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Thesis Summary 

Quantifying Uncertainty in Citizen Weather Data 

Simon Joseph Bell 

Doctor of Philosophy 

 

The sheer volume of citizen weather data collected and uploaded to online data hubs 

is immense. However as with any citizen data it is difficult to assess the accuracy of 

the measurements. Within this project we quantify just how much data is available, 

where it comes from, the frequency at which it is collected, and the types of automatic 

weather stations being used. We also list the numerous possible sources of error and 

uncertainty within citizen weather observations before showing evidence of such 

effects in real data. A thorough intercomparison field study was conducted, testing 

popular models of citizen weather stations. From this study we were able to 

parameterise key sources of bias.  Most significantly the project develops a complete 

quality control system through which citizen air temperature observations can be 

passed. The structure of this system was heavily informed by the results of the field 

study. Using a Bayesian framework the system learns and updates its estimates of the 

calibration and radiation-induced biases inherent to each station. We then show the 

benefit of correcting for these learnt biases over using the original uncorrected data. 

The system also attaches an uncertainty estimate to each observation, which would 

provide real world applications that choose to incorporate such observations with a 

measure on which they may base their confidence in the data. The system relies on 

interpolated temperature and radiation observations from neighbouring professional 

weather stations for which a Bayesian regression model is used. We recognise some of 

the assumptions and flaws of the developed system and suggest further work that 

needs to be done to bring it to an operational setting. Such a system will hopefully 

allow applications to leverage the additional value citizen weather data brings to 

longstanding professional observing networks. 
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Abbreviations 

The following abbreviations are used throughout the thesis, please refer to this section 

as required. 

CWS – A Citizen Weather Station. A weather station, which is usually low in cost, 

owned and setup by a citizen observer.  

MMS – A professional Met Office land surface weather station, part of the network 

referred to as the Meteorological Monitoring System.  

IMMS – Interpolated MMS temperature observations. Interpolated to the locations of 

the Citizen Weather Stations. 

UKV – The Met Office’s short range, high resolution, numerical weather prediction 

model. It is a ~1.5 km resolution, ‘convection-permitting’, configuration of its 

Unified Model which covers the UK, hence its title of UKV. 

GHI – Global Horizontal Irradiance. A measure of incoming solar irradiance (W m-2) at 

a given surface location. Measures both direct and diffuse radiation combined. 

UCZ – Urban Climate Zone. Areal land-cover zones classified by their capacity to 

modify the local climate (Oke, 2004).   

RMSE – Root Mean Square Error. Used commonly herein as a measure of model error 

when model predictions are verified against observations.  

RBFs – Radial Basis Functions. Used to provide localisation in our air temperature 

interpolation model. Only Gaussian RBFs are used herein.   

API – Application Program Interface. Helps expose a program’s internal functions to 

other applications in a limited fashion. They allow information to be easily 

moved between different applications. 

NWP – Numerical Weather Prediction model. Processes meteorological observations 

with computer models to forecast the future state of the weather. 
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1. Introduction 

The growth of citizen science is evident within a wide range of scientific disciplines 

(Gura, 2013). Ignoring the data collected by these citizens would be a waste of often 

valuable additional information which is capable of increasing the spatial and 

temporal resolution of observing networks, whilst at the same time stimulating public 

engagement (Nov, et al., 2014). Crucially, citizen observation can do this at a fraction 

of the cost of professional systems.   

Here we focus specifically on the field of meteorology, and in particular on 

meteorological observations collected automatically by low-cost, electronic, Citizen 

Weather Stations, referred to from now on as CWS (Figure 1.1). As many CWS submit 

their observations automatically to online data hubs such as the Met Office’s Weather 

Observations Website (WOW – wow.metoffice.gov.uk) and Weather Underground 

(www.wunderground.com) the data is freely available for use in various applications 

and research projects, such as this study. As part of this project we review previous 

applications of this data and suggest possible future uses. 

Very few studies have assessed the availability and characteristics of CWS data in the 

UK, with Bell, et al., (2013), Muller, et al., (2015) and Morris & Endfield (2012) 

providing notable exceptions. We therefore begin by using web scraping techniques 

to process data from these online hubs, allowing us to summarise the volume of 

information available. We show that with over 1800 CWS in the UK alone, this citizen 

network has the potential to add value to longstanding professional observing 

networks. By ‘professional’ we mean national meteorological organisations who abide 

by WMO standards (WMO, 2010). With a denser network of observations comes the 

possibility that fewer weather phenomena would go unobserved. 

 

Figure 1.1. A selection of common CWS. These particular station models are tested against 

standard professional equipment in an intercomparison field study (Section 3). 
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However, as with many fields of citizen science, the data is prone to biases and 

increased uncertainty (Hunter, et al., 2013). By analysing data extracted from the 

online data hubs and by conducting our own empirical field study we were able to 

quantify the magnitude of these errors. Our year-long field study tested 5 unique 

brands of weather station (Figure 1.1) against collocated professional Met Office 

equipment. This is the first time such a numerous selection of CWS have been tested 

together at a single location. Previously studies have only collocated 1 or 2 types of 

CWS (Burt (2009); Burt (2013); Jenkins (2014)). We focus on measurements of 

temperature, relative humidity & dew point, and precipitation. The methodology and 

results of this intercomparison are detailed herein. Given the magnitude of the errors 

detected we strongly recommend a quality control procedure when handling CWS 

data.  

We also present solutions for parameterising the bias in the CWS observations, using 

data from the field study to inform our methodology. We detail how CWS 

observations of air temperature suffer primarily from 2 key sources of bias. Firstly, 

and most significantly, were biases with a strong dependency on the strength of 

incoming solar radiation.  The design of the station was seen to influence this 

relationship. Secondly calibration biases were recorded, which tend to remain 

relatively stable through time. 

Having demonstrated that biases in CWS data are far from negligible our primary 

objective was to develop a mathematical model capable of correcting for these biases. 

This is not the first time a system has been developed to perform quality control 

checks on citizen data.  The citizen weather observer program (CWOP; wxqa.com), for 

example, uses NOAA’s Meteorological Assimilation Data Ingest System 

(madis.noaa.gov) to apply buddy-system quality control checks to the citizen data it 

receives. Nearby stations are used to model the weather at citizen locations, then the 

difference from the citizen observations is used to flag stations with poor internal, 

spatial, or temporal consistency. This strategy provides a very ‘black or white’ 

solution; either a station is flagged as erroneous or not. Lussana, et al., (2010) also 

developed a test to quality control temperature observations from an automatic 

meteorological network. Like CWOP, they aimed to identify gross errors and flag 

observations with poor spatial consistency. The online data hub Weather 

Underground also runs a quality control procedure on the CWS data it receives. Its 

operational BestForecast system leverages data it believes to be accurate to produce a 

site-specific forecast for the given CWS location. 
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In this thesis, we develop an alternative solution. A Bayesian framework is created 

capable of modelling bias in air temperature observations explicitly so that, instead of 

simply blacklisting observations, our approach can correct for any inherent biases. 

Crucially it does so whilst quantifying the uncertainty associated with the corrected 

observation. It is then up to users of the data to assess which observations are suitable 

for their own application based on the assigned, and validated, uncertainty estimates. 

This system directly models the 2 key sources of bias detected in the field study, i.e. 

the calibration bias, and radiation-induced bias. With this approach the quality of 

CWS across the UK can be assessed without having to physically visit each site in 

person. We present results showing the performance of this bias correction model, 

having tested the methodology on real citizen data from WOW.  

A requirement of our bias correction model is that we have estimates of the air 

temperature and the strength of incoming solar radiation at the location of the CWS. 

We therefore demonstrate an approach for interpolating professional observations of 

these two variables, recorded at weather stations belonging to the UK Met Office’s 

Meteorological Monitoring System (MMS). We demonstrate the benefit of using a 

Bayesian linear regression model to perform this interpolation, in particular 

showcasing its ability to quantify the uncertainty of the interpolated value, which is 

then propagated into the bias correction model.  

We recognise that further work is needed to make such an approach operational and 

as such detail the challenges that must first be overcome to implement the approach 

demonstrated here operationally.  

1.1. Thesis structure 

Chapter 2 examines what CWS data is available; specifically, where the stations are, 

when they record, what stations are being used, and how they share their data. We go 

on to highlight the volume of data available before detailing previous projects that 

have already successfully used such citizen observations. This chapter concludes by 

introducing the possible sources of error and bias inherent to CWS measurements. 

Having identified the likely sources of bias and uncertainty in CWS data, the logical 

next step was to collect our own CWS data to quantify the magnitude of those errors 

ourselves. This was carried out in the form of an intercomparison field study as 

detailed in Chapter 3, which tested common CWS against professional instruments. 

The focus was on measurements of temperature, relative humidity & dew point, and 

precipitation. For each we attempt to identify, explain and parameterise any biases. 
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Identifying and parameterising bias when professional instruments are collocated 

with the CWS is relatively straightforward, but in reality CWS sites are frequently tens 

of kilometres away from the nearest professional site. Therefore, an interpolation 

model was developed (Chapter 4) to interpolate professional temperature 

observations to CWS station locations. This provides an independent best estimate of 

the weather at the CWS locations, with an estimated uncertainty, against which the 

CWS observations can be verified. 

It is then the job of the bias correction model, discussed in Chapter 5, to learn and 

correct any biases present within the data leaving only natural spatial variations in 

the temperature field. The process of distinguishing natural variations from artificial 

bias is informed by what was learnt in Chapter 3. We also explain how the bias 

correction model quantifies our confidence in the quality of the CWS data and any 

bias corrections we apply using associated uncertainty estimates. 

Chapter 6 concludes by summarising this project’s key contributions whilst detailing 

the further work still required. It also offers advice to citizen observers, station 

manufacturers, data hubs and data users based upon the results of our investigation. 

It even details how such an approach could be implemented operationally and the 

challenges of doing so.  

1.2. Data structure 

This project combines many different sources of data which are passed through a 

variety of pre-processing functions, web applications and numerical models. Figure 

1.1 provides an overview of how data propagates through our complete quality 

control system. Note how the final output is simply the CWS data which was originally 

fed into the system, but which has now been corrected for gross errors, calibration 

biases, and radiation-induced biases, and supplemented with an estimate of the 

uncertainty for each observation.  
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1.3. Publications 
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Addressing a biased opinion. Weather. Volume 70(3), pp 75-84. (Shares some content 

with Chapter 3)   
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2. Citizen meteorology 

In this thesis, we define a CWS as a weather station set up by a member of the public 

for whom the terms ‘weather enthusiast’, ‘volunteer’, ‘hobbyist’ and ‘amateur 

observer’ are fitting descriptions. Crucially, these stations are set up out of personal 

interest (or, in schools, for educational purposes) rather than because it is the owner’s 

job. Here we are particularly interested in automatic weather stations, which once 

installed can measure the state of the atmosphere at frequent intervals for their 

location with very little manual input. In this chapter we detail the where, when, what 

and how of citizen weather observing (Section 2.1), discuss what applications CWS 

data has been and could be used in (Section 2.2), and finally highlight the potential 

sources of uncertainty within CWS data (Section 2.3).   

2.1. The current state of citizen observations  

Citizen meteorology has been around for centuries: indeed, meteorology began thanks 

to the interest of amateurs (Eden, 2009). Currently over 1800 CWS are observing and 

recording the weather across the UK. For comparison, the Met Office runs 250 or so 

land-surface stations in its professional Meteorological Monitoring System (MMS) 

(Green, 2010).  

 

Figure 2.1. A time series of the number of stations uploading data to WOW (Weather 

Observations Website; wow.metoffice.gov.uk) around midday each day from WOW’s launch in 

spring 2011 through to summer 2014. The list of stations is extracted from the JSON formatted 

data structure used to render the observations on the WOW landing page. This process can be 

performed daily as a Cron Job as detailed in Appendix 8.4.  
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This increase in numbers (Figure 2.1) is primarily due to the recent mass production 

of affordable and user-friendly weather stations. Such stations enable citizen 

meteorologists to automatically record sub-hourly observations (Figure 2.5), which 

can be stored electronically; allowing easy analysis and data sharing. Thus, manual 

observations at standard observing times, such as those taken by many members of 

the Climatological Observers Link (COL), are now supplemented with automated 

readings supplied by a wide range of observers.  

Websites such as Weather Underground (www.wunderground.com, CWS hub 

launched in 2004) and the Met Office’s more recently launched Weather Observations 

Website (WOW – wow.metoffice.gov.uk, launched in spring 2011) provide hubs to 

share the data with the wider community. These hubs allow citizens to access not only 

historical data but also near real-time observations anywhere in the world, and to 

compare their data with other citizen stations nearby. During the 24 hours that made 

up 1st July 2014, a total of 942 UK stations uploaded live data to the WOW website, 

with an equivalent 1870 stations uploading to Weather Underground. Under the 

assumption that a station on WOW within 100 m of a station on Weather 

Underground is the same station then 527 of these stations upload to both websites. 

The 100 m distance was selected to account for discrepancies in the station’s location 

that may arise from a citizen having to use the two website’s different interfaces to 

mark their station’s location. Setting this distance any larger would increase the risk 

of separate stations on the same street being falsely classified as a single site. 

Throughout this Section (2.1) we present data extracted from these two online data 

hubs. A process called web scraping was required to extract the relevant data from 

these two websites. Both websites serve a station’s observations and its metadata 

within webpages written in HyperText Markup Language (HTML). By writing our own 

code in the programming language Ruby, with the aid of the Ruby gem Nokogiri, it was 

possible to extract the required data from the HTML. Such a web scraping approach 

was necessary as although WOW provides an application program interface (API) for 

citizens to submit their data, an equivalent API is not openly available to query 

observations already in the WOW data archive. Weather Underground does provide 

such an API, but in many instances the relevant data was not accessible via the API, in 

which case web scraping techniques were implemented. When accessing data this 

way it is important that the number of webpage requests per minute is kept low to 

prevent unnecessary strain on the servers that serve the webpages.  
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2.1.1. Spatial resolution 

 

Figure 2.2. Spatial distribution of weather station networks over Great Britain on the 1
st
 June 

2014. The figure shows the professional Met Office MMS network alongside two popular citizen 

networks: WOW and Weather Underground. Met Office station locations taken from their, 

regularly updated, metadata files. WOW locations found by directly calling the application 

program interface (API) that provisions the front-end website. Weather Underground locations 

extracted from the website’s HTML via web scraping techniques. 

A significant attraction of CWS data is its spatial resolution. Figure 2.2 illustrates this 

point. The Met Office’s purpose-designed observing network comprises of just over 

200 observing sites (Green, 2010), the distribution of which is designed for an even 

coverage so that as few weather features as possible escape detection. The spread of 

citizen stations on the other hand is, unsurprisingly, clustered around major 

conurbations where their spatial density far exceeds the Met Office’s network. 

The Near tool from esri’s ArcGIS software was used to calculate the mean minimum 

distance between the stations show in Figure 2.2, providing a measure of station 

density. For MMS stations only, the calculated distance is 19.2 km. By adding CWS 

stations from WOW and Weather Underground this distance falls to 4.2 km. In both 

cases any stations believed to be duplicates (i.e. < 100 m from the nearest site were 

removed). Figure 2.3 illustrates how these distances correspond to the scale of 

atmospheric phenomena. With CWS stations included, the network stands a greater 

chance of resolving smaller mesoscale features such as isolated thunderstorms and 

heat island effects that the MMS network alone may fail to capture.   
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Figure 2.3. Atmospheric scale definitions, adapted from Thunis & Bornstein (1996). The mean 

minimum distance between stations has been added to express how station density correlates 

with the various scales of atmospheric phenomena.   

Figure 2.4 further illustrates the benefit of being able to access such a dense network. 

The number of professional Met Office stations across London is limited in 

comparison to the dozens of CWS sites. It is clear that were an urban heat island study 

conducted for London, with reliable measurements, the CWS could capture district 

level temperature variations that the Met Office network is too sparse to resolve. 

Another use of the CWS data may involve feeding it into the data assimilation scheme 

of a high resolution numerical forecast model (Section 2.2.2); the ~1.5 km square grid 

cells used in the Met Office’s UKV configuration have been overlaid. By including CWS 

stations many more of these grid cells will actually contain an observation. Assuming 

the observation is reliable, then the atmospheric state of these cells would be better 

characterised. Even with the citizen stations included it is strikingly apparent that the 
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land observing networks are struggling to keep up with the pace of recent 

improvements in model resolution, such as those seen in the UKV.  

 

Figure 2.4. Spatial distribution of weather station networks over the London conurbation on 

the 1
st
 June 2014. The figure shows the professional Met Office MMS network amongst the 

citizen networks WOW and Weather Underground. The overlaid grid is the ~1.5 km grid used 

in Met Office’s short-range forecast model (UKV). UKV grid coordinates were first converted 

from an equatorial lat/lon projection to WGS84 using an internal Met Office function, before 

reprojected in esri’s ArcGIS software, along with the WGS84 formatted station locations, to the 

OSGB36 projection of the underlying LCM2007 land cover map (Morton, et al., 2011) shown. 

2.1.2. Temporal resolution 

The frequency at which citizen weather data is submitted is often as impressive as the 

spatial density. The frequency at which observations are uploaded range from once 

daily to, more commonly, intervals of 15, 10 or 5 minutes and even, in some cases, 

every minute (Figure 2.5). It is interesting that Weather Underground receives the 

majority of its data at 5 minute intervals whereas WOW users also commonly submit 

every 15 minutes. The reason for this difference is unclear as both websites allow data 

to be submitted at any of these intervals, but may stem from differences in the 

intermediary software used to submit a CWS’s observations to each website. 

Note that for common variables such as air temperature, relative humidity, and wind 

speed, CWS along with their accompanying software submit point observations (as 
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supposed to averages). However, rainfall is generally submitted both as a daily 

accumulation, and as a rate per hour. 

 

Figure 2.5. Number of UK stations uploading temperature observations to a) WOW and b) 

Weather Underground at the specified upload frequencies on the 1
st

 June 2014. The 

observation frequency was derived after having web scraped a day’s worth of observations 

from every station that uploaded at least 1 observation that day to wow.metoffice.gov.uk and 

www.wunderground.com. 

The appeal of such frequent observations is their ability to capture short-lived 

weather phenomena, whether that be isolated heavy showers, sting jets, or fast 

moving squall lines. With the Met Office system now reporting every minute (Green, 

2010) it is reassuring to see that citizens are capable of matching this. Credit is due to 

the web servers capable of receiving, storing and serving up these volumes of data. 

For example WOW had received 12.5 million observations just half a year after its 

launch in 2011 (Weather, 2012) and 150 million by the end of 2014.   

2.1.3. Common automatic weather stations 

When it comes to buying a new weather station, citizen observers have a wide range 

of station designs and manufacturers to choose from. With so many on offer they can 

choose one to suit their individual price range and needs. Figure 2.6 gives a sense of 

the weather stations on the market, and their popularity.  
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Figure 2.6. Weather station manufacturers and models used to automatically upload data to 

Weather Underground in February 2012. A total of 1353 stations were investigated, of which 

16.6% were of unknown type and have been excluded from the diagram (Appendix 8.2). Davis 

‘Plus’ models incorporate solar radiation and UV sensors, ‘FARS’ stands for Fan-Aspirated 

Radiation Shield. 

A similar distribution of stations is evident on the Met Office’s WOW website 

(Appendix 8.3), with the Fine Offset WH1080 and Davis VP2 each accounting for 

approximately one third of total number of known station models. Common stations 

range in cost from £50 to in excess of £1000. The majority comprise an outdoor sensor 

suite with an indoor electronic console to display and log the observations. Once the 

console is connected to an internet-enabled computer or specially configured router, 

the data can be uploaded automatically using software such as Weather Display, 

Cumulus, Meteobridge or WeatherSnoop. 

The variety of CWS station models in operation presents a challenge when it comes to 

bias correction. As Section 3.2 demonstrates, the different station designs can produce 

very different bias characteristics. As such, learning the station type, whether that be 

from metadata or the data itself, is crucial to constrain the bias correction we should 

apply. 

2.1.4. CWS metadata 

Metadata describing a CWS station is as important as the observations it makes. It can 

detail everything from the location of the site, the sensors being used, to any biases 
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the owner may have already spotted. For the end user to have access to this metadata 

the citizen must compile and share this information. Thankfully websites such as 

WOW and Weather Underground encourage citizens to fill out a metadata form when 

signing a CWS up to their site.  

 

Figure 2.7 Screenshot from wow.metoffice.gov.uk showing the rating system a citizen is 

encouraged to complete when registering a station on WOW. A list of possible values for these 

attributes is shown in Appendix 8.5. 

A feature of WOW is that citizens can add more than just basic metadata about their 

site. Most notably WOW employs a site grading scheme whereby citizens can rate the 

quality of their temperature, wind and rainfall measurements, along with their 

station’s exposure and the Urban Climate Zone index, which when combined give the 

site an overall star rating. Figure 2.8 shows the distribution of these star and 

temperature ratings, indicating that WOW hosts observations of widely varying 

quality. 

 

Figure 2.8. Distribution of a) Star and b) Temperature ratings on the Met Office’s WOW 

website as rated by the owners of each station. Ratings of 5 and A respectively correspond to 

the highest standard. A full breakdown of these ratings is given in Appendix 8.5. To retrieve 

these ratings for every WOW users a web scraper was written to extract this metadata from 

the webpage of each station. Sample size = 1361 stations (includes non-UK stations). 

The same grading system was first employed by the Climatological Observers Link 

(COL), with the Urban Climate Zones derived by Oke (2004). This type of metadata is 

very useful as it helps quantify the quality of the observations in a consistent manner. 

a) b) 
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For example a data user could use this metadata to quickly discard all stations whose 

temperature measurements fall below the standard required or to only select stations 

located in rural areas. In Section 5.2 we assess whether a station’s rating corresponds 

to the degree of bias its data displays.  

If the citizen wishes to add any other information they can do so in the two text boxes 

labelled Site Description and Additional Information.  Figure 2.9 helps visualise the 

type of information commonly provided within these two text boxes. Words used 

more often appear larger in the figure. The figures show how these text boxes are 

frequently used to list what model of weather station is being used, something we rely 

on in Section 5.4.1. Note that it is unclear where a WOW user should write their model 

of station, with manufacturer and model names appearing frequency in both sections. 

This should be made clearer. WOW users may also upload photographs of their sites, 

providing an instant sense of the siting and sensors being used. 
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Figure 2.9. Word clouds visually representing the textual metadata provided by WOW 

members in the a) Site Description & b) Additional Information sections used to describe their 

stations to other members. Produced using the online tool at www.wordle.net. The size of the 

word indicates how frequently it is used by the WOW community as a whole. In November 

2013, when this information was extracting from WOW using web scraping techniques 

(Section 2.1),  only 640 out of 1100 WOW stations had any Site Description text available, and 

only 363 had listed Additional Information.  

Weather Underground also has a small metadata section in which users can select 

their model of station from a drop down list, denote what surface type their stations 

sits above, along with the basic height, elevation and location information.   

It is clear then that citizen observers have the option to compile a variety of metadata 

about their site; information that is crucial for users to interpret the data. However, as 



37 
 

detailed in Section 2.3.4 there are often issues with CWS metadata that make it 

difficult to assess the accuracy of a CWS site.      

2.2. Applications of CWS data 

2.2.1. Previous applications  

CWS data has already been used in several applications. In each, data from multiple 

stations were collated and analysed for a given scientific application. For example, the 

Citizen Weather Observer Program (CWOP – www.wxqa.com) is an initiative which 

demonstrates how, with adequate quality controls, CWS data can be made available to 

external organisations and weather services. With over 7000 member stations in the 

USA, and over 10,000 worldwide, the majority of which are CWS, the worldwide 

popularity and value of such observations is clear. Here in the UK, studies by Muller 

(2013) and Illingworth (2014) show the willingness of citizens to participate in making 

observations. With the aid of social media and by engaging primary schools they 

collected snow depth and rainfall data respectively at high spatial resolutions. Muller 

(2013) received 170 snow depth observations over the Birmingham region, and 

Illingworth (2014) established a network of 6 primary schools in Birmingham, and 4 in 

Manchester.      

Practical applications have also been seen in the Netherlands; where two separate 

studies - Wolters and Brandsma (2012) and Steeneveld, et al., (2011) - used CWS data to 

quantify the urban heat-island (UHI) effect. The first study selected suitable citizen 

stations based on strict criteria regarding their siting and exposure, accepting data 

from only 10% of the available stations. The second removed stations that showed 

unphysical behaviour in the timing of the maximum UHI, and used the uncertainties 

quoted by the station manufactures to guide their confidence in the data. In our 

approach we instead only discard observations that are clearly gross errors (Section 

5.6.2 details what we define as a gross error), opting to correct rather than discard 

biased observations. The above approaches are also relatively labour intensive, while 

by contrast we demonstrate how the biases and uncertainties can actually be learnt 

automatically from the data itself. By demonstrating such an approach to correcting 

CWS data we hope that the appeal of the data for use in other applications will 

increase. 

2.2.2. Potential applications 

A promising application of CWS data is to better constrain the near-surface initial 

conditions in high-resolution numerical weather prediction models. One such model 
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is the Met Office’s UKV configuration which represents reality as a series of ‘grid cells’ 

1.5 km square. As was illustrated in Figure 2.4, the vast majority of these cells do not 

actually contain a weather station to initialise their near-surface state, but by 

incorporating the 1000+ citizen stations in the UK, more of these cells could be better 

characterised. In situ surface observations could, therefore, have an important role to 

play in high-resolution data assimilation. With a greater density of stations comes the 

opportunity to better forecast phenomena such as deep convection, which is highly 

sensitive to small-scale variations in surface temperature and moisture (Browning, et 

al., 2007). Although, as noted by Browning, et al., (2007), it would still prove difficult to 

accurately forecast individual storm cells, even with ~1 km model resolutions. 

Citizen observations may also have a role in locally adjusting the output of model 

forecasts. Much post-processing involves correcting site-specific forecasts (Moseley, 

2011) by ‘learning’ a systematic correction to the numerical forecast based on a 

historical sequence of observations. Unsurprisingly, but conveniently, the locations of 

citizen sites in the UK and Ireland follow a similar pattern to population density, 

meaning that corrections can be learnt particularly easily for areas where many 

people can benefit from the improvement. 

2.2.3. Useful variables 

Incorporating citizen observations into weather forecasting systems will be more 

beneficial for certain observed variables than for others. For example, citizen sensors 

that record temperature are relatively accurate, often to within 0.2 °C when well sited 

and ventilated (Huband, 1990). Observations of relative humidity are associated with 

greater uncertainty, but humidity can vary significantly in the distance between one 

professional station and the next (Alves & Biudes, 2013), so the use of citizen sites to 

fill in the gaps could be very beneficial.  

Precipitation is also highly localised (Bohnenstengel, et al., 2011), and so 

supplementing our country’s rain gauge network with citizen gauges could better 

capture this spatial variability, with particular benefits for applications such as flood 

prediction. Snow cover and snow depth are difficult variables to measure at 

unmanned sites, but observations made manually by citizens and uploaded to the 

internet could help to compensate for the dwindling number of staffed professional 

sites.  

Observations of pressure are less crucial, since coherent structures in the surface 

pressure field typically occur on the larger mesoscale and synoptic scales, which are 

well resolved by the Met Office network. However, smaller-scale structures, 
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sometimes associated with high-impact severe weather, are occasionally observed 

(e.g. Browning and Hill (1984); Clark (2011); (2012)), and higher-density measurements 

of surface pressure would be useful in such cases.  

Finally, wind direction and speed measurements taken by citizens can have many 

inherent problems, which make them less suitable for use at a regional or national 

level. Even for stations with separate wind sensors, the influence of the turbulent 

urban-boundary layer can present serious difficulties if the goal is to measure the 

mean wind direction and speed of the surrounding few kilometres (Oke, 2004). 

2.2.4. A need to quantify uncertainty 

The aforementioned uses of CWS data are only viable if the data collected by the CWS 

are actually representative of the ‘true’ value of each weather variable. With any 

citizen data there is a degree of uncertainty as to whether the data matches reality; 

quantifying this uncertainty and any associated biases is crucial to users wishing to 

incorporate the data into their application. As explained in Section 5.5, the ‘true’ 

values we wish to observe depend on the scale at which the given application needs to 

resolve.  

As mentioned previously, one use of CWS data could be to feed it into data 

assimilation schemes with the aim of improving the initial conditions in a numerical 

forecast model. A key concept within data assimilation schemes is that they require 

uncertainty (error variance) values for each observation they ingest in order to 

properly weight this new incoming data against background weather forecasts; these 

values tend to be specified within the observation error covariance matrix (Bouttier & 

Courtier, 1999). These values are often specified according to knowledge of the 

instrumental characteristics of the given sensor, which are estimated using collocated 

observations. However only a few studies have performed collocated tests such as this 

on CWS sensors (Burt (2009); Burt (2013); Jenkins (2014)), which is one reason why we 

performed the field study detailed in Section 3.1. This observation error covariance 

matrix should also include the variance of representativeness errors as well. With 

CWS observations in particular, the associated observational uncertainty is likely to 

be non-stationary in time and in space. Therefore it is important to develop a model 

capable of quantifying these fluctuations.  

Other applications that rely on associated uncertainty estimates are studies of climate 

change and urban heat islands. These applications aim to detect temperature changes, 

whether that be in space or time, of the order of only a few degrees Celsius. As 

uncorrected CWS biases can reach well in excess of these values (Section 3.2) it is 
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imperative that users have access to reliable uncertainty estimates to inform their use 

of the data.    

2.3. Sources of uncertainty 

Uncertainty about CWS’ data can arise from any of the following five sources:  

1. Calibration issues – a CWS sensor may not be perfectly calibrated. Perhaps it 

was biased before installation, or it has drifted over time.  

2. Design flaws – often the design of a CWS makes it susceptible to inaccurate 

readings, particularly during certain weather conditions.  

3. Communication and software errors – can produce gross errors as well as 

missing data.  

4. Metadata issues – incomplete or inaccurate metadata make data 

interpretation difficult.  

5. Representativity error – the representativity of an observation can be 

wrongly estimated. This can lead to an observation being inappropriately used 

to represent a spatial area or time window that is different from what it really 

sampled. 

We look at each of these sources in greater detail below – providing examples for 

each. This list has been derived both from errors exhibited during the 

intercomparison field study (Chapter 3), and from publications such as Strangeways 

(2003), CWOP (2005), Overton (2007), Burt (2012) and WMO (2010) who describe such 

errors and issues in greater detail than that supplied here. They also offer suggestions 

on how to combat them. These 5 issues affect professional sites too, however with 

greater experience and resources professional organisations have the means to 

mitigate their impact. Conversely, although many citizens are aware of these issues, 

most do not have the means to abide by the recommended solutions. 

2.3.1. Calibration issues 

Calibration is crucial for all meteorological instruments. It ensures that not only are 

the sensors measuring the world around them accurately, but that their 

measurements are consistent and comparable with other calibrated sensors. 

Unfortunately the calibration of CWS sensors is frequently neglected – partly due to 

ignorance of its importance, but also because it can be difficult and/or expensive for 

citizens to perform. Take, for example, the capacitive sensors found in many 

automated weather stations used to measure relative humidity. Over time they can 

‘drift’, especially when exposed to long periods of high humidity; with a tendency to 
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read higher (and thus ‘wetter’) by around 1–2% per year (Visscher & Kornet, 1994). 

This problem of drift is not isolated to citizen sensors; it occurs in professional systems 

as well (Ingleby, et al., 2013). The difference is that professional stations are regularly 

subject to recalibration using specialised equipment – an option rarely available to 

citizens. Even a simple zero-check for thermometers in iced water proves difficult, as 

many of the thermometers used in automated citizen weather stations are mounted 

on a circuit board, which can easily be damaged when submerged in water. In Section 

5.6 we demonstrate an approach that compensates for these possible calibration 

biases by learning, over time, a correction to counteract their effect. 

2.3.2. Design flaws 

The design of popular CWS can be quite different from that of standard professional 

equipment. Although many manufacturers appear to imitate professional setups the 

final product will have differences, whether obvious or subtle, capable of producing 

relative biases. These differences arise as a manufacturer tries to save costs to target 

the citizen market, whilst also making their product novice-friendly and aesthetically 

pleasing. Some designs even indicate a lack of basic meteorological understanding.  

