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Natural language understanding is to specify a computational model that maps sentences to their semantic mean representation. In
this paper, we propose a novel framework to train the statistical models without using expensive fully annotated data. In particular,
the input of our framework is a set of sentences labeled with abstract semantic annotations. These annotations encode the underlying
embedded semantic structural relations without explicit word/semantic tag alignment. The proposed framework can automatically
induce derivation rules that map sentences to their semantic meaning representations. The learning framework is applied on
two statistical models, the conditional random fields (CRFs) and the hidden Markov support vector machines (HM-SVMs). Our
experimental results on the DARPA communicator data show that both CRFs and HM-SVMs outperform the baseline approach,
previously proposed hidden vector state (HVS) model which is also trained on abstract semantic annotations. In addition, the
proposed framework shows superior performance than two other baseline approaches, a hybrid framework combining HVS and
HM-SVMs and discriminative training of HVS, with a relative error reduction rate of about 25% and 15% being achieved in F-

measure.

1. Introduction

Given a sentence such as “I want to fly from Denver
to Chicago,” its semantic meaning can be represented as
FROMLOC(CITY (Denver)) TOLOC(CITY(Chicago)).

Natural language understanding can be considered as a
mapping problem where the aim is to map a sentence to
its semantic meaning representation (or abstract semantic
annotation) as shown above. It is a structured classification
task which predicts output labels (semantic tag or concept
sequences) from input sentences where the output labels have
rich internal structures.

Early approaches rely on hand-crafted semantic grammar
rules to fill slots in semantic frames using word pattern and
semantic tokens [1, 2]. Such rule-based approaches are typi-
cally domain-specific and often fragile. In contrast, statistical
approaches are able to accommodate the variations found in
real data and hence can in principle be more robust. They

can be categorized into three types: generative approaches,
discriminative approaches, and a hybrid of the two.
Generative approaches learn the joint probability model,
P(C,S), of input sentence S and its semantic tag sequence C,
then compute P(C | S) using Bayes’ rule, and finally take the
most probable semantic tag sequence C. The hidden Markov
model (HMM), a generative model, has been predominantly
employed in statistical semantic parsing. It models sequential
dependencies by treating a semantic parse sequence as a
Markov chain, which leads to an efficient dynamic program-
ming formulation for inference and learning. Discriminative
approaches directly model posterior probability P(C | S)
and learn mappings from S to C. Conditional random fields
(CRFs), as one representative example, define a conditional
probability distribution over label sequence given an obser-
vation sequence, rather than a joint distribution over both
label and observation sequences [3]. Another example is the
hidden Markov support vector machines (HM-SVMs) [4]
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which combine the flexibility of kernel methods with the idea
of HMMs to predict a label sequence given an input sequence.
Nevertheless, statistical models mentioned above require
fully annotated corpora for training which are difficult to
obtain in practical applications. It thus motivates the investi-
gation of train statistical models on abstract semantic anno-
tations without the use of expensive token-style annotations.
This is a highly challenging problem because the derivation
from each sentence to its abstract semantic annotation is not
annotated in the training data and is considered hidden.

A hierarchical hidden state structure could be used to
model embedded structural context in sentences, such as
the hidden vector state (HVS) model [5], which learns
a probabilistic pushdown automaton. However, it cannot
incorporate a large number of correlated lexical or syntactic
features in input sentences and cannot handle any arbitrary
embedded relations since it only supports right-branching
semantic structures.

In this paper, we propose a novel learning framework
to train statistical models from unaligned data. Firstly, it
generates semantic parses by computing expectations using
initial model parameters. Secondly, parsing results are then
filtered based on a measure describing the level of agreement
with the sentence abstract semantic annotations. Thirdly, the
filtered parsing results are fed into model learning. With
the reestimated parameters, the learning of statistical models
goes to the next iteration until no more improvements could
be achieved. The proposed framework has two advantages:
one is that only abstract semantic annotations are required for
training without the explicit word/semantic tag alignment;
and another is that the proposed learning framework can
be easily extended for training any discriminative models on
abstract semantic annotations.

