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Biomedical relation extraction aims to uncover high-quality relations from life science literature with high accuracy and efficiency.
Early biomedical relation extraction tasks focused on capturing binary relations, such as protein-protein interactions, which are
crucial for virtually every process in a living cell. Information about these interactions provides the foundations for new therapeutic
approaches. In recent years, more interests have been shifted to the extraction of complex relations such as biomolecular events.
While complex relations go beyond binary relations and involve more than two arguments, they might also take another relation
as an argument. In the paper, we conduct a thorough survey on the research in biomedical relation extraction. We first present a
general framework for biomedical relation extraction and then discuss the approaches proposed for binary and complex relation
extraction with focus on the latter since it is a much more difficult task compared to binary relation extraction. Finally, we discuss

challenges that we are facing with complex relation extraction and outline possible solutions and future directions.

1. Introduction

To date, more than 22 million bibliographical data such
as authors, titles, and abstracts of biomedical articles are
available in MEDLINE [1]. These articles reflect the latest
development in biomedicine. Figurel shows the growth
speed of the total bibliographical data in MEDLINE in
recent years. Without assistance, it is hard for scientists or
researchers to keep up with the most recent discoveries
described in the biomedical literature. Biomedical relation
extraction, aiming to automatically discover relations from
these biomedical articles with high efficiency and accuracy,
is becoming an increasingly well understood alternative to
manual knowledge discovery. Its development can be roughly
divided into two stages as illustrated in Figure 1.

In the first stage, biomedical relation extraction research
worked on the extraction of binary relations such as protein-
protein interactions (PPIs), which play a key role in various
aspects of the structural and functional organization of
the cell. PPIs extraction makes it possible to predict the
biological functions of some unknown proteins based on
their interacted proteins. Table1 shows an example of a

sentence with its corresponding PPIs. Early work focused on
limited linguistic context and relied on word cooccurrences
and pattern matching [2-5]. Later machine learning-based
approaches [6-11] were widely employed where extraction
models were trained on annotated data enriched with syn-
tactic parsing or semantic parsing results.

However, in reality, complex relations (including n-ary
relations) are often encountered instead of simple binary rela-
tion forms. For example, “...inhibiting tyrosine phosphor-
ylation of STAT6...” describes two biomolecular relations,
one is the phosphorylation relation, and the other is the
complex negative regulation relation which is signaled by
the word inhibiting and takes the first phosphorylation
relation as its argument. As far as we know, the first paper
on complex biomedical relation extraction is the work [12] by
McDonald et al. who proposed a framework for extracting
variation events from biomedical texts. The variation event,
referring to a specific, one-time alteration at the nucleic
acid level or amino acid level, was formalized as variation-
type (location, initial-state, and altered-state), an n-ary re-
lation with three arguments. After identifying all binary
relations between entities, an entity graph was constructed
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%107 TABLE 2: Example of a sentence and the relations it contains.
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FIGURE 1: Total bibliographical data in MEDLINE since 1995 and the
two stages of biomedical relation extraction research.

TaBLE 1: Example of a sentence and its corresponding PPIs.

Leukotriene B4 stimulates c-fos and c-jun gene
transcription and AP-1 binding activity in human
monocytes.

Sentence

Stimulate (leukotriene B4, c-fos)
PPIs Stimulate (leukotriene B4, c-jun)
Stimulate (leukotriene B4, AP-1)

where edges denote the existence of binary relations. The
complex relation instances were then constructed by finding
the maximal cliques in the graph. After that, extraction of
complex biomedical relations such as biomolecular events has
attracted much interest. We term it as the second stage of
biomedical relation extraction. Several evaluation tasks, such
as BioNLP’09 [13], BioNLP’11 [14], and BioNLP’13 [15] shared
tasks, have been held in recent years to allow researchers
to develop and compare their methods for biomolecular
events extraction. Compared to PPIs, biomolecular events
describing changes on the state of biomolecules are more
complex. Biomolecular event extraction can be used to
support the development of biomedical databases.

