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Binocular combination for first-order (luminance-
defined) stimuli has been widely studied, but we know
rather little about this binocular process for spatial
modulations of contrast (second-order stimuli). We
used phase-matching and amplitude-matching tasks to
assess binocular combination of second-order phase
and modulation depth simultaneously. With fixed
modulation in one eye, we found that binocularly
perceived phase was shifted, and perceived amplitude
increased almost linearly as modulation depth in the
other eye increased. At larger disparities, the phase
shift was larger and the amplitude change was smaller.
The degree of interocular correlation of the carriers
had no influence. These results can be explained by an
initial extraction of the contrast envelopes before
binocular combination (consistent with the lack of
dependence on carrier correlation) followed by a
weighted linear summation of second-order
modulations in which the weights (gains) for each eye
are driven by the first-order carrier contrasts as
previously found for first-order binocular combination.
Perceived modulation depth fell markedly with
increasing phase disparity unlike previous findings that
perceived first-order contrast was almost independent
of phase disparity. We present a simple revision to a
widely used interocular gain-control theory that
unifies first- and second-order binocular summation
with a single principle—contrast-weighted
summation—and we further elaborate the model for
first-order combination. Conclusion: Second-order
combination is controlled by first-order contrast.

Introduction

The human visual system is able to combine different
visual inputs in the two eyes and to fuse them, creating
the appearance of a single cyclopean image. To
understand binocular vision, then, it is crucial to
understand the nature of this process of binocular
combination. This has been addressed by systematically
varying the difference between the monocular inputs.
Several types of image difference have been studied,
including local phase (Ding & Sperling, 2006; Huang,
Zhou, Lu, Feng, & Zhou, 2009; Zhou, Jia, Huang, &
Hess, 2013), luminance contrast (D. H. Baker, Wallis,
Georgeson, & Meese, 2012a; Ding, Klein, & Levi,
2013a, 2013b; Huang, Zhou, Lu, & Zhou, 2011;
Huang, Zhou, Zhou, & Lu, 2010; Legge, 1984a, 1984b),
stereo disparity (Hou, Huang, Liang, Zhou, & Lu,
2013; Legge & Gu, 1989; Reynaud, Zhou, & Hess,
2013), global motion (Hess, Hutchinson, Ledgeway, &
Mansouri, 2007; Mansouri, Thompson, & Hess, 2008),
and global orientation (Zhou, Huang, & Hess, 2013).
Different models have been constructed for binocular
combination involving these different kinds of visual
information. One common feature of these models is
the need for an interocular contrast-gain control
weighting stage (Ding et al., 2013a, 2013b; Ding &
Sperling, 2006; Hou et al., 2013; Huang et al., 2009;
Huang et al., 2011; Huang et al., 2010; Meese,
Georgeson, & Baker, 2005, 2006; Meese & Hess, 2004;
Meese & Summers, 2009).

The visual stimuli used in most of the above studies
were based on variations of luminance across space, so-
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called first-order stimuli, as distinct from visual
information defined by spatial variation in contrast
(Dakin & Mareschal, 2000; Schofield & Georgeson,
2003), texture (Cavanagh & Mather, 1989; Dosher &
Lu, 2006; Regan, 2000; Sutter & Graham, 1995;
Werkhoven, Sperling, & Chubb, 1993), or orientation
(Larsson, Landy, & Heeger, 2006). Images that have
structure defined by such higher-order variations are
often referred to as second-order stimuli (Cavanagh &
Mather, 1989), and it has been suggested that first- and
second-order stimuli are processed separately within
the visual cortex (C. L. Baker, 1999; Chubb & Sperling,
1988, 1989; Dosher & Lu, 2006; Schofield & George-
son, 1999; Wilson, 1999).

Many studies have focused on binocular combi-
nation of first-order information, but only a few have
examined the combination of second-order stimuli.
Recently, Zhou, Liu, Zhou, and Hess (2014) studied
the binocular phase combination of second-order
gratings by varying the relative amounts of contrast
modulation (CM) seen by the left and right eyes.
Their results were close to the prediction made by
simple linear summation (or averaging) of the two
envelopes. At first sight, this appears to be different
from first-order binocular combination because there
a nonlinear mechanism (contrast-gain control) best
described performance. However, as we shall see, the
linear summation of CM signals can also be
interpreted within a contrast-gain control framework

similar to that describing first-order binocular com-
bination.

The study by Zhou et al. (2014) also found that
second-order phase combination was the same when
the carriers in the two eyes were correlated,
anticorrelated, or uncorrelated. This is consistent
with two previous reports. In one, Wilcox and Hess
(1996) found that stereo acuity for CM was the same
for correlated and uncorrelated carriers, and in
another, M. Georgeson and Schofield (2011) found
that binocular summation of CM at threshold was
consistent with linear summation and was similar for
carriers in the two eyes that were correlated,
anticorrelated, or uncorrelated. All three studies
found that second-order binocular combination was
not affected by the degree of interocular correlation
of the carriers, and this implies that binocular
combination of second-order CM signals occurs after
monocular extraction of the second-order modula-
tions.

Motivation

In this paper, we examine binocular combination of
CM by looking at perceived spatial phase and
perceived modulation depth (i.e., amplitude) of the
CM. This was done with a dichoptic phase- and
amplitude-matching task (Figure 1) as used for first-
order binocular phase and contrast combination by

Figure 1. Stimulus display. The left and right panels were presented to the left and right eyes using goggles. The two gratings on the

left side of fixation in the two eyes’ views had equal and opposite phase shift relative to the center of the frame and were

perceptually combined to form a binocular cyclopean image. A monocular ‘‘probe’’ grating was presented to the right side of fixation

in the left or the right eye in different trials. Observers adjusted the phase and modulation depth of the probe grating to match the

binocular cyclopean image.
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Huang et al. (2010). They showed that binocular
contrast combination was independent of the inter-
ocular phase difference (up to 908) and suggested that
binocular phase combination and binocular contrast
combination involved a common nonlinear contrast-
gain control stage but different pathways thereafter.
With that in mind, we were interested in knowing
whether binocular combination of CM amplitudes

� Is phase-invariant like first-order contrast combina-
tion

� Involves linear summation similar to second-order
binocular phase combination

� Is independent of the interocular correlation of the
carriers, similar to second-order binocular phase
combination

We found that the perceived CM amplitude varied
markedly with both the interocular ratio of modulation
depths and the interocular phase difference but not
with the carrier correlation.

Road map for this paper

We describe new psychophysical experiments on the
binocular combination of second-order (CM) gratings.
We find that both second-order phase and amplitude
can be explained by a weighted linear summation of
second-order modulations, with weights that depend
only on first-order carrier contrast. This model is
described in Appendix 1.

We discuss the idea that a common principle
(contrast-weighted summation) is at work in both first-
order and second-order combination.

We offer an elaboration of this model to account for
a wide range of previous experimental data for first-
order combination only. The details of this analysis and
model fitting are in Appendix 2.

We return to the theme of commonality and a shared
outcome in first- and second-order vision: ‘‘ocularity
invariance.’’

Materials and methods

Observers

Three adults (ages: 28, 31, and 33 years old) with
normal or corrected-to-normal vision participated in
the experiments. Except for the first author, all subjects
were naive as to the purpose of the experiment. Written
informed consent was obtained from each of them. The
study was approved by the Institutional Review Boards
of McGill University.