We apply the proposed learning framework on two sta-
tistical models, CRFs and HM-SVMs. Experimental results
on the DARPA communicator data show that the framework
on both CRFs and HM-SVMs outperforms the baseline
approach, the previously proposed HVS model. In addition,
the proposed framework shows superior performance than
two other approaches, a hybrid framework combining HVS
and HM-SVMs and discriminative training of HVS, with a
relative error reduction rate of about 25% and 15% being
achieved in F-measure.

The rest of this paper is organized as follows. Section 2
gives a brief introduction of CRFs and HM-SVMs, followed
by a review on the existing approaches for training semantic
parsers on abstract annotations. The proposed framework is
presented in Section 3. Experimental setup and results are
discussed in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

In this section, we first briefly introduce CRFs and HM-
SVMs. Then, we review the existing approaches for training
semantic parsers on abstract semantic annotations.

2.1. Statistical Models. Given a set of training data D =
{(S;,C)),i = 1,...,N}, to learn a function that assigns to
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a sequence of words S = {51,52,...,5T}, sesi=1,...,T,a
sequence of semantic concepts or tags C = {c',c%,...,c"},c' €
¢,i=1,...,T, acommon approach is to find a discriminant
function F : & x € — R that assigns a score to every input
S € & and every semantic tag sequence C € €. In order to
obtain a prediction f(S) € &, the function is maximized with
respect to f(S) = arg max . F(S, C).

2.1.1. Conditional Random Fields (CRFs). Linear-chain CRFs,
as a discriminative probabilistic model over sequences of fea-
ture vectors and label sequences, have been widely used to
model sequential data. This model is analogous to maximum
entropy models for structured outputs. By making a first-
order Markov assumption on states, a linear-chain CRF
defines a distribution over state sequence C = {2, cT}
given an input sequence S = {s',s%,...,sT} (T is the length of
the sequence) as

@, (¢, ¢, )
ZS)

p(ClS) = , @
where the partition function Z(S) is the normalization con-
stant that makes the probability of all state sequences sum to
one and is defined as Z(S) = = II,®,(c"", ¢, S).

By exploiting the Markov assumption, Z(S) can be calcu-
lated efficiently by variants of the standard dynamic program-
ming algorithms used in HMM instead of summing over the
exponentially many possible state sequences c. ®(c"", ¢, S)
can be factorized as

0] (CH, ct,S) = exp (Zkafk (CH>Ct’ 5, t)) ’ 2)

where 6, is the real weight for each feature function f,(c"™",
¢, S,t). The feature functions describe some aspect of a
transition from ¢~ to ¢* as well as ¢ and the global charac-
teristics of S. For example, f;, may have value 1 when
POS(s"™!) = DT and POS(s") = NN, which means that the
previous word s has the POS tag “DT” (determiner) and
the current word s* has the POS tag “NN” (noun, singular
common). The final model parameters for CRFs are a set of
real weights © = {0,}, one for each feature.

2.1.2. Hidden Markov Support Vector Machines (HM-SVMs).
For HM-SVMs [4], the function F(S,C) is assumed to be
linear in some combined feature representation of S and C;
F(S,C) = (w, O(S, C)). The parameters w are adjusted so that
the true semantic tag sequence C; scores higher than all other
tag sequences C € €; := €\C; with alarge margin. To achieve
the goal, the following optimization problem is solved:

1
min Consti + 5 [wl?
i

EeRweF

s.t. (w, @ (S,C,)) — (w, @ (S,C)) = 1-§, ©
Vi=1,...N, Ce®%\C,

where &; is nonnegative slack variables allowing one to
increase the global margin by paying a local penalty on some
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outlying examples and Cons dictates the desired tradeoft
between margin size and outliers. To solve (3), the dual of the
equation is solved instead. The solution @ can be written as

N

D= Y () O(S,C), (4)

i=1 Ce¥

where «;(C) is the Lagrange multiplier of the constraint
associated with example i and C;.

2.2. Training Statistical Models from Lightly Annotated Data.
Semantic parsing can be viewed as a pattern recognition
problem and statistical decoding can be used to find the most
likely semantic representation. The majority of statistical
approaches to semantic parsing rely on fully annotated cor-
pora. There have been some prior works on learning semantic
parsers that map natural language sentences into a formal
meaning representation such as first-order logic [6-10]. How-
ever these systems either require a hand-built, ambiguous
combinatory categorical grammar template to learn a prob-
abilistic semantic parser [11] or assume the existence of an
unambiguous, context-free grammar of the target meaning
representations [6, 7, 9, 12, 13]. Furthermore, they have only
been studied in two relatively simple tasks, GEOQUERY [14]
for US geography query and RosoCup (http://www.robocup
.org/) where coaching instructions are given to soccer agents
in a simulated soccer field.