In this paper, we focus on relation extraction in the
biomedical domain, especially complex relation extraction,
for which biomolecular event extraction is taken as an
example. We present a thorough survey on the methodologies
proposed for complex relation extraction. The survey work
illustrates the gradual progress of the field and shows the
increasing complexity of the proposed methodologies. The
rest of the paper is organized as follows. The next section
presents a general framework of relation extraction and
typical evaluation methods in use. In Section 3, the methods
employed in binary relation extraction are summarized. The
differences between binary and complex relation extraction
are highlighted in Section 4, followed by a survey of methods
proposed for complex relation extraction. Finally, challenges

2. Relation Extraction in General

In natural language processing, a relation usually refers to a
connection between entities in text. There are several types
of relations such as semantic relations, grammatical relations,
negation, and coreference. Relation extraction here focuses
on discovering the semantic relations among several entities
[16]. The relation R in the relation extraction task can be
defined in two possible ways.

(i) Plain Form. R := r(e;;e,;. . .;€,), where the ¢; is a named
entity fori = 1,...,n and r is a predefined relation type (or
class).

(ii) Nested Form. R := r(s;;S,5 . . .3 S,), where the s; is a named
entity or a relation defined in plain form or nested form and
r is a predefined relation type.

When n = 1 and R is in plain form, R is called unary
relation. For example, “phosphorylation of STAT6” describes
aunary relation phosphorylation (STAT6). When#n = 2and
R is defined in plain form, R is a binary relation. Otherwise,
R is called complex relation which includes n-ary relation.
As shown in Table 2, relation_1 and relation_2 are binary and
n-ary relations, respectively, in plain form, and relation_3 is
complex relation in nested form.

Based on the relations defined above, it is straightforward
to infer that relation extraction from texts needs to consist of
at least three main modules, which are illustrated in Figure 2.

The details of each module are described as follows.

(i) Named Entity Recognition. To extract the relations between
entities, it is crucial to identify entity names accurately. How-
ever, it is not straightforward to precisely identify biomedical
entities from texts. One main reason is that entity names
are highly polysemous and can refer to completely different
entities. It is still a big challenge to normalize entity name
mentions. Cohen [17] presented some typical examples of
gene name variety and ambiguity. Various methods have
been proposed for biomedical entities recognition. In general,
these methods can be divided into four categories including
dictionary-based, rule-based, machine learning, and hybrid
approaches. Experimental results of high recall and precision
rates have been reported in [18].
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FIGURE 2: The general framework of a relation extraction system.

(ii) Relation Trigger Words Identification. Relation trigger
words identification is similar to the named entity recog-
nition task, but with some differences. The complexity of
relation trigger words identification is highly dependent
on the relation types. For example, the trigger words for
PPIs are usually fixed and can be easily enumerated. A
well-designed dictionary is enough for PPI trigger words
identification. However, the trigger words for biomolecular
events such as positive regulation and transportation are
much more difficult. As shown in Table 2, “is sufficient to”
is the trigger word for “positive regulation” in this sentence.
However, when in a sentence such as “FGF-2 is sufficient
to isolate progenitors found in the adult mammalian spinal
cord. [PMID: 9417834], it cannot be treated as a trigger
word for positive regulation relations. Therefore, instead of
using the simple dictionary based approaches, rule-based
and machine learning approaches are widely employed which
capture context information as features or patterns.

(iii) Relation Extraction. Generally speaking, methods em-
ployed in relation extraction module can be roughly classified
into two categories, rule-based approaches relying on prede-
fined patterns and machine learning methods based on well-
designed features. For rule-based approaches, the predefined
patterns may be expressed in forms of regular expressions
over words or part-of-speech (POS) tags. Based on these
rules, relations between entities that are relevant to specific
tasks can be identified. Machine learning-based approaches
cast the problem of relation extraction into a classification
problem. Suppose to extract the binary relation between e,
and e, in the sentence S = WiWyre-ep Wi 1€ Wy,
where r is the relation trigger word and the classification
function f is constructed to output 1 when e, and e, are
related according to relation r, otherwise 0. The input to the
function f is ¢(S(r, e;, e,)), the features extracted from S. The
function f can be constructed as a discriminative classifier
such as support vector machines (SVMs). A straightforward
way to extend binary relation extraction to n-ary relation
extraction is to factorize the m-ary relation into binary
relations and use methods for binary relation extraction.
Nevertheless, one issue related to the factorization is that the
number of candidate binary relations will grow greatly with
the increase of n.

To evaluate the performance of a relation extraction
system, normally recall and precision values are measured.
Suppose a dataset has P positive relation instances; a relation
extraction system can extract I “positive” relation instances.

In I, only some instances are actually positive which we
denote by TP. Also the system may falsely extract some
relation instances as positive which we denote by FP. In P,
some relation instances are not extracted by the system which
we denote by FN.