A common design flaw evident in some of the most popular CWS is a poorly designed 

radiation shield prone to overheating. The overheating often results from a 

combination of poor radiation shielding and insufficient ventilation. The result is a 

warm bias under strong insolation, exacerbated during calm conditions. Williams, et 

al., (2011) noted a warm bias in citizen temperature data uploaded to Weather 

Underground when compared against nearby Met Office data, with overheating a 

likely cause. The Fine Offset WH1080 (Figure 1.1) is also available in the colour black, 

and thus provides an example of a design whose aesthetics compromised its accuracy, 

as the station is prone to an increased absorption of solar radiation and thus 

overheating. In Section 5.4.2 we propose that the various different designs of shielding 

fall into 7 common classes, each of which has its own bias characteristics. 

Some stations, such as the Davis Vue (Figure 1.1), combine all their sensors into one 

integrated unit. This makes it easy for a novice to set up, but because the sensors 

cannot be separated it makes it virtually impossible to mount each individual sensor 

at the correct height and exposure. On one hand, the rain gauge should ideally be 

located 30 cm above ground level to avoid under-catch, which worsens with distance 

from the ground (Green, 1970), whilst on the other hand the anemometer should be at 

a standard height of 10 m, or even higher when surrounding terrain is not flat nor 
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unobstructed (WMO, 2010). Finding a suitable middle ground ultimately leads to some 

trade-off. 

Many CWS rain gauges are also poorly designed with respect to professional gauges. 

They may be too small, with small tipping buckets, shallow sides, and without sharp 

edges around the rim, each of which can cause errors (Overton, 2007). A gauge with a 

larger horizontal surface area would catch more rain allowing its tipping buckets to 

increase in size (i.e. a greater volume of water is required to make them tip) whilst 

still keeping the resolution of the measurements the same. A resolution of 0.2 mm, or 

even 0.1 mm, is recommended (WMO, 2010). If a greater volume of rainfall is required 

to cause a tip then the gauge will be less sensitive to detritus that may build up in the 

buckets, or to error caused by the buckets not fully emptying as they tip.  

 

Figure 2.10. The Fine Offset WH1080 rain gauge. Note its small rectangular shape (51 × 111 

mm), and small tipping buckets. 

The field study results, in Section 3.2, show evidence of bias resulting from many of 

the design flaws discussed here. Crucially this section then attempts to quantify and 

parameterise these effects.  

2.3.3. Communication and software errors 

Once a sensor has converted its observation into an electrical signal any error 

introduced to the data as it travels from the station, through the electronic console’s 

memory, into the elected software package and up onto the selected data hubs falls 

into this category. These errors are characteristic of the automatic CWS we are 

focusing on and do not tend to befall manual weather observations. For example, 

many of the common CWS transmit wirelessly from the sensor suite to the electronic 

display console. This link may experience interference from nearby devices 
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submitting on the same frequency, potentially causing spikes in the data. If this 

communication link is not stable, perhaps because the station is sited on the limit of 

the wireless range, then the data may also contain a lot of missing values. Potential 

software errors may include a mismatch in the units used by the software uploading 

the data and that used on the online data hub receiving the information, or perhaps 

an incorrect timestamp may be allocated to each observation. 

Many of the errors in this category are gross errors. A basic quality control step to pre-

process the data, such as that used on WOW data in this project (Section 5.6.2), should 

remove many of these. The more subtle errors, however, remain in the data. The bias 

correction model (Section 5.6) must therefore be constructed to sensibly handle these 

types of error. It should also be set up to expect large amounts of missing data. 

2.3.4. Metadata issues 

As citizen sites do not have to follow the same strict regulations as their professional 

counterparts there can be a lot of variety in the exposure, siting and instruments in 

use. Thus accurate and detailed metadata is arguably of greater importance for CWS 

sites than it is for professional networks. As Section 2.1.4 described, citizen observers 

do have options when it comes to sharing metadata about their station. However, at 

present there are many issues with CWS metadata.  

The first issue is that many of the websites that share CWS data only display a limited 

amount of metadata, preventing thorough citizens from sharing any extra metadata 

they may have collected. There is also no standardised metadata format on every 

website. For example, WOW and Weather Underground use very different metadata 

forms. Weather Underground for example has a drop down menu for citizens to select 

their station model from a list, which provides some consistency between users; 

whereas on WOW users must take the initiative to write their station model into one 

of the text boxes. However, only 70% of WOW users add information to these text 

boxes and of these only 60% clearly write what model of station they own. This is not 

the only example that demonstrates that many citizen observers are unaware of the 

importance of providing accompanying metadata. For example on WOW around 15% 

of citizens neglected to update any of their site ratings from the default values, making 

it very difficult to assess the exposure, siting and instruments at those sites. In Section 

5.5.1 we detail an approach to combat this problem – capable of estimating the 

exposure and Urban Climate Zone remotely using only the coordinates of the site to 

begin with.  
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When it comes to specifying the elevation of their site, almost a quarter of WOW users 

neglected this metadata field. Of those that supplied information, it is clear that some 

users have provided the wrong elevation as evident in Figure 2.11. It appears that 

several users have even submitted their elevation in the wrong units. There are also 

many sites for which the user denoted an elevation of 0m, but for which the DEM 

would suggest the height is much larger. This elevation problem is dealt with in 

Section 5.6.2. 

 

Figure 2.11. Comparison of user-contributed station elevation against the height for that 

location extracted from the GMTED2010 digital elevation model (DEM; Section 4.4.2). Solid line 

indicates the 1:1 line. The dashed line shows the 1:1 line were the metadata height given in 

feet. 

Thankfully both WOW and Weather Underground do at least enforce the provision of 

station coordinates. They also both give the option of uploading an image of the site; 

however, few users upload such pictures, and interpretation of such images cannot be 

automated.  

Ideally a standardised metadata form should be included on all data hubs that share 

CWS data; based upon best practises such as those outlined in Muller, et al., (2013). 

This would make it much easier for users of the data to assess whether a given citizen 

station is suitable for their application. 
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2.3.5. Representativity error 

Representativity continues to be a challenging concept in meteorology, which makes 

quantifying whether a CWS observation is characteristic of a given areal extent a 

difficult task. The representativeness of an observation is the degree to which it 

accurately describes the value of the variable needed for a specific purpose (WMO, 

2010). Representativity errors arise when the CWS observations sample real-world 

phenomena at spatial scales that are different from those we wish to resolve in a 

given application. Using temperature observations as an example – a CWS mounted 

over grass in highly vegetated and sheltered garden may not give a fair representation 

of the temperature over a surrounding neighbourhood which is otherwise highly 

developed, with a complex urban morphology primarily covered by artificial surfaces 

such as paving, tarmac and brick (surfaces with a higher heat capacity). Therefore 

unless a given application wants to resolve scales equivalent to that individual garden 

then the observations from such a station may not be representative.  

Representativity is largely a function of siting and exposure. A well sited CWS resides 

in an area similar to its surroundings. However, in heterogeneous landscapes, finding 

such a suitable spot is difficult, even more so for a citizen observer who wishes to 

mount their station in their own garden. Many gardens also have a poor exposure, 

therefore rather than capturing the larger scale weather the station is instead heavily 

influenced by localised microclimatic effects, which may even be specific to that 

individual garden. Jenkins (2015) even showed than in a domestic garden 

temperatures can vary by several degrees Celsius depending on the location of the 

thermometer within the garden. Sheltered sites pose other threats too. Nearby trees 

and buildings can alter the catch of rain gauges simply by presenting an obstruction 

or by altering wind speeds (Guo, et al., (2001); Strangeways, (2007)). Sheltered sites 

with low wind speeds may prevent sufficient ventilation through the small passively-

aspirated screens used on many CWS to house the thermistors and capacitive 

humidity sensors. This can exaggerate any design flaws that already restrict 

ventilation leading to inaccurate and time-lagged observations (Harrison, 2011). 

Warm or reflective surfaces nearby, such as houses, may also induce biased 

temperature readings (Oke, 2004).  

A few previous projects have attempted to quantify the representativity of 

professional stations. An ‘inverse footprint’ approach was employed by Orlowsky & 

Seneviratne (2014) to define the spatial representativeness of European stations 

contributing to the ECA&D project. The larger the area surrounding a station in which 

neighbouring stations exhibited a strong correlation in their temperature anomalies, 
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the more spatially representative the station was thought to be. Such an approach 

could be applied to the stations used in our study; however the coastal geography of 

the British Isles would limit the ‘footprint area’ around coastal stations potentially 

causing an artificial drop in the quantified representativity. It is also important to 

consider the very local influences that can induce representativity error. For example, 

subtle changes in a site’s exposure (Brandsma, 2004), layout (Hewitt & Clark, 2013) or 

the presence of a nearby road (Kumamoto, et al., 2012) can all influence a 

thermometer’s readings. High-resolution numerical models have also been used to 

quantify representativity errors (Waller, et al., 2013), showing that the horizontal 

errors are correlated and more significant for specific humidity than temperature.  

Each thermometer placed above a surface ‘sees’ only a portion of its surroundings. 

This source area, or ‘footprint’, that the station senses is incredibly difficult to define. 

It depends on the height of sensor as well as the characteristics of the turbulent 

motion that transports the sensed air to the thermometer. As Figure 2.12 

demonstrates the source area is not symmetrically distributed around the sensor 

location. Due to wind effects it is elliptical in shape, and aligned in the upwind 

direction. For screen-level temperature measurements it is thought to have a typical 

radius of 0.5 km although factors such as sensor height, surface roughness, building 

density and atmospheric stability can all alter the size and shape of this footprint 

through time (WMO, 2010).  

 

Figure 2.12. A conceptual representation of source areas (footprints). Image from WMO (2010), 

Chapter 11. The dark shaded ellipses show the theoretical source area for sensors responding 

to the turbulent transport such as thermometers, 50% or 90% of the signal comes from the area 

inside the respective ellipses. They are dynamic, moving with wind speed and direction, and 

atmospheric stability. 
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Many CWS cannot follow the strict exposure guidelines imposed on their professional 

counterparts. Because of this the area for which they are representative tends to be 

much smaller and less suitable for larger scale applications. Also many CWS are 

located in urban areas prone to heterogeneous land cover types and complex building 

configurations. The result is source areas distorted from the theoretical ellipse and 

that comprise of a mix of different land cover types, each with different thermal 

properties. 

Representativity errors have the potential to exceed instrumental errors; indeed even 

in the absence of any instrumental errors a station can still contain representativity 

errors if used in an application resolving a different scale. It is therefore crucial we 

attempt to quantify for which scales we believe a station is representative. Therefore, 

in Section 5.5 we explore a possible link between a CWS’s exposure and Urban Climate 

Zone and these errors, and in Section 5.6 we detail how representativity is handled 

within our bias correction model.   

2.4. Summary 

Organisations and individuals looking to CWS data as a potential source of low cost 

information to feed into their application should be impressed with the volume of 

data available, and with its spatial and temporal density. They should also be 

conscious that bias can enter the data from a variety of different sources. Sensible 

users must realise that attempts should be made to quantify this bias and associated 

uncertainty so that they can use the data with confidence. 
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3. Parameterising station bias 

This chapter focuses on identifying, quantifying and parameterising instrumental bias 

inherent to CWS data. Without any evidence of these instrumental biases it proves 

difficult to differentiate these artificial biases from natural spatial variations when 

looking at real CWS data. This chapter explains how an intercomparison field study 

was used to collect a priori knowledge of the bias and uncertainty characteristics of 

different models of CWS. In Chapter 5 we apply what has been learnt here to model 

the bias in the real CWS data from WOW. 

3.1. Field study design 

3.1.1. The test site 

A year-long intercomparison field study was performed using seven CWS collocated 

alongside professional Met Office equipment at the University of Birmingham’s 

‘Winterbourne No. 2’ site (Figure 3.1). The site located in Edgbaston, Birmingham, is 

part of the MMS network submitting minute-resolution data.  

The Met Office instruments installed at the site include: 

Air Temperature: A standard Met Office 100𝛺 platinum resistance thermometer 

(PRT) mounted within a passively ventilated Stevenson screen ~1.2m above a grass. 

The resistance is sampled every 15 s from which a 1 min mean temperature is 

calculated. The measurement accuracy of calibrated PRTs is equal to ±0.05 °C 

(Clark, et al., 2014). PRTs are usually replaced every 8 years. PRTs offer greater 

accuracy along with a more stable calibration in comparison with thermistors 

(Burt, 2012): all seven CWS we tested use thermistors. 

Relative humidity: A Rotronic HygroClip MP100H, also mounted within the 

Stevenson screen. The Met Office quote typical uncertainties of ±2% per year 

deployed. HygroClips typically drift by 1% per year (Ingleby, et al., 2013). Like the 

PRTs, the HydroClip’s report 1 min averages (made up of four 15 s samples).  

Recalibrated annually. Explained further in Section 3.2.3. Rotronic 

(www.rotronic.co.uk) quote a response time of 10 seconds (to perform 63% of a 

humidity change).  

Rainfall accumulation: A Munro R100 series 0.2 mm tipping-bucket rain gauge. 

Tips are recorded at 1 minute resolution. Gauge rim ~30 cm above grass. 
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Global radiation: A Kipp and Zonen CMP11 pyranometer measuring global 

radiation. Mounted approximately 1.5 m above the ground. Records a 1 min 

average from 1 s samples, with a typical hourly uncertainty of < 3% 

(www.kippzonen.com). 

Henceforth these reference Met Office instruments are referred to simply as MMS. 

The MMS’s instruments are calibrated on a regular managed cycle (approx. once a 

year) and abide by World Meteorological Organisation (WMO) standards (WMO, 

2010); we assume therefore that they can be used as a well characterised reference 

against which the seven CWS can be verified. However, although this site acts as a 

suitable reference, the MMS’s stations are not immune to problems. For example, 

passively ventilated Stevenson screens suffer from increased uncertainty at low wind 

speeds (Harrison, 2010), while tipping-bucket rain gauges, such as the Munro R100, 

can display biases when verified against standard manual rain gauges (Burt, 2012). 

Fortunately, over the yearlong study period the Munro R100 we used read just +1.1% 

higher than a Met Office MK II ‘five-inch’ manual rain gauge and +1.6% higher than 

another, newer, Munro tipping-bucket gauge, both collocated at the site. With this 

relatively small bias and a virtually complete annual dataset we can use its readings 

with reasonable confidence. The site is somewhat sheltered, and therefore unsuitable 

for Met Office wind measurements, but fortunately the University of Birmingham 

maintains a set of instruments at the site, including a 7 m mast with an anemometer 

and wind vane manufactured by Vector Instruments. The site’s sheltered nature is 

similar to that of many CWS. Further site metadata is provided in Appendix 8.6. 

The study took place from 1 September 2012 to 31 August 2013. Having envisaged that 

the type and magnitude of the CWS’ bias would depend on synoptic conditions, which 

vary through the year, a full year’s field study was undertaken. 
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Figure 3.1. The Met Office’s Winterbourne No. 2 weather station. The site includes sensors 

operated by the Met Office, the University of Birmingham, and the seven CWS being tested as 

part of this study. Photograph taken facing in a North-Easterly direction. 

3.1.2. Tested citizen weather stations 

The seven CWS comprised five different models of weather station, chosen because 

they are among the most popular automatic stations used by citizen observers (Bell, et 

al., (2013); Appendix 8.3). Details of the stations are summarised in Table 1, with 

images of the sensor suites shown in Figure 1.1. For Davis Instruments’ Vantage Pro2 

(VP2), Vantage Vue, and Oregon Scientific’s WMR200 two of the same station were 

installed; with the aim of identifying biases and errors common to a particular model. 

However, the second WMR200 was decommissioned in early November 2012 when its 

wireless transmission began to interfere with that of the first station. We are 

confident that there was negligible interference before this point. Only a single Fine 

Offset WH1080 and La Crosse WS2350 were deployed because of fears of similar 

interference. With hindsight, the La Crosse instruments could have used wired 

communications and Jenkins (2014) used two Fine Offset devices simultaneously 

without issue. Like most CWS, every station comprised an outdoor sensor suite and an 

indoor electronic console to display and store the data. Observations were 

downloaded from the console to a laptop on a weekly basis. All CWS’ and MMS’s 

temperature and humidity sensors were mounted approximately 1.5m above grass. 

Although the rims of the MMS’s rain gauges were roughly 30 cm above grass, the 

heights of the CWS’ gauges were set as recommended in their manuals, ranging 
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between 1 m for the WS2350 and WMR200 to 1.5–2 m for the other CWS. This was 

done with the aim of replicating the height most citizen observers would mount their 

gauges at, assuming of course that the citizens follow the manual guidelines. The 

positions of the CWS and MMS sensors at the site were not changed during the entire 

yearlong study.  
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Table 1. Summary of the 7 CWS tested as part of this field study. 

Station 

Nickname 
Station Manufacturer 

Station 

Model 

Price
a
 

(Approximate) 

Software used to 

download 

observations 

Temporal 

resolution 

(minutes) 

Transmission 

Frequency
e
 

(seconds) 

Time until 

memory full at 

this temporal 

resolution (days) 

Rainfall 

increment 

(mm) 

VP2(1) Davis Instruments 
(www.davisnet.com) 

Vantage 

Pro2 

FARS
b
 

£890 WeatherLink 
(www.weatherlink.com) 

10 10, 50, 20 18 0.2 

VP2(2)
c
 

Davis 

Instruments 

Vantage 

Pro2 

FARS 

£890 WeatherLink 10 10, 50, 20 18 0.2 

Vue(1) Davis Instruments 
Vantage 

Vue 
£390 WeatherLink 10 10, 50, 20 18 0.2 

Vue(2) Davis Instruments 
Vantage 

Vue 
£390 WeatherLink 10 10, 50, 20 18 0.2 

WMR200 Oregon Scientific 
(store.oregonscientific.com) 

WMR200 £350 
Virtual Weather 

Station 
(www.ambientweather.com) 

10 60 291 1.016 

WS2350 La Crosse 
(www.lacrossetechnology.com) 

WS2350 £100 Heavy Weather 
(www.heavyweather.info) 

60 8 7 0.518 

WH1080 Fine Offset
d
 

(www.foshk.com) 
WH1080 £70 EasyWeather 

(www.foshk.com) 
10 48 30 0.3 

a
 Prices include accompanying software, but not mounting accessories such as tripods. Only the WMR200 comes with a mounting pole as 

standard. Prices include VAT. Source: www.weathershop.com and www.maplin.co.uk (as of Jan 2014). 
b
 FARS stands for Fan Aspirated Radiation Shield.  

c
 The VP2(2) had been in the field for approx. 1 year before installation at Winterbourne No. 2. All other stations were brand new.  

d
 Fine Offset manufacture this station but it is frequently sold under many different brand names including Maplin, Watson, and Ambient 

Weather. 
e The manuals of the stations tested do not directly specify the internal sampling procedure used, i.e. whether point samples or averages are 

recorded. Their manuals do however specify the transmission frequency, i.e. the rate at which the electronic console is updated with observations 

from the outdoor sensor suite. We saw no evidence of any further averaging of temperature, relative humidity, or rainfall accumulations once the 

observations arrived at each console before being saved to its internal memory. For Davis stations individual variables have different 

transmission frequencies, shown are the frequencies for temperature, relative humidity and rainfall accumulation respectively.
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Table 2. Key statistics from the field study  

 Air Temperature (°C) Relative Humidity (%)
 Dew Point 

(°C) 
MSLP

a
 (hPa) Rainfall 

 

Statistic 

 

 

Station 

Mean Bias 

(Day and 
Night) 

Mean Bias 

(Day 
time

b
) 

Mean Bias 

(Night 
time) 

Mean Bias
 c
 

(all 
conditions) 

Mean Bias 

(Wet 
conditions, 

>90%)
d
 

Mean Bias 

(Dry 
conditions, 

<=90%)
d
 

Mean Bias Mean Bias 

Absolute and 
percentage 

difference from the 
MMS yearly total of  

842.4mm 

Total No. of 
observations 

and percentage 
missed 

VP2(1) +0.2  (0.2) +0.1  (0.2) +0.3  (0.2) +2.7  (2.9) -1.3  (1.2) +3.6  (2.3) +0.7  (0.6) +1.7  (0.3) -83.4 mm (-9.9%) 52558 (< 0.1%) 

VP2(2) +0.2  (0.3) +0.1  (0.3) +0.3  (0.3) +0.4  (3.1) -2.2  (3.1) +1.0  (2.7) +0.3  (0.5) +1.2  (0.3) +94.8 mm (+11.3%) 52558 (< 0.1%) 

Vue(1) +0.1  (0.3) +0.2  (0.3) +0.1  (0.2) +2.7  (2.1) -0.2  (0.9) +3.4  (1.7) +0.8  (0.7) +1.7  (0.6) -22.6 mm (-2.7%) 52560 (0%) 

Vue(2) -0.1  (0.3) +0.0  (0.3) -0.2  (0.2) +3.9  (2.0) +1.1  (0.9) +4.5  (1.6) +0.8  (0.7) +2.9  (0.8) -28.6 mm (-3.4%) 52560 (0%) 

WMR200 +0.8  (1.3) +1.5  (1.4) +0.1  (0.4) -11.0  (6.3) -2.8  (4.1) -12.8  (5.2) -1.7  (1.4) +2.6  (1.5) -43.8 mm (-5.2%) 48318 (8.1%) 

WS2350 +0.9  (2.3) +2.1  (2.5) -0.5  (0.5) -1.4  (5.2) -1.3  (2.0) -1.4  (5.7) +0.9  (1.4) +1.9  (1.1) -100.0 mm (-11.9%) 8679 (0.9%) 

WH1080 +0.5  (0.9) +0.9  (1.0) +0.0  (0.3) +7.5  (3.2) +5.1  (1.9) +8.0  (3.1) +2.3  (1.3) +0.0  (0.7) -203.4 mm (-24.1%) 52471 (0.2%) 

Over the period 1 Sept 2012 through 31 August 2013, except for Relative Humidity and Dew Point whose statistics represent the period 16 May 

2013 – 31 August 2013.  The standard deviation of the difference is shown in brackets next to the values of mean bias. 

a
 Winterbourne No. 2 site does not have MMS MSLP readings, instead observations from the Coleshill MMS site 16 km away were used. CWS 

pressure readings were set to match the Coleshill reading at the start of the period, except for the WMR200 for which the MSLP correction is based 

upon the elevation the user enters into the electronic console. 

b
 Here the definition of daylight is when the MMS pyranometer (1 min resolution) reads greater than 0 W m

-2
 at the time of the CWS temperature 

observation. Therefore night time is when the reading is less than or equal to 0 W m
-2

. 

c CWS humidity observations have not been corrected for temperature biases, which may compound humidity biases.  

d As measured by the MMS humidity sensor. 
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3.2. Investigation 

Here we discuss and interpret the observations collected, dealing with each weather 

variable in turn, namely: air temperature, humidity and dew-point temperature, and 

rainfall. Because pressure variations are well captured by the MMS network, and 

CWS’ wind measurements are generally too localised for most applications, they are 

not examined in detail. None of the CWS tested measure solar radiation: only ‘Plus’ 

versions of the VP2s measure solar radiation. Table 2 summarises key statistics from 

the year-long field study. 

3.2.1. Temperature 

When the air-temperature measurements from the seven CWS were verified against 

the MMS’s measurements there were significant biases (Table 2), with clear diurnal 

and seasonal patterns (Figure 3.2). The pattern is dictated by the hours of daylight, 

with changes in the magnitude, and sometimes the sign, of the bias between day and 

night. 
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Figure 3.2. Mean temperature bias at different hours of the day (UTC) and months of the year 

for three of the CWS tested. (a) Davis VP2(1), (b) Davis Vue(2) and (c) La Crosse WS2350. Note 

the change in the colour scale for the final plot. The values written in grey are the mean bias of 

each cell. These values are simply the average of all bias values that fall within a given hour 

and month division. The VP2 and Vue sample every 10 minutes, whereas the WS2350 samples 

every hour. 
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The Davis VP2 and Vue stations show the closest agreement with the MMS’s PRT, all 

with a relatively small mean bias and standard deviation. The two fan-aspirated VP2s 

show very similar results, both tending to read too warm, with overall average biases 

of +0.16 °C and +0.18 °C. Both show an increase in this warm bias at night and a 

decrease during the day. The two Vue stations, however, do not agree: Vue(1) tends to 

show a warm bias that is exacerbated in the afternoon, whereas Vue(2) consistently 

shows a cool bias, around -0.2 °C at night, which only changes to a warm bias between 

late morning and late afternoon for the warmer months of the year, as shown in 

Figure 3.2.  

The temperature bias of the other stations is more significant, each showing a warm 

bias that dramatically increases during the day, and leads to a positively skewed 

distribution of bias for these stations. The pattern of the warm bias shown in Figure 

3.2 for the La Crosse WS2350 station is typical for all these three stations, with a warm 

bias that peaks just after midday. During summer months the warm bias is even more 

pronounced, occurring for more hours of the day owing to the extended hours of 

insolation. These warm biases are well over 1 °C and can climb over 4 °C for the 

WMR200 and WS2350. To put these biases into context, the summer average daytime 

urban heat-island measured in London rarely exceeds 1 °C (Wilby, et al., 2011); as 

derived from the discrepancy between daily maximum air temperatures observations 

at St James’s Park (urban) and Wisley (rural). Without accurate bias correction for 

CWS it would be almost impossible to accurately quantify such a daytime urban heat-

island effect using some of the station types. At night the performance of these three 

stations is much improved, for example the WMR200 and WH1080 both display a 

small mean bias (standard deviation) of 0.05(0.4) and 0.03(0.3) °C respectively. At 

night urban heat-island effects are generally more pronounced as well, i.e. with larger 

urban-rural contrasts in temperature (Wilby, et al., 2011). 
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Figure 3.3. Time series plot of air temperature recorded by the seven CWS and the 

professional platinum resistance thermometer housed within a Stevenson screen for 26 May 

2013. A time series of MMS global radiation is shown in orange. 

Figure 3.3 shows a temperature time-series plot for a typical day that highlights many 

of the patterns. For example, note the large daytime warm bias exhibited by the 

WS2350 station (and to lesser extents by the WMR200 and WH1080) and the warm 

bias of both Vue stations later in the day. The large step changes in global radiation 

during the morning highlight shading effects caused by the somewhat sheltered 

nature of the Winterbourne No. 2 test site. This highlights the impact of micro-scale 

siting. With nearby obstructions causing complex shading patterns that alter the 

strength of the radiation reaching the CWS, and thus the magnitude of the subsequent 

temperature bias. Such shading effects are common within domestic gardens, with the 

impact on low-cost thermometers shown by Jenkins (2015). The implications of these 

complex shading patterns on this study, resulting from each CWS being positioned 

slightly differently within the site, is unclear.   

In Figure 3.4 we see that these dramatic warm biases can even occur in February 

when global radiation levels are much lower. Around 15:00 the WH1080 displays a dip 

in temperature not apparent in the other stations. This is perhaps indicative of a 

sheltering effect, i.e. the WH1080 is in shade whereas the WMR200 and WS2350 are 

not, and thus its warm bias is reduced. Accounting for such sheltering effects when 

bias correcting operational CWS observations is almost impossible.   
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Figure 3.4. Time series plot of air temperature recorded by the seven CWS and the 

professional platinum resistance thermometer housed within a Stevenson screen for 19
th

 Feb  

2013. A time series of MMS global radiation is shown in orange. 

The most obvious pattern to the temperature bias is the difference between day and 

night; a result of changes in the radiative balance. For the WMR200, WS2350 and 

WH1080 stations the main driver of their daytime warm bias is the strength of 

incoming solar radiation. Figure 3.5 shows how these three CWS exhibit a greater 

warm bias with increasing levels of global (direct + diffuse) radiation.  

 

Figure 3.5. Temperature bias as a function of global radiation levels for the seven CWS tested. 

Global radiation observations less than 0 W m
-2

 were rounded up to 0 W m
-2

. 

For most stations this relationship between global radiation and temperature bias is 

well modelled by a 1st order linear regression model (Figure 3.6). However, for some 
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of the more bias-prone stations, particularly the WS2350, there is marginal 

improvement when a 2nd order polynomial approximation is used. This is because it 

appears that the bias begins to plateau as global radiation reaches its maximum. 

These linear and quadratic models were deemed suitable for what is a relatively 

simple relationship, and were favoured over LOWESS to avoid over-fitting to inherent 

noise.  

 

Figure 3.6. Relationship between global radiation and temperature bias for the a) Oregon 

Scientific WMR200 and b) La Crosse WS2350. The red and green lines show 1
st
 and 2

nd
 order 

regression models fitted to the data. 

Wind speed also appears to influence this relationship. Note that in Figure 3.7 the 

warm temperature bias of the WMR200 station during high solar radiation conditions 

is exacerbated when the wind speed is low. The focus here is on wind speed, not wind 

direction, as we assume wind speed has a much greater impact on radiation shield 

ventilation. 

a) b) 
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Figure 3.7. The WMR200 station’s temperature bias as a function of wind speed and global 

radiation. The mean bias for a given radiation (wind speed) bin for all wind speeds (radiation 

levels) is shown along the bottom (right side). Here the number within each cell signifies the 

sample size. 

All of the stations tested have some form of shielding to guard their thermistor from 

direct sunlight. Such shielding should also be ventilated to allow surrounding air to 

circulate through. It is apparent that some shields are more effective than others, as 

show in other studies (Hubbard, et al., (2001), Cheung, et al., (2010), Wheeler, et al., 

(2003)). Thermal images taken with a Flir i5 camera (www.flir.co.uk) under sunny 

conditions were used to highlight differences in the performance of the CWS shields 

(Figure 3.8). The images show that shielding of the WMR200 and WS2350 stations, 

which exhibit the largest biases under increased global radiation, display high 

infrared temperatures. This illustrates that their thermistor shielding is prone to 

overheating under sunny conditions, which heats the air inside the thermistor 

housing, thereby increasing the sensed temperature. This overheating is also a 

function of under-ventilation: the design of the shields of the WMR200 and WS2350 

stations (Figure 1.1) makes sufficient ventilation difficult, so that the air within the 

shield warms, rather than being refreshed with ambient air from outside the shield. 

The upturned-plate design of the WH1080 station allows for better ventilation and is 

noticeably cooler than the WMR200 and WS2350 stations. However, the bias still 

displays a relationship with global radiation levels, perhaps due to its small size and 
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off-white colour. Jenkins (2014) also identified a relationship with solar radiation for 

the two WH1080 stations in their study.  

 

Figure 3.8. Thermal images taken from the southwest by a Flir i5 thermal imaging camera on a 

sunny summer afternoon: (a) Stevenson screen and (b) VP2, (c) Vue, (d) WMR200, (e) WS2350 

and (f) WH1080 stations. All stations were in direct sunlight, and had been for several hours. 

The colour-scale is consistent. The white (hot) part of the VP2 station evident in panel (b) is its 

black rain gauge. For help identifying the parts of each station, cross-reference with Figure 1.1, 

but be aware of the change in perspective. 

The two Davis models, the VP2 and Vue, display the coolest infrared temperatures in 

the thermal images, and their relationship with radiation is somewhat different. The 

VP2 stations were the only model we tested that included a fan-aspirated radiation 

shield (FARS). The fan is solar powered, and it is evident in Figure 3.2 that the VP2 

station has the lowest bias during the day when this fan is active. Under sunny and 

calm conditions the aspirated VP2 stations probably provide a better estimate of the 

air temperature than the passively aspirated Stevenson screens, which are prone to 

increased uncertainty at low wind speeds (Harrison, 2010). During the night the fan is 

inactive, as this particular model of VP2 has no battery to power the fan when solar 

energy falls. As such ventilation can only occur passively, leading to a warm bias. The 

altered shield design, which incorporates active ventilation, has compromised the 

effectiveness of the passive ventilation at night. It is reassuring to see the similar 

performance of the two VP2 stations, providing confidence that the parameterisation 

would be similar for all stations of this type. However, having only tested 2 VP2s, 

there is no guarantee that this assumption is valid. 
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Davis’s Vue stations appear to have a stronger relationship with outgoing longwave 

radiation than shortwave radiation. As the Vue station’s radiation shield is mounted 

underneath its main body it is well shielded from incoming solar radiation, although 

its effectiveness may be compromised when the solar angle is low. It is when the land 

surface has warmed and outgoing radiation peaks, around mid-afternoon, that the 

station shows the greatest warm bias (Figure 3.2). Unfortunately, longwave radiation 

is not commonly measured at MMS’s stations, so a proxy variable may have to be used 

to parameterise the Vue station’s temperature bias. 