He and Young [5] proposed the hidden vector state (HVS)
model based on the hypothesis that a suitably constrained
hierarchical model may be trainable without treebank data
whilst simultaneously retaining sufficient ability to capture
the hierarchical structure needs to robustly extract task
domain semantics. Such a constrained hierarchical model can
be conveniently implemented using the HVS model which
extends the flat-concept HMM model by expanding each state
to encode the stack of a pushdown automaton. This allows
the model to efficiently encode hierarchical context, but
because stack operations are highly constrained it avoids the
tractability issues associated with full context-free stochastic
models such as the hierarchical HMM. Such a model is
trainable using only lightly annotated data and it offers
considerable performance gains compared to the flat-concept
model.

Conditional random fields (CRFs) have been extensively
studied for sequence labeling. Most applications require
the availability of fully annotated data, that is, an explicit
alignment of sentence and word-level labels. There have been
some attempts to train CRFs from a small set of labeled
data and a large set of unlabeled data. In these approaches,
a training objective is redefined to combine the conditional
likelihood of labeled data and unlabeled data. Jiao et al. [15]
extended the minimum entropy regularization framework
to the structured prediction case so a training objective
that combines unlabeled conditional entropy with labeled
conditional likelihood is yielded. Mann and McCallum [16]
augmented the traditional conditional likelihood objective
function with an additional term that aims to minimize the
predicted label entropy on unlabeled data. Entropy regular-
ization was employed for semisupervised learning. In [17],

a training objective combining the conditional likelihood
on labeled data and the mutual information on unlabeled
data is proposed. It is based on the rate distortion theory in
information theory. Mann and Mccallum [18] used labeled
features instead of fully labeled instances to train linear-chain
CRFs. Generalized expectation criteria are used to express
a preference for parameter settings in which the model
distribution on unlabeled data matches a target distribution.
They tested their approach on the classified advertisements
data set (CLASSIFIED) [19] consisting of classified advertise-
ments for apartment rentals in the San Francisco Bay Area
with 12 fields being labeled for each of the advertisements,
including size, rent, neighborhood, and features. With only
labeled features, their approach gave a mediocre result with
68.3% accuracy being achieved. With an additional inclusion
of 100 labeled instances, the accuracy is increased to 80%.
The DARPA communicator data used in our experiment
appear to be more complex than the CLASSIFIED data since
semantic annotations in the DARPA communicator data
describe embedded structural context in sentences while
semantic labels in the CLASSIFIED data do not represent any
hierarchical relations.

3. The Proposed Framework

Given the training data D = {(S;, A;),...,(Sn> An)}, where
A, is the abstract annotation for sentence S;, the parameters ®
will be estimated through a maximum likelihood procedure.
The log-likelihood of L(®) with expectation over the abstract
annotation is calculated as follows:

N
L(®) =) Y P(C{|S)logP(C/S,), (5)
i Ct

where C! is the unknown semantic tag sequence of the
ith word sequence. To learn statistical models, we extended
the use of expectation maximization (EM) algorithm to
estimate model parameters. The EM algorithm [20] is widely
employed in statistical models for parameter estimation when
the model depends on unobserved latent variables. Given
a set of observed data D, a set of unobserved latent data,
or missing values D", the EM algorithm seeks to find the
maximum likelihood estimation of the marginal likelihood

L(D|6) =) p(D,D"0) 6)
=

by alternating between performing an expectation step and a
maximization step.

(i) E-step: given the current estimate of the parameters,
calculate the expected value for unobserved latent
variables or data.

(ii) M-step: find the parameter that maximizes this quan-
tity. These parameter estimates are then used to deter-
mine the distribution of the latent variables in the next
E-step.