Apparatus

All stimuli were generated and controlled by an
Apple Mac computer running Matlab (MathWorks,
Natick, MA) with the PsychToolBox 3.0.9 extension
(Brainard, 1997; Pelli, 1997). The stimuli were dichop-
tically presented with Z800 pro goggles (eMagin Corp.,
Washington, DC), which had a simulated viewing
distance of 3.6 m, a spatial resolution of 800 · 600
(corresponding to 30.268 · 22.698 in visual field), a
refresh rate of 60 Hz, and a mean luminance of 160 cd/
m2 in each eye. These organic light-emitting diode
microdisplays are linear in luminance response (Black,
Thompson, Maehara, & Hess, 2011) and exhibit pixel
independence in image presentation (Cooper, Jiang,
Vildavski, Farrell, & Norcia, 2013); thus we would not
expect any nonlinear distortions of our stimuli due to
the display equipment (Klein, Hu, & Carney, 1996).

Design

A dichoptic phase- and amplitude-matching para-
digm (Huang et al., 2011; Huang et al., 2010) was used
to quantify the perceived phase and modulation depth
of the binocular percept. In the test stimulus, two
horizontal sine-wave CM gratings with equal and
opposite phase shifts of h/2 (h ¼ 08, 458, 908) were
presented dichoptically to the left side of the central
fixation point in the two eyes. This pair of CM test
gratings was viewed through the goggles and combined
perceptually to create a single cyclopean grating. A
monocular horizontal sine-wave CM grating (the
‘‘probe’’) was presented to the right side of fixation in
the left or the right eye (Figure 1). Observers adjusted
the phase and modulation depth of the monocular
probe grating to match the binocular percept of the test
stimulus.

All gratings (test and probe) had the same mean
carrier contrast of 0.2. The modulation depth of the test
gratings was fixed at 0.8 in the nondominant eye and
varied across trials from 0 to 0.8 in the dominant eye.
The initial phase and modulation depth of the probe
grating were randomized in each trial and then adjusted
by subject to match the binocular percept of the test.
The probe was presented either to the left or the right
eye, and the other eye saw uniform mean luminance (no
carrier noise); the results were averaged over these two
conditions to cancel potential eye bias.

Two configurations were used in measuring the
perceived phase of the binocular cyclopean image to
cancel any positional bias: the phase shift wasþh/2 in
the nondominant eye and�h/2 in the dominant eye or
vice versa. Perceived phase at each interocular modu-
lation ratio (d) was quantified as half the difference
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between the matched phases in these two configura-
tions.

In total, there were 72 conditions (three interocular
phase differences · six interocular modulation ratios ·
two probe eye conditions · two phase configurations).
Each condition was tested four times. Two functions,
i.e., perceived phase versus interocular modulation ratio
(PvR function) and perceived modulation depth versus
interocular modulation ratio (MvR function), were then
derived for each interocular phase difference h.

All three observers took part in Experiment 1, in
which the two test gratings had correlated carriers. In
Experiment 2, the first author and one of the naive
observers ran additional experiments in which the
carriers were either anticorrelated or uncorrelated
across the eyes.

Stimuli

Stimuli were horizontally oriented sine-wave CM
gratings. The gratings extended for two spatial cycles in
the vertical direction (Figure 1), which subtended 6.818
of visual angle (i.e., 0.29 c/8), and 2.278 of visual angle in
the horizontal direction. The center of the test gratings
was 2.278 to the left of the central fixation in both eyes,
and the probe grating was 2.278 to the right in either the
left or the right eye. A high-contrast frame (width 0.388;
length 20.438) with four white diagonal lines (width
0.388; length 9.638) was presented surrounding the
gratings in each eye to help observers maintain binocular
convergence and fusion. A 1-pixel-wide black reference
line, aligned to the center of the low-contrast bar of the
probe grating, was presented horizontally at the two
sides of the gratings to assist the phase matching.

The test gratings in the two eyes were defined by

LumnonDEðx; yÞ ¼ L0

�
1� Cg:g1ðx; yÞ

· 1�M0cos 2pfy6
h
2

� �� ��
ð1Þ

and

LumDEðx; yÞ ¼ L0

�
1� Cg:g2ðx; yÞ

· 1� d:M0cos 2pfy7
h
2

� �� ��
ð2Þ

where L0 is the background luminance, and g1(x, y) and
g2(x, y) are the 2-D binary, white-noise carriers in the
two eyes with correlated carriers g1¼ g2, with
anticorrelated carriers g1¼�g2, and with uncorrelated
carriers g1 6¼ g2. Cg¼ 0.2 is the contrast of carrier, f ¼

0.29 c/8 is the spatial frequency of the sine-wave
envelope, M0¼ 0.8 is the fixed modulation depth in the
nondominant eye, and d (the modulation ratio) is the
interocular ratio of modulation depths (d¼ 0, 0.2, 0.4,
0.6, 0.8, 1.0). The two dichoptic gratings in the test had
an equal and opposite phase shift of h/2 (relative to the
center of the screen), where h ¼ 08, 458, 908.

We emphasize that for the one-eyed test condition (d
¼ 0), the test images presented to the left side of fixation
were CM gratings with modulation depth of 0.8 in the
nondominant eye and 0 in the dominant eye (i.e.,
carrier noise without modulation). This configuration
was different from that of the stimuli presented to the
right of fixation, i.e., a monocular probe grating in one
eye and uniform mean luminance (no carrier noise) in
the other eye.

Procedure

An alignment task was provided at the beginning of
each trial to ensure that the two eyes’ images were
correctly fused. In the alignment task, a fixation display
was presented in the center of the larger high-contrast
frame together with four white diagonal lines. This
display consisted of binocular fixation crosses (3.788 ·
3.788 squared) and four monocular dots (0.388 diame-
ter): two in the first and third quadrants for the left eye
and two in the second and fourth quadrants for the right
eye. Observers were instructed to move the image seen
by their nondominant eye using up, down, left, and right
arrow keys to align the images from the two eyes. After
achieving stable fusion, observers were asked to press
the space bar. The corresponding coordinates between
the two eyes were then used in subsequent measure-
ments. Observers adjusted the phase and modulation
depth of the probe grating to match the corresponding
features of the test grating. They were free to select
which dimension (phase or modulation depth) to adjust
first and to go back and forth between them. Subjects
were asked to attend to the difference of contrast of the
sine-wave gratings in matching modulation depth. When
satisfied with the match in both dimensions, observers
pressed the space bar again to report the result. The next
trial started 1 s later. During one trial, the gratings,
frames, and reference lines were presented continuously
in both eyes until the phase and amplitude adjustments
were completed. A typical trial lasted about 10 s.
Voluntary breaks were allowed. Practice trials were
provided prior to data collection.

Model predictions

We considered a variety of ways in which responses
to CM in each eye might be combined: simple
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summing, simple averaging, weighted averaging, and so
on. To make predictions about matching behavior, any
such rule must be applied to both the binocular test
stimulus and the monocular probe in order to derive
response values that match each other. We found that
one simple model was consistent with all our results:
weighted linear summation of the modulation wave-
forms in each eye, in which the weights assigned to each
eye depend on the relative carrier contrasts shown to
each eye. Second-order combination was controlled by
first-order contrast.

