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Abstract

Implementation of a Monte Carlo simulation for the solution of population
balance equations requires choice of initial sample number (Ny), number of
replicates (M) and number of bins for probability distribution reconstruction (n).
It is found that Squared Hellinger Distance, H>, is a useful measurement of the
accuracy of MC simulation, and can be related directly to N, M and n.
Asymptotic approximations of H* are deduced and tested for both 1D and 2D
PBEs with coalescence. The CPU cost, C, is found in a power-law relationship, C=
aMN,’, with the CPU cost index, b, indicating the weighting of Nyin the total
CPU cost. n must be chosen to balance accuracy and resolution. For fixed n,
MxN, determines the accuracy of MC prediction; if b>1, then the optimal
solution strategy uses multiple replications and small sample size. Conversely if
0O<b<1, one replicate and a large initial sample size is preferred.

Keywords: Monte Carlo, Population Balance Model, Hellinger Distance, Optimal
Sampling, Accuracy, Coalescence

Introduction



Population balance equations (PBEs) describe the evolution of the properties of a
collection of particles (eg crystals, agglomerates, soot) in time and perhaps space'™.
Such equations usually require numerical solution frequently via a stochastic
technique. Monte Carlo simulation (MCS) has been used as such a method over the
past few decades® °. With this approach a large population of particles, perhaps of
0(10°) is represented by a small sample, perhaps O(10°). Each particle is then
simulated by evolving its properties (or internal coordinates, such as size or
composition), via mechanisms that involve interaction between particles, selected in
some random way, hence the analogy with Monte Carlo methods.

For a coalescence phenomenon in a closed system, as described in this paper, the
number of particles will decline over time. Therefore, if the size of the simulation box
(ie the apparent size of the space represented by the sample particles) is kept
constant, the number of particles used to represent the real system will also decline.
Two event-driven methods, stepwise constant volume Monte Carlo (SCVMC)® " and
constant number Monte Carlo (CNMC)® have been devised to circumvent this
problem and are widely used to solve PBEs. In the SCVMC method, the volume is
halved or doubled when the particle number increases or decreases by a factor of
two of its initial value, respectively. In the CNMC approach, the volume is
continuously adjusted to keep number of particle constant in the virtual simulation
box. Maisels et al” demonstrated the prediction of the SCVMC method is more

accurate than the CNMC method for nucleation and coagulation problems.
The choice of Np, M and n

The principle of the stochastic MC method for solution of PBEs is that the dynamic
evolution of an extremely large population of particles can be represented by
monitoring the corresponding discrete events occurring in a smaller number of
sample particles. Therefore, sampling a finite number of particles appropriately is
crucial to describing population dynamics and prediction of product quality in real
systems. Three essential parameters, including initial sample number (Np), number
of replicates (M) and number of size bins (n), need to be chosen if we run an MC
simulation and compare with theoretical or experimental data. The number of
replicates (M) in this study indicates how many times an MC simulation needs to be

run. A review of the published sampling strategies using the MC method from a



range of applications is shown in Table 1, the scope of this survey covers Ny, M,
CPU cost and goodness of fit. Almost all the MC applications examine 10°-10°
particles at a time on PCs of different ages because of the limitation of CPU speed
and memory capacity. Fewer studies consider the computation time of the MC
algorithm for some specific application on PCs of different ages. Some researchers'™

" comment qualitatively that the accuracy of MC (the relative error between

predicted and theoretical values) is proportional to 1/v/N where N is the number of

particles in the system. Smith and Matsoukas* quantitatively proved the correlation

between MC error, § and 1/v/N by fitting simulation results. A successful
representative population in accuracy-constrained MC simulation can be achieved in
two ways: by running the MC program once with a very large initial sample number,
or by combining the results of several runs, each with a smaller sample number'.
However, none of previous publications specify how to choose Ny, M and n to
achieve a specific accuracy with acceptable computational cost. In this study, we
aim to

I. use the Hellinger Distance, a statistical distance between two probability

distributions, to measure the accuracy of Monte Carlo simulations.
[I.  provide guidance on how to select the initial sample number and number of

replicates and consider tradeoffs between accuracy and computational costs.