We propose a learning framework based on EM to train
statistical models from abstract semantic annotations as
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FIGURE 1: The proposed learning framework of training statistical models from abstract semantic annotations.
TABLE 1: Abstract semantic annotation and its flattened semantic tag sequence.
Sentence I want to return to Dallas on Thursday.
Annotation RETURN (TOLOC (CITY (Dallas)) ON (DATE (Thursday)))

(a) Flattened semantic tag list:

RETURN RETURN+TOLOC RETURN+TOLOC+CITY (Dallas) RETURN+ON RETURN+ON+DATE (Thursday)

(b) Expanded semantic tag list:

RETURN RETURN+DUMMY RETURN+TOLOC RETURN+TOLOC+DUMMY RETURN+TOLOC+CITY (Dallas)
RETURN+ON RETURN+ON+DUMMY RETURN+ON+DATE (Thursday) RETURN+ON+DATE (Thursday)+DUMMY

illustrated in Figure 1. The whole procedure works as fol-
lows. Given a set of sentences S = {S;,i = 1,..., N} and their
corresponding semantic annotations A = {A;,i = 1,..., N},
each annotation A; is expanded to the flattened semantic
tag sequence C; at initialization step. Based on the flattened
semantic tag sequences, the initial model parameters
are estimated. After that, the semantic tag sequence C,
is generated for each sentence using the current model,
C = {C‘i,i = 1,...,N}. Then, C is filtered based on a score
function which measures the agreement of the generated
semantic tag sequences with the actual flattened semantic tag
sequences. In the maximization step, model parameters are
reestimated using the filtered C. The iteration continues until
convergence. The details of each step are discussed in Figure 1.

3.1. Preprocessing. Given a sentence labeled with an abstract
semantic annotation as shown in Table 1, we first expand
the annotation to the flattened semantic tag sequence as in
Table 1(a). The provision of abstract annotations implies that
the semantics encoded in each sentence need not be provided
in expensive token style. Obviously, there are some input
words such as articles, which have no specific semantic
meanings. In order to cater for these irrelevant input words, a
DUMMY tag is introduced in the preterminal position. Hence,
the flattened semantic tag sequence is finally expanded to the
semantic tag sequence as in Table 1(b).

3.2. Expectation with Constraints. During the expectation
step, that is, calculating the most likely semantic tag sequence
given a sentence, we need to impose the following two con-
straints which are implied from abstract semantic annota-
tions.

(1) Considering the calculated semantic tag sequence as
a hidden state sequence, state transitions are only

allowed if both current and next states are listed in
the semantic annotation defined for the sentence.

(2) If a lexical item is attached to a preterminal tag of a
flattened semantic tag, the semantic tag must appear
bound to that lexical item in the training annotation.

To illustrate how these two constraints are applied,
the sentence “I want to return on Thursday to Dal-
las” with its annotation “RETURN(TOLOC(CITY (Dallas))
ON(DATE(Thursday)))” is taken as an example. The transi-
tion from RETURN+TOLOC+CITY to RETURN is allowed since
both states can be found in the semantic annotation and
follows constraint 1. However, the transition from RETURN
to FLIGHT is not allowed as it does not follow constraint 1
and FLIGHT is not listed in the semantic annotation. Also,
for the lexical item Dallas in the training sentence, the only
valid semantic tag is RETURN+TOLOC+CITY because to apply
constraint 2 Dallas has to be bound with the preterminal
tag CITY.

We further describe how these two constraints can be
imposed into two different models, CRFs and HM-SVMs:

(xt(ct:CIS)

= Z“H (Ct_l =c'| S) exp Zekfk (CH =, =q S) ,
c k

B (ct =c| S)
= Z/g’m ("t =c"|S)exp ZOkfk ("= =659)
d k
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o (ct =c| S)
0, when g (ct,c, st) =1,

y {a (d1=¢15)

=<
o

X exp Zkak (CFI =c,=q¢ S)} , otherwise,
k

0, when g (ct,c, st) =1,

{ﬁﬁl (Ct+1 =c| S)

X exp Zkak (ct+1 =, =g x)} , otherwise.
k

(8)

3.2.1. Expectation in CRFs. The most probable labeling
sequence in CRFs can be efficiently calculated using the
Viterbi algorithm. Similar to the forward-backward proce-
dure for HMM, the marginal probability of states at each posi-
tion in the sequence can be computed as

oct(ct:clS)[St(ct:clS)) ©)
Z(S)

P(ct:c|S):

where Z(S) = Y. a,(c | ).

