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Abstract

We report an investigation into the high-frequency conductivity of optically
excited charge carriers far from equilibrium with the lattice. The investigated
samples consist of hydrogenated nanocrystalline silicon films grown on a thin
film of silicon oxide on top of a silicon substrate. For the investigation, we used
an optical femtosecond pump—probe setup to measure the reflectance change
of a probe beam. The pump beam ranged between 580 and 820 nm, whereas
the probe wavelength spanned 770 to 810 nm.The pump fluence was fixed at
0.6 mJ/cm?. We show that at a fixed delay time of 300 fs, the conductivity
of the excited electron—hole plasma is described well by a classical conductivity
model of a hot charge carrier gas found at Maxwell-Boltzmann distribution,

while Fermi- Dirac statics is not suitable. This is corroborated by values re-

trieved from pump-probe reflectance measurements of the conductivity and its
dependence on the excitation wavelength and carrier temperature. The con-
ductivity decreases monotonically as a function of the excitation wavelength, as
expected for a nondegenerate charge carrier gas.
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1. Introduction

In recent decades, hydrogenated nanocrystalline silicon (nc-Si:H), which is
composed of an amorphous silicon phase with embedded nanoclusters of crys-
talline silicon, has attracted considerable research attention [IL [2]. This material
revealed unique electro-optical properties, which have already been investigated
for application in photovoltaic solar cells [3], nonvolatile memory devices [4],
and thin-film transistors [5]. However, the high-frequency conductivity is not
yet well understood or researched, although it the most critical property govern-
ing the performance of electro-optical devices. Several critical questions await
understanding and explanation: what happens to the charge carriers after they
absorb a photon; what is the mechanism of their relaxation and the excess en-
ergy release; what physics governs their conductivity. This work tries to address
the last question.

In this paper, we report a first attempt to understand the high-frequency
conductivity as a function of the pump photon energy. The idea is to establish
the dependence of the conductivity immediately (a few hundred femtoseconds)
after excitation on the excess energy provided by the photons to the carriers.
This short time is sufficient to allow the carrier subsystem to thermalize and
settle at a certain thermodynamic distribution characterized by a temperature
proportional to the excess energy, but still too short for it to exchange energy
with another subsystem of lattice ions.

One of the most advanced tools currently available for the investigation of
processes on extremely short timescales is ultrafast optical pump—probe spec-
troscopy [6]. In brief, the absorption of pump photons with an energy greater
than the band gap energy of a semiconductor material generates electron—hole
pairs. At sufficiently high concentrations, these charges can be treated as an
ambipolar plasma. This free carrier plasma alters the dielectric function of ma-

terials and changes the optical response, such as the reflectance, transmittance,



30

35

40

45

and polarizability [7, [8, @]. Thus, investigation of the optical response allows
indirect access to the properties of the excited carriers forming the plasma, such
as the relaxation and recombination times, concentration, carrier temperature,
and scattering mechanism. The pump—probe reflectance measurement is among
the most widely used because of its straightforward manageability.

In our investigation, we recorded 25 pump-—probe spectra, each of which
corresponds to a pump wavelength between 580 and 820 nm. The reflectance
is probed by a broadband probe in the range between 765 and 815 nm. The
results are analyzed using the Drude conductivity and Boltzmann transport
theories. We show that the thermal distribution of the nascent carriers can be
described as that of a classical hot nondegenerate gas. The conductivity of the
gas monotonically decreases as the excess energy provided by the pump photons

decreases.

2. Experimental

2.1. Sample and characterization

Figure 1: SEM image of cross section of nc-Si:H sample; the top 480 nm-thick layer is nc-Si:H,
which was grown on a ~ 188 nm silicon oxide film (SiO2) on top of a bulk crystalline silicon

substrate.

The investigated samples consist of a layer of hydrogenated amorphous sili-
con (a-Si:H) containing ne-Si grown by a modified plasma deposition technique

similar to that described elsewhere [3] [I0]. The dimensions of the sample layers
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were estimated using cross-sectional scanning electron microscopy (SEM) im-
ages. Figure [I| shows that the top layer of the nc-Si:H film is around 480 nm
thick, whereas the underlying silicon oxide film is ~ 188 nm thick. The bottom
part of the cross section is a bulk crystalline silicon substrate.