Table 1: Summary of application of Monte Carlo method to PBEs in the literatures

Application (Ref. and Authors)
Bipolar charging’
Coalescence in a cloud™®**
Coupled chemical reaction™
chemical reaction
and coating™

Crystallization™

Fractal aggregation®
Higher dimensionality problems™®

Multi-component aerosols®’

Particle Aggregation and
restructuring®*®

Wet scavenging19
Wet Granulation®®*®

No (M)

3x10%(4)
2x10%(5)

6400-25600 (1-250)
3-100 (1000)

3x10°(10)
10*(15)
10*(100)

3000
1024-4096(64)

Computational time

3-620mins in PCs

A few hours(256Mb RAM and
Pentium 11l 900-Mhz pc)

2h (SPRAC -ten workstation)

25-78s in PCs

Goodness of fit

Qualitative comment on accuracy via 1/\/N

Good statistical representative is achieved in two
ways

Qualitative comment on accuracy via 1/\/N

Average/ensemble method
Average procedure




Theory
Squared Hellinger Distance

The Hellinger Distance is used to quantify the similarity between two probability
distributions. The most ubiquitous application of Hellinger distance is minimum

26-29 ;

Hellinger distance estimation in statistics.

Squared Hellinger Distance (H?) between distribution function f and g is

H2(f,9) =3 [ (VG - J9G) ax M

where f(x), g(x) are probability density functions (PDF), describing the frequency of

occurrence at size x (1/m), where x is particle size (m). If fand g are identical, H? =
0; if the two distributions do not overlap at all, H? = 1. In this way H? provides a
scaled, dimensionless measurement of accuracy that ranges between 0 and 1.

The PDFs in Eq. 1 are both continuous and normalized (i.e. have a zeroth moment
of 1) whereas the results from MC simulation are discrete and not normalized. An
appropriate modification to Eq. 1 to allow for comparison of discrete MC results with

continuous analytical results is:

n(x t)dx
H2(fyc, fas) = ZZ ch SETER T @

n(x, t)
AX; Zc J [ :n(x, t)dx

Where N; is number in size bin C;in the MC simulation, subscript AS refers to the

fuc(®) = fAs X)) = (3)

analytical solution.
Coalescence PBEs

In this study, two cases, 1D size-dependent and 2D size-independent coalescence
PBEs with analytical solutions are examined. These cases are selected as they
present significant differences in algorithm structure and evolving distribution of
particle properties, which make a major impact on the correlations of computational

time and accuracy with Ny, and M in MCS.

Case1: 1D size-dependent



Gelbard and Seinfeld®® produced a result for the coalescence of an exponential
distribution with a kernel given by g(m,, m,) = B,(m; + m,). Here, m1 and m> are the

mass of colliding particles. The initial distribution function of particles volume is

_ o _m
n(m,0) = me Exp ( mo) (4)
The analytical solution for population density function at time ¢ is
no(1-T()) ( m) < m )
nimt)=———FExp|—(1-Tk))— ) 1 |2—T(t 5
Om,) = = e Exp (1= T) o) 1 (20 VT@ )
T(t) = 1— Exp(—ngbymyt) (6)

Where I,is Bessel function of the first kind of order one. n(m, 0),n(m, t) are number

density functions (NDF) at time 0 and ¢, respectively.
CaseZ2: 2D size-independent

A two dimensional analytical solution for the size independent coalescence PBE is
revealed by Vale and McKenna®, in view of solution proposed by Gelbard and Seinfeld™.

The initial distribution of particles which have two components in mass mode is

l6n, /my\/m, my m,
om0 = () () B (2 - 20 ) 7
n(my,ms, 0) MyoMypo \M1o/ \My P myo myo @

Where n, is initial number of particles per unit volume ; m;, is initial mean mass of

the i**component in a particle.

For a constant coalescence coefficient 3,, the analytical solution is

8n, my m,
n(mq, my,7) = Exp (—2——2—) 1,(6) —J,(6) (8)
v MmyoMyo/T(T + 2)3 My myo (T o(®)
mym, \M2 , T \1/2
=4
where 6 <m10m20> (‘L' + 2) )
T = nyPot (10)

Where, J,(0) is Bessel function of the first kind; I,(6) is Modified Bessel function of
the first kind.

Table 2 lists the parameters used in the MC simulation.



Table 2: Parameters used in MC simulation

1D Size dependent 2D Size independent
parameter Value parameter value
60 1 60 1
No 1 No 1
bo 1 Mio 1
mo 1 Myo 5
t 6 T 100
lagg 0.99 lagg 0.99
No 50-5,000 No 500-50,000
M 1-20 M 1-20
n 13-13,000 n 7%-350°

Asymptotic approximation of H?