3.2.2. Parameterising temperature biases 

When it comes to bias-correcting these CWS temperature observations, Figure 3.9 

demonstrates that with a reliable estimate of the global solar radiation level, as is 

available at the test site, it is relatively simple to apply an effective correction. Section 

5.3 details how such a correction is made at locations where a collocated radiation 

sensor is absent. Here we used a simple multiple linear regression model in which 

radiation, wind speed, an interaction term and a constant term were used as 

predictors of the temperature bias, with radiation providing the most predictive 

power. When the model’s temperature bias prediction was used to correct the 

observations there was a reduction in the mean bias and residual variance for all the 

CWS. Sometimes this improvement was marginal, for example, for the Davis stations, 

but for stations that exhibited large radiation biases, such as the WS2350, the 

improvement was large (as seen in Figure 3.9).  

 

Figure 3.9. Demonstration of correcting CWS’ temperature bias using a multiple linear 

regression model. The figure shows a histogram of the WS2350 station’s temperature bias 

before and after the correction, along with a scatter plot of a sample of its observations 

overlaid with a grid of the learnt model. The data was randomly split in half to form the 

training and test datasets using daytime data only, for the WS2350 this resulted in 2222 

training points and 2221 test points.  
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So far we have only considered the relationship between simultaneous CWS 

temperature bias and global radiation measurements. This assumes that the impact of 

changes in radiation on the temperature bias is instantaneous. When we consider that 

the impact on the temperature bias may lag behind changes in radiation, the strength 

of the relationship often improves. To incorporate this lagged effect one must include 

radiation observations that occurred before the time of the temperature bias, which 

raises the question of how many observations to use and how to weight them. The end 

goal here simple: to select and weight preceding radiation observations in a way that 

provides the best predictor of radiation-induced temperature bias. The better the 

predictor the more accurate the resulting bias correction is. 

Figure 3.10 illustrates the different kernels that were tested to weight preceding 

radiation data (at 1 minute resolution) over a 60 minute window. The strength of the 

relationship varied little between window lengths of 30 through to 120 minutes, the 

key is to consider at least some previous observations. Weighting the observations in 

this way also helps to smooth the data, averaging out potential occasional noisy point 

observations. 

 

Figure 3.10. Kernels used to weight preceding global radiation (at 1 minute resolution) 

measurements over a 60 minute window. 

Figure 3.11 and Figure 3.12 show the relative benefit of applying these different 

weightings. For all but the VP2s the relationship is significantly stronger when one of 

these weightings is applied relative to using present observations only, although the 

difference between the weightings is often very marginal. With these weightings 
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applied the correlation coefficients and R2 values fall very close to 1 for the WMR200, 

WS2350 and WH1080, implying a strong positive correlation modelled well by the 2nd 

order regression model. As previously shown (Figure 3.6) a 1st order regression model 

would also perform well here; the 2nd order was used purely to make a fair 

comparison with the 𝑙𝑅𝑎𝑑 column. 𝑙𝑅𝑎𝑑, explained in more detail in Section 5.3.3, 

stands for the logged radiation values that are used to improve the spatial 

interpolation of radiation observations to operational CWS locations. Before they are 

logged these observations are first weighted using the exponential kernel shown here 

(Figure 3.10); chosen because it has high R2 values (Figure 3.12) and has the most 

physical meaning. What is reassuring is that even after the log transformation has 

been applied the relationship with the temperature bias is still strong. Thus when 

used in a 2nd order regression model to predict the temperature bias at operational 

CWS, radiation should provide an accurate estimate of the temperature bias, 

particularly for those poorer stations that display the largest biases. The assumption 

here is that we know what model of station is being used.  

 

Figure 3.11. Correlation (Pearson’s linear correlation coefficient) between each station’s 

temperature bias and 60 minutes’ worth of preceding global radiation observations (using 1 

minute resolution radiation data) that have been weighted using a selection of different 

weighting kernels. Only observations during the day are used. 
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Figure 3.12. Relationship between temperature bias and 60 minutes worth of preceding global 

radiation observations (using 1 minute resolution radiation data) that have been weighted 

using a selection of different weighting kernels. The relationship is quantified using the R
2
 

statistic from a 2
nd

 order regression model used to predict the temperature bias from weighted 

global radiation observations. Only observations during the day are used. 

3.2.3. Relative humidity and dew point 

All seven CWS tested exhibit significant relative-humidity biases when compared 

against the MMS’s humidity sensor. The magnitude of these biases exceeds the typical 

range of discrepancy between different brands of professional hygrometers 

(Lacombe, et al., 2011), i.e. ±3% from the reference. It is important to note that there is 

some uncertainty associated with the MMS’s humidity sensor, the Rotronics 

HygroClip. Figure 3.13 shows a time series of the Vue(1) humidity observations minus 

the MMS’s observations. The sudden step change in the bias range in mid-May is 

because the Rotronics HygroClip was swapped for another as part of the site’s 

calibration process. The Rotronics HygroClip that ran over the first 8.5 months tended 

to read much wetter than the CWS’ sensors during conditions of high humidity, 

remaining at 100% for several hours if not days (Figure 3.14). The CWS’ observations 

would rarely read as high as 100%. This explains the large negative biases shown in 

Figure 3.13 over this first period. The second Rotronics HygroClip showed no such 

tendency, exhibiting a much better agreement with a Vaisala humidity sensor run by 

the University of Birmingham at the site. In a separate field study, Ingleby, et al., 
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(2013) found that Rotronics HygroClip sensors tend to drift by +1% to +2% per year at 

Met Office sites (although there is a lot of variability) and can be slow to recover from 

periods stuck at saturation. They estimate that an uncertainty of 2–3% for an 

operational Rotronics HygroClip is achievable under best conditions. As the first 

Rotronics HygroClip was deemed to have drifted wet, all following statistics and 

figures for relative humidity and dew-point temperature were produced using just the 

second Rotronics HygroClip as the reference sensor. Before their deployment, the 

HygroClips are calibrated in the Met Office quality assurance laboratory. Using an 

environmentally controlled chamber they quote a target calibration accuracy of ±2% 

over a range of 25-100% (Mander, 2012). Given that the second HygroClip was only in 

the field for, at most, 3.5 months its errors should fall close to this range. Were this 

field study to be repeated we’d recommend calibrating the HygroClip at the start of 

the year, and also after 6 months to correct for any drift, and to use multiple 

HygroClips at once to better quantify measurement uncertainty. 

 

Figure 3.13. Time series of the Vue(1) station’s relative-humidity bias, that is Vue(1) humidity – 

MMS humidity. 
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Figure 3.14. Relative humidity time series. Covers the period when the MMS’s Rotronic 

HygroClip was changed, as indicated by the red line. Note the addition of the University of 

Birmingham (UoB) Vaisala humidity observations. 

Data from the humidity sensors of the seven CWS we tested have very different 

patterns to their bias. The Davis VP2(1), Vue(1) and Vue(2) stations all show a wet bias 

over the majority of the humidity range (Figure 3.15). For all three stations the mean 

bias is greater than 3% under drier conditions (less than 90%), but when the humidity 

is greater than 90% the VP2(1) and Vue(1) exhibit small dry biases. These findings 

agree well with those of Burt during his review of the VP2 (Burt, 2009) and Vue model 

(Burt, 2013). The VP2(2) behaves slightly differently: under drier conditions it does not 

overread to the same degree as the other Davis stations, but it underreads more 

during wet conditions, with a greater residual variance across the whole humidity 

range.  
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Figure 3.15. The CWS’ versus MMS’s relative humidity: (a) VP2(1), (b) WMR200, (c) WS2350 and 

(d) WH1080 stations. All observations between the 16
th

 May 2013 and 31
st
 Aug 2013 are shown. 

The darker the colour the greater the density of points.  

The WMR200 underreads across the entire humidity range, and dramatically so in 

drier situations, where it exhibits a mean bias of -12.8%. The WS2350 also tends 

towards a dry bias during drier situations, but with a less extreme mean of -1.4%. 

Between 70 and 90% (Figure 3.15) this switches to a wet bias. By contrast, the WH1080 

has a large wet bias over the entire humidity range, with an overall bias of 7.5%. 

In this particular field study it was difficult to accurately quantify the response times 

of the different humidity sensors. We therefore suggest a further study, in which the 

humidity sensors (still inside of their radiation shields) are placed within a climate 

chamber.  The chamber can initiate a step change humidity from which the response 

time of the different sensors can be derived with much greater accuracy.    
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As we anticipated some interaction of temperature and relative-humidity biases, we 

also considered dew-point temperature. The mean dew-point biases for all Davis 

stations were within 1 °C of the MMS. In agreement with other studies that found the 

VP2 station monthly means mostly within 1 °C of the reference sensor (Burt, 2009) and 

Vue station readings that were approximately 1 °C too high (Burt, 2013), both Vue 

stations in this study had a mean bias of +0.8 °C. The WS2350, with a mean bias of 0.9 

°C was also within 1 °C of the MMS’s sensor, but with a larger residual variance. The 

mean bias of the WMR200 and WH1080 stations was more significant, at -1.8 °C and 

2.3 °C respectively (Figure 3.16).  

 

Figure 3.16. The CWS’ versus MMS’s dew-point temperature: (a) WMR200 and (b) WH1080 

stations. All observations between the 16
th

 May 2013 and 31
st
 Aug 2013 are shown. The darker 

the colour the greater the density of points. The equivalent plots for the other CWS tested are 

show in Appendix 8.7. 

The dew-point values of the CWS were derived by the station’s electronic console, 

however, the difference due to their use of potentially different algorithms was 

virtually negligible, never exceeding 0.02 °C. 

Parameterising biases in relative humidity is a challenging task. In general there are 

two main sources of bias. First, there is the capacitive sensor itself.   Figure 3.15 

demonstrated that in comparison to the MMS’s sensor the CWS have potentially large 

calibration errors. The magnitude and even the sign of the bias often changes 

depending on the humidity. Bias may also be induced from hysteresis, when the 

sensor’s response to a change in humidity varies depending on whether the humidity 

is rising or falling. As with the MMS’s Rotronics HygroClip, these CWS’ sensors may 

drift over time, potentially becoming more biased the longer they are in the field. The 
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second source of bias comes from the inadequate shielding or housing of the sensor, 

and is closely related to the shielding problems that lead to temperature biases. For 

example if the shielding overheats, the air within the shield warms, reducing its 

relative humidity, thus causing an apparent dry bias. Alternatively, if humidity is 

falling after a period of saturated conditions, a poorly ventilated shield may prolong 

the time a sensor reads saturated. Trying to tease apart the two sources of error so 

that they can be parameterised is very difficult.  

 

Figure 3.17. Plots of the relationship between temperature, humidity and dew point, and their 

biases for the La Crosse WS2350 station. All observations between the 16
th

 May 2013 and 31
st
 

Aug 2013 are shown. The darker the colour the higher the density of points. 

Figure 3.17 shows a series of plots for the WS2350 station that can help us decipher 

the source of its humidity and dew point bias. It is apparent in Figure 3.17(a) that the 

relationship between the humidity bias and the MMS’s humidity is somewhat unclear. 

Figure 3.17(b) plots the humidity bias against temperature bias. The majority of points 

display a slight cold and wet bias, however, there is a long tail where warm 



71 
 

temperature biases are associated with a dry humidity bias. This may be caused by 

increased temperatures within the sensor housing, relative to the surrounding air. 

Bias in the dew-point temperature is inherited from both the humidity bias and the 

temperature bias. Unsurprisingly Figure 3.17(c) shows that a warm temperature bias 

leads to a subsequent warm dew-point bias, however, the relationship is not perfectly 

linear. As expected the dew point is too high when the humidity is wet-biased. 

However, it is also too high when humidity is dry-biased, perhaps because a warm 

temperature bias has not only caused a subsequent high dew-point bias but also a dry 

humidity bias when the sensor housing overheated. It is worth noting that we have 

chosen to plot just one station here: the plots for the other stations can look very 

different, further indicating that the parameterisations must be learnt for each 

individual CWS. 

This field study has reinforced that relative humidity is a difficult variable to measure, 

for CWS and MMS stations alike. Having seen biases that slowly drift and suddenly 

jump within the reference MMS data it is crucial that before using the MMS network 

to correct real CWS observations that it too it undergoes its own quality control 

procedure. A network of more accurate sensors, such as chilled mirror hygrometers 

that measure dew-point temperature directly, could help anchor the MMS network 

and in turn the CWS network, although such a network may prove difficult to keep in 

good operational condition. Incorporating relative humidity into the bias correction 

model detailed in Section 5.6 would prove difficult. With an upper limit capped at 

100%, it can produce non-Gaussian errors. Converting relative humidity into other 

variables that represent air moisture, such as dew-point temperature, may provide a 

solution to this. We have shown examples where relative humidity and dew-point 

biases are dependent on temperature bias, so it is important that we model the 

moisture variable jointly with temperature and its bias. 

3.2.4. Rainfall 

Figure 3.18 shows a plot of cumulative rainfall throughout the year-long study. All but 

the VP2(2) station measured totals less than the MMS’s gauge. It is interesting that one 

VP2 station overread whereas the other underread, particularly as the VP2 model 

allows for calibration of the tipping buckets using a screw under each bucket. Before 

installing the VP2 stations they were calibrated in the laboratory so that on average 

both read within 2% of the truth. It is curious that, once in the field, they should 

deviate from the professional gauge by approximately 10%, and in different 

directions. When Burt (2009) tested a different VP2 station against a standard ‘five-
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inch’ gauge he found the annual total was just 1.8% higher, but the agreement was not 

consistent, with monthly differences ranging from -10% to +19%.  

 

Figure 3.18. Cumulative rainfall totals of the seven CWS throughout the year-long study. Data 

from the professional Met Office gauge are shown by the black line. The final totals are 

displayed in the legend. 

The Davis Vue stations show a very good agreement with the MMS’s gauge and with 

each other, both undercatching by less than 4%. However, results by Burt (2013) show 

that this slight undercatch is not consistent throughout all Vue stations: as compared 

with the standard ‘five-inch’ gauge the annual total of their Vue stations was 9% too 

high. The WMR200 showed a reasonable agreement, undercatching by just 5.2% at the 

end of the period. The WS2350 and the WH1080 stations undercatch by greater 

amounts, with a yearly total of just 88% and 76% of the Met Office total respectively. 

Six of the seven CWS tested displayed yearly rainfall totals lower than the MMS’s rain 

gauge. One explanation for this could have been that, at 1–2 m above the ground, the 

CWS’ rain gauges are mounted higher than the MMS’s gauge at 30 cm, as such they 

experience higher wind speeds, which can lead to undercatch (Guo, et al., 2001). The 

shape of the gauge may also have an impact on these wind-induced errors (Sevruk & 

Nespor, 1994). In this study we looked for a relationship between wind speed and the 

daily CWS’ rainfall totals as a proportion of the daily MMS’s total. However, no 

obvious relationship was found, either for average wind speed taken at times of 

measured rainfall, or for daily average wind speed. Measurements from both the 

CWS’s anemometer and the Vector Instruments anemometer, mounted at 7m, were 

used separately. Possible explanations for this lack of relationship is that the 



73 
 

Winterbourne No. 2 site is relatively sheltered, with a mean 7 m wind speed of 1.6 m s-

1 and a maximum of 10.2 m s-1. The anemometers of the four Davis instruments never 

read any higher than 5 m s-1. It is possible that these relatively low wind speeds did 

not cause noticeable undercatch and that the biases seen had a different source. The 

MMS’s gauge is deep with steep sides to prevent heavy rain from bouncing out, while 

all CWS tested, bar the VP2s, are much shallower, particularly the WS2350 and 

WH1080. Such a design makes them prone to undercatch due to rain drops bouncing 

out, an effect that potentially outweighs any influence of wind speeds. Wind direction 

may also play a role with the height and shape of upwind obstacles varying with 

direction. However this effect was not looked at in detail, and remains an area for 

further investigation. 

Even before deploying the CWS’ rain gauges outdoors the tipping buckets within may 

be poorly calibrated, producing a bias straight out of the box. To test this, 500ml of 

water was slowly dripped through each rain gauge indoors. By dividing the volume of 

water by the area of the gauge it is possible to calculate the depth of rain (in mm) that 

the station’s console should display (Overton, 2007). Differences between expected 

and measured depth were as large as 13%, with most stations underreading. A 

corresponding correction was then applied to the yearly cumulative rainfall totals. 

For some stations this led to a small improvement, but for others their yearly total was 

made much worse. Clearly other factors are at work outdoors that outweigh errors 

due to poor calibration, proven by the poor performance of the VP2 stations in the 

field despite being calibrated to less than 2% error indoors.  

Some CWS’ rainfall bias, particularly when dealing with daily totals, can result from 

cold and snowy synoptic conditions. The gauges of the CWS tested were prone to 

filling with snow (e.g. Figure 3.19) when the MMS’s gauge did not. This resulted in 

delayed tips when the snow finally melted. The funnel exit hole of the CWS’ gauges 

was also prone to freezing over, again causing a delay in rainfall readings. The data 

could be split into cold and warm periods to better demonstrate the impact of these 

cold weather effects; however this remains an area for further investigation. 
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Figure 3.19. Davis Vantage Vue on 24
th

 January 2013. Note that the rain gauge located on top of 

the unit is completely filled with snow, so much so that it prevents the wind cups from fully 

rotating. 

The CWS are usually good at capturing the intensity and timing of rainfall events, but 

their long-term cumulative total can differ from professional gauge measurements 

significantly. Using the MMS’s gauge as our best estimate of the truth, Figure 3.20 

shows that by identifying the relationship between the MMS’s and CWS’ cumulative 

rainfall time series we can correct the CWS’ time series to fall in line with that of the 

MMS. This works well because, for the CWS tested here, the proportion of undercatch 

or overcatch tended to remain relatively constant through time, thereby allowing for 

a correction to be learnt from preceding data. At each timestep the following steps are 

taken in order to make this correction: 

1. Leading up to a given timestep there is a time series of cumulative rainfall 

totals from both the MMS and CWS gauges. Any preceding timesteps where the 

CWS total does not change (i.e. dry spells) are filtered out of the dataset. 

2. A simple linear scaling correction is then derived from the remaining pairs of 

MMS and CWS cumulative totals, assuming a fixed origin at (0,0). For example 

if a CWS consistently undercatches by 10% then the calculated correction will 

be 0.9. 

3. The CWS cumulative rainfall total at the current timestep is then corrected by 

dividing its uncorrected total by the calculated correction. 
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Figure 3.20. Plot of cumulative rainfall totals from the MMS’s and seven CWS’ gauges. The 

cumulative rainfall values (available every 10 min) for all CWS were corrected using the 

relationship between their cumulative rainfall and that of the MMS’s gauge; learnt from 

preceding data only. 

In reality, a professional gauge is rarely collocated alongside a CWS, in which case 

observations must be carefully interpolated from nearby professional gauges, for 

example, from the MMS or Environmental Agency networks. Effectively merging 

radar accumulation data with this gauge data could improve the interpolation 

(DeGaetano & Wilks, 2009), which should improve CWS’ long-term totals, while 

keeping the detail of individual and isolated rainfall events captured by the CWS. 

3.3. Summary  

This intercomparison field study has crucially shown it is possible to identify, 

parameterise, and correct biases evident within CWS data, and the size of the 

observed biases highlights just how important such corrections are.  

In particular we detailed the significant radiation-induced temperature biases, and 

how weighted global radiation observations made at MMS sites can be used to 

parameterise and correct them. In theory this should allow us to correct operational 

CWS data, given a reliable estimate of the radiation at CWS locations. Producing 

radiation estimates at operational CWS locations requires a radiation interpolation 

model as described in Section 5.3.3; a model that leverages the lagged nature of the 

relationship. We also noted the impact that micro-scale siting can have on the strength 

of incoming radiation through shading effects. Modelling this effect is very difficult, 
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however in Section 5.5.1 we propose an approach that can remotely quantifying the 

degree of sheltering at a CWS location. 

We also saw that different models of station exhibit dramatically different bias 

magnitudes and relationships. To correct real CWS data it is therefore crucial to 

decipher which model is being used in order to apply the right correction. An 

approach to do this is discussed in Section 5.4, highlighting the importance of 

metadata. The temperature–radiation relationships observed in this study for each 

design of radiation shielding are used to inform the corrections applied to operational 

CWS of the same design (Section 5.6.3).  

There were also examples where stations of the same model actually showed very 

different biases; take for example the rainfall biases of the two VP2s. Therefore, 

although knowing the model type gives us some a priori information about the types 

of biases we would expect, this belief should be updated if the data itself indicates 

otherwise. However, unlike this field study, operational CWS are not be collocated 

with professional instruments from which we can easily quantify the instrumental 

biases. To overcome this problem an interpolation model is described in the next 

chapter (Chapter 4) capable of interpolating temperature observations from the 

professional MMS network to the CWS locations.   

The CWS tested also displayed some calibration biases. For example the Vue(2) station 

appeared to display a consistent cold bias of around -0.2 °C (masked by longwave 

radiation-induced biases during the day, Figure 3.2). Section 5.6 details an approach 

for learning these temporally-consistent biases over time.  
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4. Interpolating professional observations 

In order to learn whether a given CWS displays any biases, it is crucial that we have a 

reliable independent estimate of the weather at that CWS’s location. As a CWS may be 

tens of kilometres from the nearest professional MMS station we rely on an 

interpolation model to interpolate professional observations to CWS locations. In this 

chapter we detail the interpolation model that was used and test its performance 

using cross-validation with professional MMS temperature observations over four 

case study periods. As previously mentioned we focus only on interpolating air 

temperature. The interpolation of dew point and precipitation is a topic for further 

work. 

By comparing the interpolated professional observations against the CWS data, we 

attempt to gradually update our expectation of the CWS’s bias over time. In Chapter 5 

we discuss exactly how this is done. If the bias is successfully learnt, then once it is 

removed (assuming negligible model and representativity errors) the only difference 

relative to the interpolation model’s prediction should be natural spatial variations 

that the interpolation model was unable to resolve. This is where the value in the CWS 

data lies. As estimating the bias is a difficult task, we also aim to accurately quantify 

our uncertainty, in order to express our confidence in the learnt bias correction. 

The task of interpolating land surface meteorological observations is one that has 

been performed numerous times to date, with a variety of techniques being 

implemented and compared (e.g. Daly (2006); Hofstra, et al., (2008)). Approaches 

include thin plate splines (Hijmans, et al., 2005), various forms of kriging (Hengl & 

Heuvelink, 2007), local regression (Daly, et al., 2002) and artificial neural networks 

(Rigol, et al., 2001). Some studies use forecast model initialisations to help guide the 

spatial interpolation (Degaetano & Belcher, 2007), and others stratify their 

interpolation models by circulation pattern (Courault & Monestiez, 1999). 

Much of the literature focuses on the interpolation of irregularly spaced climatological 

station data, such as daily mean, minimum and maximum temperatures, to a regular 

grid. The key difference in this study is that we use instantaneous sub-daily 

temperature measurements (i.e. valid for a given minute) and although our approach 

could be used to interpolate to a regular grid, here it is only necessary to interpolate to 

the locations of CWS. Our interpolation model is run over a domain that consists 

primarily of Great Britain, but also some surrounding islands (Figure 2.2). By using 

predictors (Section 4.4) with a high spatial resolution, e.g. forecast model data on a 1.5 
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km resolution grid, and land cover maps at 25 m resolution the aim is to produce an 

estimate as close to ‘true’ temperature at a CWS location as possible. However as with 

all complex models this model is not perfect. The resolution of our predictor data is 

finite, other important predictors may be unresolved, and errors may be introduced 

by an imperfect model structure. As such the scale to which our predictions are valid 

is probably limited to a few kilometres around the CWS location. The exact scale links 

to the concept of representativity (Section 2.3.5). In the bias correction model (Section 

5.6) a specific term is introduced to handle such representativity errors. However as 

long as our estimates remain unbiased on average then over time CWS biases may be 

corrected for (as detailed in Section 5.6) and the CWS’s own observations thus provide 

the finer resolution estimate of the temperature at its location. 

As detailed below (Section 4.4.1) our interpolation model incorporates short range 

forecasts from a numerical weather prediction model. As a result our model borrows 

several attributes common to the post-processing procedures used to handle the 

output from such models (Moseley, 2011).  For example, bilinear interpolation is used 

to map the gridded forecast model output to station locations, before applying a height 

correction to account for differences in model cell height and station elevation. We 

also use real professional observations to learn the biases in the forecast - biases that 

are either spatially correlated, or correlated to one of the other predictors. While post-

processing systems learn these forecast model biases with the aim of correcting their 

forecasts of upcoming weather, we instead use past forecasts and ‘correct their biases’ 

in order to best model the spatial temperature field.  

4.1. Input MMS data 

To run and test our interpolation model, professional temperature observations from 

the aforementioned Met Office MMS network are used (Green, 2010). The MMS 

network consists of over 200 land surface stations (Figure 2.2) that meet strict WMO 

quality standards (WMO, 2010). It is important to mention that MMS temperature 

observations are stored by the Met Office at hourly and minute resolutions. Here we 

only use hourly resolution temperature data (although in Section 5.3.3, minute-

resolution global radiation observations are required). There are pros and cons to 

using this hourly resolution data over the minute data. The advantage is that this 

hourly data has been fed through the Met Office’s quality control system, which flags 

up erroneous data which we then discard from our dataset. The disadvantage is that 

these hourly observations are in fact valid at 10 minutes to the hour rather than on 

the hour. This is an artefact of manual observation practises, where the 10 minutes 

allowed observers to collect, code, and submit their observations before the deadline 
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on the hour. As with the MMS data from the field study (Section 3.1.1), the minute 

observation used at 10 to the hour is the mean of four 15 s samples taken over the 

minute. As the interpolated MMS observations are used to learn biases in CWS 

observations it is important that the CWS observations are also valid at, or close to, 10 

minutes to the hour (discussed further in Section 5.1). The unavoidable issue here is 

that the Met Office’s short range forecast, used as a predictor within this interpolation 

model (Section 4.4.1), is valid on the hour. We therefore have to assume that the 

impact of this difference is negligible and that the design of the interpolation model is 

such that it can compensate for this. 

4.2. Case study periods 

In order to thoroughly evaluate the performance of our interpolation model, it is 

important to test it over a range of meteorological conditions. To this end, we selected 

four 2 week periods, one from each season, which included a range of different 

synoptic situations. Below is a summary of the synoptic situation during each period. 

In Chapter 5 these same periods are used to test our bias correction model using real 

citizen data gathered over each period. 

4.2.1. Autumn 

Period: 1st – 14th October 2012 

Summary: A mainly cold and unsettled period with frequent rain. However, a weak 

ridge between the 6th and 10th brought drier and sunnier weather, and also night 

frosts. The first five days consisted mainly of sharp showers and sunny intervals, 

although heavy and prolonged rain fell across southern England and Wales from late 

on the 4th through to early on the 6th (Eden, 2012).  

 

Figure 4.1. Met Office surface pressure charts valid at 00:00 GMT at the start of each day. 

Autumn period: 1st – 14th October 2012. Synoptic charts from www.wetterzentrale.de archive. 
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4.2.2. Winter 

Period: 17th – 30th January 2013 

Summary: This winter period, characterised by cold, cloudy, and most notably snowy 

conditions, was selected as a challenging period. For the first 9 days high pressure 

over Scandinavia led to several snowfalls, notably on the 18th, 20th, 21st and 22nd. On 

the 25th an occlusion from the Atlantic brought about heavy snowfall before heralding 

a milder, but wet and windy, end to the period. Light winds before the 25th were 

replaced with strong gusts particularly for the 28th-30th (Eden, 2013a).  

 

Figure 4.2. Met Office surface pressure charts valid at 00:00 GMT at the start of each day. 

Winter period: 17th – 30th January 2013. Synoptic charts from www.wetterzentrale.de archive. 

4.2.3. Spring 

Period: 13th – 26th May 2013 

Summary: A cold May with some heavy frontal rainfall. The period began with an 

unsettled, cold and often windy cyclonic/westerly regime. A deep depression crossed 

the UK on the 14th and 15th bringing heavy banded rainfall with strong winds 

following up behind it. A fine bank holiday weekend, 25th-26th, rounded off the period 

(Eden, 2013b). 
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Figure 4.3. Met Office surface pressure charts valid at 00:00 GMT at the start of each day. 

Spring period: 13th – 26th May 2013. Synoptic charts from www.wetterzentrale.de archive. 

4.2.4. Summer 

Period: 24th June –7th July 2013 

Summary: A mostly dry and fine month, selected to highlight CWS radiation biases. 

The period began dry with occasional sunshine and near-normal temperatures, but 

light rain fell on the 27th and 28th before turning fine and warm for final two days of 

the month (Eden, 2013c). July began cooler and changeable, but from the 4th an 

anticyclonic situation took over, leading to dry, sunny and very warm conditions for 

nearly all of the British Isles (Eden, 2013d). 

 

Figure 4.4. Met Office surface pressure charts valid at 00:00 GMT at the start of each day. 

Summer period: 24th June – 7th July 2013. Synoptic charts from www.wetterzentrale.de 

archive. 

4.3. Interpolation model design 

The interpolation model’s design is based upon a Bayesian linear regression model 

(Equation (1)). At each timestep global regression is performed – using the training 

data to learn the distribution of the regression coefficients, β, in order to predict the 

temperature at the test sites. ‘Global’ is used in the sense that the regression 

coefficients apply across the entire British domain. In verification mode, as used in 
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this chapter, data for the MMS sites form both the training and test data through 

cross-validation. Operationally, and as used in Chapter 5, all the MMS sites are used to 

train the model in order to predict at CWS locations. The Bayesian framework, 

detailed below (Section 4.3.2), ensures that these regression coefficients are not learnt 

from scratch at each timestep. They propagate through time – informed both by what 

was learnt at preceding timesteps, i.e. the ‘prior’, and by the addition of new data to 

yield a posterior belief. This ensures that the model remains stable through time. This 

is particularly useful if it is necessary to deal with small sample sizes. 

The predictors that form the basis functions within the design matrix X (Equation (1)) 

include a short range forecast from the UKV numerical weather prediction model, 

various geophysical properties characterising each station, along with Radial Basis 

Functions (RBFs) in order to provide some localisation in an otherwise global model. 

These basis functions are explained in more detail in Section 4.4. 

4.3.1. Linear regression 

Here we outline the basic structure of the Bayesian linear regression model used. For 

more details see Gelman, et al., (2003). Appendix 8.1 details the equation notation 

used here and in the rest of the thesis. The prediction is given by: 

  , (1) 

where 

 , 

 , 

 . 

Equation (1) makes a prediction, y, of the ‘true temperature’ at the test station 

locations with a predicted error 𝜖. X is typically called the design matrix and contains 

our basis functions (Section 4.4). β is the regression coefficient parameter vector 

learnt from the training data. Note the T, which indicates that the transpose of the β 

matrix is used. Say, for example, that X was simply a vector of elevation values at the 

test locations, then β would simply represent the effective lapse rate learnt from the 

training data with a given mean, 𝜇𝛽, and variance, 𝑣𝜖 ∙ 𝛽. By default X always contain 

a constant term. Although the model is linear in parameters the design matrix can 

contain non-linear basis functions. A key benefit of using such simple models is their 

speed and interpretability (Bishop, 2007). 
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The model uncertainty, 𝑣𝜖 , becomes the learnt discrepancy between the model 

predictions and the observations and therefore incorporates both observation and 

model error. We use a Normal-inverse Gamma distribution jointly over 𝑣ε  and β. 

These are coupled and conjugate which provides closed form updates for the 

posteriors, meaning that the code can be run quickly and efficiently. The joint 

distribution ensures that as our model uncertainty, 𝑣𝜖 , increases so does our 

uncertainty about the regression coefficients. 

