
Demonstration of 10Gbit/s transmission over 
900km SMF with <400ns adaptation time 

using full-field EDC  
 

 

J. Zhao and A.D. Ellis 
 

 

Abstract: We significantly extend the reach of 10Gbit/s on-off keying single-mode 

fibre transmission using full-field based electronic dispersion compensation (EDC) to 

900km. In addition, the EDC balances the complexity and the adaptation capability 

by employing a simple dispersive transmission line with static parameters for coarse 

dispersion compensation and 16-state maximum likelihood sequence estimation 

(MLSE) with Gaussian approximation based channel training for adaptive impairment 

trimming. We report improved adaptation times of less than 400ns for a bit error rate 

target of 10-3 over distances ranging from 0km to 900km. 

 

Introduction: Recent advances in high-speed microelectronics have enhanced the 

practicality of electronic dispersion compensation (EDC) [1-6] for optical 

communications. Conventional EDC [1-2] uses direct detection, so has limited 

performance due to the loss of the phase information. EDC based on coherent 

detection has various advantages [6]. However, it is still expensive, requiring an 

additional narrow-linewidth laser, two 900 hybrids, and four balanced detectors.   

Full-field detection based systems [3-5], which extract the optical field using a non-

coherent optical receiver and electronic field reconstruction, greatly reduce the 

complexity. This non-coherent optical receiver consists of an asymmetric Mach-

Zehnder interferometer (AMZI) and two photodiodes. Maximum likelihood sequence 

estimation (MLSE) using full-field reconstruction [3] has been shown to exhibit 

around 50% performance improvement when compared to conventional direct-



detection MLSE, but its complexity grows exponentially with fibre length. On the other 

hand, full-field EDC using a dispersive transmission line is simple, and transmission 

over 500km single-mode fibre (SMF) has been demonstrated [4]. However, this 

technique is based on static compensation. 

In this paper, we greatly extend the reach of a full field EDC based on-off keying 

(OOK) system to 900km, and demonstrate that adaptation times of less than 400ns 

are achievable. This maximum transmission distance almost doubles that of previous 

works [3-4], and is achieved through the use of components with near-optimized 

parameters and the use of a reduced amplifier spacing of 60km. In addition, the 

combination of the static dispersive transmission line and 16-state MLSE presented 

in this paper balances the complexity and the adaptation capability. The MLSE 

implemented for this paper uses the Gaussian approximation based channel training 

in contrast to the lookup table used in [3], and we show that this approximation 

operates well with full-field EDC, and reduces the adaptation time to less than 400ns 

for a wide distance range of 0-900km. 

 

Experimental Setup:  Fig. 1 shows the experimental setup. A 1550nm signal from a 

distributed feedback laser was intensity modulated using a Mach-Zehnder modulator 

giving a 6dB extinction ratio signal at 10Gbit/s with 215-1 PRBS data. A low extinction 

ratio was used to suppress the noise amplification during full-field reconstruction [5]. 

The OOK signal was transmitted over a re-circulating loop comprising 60km of SMF 

with a signal launch power of -2.5dBm per span.  A 1nm optical band-pass filter 

(OBPF) was used in the loop to suppress the amplified spontaneous emission (ASE) 

noise. At the receiver, the optical signal was detected with an optically pre-amplified 

receiver and a variable optical attenuator was used to vary the input power to the 

erbium doped fibre amplifier (EDFA). The pre-amplifier was followed by an OBPF 

with a 3dB bandwidth of 0.2nm, a second EDFA, and another OBPF with a 3dB 

bandwidth of 0.8nm. Then the optical signal was passed through a Kylia AMZI with 



40ps differential time delay and /2 differential phase shift. Note that this delay was 

close to the optimized value as predicted in [5]. The two outputs of the AMZI were 

detected by two 10Gbit/s receivers. Both detected signals were simultaneously 

sampled by a real-time oscilloscope at 25Gsamples/s with 8-bit resolution. In off-line 

processing, an automatic algorithm was used to temporally align the signals from 

these two receiver chains, locate the position of the training sequence, and re-

sample the signals. Note that due to the use of MLSE, the sampling phase was not 

strictly required to be at the eye centre. The principles of full-field reconstruction and 

the dispersive transmission line were similar to those in [4]. However, different from 

[4], the received sequence was serial-to-parallel (S/P) converted to blocks with block 

size of 256 bits and 8-bit overlap between adjacent blocks for guard interval. The 

dispersive transmission line was implemented based on block processing using 

(inverse) fast Fourier transform. The MLSE had 16 states, two samples per bit and 

used Gaussian approximation based channel training. MLSE presented in this paper 

used serial processing, but could also be implemented with parallel Viterbi algorithm 

[7].  432,000 signal bits were processed for each distance value. 

 

Experimental Results: Fig. 2 shows typical measured bit error rate (BER) as a 

function of the received optical signal-to-noise ratio (OSNR) for 0, 480, 720, and 

900km. In this figure, the parameters of the dispersive transmission line were set to 

approximately fully compensate the chromatic dispersion (CD), and the training time 

for the MLSE was 1 s. The inset depicts the recovered eye diagrams after the 

dispersive transmission line for 900km. The figure shows that the system operated 

well after 480km and 720km, with 3dB and 4dB OSNR penalty at BER of 10-3, 

respectively. At 900km, the slope was reduced due to non-ideally suppressed noise 

amplification [5]. However, the best achievable BER was 1.5 10-4, well below the 

forward error correction (FEC) limit.  



Fig. 2 is based on the assumption that the prior information of the fibre length has 

been obtained. In practice, this value may not be known and can also vary frequently 

over a wide range. Fig. 3 shows the performance when the dispersive transmission 

line was preset to be a fixed value and MLSE was used to adaptively trim the 

impairments for various transmission distances. The training time of the MLSE was 

1 s and the received optical power into the pre-amplifier was -28dBm. Note that the 

received OSNR was different for different transmission distances, with the case of 

900km exhibiting the worst OSNR of 23dB. The figure shows that a BER better than 

10-3 could be achieved for any measured distance up to 900km when the pre-set 

value was between 500km and 575km. This figure also implies that the system was 

insensitive to the exact pre-set dispersion value, so a coarse estimation was 

sufficient. The pre-set value was set to favour the lower OSNR region (above 450km) 

unless the residual CD for the back-to-back case exceeded the MLSE compensation 

range.  

To illustrate the adaptation speed of the system, Fig. 4 shows the BER as a 

function of the allocated training time for three different transmission distances when 

the dispersive transmission line was pre-set to compensate 550km CD. The figure 

shows that the performance converged rapidly during the first 200ns for all distances. 

After 400ns, the BER fell below 10-3 even for the longest distance, thus implying the 

potential value of full-field EDC in frequently configured optical networks.  

 

Conclusions: We have greatly extended the reach of 10Gbit/s OOK transmission 

using full-field EDC to 900km. Simple and fast-adaptive impairment compensation 

over a wide distance range of 0-900km has been demonstrated by combining a static 

dispersive transmission line with a 16-state MLSE using Gaussian approximation 

based channel training. It is shown that BERs below 10-3 and improved adaptation 

times of less than 400ns were achieved over this distance range.  
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Figure captions: 

Figure 1: Experimental setup. AOM: acousto-optical modulator. 

Figure 2: log10(BER) versus the received OSNR. Inset: eye diagram of the recovered 

signal after 900km. 

Figure 3: log10(BER) versus transmission distance. The dashed line represents no 

error for the processed signal. 

Figure 4: log10(BER) versus the training time. 
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