We consider now two asymptotic cases: that where the number of particles in all size
ranges is large, and that when it is small. The expected value of a discrete
approximation to the H? is based on the following assumptions: (1) the number of
particles, N, , in each size range C, in MC results has a Poisson distribution; (2) A
group of N, ‘s are uncorrelated amongst themselves over the domain.

To obtain the expected value of a discrete approximation to the H2. Eq. 2 is written

as,

H? = ZMNO (JNT ﬁ) (11)

Where N, is the number associated with k™ internal and N, is an estimate of that

number and

n n
MN, = Z N, = Z N, (12)
k=1 k=1

If we assume that the values of N, have a Poisson distribution of N, i.e. the
probability that N, takes on a value x is

e—NkNx
P () = ——— (13)

2MN0 ( ~ NkE[J;kl+ENk>

Then the expected value of H? is

5 (o o)

E[H?] =

2MN0



= Niozn: (Nk — JNE l\/ﬁil) (14)
k=1

However if Nyis everywhere small E [\/Nk] = NSO

1 n
E[H?] = Z(Nk M) = Z(Nk Ni/Ne) = 1- Nokzllvkm (15)

Now, the N, scale with MN,/n so put MN,N;/n where the N} are constants.

MN. 05 n MN. 05
B =1- (=2) Y NN =1- (=) (16)
k=1

Where a' is a constant independent of MN, and n.

Therefore

If N,is everywhere large, the expected value of\/N,, is given by Kendall and Stuart®,
_ 1 _
E[ /Nkl = /N, ~5N 2 —o(NP) (17)
Combining Eq. 14 and 17

st =3 500 =g -3 (5) )

The expected value of a discrete approximation to the H? in Eq. 16 and 18 shows the
relationship of H? with (MNy/n)"2. This suggests a plot of H against (MNy/n)'">.

Simulation methods

A flowchart of MC solution of coalescence PBEs is shown in in Fig.1. The particle
population is represented in an array with N, rows to represent each individual
particle and N;columns for each internal coordinate. The shorthand X; «is used to
refer to the k" internal coordinate of /" the particle (row j column k in the array). To
represent the initial particle population, each cell in the array is initialized using the
generation procedure, transformation method® in one dimensional PBEs and
conditional distribution method® in two dimensional PBEs.

With the array (Fig.1) initialized, the coalescence rate can be estimated to control the
property evolution of the particle population at each time step. The time interval is
calculated from the coalescence rate, so that there is a coalescence event per time

interval. The time interval is



1
At =

(19)

Tcoal

The rate for size-dependent coalescence is calculated from a coalescence table.
Each cell of coalescence table represents the value of a coalescence kernel e.g.

for B(v, vy) = v, + vy, the average coalescence kernel is*

) Np Np-1
B vm) = 5= > ) B (20)
NP(NP 1) m=Il+1 [=1
The rate for size-dependent coalescence is
1_
Tcoal = Eﬁ(vl' vm)VCr% (21)
Np
Co=" (22)
The rate for size-independent coalescence is
1 2
Tcoal = E.BOVCn (23)

Where B, is the coalescence rate constant, VV is the sample volume in the MC
simulation, C,, is total particle number per unit volume in the physical system.

In this algorithm, assumed array size (AAS) and dynamic allocation of array (DAA)
are used to store and update the properties of particle population over time. The
AAS approach declares an array with a fixed size. The DAA approach dynamically
allocates an array of the right size or reallocates an array when it needs to expand.
AAS

In the CNMC algorithm, the array is updated in the case of a coalescence event in
three steps (Fig 1):

(1) Replace the property information of particle mjs (row j7 of the array) with mj;+ mj».
(2) Randomly select particle m;s (row j3 of the array). (j3¥% j1 or j2)

(3) Replace the property information of particle m; (row j2 of the array) with mj3

In the SCVMC algorithm, the array is updated for a coalescence event in three steps:
(1) Replace the property information of particle mjs (row j71 of the array) with mj;+ mj».
(2) Replace the property information of particle mj> row j2 of the array) with mjn

(3) Set property information of particle my=0 ( row jN of the array)

DAA

In the SCVMC algorithm, the array is updated for a coalescence event in two steps
(Fig 1):



(1) Replace the property information of particle mjs (row j1 of the array) with mj;+ mj».

