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1. Introduction

Nonlinear distributed systems with periodic variations of
one or several key parameters present a very important
branch of nonlinear science with a range of practical
applications in solid-state physics, optics, plasma physics,
hydrodynamics, wave physics and other fields. The impacts
of nonlinear effects on wave propagation or modifications of
the nonlinear wave properties by a medium with periodically
varying parameters are two important fundamental prob-
lems that have been actively studied in the past decades. It
is well accepted nowadays that very often, nonlinear models
governing rather different physical phenomena engaging
nonlinearity and periodicity of a medium characteristics can
be quite similar mathematically. Therefore, the analysis of
certain generic nonlinear models might be interesting in a
range of physical contexts. One of the important examples
of such generic nonlinear models is the complex Ginzburg-
Landau equation (CGLE), which was originally proposed
as a phenomenological approach in the context of phase
transitions [1], and is arguably one of the most studied
nonlinear models in the physics community. It arises in
physics, in particular, as a first-approximation “envelope”

(or “amplitude”) equation that governs the nonequilibrium
dynamics of nonlinear systems in the presence of gain/loss
and other effects such as linear and nonlinear dispersion
or gain/loss saturation, depending on the specifics of the
physical problem. It describes on a qualitative, and often
quantitative level a vast variety of physical phenomena, from
nonlinear waves to second-order phase transitions, super-
conductivity, superfluidity, Bose-Einstein condensation, liq-
uid crystals, and strings in field theory [2]. In particular,
equations of CGLE type have been used extensively to model
mode-locked lasers [3–16]. The most well-known example
in this context is referred to as the master equation of passive
mode-locking [3–5]. This model belongs to the general class
of so-called nonlinear dissipative systems, in which energy
balance is provided by the interplay between external energy
pumping and dissipative effects. An important and well
known case of a conservative (energy preserving) limit of the
general CGLE is the nonlinear Schrödinger equation (NLSE),
which is widely used to describe high-frequency nonlinear
wave propagation in a medium with Kerr-type nonlinearity
when gain/loss effects do not make essential contributions
to the nonlinear wave dynamics, or when their overall effect
is averaged out leading to the pure NLSE. The latter is an
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example of an integrable Hamiltonian system [17, 18]. The
NLSE is one of the very important underlying models in
fibre optics. It was first proposed in the context of fibre
optic communications [19–21], but has arguably even more
important applications in all-optical signal processing, pulse
shaping, optical data regeneration, frequency conversion,
and the design and operation of a number of nonlinear
photonic devices. Many of these applications are based on
the existence of a robustly stable solution of the NLSE—the
fundamental soliton.

The emergence of localized, particle-like structures that
are called solitary waves or solitons is a widespread phe-
nomenon occurring in a variety of physical problems.
Classical optical solitons (i.e., solitons of the NLSE with
uniform dispersion) are formed as a result of a continuous
balance between the effects of linear dispersive pulse broad-
ening and nonlinearity. An interesting modification of the
classical soliton occurs in optical signal transmission along
dispersion-managed (DM) links. In fibre optic communi-
cations, a periodic dispersion management—alternation of
the fibre spans with positive and negative linear dispersion—
is an established technique to improve system performance
and has been used to achieve ultra-long haul transmission
systems [22]. Optical pulses propagating in a DM system
experience a periodic change of their key parameters such
as pulse width, power, and the phase parameter (chirp),
following the periodic variations of the dispersion. Moreover,
the use of periodic distributed Raman amplification in fibre
lines makes it possible to control periodic variations of
the signal power—the technique is known as nonlinearity
management [23]. Averaging over the periodic variations of
dispersion (and also over the nonlinear effects) leads to a
new basic model that describes the slow dynamics of the
optical pulses in such systems and a new breed of solitons
[24]. The change in the sign of dispersion causes these so-
called DM solitons to temporally broaden and recompress or
“breathe” as they propagate. The prevalence of DM solitons
has generated intensive study toward understanding their
behaviour (see, e.g., [21, 22, 24–47]).

Recent developments in the field of nonlinear optics
and optical communications are partially stimulated by the
never-stopping demand of further increase of the capacity of
fibre transmission systems. Efficient growth of the capacity
of communication systems can be achieved by an increase in
the channel bit rate—the speed at which information bits are
transmitted. Increasing the channel rate assumes the utiliza-
tion of shorter time slots allocated for each information bit
and, consequently, of shorter carrier pulses. The propagation
of ultrashort pulses is then strongly affected by the fibre
dispersion, which results in large temporal broadening of the
carrier pulses. Because of the temporal broadening during
propagation, the carrier pulse power spreads over many time
slots and so the accumulated effect of the instantaneous fibre
nonlinearity tends to get averaged out. Signal transmission
using very short optical pulses, often referred to as the
quasilinear regime [48, 49], has become mainstream to
the modern development in optical fibre communications.
Traditional DM solitons typically have large energies for
such short pulse widths or do not exist at all at high map

strengths (the strength of the dispersion map will be defined
later) [35]. In other terms, the Kerr nonlinearity cannot
stabilize pulses in the form of traditional DM solitons at
large strengths of the dispersion map. In this work we discuss
two possible directions of further development of the DM
soliton theory and corresponding applications. We consider
two challenges that arise in the practical applications of
solitons at large dispersion map strengths. On the one hand,
in fibre optics, it is important to keep the energy of the
carrier pulses below a certain level which is determined by
the imposed power consumption and safety conditions. On
the other hand, in powerful laser systems, the challenge is
somewhat opposite—to generate stable optical pulses with as
high energy as possible. Here we discuss both these physical
problems by applying similar mathematical approaches. In
fibre communications it would be of interest to find periodic
solutions of the NLSE resembling traditional DM solitons,
while having smaller energies. One possible solution to this
problem was proposed in [50], and is known as short-scale
or dense dispersion management [50–54]. Using dispersion
management with a period that is much shorter compared to
the length scale where nonlinear effects become significant,
it is possible to reduce the energy of the DM soliton to
levels that are acceptable for fibre transmission even when
rather short pulses are used. This transmission technique can
be important for channel rates of the scale of 100 Gbit/s.
We have recently shown that lower energy for the same
pulse width can be achieved considering solutions of the
NLSE with periods multiple to that one of the dispersion
variation [55]. In this paper, we outline the main results of
the analysis presented in [55]. We note that such multiple-
period solutions present somehow an important step in
the convergence of the DM soliton concept and the widely
used in practice quasilinear transmission regime. Namely,
multiple-period DM solitons experience larger broadening
during propagation and, therefore, much more closely mimic
quasilinear propagation regimes compared to traditional
DM solitons.