The forward values o, (¢’ = ¢ | S) and backward values
ﬁt(ct = c | S) are defined in iterative form as (7).

Given the training data D = {(S;,C;),...,(Sx>Ca)}b
the parameter ® can be estimated through a maximum
likelihood procedure. To calculate the log-likelihood of L(®)
with expectation over the abstract annotation as follows,

L(©;0") = iZP(C 1 550")log P(C! | S;:0)

ﬁ.MZ

YP(CH18:0) Y Y6 fi(che.S) (10)
c ok

k
- ZlogZ(S,-),

where C;' is the unknown semantic tag sequence of the ith
word sequence and Z(S;) = Y, exp(¥, Y1 Ok fi(c", ¢, S))).
It can be optimized using the same optimization method as
in standard CRFs training.

To infer the word-level semantic tag sequences based on
abstract annotations, (7) are modified as shown in (8), where
g(ct, ¢, s") is defined as follows:

—

, ¢ is not in the allowable
semantic tag list of S,

g (ct,c, st) =max 1, cisnot of class type and  (11)

s' is of class type,

0, otherwise.

3.2.2. Expectation in HM-SVM. To calculate the most likely
semantic tag sequence C for each sentence S, C =
arg max . F(S,C), we can decompose the discriminant

function F : & x € — R into two components, F(S,C) =
F,(S,C) + F,(S,C), where

F, (S5,C) = Z 6 (o, T)Z[[ —0/\cl=r]],
O€EC,TEC (12)
T
E60= Y Yo =]
o€c [=1

Here, 8(o,7) is considered as the coefficient for the
transition from state (or semantic tag) o to state v while
y(sl ,0) can be treated as the coeflicient for the emission of
word s from state o. They are defined as follows:

0.1~ i (0 iuem* —oner—])

iC " (13)

7(sho) = XX Mle" = olla; @k (<),

im C

where k(sl,s;") = (‘{’(sl),‘I’(s:")) describes the similarity of
the input patterns ¥ between word s’ and word s, the mth
word in the training example i, and «;(C) is a set of dual
parameters or Lagrange multiplier of the constraint associ-
ated with example i and semantic tag sequence C as in (4).
Using the results derived in (13), Viterbi decoding can be
performed to generate the best semantic tag sequence.

To incorporate the constraints as defined in the abstract
semantic annotations, the values of §(o, ) and y(sl,a) are
modified for each sentence:

0, when g (0,7) = 1,
8(o,7) = A Z“i (E)Z [[Em_l =oNC" = T”,

i,C m

otherwise,
(14)

0, when h (0, sl) =1,

y(sl,cr)= ZZ oc(C)k(s s, )
otherwise,

where g(o, ) and h(o, sl) are defined as follows:

1, 7 is not in the allowable semantic tag list,

g(a,r):{

0, otherwise,

1, o is not of class type and s'
h (0, sl) = is of class type,
0, otherwise,

(15)

where g(o, 7) and h(o, sl) in fact encode the two constraints
implied from abstract annotations.



3.3. Filtering. For each sentence, the semantic tag sequences
generated in the expectation step are further processed based
on a measure on the agreement of the semantic tag sequence
T = {t;,t,,...,t,} with its corresponding abstract semantic
annotation A. The score of T is defined as

Srecall * 8
S 1+ S

precision

Score (T) =2 = , (16)

recal precision

where S ccision = N/ Sgecan N,/p. Here, N, is the
number of the semantic tags in T' which also occur in A, n
is the number of semantic tags in T, and p is the number of
semantic tags in the flattened semantic tag sequence for A.
The score is similar to the F-measure which is the harmonic
mean of precision and recall. It essentially measures the
agreement of the generated semantic tag sequence with
the abstract semantic annotation. We filter out sentences
with their score below certain predefined threshold and the
remaining sentences together with their generated semantic
tag sequences are fed into the next maximization step. In our
experiments, we empirically set the threshold to 0.1.

3.4. Maximization. Given the filtered training examples from
the filtering step, the parameters ® are adjusted using the
standard training algorithms.

