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Abstract: We present a novel approach for the optical manipulation of
neutral atoms in annular light structures produced by the phenomenon of
conical refraction occurring in biaxial optical crystals. For a beam focused
to a plane behind the crystal, the focal plane exhibits two concentric bright
rings enclosing a ring of null intensity called the Poggendorff ring. We
demonstrate both theoretically and experimentally that the Poggendorff
dark ring of conical refraction is confined in three dimensions by regions of
higher intensity. We derive the positions of the confining intensity maxima
and minima and discuss the application of the Poggendorff ring for trapping
ultra-cold atoms using the repulsive dipole force of blue-detuned light. We
give analytical expressions for the trapping frequencies and potential depths
along both the radial and the axial directions. Finally, we present realistic
numerical simulations of the dynamics of a 87Rb Bose-Einstein condensate
trapped inside the Poggendorff ring which are in good agreement with
corresponding experimental results.
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1. Introduction

Optical ring potentials (ORPs) with axial symmetry are considered as basic building blocks
and the simplest nontrivial closed-loop circuits in atomtronics [1–5] and atom interferome-
try [6]. Atoms can be trapped by means of the optical dipolar force in high or low intensity
regions with red-detuned [7, 8] or blue-detuned [9] light, in what follows called bright and
dark potentials, respectively. On the one hand, bright ORPs have been proposed and demon-
strated with high-azimuthal-order Laguerre–Gaussian (LG) beams [10] and also with annular
microlenses [11]. Azimuthal lattices within ORPs have been demonstrated with time orbiting
of light beams [12, 13] and by interference of LG beams of different azimuthal orders [14]. A
one-dimensional stack of ORPs in a line has been proposed in an optical cavity [15] and demon-
strated with axicon beams [16]. Experimental storage and propagation of ultra-cold atoms and
Bose-Einstein condensates (BECs) in bright ORPs have been reported recently [17, 18]. Dark
ORPs on the other hand are optical fields with an annular region of minimum intensity [19],
such as closed-loop optical singularities [20, 21], for which the region of minimum intensity
is exactly zero. For ultra-cold atoms, dark ORPs have the advantage of substantially reducing
atom heating and decoherence rates [9] because of the low rate of spontaneous photon scattering
as well as producing intrinsically flat potential minima. Blue-detuned ORPs have been experi-
mentally reported by means of LG beams generated with spatial light modulators (SLMs) [22]
and by amplitude masks [23–25]. These two techniques might experience the following limita-
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tions: (i) a significant fraction of the input power is lost and, therefore, it does not contribute to
create the optical trap, (ii) the smoothness and, therefore, the quality of the trapping potential
is limited by the size and number of pixels for the SLMs and the resolution of the printing sys-
tem for the amplitude masks, and (iii) an accurate control on the position and alignment of the
optical elements being used is required. As a consequence, these two techniques yield typically
not null intensity minima. Producing ORPs with zero-intensity annular regions both along the
radial and axial directions is a challenging task. In this case, the dark potential forms toroidal
dark focus, i.e., a region of minimum intensity confined by higher intensities (light walls) both
in the axial and radial directions. A toroidal dark focus has only been demonstrated using a
superposition of two LG beams [19].

In this article, we present a new method to generate a dark ORP by means of the phenomenon
of conical refraction (CR) [26–33], occurring in biaxial crystals. CR leads to a set of two con-
centric bright rings enclosing a dark ring of null intensity, known as Poggendorff dark ring
(PDR). We theoretically investigate the three-dimensional (3D) field distribution around the
CR PDR and show both theoretically and experimentally that it is a toroidal dark focus. We
also discuss the use of the PDR as a blue-detuned ORP for ultra-cold atoms and demonstrate
this with a 87Rb BEC. This technique has the advantage of the easy generation of the toroidal
dark trap, which only needs a focused Gaussian beam and a biaxial crystal. In addition, CR
provides the full conversion of the input power into the toroidal dark trap, in contrast to the
previously reported methods which introduce losses due to diffraction in the generation of LG
beams. These features make the CR toroidal dark-focus beam very attractive for particle [34]
and atom [10,11, 19] trapping, in particular with blue-detuned light beams [9].