Based on the above definitions, recall and precision can
be defined as

TP
Precision = &,
ITP| + [|EP]
€]
Recall = ﬂ
ITP|l + [|EN|

For example, a test dataset has 10 relation instances (||P|| =
10). A relations extracting system extracts 11 relation
instances (||I|| = 11). In I, only 6 relation instances (T'P)
can be found in P, which are considered as true positive.
The remaining 5 relation instances (FP) cannot be found in
P, which are considered as false positive. In P, 4 relation
instances (FN) are not extracted by the system, which are
considered as false negative. Thus, the recall of the system is
6/(6 +4) = 60% and the precision is 6/(6 + 5) = 54.5%.

Obviously, an ideal relation extracting system should
fulfil |[FN| — 0, ||[FP| — 0. To reflect these two conditions,
F-score is defined by the harmonic (weighted) average of
precision and recall [19] as

(1 + B’ ) - Precision - Recall
B3? - Precision + Recall
(1+8) TP
(1+ B)ITPI + B IFN + IFPI’

Fﬁ =
)

where f3 indicates a relative weight of precision.

3. Binary Relation Extraction

Substantial amount of work on binary relation extraction
in the biomedical domain focuses on extracting PPIs since
information about PPIs is crucial for the biologist to uncover
the functions of new genes or proteins. In this section, we
present an overview of existing techniques for extracting
PPIs from the biomedical literature. Figure 3 illustrates the
general procedure of PPI extraction on an example sentence
using different approaches. Most PPI extraction systems
assume protein names have been normalized and identified.
As mentioned before, the words describing interactions
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GrpL, a Grb2-related adaptor protein, interacts with SLP-76 to
regulate nuclear factor of activated T cell activation.

Part- Of speech Protein name Interaction trigger
tagging and identification word identification
chunking

RB  Adverb
IN  Preposition or subordinating conjunction

DT Determiner
GrpL(NN)(B-NP), (,)(O) .a(DT)(B—NP) Grb2»rAe1ated(]I)(I—NP) NN Noun, singular or mass
adaptor(NN)(I-NP) protein(NN)(INP), (,)(O) interacts(VBZ)(B-VP) VBD Verb, past tense
with(IN)(B-PP) SLP-76 (NN)(B-NP) to(TO)(B-VP) regulate(VB)(I-VP) VB Ver'b, ase form
nuclear(J])(B-NP) factor(NN)(I-NP) of(IN)(B-PP) activated(VBN)(B- {\IINS gd]ectlvle !
L oun, plural
NP) T(NN)(I-NP) cel(NN)(I-NP) activation(NN)(I-NP) .(.)(O) VBG Verb, gerund or present participle

VBZ Verb, 3rd person singular present

N

\
Syntactic parsing Deg:rll?;;lcy NP ‘ }P\
|
N PN

..GrpL interacts with SLP-76. ..

Protein VBZ . o Feature set for the tuple
Patt; tch Classificat
WITH protein attern matchung [ asstlication j< (GrpL interacts, SLP-76)
Output:
Relation(GrpL, SLP-76)
Relation type: interaction
Relation trigger word: interacts
FIGURE 3: General procedure of a PPI extraction system employing different methodologies.
between proteins are more likely fixed [20]. Hence, of 84% for Saccharomyces cerevisiae (yeast) and Escherichia

dictionary-based approaches have been widely employed for ~ coli. Blaschke and Valencia [26] introduced a probability
the detection of the trigger words for PPIs. Methods for PPIs  score to each predefined rule depending on its reliability and
extraction can be broadly classified into two categories, rule- ~ used it as a clue to score the interactions. Negations and the
based approaches and machine learning-based approaches,  distance between two protein names were also considered.
and are described in the following sections. It should be noted In [27], PPInterFinder, a web-based text mining tool, was
that it is not fair to compare the performance of different  implemented to extract human PPIs from biomedical
approaches because different corpora were employed in literature. Firstly, a set of rules were employed to extract PPI
different approaches. candidate pair in the sentences having the abstract forms such

as PROTEIN * RELATION = PROTEIN, RELATION =PRO-
3.1 Rule-Based Methods. In the rule-based approaches, a ~ TEIN * PROTEIN,and PROTEIN * PROTEIN #* RELA-
set of rules [3-5, 10, 21-25] are defined in forms of regular ~ TION. Then specific syntactic patterns based on the candi-
expressions over words or POS tags. Such rules are defined date PPI pairs were employed for extracting PPIs. An example
manually or learned automatically from training data. Based ~ of the pattern is given as S ((NP « PROTEIN1) $++