(2) Remove the property information of particle m;. (row j2 of the array)

Inputs Array; N Coordintes

Coalescence
table:
Coalescence ,[ Tom = (0 BV OF e = L BVCE
rate - l
Time step ——— %7720
Coalescence
event
i l Choase appropriate particie pair (/1.12)
| Daa
T l
e — T e
i : CT T, [ om
i| AAS
Hiersaer o iy T, [ ———
i e L —T ™
== "
-0

Fig 1. Flowchart of MC solution of coalescence PBEs

Results and discussion

Casel: 1D size-dependent

The accuracy of MC simulation is closely related to Npand M. The impact of Ny and
M on accuracy of the MC results for 1D PBEs with size-dependent coalescence were
examined in Fig. 2. The predictive distributions of the CNMC approach are compared
to the analytical solution (Eq.5) at a case with Iagg=0.99.33 In Fig. 2a, some data
points are scattered randomly and deviated from the theoretical curve at small Ny
(<500). H? declines from 0.21 to 0.004 as N, increased from 50 to 5,000. As M
increases from 1 to 20 in Fig. 2b, both the decreases of degree of scatter and H?,
showing a significant increase in the accuracy. Fig.2c shows the consistent accuracy

of MC simulation when MxNj is kept constant.
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Fig 2. Comparison between particle mass distribution (at constant size bins n=21) obtained

by

CNMC

i

(P = P(m; sm <myyq),m; = (Myyq +my)/2))
(Pi(m;) = f;lnl“ n(m)dm) for 1D case (size-dependent coalescence) (a) at constant M=1 (b)

at constant M=20 (c) at constant MN,=10,000

and analytical
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Fig 4. Calculated (CNMC and SCVMC at size bins n=13-13,000) and asymptotic approximation
1-H?* (when (MNo/n)l/2 is small) dependence of (MNo/n)l/2 for 1D case (size-dependent
coalescence) at constant M=20

The theoretical correlation between H? and (MNy/n)"? is shown in Fig 3 and 4 for the



1D size-dependent coalescence PBE case using the CNMC and SCVMC
approaches. According to Eq. 18, asymptotic approximation of H? is a power law
of (MN,/n)*/2 with a slope -2 when (MNy/n)"? is large. Furthermore, the critical value
of H2 should be 1/8, at (MNy/n)""? =1. In Fig 3, the simulated H?> (CNMC and SCVMC)
is over-predicted compared to the asymptotic approximation curve of H?. The reason
for this can be explained by the limitation of our assumption in the derivation process
of the asymptotic approximation of H2. It is assumed that N, ‘s are uncorrelated
among themselves over the domain and are everywhere large. This latter
assumption cannot be valid when Ny is small. However, it is noted that the observed
values of H* do scale as expected when (MNy/n)"? >3 in Fig. 3. According to Eq. 16,
the expected value of 1-H? is a linear function of (MNy/n)"? when (MNy/n)'"? is small.
The prediction trends from both the CNMC and SCVMC approaches are consistent
with the theoretical curve when (MNy/n)"? <3 in Fig 4. However in this regime, error,
or H?, is always large and so should be avoided. It is noted that n determines the
resolution of MC prediction, and the accuracy of MC simulation decreases as n
increases. Essentially, small n is always to be avoided (e.g. n=1). It is worth noting

that the choice of algorithm has very little impact on accuracy.
Case2: 2D size-independent

The theoretical NDF 3D plots on the my m, plane for the analytical solution (Eq. 7
and 8) of the 2D size-independent coalescence PBE at 1=0 and 1=100 are shown in
Fig 5. Particle number density is significantly decreased at 1=100 due to

coalesecence.
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Fig 5. 3D plot of particle mass (m;, m;) distribution of analytical solution for 2D case (size-

independent coalescence) (a) at t=0 (no,max=0.108) (b) at t=100 (nt,max=4.29><10'5)

The dependence of H? on (MNy/n)"? is shown in Fig 6 for this case using the CNMC
and SCVMC approaches. Also shown is the asymptotic prediction which is in
reasonable agreement with the simulation results. There is some evidence that the

CNMC algorithm outperforms SCVMC, presumably because in this case there is



considerable reduction in simulated particle numbers.
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isin Table 3

CPU cost

In this section, the correlation of computational time (CPU cost) with Ny and M is
examined for the assessment of computational efficiency. The computational time C
of a MC simulation is seen to follow a power law relationship in initial sample number
N, and is a linear function of replication M