On this model (see Appendix 1), the binocularly
perceived phase h0 for an interocular phase difference h
and modulation ratio d was predicted to be

h 0 ¼ tan�1 1� d
1þ d

tan
h
2

� �� �
ð3Þ

and the matching probe modulation depth M0 was

M 0 ¼ 0:5M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 1þ 2dcosðhÞ

q
ð4Þ

Results

Experiment 1: Binocular combination of second-
order stimuli with correlated carriers

The way that perceived phase varies with interocular
modulation ratio (PvR curves) is shown in Figure 2a.
Different colored symbols represent results for the
three interocular phase differences (08, 458, 908). When
the test modulation was in only one eye (modulation
ratio¼0), perceived phase appeared offset and matched

the phase seen by that eye, but as the amplitude in the
other eye increased toward equality (ratio¼ 1), the
perceived phase shifted toward a balanced, central
position (08 on the y-axis). These data replicate and
extend those of Zhou et al. (2014). Colored lines
represent the very close fit given by the contrast-
weighted linear summation model with no free pa-
rameters. Appendix 1 gives details of this model, but it
is easily summarized. The test carrier contrast is the
same in both eyes; this makes the left and right eye
weights equal (0.5 each), so weighted summation
averages the two spatial contrast envelopes. But the
probe contrast is present only in one eye; this yields
ocular weights of 1 and 0 (winner take all, WTA),
giving complete dominance of the probed eye with no
binocular combination. These different ocular weight-
ings lead directly to the predicted curves in Figure 2.

Matched modulation depths increased with inter-
ocular modulation ratio (MvR curves) as shown in
Figure 2b. Matched modulation depth was close to 0.4
when the test modulation (0.8) was monocular (mod-
ulation ratio ¼ 0). This is consistent with averaging of
test modulations across the eyes (average of 0.8 in one
eye and 0 in the other). Perceived amplitude increased
as more modulation was added to the other eye
(modulation ratio increased toward 1), but this increase
was shallow when the phase disparity was large (908)
rather than small (08 or 458). A repeated-measures
within-subject ANOVA showed that matched modu-
lation depth depended significantly on both modulation
ratio, F(5, 10) ¼ 124.82, p , 0.001, and phase
difference, F(2, 4) ¼ 151.14, p , 0.001, with a
significant interaction, F(10, 20)¼ 28.29, p , 0.001.
Such phase dependency of second-order combination is
different from previous reports on first-order combi-
nation with the same paradigm (Huang et al., 2011;
Huang et al., 2010), in which the perceived contrast of
first-order gratings did not depend on the interocular
phase difference. However, all our data—for both
phase and amplitude matching—are in good agreement
with contrast-weighted linear summation (solid curves
in Figure 2a, b).

Experiment 2: Binocular combination of second-
order stimuli with anticorrelated and
uncorrelated carriers

The above experiment implies linear binocular
combination of second-order signals when the dichop-
tic test gratings have correlated carriers. In a previous
study of CM phase judgments, binocular combination
was found to be similar when the carriers in the two
eyes were correlated, anticorrelated, or uncorrelated
(Zhou et al., 2014), and this suggests that second-order
binocular combination occurs after monocular extrac-

Figure 2. Experiment 1. Binocular combination of second-order

stimuli with correlated carriers. (a) Perceived phase versus

interocular modulation ratio (PvR) and (b) perceived modula-

tion depth versus interocular modulation ratio (MvR) averaged

over three observers at three interocular phase differences (08,

458, and 908). Solid curves are predictions of the contrast-

weighted linear summation model (see Appendix 1). Error bars

represent standard errors.

Journal of Vision (2014) 14(13):24, 1–19 Zhou, Georgeson, & Hess 5

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/933685/ on 06/25/2018



tion of the second-order modulations. To test whether
this is true for perceived amplitude of modulation, we
ran a second experiment similar in all respects to
Experiment 1 but testing uncorrelated and anticorre-
lated carriers. Two observers took part. Their averaged
PvRs (phase) and MvRs (amplitude) for binocular CM
combination with anticorrelated and uncorrelated
carriers are shown in Figure 3a and b, respectively.

We ran a three-factor repeated-measures ANOVA
on data for the two observers who did both
experiments. Perceived phase of the cyclopean image
depended significantly on the modulation ratio, F(5,
5)¼ 52.06, p , 0.001, and this effect was not different
for the three dichoptic carrier types—no significant
interaction between modulation ratio and carrier type,
F(10, 10) ¼ 0.31, p ¼ 0.96. The PvRs for all three
dichoptic carriers (Figures 2a, 3a, b) are in good
agreement with the prediction of linear summation.
Similarly, the MvRs for anticorrelated and uncorre-
lated carriers were almost identical to those for
correlated carriers and again closely matched the
prediction of contrast-weighted linear summation.
This was supported by the ANOVA, which showed
that perceived amplitude of the cyclopean image
depended significantly on the interocular phase
difference, F(2, 2)¼ 58.44, p¼ 0.017, and this was true
for all three dichoptic carriers because the interaction

of interocular phase difference and carrier type was
not significant, F(4, 4) ¼ 0.30, p ¼ 0.86.

Discussion

In this study, we used a dichoptic phase and
amplitude-matching paradigm (Huang et al., 2010) to
measure the binocularly perceived phase and modula-
tion depth of the cyclopean image formed from two
monocular CM gratings, which differed in spatial phase
and modulation depth. We found that the binocularly
perceived modulation depended on the interocular
modulation ratio and the interocular phase difference
(vertical disparity). The results for both phase and
amplitude can be explained simply and accurately by a
weighted linear summation of second-order modula-
tions, in which the weights depend on first-order carrier
contrast but not on modulation depth.

Monocular envelope extraction

Experiments 1 and 2 together showed that binocular
combination of CM signals was not affected by the extent
to which the left and right eyes’ carriers were correlated.
This was previously found for second-order binocular
phase combination (Zhou et al., 2014) and for second-
order stereo processing in human (Wilcox & Hess, 1996)
and cat (Tanaka &Ohzawa, 2006) and in the detection of
second-order contrast modulation at threshold (M.
Georgeson & Schofield, 2011). Our findings extend those
earlier studies and imply that insensitivity to carrier
correlation might be a general property of second-order
binocular combination, suggesting an architecture in
which second-order signals about contrast modulation
are combined binocularly only after monocular extrac-
tion of the second-order envelopes.

Linear binocular summation (weighted
averaging) for CM

Binocular combination of CM phase and modula-
tion depth were assessed simultaneously. Our results on
CM phase combination replicate those of Zhou et al.
(2014), showing that binocularly perceived phase varied
with interocular modulation ratio in a nearly linear
fashion, consistent with linear summation of the two
envelope waveforms. Here we found that matched
amplitude of modulation also fitted the prediction of
contrast-weighted linear summation of second-order
spatial waveforms. These results suggest that binocular
combination of CM phase and amplitude are processed
within a common pathway.

Figure 3. Experiment 2. Binocular combination of second-order

stimuli with anticorrelated and uncorrelated carriers. PvRs (left)

and MvRs (right) obtained when the dichoptic CM test stimulus

had (a) anticorrelated carriers and (b) uncorrelated carriers.