In the context of powerful laser systems, we analyze
mode-locked lasers and study the properties of periodic
(DM) solutions. The evolution of an optical pulse inside a
laser cavity implemented either through a ring laser config-
uration or using a Fabry-Perot cavity design has an inherent
periodicity related to the resonator round trip. Effects of gain
and loss, dispersion, nonlinearity, gain dispersion (spectral
filtering), and saturable absorption all can be mathematically
treated as periodic variations of the system parameters.
Solitary wave solutions of the CGLE for such systems are
pulses that simultaneously balance the phases accumulated
from dispersion and nonlinearity as well as the amplitude
modulations from gain, linear and nonlinear (saturable) loss,
and spectral filtering. Soliton solutions in a system with
loss and gain are referred to as dissipative solitons [56, 57].
Intuitively, such pulses balance two sets of modulations,
compared to the lone balance of phase modulations in
solitons of the NLSE. While conservative solitons have a
continuum spectrum of their parameters, that is, they form
families, dissipative solitons, as a result of the additional
balance between gain and losses, usually do not form
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families, and their parameters are prescribed by properties
of the system. The term “autosoliton” is also often used to
stress the latter feature of such structures. Autosolitons can
be viewed as attractors for the dynamical system or nonlinear
“modes” of the system [56]. The first soliton fibre lasers have
been constructed entirely of fibre with anomalous group-
velocity dispersion (GVD) to generate fundamental solitons
of the NLSE [58]. However, the pulse energy is restricted by
the soliton area theorem and sideband instabilities. Much
higher energies are obtained when the laser has segments
of normal and anomalous GVD, so the cavity consists of a
dispersion map [59, 60]. In general, the pulse breathes as it
traverses the cavity, similar to the pulse dynamics in fibre
communication systems with dispersion management. DM
solitons (often called stretched pulses in the context of laser
applications) are observed as the net or path-averaged cavity
dispersion varies from relatively small and anomalous to
small and normal [59, 60], while self-similar [61] and wave-
breaking-free [62] pulses are observed with larger normal
GVD. Pulses propagating in solid-state or hybrid (solid-
state and fibre) mode-locked lasers are also often dispersion
managed in order to achieve short pulse generation directly
from the cavity rather than relying on further compression.
In addition, both fibre and solid-state lasers exhibit periodic
variations of nonlinearity inside the cavity, thus the pulse
undergoes a simultaneous nonlinearity management. In
lasers with soliton-like pulse shaping dissipative processes
play a crucial role in driving the system to the steady-state
evolution. On the other hand, the dynamics of the steady-
state solution is dominated by the competing mechanisms
of Kerr nonlinearity and linear dispersion [4, 5, 63], with
the dissipative processes often retreating to a secondary role.
Understanding of the interplay between all relevant effects
involved in pulse generation and stabilization holds the key
to the design of advanced laser systems based on DM solitons
with the required properties. In this paper, by means of
extensive numerical simulations of the CGLE and a reduced
variational model, we highlight how the different dissipative
processes affect the main dynamics of nonlinear and DM
pulses in a mode-locked laser.

2. Dispersion-Managed Solitons

The optical pulse propagation along a fibre link with varying
dispersion is governed by the normalized NLSE (see, e.g.,
[27] for more details):

i
∂u

∂z
+ d(z)

∂2u

∂t2
+ σ(z)|u|2u = 0. (1)

In (1), z is the propagation distance, scaled on the dispersion
compensation length L, t is the retarded time, measured
in units of a characteristic pulse width T0, and u(z, t) is
the envelope of the electric field, normalized by the pulse
peak power P0. Periodic functions d(z) = −β2(z)L/(2T2

0 )
(d(z + 1) = d(z)) and σ(z) = γ exp(2

∫ z
0G(z′)dz′) describe,

respectively, the varying dispersion and the signal power
variations due to fibre loss and either distributed or lumped
optical amplification. Here, β2 is the GVD coefficient,
γ = 2πn2P0L/(λ0Aeff) is the (normalized) Kerr nonlinearity

coefficient, where n2 is the nonlinear refractive index, λ0 is
the carrier wavelength, and Aeff is the effective fibre area.
The function G(z) is the effective gain/loss function along
the fibre line. Note that other material properties can lead to
a varying nonlinear coefficient, such as a varying fiber core
diameter [47]. Here we will consider the case of constant
σ , which corresponds to the lossless case. In fiber optic
communications, this situation corresponds to the rather
typical limit where the scale of the periodic variations of gain
is much smaller than the dispersion compensation period L.
However, the results presented in this paper are not specific
for and not limited to σ = constant. When we consider
mode-locked fiber lasers, the gain/loss perturbations will
be considered as perturbative terms in the right-hand side
of (1). Here we consider a two-step map with piecewise-
constant d(z) and σ(z):

d(z) = d1 + d, d1 > 0, σ = σ1, 0 < z < l1,

d(z) = d2 + d, d2 < 0, σ = σ2, l1 < z < 1,
(2)

where d is the path-averaged (over the map period) disper-
sion, and l1, l2 = 1 − l1 are the lengths of the two pieces of
fibre.