C = aN,"M (24)
Where a and b are unknown parameters; we term b the CPU cost index. A series of
MC simulations at different Ny and constant M=20 were implemented and CPU costs
recorded. The interrelationship between CPU cost and N, is shown in Fig 7. A linear
regression approach is used to estimate a and CPU cost index b, which are shown in
Table 3. Both parameters are remarkably sensitive to the computational complexity
of the algorithm. The difference in the parameters between 1D and 2D case is due to
the coalescence algorithm. The algorithm of size-dependent coalescence used
nested DO-Loops to build the coalescence table for calculating coalescence rate.
This sub-process needs to recall storage memory in the order of Ny In DAA, N-1
storage locations of the previous array with size N-1 need to be recalled and
replicated into a new array with size N-1. This implementation leads to an increment

of implement steps of (N-1)/ Ny

Table 3 : Parameters in CPU cost correlation

Case No MC algorithm a b
CNMC (AAS) 9.312x10°® 2.212
1D Size-dependent
SCVMC (AAS) 4.368x10°® 2.243
SCVMC (AAS) 5.51x10° 0.928
2D Size-independent SCVMC (DAA) 5.63x10” 1.794
CNMC (AAS) 1.478x10™ 0.845

Since H* has a correlation with a square root of average number per size bin
(MNy/n)"?, MNy/n can be used to represent the accuracy (Q.) of the MC results
instead of H>. It gives

MN,
Q= n

If Mis replaced by Qc, the CPU cost is obtained as

(25)



C(M,N,) = aQ,nNp™1 (26)
C(M,Ny) is a monotonic increasing function at b>1, so the minimum CPU cost of MC
simulation is achieved at Ny=1, M=Q:n. Alternatively, C(M,N,) is a monotonic
decreasing function at 0<b<1, so the minimum CPU cost of MC simulation is
achieved at Ny=Qcn, M=1. In other words, if the CPU cost index is greater than one,
a cost optimal, quality controlled simulation strategy is for a large number of
replicates (M large) with small numbers of initial particles (No small). If the cost index
is greater than one, the optimal strategy is for a single replicate (M =1) and a large

number of initial particles (Ny large)

The example of computational time saving at the b>1 condition can be seen in Table
4. The comparison is based on the one dimensional size-dependent coalescence
case solved by the CNMC approach, b= 2.212 (Table 3). Under the same accuracy
criterion (n=433 and MN,=10,000), the computational time of 173.86s for multiple MC
simulation replicates (Ny=500, M=20) is far less than the computational time of
6319.76s for a single MC simulation (Ny=10,000, M=1). The example of
computational time saving at the 0<b<1 condition can be seen in Table 4. The
comparison is based on one dimensional size-dependent coalescence case solved
by the CNMC approach b=0.845 (Table 3). Under the same accuracy criterion (n=707,
MNy=100,000), the computational time of 2.48s for a single MC simulation
(No=100,000, M=1) is able to save 37.2% CPU cost than that (3.95s) of multiple MC
simulation replicates (N,=5,000, M=20).

Table 4. CPU cost at different CPU index

Case No MC algorithm b No M C(s)
500 20 173.86
1D Size-dependent CNMC (AAS) 2.212
10,000 1 6309.76
5,000 20 3.95
2D Size-independent CNMC(AAS) 0.845
100,000 1 2.48

Conclusions

Accuracy and optimal sampling strategy in Monte Carlo simulation of Population

Balance Equations have been investigated in this study. It is concluded that Squared



Hellinger Distance, H*, is a powerful tool to measure the accuracy of MC simulation,
and is related to initial sample number (Np), number of replicates (M) and Number of
bin sizes, (n). The asymptotic approximation of H? is derived as (1/8)(MNg/n)*’* when
(MNo/n)? is large. Although the actual value of H? is higher compared to the
theoretical trend in the 1D PBE cases, simulate results for both 1D and 2D PBEs with
coalescence approximately demonstrated that scaling. A power law relationship, C =
aMN, is found to describe the correlation between CPU cost and Ny, and M. The
CPU cost index, b, illustrates the weight of Ny in CPU cost.

Finally, an optimal sampling strategy is given as

1) n determines the resolution of MC prediction and must be chosen by the user
trading off the increased resolution available from increased n, with
decreased accuracy ie increased H>.

2) MxN, determines the accuracy of MC prediction, and both the accuracy of MC
simulation and the CPU cost increase as MN, increases. If the CPU cost
index b>1, the minimum CPU cost is achieved for small numbers of Ny, and
large values of M. Alternatively, if the CPU index, 0<b<1, the minimum CPU
cost is achieved at M=1 and a large value of Np.

In this study, an optimal sampling strategy is developed for MC solution of PBEs with
coalescence only. However, the approach can be extended to PBEs in any form
solved by an MC approach. Substantial savings in computational cost are possible, if
an optimal strategy is adopted.
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