Mean of two observers. Other conventions are as in Figure 2.
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Interocular contrast-gain control sets the
weights for first- and second-order binocular
combination

Contrast-gain control is an important aspect of
binocular processing that has been analyzed in many

studies with first-order stimuli (Ding et al., 2013a,
2013b; Ding & Sperling, 2006; Hou et al., 2013; Huang
et al., 2009; Huang et al., 2011; Huang et al., 2010;
Meese et al., 2005, 2006; Meese & Hess, 2004; Meese &
Summers, 2009). Our results show that second-order
binocular combination can also be understood in terms
of interocular contrast-gain control. This suggests that
a similar contrast-gain control process is used for
weighting the monocular visual inputs in both first- and
second-order binocular combination.

Using the same paradigm as here, previous studies
with first-order gratings found that perceived binocular
contrast was phase-invariant up to 908 of disparity
(Huang et al., 2011; Huang et al., 2010), at least for
contrasts higher than about 4% (D. H. Baker et al.,
2012a). This is quite different from the present second-
order results in which perceived modulation depth
decreased markedly with increasing phase difference
for second-order stimuli over the same 08–908 disparity
range (Figure 2b). This difference in phase dependence
of first- and second-order binocular combination might
be taken to imply that different kinds of binocular
processes are involved, but we show here that a similar
interocular contrast-gain control mechanism can ac-
count for both sets of findings in relation to both phase
and amplitude.

Extending the contrast-weighted summation
model to previous findings on first-order
combination

The simple contrast-weighted summation model
described for CM in Appendix 1 is a special case of a
more general model for weighting the two eyes’ inputs
in first-order binocular summation (Ding & Sperling,
2006, 2007). But, as Ding et al. (2013b) have pointed
out, without modification that model cannot explain
the repeated finding that contrast perception is largely
invariant with disparity (Figure 4a). The difficulty lies
in accounting for both contrast- and phase-matching
data at the same time. In an effort to solve this, Huang
et al. (2010) proposed separate pathways for contrast
and phase, and Ding et al. (2013b) introduced a
hypothetical sensorimotor vergence process (‘‘motor/
sensory fusion’’) that estimated the disparity and then
effectively reduced or eliminated the stimulus disparity
before combination. Both these proposals considerably
increase the complexity of the summation model, and
so we have searched for simpler alternatives. In general,
if the left- and right-eye weights depend only on
contrast, then the combined binocular amplitude must
fall with increasing disparity (Equation A7). Thus, it
seems plausible to suppose, within the gain-control
framework (Ding & Sperling, 2006, 2007), that
interocular suppression is arranged to compensate for

Figure 4. Contrast-weighted summation model accounts for first-

order binocular combination. The extended model (see Discus-

sion) was fitted to first-order data to derive parameters s¼
0.043, h¼ 0.687, n¼ 1.533. (a) Predicted contrast matching was

nearly invariant with relative contrast (cR/cL) and with phase

disparity (08, 458, or 908) as observed experimentally (symbols;

data from Huang et al., 2010). From top to bottom, the three

data sets are for fixed base contrast cL¼ 0.64, 0.32, 0.16. RMS

error of the fit to contrast-matching data was small, 0.39 dB. (b)

Predicted spatial phase also matched experimental data

accurately; RMS error of the fit was 2.48. Predicted and observed

phase matches were unaffected by the base contrast level and so

overlap almost completely in this plot. (c) Ocular weights (wL,

wR) in the model were driven by relative contrast but were

higher with phase disparity (blue) than without (red). This higher

gain with disparity tended to offset the reduction of binocularly

summed amplitude that would result from increasing disparity

and so yielded almost phase-invariant perception of contrast in

the disparity range from 08 to 908 (see a). (d) Ocularity

invariance: Model responses to monocular contrast were linear

and almost equal to the response to binocular contrast. (Note: At

very low contrasts, below about 0.05, the binocular contrast

response is greater than monocular because of binocular

summation, but that is not easily seen on these linear axes.) See

also Figure A2.
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this drop in amplitude to achieve contrast constancy
over disparity.

We propose that for first-order gratings interocular
suppression, which sets the weights WL, WR for
binocular combination, is influenced directly by first-
order phase disparity (h). Thus generalizing from
Equations A1 and A2 in Appendix 1,

WL ¼
sn þ Cn

L

sn þ Cn
L þ gðhÞ:Cn

R

ð5Þ

WR ¼
sn þ Cn

R

sn þ Cn
R þ gðhÞ:Cn

L

ð6Þ

where g(h)¼max(1 – hþ h.cosh, 0), and h is a constant
(0 � h � 1) that controls the degree of disparity
dependence. Note from this definition that, to prevent
negative suppression, g � 0. Increasing h increases the
extent to which interocular suppression depends on
phase disparity: The strength factor g(h) for interocular
suppression falls from 1 to 1 – h as h increases from 0 to
908. The exponent n corresponds to the Ding and
Sperling (2006) model’s c term (see Appendix 1), and
shapes the way the weights vary with overall contrast
level.

In general, Equations 5 and 6 show that contrast in
the right eye suppresses the left eye’s gain and vice
versa, but when h . 0, the strength factor g for
interocular suppression decreases when disparity is
present. As a result, for first-order gratings, the weight
for each eye increases with phase disparity (blue curves
in Figure 4c) because suppression from the other eye
decreases. This serves to eliminate (Figure 4a) the
disparity dependence of contrast matching that must
otherwise be expected.

Weighted response amplitudes aL, aR for each eye
are defined by

aL ¼WLrL; aR ¼WRrR ð7Þ
where rL, rR are the unweighted monocular response
amplitudes, and the binocular response amplitude rB is
given from the vector sum of the two weighted
responses aL, aR, taking phase difference into account
(Equation A7). For simplicity and parsimony, we
assume here that rL ¼ CL, rR ¼ CR, but in general, the
monocular contrast response is likely to be more
complex. If the system uses the combined response rB to
evaluate contrast, two gratings will appear to match in
contrast when their rB values are the same.

Using the simplex algorithm (fminsearch in Matlab)
to minimize the value of chi-square summed over all the
group-mean data (contrast and phase matches; cf. Ding
et al., 2013b), we found that best-fitting values h¼ 0.69,
s¼ 0.04, and n ¼ 1.53 gave a very good quantitative
account of the first-order results of Huang et al. (2010)
for both contrast matching (Figure 4a) and phase
matching (Figure 4b). When we switched off phase

disparity dependence in the gain control (set h ¼ 0) or
refitted the model with h¼ 0, the predicted contrast
matches decreased markedly at 908 disparity (not
shown) and were a poor fit to the data, but phase
matches were almost unchanged. Thus contrast
matches were sensitive to the influence of first-order
phase disparity on gain control (Equations 5 and 6),
but phase matches were not.

In short, a simple modification to the Ding and
Sperling (2006) gain-control model (the introduction of
a disparity term; Equations 5 and 6) can explain why
first-order contrast matching is almost constant across
disparity while preserving the correct phase-matching
behavior. We think this is a plausible and perhaps
simpler alternative to the introduction of more
elaborate processes, such as motor-sensory fusion
(Ding et al., 2013b).