The article is organized as follows: In Section 2 we give an introduction to the CR phe-
nomenon, presenting its main fundamental characteristics: Section 2.1 presents the exact parax-
ial solution of the light pattern after propagation along one of the optic axes of a biaxial crystal,
while its asymptotic approximation is presented in Section 2.2. In Section 3, we investigate
the use of the toroidal dark trap provided by CR for the trapping of ultra-cold atoms with blue-
detuned light. In Section 3.1 we apply the harmonic approximation around the PDR and present
expressions for the trapping frequencies and height of the potential barriers as a function of the
physical parameters of the trapping system. Then, both numerical simulations and experimental
data for a 87Rb BEC trapped in the PDR are shown in Section 3.2. Finally, the main conclusions
are summarized in Section 4.

2. Conical refraction

Conical refraction [28–33] is observed when a focused light beam passing along an optic axis of
a biaxial crystal (BC) is transformed into a light ring at the focal plane. Each pair of diagonally
opposite points of the CR ring are orthogonally linearly polarized, as shown by double arrows
in Fig. 1. Therefore, a complete ring with uniform azimuthal intensity distribution is observed
only for randomly (RP) or circularly (CP) polarized input beams (Fig. 1(a)), while for linearly
polarized (LP) input beams the intensity pattern is azimuthally crescent with a zero-intensity
point, where the polarization is orthogonal to the one of the input beam. This polarization dis-
tribution, which constitutes an essential signature of the CR phenomenon, significantly differs
from the usually known radial and azimuthal polarization modes and only depends on the ori-
entation of the plane of the crystal optic axes [30].

The CR geometric optical approximation of the ring radius, R0, is the product of the crystal
length, l, and the CR semi-angle α , i.e., R0 = lα [33]. The CR semi-angle α depends on

the principal refractive indices of the crystal as α =
√
(n2

2 −n2
1)(n

2
3 −n2

2)/n2
2, where we have

assumed n1 < n2 < n3. Moreover, under conditions of ρ0 ≡ R0
w0

� 1 the CR pattern at the focal
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(a)             (b)              (a)             (b)              

Fig. 1. Intensity and polarization distribution (depicted with yellow double arrows) of con-
ical refraction with input beams of circular (a) and linear vertical (b) polarization. The dark
ring between the two bright ones is known as the Poggendorff dark ring (PDR).

plane is formed by a pair of concentric bright rings separated by the Poggendorff dark ring
(Fig. 1). Here, w0 is the waist of the focused input beam, defined as the radius of the e−2 relative
intensity, i.e. I(r = w0) = e−2I(r = 0). Finally, as far as CR beam evolution is concerned, the
focal plane is a symmetry plane along the beam propagation direction [33]. The CR rings are
observed at the focal plane, and more involved structures including secondary rings are found
as one moves along the beam propagation direction. At points given by zRaman =±√

4/3ρ0zR

from the focal plane a bright spot known as the Raman spot [34] appears on the beam axis,
where zR denotes the Rayleigh range of the focused input beam. In this section we describe the
properties of the optical field at and close to the dark region of the Poggendorff ring.

2.1. Paraxial solution of the intensity distribution for CR

The paraxial solution describing CR was derived by Belsky and Khapalyuk [29] and later re-
formulated by Berry [28]. For a uniformly polarized and cylindrically symmetric input beam it
gives an electric field vector:

�E (�ρ ,Z) =
(

BC +C S
S BC −C

)
�e0 , (1)

where C = BS cos(ϕ +ϕ0) and S = BS sin(ϕ +ϕ0). ϕ is the azimuthal component in cylindrical
coordinates and ϕ0 is the orientation of the plane of the optic axes of the crystal. E0 and �e0 =(
ex,ey