This structure suits variables, such as air temperature, which when interpolated will 

display Gaussian interpolation errors. It is therefore unsuitable for variables, such as 

precipitation, that are likely to display non-Gaussian errors.  

4.3.2. Bayesian framework 

At each timestep three key steps occur as part of our Bayesian approach: forecast, 

update, and prediction at test/CWS locations; each step is explained in detail below. 

Forecast 

In order to use the posterior distributions of the regression coefficients and model 

uncertainty from the last timestep as priors at this timestep we must propagate them 

forward in time. Note that although the mean estimate of the regression coefficients 

remains the same (Equation (2)) we inflate our uncertainty about the regression 

coefficients (Equation (3)) and our model uncertainty (Equations (4) and (5)). By 

inflating the uncertainty the model is able to react to changes in the relationship 

between the predictors and the predictand without becoming over confident in its 

estimates. 

 
 

(2) 

 

 

 

(3) 

 

Here δt is the time between the last timestep and the current timestep, and should be 

in the same units as 𝛾𝛽, the forgetting rate parameter for the regression coefficients. 

𝛽,𝑡=0 is the covariance matrix of the regression coefficients at timestep zero, i.e. when 

the model was initiated; it is used to scale the added uncertainty. The ratio of 𝛿𝑡 to 𝛾𝛽 

controls the rate at which the previous timestep’s regression coefficient information is 
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forgotten. Here 𝛾𝛽 is set as 24 hours, i.e. if the timestep between model runs, 𝛿𝑡 is 

greater than 24 hours the regression coefficients learnt at the previous timestep 

become at least as uncertain as before any data was seen. In this study however 𝛿𝑡 is 

always 3 hours due to the model’s reliance on the short range forecast model (Section 

4.4.1). Because the model receives a lot of new data at each timestep it proves fairly 

insensitive to the value of 𝛾𝛽.  

To scale the variance of the residuals from the model we also inflate the Gamma 

component: 

 
 

(4) 

 

 

 
(5) 

The denominator is Equation (5), i.e. 2, was set empirically. 

Update 

The update step combines the ‘prior’ distributions of the regression coefficients and 

the model uncertainty with the new data made available at this timestep to produce 

posterior distributions from which predictions can be made. 

In Equation (6) the regression coefficients’ covariance matrix ̃𝛽,𝑡, handled as a 

precision matrix 𝛽,𝑡
−1 is updated using the new design matrix X: 

   , (6) 

 

where Γ is a regularisation term, a diagonal matrix with the value 0.000001 along the 

diagonal used to ensure numerical stability. 

The mean estimate of regression coefficients, 𝜇̃𝛽,𝑡, is also updated using the new 

design matrix along with the vector of target temperature observations, t (Equation 

(7)). Note how the updated regression coefficient covariance matrix, 𝛽,𝑡, from 

Equation (6) is also used. 

 
 

(7) 
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Equations (8) and (9) denote the update of the model uncertainty parameters a and b: 

   , (8) 

 

Where m is the number of training stations. 

 
  . 

(9) 

 

Prediction at test/CWS locations 

Equations (10) and (11) use the posterior distributions learnt from the update step to 

make temperature predictions at the test stations. These predictions are distributions 

with a mean estimate 𝜇𝑦,𝑡 and covariance matrix 𝑦,𝑡 . This covariance matrix is 

crucial as it provides an estimate of the uncertainty of our prediction. In Section 4.5 

we evaluate the accuracy of these mean predictions and assess how well the model 

performs probabilistically.  

 
 

(10) 

 

 
 

(11) 

The mean estimate 𝜇𝑦,𝑡 and covariance matrix 𝑦,𝑡 are the primary outputs from this 

interpolation model. In Chapter 5 (specifically Figure 5.32) we show how these two 

outputs enter our bias correction model.  

4.3.3. Alternative clustered approach 

The temperature interpolation model detailed above assumes that the regression 

coefficient, β, for each predictor (Section 4.4) is constant across the entire country at a 

given timestep. However it is likely that the regression coefficients not only vary 

temporally, as already captured by the model, but also spatially. Taking the regression 

coefficient for elevation as an example, we would expect that when Britain is covered 

by several different air masses the lapse rate probably varies between them. Below 

we detail a novel approach that was also tested in order to capture this effect. 

However as this approach was more computationally expensive and provided little 

improvement in the cross-validation error the approach already described above was 

adopted instead.  
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This alternative approach implemented a Gaussian Mixture Model to cluster 

professional and CWS stations alike into clusters. A MATLAB implementation of a 

Gaussian Mixture Model was provided by the Netlab toolbox (Nabney, 2002). The 

regression coefficients and model uncertainty could then be learnt and updated for 

each cluster individually (Figure 4.5). It is the addition of this clustering step, and the 

fact each cluster must now be processed individually that increases the computational 

time. Soft assignments were used so that each station belonged, with a given 

probability, to each of the clusters, although usually each station significantly 

favoured a particular cluster. For stations with a strong membership to a cluster their 

data was given a larger weighing than those with a weak membership when the 

regression coefficients and model uncertainties were updated for that particular 

cluster.  

 

Figure 4.5. Screenshot of the graphical user interface (GUI) used to visualise the evolution of 

the clusters through time. The colour of each station represents the cluster to which its 

membership is strongest, shown here on the map (left) for a single timestep. The time series on 

the right of the plot shows the mean regression coefficient values for every basis function 

evolving over the 2 week summer period, at 3 hourly intervals. Each of the 3 clusters is 

represented by a different line/colour. Only MMS stations (225 total) were used here. 

The clusters were assigned based upon observations (or estimates) of the sea-level 

temperature, humidity, cloud cover, and wind speed at each station’s location. These 

variables help characterise the synoptic conditions across the country, ensuring that 

the clusters loosely represent the overlying air masses. From Figure 4.6 it is possible to 

see how these variables influence the final clusters. The geographic easting and 
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northing coordinates of the stations were also used as inputs to the clustering, to 

ensure that the clusters remained spatially coherent. 

 

Figure 4.6. Screenshot of a GUI used to visualise the cluster assignments and how they 

correspond to the variables used to assign the clusters. The colour of each station in the 

Clusters plot denotes the cluster to which its membership is strongest (i.e. the cluster to which 

it has the greatest probability of belong to) and the size of each marker is indicative of the 

strength of its assignment to that cluster. Only MMS stations were used here. 

These dynamic clusters evolve naturally through time (Figure 4.7). The number of 

clusters were fixed; with 3-5 clusters commonly used. It is very unlikely that Great 

Britain would be subject to more than 5 air masses at a given time; therefore using 

any more clusters would be unrealistic and could result in clusters to which very few 

stations are strongly assigned.  
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Figure 4.7. Snapshots of the clusters evolving through time, here at 3-hourly intervals. Colour 

denotes strongest cluster membership for each station. Only MMS stations are shown here. 

Figure 4.8 illustrates the number of stations used to update the regression coefficients 

and model uncertainties for each cluster through time. Note that at times a cluster is 

informed by virtually no stations. This implies there are fewer air masses than 

clusters and therefore not all the clusters are required. 

 

Figure 4.8. Time series of the sum of cluster weightings for each cluster, with each line 

representing a different cluster. 

It was interesting that this clustered approach gave virtually no improvement over the 

chosen global approach. It is probable that the inclusion of the UKV numerical 

weather prediction model (Section 4.4.1), which inherently model different air 

masses, was able to capture this effect without the need for a clustered model. The use 

of Radial Basis Functions (Section 4.4.5) in the selected approach also helps resolve 

spatial variations. Further work would be required to show the potential benefit of 

such a clustered approach. 

4.4. Basis Functions 

The following sections (4.4.1 – 4.4.5) introduce the predictors that were chosen to form 

the basis functions within the design matrix X of our linear regression model. In 

deriving this final set of predictors many different predictors were tested, selected 
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because they were believed to be strong spatial covariates of surface temperature. 

Previous studies, such as Jarvis and Stuart (2001), found northing, elevation, coastal 

and urban effects to be particularly significant for the UK, although their study 

focused on explaining the variation in minimum and maximum daily temperatures. 

Unsurprisingly Alvarez, et al., (2014) also found that elevation was the leading 

covariate for maximum, mean and minimum daily temperatures in their study in the 

Western United States, with distance to coast also helping to reduce the Root-Mean-

Square Error (RMSE). Each of these variables has been incorporated in some form 

below with the hope that they are also strong covariates of instantaneous sub-daily 

temperature, as used in this study.   

As well as these geophysical predictors it was also important to incorporate a dynamic 

predictor, which unlike the geophysical predictors would vary through time. For this 

the Met Office’s UKV model was used as explained below (Section 4.4.1). This would 

help capture the fluid nature of the near surface temperature field; resolving spatial 

variations the geospatial predictors alone would miss. 

For each of these predictors only a 1st order basis function is used. 2nd order basis 

functions, e.g. 𝑥2, were also tested for each predictor individually, but provided little 

or no improvement to the overall accuracy of the model. They were therefore omitted 

to save on computational cost. Radial basis functions are also incorporated, as 

explained in Section 4.4.5. In Section 4.5.1 we demonstrate the value each of these 

basis functions adds to the interpolation model. 

Each basis function requires an initial prior distribution of its corresponding 

regression coefficient to initialise the model. In order to sensibly specify the mean and 

variance of each regression coefficient we simulated a temperature field across the 

entire Great Britain domain (1 km resolution; 700×1300 cells, i.e. the same domain as 

the Ordnance Survey National Grid – OSGB36) by sampling from a given set of trial 

priors and using the prediction model (Equation (10)) with the sampled regression 

coefficients. The simulated temperature fields were assessed manually to judge their 

plausibility. If their appearance was sensible then these priors were used. To avoid 

over precision in the priors we inflated their variance slightly to allow more flexibility 

in the model as they can now be quickly updated by the data. As such the 

interpolation model appeared to be insensitive to these initial prior values. Because 

the UKV forecast (Section 4.4.1) is time-varying a selection of timesteps were used to 

help set an appropriate initial prior. 
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Predictors that were tested, but not selected, included estimates of the soil type 

around a location, how inland a site is, the land/sea ratio in an upwind direction, and 

how sheltered or exposed a site is with respect to the surrounding topography. This 

last measure was tested in order to try differentiating stations within valley bottoms 

from those on top of exposed hills, which can experience remarkably different 

temperatures under certain synoptic situations such as those conducive to cold 

pooling. Current numerical forecast models struggle to resolve these effects of local 

topography (Vosper, et al., 2014). Sheltering effects at the micro-scale will also 

influence air temperatures; however accurately quantifying this effect for use as a 

predictor is very difficult.  Unfortunately none of these predictors provided significant 

reductions to model error, while several were computationally expensive to generate, 

and in the interests of simplicity, all were omitted from the model. The final model 

only uses the temperature field from the short range forecast model, but other UKV 

fields were also tested as predictors. These included the forecast soil moisture and 

cloud cover, but again at most they provided marginal improvements in model 

accuracy. This is unsurprising as the UKV’s temperature forecast should have already 

accounted for the effect of such influential variables. 
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4.4.1. Met Office short range forecast 

 

Figure 4.9. Met Office UKV T+3 forecast of 1.5 m air temperature field for 26
th

 June 2013 

(summer period) at 03:00. Overlaid with MMS air temperature observations (circles) at the 

equivalent timestep. 

The Met Office’s short range forecast from its UKV model is a powerful predictor in 

our interpolation model. The UKV configuration is ~1.5 km resolution, ‘convection-

permitting’ model covering the British Isles. It is nested within a ~25 km resolution 

global model using variable resolutions at the model boundaries (Tang, et al., 2013). It 

comprises of 70 vertical levels on a terrain-following hybrid-height vertical co-

ordinate system. It runs 8 assimilation cycles every day (every 3 hours) using a 3-

dimensional variational (3D-Var) data assimilation scheme (Lorenc, et al., 2000). It is a 

particularly pertinent model to use, since one very likely application of corrected CWS 

data would be to feed the observations into the model’s high resolution data 

assimilation scheme. Here we use the UKV forecast at a lead time of T+3 hours. 

Shorter lead times of T+1 and T+2 are also available, but T+3 was favoured as it is 

commonly used in model verification and permits model spin-up. 

Bilinear interpolation (Lillesand, et al., 2008) of the nearest 4 cells is used to map the 

gridded model output to the location of each MMS and CWS station. This was done for 

the values at each 3-hourly timestep. To save processing time we precomputed which 

4 cells were nearest to each CWS in advance, along with the distance from each cell 



92 
 

centre to the CWS location. To account for the difference in temperature resulting 

from the discrepancy between model height and station height, two approaches were 

tested. The first was to apply a lapse rate correction based on a simple fixed lapse rate 

of -6.4 °C per km. The second derived a lapse rate from the UKV model itself, by fitting 

a simple regression model to the relationship between model cells heights and their 

forecast temperature. This was done for each station using only cells within a ~300 km 

radius to provide a localised, but stable, estimate of the model lapse rate. For example, 

if Scotland was experiencing a different air mass, and thus different average lapse 

rates to Southern England then this approach would apply more appropriate 

corrections to model cell temperatures in each region. Figure 4.10 shows that both 

approaches lead to significant improvement in the UKV’s RMSE. There is however 

very little difference between the two approaches. Sheridan, et al., (2010) 

implemented a similar model-derived lapse rate correction for downscaling from 

operational mesoscale (4 km resolution) model output. Although they found 

significant improvements in the temperature correction under stable conditions (e.g. 

when air temperature increases with height) they also saw limited improvement to 

the overall RMSE. Because of the marginal difference between the two approaches the 

fixed lapse rate correction was favoured for its simplicity and significantly lower 

computational cost. 

 

Figure 4.10. UKV RMSE time series during the autumn period (1 - 14 October 2012) for 

different model cell height to station height temperature corrections; verified against 

observations from 225 MMS stations over the 112, 3-hourly, timesteps. Vertical grid lines mark 

midnight. 



93 
 

When including the UKV temperature forecast as a basis function, the roles of the 

other predictors are altered. For example, the model includes a constant term – 

without the UKV our expectation of its regression coefficient would be close to the 

climatological average temperature, but with the UKV we would expect a value of 0. 

Were it not equal to 0, then this would imply that the UKV systematically over- or 

under-predicts at every station. It is a similar case with the other predictors. Taking 

elevation as an example, without the UKV the expectation of its regression coefficient 

is that it would resemble a common lapse rate, such as -6.4 °C per km. With the UKV 

included, this basis function now essentially acts to correct any biases in the UKV 

model which show a correlation with elevation. If there are any such biases then the 

elevation’s regression coefficient would deviate away from 0. The Radial Basis 

Functions (Section 4.4.5) effectively help to mop up any spatially correlated errors in 

the UKV model. These other basis functions should also help account for the 

aforementioned issue of the observations being valid at 10 minutes to the hour while 

the UKV is valid on the hour.  Initially our expectation of the regression coefficient 

mean for the UKV itself is set as 1 as there is little a priori evidence to suggest the UKV 

has a consistent systematic bias. 

The time series plots of RMSE in Section 4.5 illustrate how the RMSE of the UKV varies 

through each of four case study periods. Figure 4.11 displays the UKVs mean bias at 

each 3 hour timestep for every day in the summer period. It highlights that the UKV 

often displays a pattern to its overall bias; here we see signs of a mean cold bias 

during the day and a warm bias at night. As discussed previously, it is the role of the 

other basis functions to adjust for these biases. 
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Figure 4.11. UKV bias arranged by 3-hourly timestep (rows) for each day (columns) during the 

summer period. Verified against observations from 207 MMS stations, of which 20 MMS 

stations were partially missing data, but were still used when data was available. Values are 

the mean bias of all the individual station biases at a given time when verified against MMS 

station observations. Bilinear interpolation is used to map predictions for the 4 nearest grid 

cells to station locations. A fixed lapse rate correction was used to adjust model predictions to 

MMS station heights. 

4.4.2. Easting, northing and elevation  

Each stations’ Easting and Northing coordinates, on the Ordnance Survey’s National 

Grid reference system (OSGB36), were used to capture overall north-south and east-

west temperature gradients that the UKV may have poorly resolved.  

The elevation of MMS sites comes from the Met Office’s metadata. They are therefore 

reliable as supported by Figure 4.12 which shows a strong agreement when verified 

against Digital Elevation Model (DEM) with a ~250 m horizontal resolution. This DEM 

is from the GMTED2010 dataset produced by the U.S. Geological Survey (USGS) in 

collaboration with the National Geospatial-Intelligence Agency (Danielson & Gesch, 

2011) who specify a RMSE range between 26 – 30 m. This DEM was re-projected, using 

bilinear interpolation in esri’s ArcGIS software, to a 1km grid in order to simulate a 

temperature field using sampled elevation regression coefficient values from a trial 

prior distribution (as introduced earlier in Section 4.4). 
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Figure 4.12. Comparison of the MMS station elevations as listed within Met Office metadata 

with the GMTED2010 DEM derived elevation. The raster DEM was sampled at the station 

coordinates using bilinear interpolation. 

4.4.3. Coastality 

To represent coastal impacts on temperature the proportion of sea within a 25 km 

radius around each station was used. Although coastal effects such as sea-breezes can 

penetrate as far inland as 85 km (Simpson, et al., 1977), here we use 25 km as it 

produced the lowest RMSE during cross-validation. Figure 4.13a displays the coastality 

estimates over the British Isles.  

An approach was also tested to estimate the proportion of sea only in an upwind 

direction, i.e. the direction from which the sensed air parcel has travelled. Distances 

ranging from 10 km through to 100 km were tested. Unlike the simple 25 km circular 

radius this upwind approach is reliant on wind direction/speed estimates at every 

station and every timestep. This is required to either calculate the upwind proportion 

in real-time, or to assign the prevailing wind conditions to a designated class for 

which the proportion has already been calculated. Because of these additional 

computational costs and only a marginal improvement in error this approach was not 
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included in the model. Such an approach may also be over-simplistic because at times 

the sensed air mass is a combination of air packets from several directions, not just 

one. For example, when onshore sea-breezes over a peninsular cause air masses to 

converge inland (Reed, 2011).  

 

Figure 4.13. a) Coastality and b) Urbanisation estimates across the British National Grid study 

domain (700 × 1300 1 km cells). 

4.4.4. Urbanisation 

Many studies have observed the significant effect of urbanisation on temperature in 

UK cities (Jones & Lister (2009); Smith, et al., (2011); Tomlinson, et al., (2012)). Even 

though the UKV model has a resolution of ~1.5 km, and should resolve some of the 

effects of urban areas (Best, 2005), it may still display biases that are correlated with 

urbanisation. This basis function acts to correct such biases. 

The degree of urbanisation around each station was derived from the LCM2007 25m 

Raster land cover map (Morton, et al., 2011). This very high resolution map 

differentiates between urban and suburban areas. Urban areas include town and city 

centres, where there is typically little vegetation, as well as dock sides, car parks, and 

industrial estates. Suburban areas comprise a mix of urban and vegetation signatures. 

The map was reconfigured so that urban cells have a weighting of 1, suburban 0.5 and 

a) b) 
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every other land cover type 0. Urban is weighted more heavily than suburban as urban 

areas typically displaying more pronounced urban heat island effects (Stewart, et al., 

2014). Several relative weightings of urban to suburban were tested, with minimal 

differences to the overall model error, thus 1 and 0.5 respectively were selected. The 

mean of the cells within a given radius around each station was then calculated. This 

was done for two separate radii, 1 km and 10 km; the means were then multiplied. 

The theory behind using these two separate sizes is that it now not only considers the 

degree of urbanisation locally, but also the size of the town/city the station is sited 

within. Figure 4.13b shows the calculated degree of urbanisation across the whole 

domain. Note that because of the larger radius locations within large cities receive a 

much stronger degree of urbanisation than small towns and villages. In reality 

however there was little difference in RMSE when the interpolation model was cross-

validated using this double-radius approach over a single localised estimate. 

4.4.5. Radial basis functions 

RBFs help to learn and predict any localised temperature fluctuations or spatially 

correlated biases within the other basis functions. MATLAB’s K-means clustering 

function was used to space the centres of Gaussian RBFs evenly over only the land, i.e. 

by only using the terrestrial easting and northing coordinates. Were a regular grid 

used instead then many centres would have been placed over the sea with few nearby 

stations to learn from. 20 RBFs were used as it produces a sensible spread of centres 

across the country (Figure 4.14) and led to a marginally lower RMSE in comparison to 

different numbers of RBFs. The squared mean minimum distance between centres 

was used as the variance for all the RBFs. It was multiplied by 0.7 first so that the RBFs 

would be localised. As with the number of RBFs, various values for this multiplication 

factor were tested, with 0.7 selected as it led to a marginally lower RMSE. 
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Figure 4.14. Distribution of RBF centres having use K-means to locate them over land areas 

only. Rings around each centre represent 1 standard deviation. 

4.5. Model performance 

Before using this interpolation model to estimate the temperature at CWS locations, it 

is vital to assess its performance. The model’s temperature estimates should fall 

within a satisfactory level of error, be unbiased on average, and crucially should 

validate well probabilistically. As each temperature estimate has an associated 

uncertainty value that propagates through to the bias correction model it is important 

that we are not systematically over- or underconfident with these estimates. 

10-fold cross-validation (Bishop, 2007) was used to verify the model. The MMS stations 

were partitioned into 10 groups and each group in turn was withheld, the model was 

then trained using the other 90% before predicting at, and validating against, the 

observations from the held-out 10%. The group allocations were assigned randomly, 

but could be fixed when testing the model’s sensitivity to other factors.  The allocation 

of stations to particular folds had little impact on the overall accuracy of the model, 

although it is important to ensure that each RBF is informed by a significant number 
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of stations. 10-fold was favoured over a ‘leave-one-out’ approach to reduce 

computational time. 

Overall the interpolation model performed satisfactorily. Figure 4.15 is a 1:1 plot 

displaying the model predictions against the MMS observations for every station, 

timestep, and case study period, combined. The closer the points fall to the 1:1 line the 

more accurate the model is. For all the four case study periods combined the mean 

bias of the model is 0.00 °C, with a residual variance of 0.68 °C, and RMSE of 0.82 °C 

(Table 3). As the mean bias is so close to 0 °C the standard deviation of residuals is 

virtually identical to the RMSE and is therefore omitted from Table 3. It is interesting 

that the largest errors occur at lower temperatures, evident by the greater spread 

around the 1:1 line. This may be a result of cold stable conditions when source areas 

are more localised making accurate interpolation more difficult than under well-

mixed conditions. The histogram of the residuals (Figure 4.16) confirms that overall 

the model is unbiased with a distribution of residuals virtually symmetrical about 

zero.  

 

Figure 4.15. 1:1 plot of interpolation model temperature predictions against MMS observations 

using 10-fold cross-validation. Data shown is for all four 2 week periods; run separately, but 

plotted together. Magenta line is a 1:1 line. The darker the colour the higher the density of 

points. 
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Figure 4.16. Histogram of residuals when the interpolation model was verified against MMS 

observations using 10-fold cross-validation. The residuals for all four periods combined are 

shown. 

With an RMSE of 0.82 °C the model’s accuracy is acceptable, but only if it validates 

well probabilistically. For this to be the case, an accurate temperature estimate should 

also have a corresponding uncertainty estimate which is low, and conversely when 

the model makes poor estimates its uncertainty estimate should be high. This can only 

be verified statistically, i.e. using multiple points to check that on average this 

behaviour is evident. Figure 4.17 through to Figure 4.20 help illustrate the model’s 

probabilistic performance. The distribution of z-scores and the shape of the rank 

histogram imply we are not systematically over- or underconfident with our 

predictions; at least not significantly. The points in the coverage plot (Figure 4.19) and 

reliability diagram (Figure 4.20) lie close to the red 1:1 lines confirming that the 

residuals from the interpolation model closely follow a Gaussian distribution with the 

defined variance. Technically the residuals follow a Student-t distribution; however as 

the sample size is large enough they can be closely approximated by a Gaussian 

distribution as shown here. A Gaussian distribution is favoured for ease of use.  
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Figure 4.17. Plot of z-scores for all four periods combined. Ideally ~95% of the z-scores should 

fall within the two red lines at ±2. Here 93.5% fall within this range. The z-score, 𝑧 =  
𝑥−𝜇

𝜎
, 

where x is the MMS observation, μ is the interpolation model’s mean prediction, and σ is the 

estimated standard deviation of the prediction (i.e. the estimated uncertainty). 

 

Figure 4.18. Rank histogram for all four periods combined. A flat, uniform, appearance 

implies a good probabilistic model (Hamill, 2001). 
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Figure 4.19. Coverage plot for all four periods combined. It plots the theoretical centred 

confidence interval against the observed frequency. When the points fall close to the red line 

the model has validated well probabilistically. 

 

Figure 4.20. Reliability diagram for all four periods combined. This diagram compares forecast 

probabilities with actual observed frequencies (Bröcker & Smith, 2007), computed by splitting 

the range of observations into 10 classes. The number attached to each point denotes the 

number of observations in each class. 

If we look at the statistics of each period separately (Table 3) it is clear that overall the 

model remains unbiased within every period, but has subtle differences in the spread 

and magnitude of the error. In Figure 4.15 we saw that the model displayed some 

large errors when it tried to predict low temperature observations experienced during 

the winter period. Despite this, the winter period is actually the better predicted 

period with the lowest residual variance, RMSE and MAE.  
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Table 3. Error statistics for the interpolation model during each of the four 2 week case study 

periods. Verified against MMS observations using 10-fold cross-validation. 

 Mean Bias (°C) Residual Variance  RMSE (°C) MAE (°C) 

All Periods 0.00 0.68 0.82 0.59 

Autumn 0.01 0.84 0.92 0.65 

Winter 0.00 0.52 0.72 0.50 

Spring 0.00 0.70 0.84 0.61 

Summer 0.00 0.64 0.80 0.69 

 

Figure 4.21 plots the RMSE through time for each period, both for the UKV model on 

its own and for the full interpolation model in which the UKV is just one of many 

predictors. It is clear that the inclusion of the other basis functions leads to a 

significant improvement over using just the UKV output alone. The standard deviation 

of the observations is also plotted. From this we can see whether poorly predicted 

situations are simply a result of high variation in temperature observations at the 

time. There is certainly evidence that large RMSEs occur when the standard deviation 

of the observations is also high - however, this is not the full story as there are several 

examples of high RMSEs when the standard deviation is low; for example, around 

midnight on the 7th October 2012 (autumn period) and around 03:00 on the 6th July 

2013 (summer period). There are signs of a diurnal pattern to the model error, but the 

time of day when the peak error occurs varies between, and even within, periods. As 

detailed earlier in Section 2.3.5 the source area measured by a thermometer varies 

with the wind and atmospheric stability, which vary through time. When the source 

area is small (e.g. during unstable conditions) the interpolation model is likely to 

struggle. This effect may explain the large RMSEs even when the standard deviation is 

low, although further investigation is needed to prove this possible correlation with 

stability.   
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a) Autumn 

 

b) Winter 
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c) Spring 

 

d) Summer 

 

Figure 4.21. Time series of root mean squared error (RMSE) of the UKV model and the 

Interpolation model over each of the four 2-week case study periods. Both models were 

verified against the same set of 3-hourly air temperature observations from the ~220 MMS 

stations. Below each plot is a time series of the standard deviation of the observations. Vertical 

grid lines represent midnight at the start of each date. 

The model’s accuracy varies not only through time, but also spatially. Figure 4.22 

shows that in each period certain stations are better predicted on average than others. 
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Stations located in central England tend to display the lowest average errors with 

those in coastal and mountainous regions proving most difficult to predict at.  

         

         

Figure 4.22. Interpolation model RMSE of predictions made at the location of each MMS 

station. RMSE is calculated from the residuals of every timestep within the given period. 
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When the model errors are averaged over time, as in Figure 4.22, it is easy to hide 

significant errors that may only occur at a single timestep. Therefore, Figure 4.23 

displays model errors at a single timestep, namely the 10th October 2012 06:00 during 

the autumn period. For comparison the observations, the UKV forecast, and the mean 

interpolation model prediction are also shown. This timestep was the worst predicted 

out of all four 2 week periods with an RMSE over 1.5 °C and errors at individual 

stations in excess of ±3 °C. It is interesting that there is little evidence of a spatial 

structure to errors, i.e. significantly over-predicted stations are often not far from 

those that have been under-predicted. During this particular timestep Great Britain 

was still in full darkness and was covered by patches of low-level cloud. There was a 

large variation in temperature (std. dev. of 4 °C) ranging from over 10 °C to below 

freezing with night frosts likely in places. Clearly this proved to be a difficult situation 

for the UKV model, and subsequently for our interpolation model.  
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Figure 4.23. Spatial plots for the case study timestep of 10
th

 October 2012 06:00 (autumn 

period). The figure plots the MMS observations, the UKV model’s predictions (height correction 

applied), the prediction from the interpolation model and its bias when verified against the 

MMS observations using 10-fold cross-validation. Note that the bottom right plot shows 
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temperature bias rather than absolute temperature, and thus the colour scale has changed to 

accommodate for this.   

Figure 4.24 illustrates the model error statistics when verified against each individual 

station. For most stations the median bias is close to zero with an interquartile range 

close to 1 °C. There are however stations for which the interpolation model has 

greater difficulty predicting; for example stations at high elevations. Also note the 

poorly predicted station with a relatively low elevation, but with its full interquartile 

range below 0 °C with a median of 0.77 °C. This station is called Cromer and lies just 

100 m away from the north East Anglian coast. Our interpolation model consistently 

under-predicted the temperature at this location, further illustrating that temperature 

is hard to predict at coastal stations. These biases imply either error in the model, or 

that the given station is not representative of the scale at which the model resolves.   

 

Figure 4.24. Interpolation model error statistics when verified against each individual MMS 

stations’ observations using cross-validation. Results here are for the summer period only. The 

order of the stations is based upon their elevation. The black dots mark the median, the edges 

of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data 

points not considered outliers (1.5 × interquartile range), and outliers are plotted individually 

in red. 

As was detailed in Section 4.3.2 the regression coefficients are allowed to evolve and 

vary through time, informed in part by what was learnt at previous timesteps, but 

updated as new information arrives. An alternative approach would be to learn the 

regression coefficients using only the new training data, ignoring what was learnt 

previously. Figure 4.25 shows, that in terms of the model’s RMSE, there is virtually no 
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difference between these two approaches. Because a lot of new training data arrives 

at each timestep and because the forgetting rate parameter, 𝛾𝛽, is set relatively short 

(24 hours) it is likely that the prior information brought forward has very little 

influence on the update of the regression coefficients. Were 𝛾𝛽 increased then the 

learnt regression coefficients from preceding timesteps would have greater influence, 

meaning that the regression coefficients would evolve more slowly. However, 

dramatically increasing 𝛾𝛽 tends to increase the model’s error slightly. This makes 

sense as we would expect that the regression coefficients would need to evolve 

quickly to account for often swift changes in the prevailing weather conditions. For 

example, changes due to a frontal passage or a switch between onshore and offshore 

breezes can easily occur over the space of a day. As such, setting 𝛾𝛽 no larger than 24 

hours is appropriate. Despite the marginal difference, the propagation approach was 

still favoured as it provides an elegant solution to handle any timesteps with limited 

amounts of new training data (e.g. due to missing data) where the learnt regression 

coefficient from preceding timesteps should be more influential, ensuring the stability 

of the model. This feature would be particularly useful if we were to run the clustered 

approach, as detailed in Section 4.3.3, as at times a cluster may become very small, 

informed by very few stations.  

 

Figure 4.25. Time series of the interpolation model cross-validation RMSE during the winter 

period, both when the regression coefficients are allowed to propagate through time, and 

when they are forgotten after each timestep and then re-learnt from scratch at the next 

timestep.  

Figure 4.26 demonstrates this evolution of the regression coefficients using the mean 

term of the UKV’s regression coefficient as an example. Note how it is allowed to 

fluctuate relatively quickly through time. What is reassuring is that the values are 
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consistent between cross-validation folds which have been trained using slightly 

different combinations of stations. As it is unlikely that the UKV would display any 

significant long-term systematic biases, it may seem peculiar that the regression 

coefficient mean values are not closer to a value of 1. Were the UKV the only predictor 

then this would be the case, however with the other basis functions included the UKV 

regression coefficient must adjust in balance with the other regression coefficient 

values in order to produce the tightest model fit to the training data.   