First-order combination at large disparities:
Rivalry suppression via the MAX operator

The model of first-order binocular summation
described so far works well for disparities up to at least
908 (Figure 4). But in common with several other
models, it suffers complete cancellation between left
and right inputs when disparity approaches 1808, and
human vision does not. Perceived contrast is reduced
only a little or not at all (0–4 dB) at these large
disparities (see Figure 5a; data from D. H. Baker et al.,
2012a), and it seems likely that binocular rivalry
suppression in some way takes over from binocular
summation (Ding et al., 2013b; Ding & Sperling, 2006;
M. A. Georgeson & Wallis, 2014). We show here that
one simple extra assumption—representing a form of
rivalry suppression—extends the first-order model to
account well for perceived contrast across all dispari-
ties.

Using preset parameters (from Figure 4), we
compared the first-order model predictions with
contrast-matching data of D. H. Baker et al. (2012a) as
a function of interocular phase disparity over the full
range from 08 to 61808 at several levels of contrast
(2%–32%). The pattern of their mean results (Figure
5a) was fairly well reproduced by the model up to
disparities of about 61208 (Figure 5b), but as expected,
the predicted contrast fell profoundly at larger dispar-
ities. Ding et al.’s (2013b) Ding-Sperling-Klein-Levi
(DSKL) model behaved in a similar way (their figure
17A). Removing phase-dependent interocular suppres-
sion (setting h¼0 in our model; hence g¼1), only made
matters worse: The predictions collapsed onto linear
summation, making contrast matching vary sharply
with the cosine of disparity (Equation A7) at all
contrast levels (Figure 5c), quite unlike the data.
Something else is needed.
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We propose that a nonlinear competitive interaction
at the binocular combination stage represents a simple
constraint: If binocular summation will reduce response
amplitude, then don’t do it. This idea is easily
implemented by supposing that contrast judgments are
based on a modified response rB

0:

r0B ¼ maxðrL; rB; rRÞ ð8Þ

In other words, if the combined response rB is too
low, it is replaced by the larger of the two
unweighted monocular responses. This substitution,

using the MAX operator, can be seen as a form of
WTA rivalry, and it occurs mostly at large disparities
at which rB falls dramatically. With no free param-
eters, it strikingly improved contrast-matching pre-
dictions for large disparities as shown in Figure 5d
(goodness of fit, r2 ¼ 0.805; RMS error ¼ 0.62 dB),
compared with the poor fit of Figure 5b and c. Thus,
two different forms of suppression are likely to play
a role in binocular combination: (a) the graded,
disparity-sensitive interocular suppression that sets
the balance (the weights, Equations 5 and 6) for left-
and right-eye inputs to the summation process and
(b) a more profound, perhaps later stage, WTA
suppression that effectively compares the two mon-
ocular inputs with the binocularly combined response
and picks the largest of the three while vetoing the
other two. Selection of the monocular response at
large disparities serves to prevent the binocular
cancellation of antiphase signals from feeding
through to perception. (See Appendix 2 for further
analysis and discussion.)

No Fechner paradox in first-order contrast
perception

Despite the generally good fit seen in Figure 4, our
model (like several others) predicts the occurrence of a
Fechner paradox that is not seen in the first-order data.
The (predicted) paradox is that when one eye’s
contrast is fixed and the other eye’s contrast is
increased from zero, then the combined binocular
amplitude goes down before going up. The paradox-
ical reduction is predicted when interocular suppres-
sion outweighs the increase in signal strength given by
adding contrast to the second eye. Although the
Fechner paradox is reliably found in dichoptic
brightness matching against a dark background
(Anstis & Ho, 1998; D. H. Baker, Wallis, Georgeson,
& Meese, 2012b; Engel, 1970; Levelt, 1965), it seems
clear from several recent detailed studies that it does
not normally occur for luminance contrast against a
mid-gray background—neither for increments, decre-
ments, step edges, nor gratings (D. H. Baker et al.,
2012b; Ding et al., 2013b). Instead, perceived
(matched) contrast is usually close to the higher of the
two eyes’ contrasts: WTA (although in amblyopic
vision, a substantial, asymmetric Fechner paradox has
been observed; Ding et al., 2013a). The deviation
between model and data (Figure 4a) is not large, but it
is systematic and deserves attention.

Ding et al. (2013b) considered the possibility that
this WTA behavior arises directly from a WTA
competition between the two eyes’ inputs. But they
rejected this idea because perceived phase does not
switch abruptly from one eye’s phase to the other when

Figure 5. Monocular contrast response determines contrast-

matching at large phase disparities. (a) Data on contrast

matching for horizontal 1 c/8 gratings as a function of phase

disparity from D. H. Baker et al. (2012a). Test gratings had one

of five contrasts with the same contrast in both eyes. A similar

comparison grating with zero disparity was matched in contrast

to each test grating. Y-axis shows relative matching contrast in

dB [defined as 20 · log10(Cmatch/Ctest)]. Points at 0 dB are a

veridical match; those below 0 dB represent lower perceived

test contrasts. (b) Our model of binocular summation (including

phase-dependent interocular suppression) gave a poor match to

the data at large disparities (r2 , 0). Model parameters were

the same as Figure 4. (c) Removing phase-dependent

suppression (setting h¼ 0) made the model fit much worse (r2

, 0). (d) Full model included phase-dependent interocular

suppression and a simple form of WTA rivalry suppression

(Equation 8). The similarity to the experimental data is good (r2

¼ 0.805).
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one eye’s contrast exceeds the other. Instead, they

proposed that the apparent WTA behavior in contrast

perception arises from the balance between suppressive

gain control and a proposed gain enhancement

mechanism. But we argue, in the previous section, that

it may again be fruitful to consider the contribution

made by monocular mechanisms in dichoptic experi-

ments. We show (in Appendix 2) that with the addition
of noise, a WTA process (the MAX operator, Equation
8) can give a good account not only of perceived
contrast (Figures 5d, A2a, and A4), but also of
perceived phase for dichoptic first-order gratings
(Figure A2b). Without noise, the predicted phase
switched far too abruptly with increasing contrast
ratio, just as Ding et al. (2013b) had supposed (not
shown). This analysis strengthens the case for a fairly
direct role of monocular signals in binocular vision. In
short:When the summed binocular response is lower than
both its monocular inputs, use the larger monocular
response instead.

On the other hand, binocular summation alone gave
an almost perfect account of the second-order results
(Figure 6) with no free parameters, and so it seems
unlikely that monocular mechanisms make a direct
contribution to perception of CM aside from their
input to the binocular sum.

Summary: Different behaviors but a similar
underlying process

In summary, we found that for CM gratings, the
perceived phase and modulation depth varied with
both phase disparity and interocular ratio of modu-
lation depths (Figure 6a, b). The pattern of results
was quite different from the way variations in
disparity and contrast ratio influenced perception of
first-order luminance contrast and phase (Figure 4a,
b) in exactly analogous experiments. This striking
difference is now understandable, and a similar
principle of contrast-weighted linear summation
correctly predicts results for first- and second-order
signal combination. Variations in relative contrast
alter the weights assigned to each eye, but variations
in modulation depth do not (or do so only slightly if
RMS contrast is what drives the gain control; Figure
6b). Hence the left and right first-order weights fall
and rise respectively as the right-eye contrast
increases (Figure 4c), but the second-order weights
remain constant or nearly constant for each eye
(Figure 6c) as modulation ratio varies. This differ-
ence in the adjustment of weights arises because the
same rule (contrast weighting) is being applied to
different circumstances; relative contrast varies, or it
doesn’t.