The traditional DM soliton [21, 24–44] is a solution of
(1) that restores its form periodically with the period L. It
can be considered as a nonlinear Bloch wave function or,
in other terms, as a nonlinear eigenfunction of (1) with the
period L that exists in the case of small nonlinearity [28].
Indeed, due to the rapidly varying local dispersion, the DM
pulse dynamics can be averaged to give a nonlocal equation
in the spectral domain describing the slow evolution of
the pulse envelope, the so-called DM NLSE [24, 25]. This
equation has stable DM soliton solutions of the form

Û(z,ω) = exp(iλ2z/2) f̂ (ω), where Û is a Fourier-like

transform of the field u, λ2 is a constant, and f̂ (ω) is real
and symmetric [26]. When these solutions seed (1), they
remain localized and stable while acquiring an additional
phase term. This frequency-dependent phase introduces a
chirp in the pulse with a period related to the periodicity
of the dispersion map. As the DM soliton propagates from
the center of the normal dispersion region, it temporally
broadens and then recompresses until it reaches the center of
the anomalous region, whereupon it begins to broaden again,
thereby breathing, as seen in Figure 1. The traditional DM
soliton solutions of (1) have been studied comprehensively
in literature [21, 24–44].

In general, DM solitons are very stable structures that
exist for a wide range of parameter space, in bound-state
configurations [45], and in the presence of higher order
dispersion mapping [46]. One of the important issues
concerning traditional DM solitons that is relevant for this
work is when variations of the normalized function d(z) are
large (i.e., at large dispersion map strengths), such solitons
either do not exist (are unstable) or their energy is too large
to be practically used [35]. In the following two sections,
we consider new aspects to DM systems. To obtain an
understanding of these systems, we rely on simplified models
that approximates the periodic solutions of the NLSE/CGLE
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Figure 1: Breathing dynamics of a DM soliton |u|2 (1) (on a
logarithmic scale) propagating over one dispersion map period.

through a system ordinary differential equations (ODEs).
Literature regarding variational reductions in nonlinear
Schrödinger/Ginzburg-Landau type systems is vast, and has
been used successfully to describe DM systems [36–44] as
well as mode-locked lasers [64–67].

3. Multiple-Period
Dispersion-Managed Solitons

In this section, we present a class of multiple-period
solutions of the NLSE with varying dispersion [55]. While
we examine general features of the NLSE rather than any
specific application, without loss of generality we will use a
terminology relevant to fibre optics applications.

Along with the standard solutions with period L shown
in the previous section, the NLSE (1) also possesses a
class of eigenfunctions with multiple periods Ln = nL,
where n is a positive integer. A family of periodic solutions
representing eigenfunctions of (1) with multiple periods
has been presented in [55]. In general, such solutions have
energy reduced compared to the corresponding standard
DM solitons and, therefore, could be of a potential interest
for high-speed transmission regimes. These multiple-period
solutions can be analyzed by a simplified model that
approximates the periodic solutions of the NLSE through
a system of two ODEs. In what follows we will call the
solutions with n = 1 single-period solutions (or standard
DM solitons), and those with n > 1 multiple-period (or long-
period) solutions. The long-period solutions have not yet
been studied systematically, and here we overview the results
presented in [55].

3.1. Reduced Model: TM System. As mentioned before, in
the limit when dispersion dominates nonlinearity, the pulse
solution of the NLSE (1) experiences quasilinear oscillations

during evolution, following the periodic variations of the dis-
persion. Effects of nonlinearity and small average dispersion
come into play on much longer scales compared to L. The fast
and slow dynamics of the NLSE solution can be separated by
applying the substitution

u(z, t) = N
f (x, z)
√
T(z)

exp
[
i
M(z)
T(z)

t2
]

(3)

to (1), where x = t/T(z) [37]. The parameter N is
introduced in (3) to scale out the pulse power by imposing
a normalization condition on the structural (responsible for
the pulse shape) function f so that

∫ | f |2dx = 1. We define
the evolution of T and M by (see, e.g., [27])

dT
dz

= 4d(z)M,
dM
dz

= d(z)
T3

− pσ(z)N2

T2
, (4)

where the parameter p is constant. In what follows, we will
refer to system (4) as the TM equations. Note that when p =
0 system (4) describes the linear pulse evolution, and if p /= 0
the additional term accounts in some sense for nonlinear
evolution. Applying (4), we obtain the evolution equation
for f :

i
∂ f

∂z
+
d(z)
T2

(
∂2 f

∂x2
− x2 f

)

+N2 σ(z)
T

(
| f |2 f + px2 f

)
= 0.

(5)

For p = 0, (5) is the evolution equation of a quantum
harmonic oscillator with an additional nonlinear term. The
nonlinearity mixes different modes of the linear oscillator,
inducing transitions from the ground state (which corre-
sponds to a Gaussian-shaped pulse) to other modes. The
constant p in system (4) can be adjusted to minimize the rate
of transitions from the ground state to other modes or, in
other words, to make the approximation of the DM soliton
solution of the NLSE as close as possible to the ground
state of the linear operator. The intensity of the dispersion-
induced pulse evolution can be characterized by the so-called
map strength parameter S defined (as in [35]) by

S = 2
l1d1 − l2d2

min
(
τ2

FWHM

) , (6)

where min(τFWHM) is the minimum full-width at half-
maximum (FWHM) of the pulse taken along the dispersion
map. It is known that for relatively large values of parameter
S the shape of the DM soliton is close to Gaussian [33]. In this
case, the nonlinear term can be accounted for as an adiabatic
perturbation to find the exact form of the pulse [27, 28].
Thus, under the assumption that the pulse shape is close to
Gaussian, the problem of calculating the eigenfunctions of
the NLSE (1) is reduced to the problem of calculating the
periodic solutions of the TM system (4).