 

Figure 4.26. Time series of the regression coefficient mean for the UKV basis function over the 

summer period. Each line represents a different fold within the 10-fold cross-validation. 

As a side topic, we theorised that when the UKV model and our interpolation model 

(without the UKV included) disagreed on the temperature at a given location/time, our 

interpolation model (with the UKV included) would therefore be more likely to 

produce a poor estimate. If this were the case, then we would be able to identify in 

advance situations when we would be likely to make a poor prediction. In order to 

quantify the discrepancy between the UKV and interpolation model predictions, the 

Hellinger distance was used in order to also account for the uncertainty estimates of 

each prediction. The Hellinger distance quantifies the similarity between two 

probability distributions (Gibbs & Su, 2002); in this case, two Gaussian distributions. 

For the UKV this uncertainty estimate was set using the residual variance at a given 

timestep when verified against MMS observations. Unfortunately, as Figure 4.27 

shows, there is no obvious relationship between the Hellinger distance and the 

interpolation model error. Therefore, consistency between interpolation model and 

UKV predictions does not necessarily imply a good prediction (conversely inconsistent 

predictions do not imply a bad prediction). This suggests that the noise is truly 

random.   
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Figure 4.27. Relationship between the UKV and interpolation model discrepancy (as quantified 

by the Hellinger distance) and the interpolation model error over the autumn period. The 

closer the Hellinger distance is to 0 the greater the agreement between the two models.  

4.5.1. Predictive power 

Given the range of different basis functions used within the interpolation model, it is 

useful to quantify which has the greatest impact on the model’s performance. One 

approach to assess each predictor’s impact is to leave that particular predictor out and 

see what influence this has on the model error. Although more robust metrics such as 

ANOVA (Analysis of variance) should be considered in the future, this approach still 

proves to be informative. In Figure 4.28 we show the impact on the RMSE time series 

over the summer period. It is clear that removing the UKV causes the greatest increase 

in the RMSE, implying that it provides the greatest predictive power. For this 

particular period its impact was often greatest during the day. When removed, the 

RMSE was actually of a similar order of magnitude to that achieved when solely using 

the UKV forecast. 

The RBFs, elevation and the constant term also provide significant contributions. The 

RBFs are the only basis functions that at times cause a significant increase in the 

model error by their inclusion, however their overall value in improving predictions 

far outweighs this occasional disadvantage. It is surprising that the other basis 
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functions provide so little benefit to the model. It appears that the UKV resolves these 

factors well enough already, at least in this relatively simple linear model.  

 

Figure 4.28. Each time series represents the change in RMSE when the given predictor is 

removed from the interpolation model; in this case for the summer period. A positive RMSE 

change implies the model accuracy decreases when the given predictor is left out. 

4.6. Summary 

In summary, we have successfully developed and tested a spatial interpolation model 

capable of interpolating professional temperature observations across the British 

domain. As Figure 1.2 illustrates, it can now be used to provide temperature estimates 

at the CWS locations that are fed into the bias correction model (Section 5.6). Cross-

validation verified that the model performs with an acceptable degree of error under 

a variety of different synoptic conditions throughout the year. Crucially the 

temperature estimates are unbiased (on average) and have reliable associated 

uncertainties. Given that these uncertainties are propagated through to the bias 

correction model (Section 5.6) it was vital that the model validated well 

probabilistically. The verification illustrated the importance of the UKV as a predictor. 

Given that the UKV only produces forecasts at hourly lead times and on 3-hour 

assimilation cycles, further work is required if the aim is to bias-correct CWS 

observations at sub-hourly resolutions. Further work is also required to adapt the 

model to handle other variables such as relative humidity and precipitation. We 

expect that the current approach could interpolate relative humidity relatively 

successfully if it was handled in the form of dew-point temperature so that errors 

resemble the Gaussian distribution assumed. A different approach would probably be 
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required to interpolate precipitation, for example using a radar-guided approach 

(DeGaetano & Wilks, 2009). 

This interpolation model is now be used to produce an independent estimate of the 

temperature at real CWS locations against which their bias can be learnt. From now 

on these interpolated MMS observations, interpolated to the CWS locations, are 

referred to as IMMS for brevity. 
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5. Modelling citizen station bias 

This chapter presents an approach for quantifying the biases present within CWS 

temperature observations. The chapter begins by describing the real CWS data the 

model attempts to bias-correct (Section 5.1), before comparing these uncorrected 

observations against MMS observations interpolated to their locations, IMMS (Section 

5.2). The aim of this exploratory analysis is to highlight the magnitude of the 

differences and identify any obvious bias tendencies evident in operational data. We 

can check whether the biases apparent within real CWS data agree well with those 

identified during the intercomparison field study. As discussed below our bias 

correction model handles calibration biases and radiation-induced bias separately. 

Estimating the later requires an estimate of the strength of incoming solar radiation at 

every CWS location. The interpolation model used to produce these estimates is 

discussed in Section 5.3. As demonstrated in the field study, the magnitude of these 

radiation-induced biases show a dependency on station design. Section 5.4 discusses 

how learning the station type can help to anchor the bias correction model’s estimates 

of radiation bias. Even if our bias correction model successfully learnt and removed 

calibration- and radiation-induced biases, there would still be differences when the 

corrected CWS data is compared against IMMS values. This is in part due to the 

natural spatial variation we wish to capture, but may also result from representativity 

errors. For example, the estimate made by the temperature interpolation model may 

be representative of a different scale to that which the CWS observes; producing a 

difference between the two. This challenge of handling representativity is discussed in 

Section 5.5. In Section 5.6 the bias correction model structure is explained in detail. 

Then in Section 5.7 we assess the performance of our complete model.  

5.1. Input CWS data 

The complete bias correction model detailed within this chapter is tested with real 

CWS data. The data chosen comes from the Met Office’s WOW website 

(wow.metoffice.gov.uk); extracted over the four 2 week case study periods listed in 

Section 4.2. As the WOW website does not support bulk data downloads a web scraper 

(as introduced earlier in Section 2.1) was implemented to gather the required data. 

Through this process we were able to extract around 400-600 stations’ worth of data 

for each period.  

As mentioned in the previous chapter, the hourly MMS observations used within the 

interpolation model are valid at 10 minutes to the hour. To ensure continuity between 

http://wow.metoffice.gov.uk/
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the MMS observations and CWS observations only WOW data between 16 minutes 

and 4 minutes to the hour was used. For stations with several observations in this 

window the closest to 10 minutes to the hour was selected. As in the intercomparison 

field study (Section 3) it is unclear whether the CWS temperature observations are 

point samples or averages. However, as the transmission frequency of all the CWS 

tested was less than 60 seconds we assume that the observations are valid for the 

recorded timestamp. We also assume that a CWS’s recording rate is more frequent 

than, or at least equal to, the upload rate to WOW. The data on WOW is prone to 

missing observations. The bias correction model (Section 5.6) can account for such 

data gaps, and stations with very high proportions of missing data will be excluded 

(Section 5.6.2). 

It is important to reiterate that the UKV forecasts are instead valid on the hour, as are 

the satellite images used in Section 5.3.2. This timing mismatch may induce slight 

errors; however our bias correction model should also account for this additional 

uncertainty and it is more important that the CWS data is valid at the same time as the 

hourly MMS data, which unlike its minute resolution counterpart has undergone strict 

Met Office quality control procedures.  

As the temperature interpolation model (Chapter 4) relies on UKV data available every 

3 hours, we only extract WOW data at the same resolution. Given that WOW data is 

often uploaded at 5 and 1 minute resolutions, a lot of CWS data is ignored in this 

study. Making use of all the CWS data is a subject for further work. 

In addition to scraping the observations the web scraper also extracts each station’s 

metadata (Section 2.1.4). The key information used includes the station’s coordinates, 

its elevation, site ratings (e.g. for exposure and Urban Climate Zone), as well as the 

textual Site Description and Additional Information from which the station type is 

derived (Section 5.4.1). 

5.2. Exploratory analysis of WOW and MMS data 

Having developed a reliable temperature interpolation model (Chapter 4) CWS 

observations can now be compared against an independent estimate of the 

temperature at their location. This section simply compares these interpolated 

estimates, IMMS, against our uncorrected input CWS data from WOW. Although this 

CWS data has not been passed through the full quality control system explained later 

in the chapter some basic quality control checks (Section 5.6.2) have however been 

used to remove obvious gross errors. Differences between the two can arise from the 

combination of many of the following reasons: natural spatial variations, calibration 
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and/or radiation-bias in the CWS data, error in the interpolation model, and 

representativity errors. In later sections of this thesis we begin to quantitatively tease 

apart the influence of each of these factors.  

Figure 5.1 shows an obvious tendency for the CWS to display an overall warm bias 

when compared against IMMS. When the interpolation model was cross-validated in 

Section 4.5 the equivalent plot (Figure 4.24; note the change in y-axis scale) displayed 

no signs of systematic bias, suggesting it is the CWS observations that display an 

overall warm bias as supposed to an interpolation model that systematically under-

predicts.  

 

Figure 5.1. Boxplots of difference between the uncorrected CWS observations and IMMS; 

plotted individually for each CWS station over the summer period. The black dots mark the 

median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most 

extreme data points not considered outliers (1.5 × interquartile range), and outliers are plotted 

individually in red. 

In our field study the main cause of warm biases such as these were radiation-induced 

biases. It appears that this issue plagues real CWS data as well. Not all the stations 

shown in the box plot display such a warm tendency. This supports the notion that the 

warm biases seen in the other stations are radiation-induced as the field study 

highlighted that some station models, such as the VP2, display very little in the way of 

radiation-induced biases. This effect of station design is addressed further in Section 

5.4. Note the presence of some very anomalous stations in the figure as well, for 

example the station whose interquartile range and whiskers all lie below 0 °C with a 

median temperature difference of -5.3 °C. On further investigation this particular CWS 

station displayed temperature observations that were consistently ~5 °C below the 
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IMMS estimate. This is probably due to a calibration bias, something our bias 

correction model attempts to correct for (Section 5.6).  

 

Figure 5.2. Visualisation of the difference between the uncorrected CWS observations and 

IMMS for each station (rows) and at each timestep (columns) over the summer period. Ticks on 

the x-axis indicate midnight at the start of that date.  

There is a possibility that the warm bias may instead be a function of siting. For 

example there are a higher proportion of CWS stations located in urban and suburban 

areas than professional MMS stations (Section 5.5.2). As temperatures in urban areas 

tend to be higher than surrounding rural areas, thanks to the urban heat island effect, 

this could explain the warm tendency together with an ‘error’ in the interpolation 

model. However, Figure 5.2 poses a strong argument against this theory. Were the 

warm bias primarily a function of the urban heat island effect we would also expect 

to see an overall warm bias at night as well, but this is not evident. It is also important 

to note that the interpolation model should already account for changes in land cover, 

owing to the inclusion of the UKV and the predictor that represents urbanisation. 

Figure 5.2 shows a clear banding with a tendency for warm biases during the day and 

minimal temperature difference at night. On certain days the magnitude of  the warm 

bias is not as significant; for example, compare the 28th against the 6th. In the satellite 

images for these days (Figure 5.3) there is an obvious difference in cloud cover, which 
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dramatically influences the strength of incoming radiation, and thus the degree of 

radiation-induced measurement bias. 

 

Figure 5.3. Visible satellite images, from the Meteosat Second Generation satellite, during the 

summer period for the dates: a) 28
th 

June 2013 12:00, b) 6
th

 July 2013, 12:00. Source: BADC 

(badc.nerc.ac.uk).  

As described in Section 2.1.4, WOW users can rate their site based on the quality of 

their thermometer readings, which in turn influences their sites overall star rating. 

Figure 5.4 and Figure 5.5 show that stations with different star and temperature 

ratings display slightly different ‘CWS minus IMMS’ statistics. Reassuringly the mean 

discrepancy is closer to zero for stations with the highest star and temperature 

ratings; with a tendency for a smaller standard deviation as well. This implies that 

such metadata ratings are likely to be informative of the degree of bias a station 

exhibits. A subject for future work would be to use such metadata ratings as a prior in 

the bias correction model to help quantify the expected bias and uncertainty. 
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Figure 5.4. Boxplots of the temperature difference between uncorrected CWS observations 

and IMMS after the CWS stations have been separated by their user-contributed star rating 

(higher = better). Values at the bottom denote the standard deviation. Only data from the 

summer period is shown. The horizontal red line mark the median, the edges of the box are 

the 25th and 75th percentiles, the whiskers extend to the most extreme data points not 

considered outliers (1.5 × interquartile range), and outliers are plotted individually in red. 

 

Figure 5.5. Boxplots of the temperature difference between uncorrected CWS observations 

and IMMS after the CWS stations have been separated by their user-contributed temperature 

rating. Ratings range from A, the highest quality, though to D the lowest. U denotes unknown 

quality and 0 implies a site with supposedly no temperature observations. Values at the bottom 

denote the standard deviation. Only data from the summer period is shown. The horizontal 

red line mark the median, the edges of the box are the 25th and 75th percentiles, the whiskers 

extend to the most extreme data points not considered outliers (1.5 × interquartile range), and 

outliers are plotted individually in red. 
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This section has shown that there are significant differences between the CWS and 

IMMS. Although this section makes no attempt to quantify the relative causes of these 

differences, there is strong evidence that, as in the field study, real CWS data contains 

significant instrumental biases; most notably, radiation-induced biases. In the 

upcoming sections we detail approaches to learn these instrumental biases so that 

they may be corrected for. 

5.3. Addressing radiation bias 

Both the intercomparison field study (Section 3.2) and the exploratory analysis of 

WOW data (Section 5.2) clearly indicate that many CWS exhibit large temperature 

biases with a strong dependency on the strength of incoming solar radiation. Section 

3.2 also demonstrated that with an accurate estimate of the Global Horizontal 

Irradiance (GHI) at a CWS location we can successfully correct these radiation-

induced temperature biases and lower the residual variance. In practise however – 

out of the thousands of CWS very few are collocated with an accurate pyranometer. In 

fact there are only 80 or so MMS sites measuring GHI across Great Britain (Figure 5.6).   

 

Figure 5.6. Spatial distribution of Met Office MMS stations that regularly record Global 

Horizontal Irradiation (GHI). 
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To overcome this problem, the Bayesian linear regression model, as used in Section 

4.3, is implemented here to interpolate GHI measurements made at MMS sites, to 

every CWS location. These estimates can then be fed into the bias correction model as 

shown in Figure 1.2. At a given timestep the strength of the GHI varies spatially across 

the country, influenced by several factors. Covariates of GHI are used as predictors in 

the interpolation model. We must be able to estimate reliably these covariates at any 

location in Great Britain. The first covariate is an estimate of the theoretical GHI 

under perfect clear-sky conditions. Obviously the time of day/year influences GHI 

through changes in the solar zenith angle. From this angle it is possible to derive the 

clear-sky GHI, as explained further in Section 5.3.1. As the sky is rarely completely 

clear across Great Britain, visible and infrared satellite images of cloud cover are also 

used to account for the discrepancy between the clear-sky GHI and the amount of 

solar energy that actually reaches the surface. The imagery used and how it was 

processed is detailed in Section 5.3.2. Section 5.3.3 details exactly how these covariates 

are fed into the Bayesian regression model and Section 5.3.4 assesses the performance 

of the model.  

The approach implemented here is an alternative to pre-existing services that provide, 

at a cost, surface solar irradiance estimates. Most notable is the HelioClim Project 

(Blanc, et al., 2011) and its HelioClim-3 dataset, which provides irradiance values at 3 

km spatial resolution and 15 min temporal resolution over Europe, Africa and the 

Atlantic. It too exploits Meteosat Second Generation satellite images, but uses the 

Heliosat-2 method (Rigollier, et al., 2004) to interpret the images. This is run in near-

real time. Their approach focuses on calculating a cloud index to quantify the 

difference between what the satellite observed and what should be observed over that 

pixel were the sky clear. By incorporating and interpolating surface observations we 

take a somewhat different approach, as detailed in Section 5.3.3. Although we employ 

a Bayesian regression model to perform the interpolation, many other techniques 

have also been demonstrated, albeit mainly for daily observations. These include thin 

plate splines (Xia, et al., (2000); Jeffrey, et al., (2001)), artificial neural networks (Bosch, 

et al., 2008) and regression kriging (Gutierrez-Corea, et al., 2014). Our aim was not to 

compare our approach against these alternative methods, but merely to produce 

reliable GHI estimates. 

5.3.1. Clear-sky global horizontal irradiance 

Clear-sky GHI is a measure of the sun’s power (W m-2) at a given surface location. It 

assumes zero cloud cover and therefore represents the maximum possible power that 

can be expected. This makes it a useful predictor of actual GHI when combined with 
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cloud cover data. There are several approaches for calculating the clear-sky GHI 

(Reno, et al., 2012). Here the simplistic Robledo-Soler algorithm is used (Robledo & 

Soler, 2000):  

 
 (12) 

This model is purely geometric, i.e. the clear-sky GHI is merely a function of the solar 

zenith angle, z, and does not incorporate any meteorological data. Improved estimates 

may come from using a model that does integrate such data; e.g. the McClear model 

(Lefèvre, et al., 2013), which exploits aerosol, water vapour and ozone information 

exported by the MACC project. As illustrated in Figure 5.7, the difference between the 

two estimates tends to be relatively small. Given that our interpolation model is 

anchored by pyranometer observations we assume the impact of this difference is be 

negligible.  Due to Equation (12)’s simplicity, and to avoid purchasing McClear data, 

the Robledo-Soler approach was favoured here instead. 

 

Figure 5.7. Comparison of the clear-sky GHI estimates from two different approaches over the 

1
st
 to 2

nd
 of June 2004. 

The zenith angle, fed into the Robledo-Soler equation, was calculated using a MATLAB 

implementation of the algorithm presented by Reda & Andreas (2004). Inputs to this 

equation are the location’s latitude, longitude and altitude as well as the time and 

date. 

5.3.2. Satellite imagery 

Cloud cover changes are responsible for the high spatial and temporal variability 

within the GHI field. The variability in cloud cover is quantified using infrared and 

visible satellite images. The images come from the Meteosat Second Generation (MSG) 
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geostationary satellites operated by EUMETSAT, which have a resolution of ~1 km. 

The images were reprojected using a series of control points with ArcGIS’ 

georeferencing tool to a 700 × 1300 grid such that it aligned with a 1 km resolution 

British national grid projection (Figure 5.8). The green country outlines added by 

EUMETSAT were replaced by the nearest ‘non-green’ pixel. The archived satellite 

images are freely available from the BADC website (badc.nerc.ac.uk).   

 

Figure 5.8. Visible MSG satellite image of Great Britain on 24
th

 May 2013 at 14:00 GMT before 

(left) and after (right) removing the green country outlines and reprojecting to the British 

national grid. 

Once in the correct projection, the pixel values could be extracted at the locations of 

the stations. For a given location, the 25 nearest pixel values were selected to 

represent this location. By simply selecting the nearest pixels the pattern of those 

selected isn’t necessarily a 5 × 5 grid. Pixels over land and water are treated equally. 

This number of pixels is used, in part, to account for errors in the spatial reprojection, 

but also it means that clouds that may have recently passed over the station are 

sampled. This number also produces low cross-validation errors. The average of these 

pixels was taken, having assigned equal weight to each pixel. As an alternative, the 

pixels were also weighted by distance to the station location, but as this gave no 

improvement to the cross-validation error the first approach was favoured for 

simplicity. Overall this approach is relatively simplistic, future work may wish to 

more accurately consider the field of view of a pyranometer, and incorporate each 
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pyranometer’s sky view factor. The direction and speed of cloud movement should 

also be accounted for.  

Many other modifications of the satellite data were tested, for example finding the 

lowest value of each pixel over the period and using this to infer what the pixel value 

would be without cloud. For the infrared images this was also performed for each 

hour individually to account for the diurnal temperature fluctuations. The difference 

from these minimum values was then used to infer how cloudy the pixel was. 

However, the improvement in cross-validation error gained by using these as 

predictors was minimal, if present at all, and due to the extra computational cost 

required they were omitted from the final model. The variance of the 25 pixels was 

also calculated to act as a proxy for how scattered the clouds were, but likewise this 

yielded no improvement and was omitted. 

If these satellite images are to be used to correct CWS radiation biases operationally in 

near real-time, i.e. so the corrected observations can be fed into a data assimilation 

cycle, then the images would need to be obtained and processed in near real-time. It is 

therefore beneficial to keep the processing of these images as simple as possible. 

Forecasting agencies, such as the Met Office, already assimilate satellite imagery into 

their NWPs (Joo, et al., 2013); therefore data accessibility should not be an issue. 

It is important to note that these images were only publically available at hourly 

resolution; valid on the hour. Because we rely on these satellite images to perform the 

interpolation our interpolated estimates are also valid on the hour. This leads to a 10 

minute discrepancy between our MMS & CWS temperature observations and our 

radiation estimates. The impact of this on the overall temperature bias estimates is 

assumed to be acceptably small, with the temporal averaging introduced below and 

the spatial averaging of the satellite imagery helping to lessen its impact.  

5.3.3. Model structure 

The interpolation model used here to interpolate GHI has exactly the same form as the 

model used to interpolate temperature (Section 4.3). It too allows the regression 

coefficients and model uncertainties to propagate through time, updated iteratively at 

each timestep. Propagating the regression coefficients like this ensures they exhibit 

greater temporal continuity, leading to a more stable model. This leads to a slight drop 

in model error over learning the regression coefficients from fresh at each timestep.  

As explained in Section 3.2 the relationship between the global radiation and the 

temperature bias was often stronger when, instead of simply using the point radiation 
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observations at the equivalent timestep, past radiation observations were weighted 

with an exponential function:  

 

 

(13) 

As equation (13) shows a weighting is calculated for each minute radiation 

observation, with 𝑥 the number of minutes from the time of the temperature 

observation ranging from 0 to 60 minutes beforehand. Here  is set as 0.04 to achieve 

the curve show in Figure 3.10. Note that the weightings are normalised to sum to 1. 

As the aim of this radiation interpolation model is to better predict the temperature 

bias for a given CWS, it is logical to interpolate these temporally smoothed radiation 

values rather than the point observations. Not only does it have a stronger 

relationship, but using these smoothed radiation values improves the accuracy of 

interpolation model (Figure 5.9). This is likely a result of smoothing out the often noisy 

point global radiation observations. 

 

Figure 5.9. 1:1 plots of radiation interpolation model predictions verified against MMS global 

radiation observations using 10-fold cross-validation. In a) point observations are used, 

whereas in b) observations over the past hour have been exponentially weighted. Only data 

from the summer period is shown. The deeper the colour the higher the density of points. 

a) b) 
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Figure 5.10. Histogram of residuals from predictions made by the radiation interpolation 

model when using exponentially weighted global radiation observations as the target, verified 

against MMS observations using 10-fold cross-validation. Only data from the summer period is 

shown. The red line represents a Gaussian distribution fitted to the residuals. 

Even when the radiation values were temporally smoothed in this way the model still 

had issues. The data points were not well distributed across the domain (Figure 5.9) 

nor were the residuals close to displaying a Gaussian distribution (Figure 5.10); 

instead it strongly resembles a t-distribution. The solution was to take the log of the 

smoothed radiation values first. However, taking the log of values close to 0 can cause 

issues so a constant value of 100 W m-2 was added to every smoothed radiation value 

before taking the log. Therefore, the final radiation variable to be interpolated was as 

follows. 

 𝑙𝑅𝑎𝑑 = log(𝑤𝑅𝑎𝑑 + 100)  (14) 

 

Where 𝑤𝑅𝑎𝑑 is the point minute resolution radiation observations over the proceeding 

hour, weighted exponentially using the approach shown in Equation (13). As evident 

in next section, where the model’s performance is assessed, using the transformation 

to 𝑙𝑅𝑎𝑑 dramatically improves the spread of points across the domain (Figure 5.11) and 

ensures the residuals more closely resemble a Gaussian distribution (Figure 5.12). 

There was a concern that this log transformation may weaken the relationship with 

CWS temperature bias. To test this, the same transformation was applied to our field 

study observations. As Figure 3.11 and Figure 3.12 show there was minimal effect to 

the strength of the relationship when this log transformation was applied. The final 

result is a target variable representative of the strength of incoming solar radiation, 

which is a reliable predictor of CWS temperature bias, and can be accurately 

interpolated to CWS locations. 
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As previously mentioned the model relies on three key predictors. A clear-sky GHI 

estimate and estimates of cloud cover derived from the visible and infrared satellite 

images. Each of these sets of values form both 1st and 2nd order basis functions within 

the design matrix, X (Equation (1)). The design matrix also includes interaction terms 

for clear-sky GHI with the visible and infrared image values separately.  As the target 

variable, 𝑙𝑅𝑎𝑑 , underwent an exponential weighting and log transformation it was 

also logical to perform the same transformations to the clear-sky GHI estimates as 

well. Unlike temperature interpolation, adding RBFs led to little improvement; in fact 

at times they dramatically increased the error. For this reason they were omitted. 

Depending on the strength of 𝑙𝑅𝑎𝑑 the bias correction model (Section 5.6) performs 

different actions. It is therefore imperative that the interpolation model can produce 

an estimate of 𝑙𝑅𝑎𝑑 at every timestep. However, when a visible image contains partial 

darkness it cannot be used. To overcome this challenge the interpolation model must 

also be run using just the clear-sky GHI and infrared image. As becomes evident in the 

next section, running the model without the visible image is not as accurate. However, 

it is still acceptable, and in future the attached uncertainty estimate could be used to 

account for the reduced confidence.      

5.3.4. Model performance 

The radiation interpolation model performed satisfactorily when verified against the 

MMS observations using 10-fold cross-validation. Figure 5.11 shows that, thanks to the 

log transformation, the points fall relatively uniformly across the domain, and Figure 

5.12 shows that the residuals are closer approximated by a Gaussian. The residuals 

are also unbiased with a zero mean. Admittedly the distribution of the residuals is still 

closer to that of a t-distribution, which allows for heavier tails, however to keep our 

model computationally convenient and efficient we stayed in the class of Gaussian 

distributions.   
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Figure 5.11. 1:1 plot of predictions from the final radiation interpolation model against MMS 

observations when verified using 10-fold cross-validation. All four periods are included in this 

plot. The model includes both visible and infrared satellite imagery. 

 

Figure 5.12. Residuals from the radiation interpolation model when verified against MMS 

observations with 10-fold cross-validation. All four periods are included in this plot. The Model 

includes both visible and infrared satellite imagery. 

Each prediction is a distribution with a mean and variance. It is important that the 

model is validated probabilistically to ensure that not only is the mean estimate 
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accurate but that the variance fairly represents the uncertainty in the prediction. 

Getting these uncertainties correct is important as in future work we wish to 

propagate them through to the bias correction model to influence the uncertainty in 

our bias corrections. In the z-score plot (Figure 5.13) we would expect to see 95% of 

points fall between ±2 indicating a good probabilistic model. Fortunately our model 

approximately shows this.   

 

Figure 5.13 Z-scores plot for the radiation interpolation model when verified against MMS 

observations with 10-fold cross-validation. All four periods are included in this plot. The model 

includes both visible and infrared satellite imagery. 

Also as the points in the coverage plot (Figure 5.14) fall close to the red 1:1 line and the 

rank histogram (Figure 5.15) is acceptably flat we can be confident that our model is 

not practically significantly over- or underconfident about the predictions it makes.  
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Figure 5.14. Coverage plot for the radiation interpolation model when verified against MMS 

observations with 10-fold cross-validation. All four periods are included in this plot. The model 

includes both visible and infrared satellite imagery. It plots the theoretical centred confidence 

interval against the observed frequency. 

 

Figure 5.15. Rank Histogram (Hamill, 2001) for the radiation interpolation model when 

verified against MMS observations with 10-fold cross-validation. All four periods are included 

in this plot. The model includes both visible and infrared satellite imagery. 

When the visible imagery is removed from the model, the error increases, as indicated 

by the greater spread about the 1:1 line in Figure 5.16. However there is still a good 

spread across the domain and the residuals are relatively well approximately by a 

Gaussian (Figure 5.17). It therefore provides an adequate solution for estimating 𝑙𝑅𝑎𝑑 

when visible images are unavailable. 
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Figure 5.16. 1:1 plot of predictions from the radiation interpolation model against MMS 

observations when verified with 10-fold cross-validation. All four periods are included in this 

plot. The model includes infrared satellite imagery, but not visible. 

 

Figure 5.17. Residuals from the radiation interpolation model when verified against MMS 

observations with 10-fold cross-validation. All four periods are included in this plot. The model 

includes infrared satellite imagery, but not visible. 
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5.4. Addressing station design 

Every CWS model has a different design. Figure 1.1 illustrates the variety of different 

designs just within field study stations. This field study (Section 3.2) was vital for 

highlighting the significant effect the design plays in determining the magnitude of 

the instrumental biases. As such, when dealing with citizen data submitted to websites 

such as WOW, knowing the model of the station can provide a priori information 

about the type and magnitude of bias we would expect that station to exhibit. Below 

we detail an approach for automatically extracting the model name from the user-

contributed metadata on WOW. Then we propose that out of the dozens of models 

available, there exist several subsets of stations, each with a common style of 

radiation shielding (Section 5.4.2). It is this shielding that encases the CWS thermistor 

and appears to play a key role in determining the degree of radiation-induced biases 

exhibited. Therefore if our model can establish what type of design a station is, it 

stands a better chance of estimating the radiation-induced bias. Section 5.4.3 shows 

signs of this effect of design type in real CWS data from WOW. 

5.4.1. Automatic extraction of model name from metadata  

As the bias correction model is tested with real CWS data from WOW, we would like to 

obtain the model name of each WOW station. However, as detailed in Section 2.3.4, 

listing the manufacturer and model of your station is not compulsory when signing up 

to WOW; nor is there a consistent list of stations to choose from. The only way of 

finding the station type is from the textual metadata a user may choose to write about 

their station in the sections titled Site Description and Additional Information. Doing 

this manually is very time-consuming. However scanning the text computationally to 

identify keywords proved a viable alternative. The following steps were taken to semi-

automatically extract the model names from these textual metadata boxes: 

1. An initial dictionary of keywords was created. For example the keyword ‘VP2’ 

would be indicative of the ‘Davis Vantage Pro2’ station model. 

2. Certain keywords were also associated with ‘enabler’ keywords, these enabler 

words must also exist for the station to be given a particular model name. For 

example the word ‘Pro’ alone does not automatically mean the station is a 

‘Davis Vantage Pro’, the enabler words ‘Davis’ or ‘Vantage’ must also be 

present. 

3. Keywords may also be associated with ‘denier’ keywords, which prevent a 

station being assigned to a model name. For example, a keyword of ‘VP2’ 

would be denied from being labelled as naturally aspirated ‘Davis Vantage Pro 
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2’ if the denier word ‘FARS’ is present. As this would imply the station is 

actually aspirated and thus should be assigned as a ‘Davis Vantage Pro 2 FARS’. 

4. The textual metadata was web scraped from the WOW website using a script 

written in the programming language Ruby and passed through the dictionary 

of keywords looking for any matches. Once a match was made and the station 

passed the enabler and denier caveats then the station was designated as a 

particular model.  

5. Stations with no metadata were designated as Unknown. Stations with 

metadata, but no matches were then manually inspected to check for possible 

keywords missing from the dictionary. If any were spotted then the dictionary 

was updated and the process rerun. 

This approach successfully assigned a model name to just over 40% of the WOW 

stations used. The low percentage is firstly because only 70% of users actually filled in 

at least one of text boxes, and secondly this keyword approach could only find a 

model name in just 60% of these. The stations for which a model name could be 

assigned is now categorised into one of the more general shielding design classes as 

explained in the next section.  

5.4.2. Design classes 

Radiation shielding design plays a dominant role in determining the degree of 

radiation-induced biases exhibited by a station. The field study results (Section 3.2) 

show that models with a poor shield design can display warm biases well over 5 °C 

under strong insolation. Here we propose 7 key shielding designs, each of which 

displays a different degree of bias, into which all station models uploading to WOW 

can be categorised.  