The same formula (Equations 5 and 6) can be used
to compute the first-order and second-order weights.
The weights depend on first-order phase disparity (if
present), but they should not depend on CM phase
disparity because the weights are driven by (first-
order) carrier contrast, and this is unaffected by the
absolute or relative phase of modulation. For CM,
the required lack of phase dependence is achieved by

Figure 6. Contrast-weighted summation of modulation depths

accounts for second-order binocular combination. Data from

Experiments 1 and 2 plotted together, compared with model

predictions for CM tasks in the same format as Figure 4. Here s

¼ 0, h¼ 0, n¼ 1, and RMS contrast was used in Equations 5 and

6 (or A1 and A2) to derive the ocular weights; see last section of

Appendix 1 for rationale and evidence supporting this choice.

(a) Predicted matching of CM amplitude increased with

modulation ratio (mR/mL) but decreased with increasing phase

disparity (08, 458, or 908) in close agreement with the data (RMS

error¼ 0.34 dB). (b) Predicted spatial phase also matched

experimental data accurately (RMS error ¼ 2.28). Repeated

symbols in (a) and (b) represent the three levels of carrier

correlation and overlap almost completely in these plots. (c)

The model’s ocular weights (wL, wR) for the dichoptic test

images were again driven by relative (carrier) contrast, but

differed a little from 0.5 each because images with higher

modulation have slightly higher RMS contrast and therefore

higher weights than those with lower modulation. (d) With the

carrier present in both eyes, model response to monocular

modulation was almost linear and half the response to

binocular modulation.
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setting h ¼ 0 in the weights for CM stimuli. This is a
logical requirement that represents the change in
type of stimulus rather than a change in the model
itself. We also find from model fitting that for CM
the constant s has to be at or close to 0. These two
values (h ¼ 0, s ¼ 0) lead to the simple linear
averaging behavior for dichoptic CM seen in Figures
2, 3, and 6.

Ocularity invariance

Contrast-weighted summation ensures constancy or
‘‘ocularity invariance’’ for first-order contrast percep-
tion: Responses to monocular and binocular contrasts
are nearly the same (Figures 4d and A2d). One might
think that this invariance fails for CM because the
response to binocular modulation is twice that for
monocular modulation (Figure 6d). But that is true
only when the same carrier is present in both eyes: The
two equal carriers force the weights to be about 0.5
each, thus averaging the two eyes’ modulations and
halving the response to monocular modulation. In
natural viewing, however, closing one eye removes all
contrast from that eye, the weight for the other eye goes
to 1, and its response to modulation will therefore be
the same as for two eyes with weights of 0.5 each.
Hence in natural viewing (one eye closed vs. both eyes
open), ocularity invariance holds for both first-order
and second-order modulation in agreement with
everyday experience.

Keywords: binocular combination, binocular disparity,
contrast modulation, first-order, second-order, contrast-
gain control, interocular suppression, rivalry suppression
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Appendix 1

A simple model for CM: Contrast-weighted
linear summation of modulations across the
eyes

Ocular weights

Let the modulation depths for the left and right eyes
beML,MR with carrier contrasts CL, CR. We define the
carrier-dependent weights WL, WR assigned to the left
and right eyes as

WL ¼
sþ CL

sþ CL þ CR
ðA1Þ

WR ¼
sþ CR

sþ CL þ CR
ðA2Þ

where s is typically a small-valued constant that
prevents division by 0 and ensures that the weight
for one eye is 1 when the other eye’s contrast is 0.
Here, because CL, CR are never both 0 at the same
time, we can simplify and let s ¼ 0. With this
simplification, the model has no free parameters and
so makes direct predictions about the observer’s
matching of CM phase and amplitude (shown in
Figures 2 and 3).

For the dichoptic CM test gratings, because both
carriers are present, WL ¼WR ¼ 0.5, implying simple
averaging. But for the monocular probe (assumed here
to be in the left eye), CR ¼ 0, so WL ¼ 1, and WR ¼ 0,
implying no binocular combination of any kind.

Envelope recovery: Monocular FRF processes

Most models of second-order vision have proposed
some version of the standard FRF (filter–rectify–filter)
concept to explain how the modulation signal (contrast
envelope) is recovered from the modulated image. We
take such a process as given, and so our starting point
is the envelope signal that is recovered. We further
assume that envelope responses are recovered by
separate FRF processes for the left and right eyes
before binocular combination. (Note: another possi-
bility is that the two eyes first combine local contrast
values, and then the envelope signal is recovered. We
reject this idea because it would predict quite different
results when the two eyes have correlated, anticorre-
lated, and uncorrelated carriers; such differences were
not seen in our study.) Then, assuming that monocular
responses to the contrast envelope are linear and
directly proportional to modulation depth (a simple but
strong assumption), the weighted monocular response
profiles (RL, RR) to modulation at spatial frequency f,
with phases /L, /R, as a function of position (y) are
given by
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RLðyÞ ¼WLMLcosð2pfyþ /LÞ ðA3Þ

RRðyÞ ¼WRMRcosð2pfyþ /RÞ ðA4Þ

Binocular summation

Weighted monocular responses are summed to give
the binocular response RB(y) ¼ RL(y) þ RR(y). Thus
Equations A3 and A4 sum linearly; each can be
treated as a vector with amplitudes WLML, WRMR

and phases /L ¼ h/2, /R ¼�h/2. The resultant phase
h0 for interocular phase difference h (¼/L � /R) and
modulation ratio d (¼MR/ML) is

h
0 ¼ tan�1 WL � d:WR

WL þ d:WR
tan

h
2

� �� �
ðA5Þ

For our dichoptic CM grating, the weights are equal
(see above), and so this reduces to

h
0 ¼ tan�1 1� d

1þ d
tan

h
2

� �� �
ðA6Þ

The probe amplitude (M0) will appear to match a
given dichoptic test when both deliver the same
binocular response amplitude. In general, if two vectors
have amplitudes aL, aR and angular separation h, the
amplitude aB of their vector sum is

aB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
L þ 2aLaRcoshþ a2

R

q
ðA7Þ

For our CM test stimulus with base modulation M0

in the left eye, aL ¼WLM0, aR ¼ d.WRM0, and from
Equations A1 and A2, both weights WL, WR are 0.5.
Inserting these into Equation A7, we get

aBðtestÞ ¼ 0:5M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 1þ 2dcosh

p
ðA8Þ

For the monocular probe (M0), the weights are 1 and
0, and so the outcome is simply

aBðprobeÞ ¼M0 ðA9Þ
Thus when a match is achieved, this model predicts

M
0 ¼ 0:5M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 1þ 2dcosðhÞ

q
ðA10Þ

These are the amplitude-matching curves plotted
in Figures 2b and 3. We emphasize, however, that
this model is not the same as simply assuming that
the monocular envelopes are averaged. The difference
lies in the probe response. With averaging, the
response to the probe would be M 0/2 (average of M 0

and 0) instead of M0. All predicted amplitude
matches would double and completely fail to fit the
data. The key assumption in our model is that the
weights are driven by luminance contrast, not by
modulation depth, and with this contrast weighting,

the same combination rule gives different behavior
for the binocular test and the monocular probe. For
the test grating, when the carrier contrast is present
and equal in both eyes, we get binocular averaging,
but for the probe, when one eye has no carrier, we
get WTA (weights of 1 and 0). The surprising
consequence is that a monocular (d ¼ 0) test
amplitude of 0.8 is matched by a monocular probe
amplitude of 0.4. These two rules (averaging and
WTA) emerge from the same weighting scheme,
which can be seen as a mechanism for achieving
‘‘ocularity invariance’’—perception of form and
contrast remain the same with one eye and two eyes
(D. H. Baker, Meese, & Georgeson, 2007; Ding &
Sperling, 2006).