We note that system (4) can also be regarded as an
approximate system of evolution equations for integral root-
mean-square momenta of the pulse [27, 39]. The function T
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Figure 2: Dependence of minimum T on the energy c. The thin
lines correspond to single-period solutions (n = 1) with d =
0.1, 0.03, 0,−0.01,−0.03 (from upper to lower line). The thick lines
corresponds to multiple-period solutions with d = 0.1; the solid,
long-dashed and short-dashed lines are for n = 10, n = 6, and
n = 4, respectively.

is related to Tint and M corresponds to Mint, where Tint and
Mint are defined as

Tint =
√
√
√
√
∫
t2|u|2dt
∫ |u|2dt

,

TintMint = i

4

∫
t(uu∗t − u∗ut)dt

∫ |u|2dt
.

(7)

The evolution of Tint and Mint is governed by system (4)
under the assumption that the phase of u is quadratic in t.
The accuracy of this assumption is the same as that of the
assumption that the pulse shape remains Gaussian during
propagation.

3.2. Periodic Solutions of the TM Equations

3.2.1. Revision of Single-Period Solutions. Without loss of
generality, we consider the TM system (4) on a two-step map
as defined by (2). Using a change of units of the variable
z, we can set d1 = 1 and d2 = −1. The map is then
characterized by three parameters: the nonlinear coefficients
of the two fibre segments c1,2 = pσ1,2N2 and the average
dispersion d = l1 − l2. The map strength (6) takes the form
S = 2/min(τ2

FWHM). In this work, we only consider the case
of “equally nonlinear” fibres, that is, |c1/d1| = |c2/d2| = c.

Here, we briefly recall the properties of the simple
periodic solutions of the TM sytem. Let us consider the
trajectory of one such solution in the T − M plane. The
condition that the solution is periodic can be written as

z+(T∗,M∗) = l1
2

, z−(T∗,M∗) = l2
2

, (8)

where {T∗,M∗} is the point of transition from anomalous
fibre to normal fibre, and z±(T ,M) is the length of anoma-
lous or normal fibre that takes the solution to pass from the

point with M = 0 to a given point {T ,M}. This function can
be found analytically [28, 29] to be

z± = 1
2V

[

TM ∓ c√
8V

cosh−1

(
T ± c/(2V)

√
c2/(4V 2) + 1/(2V)

)]

,

(9)

where V(z) = 2M2 + 0.5/T2 ∓c/T . However, (8) provides a
straightforward way of finding the single-period solutions of
the TM system numerically. These solutions are comprehen-
sively described in literature for some basic configurations
[28]. Often the application of such solutions in the field of
optical data transmission is directly related to the energy
dependence of Tmin = min(T(z)). This energy dependence is
illustrated in Figure 2 (thin lines). As it should be, Tmin tends
to a finite value as c → 0 in the case of zero d, and tends to
infinity when d > 0. For negative d the energy dependence of
Tmin has two branches.

3.2.2. Multiple-Period Solutions. To characterize multiple-
period solutions, it is convenient to define the transforma-
tion gz associated with the TM system which maps the T−M
plane onto itself. Then g ≡ g1 is the mapping performed
by one section of the fibre communication line. A simple
periodic solution corresponds to a point {T∗,M∗} mapped
onto itself: g1({T∗,M∗}) = {T∗,M∗}. In other words, the
point {T∗,M∗} is a stable point of the map g. In the vicinity
of this point, g can be expanded in series with respect to
δT = T − T∗, δM = M −M∗. In the area where this series
converges, the motion under gn is regular, while outside of
the area of convergence, the motion becomes chaotic. The
trajectories in the regular area are closed curves encircling
{T∗,M∗}. As it is typical for this mechanism of chaotization,
the regular area is bordered by a separatrix, which separates
the area where the orbits split into n closed curves encircling
some new central point {T∗m ,M∗

m}. The outmost n curves
form the separatrices, bordering this area on both inner and
outer sides. Outside of it there is another area with closed
orbits encircling {T∗,M∗}, then another area of the second
type, and so on. The structure of the area separated by each
of the n outmost curves is the same as that of the big area.
The n points {T∗m ,M∗

m} are (together with {T∗,M∗}) the
stable points of gn. The typical appearance of the trajectories
is shown in Figure 3.

The solutions of the TM system corresponding to the
stable points {T∗m ,M∗

m} can be found numerically. Figure 4
shows an example of the evolution of T(z) and M(z) for
a single-period DM soliton and a 4-period solution of the
TM equations. The energy dependence of Tmin for multiple-
period solutions with n = 10, n = 6, and n = 4 at d = 0.1
is shown in Figure 2, and compared to the dependence of the
simple periodic solution for the same map parameters.

It is customary to describe the properties of DM solitons
in terms of map strength and normalized peak power
N2

norm = σP0τ
2
FWHM/(3.11|β2|) (see [35]). The dependence of

the normalized peak power on the map strength for multiple-
period solutions is illustrated in Figure 5, and compared
to the same dependence for single-period solutions. The
multiple periodic lines branch off the lines corresponding
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Figure 3: Trajectories of the points on the T−M plane under gn for
d = 0 and c = 3.5.

to the simple periodic solutions on the same map. The line
characterizing a multiple-period solution disappears when
the corresponding point on the phase plane deepens into the
chaotic area. As it can be seen from Figure 5, solutions with
lower n appear at higher energies. For zero average dispersion
there is an n-period solution for every n ≥ 4.