Table 4 lists the 7 design classes. They range from the professional standard – the 

Stevenson screen – through various louvered designs with varying degrees of 

shielding and ventilation performance – into more encased designs which are prone 

to overheating because air struggles to flow freely around the thermistor.  
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Table 4. A list of the 7 design classes to which a CWS can be allocated based upon the style of 

radiation shielding and the subsequent radiation-induced biases exhibited. 

Stevenson Screen Aspirated Quality Louvered 
Underslung 

Louvered 

    

e.g. Wooden or plastic 

Stevenson screens. 

Including international 

equivalents of the UK 

Stevenson screen. 

e.g. Davis VP2 FARS. e.g. Davis VP2, Davis 

Vantage Pro, Vaisala 

WXT520. 

e.g. Davis Vantage Vue, 

Am. Weather WS-2090, 

Fine Offset HP1000. 

Encased Louvered Encased Encased Extreme 

   

e.g. Fine Offset WH1080, OS 

WMR100, La Crosse WS28** 

series. 

e.g. OS WMR200, OS WMR918. e.g. La Crosse WS2350, La Crosse 

25** series, TFA 35.1095, OS 

LW301. 

 

The choice of these 7 categories and the biases we would expect to see from each have 

been informed by the field study results. Figure 5.18 illustrates the temperature bias 

as a function of global radiation for each of these 7 design classes as learnt in the field 

trial. Although here the relationship is shown with global radiation, in practice 𝑙𝑅𝑎𝑑 is 

used, as this is what we interpolate to CWS locations. The update step from the 

Bayesian linear regression model (Section 4.3.2) was used to learn the regression 

coefficients that represent this relationship. The design matrix incorporated both first 

and second order basis functions for 𝑙𝑅𝑎𝑑 , and a constant term. The addition of the 

second order term helps improve the model fit (Figure 5.19). This Bayesian regression 

approach also estimates a covariance matrix for the regression coefficients; later in 

the model this is used to ensure we propagate our uncertainty. 

Although the field study showed signs (e.g. Figure 3.7) that the wind speed also 

influences the temperature bias, its influence was minimal compared to the effect of 

radiation. For simplicity it is therefore not used as a predictor.  
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Figure 5.18. Relationship between global radiation and the temperature bias for each of the 7 

design classes as learnt from the intercomparison field study. The temperature bias is 

estimated based upon the equivalent 𝑙𝑅𝑎𝑑  value for global radiation values of 0 W m
-2

 through 

to 1250 W m
-2

 at 1 W m
-2

 intervals. A second order regression function is used to predict the 

temperature bias from the equivalent 𝑙𝑅𝑎𝑑  values using the regression coefficient mean terms  

𝜇𝛽 learnt from field study for CWS belonging to the given class.  

 

Figure 5.19. Relationship between La Crosse WS2350 temperature bias and radiation (log 

transformed to 𝑙𝑅𝑎𝑑). Green line indicates the fitted model used to represent stations belonging 

to the ‘Extreme Encased’ design class.  
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As the models chosen for the field study were selected because they are the most 

popular this ensures that a large proportion of the models used on WOW have been 

tested and can therefore be accurately allocated to one of these design classes. Other 

models used on WOW were manually allocated to a particular class based simply on 

their design characteristics. For stations we are unsure about, the model allows them 

to belong to more than one class, and for stations without metadata we allocate an 

equal probability to every class as explained in more detail in Section 5.6. If we 

accidentally assign a CWS to the wrong design class, i.e. it does not display that 

particular class’ bias characteristics, then thanks to the Bayesian updating approach 

detailed below (Section 5.6) the station is not confined to that class and can gradually 

shift to a more appropriate class. Given that at any point a citizen may decide to swap 

their station for one with a different design, perhaps without updating their metadata, 

this Bayesian approach provides an elegant solution for handling such a change; i.e. if 

the new station exhibits different bias characteristics then its design class 

membership simply changes so that a more suitable bias correction is applied.   

In Section 3.2 we noted that nearby obstructions can shadow a CWS from direct 

sunlight, thus affecting the magnitude of the radiation-induced biases it exhibits. Such 

an effect could cause a station to be allocated to the wrong class, particularly in winter 

when the sun is lower in the sky and thus shadowing would be more common. In 

order to better assess this issue a longer time period than the 2 week case study 

periods used later in Section 5.7 is required. If shadowing effects are a factor for a 

given CWS then we may see seasonal changes in its assigned design classes. 

5.4.3. Evidence of design effect in WOW data 

The field study showed evidence that different weather station design classes induce 

different degrees of bias. It is crucial however to check that real CWS stations 

allocated to a given design class exhibit biases characteristic to the design class to 

which they are assigned. As in Section 5.2 CWS data from WOW is used and compared 

against IMMS. The discrepancy between the two gives a sense of the bias. However it 

is important to reiterate that these discrepancies can result from not only radiation-

induced biases, but also calibration biases, model error, representativity error and 

natural spatial variations.  

Figure 5.20 shows box plots of the discrepancy with each box including stations whose 

metadata assigned them to one of the listed design classes. Fortunately the observed 

discrepancies agree relatively well with the biases we would expect from that 

particular class. For example the Aspirated, Stevenson screen, and Quality Louvered 

classes show the smallest discrepancies whereas the Encased, Encased Louvered and 
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Encased Extreme show the largest. The spread of the design classes is also larger for 

these latter design classes, which suggests we should place less confidence in the 

accuracy of their observations. We would expect to see the discrepancy of the Encased 

Louvered to be lower than the Encased and Encased Extreme classes, the fact it isn’t 

implies one of the previously listed alternative explanations for the discrepancy is 

masking the relationship, or there may be issues due to small sample sizes within 

some of the classes, or because some stations have been wrongly assigned to a 

particular class. The figure presents data for the summer period only, selected as the 

difference between the classes appears most pronounced, however the other 3 case 

study periods show a similar pattern. 

 

Figure 5.20. Boxplots of the temperature difference between uncorrected CWS observations 

and IMMS after the CWS stations have been separated by their user-contributed model name 

and therefore designated design class. All available WOW stations (604 stations) are including 

using 3 hourly data throughout the summer period. Values at the bottom denote the standard 

deviation. The horizontal red line mark the median, the edges of the box are the 25th and 75th 

percentiles, the whiskers extend to the most extreme data points not considered outliers (1.5 × 

interquartile range), and outliers are plotted individually in red. 

Figure 5.21 gives a clearer sense of whether the biases we see in the real CWS data for 

a given design class correspond well with what we would expect; i.e. whether they 

closely resemble the biases seen during the intercomparison field study on which the 

design class characteristics are based (Figure 5.18). For the Encased Louvered class 

(Figure 5.21b) the observations agree well with what we would expect. For the Quality 

Louvered class (Figure 5.21a) the CWS observations appear systematically warmer 
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than we would expect when 𝑙𝑅𝑎𝑑 is at its highest. This could suggest that the Quality 

Louvered station used in the field study is not representative of stations with a similar 

design type on WOW, or that other factors are causing the warm bias, or perhaps that 

for some stations the station type detailed within the metadata does not represent the 

bias characteristics it displays and therefore justifies allowing the station to change 

design class over time.  

 

Figure 5.21. Relationship between the temperature difference (uncorrected CWS – IMMS) and 

𝑙𝑅𝑎𝑑  for stations whose metadata assigns them to the design class a) Quality Louvered and b) 

Encased Louvered. The green line represents the temperature bias we would expect to for this 

design type, learnt from the intercomparison field study (Figure 5.18).  

5.5. Addressing representativity 

Users of CWS data must consider representativity, asking themselves the question: 

‘Are the observations a fair representation of the weather taking place over the region 

my application is trying to resolve’. This region may be a 1.5 km square grid cell in a 

high resolution numerical weather prediction model or a city district for which the 

urban heat island effect is being quantified. Crucially, the representativity of a CWS 

observation depends on the application in which it is used. 

In Section 2.3.5 we detailed why representativity is so important and what makes it a 

difficult feature to quantify. Here in Section 5.5.1 we introduce a web application, 

named the Station Classifier, developed to allow users to classify a station’s exposure 

and Urban Climate Zone (UCZ); attributes that could act as proxies for 

representativity. In Section 5.5.2 the classifications made in this web application are 

used in an exploratory manner to investigate whether stations with different 

exposures and UCZs exhibit different bias signals with respect to IMMS. Finally we 

introduce how representativity error is actually modelled within this project.  

a) b) 
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5.5.1. Station classifier web application 

The exposure and the Urban Climate Zone (UCZ) of a CWS are likely to play a large 

role in determining how representative the station is. Fortunately, as detailed in 

Section 2.1.4, WOW users can rank their station based on these two attributes. The 

exposure classes they can choose from are as follows: 

Exposure 

5: Very open exposure: no obstructions within 10h or more of temperature or rainfall 
instruments. 

4: Open exposure: most obstructions/heated buildings 5h or from temperature or rainfall 
instruments, none within 2h. 

3: Standard exposure: no significant obstructions or heated buildings within 2h of 
temperature or rainfall instruments. 

2: Restricted exposure: most obstructions/heated buildings >2h from temperature or rainfall 
instruments, none within 1h. 

1: Sheltered exposure: significant obstructions or heated buildings within 1h of temperature 
or rainfall instruments. 

0: Very sheltered exposure: site obstructions or sensor exposure severely limit exposure to 
sunshine, wind, rainfall. 

R: Rooftop site: Rooftop sites for temperature and rainfall sensors should be avoided where 
possible. 

T: Traffic site: equipment sited adjacent to public highway. 

U: Exposure unknown or not stated. 

h stands for the height of the obstruction above the sensor height. For example a 5 m 

tall obstruction, such as a tree, would need to be at least 7 m ((5 – 1.5) × 2) from a 1.5 m 

tall CWS to be >2h away. UCZ classes are defined as follows:  

Urban Climate Zone (UCZ) 

1: Intensely developed urban zone with detached close-set high-rise buildings with cladding, 
e.g. downtown towers. 

2: Intensely developed high density urban with 2 - 5 storey, attached or very close-set buildings 
often of brick or stone, e.g. old city core. 

3: Highly developed, medium density urban with row or detached but close-set houses, stores 
& apartments e.g. urban housing 

4: Highly developed, low density urban with large low buildings & paved parking, e.g. 
shopping mall, warehouses. 

5: Medium development, low density suburban with 1 or 2 storey houses, e.g. suburban 
housing. 

6: Mixed use with large buildings in open landscape, e.g. institutions such as a hospital, 
university, airport. 

7: Semi-rural development with scattered houses in natural or agricultural area, e.g. farms, 
estates. 

U: UCZ unknown or not stated. 
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Unfortunately around 15% of users failed to complete this optional ranking stage 

when setting up their weather station. The Station Classifier web application detailed 

here was designed to help overcome these data gaps. It allows a user to classify 

weather stations by exposure and UCZ using an aerial image of each site. The 

application can be used to classify both MMS and CWS sites providing a consistent set 

of classifications across all station types. This is particularly useful as operationally 

MMS sites are classified using a different scheme to WOW as specified by the World 

Meteorological Organisation (WMO, 2010). 

To register and use the application yourself please follow the link below: 

http://www.weatherwired.com/classifier/ 

 

Figure 5.22. Screenshot of the options page for the Station Classifier web app. 

http://www.weatherwired.com/classifier/
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Figure 5.23. Screenshot of the Station Classifier web application being used to classify WOW 

stations by exposure. Note how the user is dragging an aerial image to the column they feel is 

most appropriate. 

Figure 5.22 and Figure 5.23 illustrate the basic functionality of the web application. A 

user selects which station networks to classify and by which attribute, before being 

presented with aerial images of all the selected stations. It is then their job to look at 

the images, which can be enlarged or viewed in Google Maps, to assess which class the 

station belongs to, before dragging the image into the appropriate columns. The 

selling point of the application is the speed at which stations can assessed, compared, 

and ultimately classified.  

Although the application has currently only been trailed by a few team members, it is 

ready to be made publicly available. The eagerness of citizens to help in applications 

such as this has already been demonstrated by Fritz, et al., (2009) with their Geo-Wiki 

application, which enabled volunteers to validate and correct land cover maps using 

aerial images from Google Earth. By engaging the public, each station can be classified 

by multiple users allowing use to enjoy the ‘wisdom of the crowd’. This is important as 

the application is inherently subjective. For example, it is easy to assume that the 

marker in the centre of each image centre, which marks the station’s coordinates as 

provided in the metadata, is correct. For WOW stations these coordinates are specified 

by the station owner and may accidentally or deliberately include a degree of error. It 

is therefore up to the application user to question whether the coordinates are correct 

or if they believe the station actually resides nearby. To aid the decision the textual 
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metadata (Section 2.1.4) added by a WOW user is also visible. This can be useful, for 

example, for highlighting if a CWS is described as roof mounted, which can drastically 

change a site’s exposure.   

5.5.2. Exploratory analysis 

Every station, professional and citizen alike, was classified using the Station Classifier 

application by a single user. Figure 5.24 shows their classifications for the MMS 

stations, and Figure 5.25 for the CWS. Unsurprisingly, given the strict WMO standards 

MMS stations adhere to, the majority of MMS stations were classified as well exposed, 

and located in semi-rural or mixed-use landscapes. The mixed-use class is used for 

stations located at airfields, of which there are numerous in the MMS network. CWS 

stations on the other hand were frequently classified with restricted or sheltered 

exposures in suburban environments, indicative of many owners’ gardens. It is 

important to note that these classifications reflect the subjective opinion of the single 

user who completed the application. Ideally more users would have completed the 

application with any agreement between users helping to improve our confidence in 

the classifications. Even so it is clear that many of the possible categories are rarely 

used.  

 

Figure 5.24. Distribution of MMS stations into the various exposure (columns) and Urban 

Climate Zone (rows) classes. The values represent the number of stations, with darker colours 

indicating a higher count.  
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Figure 5.25. Distribution of CWS stations into the various exposure (columns) and Urban 

Climate Zone (rows) classes. The values represent the number of stations, with darker colours 

indicating a higher count. Every station counted submitted at least one observation during the 

summer period. 

The following figures investigate whether the discrepancy between the CWS 

observations and IMMS is influenced by the stations’ exposure and UCZ. This 

discrepancy can include instrumental errors, interpolation model errors and also the 

representativity errors of interest. Figure 5.26 and Figure 5.27 show that when the 

uncorrelated CWS data is compared against IMMS the instrumental errors, e.g. 

radiation-biases, dominate each box plot making it difficult to assess the variation 

between exposure and UCZ classes. It is therefore important that we try to remove 

these instrumental effects before making a comparison. In Figure 5.28 and Figure 5.29 

the bias correction model, detailed later in Section 5.6, has been used to help remove 

these instrumental biases.   
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Figure 5.26. Boxplots of the temperature difference between uncorrected CWS observations 

and IMMS after the CWS stations have been separated by their exposure classification as 

assigned within the Station Classifier app. The values below each box plot denote the number 

of observations, and the standard deviation, for each class. Only data from the summer period 

is shown. The horizontal red line mark the median, the edges of the box are the 25th and 75th 

percentiles, the whiskers extend to the most extreme data points not considered outliers (1.5 × 

interquartile range), and outliers are plotted individually in red. 

 

Figure 5.27. Boxplots of the temperature difference between uncorrected CWS observations 

and IMMS after the CWS stations have been separated by their UCZ classification as assigned 

within the Station Classifier app. The values below each box plot denote the number of 

observations, and the standard deviation, for each class. Only data from the summer period is 

shown.  
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Figure 5.28. Boxplots of the temperature difference between corrected CWS observations and 

IMMS after the CWS stations have been separated by their exposure classification as assigned 

within the Station Classifier app. The values below each box plot denote the number of 

observations, and the standard deviation, for each class. Only data from the summer period is 

shown.  

 

Figure 5.29. Boxplots of the temperature difference between corrected CWS observations and 

IMMS after the CWS stations have been separated by their UCZ classification as assigned 

within the Station Classifier app. The values below each box plot denote the number of 

observations, and the standard deviation, for each class. Only data from the summer period is 

shown.  
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Notice now that with the bias corrections applied, each class displays a median line 

close to 0 with minimal difference in their interquartile ranges. However, the 

Unknown class is an exception to this statement. There is a difference in the outliers 

(red points) between classes; however, this is largely a result of significant differences 

in the number of stations within each class. If instead we saw that certain classes 

displayed a biased median and/or an increased spread then we could increase our 

uncertainty about how representative stations within those classes are. As it is, these 

exploratory results suggest that these classifications provide little information about 

the representativity error and therefore the model must quantify representativity 

using the data itself. The following model framework section explains how an explicit 

representativity term is used to characterise the representativity error; using the 

difference between the CWS observations and IMMS to learn and update it. 

5.6. Model framework 

This section details the concept behind, and structure of, the complete bias correction 

model which uses as inputs: the interpolated MMS values (IMMS); radiation estimates; 

and the CWS observations themselves to learn temperature biases inherent to each 

CWS. The learnt biases can then be used to correct the CWS data such that the models’ 

final output is a set of corrected CWS observations with associated uncertainty 

estimates. We begin by introducing the concept behind the model (Section 5.6.1) upon 

which the model’s structure was built. Crucially it also highlights some key 

assumptions that have been made. Next the initial quality control procedure is 

detailed, essential for removing gross errors (Section 5.6.2). Section 5.6.3 defines the 

mathematical core of the model detailing the steps performed at each timestep in 

which the arrival of new data is used to update our estimate of each CWS’s bias 

characteristics.       

5.6.1. Concept 

From the intercomparison field study, Section 3.2, it was clear that biases in the CWS 

temperature observations primarily result from either a calibration bias or a 

radiation-induced bias. As such our model aims to estimate these two biases explicitly 

and separately from one another. Each bias is represented by a Gaussian distribution 

with mean, μ, and variance, v, terms that are gradually learnt in a Bayesian manner 

from the CWS data itself. Figure 5.30 shows an example of Gaussian distributions that 

may have been learnt by the bias correction model. The means of the two biases are 

subtracted from the uncorrected CWS observation to produce the corrected estimate. 

The variances are added. Note that the radiation bias mean is non-zero, as the 

majority of CWS displayed positive radiation-induced biases. The uncorrected CWS 



148 
 

observation is initially given a variance based on instrumental sensor noise, i.e. of the 

thermistor itself. 

 

Figure 5.30. Example of the learnt biases, modelled as Gaussian distributions, being subtracted 

from the raw CWS observation in order to correct it. 

For the calibration bias we assume a priori that every station new to the model 

displays a zero mean bias. Over time the data can update this belief, changing it from 

a zero mean if the data suggests as much. During the day stations with poor radiation 

shielding usually experience radiation-induced biases well in excess of any calibration 

bias. As such, the mean of calibration bias (referred to below as 𝜇𝑠,𝑡
𝐶𝑎𝑙) is only learnt 

during the night so that any radiation-induced biases are not misinterpreted by the 

model as a warm calibration bias. This is based upon the assumption that the 

calibration bias is stable through time; i.e. the value learnt during the night fairly 

represents the calibration bias experienced during the day.  

Unlike the mean, the variance term of the calibration bias (referred to below as 𝑣𝑠,𝑡
𝐶𝑎𝑙) 

is updated during the day as well. This variance term is used as a proxy for 

representativity error; used to explicitly quantify our uncertainty using the data itself. 

The assumption is that, having explicitly learnt the calibration and radiation-induced 

bias, this term mops up any discrepancies that remain, with representativity error the 

most probable cause. It is crucial to note however that it is a measure of the 

representativity error relative to the IMMS predictions from the temperature 

interpolation model. Therefore any natural spatial variations that the interpolation 

model is not competent to resolve, as well as any errors in the interpolation model, 

are mopped up by this representativity term. As we expect the representativity term 

to be less stable through time than the calibration mean, perhaps even exhibiting a 

diurnal pattern, this is updated using both day and night observations. 

Unlike the calibration bias the radiation-induced temperature bias is not updated 

directly. Instead we update the probability that a given station belongs to each of the 
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shielding design classes listed in Section 5.4.2. For a given radiation estimate, 𝑙𝑅𝑎𝑑  , 

each design class predicts a different magnitude of bias. Once the calibration bias has 

been removed, the discrepancy between the CWS observation and IMMS provides a 

current estimate the radiation bias, albeit with a degree of uncertainty. For design 

classes that predict a bias similar to the current estimate their probability is 

increased. Gradually these membership probabilities are adjusted influencing the 

impact each design class has on the estimate of the radiation bias. Section 5.6.3 

explains exactly how this is done. The membership probabilities are only updated 

during significant levels of incoming radiation. Under low radiation conditions, the 

difference in bias between design classes is largely indistinguishable, making it 

difficult to assign a CWS to the correct class. By learning the radiation bias indirectly 

through design class probabilities a series of assumptions are made. Firstly the 

characteristics of each design class are fixed, although this ensures that the radiation-

induced biases we predict are based on empirical evidence the assumption is thus 

made that the biases experienced by real CWS closely fit those which characterise one 

of these predesigned design classes. Following on from this the model therefore 

assumes that the radiation-induced biases experienced by real CWS does not exceed 

the range experienced during the intercomparison field study on which the design 

classes are based. As interesting topic for further work would be to develop a system 

in which the characteristics of each design class could evolve through time if there is 

evidence from the data that they should. This would allow bias characteristics which 

were not identified during the field study to be corrected for. The significant risk with 

this approach, and why it wasn’t favoured here, is that each design class may lose its 

original identity and physical meaning. 

Whenever we refer to the calibration bias and design probabilities being ‘updated’ a 

Bayesian framework is used. The prior information is usually the posterior from the 

last timestep forecast forward to the current timestep. It is important that as we 

forecast forward in time our uncertainty grows as implemented in the forecast steps 

of Section 5.6.3. By only combining preceding information with our current estimate 

the model acts as a filter rather than smoother. Unlike a smoother a filter can be used 

operationally in real-time. To control the rate at which the priors are forgotten, and 

updated with current estimates, forgetting rate and learning rate parameters, denoted 

as  and  respectively are used. These are set differently for the calibration bias and 

design class updates. This ensures that the calibration bias, thought to be more stable, 

updates more gradually. The inclusion of  and  is based on the assumption that the 

model contains correlated errors. The timestep between observations (referred to 

below as δt) is used alongside  and  to ensure the rate of update is dependent on 
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elapsed time and not the number of observations. Without it the learnt biases for 

stations with a high upload frequency (e.g. every minute) would update too quickly 

with the risk of interpreting a natural short-lived signal as calibration bias. It also 

enables the model to sensibly handle multiple stations uploading at different 

frequencies, data which often also includes missing data. If there is no data at a given 

timestep then δt is simply increased.  

To illustrate how this concept would work in practice, Figure 5.31 shows an idealistic 

representation of how the model would react when presented with biased data. It 

shows how the calibration bias and radiation bias are learnt separately over time, so 

that by the end of the period a reliable correction is being made.  

 

Figure 5.31. Theoretical time series over 5 days showing the CWS observation before and after 

a correction has been applied. The numbers correspond to the numbered steps below, which 

detail what is occurring at each step. 

The following points correspond to those labelled on the figure above and traverse the 

basic model logic. Note that in reality the speed at which these biases are updated 

would tend to be slower. 

1) The model is presented with CWS data with a consistent negative calibration 

bias. Thus the CWS data appears colder than the interpolated MMS values, 

although during the day the radiation bias hides this effect. Initially the prior 

for the calibration bias was set as 0 so no correction is made. 
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2) The CWS data also contains a strong radiation bias causing a warm bias during 

the day. As with the calibration bias, the radiation bias was initially assumed to 

be 0, so at first no correction is applied. 

3) After some time the model is beginning to learn that there is a calibration bias 

which it starts to correct for. 

4) Likewise the model also begins to learn and correct the radiation bias by 

adjusting what station design it believes the CWS is, and in turn applying the 

corresponding correction. 

5) By this point the calibration and radiation biases have been reliably learnt so 

that after the corrections have been applied the CWS data resembles that of the 

interpolated MMS data. 

6) After the corrections have been applied there is still a discrepancy between the 

IMMS and the CWS data at this time. Assuming a reliable correction has been 

applied then this difference must be a natural spatial variation that we are 

trying to capture. A key assumption here is that the learnt calibration and 

radiation biases are more stable through time than local natural spatial 

variations; i.e. a natural spatial variation comes and goes before the calibration 

and radiation biases have time to adjust significantly to this discrepancy 

between IMMS and the CWS observation. 

In the model performance section (Section 5.7.1) it is possible to see signs of this 

occurring with real CWS data.  

5.6.2. Initial CWS quality control  

CWS data can contain gross errors. Many of the probable causes of such errors were 

highlighted in Section 2.3. To remove these errors a set of simple quality control 

checks are used to pre-process the CWS data before it enters the bias correction 

model. The goal here is not to remove any biases that can parameterised or learnt 

over time, but to only remove unrealistic gross errors that if left in would be falsely 

interpreted by the model as a calibration or radiation-induced bias. For checks that 

compare the CWS data against IMMS values, we were careful to set thresholds that 

could accommodate for the natural spatial variations which should not be excluded. 

The quality control checks used are as follows: 

 Upper and Lower Bounds – CWS data that lie outside of sensible bounds are 

removed. These upper and lower limits were set by inflating the temperature 

range displayed by the MMS data at each timestep. Here the lower limit was set 

as 5 °C below the minimum MMS value, and the upper limit as 12 °C above the 
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maximum MMS value. The choice of these limits was somewhat ad hoc, based 

roughly upon the magnitude of the biases seen in the intercomparison field 

study.  When setting the bounds it is important to consider that the timing of 

the CWS observations may differ slightly from that of the professional 

observations. 

 Persistence – A station that submits the same observation more than n times 

consecutively has these consecutive readings removed. n is set generously and 

should be based up on the temporal resolution of observations. Here hourly 

CWS data underwent this check, setting n = 6, before filtering down to the final 

3 hourly resolution.   

 Spikes – Step changes in temperature greater than a specified tolerance are 

assumed to represent artificial spikes and are therefore removed. Again this 

tolerance should consider the temporal resolution of the CWS data. Here a step 

change of 10 °C per hour was assumed to be erroneous. 

 Majority Missing – For stations with a lot of missing data (i.e. over 97%) the 

assumption is made that the data which is uploaded is prone to gross errors 

and thus all of that station’s data is discounted.  

 Correlation – A weak correlation between the CWS data and IMMS proved to be 

a good indicator of gross errors. In particular it helps highlight timing issues 

such as observations submitted with an incorrect timestamp, perhaps due to a 

difference in timezone. When the correlation coefficient falls below a given 

threshold (set here as 0.4) the data is excluded. This check is performed over a 

moving window so that the whole dataset need not be deleted when the data 

only shows a poor correlation temporarily. The length of this window should 

consider the temporal resolution of the observations, for example if both CWS 

and professional data are available at minute intervals then the window may 

be much shorter than if they submitted at hourly intervals. 

 Mean vs Modal – When the mean timestep between observations is 

dramatically different from the mode this is indicative of sporadic data 

submissions, which are often prone to gross errors. Again, this should be 

performed over a moving window, which can be shorter when the temporal 

resolution is higher.  

Any operational implementation of our complete quality control system should 

include gross error checks such as these. Many of the checks can be performed in real-

time as soon as a new observation arrives; however some checks such as Correlation 

and Mean vs Modal have a lagged effect as they rely on a longer time series to be 

effective.  
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As previously described (Section 2.1.4) citizen observers are encouraged to share the 

elevation of their station when they subscribe to WOW, however as was evident in 

Section 2.3.4, not all citizens provide an elevation value, and some of those that do 

appear to do so incorrectly. Therefore a quality control check is required to correct 

these WOW elevations. A very simple approach was used, in which WOW metadata 

elevations were compared against the DEM height (see Section 4.4.2) at their location.  

If the metadata height was out by more than 50m then the DEM was used instead. 

Figure 4.12 confirmed that these DEM heights are reliable. With an accurate elevation 

the temperature interpolation model can better estimate IMMS at these CWS locations 

leading to better estimates of the calibration and radiation-induced biases.  

5.6.3. Bayesian update procedure 

At each timestep the bias correction model performs a series of steps in order to 

update and predict the calibration and radiation-induced temperature biases 

producing a final set of corrected CWS observations with uncertainty estimates. Here 

is a short summary in chronological order of the steps performed followed by a 

detailed explanation of the mathematical operations performed during each step.  

1. Interpolation - The Bayesian linear regression model is run twice, once to 

interpolate MMS temperature observations, and secondly to interpolate MMS 

radiation observations, both to the locations of the citizen stations. 

2. Predict Radiation Bias – Using the design probabilities learnt from previous 

timesteps the radiation-induced bias is predicted for each CWS station. 

3. Forecast Calibration Bias – Given the arrival of new data it is possible to 

establish how long it is been since the last observation. This timestep is used to 

inflate the uncertainty (representativity) term as the learnt bias from the 

previous timestep is propagated forward to act as the prior at this timestep.  

4. Update Calibration Bias – The predicted radiation bias is removed from the 

new CWS data providing a current estimate of the calibration bias. This is used 

to update the prior estimate. Note that the update of the mean term is only 

performed at night. 

5. Forecast Design Probabilities – As the design probabilities from the previous 

timestep are brought forward to the current timestep the model becomes more 

uncertain about which design class each station belongs to. 

6. Update Design Probabilities – Having removed the model estimate of the 

calibration bias the design probabilities can now be updated for each station. 

7. Re-Predict Radiation Bias – The updated design probabilities are then used to 

produce an up-to-date estimate of the radiation bias. 
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8. Correct CWS observation – The mean estimates of the calibration and 

radiation biases are subtracted from the CWS observation producing a 

corrected value. The variances are added to produce a final variance indicative 

of the overall uncertainty.     

The equations used in the following steps adhere to the notation outlined in Appendix 

8.1, please refer to it as required. Figure 5.32 should also be referenced to as it 

illustrates the flow of data through the following functions. 
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Figure 5.32. Schematic of data flow through the bias correction model. Bracketed numbers 

refer to equation numbers in Section 5.6.3. 
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1. Interpolation 

The Bayesian linear regression model is first run as detailed in Chapter 4 to produce 

an independent estimate of the temperature at CWS locations by interpolating MMS 

observations (i.e. IMMS). This estimate is a Gaussian with mean, 𝜇𝑠,𝑡
𝐼𝑀𝑀𝑆, and variance 

𝑣𝑠,𝑡
𝐼𝑀𝑀𝑆. 

The interpolation model is run a second time, as detailed in Section 5.3, to provide 

𝑙𝑅𝑎𝑑  estimates at the CWS locations. These 𝑙𝑅𝑎𝑑 estimates are Gaussian distributions, 

however only the mean is used. Configuring the bias correction model so that it also 

accounts for the uncertainty is the subject for further work.   

2. Predict Radiation Bias 

The design probabilities learnt at the previous timestep are used to make an initial 

estimate of the radiation-induced temperature bias with mean, 𝜇𝑠,𝑡
𝑅𝑎𝑑, and variance, 

𝑣𝑠,𝑡
𝑅𝑎𝑑. This estimate is required in order to estimate the calibration bias in equations 

(19) and (20). It is computed using: 

 
 , 

(15) 

 

 

 , 

(16) 

where 𝑝𝑑,𝑠,𝑡−1 represents the probability that a given station, s, belongs to a design 

class, d, as learnt at the previous timestep, t-1. prb stands for the Predicted Radiation 

Bias. It is the radiation-induced temperature bias predicted by each of the design 

classes using the estimate of 𝑙𝑅𝑎𝑑 at each CWS location. These predictions have a mean, 

𝜇𝑠,𝑡
𝑝𝑟𝑏

, and a variance, 𝑣𝑠,𝑡
𝑝𝑟𝑏

. The latter accounts for the uncertainties quantified during 

the field study from which the relationship between 𝑙𝑅𝑎𝑑 and the temperature bias for 

each design class are based. The equations used to make these predictions have the 

same form as Equations (10) and (11) from the predict step in the interpolation model. 