on these rules, relations between entities can be recognized. (VP <« RELATION)$++ (NP « PROTEIN2))(Sdenotes sen-
In [3], gene-gene interactions were extracted using  tence, NP, VP are POS tags, < means points to root node,
manually constructed linguistic patterns. For example,  and $++ means the immediate sisters), which was illustrated
“gene product acts as a modifier of gene”isascenarioof  in Tregex syntax [28]. Experimental results show that it
the predicate act, which can cover a sentence such as “Eg1 worked with the accuracy of 66.05% on AIMED corpus and
protein acts as a repressor of BicD” Egland BicD can  outperformed most of the existing systems.
be extracted as arguments of a relation for the predicate acts. Manually defined rules require heavy human effort and
Ono et al. [21] manually defined a set of rules based on syn-  hence are not easily ported to other domains. It is also

tactic features to process complex sentences, while negation ~ not realistic to exhaustedly enumerate rules covering all the
structures were considered as well. An example of the rule  possible descriptions of PPIs in text. As such, researchers have
in regular expression format is given as PROTEINT.x not resorted to automatically learning PPI extraction rules from
(interact|associate|bind|complex)..x PROTEINZ2. It achieves data. Phuong et al. [22] used some sample sentences, which
good performance with a recall rate of 85% and precision rate ~ were parsed by a link grammar parser, to learn extraction
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rules automatically. Heuristic rules based on morphological
clues and domain specific knowledge were incorporated to
remove the negative interactions. Huang et al. [4] employed
dynamic programming to learn PPI patterns based on POS
tags automatically. Their results gave precision of 80.5%
and recall of 80.0%. Liu et al. [24] used PATRICIA trees
for learning PPI extraction patterns. All training sentences
are inserted and stored in a generic PATRICIA tree. By
populating a PATRICIA tree using training sentences, the
potential interaction patterns can be extracted. The system
achieves an F-score of 83.4% in identifying sentences describ-
ing interactions between biological entities. In [10], a large
set of linguistic patterns was automatically inferred using the
information about interacting proteins. Patterns were then
refined based on shallow linguistic features and the semantics
of dependency types. Experimental results show that a total
improvement 0of 17.2% in F-score was achieved on the publicly
available PPI corpora.

3.2. Machine Learning-Based Methods. Machine learning
techniques [6-9, 29-32] were broadly employed for extract-
ing PPIs without human intervention.

Machine learning approaches for PPI extraction typically
cast it as a classification problem. A sentence containing a
pair of proteins is classified as implying interaction of the pair
or not. Under the problem setting, one sentence in the data
set yields C(n, 2) distinct instances, where # is the number of
different proteins in the sentence and each instance represents
a pairwise combination of proteins.

Usually, textual analysis such as POS tagging, syntactic
parsing, and dependency parsing is firstly performed on the
labeled sentences. A set of selected features can be used for
training the classifiers. Apart from that, input to the classifiers
can take the form of rich structural representations like parse
trees. Based on the nature of the input to the classifier,
machine learning-based approaches for relation extraction
are further classified into feature-based methods and kernel
methods.

For feature-based approaches, syntactic and semantic
features are generated from text, serving as cues for deciding
whether the entities in a sentence are related or not. Syntactic
features used often include two entities, their POS tags,
word sequence between them, POS tag sequence between
the entities, and syntactic path containing the two entities
in the parse tree. Semantic features usually include the path
between the two entities in the dependency parse. Based
on the complexity of the features employed, feature-based
approaches can be further divided into shallow (or partial)
parsing based methods and deep (or full) parsing based
methods. The former type of methods explores syntactic
information which is recovered efficiently and reliably from
unrestricted text, by sacrificing completeness and depth
of analysis, while the latter type of methods analyzes the
entire sentence structure, which normally achieves better
performance but with increased computational complexity.
In [30], a rich feature set was constructed from multiple
parser outputs as shown in Table 3. Firstly bag-of-words,
shortest path, and graph features from the output of parsers

TABLE 3: Features employed in [30].