It is evident from the structure of the trajectories of the
phase-plane points under gn (Figure 3) that in the vicinity of
every stable point of gn there can exist stable points of (gn)m

for some m. These points could be called multiple-period
solutions of the second order or (n×m) period solutions. For
instance, the structure resembling a three-leaved flower in
Figure 3 indicates the presence of solutions with n = 11 and
m = 3. The lines representing such solutions on a Tmin versus
c diagram must start from branches of their “mother” n-
period solutions in the same way the n-period branches start
from a single-period line. Undoubtdly, for large total periods
solutions of higher orders can also be found, however, this is
beyond the scope of the present work.

4. Dispersion-Managed Solitons in
Mode-Locked Fibre Lasers

The multiple-period solutions of the previous section
have less energy when compared with the single-period
solutions of (1). This is advantageous in communication
systems where low-energy pulses are required. In contrast,
high-energy pulse solutions are preferred in fibre laser
applications. Indeed, although the practical and innovative
applications of mode-locked fibre lasers has continued to
grow in the past decade [3], its broader impact has been
limited due to restrictions on pulse energies, which is a con-
sequence of the underlying cavity nonlinearities. To reduce
the net nonlinear penalty, lasers have been constructed
with dispersion maps with segments of alternating signs of
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Figure 4: Evolution of T and M for a single-period DM soliton
(upper plots) and a 4-period solution (lower plots). Here, d = 0.03
and c = 3.94.

dispersion. As would be expected from linear propagation
theory, the pulse stretches and compresses during each
map period, effectively reducing the average pulse duration.
Indeed, these so-called “stretched-pulse lasers” have resulted
in femtosecond pulses with nanojoule energies and ∼1 kW
power levels [59, 60]. The evolution of the slowly varying
electric field envelope in the laser cavity can be described at
leading order by the NLSE (1) considered in the previous
section [68]. Although the leading order terms consist
of dispersion and self-phase modulation (SPM), certain
dissipative terms are needed to achieve mode-locking. Here
we analyze a modified DM system that includes these
dissipative perturbations which are necessary for stable and
robust mode-locking.

The evolution of electromagnetic energy in the laser
cavity is subject to various dissipative effects such as
attenuation, gain saturation, gain dispersion, and saturable
absorption (intensity-discrimination). Haus proposed that
these different elements could be averaged together resulting
in the cubic-quintic Ginzburg-Landau evolution [3, 8–16]:

i
∂u

∂z
+ d(z)

∂2u

∂t2
+ γ(z)|u|2u

= i
(
g(z)− l0

)
u + iτg(z)

∂2u

∂t2
+ iβ|u|2u− iμ|u|4u,

(10)
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Figure 5: Dependence of the normalized power N2
norm on the

map strength S. (a) shows simple periodic solutions with d =
0.1, 0,−0.03. The same simple periodic solutions are compared
to multiple-period solutions (thick lines) in (b). The solid, long-
dashed, and short-dashed lines correspond to n = 10, n = 6, and
n = 4, respectively.

with saturated gain behavior given by [3]

g(z) = g0

1 + ‖u‖2/e0
. (11)

In addition to the scalings for the standard NLSE (1), g0 =
Z0G, l0 = Z0Γ, e0 = Esat/(P0T0), and τ = 1/(ΩgT0)2. Here
the distance-scaling parameter Z0 is the length of the laser
cavity, G (in 1/meter) is the linear gain from amplification,
Γ (in 1/meter) is the distributed losses in the cavity, Esat (in
nanojoules) is the saturation energy of the gain medium,
and Ωg (1/second) is related to the gain bandwidth Δλ
through the relation Ωg = (2πc/λ2

0)Δλ. The self-amplitude
modulation (SAM) parameters β and μ provide a simple
qualitative model for the intensity discrimination responsible
for generating mode-locking. Only recently have these two
key parameters been related to any physical process [69, 70],
thus establishing asymptotic validity of the Haus model in a
limited parameter regime. Regardless of this limited validity,
the Haus model captures the key physical processes in the

mode-locking physics and gives many important insights
into the mode-locking dynamics.

The CGLE (10) is quite general and particular dynamics
will depend on the parameter values. The parameter space
for (10) is large, and is typically reduced by scaling the
propagation distance by either the nonlinear or dispersion
lengths. In the context of mode-locked lasers the dissipative
terms play an important role in the scalings considered. The
energy saturation determines the pulse power P0, allowing
us to choose the appropriate pulse duration T0 to scale the
ratio of the SPM coefficient γ to the dispersion coefficient
d [71]. This scaling allows for a reduced parameter space
to be considered. Here we are interested in how the various
distributed dissipative terms present in a mode-locked fiber
laser can change the nature of typical dispersion managed
solutions.

4.1. Reduced Model. The governing equation (10) is a partial
differential equation modeling the spatial-temporal evolu-
tion of electromagnetic energy in the laser cavity. To obtain
a better understanding of the physical processes involved,
a reduced system can be used to describe the complete
evolution problem with ODEs that govern the evolution of
a finite set of pulse parameters. Typically reduced systems
are found in the context of classical Hamiltonian systems,
however it is possible to use a modified variational [67, 72]
or momentum [13, 73] method which accounts for the
dissipative terms in (10).