Relation to the Ding & Sperling model

Our calculation of weights for the two eyes
(Equations A1 and A2) is equivalent to a special case
of Ding and Sperling’s (2006) contrast-gain control
theory for first-order combination. They assumed that
each eye (a) exerts gain control on the other eye’s
signal in proportion to the contrast energy of its own
input and (b) additionally exerts gain control on the
other eye’s gain control. They derived the weights for
the left and right eyes as

WL ¼
1þ qCc

L

1þ qCc
L þ qCc

R

ðA11Þ

and

WR ¼
1þ qCc

R

1þ qCc
L þ qCc

R

ðA12Þ

where q is the gain-control efficiency of the signal
sine-wave grating, and c is the exponent of the
nonlinear transducer. Equivalence with Equations A1
and A2 is exact when s¼ 1/q and c¼ 1. Note that the
meaning of CL (or CR) remains unchanged; it is the
luminance contrast of the image, determined by the
carrier for second-order and the grating itself for
first-order.

Suppose the weights for second-order combination
are driven by first-order contrast in the same way as
for first-order combination. For our dichoptic
second-order test gratings, because both carriers were
present and CL ¼ CR, the Ding and Sperling
Equations A11 and A12 would always give equal
weights, and WL ¼WR ¼ 0.5, if q � 1, again
implying simple averaging. Note that when CL ¼ CR

this equality of weights holds true for any value of
the nonlinear exponent (c). And similarly for a
monocular (left eye) probe CR ¼ 0, so WL ¼ 1 and
WR ¼ 0, again implying no binocular combination
for the probe. This also is true for any c and implies
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that the present experiments on CM are insensitive to
the value of c. If the ratio CL:CR is systematically
varied, then the ocular weights vary—favoring the
eye that has the higher contrast—and the value of c
can be estimated from phase-matching data. This has
been done for first-order signals but not yet for
second-order. For first-order summation, the geo-
metric mean estimate of c was close to 1 (1.16 6

0.18, pooled over two previous studies with a total of
seven observers; Ding & Sperling, 2007; Huang et al.,
2010). Our formulation (Equations A1 and A2) is
equivalent to assuming c ¼ 1 for CM.

Is the contrast weighting for CM driven by mean contrast
or RMS contrast?

All the analysis and discussion in Appendix 1 so
far has tacitly presumed that the carrier contrast
values CL, CR needed to compute the weights
(Equations A1 and A2) are the mean pixel contrasts
or Michelson contrasts (which are the same for
binary noise). This is simple, and it makes the
contrast values and the weights independent of
modulation depth, and so the weights are equal at all
modulation ratios and equal to 0.5 when s¼ 0. But is
mean contrast the most relevant measure? The sharp-
eyed reader may notice that in Figures 2b and 3 the
observed amplitude matches at low modulation ratios
(0, 0.2) lie slightly but consistently above the model’s
asymptote of 0.4 that is predicted by equal weighting.
It turns out that this discrepancy disappears, and the
model fit improves, if RMS contrast is used in place
of mean contrast. For binary noise (as used here)
Schofield and Georgeson (1999) showed (their
equation 8) that CRMS ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=2

p
, where C is the

carrier pixel contrast and m the contrast modulation
depth. Thus RMS contrast increases with modula-
tion. In our experiments, at a modulation ratio of
zero, the modulated image in one eye has a higher
RMS contrast than its unmodulated partner. The
result of using RMS contrast to compute the weights
is shown in Figure 6. Model predictions, still with no
free parameters, were compared with all the data
points from Experiments 1 and 2. The fit was
excellent: For the amplitude matches r2 ¼ 0.960
(RMS error ¼ 0.335 dB), compared with r2 ¼ 0.943
(RMS error ¼ 0.461 dB) when mean contrast was
used for the weights (as in Figures 2 and 3). The
improvement clearly lay at the low modulation
ratios, and Figure 6c reveals why: The weight is a
little higher for the eye with more modulation. This
pushes the binocular sum a bit higher than it would
be if the weights were equal, but the difference in
weights shrinks as the other eye’s modulation
increases toward equality. We conclude that, al-

though the improvement in model fit is small, it
looks convincing and has a clear rationale: Ocular
weights for CM are driven by RMS contrast not
mean or Michelson contrast. (Note: This analysis has
no implications for first-order combination because,
for luminance gratings, Michelson contrast and RMS
contrast are directly proportional to each other and
therefore functionally interchangeable.)

Appendix 2

A role for monocular responses in binocular
perception of first-order contrast and phase

We first show how the use monocular and binocular
signals, selected in a WTA fashion via the MAX
operator (Equation 8), leads to good predictions for
first-order contrast-matching across all phase dispari-
ties seen in Figure 5d. Then we show that adding
independent noise to each of the three signals before
the MAX operator can yield good predictions for
perception of binocular phase while, at the same time,
improving the predictions for contrast-matching by
reducing the Fechner paradox.

WTA 1: The MAX operator

Recall our proposal (Equation 8) that perceived
contrast is determined by whichever of the three
response amplitudes (two monocular, one binocular) is
the largest:

r0B ¼ maxðrL; rB; rRÞ ð8Þ
Note also that the binocular response amplitude rB

varies with disparity for two reasons: (a) the vector sum
varies with phase difference (Equation A7), and (b) the
component amplitudes in the vector sum also vary with
phase difference because the ocular weights vary with
disparity (when h . 0; Equations 5 and 6). Red curves
in Figure A1 illustrate how the resultant amplitude rB
varies with phase disparity, falling steeply to zero as
disparity increases from 61208 to 61808. On the other
hand, the monocular responses do not depend on
disparity and plot as circles (blue) in these polar
diagrams.

The response of the max operator is the outer
envelope of the red and blue curves (plotted behind in
gray). The predicted contrast matches (gray symbols)
lie very close to this outer envelope. (They differ slightly
at low contrasts because the matching of test and
comparison gratings is also taken into account. The
predicted match is the contrast of the comparison
grating—with 0 disparity—that produces the same
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response rB
0 as the test grating does.) Importantly, the

experimental contrast matches (green squares; mean of
3 Ss; D. H. Baker et al., 2012a) lie close to the predicted
ones (gray symbols) at all disparities and all contrast
levels. This figure makes it clear how, on this model,
contrast-matching up to 61208 disparity is explained
by the weighted binocular sum, rB (red curve), and at
larger disparities, it is the monocular response (blue
curve) that matters. More subtly, the relationship
between monocular and binocular response curves
varies with contrast level because the binocular weights
vary with contrast (Equations 5 and 6). The monocular
response is relatively weaker at low contrast, and this
accounts for the interaction between disparity and

contrast level seen most clearly in Figure 5a and d, a
stronger effect of phase disparity at low contrasts.