Feature type Features in detail

Lemma form of a word; relative position to
the pair of proteins (before, middle, after);
frequency in the sentence

Word level

Vertex walks in the shortest path; edge walks
Shortest path level in the shortest path; subsets of walks on the
target pair in a parse structure

Graph matrices based on a parse structure
subgraph and linear order subgraph from the
dependency parsers. The graph features are all
the nonzero elements in the graph matrices

Graph level

such as Enju [33] and KSDEP [34] were extracted. According
to different feature types and parsers, the output was grouped
and features in each group were separately normalized. Then
all features from different groups were aggregated into a
single feature vector and were subsequently normalized. With
feature vectors defined in this way, the system achieved the
best performance among all the PPI extraction systems.

The first kernel-based method for PPIs extraction was
described in [35] using string-kernels for relation extraction.
Given two strings x and y, the string-kernel computes their
similarity based on the number of subsequences that are
common to both of them. The more the number of common
subsequences, the greater the similarity between the two
strings. Other kernels have also been proposed to calculate
similarity between the sentences and their syntactic struc-
tures, including subsequence kernel [36], tree kernel [37],
shortest path kernel [38], graph kernel [39], or a combination
of them [40]. Take the graph kernel approach proposed in
[39] as an example; a graph kernel was constructed based
on the dependency parse of a sentence in biomedical text.
Each graph consists of two subgraphs with one describing
the dependency structure of the sentence and the other
representing the linear order of the words in the sentence. The
graph was formalized and represented as an adjacency matrix
which was used to get the most likely relation between two
proteins.

Supervised machine learning methods have been
employed with great success in PPI extraction. However,
they usually require a large amount of annotated data
for training which are expensive to obtain in practical
applications. In [32], unlabeled biomedical texts are
employed to enhance the PPI extraction performance using
feature coupling generalization. The main idea of feature
coupling generalization is to create new features from the
cooccurrences of example-distinguishing features and class-
distinguishing features in huge unlabeled data. With the
generated new features, the system achieved a 60.1% F-score
and produced significant improvement over supervised
baselines.

3.3. Available Corpora. Several evaluation tasks have been
organized in recent years which help pushing the field of
biomedical relation extraction forward. BioCreAtIvE (Criti-
cal Assessment of Information Extraction systems in Biology)
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TABLE 4: Available annotated corpora for binary relation extraction in the biomedical domain.

Corpus name General description

URL

2,000 MEDLINE abstracts with more than 400,000 words and almost

http:// .nactem.ac.uk/genia/genia-
GENIA 100,000 annotations for biological terms. prwww-nactem.-ac.uk/geniajgenia-corpus
80 sentences in the training set including 106 examples of genic
LLLO5 interactions without coreferences and 165 examples of interactions http://genome.jouy.inra.fr/texte/LLLchallenge/
with coreferences.
Training data is derived from the content of the IntAct and MINT
BioCreAtIVEII  databases. The test set collection consists of a collection of PubMed http://www.biocreative.org
article abstracts.
AlMed 225 MEDLINE abstra(.:ts (200 abstracts describing.interacFions fip://ftp.cs.utexas.edu/pub/mooney/bio-data
between human proteins and around 1000 tagged interactions).
BioInfer 1100 sentences annotated with protein names, their relationships, and https//mars.cs.utu.fi/Biolnfer/
PPI annotations.
HPRD50 50 abstracts referenced by the Human Protein Reference Database hitp://www.hprd.org

including 266 relation instances.

(http://www.biocreative.org/) began in 2004 and held several
times such as BioCreAtIvE I, II, IL5, III, and IV. The key
goal of BioCreAtIVE challenge is the active involvement of
the text mining user community in the design of the tracks,
preparation of corpus, and the testing of interactive systems.
The first challenge [41] consists of two common evaluation
tasks such as extraction of gene or protein names from text
and functional annotation. Later on, the task of extraction of
PPIs from text was incorporated in the second challenge [42]
in 2007. As an extension of the second challenge, BioCreAtIVE
I1.5 [43] in 2009 focused on PPIs including ranking articles
for curation based on curatable protein-protein interactions
and identifying the interacting proteins (using UniProt iden-
tifiers) in the positive articles. Following that, the third
BioCreAtIVE challenge [44] in 2010 still focused on PPIs and
included a gene normalization (GN) task and two protein-
protein interaction (PPI) tasks. However, BioCreAtIvE IV
[45] held in 2012 paid more focus on curation such as gene
ontology (GO) curation and interactive curation.