Inspired by numerical simulations and previous work
done on DM solitons [27, 40, 41], we use an ansatz of the
form

u(z, t) =
√
η(z) exp

[
−(ω(z)t)2 + iC(z)t2 + iϕ(z)

]
, (12)

where the intensity (η), FWHM (1/(2ω)), chirp parameter
(C), and phase-shift (ϕ) all depend on propagation distance.
Note that the dynamics of the pulse width 1/(2ω) and chirp
C are easily related to the quantities T and M of the previous
section. Using the modified variational method (for details
see, e.g., [67, 72]) with the ansatz (12), the evolution of the
ansatz parameters are found to satisfy the ODEs

ηz = −4dCη + 2
(
g − l0

)
η + c1βη

2 − c2μη
3 − 4τgηω2,

(13)

ωz = −4dCω +
1
2
βηω− c3μη

2ω − 2τgω

[

ω2 −
(
C

ω

)2
]

,

(14)

Cz = 4d
(
ω4 − C2)−

√
2

2
γηω2 − 8τgCω2, (15)

where c1 = 5
√

2/3, c2 = 16/(3
√

3), c3 = 4/(3
√

6), and the
saturable gain is given by

g = g
(
η,ω

) = g0

1 +
√
π/2η/(ωe0)

. (16)

This reduced model illuminates the dynamics in the laser
cavity and can further our understanding of the dissipative
processes in the context of dispersion and nonlinear man-
agement in mode-locked lasers.
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Figure 6: Pulse evolution obtained from solving the evolution
equation (10) numerically for β = μ = τ = 0. (a) Stroboscopic
view where each pulse shown is located at the middle of the
anomalous segment of the dispersion map. (b) Intramap evolution
over one map period. Note that the intramap evolution is not
exactly repeatable over consecutive map periods.

4.2. Numerical Simulations. To illustrate the mode-locking
dynamics we consider a physically realizable two-step dis-
persion map (2) with the period l = L/Z0 and where d1 =
−d2 = d > 0. Further, as in the previous section, we restrict
ourselves to the case of “equally nonlinear” fiber segments
with γ/d = 1. Note that a wide variety of dispersion maps
can be considered. However, we have chosen this particular
map to illustrate general trends in the behavior of dissipative
DM mode-locking. For all simulations we use the dispersion
map parameters d = 1, d = 0.1, l = 0.5, as well as gain
saturation and loss parameters g0 = 2, l0 = 1, and e0 = 1. In
the following subsections, we will consider the case of infinite
gain bandwidth and finite gain bandwidth separately.

4.2.1. Infinite Gain Bandwidth. To understand the effects
gain saturation and SAM have on the governing equation
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Figure 7: Pulse evolution obtained from solving the evolution
equation (10) numerically for β = 0.2, μ = 0.05, τ = 0. (a)
Stroboscopic view where each pulse shown is located at the middle
of the anomalous segment of the dispersion map. (b) Intramap
evolution over one map period. Note that the intramap evolution
is exactly repeatable over consecutive map periods.

(10), we consider the case where the gain bandwidth is much
broader than the pulse bandwidth, that is, τ = 0. Figure 6
shows the result of simulation of (10) with only the effect
of gain saturation included (β = μ = 0). Here we see that
the initial pulse quickly settles to a quasisteady state whose
energy is given by E = e0(g0 − l0)/l0. This is in contrast to
DM solitons whose energy is determined by the energy of
the input pulse. The gain saturation acts only as a selection
mechanism, and once this quasisteady state is reached the
evolution is completely determined by dispersion and SPM.
Since the pulse configuration selected by the gain saturation
typically does not coincide with what is needed for periodic
pulse evolution for DM solitons, the intramap evolution
in Figure 6 is not exactly repeatable over consecutive map
periods.

Figure 7 shows the evolution of (10) with both gain
saturation and SAM effects included (β = 0.2, μ = 0.05).
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Here we see that the combined effects creates a stable
attracting periodic state. Figure 8 shows the two-norm of
the difference between consecutive pulses which are located
in the middle of the anomalous dispersion segment. It
is clear that the evolution quickly settles from the initial
condition towards a purely periodic state. The amplitude
modulations from the saturable absorber eliminate any long-
scale dynamics. This is in contrast to DM systems where
long-time oscillations occur [40]. The inset of Figure 8 shows
the Poincaré map for these pulses in a physically relevant
phase space. Here the intensity, FWHM, and chirp parameter
are calculated from numerical simulation using standard
integral quantities-related Tint and Mint defined in (7). The
phase line spirals into a point, showing the evolution goes to
a purely periodic state.

A comparison between the solution to the reduced dif-
ferential equations (13)–(15) and the full evolution equation
(10) is shown in Figure 9 over one map period. Here the
intensity (η), FWHM (1/(2ω)), and chirp parameter (C)
are shown for both cases. Although the reduced model is
constrained by the ansatz assumption, it is remarkable how
accurately it models the full equation dynamics. One slight
difference is that the reduced model solution parameters
experience long-scale oscillations which are not present in
the full solution to (10). However, these oscillations cause
a maximum error of ∼7 percent. Figure 10 shows the phase
plane dynamics over 100 periods for both the reduced model
(dashed curves) and the full evolution equation (grey curve).
Here we see the typical “crescent moon” structure that is
observed in DM soliton theory [27, 40, 41]. Note that
the long-scale oscillations observed in the reduced model
is visible due to the quasi-periodic orbits. Although there
is slight variations, the reduced set of ODEs captures the
essential dynamics of the full evolution equation.
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Figure 9: Evolution of the intensity, FWHM, and chirp parameter
over one map period in the case where only gain saturation and
SAM are present. The results from both the full evolution equation
(10) (solid black curves) and the reduced equations (13)–(15)
(grey diamonds). The shaded section corresponds to the anomalous
dispersion segment.
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Although the amplitude modulations from the gain
saturation and saturable absorber create a stable attracting
state, the overall structure of the steady state is similar to
the DM soliton. Specifically, at the center of each segment in
the map there exists a peak-amplitude and minimum pulse-
width corresponding to the zero-chirp points. Further, the
side-lobe structure observed for DM solitons at maximum
compression exists as well. Thus gain saturation along with
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Figure 11: One-map period evolution in the case where gain
saturation, saturable absorber, and gain bandwidth are included
(β = 0.2, μ = τ = 0.05). (a) Intramap evolution from numerical
solution of (10). (b) Evolution of the intensity, FWHM, and chirp
parameter over one map period from both the full evolution
equation (10) (solid black curves) and the reduced equations (13)–
(15) (grey diamonds). The shaded section corresponds to the
anomalous dispersion segment.