The composition of the nc-Si:H film was investigated by Raman spectroscopy
and analysis of the transverse optical modes [I1]. In Figure[2(a), the experimen-
tal Raman data are shown as black circles. Two Gaussian functions with centers
around 520 and 480 cm ™! were applied to fit the Raman data. The integrated
intensity ratio, Isag em-1/(I520 em-1 + Lago em-1), can be used to evaluate the
crystalline volume fraction in nc-Si:H films [12], where I5oq cpp—1 and Iygg cm-1
represent the areas of the respective Gaussians. The fitting results are shown
as a red solid line in Figure a). The volume fraction of the silicon crystalline
phase estimated using this procedure is around 35%, and the rest is amorphous
silicon.

The X-ray diffraction (XRD) data shown in Figure[2|(b) were used to estimate
the size of the embedded nanoclusters [13, [14, [15]. Using the Scherrer equation
[16, [I7], we evaluated the mean diameter as (a) = 6 nm. The equation relates
the broadening of a peak in a diffraction pattern to the size of the embedded

clusters.

Intensity (a.u.)
Intensity (a.u.)
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Figure 2: (a) Experimental Raman data (black circles) of the nc-Si:H film. Red line shows
a fit with two Gaussians. (b) XRD measurement showing three broadened diffraction peaks:

(111), (220), (311).
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Figure 3: Measured (a) ¥(\) and (b) A(X) (black circles) obtained at an incident angle of

70°. Red solid lines show simulations of multilayer optical model.

2.1.1. Determination of the dielectric function

To obtain the optical properties of the nc-Si:H film, we used a Woollam
commercial spectroscopic ellipsometer to measure the polarization state ampli-
tude ratio 1(A) and the phase difference A(X) at an incident angle of 70° and
over a spectral range of 400 to 870 nm. Figure [3| shows the experimental data
as black circles. To fit the experimental results and to determine the dielec-
tric function of the top nc-Si film, we used the classical Lorentz model and
four-term Forouhi-Bloomer model [I8] to express the dispersion relations of the
underlying SiO film and crystalline silicon bulk, respectively. To describe the
amorphous silicon phase of the nc-Si film, a one-term Forouhi-Bloomer model
[19] was applied. Because the nc-Si:H layer consists of an amorphous phase
and a crystalline phase, the Bruggeman effective medium approximation was
used to express the effective dielectric function |20, 2I]. Finally, by using the
transfer matrix method [22], 23], the multilayer optical mode was constructed to
simulate the ellipsometric response. We also included in the multilayer optical
model a thin layer of ~ 10 nm-thick SiO5 to account for the native oxide on
the surface of the top layer. The thicknesses of the layers in the optical model

were taken from the SEM cross section measurements. The red solid lines in
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Figure |3 show the results of the simulation. The real and imaginary parts of
the effective dielectric function of the nc-Si:H layer, egff, are shown in Figure
The obtained dielectric function was used later to analyze the results of the

pump-probe measurements.
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Figure 4: Effective dielectric function of the nc-Si:H layer, ngf = §R(egff) +i-%(egff), obtained
from measurements shown in Fig. 3 and simulations of the multilayer optical model. Left
and right axes correspond to the real and imaginary parts of the complex dielectric function,

respectively. Inset: An enlarged portion of the spectra between 750 and 825 nm.

2.2. Pump-probe setup

An ultrafast laser system (Coherent) was used in the pump—probe setup; it
delivers 1 kHz, 50 fs laser pulses centered around 790 nm. The main beam is
split into high-intensity pump pulses and low-intensity probe pulses by a pellicle
beam splitter. Using a light frequency converter (OPA), the pump wavelength
can be converted to any wavelength between 580 and 820 nm. The pump

fluence was fixed at 0.6 m.J/cm?