3. Forecast Calibration Bias 

The following equations ensure that as the model moves forward in time it becomes 

more uncertain about the exact value of the calibration bias – that is until the arrival 

of new data in Step 4.   
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The prior mean, 𝜇̃𝑠,𝑡
𝐶𝑎𝑙, is simply the same as the posterior from the previous timestep: 

 
 . (17) 

The prior variance, 𝑣̃𝑠,𝑡
𝐶𝑎𝑙, is calculated as follows: 

 

 , 

(18) 

where δt is a vector containing the time since each CWS last had an observation. 𝛾𝑐𝑎𝑙 is 

the forgetting rate parameter specific to the calibration bias and is constant. Here it is 

set as 50 days. Essentially the longer it has been since the model last saw an 

observation for a given station the more uncertain it becomes about that station’s 

calibration bias, with the rate at which it becomes more uncertain specified by 𝛾𝑐𝑎𝑙. 

𝑣𝑠,𝑡=0
𝐶𝑎𝑙  is the calibration bias variance as set at the initial timestep, and is used to scale 

the degree to which the uncertainty grows.   

4. Update Calibration Bias 

Updating the model calibration bias requires a current estimate of the ‘observed 

calibration’ bias at this timestep, (𝜇 𝑠,𝑡
𝐶𝑎𝑙, 𝑣 𝑠,𝑡

𝐶𝑎𝑙). The mean, 𝜇 𝑠,𝑡
𝐶𝑎𝑙, is estimated using the 

discrepancy between the uncorrected CWS observation, 𝜇𝑠,𝑡
𝐶𝑊𝑆𝑢, and IMMS, 𝜇𝑠,𝑡

𝐼𝑀𝑀𝑆, 

whilst accounting for the estimated radiation bias, 𝜇𝑠,𝑡
𝑅𝑎𝑑, as follows: 

  . (19) 

The uncertainties from each are added. 

 
. (20) 

Equations (21) and (22) show how these current estimates are combined with the 

prior to give the posterior estimate of the calibration bias. 

 

 

(21) 

 

 

 

(22) 
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𝛼𝑐𝑎𝑙 is the learning rate parameter specific to the calibration bias, set here as 24 hours. 

It dictates the rate at which calibration bias can update. 𝜇̃𝑠,𝑡
𝐶𝑎𝑙 and 𝑣̃𝑠,𝑡

𝐶𝑎𝑙 are obtained 

from Equations (17) and (18). 

Forecast and update steps are only performed for stations which have observations at 

the current timestep. This is because δt is only known when a new observation arrives 

and an update can only be made when new data is available. As explained previously 

the mean, 𝜇𝑠,𝑡
𝐶𝑎𝑙, is only updated at night, whereas the variance, 𝑣𝑠,𝑡

𝐶𝑎𝑙, updates at all 

times. It should be noted that these equations are in essence the classical Kalman filter 

update equations, with a learning rate parameter. 

5. Forecast Design probabilities 

Equation (23) shows that as the model moves forward in time it becomes more 

uncertain about which design classes are most probable. It does so by evening out 

their individual probabilities. This ensures the model does not become overconfident 

about the most probable design class: 

 

 , 

(23) 

where 𝑝𝑑
𝑒𝑞

 denotes the probability of belonging to each design class when each is 

equally probable, i.e. when the model has learnt nothing. 𝛾𝑑𝑝 is the forgetting rate 

parameter specific to the design probabilities. Here it is set as 20 days. It dictates the 

rate at which the probabilities return to being equal, i.e. to 𝑝𝑑
𝑒𝑞

. To ensure the 

consistency of the model 
𝛿𝑡𝑠,𝑡

𝛾𝑑𝑝  is restricted to ≤ 1. In practise 
𝛿𝑡𝑠,𝑡

𝛾𝑑𝑝   1 so the forecast step 

only makes small changes to 𝑝𝑑,𝑠,𝑡. This forecast step is essential, let us say for example 

that the model converged on a single design type for a given CWS, then without this 

step the model would never be able to update and change its belief later on, even if 

the citizen had modified their station’s design type causing completing different bias 

characteristics. 

6. Update Design Probabilities 

In order to update the design probabilities, pd,s,t, the model requires an estimate of the 

‘observed radiation bias’ (orb) at the current timestep with a mean, 𝜇𝑠,𝑡
𝑜𝑟𝑏, and variance, 

𝑣𝑠,𝑡
𝑜𝑟𝑏. It is calculated as the discrepancy between the uncorrected CWS observation and 

IMMS accounting for the calibration bias that has already been updated for this 

timestep as previously detailed in Equations (21) and (22):   
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 , (24) 

 

 
 . 

(25) 

The model must now quantify the degree to which the ‘observed radiation bias’ 

estimate, (𝜇𝑠,𝑡
𝑜𝑟𝑏 , 𝑣𝑠,𝑡

𝑜𝑟𝑏), agrees with predicted radiation bias for each individual design 

class, (𝜇𝑑,𝑠,𝑡
𝑝𝑟𝑏

, 𝑣𝑑,𝑠,𝑡
𝑝𝑟𝑏

). The model assumes that the probability of belonging to each 

design class, given the current estimate, can be modelled with the scale factor S of the 

product of two Gaussian distributions (Bromiley (2013)). Figure 5.33 illustrates how 

the approach compares the product of the two Gaussians; weighting design classes 

with a larger shared area more heavily.  

 

Figure 5.33. Visual representation of the overlap between the Predicted Radiation Bias for a 

given design class (Orange curve; e.g. Encased) and the estimated Observed Radiation Bias 

(Blue curve). The size of green overlap area is proportional to the scaling factor S.  

The scaling factor S is calculated in practice as: 

 

.  

(26) 
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It is important to normalise the scaling factors for each design class so that together 

they sum to one (Equation (27)). This provides the new set of design probabilities, 

𝑝 𝑑,𝑠,𝑡, used to update the probabilities that have been learnt previously, 𝑝̃𝑑,𝑠,𝑡, (Equation 

(28)).  

 

 
(27) 

 

 

 
(28) 

𝛼𝑑𝑝 is the learning rate parameter specific to the design probability update (set here as 

6 hours) and acts in relation to the time since the last observation, δt, to control the 

rate at which the design probabilities can change. As with the forecast step 
𝛿𝑡𝑠,𝑡

𝛼𝑑𝑝  is 

restricted to ≤ 1. 

The multiplication of 𝑝̃𝑑,𝑠,𝑡 with 𝑝 𝑑,𝑠,𝑡 is important as it ensures that a CWS station tends 

to dominantly belong to just one design class for as long as current estimates agree 

with the prior. When this approach was tested with simulated data, a station which 

belonged strongly to a single class tended to give a better estimate of the radiation-

induced bias than when it belonged to several.  

As there would be little difference in (𝜇𝑑,𝑠,𝑡
𝑝𝑟𝑏

, 𝑣𝑑,𝑠,𝑡
𝑝𝑟𝑏

) between design classes when 𝑙𝑅𝑎𝑑 is 

small the forecast and update steps for the design probabilities are only performed 

when 𝑙𝑅𝑎𝑑 is above a certain threshold. Here this threshold was set as 𝑙𝑅𝑎𝑑 > 5.5, 

equivalent to ~150 W m-2.      

7. Re-Predict Radiation Bias 

Now that the design probabilities have been updated the radiation bias is re-predicted 

to produce an up-to-date estimate, (𝜇𝑠,𝑡
𝑅𝑎𝑑 , 𝑣𝑠,𝑡

𝑅𝑎𝑑). These equations are equivalent to 

Equations (15) and (16) except that 𝑝𝑑,𝑠,𝑡 replaces 𝑝𝑑,𝑠,𝑡−1: 

 
 , 

(29) 
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 . 

(30) 

 

8. Correction CWS observation 

The model now has posterior distributions for both the calibration and radiation-

induced biases. Subtracting these two biases from the uncorrected observation, 𝜇𝑠,𝑡
𝐶𝑊𝑆𝑢, 

results in the final corrected CWS observation with a mean term 𝜇𝑠,𝑡
𝐶𝑊𝑆𝑐:  

 
 . (31) 

The final uncertainty, 𝑣𝑠,𝑡
𝐶𝑊𝑆𝑐, is a combination of 𝑣𝑠,𝑡

𝐶𝑊𝑆𝑢, which represents CWS sensor 

noise (set as 0.2 °C), and the uncertainties of the calibration and radiation-induced 

bias estimates: 

 
 . 

(32) 

These ‘corrected’ CWS values are then able to be used in place of the raw CWS data, 

with the added benefit of including an estimate of the uncertainty in the corrected 

value. 

5.6.4. Computational resources 

Here we detail the computational resources we used to run this system. As our aim 

was simply to demonstrate this approach, rather than run it operationally, we did not 

run this system in real-time. Instead it was fed past data from our case study periods 

(Section 4.2). 

In our implementation the following data was pre-processed ready for our model to 

use: 

- MMS temperature observations (Section 4.1). 

- MMS radiation observations (Section 5.3). 

- Uncorrected CWS temperature observations (Section 5.1). 

- Initial estimate of the station design class (Section 5.4) 

- UKV model output (Section 4.4.1). 

- Easting, Northing, Elevation, Coastality, Urbanisation and RBF estimates at 

every station location (Sections 4.4.2 – 4.4.5). 

- Clear-Sky GHI estimates (Section 5.3.1). 

- Visible and infrared satellite imagery (Section 5.3.2). 
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With this pre-processing performed, our system would then perform the following key 

processes at each timestep: 

- Interpolate MMS temperature observations to CWS locations (Section 4). 

- Interpolate MMS radiation observations to CWS locations (Section 5.3). 

- Quantify and correct for bias in CWS observations and quantify associated 

uncertainty (Section 5.6). 

A single 2 week case study period comprised of 111 timesteps for which these 3 key 

processes could be performed for all timesteps (in sequence) in under 5 seconds. At 

each timestep it corrected ~600 CWS stations, using ~240 MMS stations with 

temperature observations, and ~80 MMS stations with radiation observations. 

Therefore with an update time for a single iteration of less than 0.05 s this approach is 

entirely suitable for real-time use, this is thanks to choice of linear models which are 

sufficiently robust for such a use. 

This was performed using MathWorks’ MATLAB software as it provides an excellent 

interactive environment for writing, running, debugging and visualising 

mathematical models. It is also well suited to matrix operations as used frequently in 

this system. This was run on a Windows 7 desktop computer with a 3.3GHz quad-core 

Intel Core i5-2500 processer with 16GB of RAM.  

Therefore, the potential bottleneck for running this system in real-time is not the bias 

correction and interpolation models themselves, but in retrieving and pre-processing 

the input data required. The speed of the latter would depend on the existing 

resources any organisation wishing to implement such an approach has available. 

The following big O notation details how the computation speed and memory 

requirements would scale with increasing numbers of CWS stations, 𝑁𝐶𝑊𝑆, MMS 

stations, 𝑁𝑀𝑀𝑆, and basis functions, 𝑁𝛽  : 

Computational:     𝑂(𝑁𝐶𝑊𝑆) + 𝑂(𝑁𝑀𝑀𝑆
2 ) + (𝑁𝛽

3) 

            Memory:    𝑂(𝑁𝐶𝑊𝑆) + 𝑂(𝑁𝑀𝑀𝑆
2 ) + (𝑁𝛽

2) 

5.7. Model performance 

Here we use two approaches to assess the performance of the bias correction model. 

Firstly in Section 5.2 we saw obvious signs that the uncorrelated data exhibited biases 

with respect to IMMS, in particular many stations displayed daytime warm biases. 

Having corrected the CWS data we would hope to see that on average the CWS data is 
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now unbiased (Section 5.7.1). This first approach is not ideal as it compares the data 

against IMMS which itself is not a perfect estimate of the true temperature at the CWS 

location. Even if the bias correction model perfectly learnt the calibration and 

radiation-induced biases, we would still expect a discrepancy due to interpolation 

model errors and representativity errors, as well the crucial natural spatial variations 

that we wish to capture and that provide the added value.  

The second approach, Section 5.7.2, aims to quantify the added value these CWS 

observations bring, and to show that only once the observations have been corrected 

do we see the real benefit of their inclusion. To do this, the CWS observations are fed 

back into the temperature interpolation model to see whether their inclusion 

improves the cross-validation error over just using the MMS stations alone. The input 

CWS data used is the same 3-hourly WOW data, over the four 2 week case periods, as 

detailed in Section 5.2. 

5.7.1. Corrected CWS vs. Interpolated MMS 

Here we compare the corrected CWS data against IMMS to verify that after the bias 

correction model’s corrections have been applied the CWS data no longer exhibits any 

systematic biases. Figure 5.34 and Table 5 clearly show that before the CWS data was 

corrected it contained a systematic warm bias most notable during the higher 

temperatures experienced within the warmer periods, with radiation-induced biases 

the probable cause. Once our learnt corrections have been applied this systematic bias 

is successfully removed. The standard deviation of the discrepancy is also reduced. 

The assumption here is that once the learnt instrumental biases have been removed 

the natural spatial variations and model errors that make up the remaining 

discrepancies do not themselves contain any systematic biases.    
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Figure 5.34. 1:1 plots of the interpolated MMS temperature observation against the a) 

uncorrected, and b) corrected CWS observations. Points shown are for all four 2 week case 

study periods. The magenta line indicates the 1:1 line. 

Table 5. Mean and variance statistics for the discrepancy between CWS temperature 

observations and IMMS both before and after bias correction.  

 
Mean Discrepancy (°C) 

Standard Deviation of 
Discrepancy (°C) 

 Before After Before After 

All periods +0.54 -0.03 1.32 1.06 

Autumn +0.26 -0.07 1.18 1.04 

Winter +0.15 -0.02 0.84 0.72 

Spring +0.71 -0.02 1.38 1.15 

Summer +0.90 -0.02 1.53 1.23 

 

Removing the systematic bias, and thus producing a virtually zero mean discrepancy, 

explains much of the decrease in the standard deviation of this discrepancy. However, 

it does not explain the full decrease. The additional decrease is a result of having 

applied a bias correction specific to each station and each timestep.     

It is important to investigate the impact the correction has per station, as shown in 

Figure 5.35, as well as through time, Figure 5.36. Note that in comparison to 

corresponding figures that showed the uncorrected data (Figure 5.1 & Figure 5.2) the 

vast majority of stations that displayed an overall warm bias now exhibit a median 

temperature difference much closer to zero. Despite the correction there are still 

significant differences, for example many of the red markers in Figure 5.35 exceed ±5 

a) b) 
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°C. This was not the case when the interpolation model was verified using withheld 

MMS observations (Figure 4.24). Natural spatial variations are unlikely to explain 

such large differences alone. This indicates the initial quality control step (Section 

5.6.2) is not strict enough with gross errors still evident in the data. For example, on 

further inspection, the station whose whiskers are over 20 °C apart appeared to be out 

of phase by 12 hours indicating an incorrect location or timezone. By increasing the 

threshold on the Correlation check this station’s observations should be filtered out 

more successfully. 

 

Figure 5.35. Box plot of the temperature discrepancy (CWS-IMMS) statistics for each individual 

station after the correction has been applied for the summer period. The black dots mark the 

median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most 

extreme data points not considered outliers (1.5 × interquartile range), and outliers are plotted 

individually in red. Compare with (Figure 5.1), the equivalent figure for the uncorrected CWS 

data. 

It is interesting that Figure 5.36 still shows clear vertical banding indicating an overall 

diurnal pattern to the discrepancy. Whereas the uncorrected CWS data tended 

towards a significant warm bias during the day the corrected observations are often 

slightly cooler than IMMS values implying the radiation biases have been slightly 

overcorrected. At night there is a tendency towards a slight warm bias.  
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Figure 5.36. Visualisation of the difference between the corrected CWS observations and IMMS 

for each station (rows) and at each timestep (columns) over the summer period. Ticks on the x-

axis indicate midnight at the start of that date. Compare with Figure 5.2, the equivalent figure 

for the uncorrected CWS observations. 

It is impressive that within the short 2 week case study periods the bias correction 

model is able to quickly learn and correct the biases inherent to each CWS. We now 

look in detail at several case study stations to show the learnt calibration and 

radiation-induced biases through time to highlight the rate at which they are learnt. 

To demonstrate clearly how the bias correction model works we begin by passing it 

some artificially simulated CWS data to which a known bias is added. Figure 5.37 

shows the learnt calibration and radiation-induced bias for a dummy CWS station 

which in comparison to a simulated IMMS time series was given an artificial 

calibration bias of -2 °C and a radiation bias of 0.007 °C per W m-2. The data is at 3-

hourly timesteps, akin to the test set of real CWS data. From the figure it is clear that 

by the end of the 30 day period the learnt calibration bias has fallen close to the -2 °C 

level. It is important that the calibration bias is learnt gradually so that it does not 

react significantly to short-lived natural spatial variations, interpreting them as bias. 

For example, in this example it would take ~90 days for the learn calibration bias to 

drop below -1.9 °C. To begin with the station’s model name was set as Unknown 
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therefore equal weightings were given to every design class. As Figure 5.38 shows, by 

the end of the period the model has learnt that the magnitude of artificial induced 

radiation bias is indicative of the Encased design class. Note that to begin with the 

negative calibration bias counteracted the radiation-induced bias causing weaker 

daytime biases more indicative of the Encased-Louvered class. However once the 

calibration bias was learnt, and corrected for, the model was subjected to the full 

weight of the radiation bias and updated the design probabilities accordingly. 

 

Figure 5.37. Time series of uncorrected and correct CWS data as well as the estimated 

calibration and radiation-induced bias when the bias correction model was subjected to 

artificial CWS data with a calibration bias of -2 °C and radiation bias of +0.007 °C per W m
-2

. 

Red and blue shaded areas represent the uncertainty (±1 s.d.) of the bias estimates. 
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Figure 5.38. Change in design membership probabilities when the bias correction model was 

subjected to artificial CWS data with a calibration bias of -2 °C and radiation bias of +0.007 °C 

per W m
-2

. Initially the station model was unknown therefore each class was given an equal 

weighting.  

Having shown that the model is competent at learning artificially induced calibration 

and radiation biases the following figures show the same plots but for the real CWS 

data from WOW. Out of the hundreds of CWS stations just 3 are show below, chosen 

because they highlight an interesting property of the bias correction model and 

display features indicative of the many stations not shown. Each station’s data is 

shown over the summer period as radiation-induced biases were most significant 

during this period.  

Station 1 

Station 1 is an example of station for which the model name was initially unknown, as 

in the above example. As the station continually exhibited significant daytime warm 

biases with respect to IMMS (Figure 5.39) the station was classified over time 

primarily as Encased Louvered. The station also exhibited a warm calibration bias 

which, once learnt, increased the probability that the station belonged to the Encased-

Louvered as opposed to the Encased class. 
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Figure 5.39. Time series of uncorrected and correct CWS data as well as the estimated 

calibration and radiation-induced bias for case-study Station 1. Red and blue shaded areas 

represent the uncertainty (±1 s.d.) of the bias estimates. 

 

 

Figure 5.40. Change in design membership probabilities for case-study Station 1. Initially the 

station model was unknown therefore each class was given an equal weighting. 
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Station 2 

Station 2 shows an example of station for which the user listed their model name 

(Fine Offset WH1080) in their metadata. As a result the station could be pre-assigned 

to a particular design class, in this case Encased Louvered. For this particular station 

the assigned design class was appropriate and Encased Louvered remained the 

dominant class (Figure 5.42). Relative to IMMS the station also exhibited a slight warm 

calibration bias a night, which was learnt by the model. 

 

Figure 5.41. Time series of uncorrected and correct CWS data as well as the estimated 

calibration and radiation-induced bias for case-study Station 2. Red and blue shaded areas 

represent the uncertainty (±1 s.d.) of the bias estimates. 
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Figure 5.42. Change in design membership probabilities for case-study Station 2. Initially the 

design class was set as Encased Louvered based upon the station’s metadata. 

Station 3 

Station 3’s metadata implies the station model is a Davis Vantage Pro2, which 

performed well in the intercomparison field study with few significant biases. A priori 

the station is allocated to the Quality Louvered class. With respect to IMMS the station 

displayed minimal calibration or radiation-induced biases over the 2 week period, as 

expected from a Quality Louvered station, and therefore it remained in the same class 

by the end of the period. However it is interesting that the probability of the 

Aspirated, Stevenson screen and Underslung Louvered classes gradually rises over the 

period. Each of these classes have a similar magnitude of radiation-induced bias and 

later in Figure 5.50 we see that stations have a tendency to prefer the Stevenson screen 

class over Quality Louvered. 
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Figure 5.43. Time series of uncorrected and correct CWS data as well as the estimated 

calibration and radiation-induced bias for case-study Station 3. Red and blue shaded areas 

represent the uncertainty (±1 s.d.) of the bias estimates. 

 

Figure 5.44. Change in design membership probabilities for case-study Station 3. Initially the 

design class was set as Quality Louvered based upon the station’s metadata. 



173 
 

These example stations provide confidence that the bias correction model is 

performing as expected, and that it is able to gradually update the calibration bias and 

design probabilities based on the new information it receives at each timestep. 

The previous time series plots showed that the learnt uncertainty associated the 

calibration bias estimate, 𝑣𝑠,𝑡
𝐶𝑎𝑙, and radiation-induced bias estimate, 𝑣𝑠,𝑡

𝑅𝑎𝑑, evolving 

through time. When these two uncertainties are combined with the sensor noise, 

𝑣𝑠,𝑡
𝐶𝑊𝑆𝑢, as in Equation (32) the total uncertainty of the corrected CWS data, 𝑣𝑠,𝑡

𝐶𝑊𝑆𝑐, is 

estimated. Figure 5.45 and Figure 5.46 show how this value evolved through time for 

all the stations during summer and winter respectively. The square root of this 

variance term, i.e. the standard deviation, is shown to ensure the units (°C) are 

meaningful. It is clear to see that during the day when the model is uncertain about 

the degree of radiation-induced biases the overall uncertainty is therefore larger. 

During winter, when these radiation biases are less extreme, the uncertainty is lower. 

Overnight variations in the uncertainty result from changes in the calibration bias 

uncertainty, 𝑣𝑠,𝑡
𝐶𝑎𝑙. Initially 𝑣𝑠,𝑡=0

𝐶𝑎𝑙  was set as 4, i.e. a standard deviation of 2 °C. Note how 

the model quickly reduces this overnight uncertainty.  

 

Figure 5.45. Learnt observational uncertainty for each CWS station (rows) at each time 

(columns) during the summer period. Shown as the standard deviation, not the variance, i.e. 

√𝑣𝑠,𝑡
𝐶𝑊𝑆𝑐. 
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Figure 5.46. Learnt observational uncertainty for each CWS station (rows) at each time 

(columns) during the winter period. Shown as the standard deviation, i.e. √𝑣𝑠,𝑡
𝐶𝑊𝑆𝑐. 

 

Figure 5.47. Distribution of the learnt calibration bias mean terms at the final timestep of the 

a) winter and b) summer periods.  

Figure 5.47 shows the mean calibration bias estimate, 𝜇𝑠,𝑡
𝐶𝑎𝑙, for not just a single station, 

as the previous plots have shown, but for every station. We show its final value, so 

that the model has used a maximum of 2 weeks’ worth of data to learn it. It is 

interesting that during the summer the majority of stations are allocated a positive 

calibration bias whereas in winter the negative/positive split is more equal. Given that 

𝜇𝑠,𝑡
𝐶𝑎𝑙 is only updated at night it should not pick up any radiation-induced warm biases 

experienced by many stations during the day which could otherwise explain such an 

a) b) 
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effect. Possible explanations are that the air inside the CWS thermistor housings may 

remain warmer than the surrounding ambient air well into the night after a day of 

strong insolation. If this happened regularly this would be interpreted as a positive 

calibration bias, but such a phenomenon was not clearly evident within the field 

study data (Section 3.2). A second explanation is that because CWS, relative to MMS, 

are frequently located in sheltered urban locations (Figure 5.25) their siting may be 

responsible for the positive bias. However, in Section 5.5.2 there was little evidence 

that siting had a significant impact.  

 

Figure 5.48. Learnt calibration mean, 𝜇𝑠,𝑡
𝐶𝑎𝑙 , and representativity term, shown as the standard 

deviation, i.e. √𝑣𝑠,𝑡
𝐶𝑊𝑆𝑐, at the end of the summer period plotted spatially. 

Figure 5.48 shows the learnt calibration bias mean term, 𝜇𝑠,𝑡
𝐶𝑎𝑙, and variance 

(representativity) term, 𝑣𝑠,𝑡
𝐶𝑎𝑙,  plotted spatially using their values at the final timesteps. 

Earlier plots, e.g. Figure 5.41, showed that these terms were relatively stable by the 

end of the 2 week period and thus the values shown in the spatial plots above are a 

fair representation of their value over most of the period. It is reassuring to see that 

there is no obvious spatial correlation to the mean calibration biases. For the 

representativity term however we would expect signs of spatial coherency as the term 

should be influenced by synoptic weather conditions and land cover types which vary 

spatially across the country. However the figures show virtually no correlation, in fact 

𝑣𝑠,𝑡
𝐶𝑎𝑙 barely varies across the country. 

a) b) 
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Previous plots in this section have shown the how the design probabilities change for 

individual stations. Figure 5.49 summaries how they change over the full CWS 

network. It counts which design types had the highest probabilities both at the start of 

the period when they were informed purely from the metadata compared with the 

most probable design type assigned by the bias correction model by the end of the 

period. For a large proportion of stations the design type at the start matches that at 

the end, either because the initial allocation was correct or because there has not been 

enough evidence within the short 2 week period for it to change. It is encouraging to 

see that for those stations that began as Unknown, a significant number were allocated 

to each of the bottom 4 design classes shown in Figure 5.49. It is unsurprising to see 

the Encased-Louvered class allocated to the greatest number of stations as this class 

contains the most common model of station, the Fine Offset WH1080 (see Figure 2.6 

for a summary of station ownership).  

 

Figure 5.49. Number of stations allocated to each design class at the start (columns) vs the 

number at the end (rows) of the summer period. At the start the design class allocation were 

based upon the user’s metadata. 

The results in Figure 5.50 differ from those in Figure 5.49 because before the model 

was run this second time, all prior knowledge of the station type derived from the 

metadata was ignored. Instead we allocate an equal probability to every class. The 

metadata-assigned classes are still shown to test whether our bias correction model, 

with no prior knowledge, assigns stations to the same design class as the metadata 



177 
 

would imply. 54 stations whose metadata implied they belonged to the Encased 

Louvered class were indeed allocated to this class by the model. However for most 

other design classes the agreement was less strong. In Figure 5.50 and in Figure 5.49 it 

is clear that for stations that display minimal radiation-induced biases the Stevenson 

screen class is favoured over the Quality Louvered and Aspirated classes. From Figure 

5.18 it is clear that these 3 classes all exhibit a very similar relationship between 

radiation and temperature bias, i.e. there is virtually no dependency. As was evident 

in Figure 5.44 – when there is no strong evidence that a station belongs to a given class 

the model gradually shares the probabilities between the multiple classes that best 

match the evidence; in this case Stevenson screen, Quality Louvered and Aspirated. As 

the Stevenson screen is seen as the professional standard its covariance matrix for the 

regression coefficients used zero values on the off-diagonals. It is therefore favoured 

slightly more than the other two classes with non-zero off diagonals because it has 

slightly higher uncertainty, and thus appears as the dominant class in the figures 

here. As these 3 classes are so similar, our experience suggests we may be better off 

combining them into a single class. 

 

Figure 5.50. Number of stations allocated to each design class at the start (columns) vs the 

number at the end (rows) over the summer period. Unlike Figure 5.49 each station was 

allocated an equal probability to each design class at the start. The metadata classes are still 

shown to assess whether the learnt classes at the end match the metadata. 
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5.7.2. Interpolating with corrected CWS data 

In this section, the corrected CWS data is fed back into the temperature interpolation 

model to assess whether the additional data can improve its cross-validation accuracy 

over using MMS data alone. We also show that if the CWS data is used without any 

correction it can have a detrimental impact on the model.  

Although the same Bayesian linear regression model, as detailed in Section 4.3, is used 

for this second run of the interpolation model there are some key changes to 

acknowledge. Whereas previously the interpolation model was used to estimate the 

temperature at CWS locations, it now predicts at test MMS stations. These test MMS 

stations are removed from the outset so that they have no influence on IMMS values 

and therefore have no impact on the learnt bias corrections for the CWS stations. 10-

fold cross-validation is used to iterate through different sets of test MMS stations. The 

second key difference is that the forecast step is no longer used. Instead of 

propagating the posterior for the regression coefficients forward from the last 

timestep to act as the prior, as in the first run, a loose prior is instead used so that the 

regression coefficients are essentially entirely learnt afresh at each timestep using 

both the CWS and MMS data. Given that the bias correction model outputs uncertainty 

estimates for each corrected CWS observation, 𝑣𝑠,𝑡
𝐶𝑊𝑆𝑐, we weight their impact in the 

interpolation model by this uncertainty,  so that a station with a large uncertainty has 

little influence on the learnt regression coefficients. To do this the update step, 

Equations (6) and (7), has been altered so that the uncertainty inversely weights each 

station’s impact on the learnt regression coefficient mean, 𝜇𝛽,𝑡, and covariance matrix 

values, 𝛽,𝑡 (Equations (33),(34) & (35)).  

 
 

(33) 

 

 

 
(34) 

where  specifies the weighting given to each station, specified as a diagonal matrix. 

These weightings are inversely proportional to the observational uncertainty, 𝑣𝑠,𝑡, 

assigned to each station at each timestep. 

 

 

(35) 
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At present, the bias correction model only produces observational uncertainty 

estimates for CWS stations; i.e. for these stations 𝑣𝑠,𝑡 is equivalent to  𝑣𝑠,𝑡
𝐶𝑊𝑆𝑐 from 

Equation (32). However, as both CWS and MMS data is used in this second run we 

must also assign an uncertainty value, 𝑣𝑠,𝑡
𝑀𝑀𝑆, to the MMS observations. From the RMSE 

plots, Figure 4.21, the average RMSE is in the order of 0.8 implying a total residual 

variance around 0.6 °C2. Given that we ascribe 0.2 °C2 to instrumental noise then ~0.4 

°C2 must come from representativity errors. As we attempt to quantify 

representativity errors for the CWS stations it is important that the MMS stations also 

include such an estimate. Therefore all MMS stations were ascribed an uncertainty of 

0.6 °C2. This is relatively ad hoc – in the future it would be desirable to dynamically 

adjust and learn this uncertainty term as we do for the CWS stations; i.e. by learning  

𝑣𝑠,𝑡
𝐶𝑎𝑙. We also run the interpolation model using the uncorrected CWS data for 

comparison (Figure 5.51). For these stations 𝑣𝑠,𝑡 is also set as 0.6 °C2.  

Another difference is that unlike the first run the model uncertainty, 𝜎𝜖
2, does not 

propagate temporally. Instead a fixed value is used at every timestep. This is also 

assigned an ad hoc value of 𝜎𝜖
2 = 0.6 °C2, believed to represent the sum of the typical 

observation and representativity variance for MMS stations. Equation (11) is therefore 

replaced by Equation (36). Using this value ensures the model performs well 

probabilistically, setting this value any larger causes the model to become over-

confident about its predictions; conversely a smaller value leads to an under-confident 

model: 

 
 . 

(36) 

To assess fairly the impact that incorporating corrected CWS data has on the 

interpolation model error, this second version of the interpolation model is run 3 

times, firstly with MMS data only, secondly with MMS data and uncorrected CWS data, 

and finally with both MMS data and corrected CWS data. From Figure 5.51 it is clear 

that when uncorrected data enters the model the accuracy falls most significantly in 

spring and summer when radiation-induced bias are at their greatest. There is a clear 

benefit of using corrected CWS data vs uncorrected data; however the corrected CWS 

data provides little if any benefit over using MMS data only. This implies that for the 

scale at which the interpolation model is representative, the MMS data already does a 

sufficient job with little room for improvement, meaning that the CWS adds no 

benefit. It is also worth noting that MMS data might not validate the CWS due to a lack 

of ‘urban’ MMS stations. It is in urban locations where the addition of CWS may 

provide the greatest benefit. There may be other applications however that can 



180 
 

extract greater value from the CWS data. For example, the corrected data may prove 

valuable within a data assimilation scheme capable of resolving higher spatial 

resolutions.   

a) Autumn 

 

b) Winter 
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c) Spring 

 

d) Summer 

 

Figure 5.51. Time series of cross-validation RMSE of the temperature interpolation model run 

under 3 scenarios: with MMS data only, with MMS data and uncorrected CWS data, with MMS 

data and corrected CWS data. Shown for each two week case study period: a)Autumn, 

b)Winter, c)Spring, d) Summer. 

