERG barycentre: distance from the centre of
mass/barycentre, b) ERG bsphere: distance from the centre
of the sphere that circumscribes the object, and c) ERG
integral geodesic: the average of the geodesic distances
to the all other points. The number of maximum, mini-
mum and average vertices for the three datasets are a) 220,
41 and 95.42 (for BAR31), b) 227, 43 and 99.83 (for B-
SPHERE31), and c) 380, 29 and 57.42 (for GEOD31), re-
spectively. For each graph of the datasets, we compute
the Euclidean distances between the h-layer DB represen-
tations for each pair of adjacent vertices as the edge weight.

MUTAG: The dataset consists of weighted graphs repre-
senting 188 chemical compounds. The maximum, mini-
mum and average number of vertices are 28, 10 and 17.93.

Experimental Setup: We evaluate the performance of our
entropic matching kernel, i.e., the aligned subtree kernel
(ASK), on graph classification problems. We also compare
our kernel with several alternative state-of-the-art graph
kernels. These graph kernels include 1) the DB match-
ing kernel (DBMK) (Bai, 2014; Bai et al., 2014b), 2) the
Weisfeiler-Lehman subtree kernel (WLSK) (Shervashidze
et al., 2011), 3) the shortest path graph kernel (SPGK)
(Borgwardt & Kriegel, 2005), 4) the graphlet count ker-
nel (Shervashidze et al., 2009) with graphlets of size 4
(GCGK) (Shervashidze et al., 2009), 5) the un-aligned
quantum Jensen-Shannon kernel (UQJS) (Bai et al., 2015),
6) the Jensen-Shannon graph kernel (JSGK) (Bai & Han-
cock, 2013), and 7) the Jensen-Tsallis q-difference kernel
(JTQK) (Bai et al., 2014d) associated with q = 2. For
our ASK kernel k(M)

EM , we set h to 10 and M to 50. In
fact, we observe that the classification accuracy tends to
be stable when h ≥ 8. Moreover, the height of the high-
est subtrees identified by the TI method in the dataset is
about 50. For the WLSK kernel and the JTQK kernel,
we set the highest dimension (i.e., the highest height of
subtrees) of the Weisfeiler-Lehman isomorphism (for the
WLSK kernel) and the tree-index method (for the JTQK
kernel) to 10. For the DBMK kernel, we set the highest
layer of the required DB representation to 10. For each k-
ernel, we perform 10-fold cross-validation where the clas-

sification accuracy is computed using a C-Support Vector
Machine (C-SVM). In particular, we make use of the LIB-
SVM library(Chang & Lin, 2011). For each datasets, we
compute the optimal C-SVMs parameters. We report the
average classification accuracy (± standard error) and the
runtime for each kernel in Table 1 and Table 2, respective-
ly. The runtime is measured under Matlab R2011a running
on a 2.5GHz Intel 2-Core processor (i.e., i5-3210m).

Experimental Results: In terms of the classification accu-
racy, we observe that our ASK kernel can easily outperfor-
m all the alternative graph kernels on all the datasets. The
reasons for the effectiveness are threefold. First, compared
to the WLSK, SPGK, GCGK and JTQK kernels, which al-
so require decomposing graphs into substructures, our ker-
nel considers the relative locations between substructures.
This information is neglected by WLSK, SPGK, GCGK
and JTQK kernels. Second, compared to the JSGK and
QJSK kernels, both of which rely on the similarity measure
between global graphs in terms of the classical or quantum
JSD, our kernel can identify the correspondence informa-
tion between both the vertices and the substructures, and
thus reflect richer topological characteristics. By contrast,
the JSGK and QJSK kernels only reflect global graph sim-
ilarity information. Third, compared to the DBMK kernel,
our kernel can identify more pairs of aligned isomorphic
substructures (i.e., subtrees). Finally, only our kernel can
capture the edge weighted information. In terms of the
runtime, our kernel is not the fastest kernel, but it can still
finish the kernel matrix computation in a polynomial time.

6. Conclusions
We have developed a new aligned subtree kernel for
weighted graphs. Our kernel not only accommodates both
weighted and un-weighted graphs, but also addresses the
drawback of neglecting the relative locations between sub-
structures arising in the R-convolution kernels. Experi-
ments demonstrate the effectiveness of our new kernel.
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