, and the probe intensity of the fundamental
beam frequency was further attenuated by a neutral density filter. The incident
angle of the probe beam was set to 70°, whereas the angle of the pump was
set to around 50°. The polarization of the probe beam was adjusted to provide
equal contributions of the s— and p—polarization components, and the pump
beam was always in the s—polarized state. The spatial overlap between the
probe and pump spots on the sample surface was checked by a CCD camera

equipped with a magnifying lens. The temporal overlap between the probe
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and pump pulses was checked by detecting the sum frequency generation on a
BBO crystal. By using a computer-controlled retroreflector, the probe delay
time with respect to the pump was fixed at 300 fs. Finally, the wavelength
of the reflected probe beam was analyzed by a spectrometer (Ocean Optics
QE65 Pro), and the collected data are presented here as AR(\)/ Ry, where Ry
is the reflectance without pumping. Further, AR = R(t) — Ry is the change in
reflectance induced by the pump excitation [24] 25], where R(t) is the reflectance
measured at a certain delay time (300 fs in this work) by the probe. More details
on the pump—probe setup and data modeling are available elsewhere [23], [26] 27].
The 300 fs delay time was chosen because it is sufficiently long for the excited
free carrier plasma to build up in the nc-Si:H layer but still short enough to

avoid significant population decay [23| 28] and carrier-lattice interactions [29].

3. Experimental Results, Data Analysis, and Discussion

The application of the pump pulse generates a free carrier plasma inside
the nc-Si:H layer. These excited carriers change the effective dielectric function
of the nc-Si:H layer and the detected intensity of the reflected probe. The ex-
cited carrier concentration can generally be derived from the measured intensity
change of the reflected probe. The relation between the concentration and the
reflectance can be obtained using the classical Drude model [24] 25, B0]. Ac-
cording to the Drude model, the dielectric function of the excited layer after
pump excitation, €. ¢, can be approximated as follows:
¥

w244 -Tw'’

(1)

Ceff = €2ff -

where w is the probing frequency. Further, w, is the plasma frequency, which

. . 2
is given as wg = 6§m]\fjfle, where e, Ngp, m*, and m. are the electron charge,

carrier concentration, optical mass, and free electron mass, respectively. An
optical mass of m* = 0.17 was recently estimated for this material [23]. Thus,
the excited carrier concentration N can be deduced from w,. However, there

is another important factor affecting the conductivity, that is, the scattering
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rate I'. Thus, the main task is to obtain I' and N, for each pump spectrum
and establish the high-frequency conductivity according to the relation o¢ =
€?Nep/(T'm*m,). Note that at a relatively short delay time of around 300 fs,
carrier—carrier collisions are the main scattering process contributing to I'. The
carrier—phonon collision contribution to the scattering can be neglected, as it is
realized on much longer timescales.

Simultaneous experimental determination of I' and N.j is a complex task
that generally requires at least two independent measurements, such as a com-
bination of the transmittance and reflectance [26], or determination of different
polarization states of the probe. However, this task can be simplified when I" has
a known dependence on N.j. Here we refer to known models of carrier—carrier
scattering published elsewhere [31]. Briefly, these models allow us to calculate
the scattering rate as a function of the carrier concentration and carrier temper-
ature as a parameter for the Maxwell-Boltzmann (MB) and Fermi-Dirac (FD)
distributions. In this work, we assumed the MB distribution. We note that we
independently verified that the FD distribution provides unsatisfactory results.
According to the model, the scattering rate can be estimated as follows:

T, T2

T = kpTyya(—= ) (In—5——
T AT

)M, (2)
where kp is the Boltzmann constant; 7T, is the Fermi temperature, which is
directly related to the carrier concentration as k1), = ﬁ(Sszeh)Z/ 3: and
T,yq and M are the Rydberg temperature and band structure factor, respec-
tively. The band structure factor can be approximated as close to that of bulk
silicon [3I]. The value of the Rydberg temperature is less well known because of
the enhanced carrier—carrier interaction at high carrier concentrations [23]; in
our calculation procedure, it was left as an unknown but fixed parameter (that
is, it is the same for all pump and probe wavelengths). Finally, for the MB
distribution, the temperature of the nascent carriers can be evaluated according

to the equipartition theorem, %kBT = hw’“‘%bﬂg

, where hwpump and Ey are
the pump photon energy and energy gap of the material, respectively. The lat-

ter in our experiment was about 1.2 eV, whereas the former was varied. Thus,
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in our fitting procedure we simulate 25 reflectance pump—probe spectra taken
at different pump photon frequencies wpymp (corresponding to different carrier
temperatures T') for which the carrier concentration N¢j is an unknown free
parameter, and the Rydberg temperature 7,4 is an unknown fixed parameter.
The confidence of the simulation procedure is ensured by the small number of
fitting parameters and their independence of the probing wavelength in each

particular spectrum.
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Figure 5: Transient pump-probe experimental data (black dots) for AR/Ry as a function
of the probe wavelength taken at different pump wavelengths. Red lines denote simulated

results.