For CRFs, the parameter ® can be estimated through a
maximum likelihood procedure. The model is traditionally
trained by maximizing the conditional log-likelihood of the
labeled sequences, which is defined as

N
L(®) = Zlog (P(C;1859)), (17)

i=1

where N is the number of sequences.
The maximization can be achieved gradient ascent where
the gradient of the likelihood is

a & t—-1 t
a6, = ;Zt:fk (Ci ’Ci’Si’t)

=2 22 (C1S) Y fi(h e 8t).
i=1 S t

For HM-SVMs, the parameters ® = w are adjusted so that
the true semantic tag sequence C; scores higher than all the
other tag sequences C € €; := € \ C; with a large margin.
To achieve the goal, the optimization problem as stated in
(3) is solved using an online learning approach as described
in [4]. In short, it works as follows: a pattern sequence S; is
presented and the optimal semantic tag sequence C; = £(S;)
is computed by employing Viterbi decoding. If C; is correct,
no update is performed. Otherwise, the weight vector w is
updated based on the difference from the true semantic tag
sequence A® = O(S,,C;) — O(S;,C,).

(18)

4. Experimental Results

Experiments have been conducted on the DARPA commu-
nicator data (http://www.bltek.com/spoken-dialog-systems/
cu-communicator.html/) which were collected in 461 days.
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TABLE 2

I wanna travel from Denver to San Diego on March sixth.
Frame AIR

FROMLOC - CITY = Denver
TOLOC - CITY = San Diego
MONTH = March

DAY = sixth

Slots

From these, 46 days were randomly selected for use as
test set data and the remainders were used for training.
After cleaning up the data, the training set consists of 12702
utterances while the test set contains 1178 utterances.

The abstract semantic annotations used for training
only list a set of valid semantic tags and the dominance
relationships between them without considering the actual
realized semantic tag sequence or attempting to identify
explicit word/concept pairs. Thus, it avoids the need for
expensive treebank style annotations. For example, for the
sentence “I wanna go from Denver to Orlando Florida
on December tenth,” the abstract annotation would be
FROMLOC(CITY) TOLOC(CITY(STATE)) MONTH(DAY).

To evaluate the performance of the model, a reference
frame structure was derived for every test set sentence
consisting of slot/value pairs. An example of a reference frame
is shown in Table 2.

Performance was then measured in terms of F-measure
on slot/value pairs, which combines the precision (P) and
recall (R) values with equal weight and is defined as F =
2% P R/(P+R).

We modified the open source of the CRF suite (http://
www.chokkan.org/software/crfsuite/) and SsymiMM (http://
www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html/) to
implement our proposed learning framework. We employed
two algorithms to estimate the parameters of CRFs, the
stochastic gradient descent (SGD) iterative algorithm [21],
and the limited-memory BFGS (L-BFGS) method [22]. For
both algorithms, the regularization parameter was empiri-
cally set in the following experiments.

4.1. Overall Comparison. We first compare the time con-
sumed in each iteration using HM-SVMs or CRFs as shown
in Figure 2. The experiments were conducted on the Intel(R)
Xeon(TM) model Linux server equipped with 3.00 Ghz pro-
cessor and 4 GB RAM. It can be observed that, for CRFs, the
time consumed in SGD is almost doubled compared to that
in L-BFGS in each iteration. However, since SGD converges
much faster than L-BFGS, the total time required for training
is almost the same. As SGD gives balanced precision and
recall values, it should be preferred more than L-BFGS in our
proposed learning procedure. On the other hand, as opposed
to CRFs which consume much less time after iteration 1, HM-
SVMs take almost the same run time for all the iterations.
Nevertheless, the total run time until convergence is almost
the same for CRFs and HM-SVMs.

Figure 3 shows the performance of our proposed frame-
work for CRFs and HM-SVMs at each iteration. At each
word position, the feature set used for both statistical models



The Scientific World Journal

Time consumed in each stage (hours)
w

0 1 2 3 4 5 6 7 8 9 10

Iteration index
(a) CRFs with L-BFGS
10
9l
8l

Time consumed in each stage (hours)
w

0 1 2 3 4

Time consumed in each stage (hours)

0 1 2 3 4 5 6 7 8 9 10

Iteration index

(b) CRFs with SGD

5 6 7 8 9 10

Iteration index

(c) HM-SVMs

FIGURE 2: Time consumed in each iteration by CRFs and HM-SVMs.

consists of the current word and the current part-of-speech
(POS) tag. It can be observed that both models achieve
the best performance at iteration 8 with an F-measure of
92.95% and 93.18% being achieved using CRFs and HM-
SVMs, respectively.