SAM selects the exact dissipative DM soliton that will satisfy
the energy constraints. In general, gain saturation and SAM
allow for high map-strength evolution to persist resulting in
higher-energy pulses than those considered in the previous
section.

4.2.2. Finite Gain Bandwidth. When the pulse bandwidth
is comparable to the gain bandwidth, we must include the
effects of bandwidth-limited gain. For a gain bandwidth
which can vary from Δλ = 20–40 nm, τ ≈ 0.03–0.32.
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Figure 12: Numerically calculated gain from three different simu-
lations of (10) which include the dissipative effects: gain saturation;
gain saturation and SAM; gain saturation, SAM and bandwidth
limited gain. Note that the gain saturates to a constant value in all
cases.

In general, including the gain-bandwidth term does not
destabilize the periodic evolution. However, it does change
the nature of the periodicity. Figure 11 shows the intraperiod
evolution as well as the intensity, FWHM, and chirp
parameter from both the full simulated equation (10) and
the reduced system (13)–(15). Here the equation parameters
are taken to be β = 0.2, μ = τ = 0.05. From this simulation
we see that the steady-state periodic solution persists, as well
as typical DM soliton structure such as side-lobes. However,
the zero-chirp (minimum FWHM) points are much closer
to the center point of the map. Indeed, we see that although
the gain saturation and SAM have no contribution to (15),
the gain bandwidth clearly does. As τ is increased the zero-
chirp points coincide and the structure loses stability. Again
it should be noted that the reduced model (13)–(15) does an
excellent job characterizing the dynamics of the full evolution
equation (10).

4.3. Steady-State Dynamics. The dissipative perturbations
considered selects the exact DM soliton that will satisfy
particular energy constraints. Figure 12 illustrates that the
gain (energy) nearly saturates to a constant value in all cases
we have considered. Thus, once mode-locking has reached its
steady-state, dE/dz ∼ 0. We can use this conserved quantity
in the reduced model (13)–(15) to lower the dimensionality
of the system. At steady-state, ηzω − ηωz = 0, giving

2
(
g − l0

) ∼ b1βη + b2μη
2 + 2τg

[

ω2 +
(
C

ω

)2
]

, (17)
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where b1 = 1/2 − c1 and b2 = c2 − c3. Using (17) in (13)
we see that η = αω for some constant α. This gives the two-
dimensional steady-state system

ωz=−4dCω+
α

2
βω2−c3α

2μω3−2τgω

[

ω2−
(
C

ω

)2
]

, (18)

Cz = 4d
(
ω4 − C2)−

√
2α
2

γω3 − 8τgCω2. (19)

These coupled equations govern the dynamics of the pulse
once the transient behavior has died out and the energy has
saturated to a (nearly) constant value.

Since the reduced system provides an excellent descrip-
tion of the full model, it can be used to calculate relevant
physical quantities. For example, the chirp parameter C0 at
minimum FWHM ω0 is found by setting (18) to zero. For
the case of infinite bandwidth we have

C0 = αω0

4d

[
β

2
− αc3μω0

]

. (20)

In the case of a finite gain bandwidth, we have

C0 = dω2
0

2τg

⎡

⎣1±
√√
√
√1− τg

2d2

(
αβ

2ω0
− α2c3μ− 2τg

)⎤

⎦ (21)

∼ αω0

2d

[
β

4
−
(
αc3μ

2
− τg

)
ω0

]

, (22)

where we obtain the approximation (22) by taking the minus
sign in (21) and using the fact that the dissipative parameters
β, μ, and τ are much less than unity. Note that since these
parameters are small, the minimum pulse duration occurs
when |C0| � 1. Further, it is interesting to note that value
of C0 is inversely proportional to the map depth d. Thus
for large map depths, the minimum FWHM of the pulse
will occur when C ∼ 0, which is consistent for dispersion
dominated systems.

It should be noted that all Hamiltonian terms (with α =
1) in (18)-(19) were obtained in the context of DM solitons
in [40, 41]. There, the typical “crescent moon” structure was
observed and related to stable DM propagation. In that work,
the initial condition was critical in obtaining a closed loop
in the phase space. Here the dissipative terms determine the
energy of the pulse, and act as a stabilization mechanism to
maintain a purely periodic solution. Further, they allow for
large map strength evolution resulting in high-energy pulse
propagation.

5. Conclusion

We have discussed some recent developments in the theory of
DM solitons within the context of photonic applications. We
have considered two directions of further development of the
DM soliton theory and corresponding practical applications
in optical signal transmission/processing and mode-locked

laser systems. In the context of optical communications, it
is desirable to keep the energy of the carrier pulses below
a certain level, which is imposed by power consumption
and safety conditions. In the framework of a reduced
ODE-based model, we have examined a class of periodic
localized solutions of the NLSE with periodic variations of
the dispersion. Such solutions have multiple periods and
lower energies compared to traditional DM solitons of the
same temporal width. The multiple-period DM solitons
described in this work experience larger broadening during
propagation and, therefore, they much more closely mimic
the widely used in practice quasilinear transmission regime
compared to traditional DM solitons.

In the context of powerful laser systems, we have
examined mode-locked lasers and studied the properties of
periodic dissipative DM solitons with high energies. Note
that in powerful laser systems, one of the important goals
is to generate stable optical pulses with as high energy as
possible. By means of numerical simulations and a reduced
variational model of the governing CGLE, we have analyzed
the influence of the different dissipative processes that take
place in the laser cavity. The reduced model introduced
here rather accurately describes the key characteristics of the
dissipative DM solitons, such as pulse width, chirp, peak
power and energy. This model might be very useful for multi-
parametric optimization of complex laser systems.
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[39] S. K. Turitsyn, T. Schäfer, and V. K. Mezentsev, “Generalized
momentum method to describe high-frequency solitary wave
propagation in systems with varying dispersion,” Physical
Review E, vol. 58, no. 5, pp. R5264–R5267, 1998.