Figure [5 shows the pump—probe change in the reflectance data, AR/Ry, as
a function of the probe wavelength taken at different pump wavelengths. The
probe spectrum spans 770 to 810 nm, whereas the pump wavelength covers

the region from 580 to 820 nm at 10 nm intervals. All the spectra show a
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Fabry—Perot fringe on the red side, similar to that observed elsewhere [23] [30].
This fringe originates from the interference effect induced by the change in the
dielectric function of the layer following excitation by the pump. However, the
contrast of the fringe varies with the pump. This clearly indicates that the
excitation efficiency and carrier concentration depend on the pump wavelength
for this system. This effect has, however, a simple explanation: The absorbance
of the pump pulse depends on the conditions of constructive and destructive
interference of the incoming and internally reflected light components within
the layer.

Using Egs. [[] and [2] in the multilayer optical model discussed in previous
sections, the data AR/Ry can be fitted to retrieve N, and I' as functions
of the pump wavelength. The fitting results are shown as red solid lines in
Figure [5], which coincide well with the black data points. The retrieved Ngj
and I" are shown in Figure @(a) and (b), respectively. The Rydberg tempera-
ture used in the calculation, given by m.m*e*/4mh?(e€y)?, was calculated with
the standard constants and optical mass given above, except for e, which is a
fixed fitting parameter here. The dielectric constant indicates screening of the
carrier—carrier interaction. Unlike the € value for silicon bulk material, which
lies between 12 and 13, the value producing the best fit is somewhat lower
than 2, demonstrating a tenfold carrier—carrier interaction enhancement, in good

agreement with a previous work [23] (please note that in the previous work the

scattering rate estimate provided a higher value because the pumped carriers

density was higher). The N, and T retrieved from the simulation show syn-

chronous oscillation as a function of the pump wavelength. The oscillations

originate in the constructive and destructive interference of the multiple reflections

of the pump beam from the multilayer interfaces.

The synchronous behaviour of Ngp and T is in agreement with a conductiv-

ity model of a nondegenerate electron-hole gas in which the scattering rate is
proportional to the carrier density. However, N., and I" behave differently as
a function of the pump wavelength. That is, N, oscillates around a constant

value, whereas I" tends to increase. This is because N, depends only on the ab-

10
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sorbance, whereas I' has an additional dependence on the carrier temperature,
which in turn depends on the excess energy provided by the pump photons.
According to Eq. 2, a lower temperature (smaller photon energy) causes an
increase in the scattering rate..

Finally, with the obtained N.; and I' values, we calculated the conductivity
09, as shown in Figure 6(c). Remarkably, the conductivity decreases monoton-
ically as a function of the excitation energy. This result indicates that for the
MB distribution, the nascent carrier conductivity simply depends on the excess

energy (temperature) provided by the pump photons.

600 700 800
Pump Wavelength (nm)

Figure 6: Excited carrier concentration Ngj, scattering rate I', and conductivity oo as func-

tions of pump center wavelength, obtained using Drude model and MB limitation fitting data

AR/Ro.

4. Conclusion

In conclusion, in this work we measured and analyzed the pump—probe-

wavelength-dependent reflectivity of nc-Si:H samples at a fixed delay time of

11



300 fs. To establish the optical model of the samples, we investigated their com-
position with Raman and XRD methods and studied the optical properties using
ellipsometry. To find the high-frequency conductivity at this short time, we sim-
25 ulated the pump—probe results using an optical model modified by the Drude
contribution of the free carriers excited by the pump. The analysis revealed
that the carrier thermodynamic distribution is better described by the classical
MB statistics rather than the FD statistics. We found that the conductivity de-
creases monotonically as the excitation photon energy decreases, as expected for

20 a classical electron—hole plasma. Our work shows that in the design of electro-optical

devices one should carefully consider the effect of the balance between the carrier

density and the excess energy in order to achieve a desired conductivity.
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