4.2. Results with Varied Features Set. We employed word
features (such as current word, previous word, and next word)
and POS features (such as current POS tag, previous one, and
next one) for training. To explore the impact of the choices of
features, we explored with feature sets comprised of words or
POS tags occurring before or after the current word within
some predefined window size.

Figure 4 shows the performance of our proposed
approach with the window size varying between 0 and 3.
Surprisingly, the model learned with feature set chosen by
setting window size 0 gives the best overall performance.
Varying window size between 1 and 3 only impacts the

convergence rate and does not lead to any performance
difference at the end of the learning procedure.

4.3. Performance with or without Filtering Step. In a sec-
ond set of experiments, we compare the performance with
or without the filtering step as discussed in Section 3.3.
Figure 5 shows that the filtering step is indeed crucial as it
boosted the performance by nearly 4% for CRFs with L-BFGS
and 3% for CRFs with SGD and HM-SVMs.

4.4. Comparison with Existing Approaches. We compare
the performance of CRFs and HM-SVMs with HVS, all
trained on abstract semantic annotations. While it is hard
to incorporate arbitrary input features into HVS learning,
both CRFs and HM-SVMs have the capability of dealing
with overlapping features. Table 3 shows that they outperform
HVS with a relative error reduction of 36.6% and 43.3% being
achieved, respectively. In addition, the superior performance
of HM-SVMs over CRFs shows the advantage of HM-SVMs



Performance

1 2 3 4 5 6 7 8 9
Training iterations
—o— Recall

—»— Precision
—+— F-measure

(a) CRFs with L-BFGS
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FIGURE 3: Performance for CRFs and HM-SVMs at each iteration.

TABLE 3: Performance comparison between the proposed frame-
work and three other approaches (HF denotes the hybrid framework
and DT denotes discriminative training the HVS model.

Proposed framework

Measurement  HVS HF DT

CRFs HM-SVMs
Recall (%) 8781 90.99 9149 92.08 92.04
Precision (%) 88.13 90.25 91.87 93.83 94.36
F-measure (%) 8797 90.62 91.68 92.95 93.18

on learning nonlinear discriminant functions via kernel

functions.

We further compare our proposed learning approach
with two other methods. One is a hybrid generative/discrimi-
native framework (HF) [23] which combines HVS with HM-
SVMs so as to allow the incorporation of arbitrary features as
in CRFs. The other is a discriminative approach (DT) based
on parse error measure to train the HVS model [24]. The
generalized probabilistic descent (GPD) algorithm [25] was
employed to adjust the HVS model to achieve the minimum
parse error rate.

Table 3 shows that our proposed learning approach out-
performs both HF and DT. Training statistical models on
abstract annotations allows the calculation of conditional
likelihood and hence results in direct optimization of the
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FIGURE 4: Comparison of performance on models learned with feature sets chosen based on different window sizes.

objective function to reduce the error rate of semantic
labeling. On the contrary, the hybrid framework firstly uses
the HVS parser to generate full annotations for training
HM-SVMs. This process involves the optimization of two
different objective functions (one for HVS and another for
HM-SVMs). Although DT also uses an objective function
which aims to reduce the semantic parsing error rate, it is in
fact employed for supervised reranking where the input is the
N-best parse results generated from the HVS model.

5. Conclusions

In this paper, we have proposed an effective learning
approach which can train statistical models such CRFs and

HM-SVMs without using the expensive treebank style anno-
tation data. Instead, it trains the statistical models from
only abstract annotations in a constrained way. Experimental
results show that, using the proposed learning approach, both
CRFs and HM-SVMs outperform the previously proposed
HVS model on the DARPA communicator data. Further-
more, they also show superior performance than the two
other methods: one is the hybrid framework (HF) combining
both HVS and HM-SVMs, and the other is discriminative
training (DT) of the HVS model, with a relative error
reduction rate of about 25% and 15% being achieved when
compared with HF and DT, respectively.

In future work, we will explore other score functions in
filtering step to describe the precision of the parsing results.
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FIGURE 5: Comparisons of performance with or without the filtering stage.

Also, we plan to apply the proposed framework in some other
domains such as information extraction and opinion mining.
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