[40] J. N. Kutz, P. Holmes, S. G. Evangelides Jr., and J. P. Gordon,
“Hamiltonian dynamics of dispersion-managed breathers,”
Journal of the Optical Society of America B, vol. 15, no. 1, pp.
87–96, 1998.

[41] J. N. Kutz and S. G. Evangelides Jr., “Dispersion-managed
breathers with average normal dispersion,” Optics Letters, vol.
23, no. 9, pp. 685–687, 1998.

[42] A. V. Mikhailov, “Variationalism and empiriocriticism (Exact
and variational approaches to fibre optics equations),” in Opti-
cal Solitons: Theoretical Challenges and Industrial Perspectives,
V. E. Zakharov and S. Wabnitz, Eds., pp. 63–72, Springer,
Berlin, Germany, 1999.

[43] B. A. Malomed, “Variational methods in nonlinear fiber optics
and related fields,” Progress in Optics, vol. 43, pp. 69–191, 2002.

[44] J. P. Gordon and L. F. Mollenauer, “Scheme for the characteri-
zation of dispersion-managed solitons,” Optics Letters, vol. 24,
no. 4, pp. 223–225, 1999.

[45] I. Gabitov, R. Indik, L. Mollenauer, M. Shkarayev, M.
Stepanov, and P. M. Lushnikov, “Twin families of bisolitons
in dispersion-managed systems,” Optics Letters, vol. 32, no. 6,
pp. 605–607, 2007.



Advances in Nonlinear Optics 13

[46] J. Moeser, I. Gabitov, and C. K. R. T. Jones, “Pulse stabilization
by high-order dispersion management,” Optics Letters, vol. 27,
no. 24, pp. 2206–2208, 2002.

[47] I. R. Gabitov and P. M. Lushnikov, “Nonlinearity management
in a dispersion-managed system,” Optics Letters, vol. 27, no. 2,
pp. 113–115, 2002.

[48] R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel
cross-phase modulation and four-wave mixing in high-speed
TDM systems,” Electronics Letters, vol. 35, no. 18, pp. 1576–
1578, 1999.

[49] P. V. Mamyshev and N. A. Mamysheva, “Pulse-overlapped
dispersion-managed data transmission and intrachannel four-
wave mixing,” Optics Letters, vol. 24, no. 21, pp. 1454–1456,
1999.

[50] S. K. Turitsyn, M. P. Fedoruk, and A. Gornakova, “Reduced-
power optical solitons in fiber lines with short-scale dispersion
management,” Optics Letters, vol. 24, no. 13, pp. 869–871,
1999.

[51] S. K. Turitsyn, N. J. Doran, E. G. Turitsyna, E. G. Shapiro, M.
P. Fedoruk, and S. B. Medvedev, “Dispersion-managed trans-
mission systems with short-scale dispersion management,”
in Massive WDM and TDM Soliton Transmission Systems,
M. Shinomiya and A. Hasegawa, Eds., pp. 235–251, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2000.

[52] A. H. Liang, H. Toda, and A. Hasegawa, “High-speed soliton
transmission in dense periodic fibers,” Optics Letters, vol. 24,
no. 12, pp. 799–801, 1999.

[53] L. J. Richardson, W. Forysiak, and N. J. Doran, “Dispersion-
managed soliton propagation in short-period dispersion
maps,” Optics Letters, vol. 25, no. 14, pp. 1010–1012, 2000.

[54] M. Shtaif, “Ultrahigh data-rate transmission using a dense
dispersion map with two-fold periodicity,” IEEE Photonics
Technology Letters, vol. 20, no. 8, pp. 620–622, 2008.

[55] O. Y. Schwartz and S. K. Turitsyn, “Multiple-period
dispersion-managed solitons,” Physical Review A, vol. 76, no.
4, Article ID 043819, 7 pages, 2007.

[56] N. Akhmediev and A. Ankiewicz, Eds., Dissipative Solitons,
vol. 661 of Lecture Notes in Physics, Springer, Dordrecht, The
Netherlands, 2005.

[57] Y. S. Kivshar and G. P. Agarwal, Optical Solitons: From Fibers to
Photonic Crystals, Academic Press, 2003.

[58] L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Optics
Letters, vol. 9, no. 1, pp. 13–15, 1984.

[59] K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs
pulse generation from a stretched-pulse mode-locked all-fiber
ring laser,” Optics Letters, vol. 18, no. 13, pp. 1080–1082, 1993.

[60] F. O. Ilday, F. W. Wise, and T. Sosnowski, “High-energy
femtosecond stretched-pulse fiber laser with a nonlinear
optical loop mirror,” Optics Letters, vol. 27, no. 17, pp. 1531–
1533, 2002.

[61] F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise,
“Self-similar evolution of parabolic pulses in a laser,” Physical
Review Letters, vol. 92, no. 21, Article ID 213902, 4 pages, 2004.

[62] F. O. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark,
“Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-
breaking-free fiber laser,” Optics Letters, vol. 28, no. 15, pp.
1365–1367, 2003.

[63] O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of
passively mode-locked laser including self-phase modulation
and group-velocity dispersion,” Optics Letters, vol. 9, no. 5, pp.
156–158, 1984.

[64] S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy
rate equations for mode-locked lasers,” Journal of the Optical
Society of America B, vol. 14, no. 8, pp. 2099–2111, 1997.

[65] C. Antonelli, J. Chen, and F. X. Kärtner, “Intracavity pulse
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