A coverage plot, Figure 5.52, is included to show that the interpolation model still 

validates well probabilistically; i.e. on average the uncertainty values that accompany 

the predictions at the test MMS stations fairly reflect the prediction errors. 
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Figure 5.52. Coverage plot for when the temperature interpolation model was run with MMS 

data and corrected CWS data over the summer period. Verified against withheld MMS station 

observations using 10-fold cross-validation. It plots the theoretical centred confidence interval 

against the observed frequency. 

5.8. Summary 

Within this chapter we have conceptualised, designed and tested a model capable of 

learning biases within CWS temperature data; a model built upon explicitly modelling 

calibration and radiation-induced biases. The standout feature of this model is its 

Bayesian approach to learning these biases over time so that they can be accurately 

estimated, with a quantified uncertainty, without correcting for short-lived natural 

spatial variations which we wish to capture.  

Crucially, we were able to test the model with real CWS data. Having investigated the 

impact of the model’s bias correction both on the dataset as a whole and looking at 

individual case study stations, there are clear signs that our approach is capable of 

significantly reducing the biases inherent to the data. The model also appears to 

attach realistic uncertainty estimates to each observation; estimates that would be 

informative to any potential users of the data when deciding if the observations are fit 

for purpose.  

It is interesting that the corrected CWS data added little value when included 

alongside MMS data in our temperature interpolation model. It appears that in this 

application the MMS data alone is sufficient; however, other applications of the 

corrected CWS data should be tested in future work to better leverage their potential 

value. 
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Although the focus was on temperature observations, several of the techniques 

introduced here should be applicable to other variables. The Bayesian framework 

could be easily applied to other variables. The radiation interpolation model 

developed here would also be of use if the model is used to learn bias in dew point 

observations, which also have a dependency on radiation. The technique of assigning 

stations to different design classes based up their bias characteristics should also work 

well for dew point and also for precipitation observations as the size and shape of rain 

gauges play a role in determining a station’s over or under catch. 
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6. Conclusion 

This project has successfully combined a variety of techniques, data, and fields of 

research to demonstrate an approach for quantifying bias and uncertainty within 

citizen weather data. Below we detail the project’s key successes and how they 

contribute to the field of citizen meteorology. We note areas that still require further 

work, such as how such a system could be implemented operationally. We also make 

a number of suggestions based upon what has been learnt during this project; 

suggestions that should help improve the quality of CWS data in the future.  

6.1. Contributions 

The first major achievement of the project was to successfully identify and 

parameterise bias within CWS data, with a particular focus on being able to 

parameterise radiation-induced biases with interpolated professional global radiation 

observations. We have shown that for stations with inadequate radiation shielding, 

using such a parameterisation can dramatically reduce the mean bias and residual 

variance of their observations. The decision to conduct a year-long intercomparison 

study of popular CWS proved invaluable in this process, helping to quantify the 

magnitude of the CWS bias we would expect in real CWS data. Such an approach 

could be easily implemented by others wishing to correct CWS temperature 

observations they suspect have significant radiation-induced biases, assuming reliable 

estimates of incoming radiation are available.  

The bias correction model relies on temperature and radiation estimates at the CWS 

locations. Here we successfully demonstrated that a Bayesian linear regression model 

can be used to interpolate professional MMS temperature and radiation observations 

to provide such estimates. For studies where quantifying the uncertainty of these 

interpolated values is important this approach provides a robust solution. The benefit 

for this study was that the uncertainties could be passed to our bias correction model 

and propagated through to the final uncertainty of the corrected CWS observations. 

Much of the success of the interpolation models came from their ability to incorporate 

crucial datasets. For example, the temperature interpolation model incorporated high 

resolution forecast model output, whereas the radiation interpolation model 

leveraged publicly-available satellite imagery. 

A primary success of this project has been to develop and demonstrate a complete 

approach for quantifying bias and associated uncertainties within CWS temperature 

observations. In contrast with previous quality control techniques, we were able to 
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demonstrate an approach in which data was not simply flagged as erroneous and 

discarded, but instead explicitly model the calibration and radiation-induced biases 

such that even biases over several degrees Celsius could be corrected for, accounting 

for the important uncertainties, leaving the data available for use. This lays the 

foundation for an operational implementation of such a system, which should 

ultimately discard fewer CWS observations and allow end users to assess the 

appropriateness of the data themselves using the assigned uncertainty estimates. We 

have also demonstrated the dangers of using uncorrected CWS data, with uncorrected 

WOW data having a detrimental impact on our temperature interpolation model. 

Many CWS stations submit at sub-hourly intervals and in parts of the country the 

spatial density of stations far exceeds that of professional networks. With a reliable 

quality control procedure in place, such as the one developed herein, this abundance 

of data stands a real chance of improving the performance of suitable applications. 

For example, having demonstrated an approach for quantifying the observation 

uncertainty, CWS data could be fed into existing high resolution data assimilation 

schemes with the aim of improving the initial conditions in numerical weather 

forecast models. With more realistic initial conditions comes the possibility of more 

accurate forecasts. 

6.2. Implementing operationally 

The aim of this project was to demonstrate an approach for quantifying bias and 

uncertainty in CWS data, not to implement an operational system. The UK Met Office 

worked closely with this project with the vision that once developed, such a system 

could be made operational, processing data submitted to WOW. Having presented our 

work at the Met Office in February 2015 the feedback was positive. However several, 

non-trivial, steps remain to be addressed before such a system could be run 

operationally, particularly in near real-time. For example, at each timestep it would 

be necessary to request up-to-date professional and citizen data along with satellite 

images and model output. These are essentially IT issues and as the ‘Internet of 

Things’ continues to grow and APIs for handing data requests become common place 

this should become more less of an issue. We also showed that once the required data 

has been retrieved the processing time of all the models is entirely suitable for real-

time use. In this project MATLAB was used to process and analyse the data; 

operationally a language such as Python may be more suitable. In this project we ran 

the complete model at 3-hourly timesteps. Doing so fails to leverage the high temporal 

resolution of CWS data, with most stations submitting at sub-hourly intervals. 

However, as satellite data and model output is commonly only available at hourly 
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timesteps a challenge arises if we wish to interpolate professional temperature and 

radiation observations at sub-hourly intervals. It is likely that such a model would 

need to incorporate temporal interpolation as well as spatial interpolation. A potential 

application of CWS data within the Met Office is to feed it into pre-existing data 

assimilation schemes, in particular its high resolution configurations (Dixon, et al., 

2009). In order for our CWS uncertainty estimates to propagate into such a data 

assimilation scheme significant changes would need to be made to the code to enable 

the observation error covariance matrix to update in near real time. Alternatively our 

approach may be more suited to post-processing (Moseley, 2011). In many respects the 

post-processing team is better suited to implementing such an approach, as they 

commonly process both model output data and observations with the aim of 

correcting for biases. 

6.3. Advice 

From the results of this project we are able to make a number of suggestions; 

suggestions that can help improve the quality of CWS data in the future and ensure 

that the data is used sensibly. Below we list suggestions for the citizen observers 

themselves, for station manufactures, for data hubs such as WOW, and for those 

wishing to incorporate CWS data into their application.  

For citizens – In this study we have highlighted the roles that station type and station 

siting play on inducing errors in CWS observations. When metadata is available 

detailing these attributes, it becomes much easier to get a handle on the biases a CWS 

is likely to display. It is therefore vital that citizen observers complete as much 

relevant metadata as they can. Citizens can also take steps to reduce representativity 

errors by improving the exposure of their station, although we acknowledge that in 

many gardens an ideal siting is difficult to find. The field study results also highlight 

that citizens should take care when choosing their station, in particular that the 

station’s radiation shielding is adequately ventilated with effective shielding from 

incoming and outgoing radiation. Here we saw that aspirated stations, and stations 

with a louvered design, performed best. 

For manufacturers – This study highlighted several CWS design features that can 

induce biases and should be avoided. Firstly the radiation shielding used to protect 

the thermistors from direct radiation should be white and allow sufficient ventilation. 

Louvered and aspirated designs work well. There is an argument with the latter that 

the aspiration should function both day and night. This is as there were signs that by 

altering the shielding design to accommodate aspiration it also caused slight warm 

biases when the aspiration was switched off. Stations in which the thermistor was 
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mounted on a circuit board encased within a plastic enclosure tended to exhibit 

dramatic radiation-induced biases; therefore such designs should be avoided. It 

should also be easier for citizens to calibrate their thermistors. A suggestion would be 

to sit the thermistors at the end of a length of wire rather than soldering them directly 

to the circuit board so that a water bath could be used for calibration. We also saw 

that for integrated sensor suits, such as Davis’ Vantage Vue, it is virtually impossible to 

find a siting were the height and exposure is ideal for every sensor. A modular design 

in which the different components can be mounted independently would overcome 

this. The rain gauges should also be larger, circular, with deeper sides and larger 

tipping buckets within, as many stations exhibited a significant undercatch in 

comparison to standard gauges. Hopefully through publications such as Jenkins (2014) 

and Burt (2013) citizens will become more aware of the errors inherent to certain 

brands of CWS and will demand designs with improved accuracy from 

manufacturers.  

For data hubs – There are a number of improvements that could be made to the 

websites that accept, archive, and display CWS data. At present each data hub lists 

different metadata attributes. Ideally each hub should use a standardised metadata 

form in which key properties such as station type and siting are compulsory when 

setting up a station. With a consistent set of station model names it would be much 

easier to apply the appropriate radiation-induced bias correction when a new station 

signs up. Alternatively users could choose from a list of design classes, such as the 7 

listed in Section 5.4.2. It is important that these websites continue to offer advice on 

how to set up a station - for example, advising what key design features to look for 

when buying a new CWS and what the best practices are for siting a station and how 

to maintain it. Data hubs may also wish to consider implementing a quality control 

procedure such as that demonstrated in this project so that every observation they 

display has an accompanying bias and uncertainty estimate. This would not only help 

inform data users of the data’s accuracy, but could also warn the station’s owner of 

biases that they may have previously been unaware of. Also, assuming the permission 

of the citizen observer has been given, more observations, and even metadata, should 

be made available through APIs. This would improve the accessibility of the data, and 

negate the need for web scraping techniques as used in this study. With easier access 

comes the possibility of greater research into, and application of, CWS data.  

For data users – This study has shown that CWS data can contain significant biases, 

which if used uncorrected can have a detrimental impact on the applications in which 

they are used. Data users should therefore consider applying an operational version 

of a quality control system such as the one demonstrated here. This would ensure that 
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gross errors are removed, biases can be corrected for, and the uncertainty estimates 

attached to the data can inform how the data is used and how much confidence can be 

placed upon it.  

6.4. Further work 

Despite the successes of this project there remain a variety of challenges that require 

further work.  

In this study the performance of our quality control system was tested by adding the 

corrected CWS data back into the temperature interpolation model. Here we saw little 

benefit over using the professional data alone. It is likely that other applications 

would be able to better leverage the increased spatial resolution that CWS data can 

provide. For example it would be interesting to add the corrected data into high 

resolution data assimilation schemes to assess the impact on forecast skill. This study 

also only uses 2 weeks’ worth of continuous data at a time due to time and 

computational limitations. It would be interesting to see how the learnt calibration 

bias and design class memberships evolve over much longer timescales, e.g. over a 

complete year.    

This project only focused on correcting temperature observations. There is however a 

lot of potential value in CWS humidity and precipitation observations. It is likely that 

the approach used for temperature would also apply well to humidity observations. 

Although as humidity is constrained to the limits 0-100% we would suggest modelling 

dew-point temperature instead for which the errors are more Gaussian. Bias 

correcting CWS precipitation observations would require an alternative approach. 

Nearby professional rain gauges could be used to buddy-check CWS gauges, 

potentially using radar to aid the interpolation. The field study indicated that the 

percentage by which a CWS gauge under or over caught remains relatively constant 

through time. It is possible that by interpolating professional gauge data to the CWS 

location this percentage could be learnt over time. It is important that a relatively long 

timescale is used to learn this correction so that instrumental biases can be removed 

without also removing short-lived spatial variations in rainfall. Longer-lived spatial 

variations, such as rain shadow effects, can complicate this process however. 

The design type classes chosen in this study were based upon the empirical results 

from the field study. However, as only a limited number of stations were tested it is 

possible that other models of CWS available on the market display different bias 

characteristics. For example, they may display a different relationship with radiation 

or have a tendency for an ‘out of the box’ calibration bias. Therefore to establish 
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whether we need to model any other design classes further field studies could be 

performed on stations whose design does not closely resemble those tested here.    

Quantifying representativity errors still proves to be a significant challenge. In this 

study the representativity term displayed very little spatial correlation. In the future 

this property could be enforced, as we would expect to see the representativity term 

react to changes in the synoptic conditions which vary across the country. There is 

also an argument that the learning and forgetting rate terms should be set differently 

for the calibration bias mean and variance terms. As the variance is used as the 

representativity term we would expect it show a synoptic dependency perhaps with a 

diurnal pattern. It should therefore update faster than the mean which is used simply 

to represent the instrumental calibration bias; a property that we expect to change 

over much longer timescales, with no synoptic dependency. The field study also 

suggested that the sheltering and shading of a CWS can influence the magnitude of the 

bias it displays. This is important as it could cause a station to be allocated to the 

wrong design class. This is something that could be investigated further, although 

accurately estimating the shading effects at a given CWS location is a very difficult 

task. This is partly due to errors in the exact location of the station and partly because 

measurements of nearby obstructions are hard to come by. 

There are several other tweaks that could be made to the system. For example the 

clustered approach introduced in Section 4.3.3 could be further developed with the 

hope of improving the overall accuracy and uncertainty estimates of the temperature 

interpolation model. Also at present the uncertainty estimates from the radiation 

interpolation model are not used. In the future we would like to propagate its 

uncertainty through the bias correction model so that during the day it influences the 

final uncertainty attached to each CWS observation.    

Overall, given the successes of this project, a quality control system such as the one 

demonstrated here has a lot of potential with plenty of room for development. 

Hopefully over the coming years the volume of citizen weather data will continue to 

grow and meteorological organisations and data users that handle such data will see 

the value in further developing and implementing such a system operationally. 
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8. Appendix 

8.1. Equation notation 

This thesis contains several equations – most notably in Section 4.3 and Section 5.6. 

These equations adhere to the following notation for readability and continuity. A list 

of all the symbols used in these sections is also included below. 

μ & v –   For variables modelled as Gaussian distributions; μ is used to denote the 

mean, and v the variance. v was chosen over the more common notation σ2 to 

improve readability when superscripts are used, as detailed next. 

Superscripts – Superscripts are used when a symbol is employed multiple times but 

for different variables or parameters. For example μ and v are used multiple 

times to represent the Gaussian distribution of several variables. As an 

example the superscript Cal in the notation 𝜇𝐶𝑎𝑙, denotes that this is the mean 

of the Gaussian distribution that represents the Calibration bias.  

Subscripts – Subscript notation is used to indicate that many processes are performed 

at every timestep, for every station, and sometimes for every design class. For 

example, the probability that a station belongs to a given design type is notated 

as pd,s,t , because it is calculated for every design class, d, for every station, s, 

and at each timestep, t.  

Bayesian Updating – Many of the models introduced later iterate through time taking 

initial information and updating it with current estimates to produce a 

posterior distribution in a Bayesian manner (Bishop, 2007 p17). Our initial 

distribution is usually the posterior from the previous timestep forecast 

forward to the current timestep for which subscript t-1 represents the previous 

timestep and tilde, ~, indicates the ‘prior’ after it has been forecast forward. 

New data is given the hat notation, ^. Therefore, using the mean of the 

calibration bias as an example, the posterior from the previous timestep, 𝜇𝑠,𝑡−1
𝐶𝑎𝑙 , 

is forecast forward to give the ‘prior’, 𝜇̃𝑠,𝑡
𝐶𝑎𝑙, which is updated with the arrival of 

new data, 𝜇 𝑠,𝑡
𝐶𝑎𝑙, to give the Posterior,  𝜇𝑠,𝑡

𝐶𝑎𝑙. 
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Interpolation Model 

Symbol Description 

y ‘True’ air temperature at a given weather station location. What 

the interpolation model aims to predict. 

β Regression coefficient parameter vector. Also shown in its 

transpose form β T. 

X Design matrix. Contains basis functions. Dimensions: m × n. 

𝜖 Predicted error of the interpolation model. Represented by a 

Gaussian distribution of the form:   

m Number of weather stations. 

n Number of basis functions (see Section 4.4). 

 Notation used to indicate a Gaussian (Normal) distribution, shown 

in this example with mean 0, and variance 𝜎2. 

 Notation used to indicate an Inverse Gamma distribution, with 

shape parameter a, and scale parameter b. 

𝑣𝜖 Model uncertainty. Represented by an Inverse Gamma 

distribution with the form:   

a Generic form of the shape parameter of the Inverse Gamma 

distribution used to represent model uncertainty, 𝑣𝜖. 

𝑎𝑡−1 Shape parameter of the Inverse Gamma distribution representing 

model uncertainty, 𝑣𝜖, from the previous timestep (t-1). A scalar. 

𝑎̃𝑡 Prior estimate of the shape parameter of the Inverse Gamma 

distribution representing model uncertainty, 𝑣𝜖. A scalar. 

𝑎𝑡 Posterior estimate of the shape parameter of the Inverse Gamma 

distribution representing model uncertainty, 𝑣𝜖. A scalar. 

b Generic form of the scale parameter of the Inverse Gamma 

distribution used to represent model uncertainty, 𝑣𝜖. 

𝑏𝑡−1 Scale parameter of the Inverse Gamma distribution representing 

model uncertainty, 𝑣𝜖, from the previous timestep (t-1). A scalar. 

𝑏̃𝑡 Prior estimate of the scale parameter of the Inverse Gamma 
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distribution representing model uncertainty, 𝑣𝜖. A scalar. 

𝑏𝑡 Posterior estimate of the scale parameter of the Inverse Gamma 

distribution representing model uncertainty, 𝑣𝜖. A scalar. 

𝜇𝛽 Generic notation for regression coefficient mean term. 

𝜇𝛽,𝑡−1 Estimate of the mean of every regression coefficient as learnt at 

the last timestep (t-1). Dimensions: n × 1. 

𝜇̃𝛽,𝑡 Prior estimate of the mean of every regression coefficient. 

Dimensions: n × 1.  

𝜇𝛽,𝑡 Posterior estimate of the mean of every regression coefficient. The 

result of updating 𝜇̃𝛽,𝑡 with new data at the given timestep. 

Dimensions: n × 1.   

𝛽 Generic notation for regression coefficient covariance matrix.  

𝛽,𝑡−1 Regression coefficient covariance matrix from the previous 

timestep (t-1). Dimensions: n × n. 

̃𝛽,𝑡 
Prior estimate of coefficient covariance matrix. Dimensions: n × n. 

̃𝛽,𝑡
−1

 Regression coefficient precision matrix. The inverse of the square 

matrix ̃𝛽,𝑡 . Dimensions: n × n. 

𝛽,𝑡 Posterior regression coefficient covariance matrix. The result of 

updating ̃𝛽,𝑡 with new data at the given timestep. Dimensions: n × 

n. 

𝛽,𝑡
−1 Posterior Regression coefficient precision matrix. Inverse of the 

square matrix 𝛽,𝑡. Dimensions: n × n. 

𝛽,𝑡=0 Regression coefficient covariance matrix as initialised at the first 

timestep. Dimensions: n × n. 

𝛿𝑡 The time between the last timestep (t-1) and the current timestep 

(t). Must be in the same units as 𝛾𝛽. In this study 𝛿𝑡 = 3 hours. 

𝛾𝛽 Forgetting rate parameter for the regression coefficients. In this 

study 𝛾𝛽 = 24 hours. 

Γ Regularisation term, a diagonal matrix with the value of 0.000001 

along the diagonal used to ensure numerical stability. Dimensions: 
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n × n. 

𝑡 Target temperature observations, used to train the model. 

Dimensions: m × 1. Not to be confused with the subscript t used to 

indicate a timestep. 

μ𝑦,𝑡 Mean estimate of ‘true’ temperature, y , at the target location at 

timestep, t . 

𝑦,𝑡 Variance of the ‘true’ temperature estimate at the target location, 

at timestep, t . 

Radiation Specific Interpolation 

𝑙𝑅𝑎𝑑  Global radiation observations that have been weighted temporally 

over a 60 minute window using an exponential weighting before 

applying a log transformation. 

𝑤𝑅𝑎𝑑  The point minute resolution global radiation observations over the 

proceeding hour, weighted exponentially. 

𝑥 Number of minutes since the time of the temperature observation. 

 The exponential decay constant. 

Bias Model 

Symbol Description 

𝜇𝑠,𝑡
𝑅𝑎𝑑 Mean estimate of the radiation-induced temperature bias for 

each station, s , at a timestep, t . 

𝑣𝑠,𝑡
𝑅𝑎𝑑 Variance estimate of the radiation-induced temperature bias for 

each station, s , at a timestep, t . 

𝜇𝑑,𝑠,𝑡
𝑝𝑟𝑏

 The mean radiation-induced temperature bias as estimated by a 

given design class, d , at a given station location, s , at the timestep, 

t.   

𝑣𝑑,𝑠,𝑡
𝑝𝑟𝑏

 The variance term of the radiation-induced temperature bias as 

estimated by a given design class, d , at a given station location, s , 

at the timestep, t.   

𝜇𝑠,𝑡
𝑜𝑟𝑏 A mean estimate of the observed radiation-induced temperature 

bias at given station location, s , at the timestep, t.   

𝑣𝑠,𝑡
𝑜𝑟𝑏 The variance of the observed radiation-induced temperature bias 
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estimate at given station location, s , at the timestep, t.   

𝑝𝑑,𝑠,𝑡−1 The probability that a given station, s , belongs to each design 

class, d , as estimate at the previous timestep, t-1. Range: 0 – 1. 

𝑝̃𝑑,𝑠,𝑡 The prior probability that a given station, s , belongs to each 

design class, d , at the timestep, t. Range: 0 – 1. 

𝑝 𝑑,𝑠,𝑡 The probability that a given station, s , belongs to each design 

class, d , based upon the new data available at this timestep, t . 

Range: 0 – 1. 

𝑝𝑑,𝑠,𝑡 The posterior probability that a given station, s , belongs to each 

design class, d , at the timestep, t. Range: 0 – 1. 

𝑝𝑑
𝑒𝑞

 Probability of belong to each design class , d , when each has an 

equal probability. 

𝜇𝑠,𝑡−1
𝐶𝑎𝑙  Mean estimate of the temperature calibration bias, for a given 

station, s , as estimated at the previous timestep, t-1. 

𝑣𝑠,𝑡−1
𝐶𝑎𝑙  Variance of the temperature calibration bias estimate, for a given 

station, s , as estimated at the previous timestep, t-1. 

𝜇̃𝑠,𝑡
𝐶𝑎𝑙 Prior mean estimate of the temperature calibration bias, for a 

given station, s , at the timestep, t. 

𝑣̃𝑠,𝑡
𝐶𝑎𝑙 Prior variance of the temperature calibration bias estimate, for a 

given station, s , at the timestep, t. 

𝑣𝑠,𝑡=0
𝐶𝑎𝑙  Variance of the temperature calibration bias estimate, for a given 

station, s , as estimated at the initial timestep, t=0. 

𝜇 𝑠,𝑡
𝐶𝑎𝑙 The mean estimate of the temperature calibration bias for a 

given station, s , as estimated from new data available at the 

current timestep, t. 

𝑣 𝑠,𝑡
𝐶𝑎𝑙 The variance of the temperature calibration bias estimate for a 

given station, s , as estimated from new data available at the 

current timestep, t. 

𝜇𝑠,𝑡
𝐶𝑎𝑙 Posterior mean estimate of the temperature calibration bias, for 

a given station, s , at the timestep, t. 

𝑣𝑠,𝑡
𝐶𝑎𝑙 Posterior variance of the temperature calibration bias estimate, 

for a given station, s , at the timestep, t. Used as a representativity 
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term. 

𝛿𝑡𝑠,𝑡 The timestep between the current observation at timestep, t,  by a 

station, s , and it’s last observation. Units should be the same as 

the forgetting and learning rate parameters 𝛾 and 𝛼. 

𝛾𝑐𝑎𝑙 Forgetting rate parameter for the calibration bias. In this study  

𝛾𝑐𝑎𝑙 = 50 days. 

𝛾𝑑𝑝 Forgetting rate parameter for the design class membership 

probabilities. In this study 𝛾𝑑𝑝 = 24 hours. 

𝛼𝑐𝑎𝑙 Learning rate parameter for the calibration bias. In this study  

𝛼𝑐𝑎𝑙 = 20 days. 

𝛼𝑑𝑝 Learning rate parameter for the design class membership 

probabilities. In this study 𝛼𝑑𝑝 = 6 hours. 

𝑆𝑑,𝑠,𝑡 Scaling factor for given design class, d , for a given station, s , at 

the timestep, t.   

𝜇𝑠,𝑡
𝐶𝑊𝑆𝑢 Mean uncorrected CWS observation for a given station, s , at the 

timestep, t.   

𝑣𝑠,𝑡
𝐶𝑊𝑆𝑢 Variance of uncorrected CWS observation for a given station, s , 

at the timestep, t.  In this study 𝑣𝑠,𝑡
𝐶𝑊𝑆𝑢 = 0.2 °C. 

𝜇𝑠,𝑡
𝐶𝑊𝑆𝑐 Mean corrected CWS observation for a given station, s , at the 

timestep, t.   

𝑣𝑠,𝑡
𝐶𝑊𝑆𝑢 Variance of corrected CWS observation for a given station, s , at 

the timestep, t.   

𝜇𝑠,𝑡
𝐼𝑀𝑀𝑆 Mean estimate of temperature at station location, s , at the 

timestep, t, estimated by interpolating MMS temperature 

observations to the target station location. Calculated in Equation 

(10).  

𝑣𝑠,𝑡
𝐼𝑀𝑀𝑆 Variance of the temperature estimate at station location, s , at the 

timestep, t, estimated by interpolate model when interpolating 

MMS temperature observations to the target station location. 

Variances are taken off the diagonal of 𝑦,𝑡 as calculated in 

Equation (11) .  
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8.2. Weather Underground station types 

Weather station manufacturers and models used to automatically upload data to 

Weather Underground in February 2012. The raw list of stations was accessed from: 

http://www.wunderground.com/weatherstation/ListStations.asp?selectedCountry=United+Kingdom 

The raw list of stations were organised into the following models of station, whilst 

accounting for differences in spelling. 

 

 

8.3. WOW station types 

Count made on 2nd Dec 2013.  Total of 1116 CWS uploading to WOW globally. 770 had 

written some textual metadata about their site. Written in the Site Description and 

Additional Information sections. From this metadata the station type could be derived, 

using a well-trained automatic keyword search, from just 485 stations.  

The following list shows the percentage of these 485 stations made up by each model 

of station: 

 Fine Offset WH1080 (includes rebranded versions) - Accounts for 31.5% of the 
485 stations. 

 Davis Vantage Pro2 (without fan aspiration) - 28.5% 
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 Davis Vantage Vue - 10.3% 
 Davis Vantage Pro - 6.8% 
 Davis Vantage Pro2 (with fan aspiration) - 5.2%   
 La Crosse WS2300 (and similar looking models) - 4.7% 
 Oregon Scientific WMR200 (and similar) - 3.1%  
 1-Wire systems (such as Dallas and AAG) - 2.7%  
 2.5% mentioned owning a Stevenson Screen 
 Oregon Scientific WMR100 (and similar) - 2.3%  
 Oregon Scientific WMR968 (and similar) - 2.1%  
 Oregon Scientific WMR88 (and similar) - 1.9%  
 La Crosse WS3600 (and similar) - 0.8%   
 TFA 35-1095 (and similar) -  0.8%  

Were this list to continue it would simply show station models for which there are 

only 1 or 2 counts of. These include other La Crosse, Oregon Scientific and Davis 

models as well as some more advanced kits by manufacturers such as Vaisala, Skye, 

Peet and Columbia weather systems.  

The list often states 'and similar looking models'. This is as for companies such as 

Oregon Scientific and La Crosse many of their stations look very similar, but have 

different model numbers. For example the OS WMR200 and WMR180 are very similar 

so both have been classed as the WMR200. 

During this process around 30 different rebranded versions of the Fine Offset WH1080 

were counted. Including Watson, Ambient Weather, Tycon, Nevada, Maplin, 

Weathereye, ClimeMet, Jenkinsbird, Elecsa, Weatherwise and Aercus. 

 

8.4. WOW count code 

Code written in the language Ruby, and run on a daily Cron Job, to count the number 

of stations uploading to WOW each day. 
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8.5. WOW site ratings scheme 

The WOW website encourages its citizen observers to rate the quality of their weather 

station based upon a series of attributes listed here: 
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- Exposure 

- Measurements of air temperature 

- Measurements of rainfall 

- Measurements of wind 

- Urban Climate Zone Index (UCZ) 

- Reporting hours 

These attributes then combine to give the station an overall site rating. The 

breakdown of this rating system is shown below, and has been taken directly from the 

UK Met Office’s WOW website (http://wow.metoffice.gov.uk/support/siteratings). 
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8.6. Winterbourne No. 2 field study site metadata 

Courtesy of the University of Birmingham’s Urban Climate Lab (BUCL). 
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8.7. CWS versus MMS dew point temperature 

Show below are the dew point temperature observations for each of the CWS tested in 

the field study versus the MMS’s dew-point temperature. The equivalent plots for the 

WMR200 and WH1080 are shown in Section 3.2.3. The darker the colour the greater 

the density of points. 
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8.8. Rain gauge lab test results 

500ml of water was slowly dripped through each rain gauge indoors. This was performed 3 times. By dividing the volume of water by the area 

of the gauge it is possible to calculate the depth of rain (in mm) that the station’s console is expected to display (Overton, 2007). Absolute and 

percentage differences between expected and measured depth are then calculated. The two VP2s are the only type that could be calibrated first. 

Screws under the tipping buckets were used to do this. For these two stations they were calibrated as best as possible first before performing 

this experiment. 

Station 

Nickname 

Rain Gauge 

Dimensions 

Gauge area 

(mm2) 

Tip 

Resolution/depth 

(mm) 

Tip Volume 

(ml) 
Expected 

Reading 

1 (mm) 

Reading 2 

(mm) 

Reading 

3 (mm) 

Average 

Reading 

(mm) 

Absolute 

Difference 

(mm) 

Percentage 

Difference 

(%) 

Correction 

Std. 

Dev. of 

3 

readings 

(mm) 

VP2(1) 
165mm 

Diameter 
21382.465 0.2 4.28 23.38 23.4 22.4 23.0 22.9 -0.5 -1.9 1.0196 0.5 

VP2(2) 
165mm 

Diameter 
21382.465 0.2 4.28 23.38 22.8 23.4 23.8 23.3 -0.1 -0.2 1.0022 0.5 

Vue(1) 
122mm 

diameter 
11689.9 0.2 2.34 42.77 39.8 40.0 41.2 40.3 -2.4 -5.7 1.0605 0.8 

Vue(2) 
122mm 

diameter 
11689.9 0.2 2.34 42.77 37.6 37.2 37.0 37.3 -5.5 -12.9 1.1477 0.3 

WMR200 
100mm 

diameter 
7854 1.016 7.98 63.66 62.2 62.2 62.2 62.2 -1.5 -2.3 1.0235 0.0 

WS2350 55m x 125mm 6875 0.518 3.56 72.73 70.9 71.4 72.0 71.4 -1.3 -1.8 1.0181 0.6 

WH1080 
51mm x 

111mm 
5661 0.3 1.70 88.32 100.2 99.6 100.5 100.1 11.8 13.3 0.8824 0.5 



218 
 

 