Genic Interaction Extraction Challenge [46] was asso-
ciated with learning language in logic workshop (LLLO5).
The challenge focused on information extraction of gene
interactions in Bacillus subtilin, a model bacterium. It was
reported that the best F-score achieved with balanced recall
and precision is around 50%.

As annotated corpora are important to the development
as well as the evaluation of relation extraction systems, some
most notable annotated corpora which are publicly available
are listed in Table 4. The first comparative evaluation of the
diverse PPI corpora such as AIMed, Biolnfer, HPRD50, IEPA,
and LLL was presented in [47].

The performance of the representative PPI extraction
methods and the data corpora they used are listed in Table 5.

4. Complex Relation Extraction

In the molecular biology domain, it is crucial to get detailed
views on the behavior of biomolecules. Their behavior is
often described in the form of their interplay in molec-
ular events presented in texts. Molecular events describe

observable changes of biomolecules, such as binding of
proteins or RNA production which can be subdivided into
a set of (nested) events. For example, the regulation of
gene expression involves at least two events, binding of a
transcription factor to a promoter and expression of a protein
for a corresponding gene. The descriptions about molecular
events spread all over the life science literature. Thus, it is
important to extract the nested molecular events, an example
of the complex relation from text. Therefore, with the devel-
opment of biomedical relation extraction, complex relation
extraction attracts much more attention with focusing on
more specific molecular events, such as gene expression,
transcription, protein catabolism, localization and binding,
and positive or negative regulation of proteins or other
events.

Compared to binary relation extraction, complex relation
extraction is a much harder task as elaborated below.

(i) More Arguments. While only 2 arguments are involved
in binary relations, complex relations may involve more
than 2 arguments. Take n-ary relation as an example (n >
2); it is possible to factorize the n-ary relation into n — 1
binary relations r(e;), i = 1,...,n and apply the meth-
ods described in Section 2 for binary relation extraction
directly. Suppose the precision of extracting binary relation
is p; the precision of extracting n-ary relations will be
p"! when factorizing the n-ary relation into # — 1 binary
relations. For example, the protein transport event is defined
as transport (entity, origin, destination, and location). As-
sume the precision of binary relation extraction is 0.8; the
precision of extracting protein transport event will be 0.8 =
0.512. Hence, directly employing binary relation extraction
methods for n-ary relation extraction will result in low
performance.

(ii) The Order of Argument List. Each argument in a n-ary
relation denotes a specific semantic meaning. Therefore, the
order of the arguments is crucial and should be preserved.
However, the order of arguments in some binary relations
such as PPIs is not important.
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TABLE 5: Performance of existing PPI extraction methods on the data corpora used.
0,
Category Result (%) Corpus References
Recall  Precision
834 and 752 sentences obtained by a MEDLINE search using these keywords,
86.8 943 « o >« R e o [21]
protein binding,” “yeast,” “E. coli, “protein,” and “interaction’
550 sentences were retained containing at least one of four keywords “interact,”
Rule-based “bind,” “associate,” “complex,” or one of their inflections from 3343 abstracts
60 87 retrieved from MEDLINE with the following keywords: “Saccharomyces cerevisiae,” (22]
“protein,” and “interaction.”
About 1200 sentences were kept from the top 50 biomedical papers retrieved from
80.0 80.5 AN . L . 4]
the Internet by querying using the keyword “protein-protein interaction.
Training set consists of 500 abstracts from MEDLINE. Evaluation set consists of 56
>7 20 abstracts collected using search strings “protein” and “inhibit” (48]
3.4 million sentences from approximately 3.5 million MEDLINE abstracts dated
21 91 - : ; (49]
after 1988 containing at least one notation of a human protein.
719 60 AIMed (38]
87.2 72.5 LLL 39]
ML methods 76 70 The test corpus consists of 300 randomly selected sentences. (24]
70.7 70.3 LLL [10]
719 60 AlMed (30]
59.26 63.37 LLL [9]
89 73 LLL (1]

(iii) More Complex Form. As defined in Section 2, complex
relations can appear in two forms, the plain one and the
nested one. The nested form is quite common in biomedical
events since molecular events are frequently connected
by causal relationships and the occurrences of molecular
events are closely interconnected. For example, in the
text Disruption of curR caused loss of copA expression,
the negative regulation of curR leads to a decreased
expression of copA, which is described in a nested form with
two events as arguments. Hence, the complexity of molecular
interactions in organisms requires nesting of molecular
events.

(iv) Ambiguity of Relation Trigger Words.