WTA 2: The noisy MAX operator

Ding et al. (2013b) noted that the difficult challenge
for models of binocular combination is to account for
contrast matching and phase matching at the same
time. Some models that did well on one task fared
badly on the other or vice versa. Indeed, when we
reapplied the above model, with MAX operator, to the
analysis of Figure 4, the contrast-matching predictions
improved (r2 ¼ 0.996), and the Fechner paradox was
reduced, but the phase matches were poor (r2¼ 0.64,

Figure A1. Polar plots illustrate how the first-order model with MAX operator (Equation 8) explains contrast matching at all phase

disparities and contrast levels (Figure 5). Polar angle represents phase disparity (08–3608); radial distance represents either relative

response level (colored curves) or relative contrast match (symbols), normalized to the point at 0 disparity. Red curves show that

the model’s binocular response (rB) is greater than monocular responses (rL, rR, blue) for disparities up to 61208 but falls well

below them at larger disparities. Green squares: experimental contrast matches from Figure 5a; gray circles: corresponding model

matches from Figure 5d. Note how the experimental data closely follow the outer envelope of the response curves (rMAX, gray

curve). Model parameters were as Figure 5 with no noise in the MAX operator. Predicted matches (gray symbols) agree well with

experimental data.
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RMS error¼ 10.18 of phase; not shown). As expected,
they were not graded with contrast ratio (unlike Figure
4b), but were constant, determined by the higher
contrast input until the contrast ratio was close to 1.0.
However, if (as seems likely) the three inputs to the
MAX operator are noisy over time or from trial to
trial, then all three inputs should contribute somewhat
to any given condition, and perceived phase might
show a smoother transition as contrast ratio increased
from 0 to 1 (like the data in Figure 4b). This idea was
tested with the same first-order model as before (WTA
1) except that the effects of adding independent
Gaussian noise to the signals before the MAX operator
were also included. Rather than running a Monte Carlo
simulation (too slow), we wrote a Matlab function that
computed the statistics of the MAX operator (mean,
SD, and probability distribution of the output) given
the means and standard deviations of the N input
signals (N¼ 3). This useful function is available as
Supplementary Material to this paper.

The means of the three inputs were rL, rB, rR with a
common standard deviation defined as r¼ noise.max(rL,
rB, rR), where noise is a single new parameter of the
model. Thus three small inputs were less noisy than three
large inputs, but one large input would make all three

inputs more noisy. Contrast matches were, as before,
obtained when the mean output for a test grating
matched the mean output for the comparison grating.
Phase matches were given by the probability-weighted
vector sum of the three signal phases (/L, /B, /R). Thus,

/match ¼ arg
X

j¼L;B;R
pj expði/jÞ

( )
ðA13Þ

where pj is the probability that in a given test condition
the jth signal ( j¼L, B, R) yielded themax response. The
probability pj is also returned by the Matlab function
described above, and we refer to it as the contribution
made by the jth signal to perception of a given test
condition. Obviously, the three contributions always sum
to 1.

This model was fitted simultaneously to the contrast
and phase matching data of Figure 4 (Huang et al.,
2010) in the same way as before, but now there were
four free parameters: s, h, n, and noise. The fit to the
contrast data (Figure A2a) was excellent (r2¼ 0.995;
RMS error¼0.31 dB). But now the fit to the phase data
(Figure A2b) was also very good (r2 ¼ 0.963; RMS
error¼ 3.28 of phase). Phase-matching behavior of the
model was sensitive to the level of noise. For example,

Figure A2. Similar to Figure 4, but illustrating how, with a noisy MAX operator (Equation 8), the first-order model can (a) explain the

near-absence of Fechner paradox in dichoptic contrast matching and (b) give a good account of binocular phase matching. Color in (a,

b, c) denotes phase disparity as shown in (b). (a) Data (symbols) as Figure 4a; curves show best fitting model (see Appendix 2) with

four free parameters listed in (d). (c) Contributions made to perception made by left or right eye contrast (L, R; thin lines) and by the

binocularly combined response (B; thick lines). ‘‘Contribution’’ is defined as the probability that a given random variable (rL, rB, or rR)

gave the MAX response in a given condition.
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doubling or halving the noise parameter degraded the
quality of phase predictions much more than the
contrast matches.

Importantly, the noisy MAX model allows us to
estimate the contributions made by monocular and
binocular responses (L, B, R) to these dichoptic tasks
(Figure A2c). For this plot, contrast CL is fixed (0.32)
while CR rises from 0 to 0.32. Not surprisingly the R
contribution rises with CR. But a surprising implication
is that the binocular (B) contribution is greatest (0.5)
for a monocular input and falls to about one third
when the input is fully binocular (i.e., left and right eye
contrasts are equal), irrespective of disparity. Using the
same parameters, Figure A3 gives more detail on these
contributions across all phase disparities.

Compared with Figure 4a, the fit to contrast-
matching data is improved (Figure A2a) because the
predicted Fechner paradox is much reduced. The
paradox depends on rB falling, but when this happens,
the MAX operator automatically draws a greater
contribution from rL (Figures A2c and A3), and the
paradox is averted. Thus, not only at large disparities
but also at intermediate contrast ratios, monocular
responses substitute for reduced binocular ones and
render perceived contrast more nearly constant than it
would otherwise be.

Finally, we asked whether the addition of noise
might degrade predictions about contrast matching
(Figure 5d) that were already successful without noise.
Figure A4 (right) shows that this was not so. The noise
actually improved the similarity of model and data.

Figure A3. Behavior of the MAX operator with noisy inputs. The four model parameters (inset, top) are from fits to first-order data

(Figure A2). Polar plots again illustrate the mean monocular (blue, green) and binocular (red) responses, now expressed relative to

the mean MAX operator response obtained at 0 disparity. Gray curve shows how the mean MAX response varied with disparity. Note

how, with noise, the mean MAX response is necessarily greater than all the input means. The contribution made by each input can be

gauged from its relative mean value (red, blue, or green). The Fechner paradox is implicit here (rB , rL) but largely hidden from the

final output because rB’s contribution is correspondingly lower.
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It may seem counterintuitive that binocular combi-
nation contributes no more than one third of the input
to binocular contrast perception. One’s intuition might
be that binocular summation makes responses stronger,
and so they should dominate over monocular re-
sponses. But that intuition is incorrect. The consensus
from the present work and much recent research (cited
earlier) is that, except at low contrast, binocular
combination takes the form of weighted averaging, not
summing, and on this view, binocular responses are

rarely much larger than monocular ones (Figures A1

and A3). The special value of binocular vision

presumably lies elsewhere in extending the visual field,

improving the reliability of signals, and enabling the

encoding of stereo disparity and depth. But for

nonstereo tasks, we cannot easily dismiss the noisy

MAX model because it accounts parsimoniously for

such a wide range of contrast- and phase-matching data

(Figures A2 and A4).

Figure A4. First-order contrast-matching versus phase disparity. Similar to Figure 5a and d but now with noise in the MAX operator.

Model parameters s, h, n were as in Figure 5; noise level was also fixed from Figure A2. Noise did not degrade but rather improved

the similarity between model (right) and data (left).
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