)
are the amplitude and unit vector of the electric field �E0 = E0 (ρ ,z)�e0 of a focused

input beam with waist w0 and Rayleigh range zR. Z ≡ z/zR and �ρ ≡ (cosϕ,sinϕ)r/w0 with
ρ = |�ρ | ≡ r/w0 define, respectively, normalized axial and radial components in cylindrical
coordinates with origin at the ring center (ρ = 0) at the focal plane (Z = 0). BC and BS are the
main integrals of the Belsky–Khapalyuk–Berry (BKB) solution, which describes the general
properties of the CR beam. These integrals read:

BC (ρ ,Z) =
1

2π

∫ ∞

0
ηa(η)e−i Z

4 η2
cos(ηρ0)J0 (ηρ)dη , (2)

BS (ρ ,Z) =
1

2π

∫ ∞

0
ηa(η)e−i Z

4 η2
sin(ηρ0)J1 (ηρ)dη , (3)

where η ≡ κw0, κ being the spatial wave-vector and Jq is the qth-order Bessel function of the
first type and a(η) = 2π

∫ ∞
0 rE0 (r)J0 (ηr)dr is the radial part of the 2D transverse Fourier
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transform of the input beam. For CP and LP inputs the intensity distribution behind the crystal
becomes, respectively

ICP = |BC|2 + |BS|2 , (4)

ILP = ICP +2Re [BCB∗
S]cos(2Φ− (ϕ +ϕ0)) , (5)

where Φ is the polarization azimuth of the linearly polarized input light with�e0 =(cosΦ,sinΦ).

2.2. Asymptotic solution close to the Poggendorff dark ring

The asymptotic solution for the Poggendorff dark ring, i.e., for ρ0 = R0
w0

� 1, is obtained by
using the asymptotic expansion of Bessel functions cos(ηρ0)J0 (ηρ) ≈ sin(ηρ0)J1 (ηρ) ≈
cos(ηξ −π/4)/

√
2πηρ0. Here we have centered the normalized radial component in cylindri-

cal coordinates at ρ0 by using ξ ≡ ρ −ρ0 = r/w0−R0/w0. In this case BC ≈ BS and the electric
field can be written as [29, 30]:

�E (ξ ,Z,ϕ) = f (ξ ,Z)E0 (�eCR ·�e0)�eCR , (6)

where

f (ξ ,Z) =

√
1

8π3ρ0

∫ ∞

0
dη

√
ηa(η)e−i Z

4 η2
cos

(
ηξ − π

4

)
,

(7)

and

�eCR =

(
cos ϕ+ϕ0

2
sin ϕ+ϕ0

2

)
. (8)

Therefore, the asymptotic intensity distributions Ia
CP and Ia

LP for CP and LP input beams are,
respectively,

Ia
CP (ξ ,Z) = | f (ξ ,Z)|2 , (9)

Ia
LP (ξ ,Z,ϕ) = Ia

CP cos2
(

Φ− ϕ +ϕ0

2

)
. (10)

For LP input beams (see Eq. (10)), the output intensity distribution lacks azimuthal symmetry.
In this case the CR ring has a maximum and a zero intensity at azimuthal angles ϕmax = 2Φ−ϕ0

and ϕmin = ϕmax +π , respectively. These points possess, correspondingly, the same and the
orthogonal polarization relative to that of the input beam, respectively (Fig. 1(b)).

In the following we will analyze the case of a CP input beam, for which the CR out-
put intensity is azimuthally symmetric and its spatial distribution is described by Eq. (9).
For a Gaussian input beam with normalized transverse profile of the electric field amplitude

E(ρ) =
√

2P/πw2
0 exp(−ρ2), its Fourier transform is a(η) =

√
2πP
w2

0
exp

(−η2/4
)
. P is the

power of the input beam. For this case, Eq. (7) can be analytically evaluated through the Kum-
mer confluent hyper-geometric function 1F1(a;b;z) [32]:

f (ξ ,Z) =

√
P

(wZ)3/4
√

2π2w2
0ρ0

[
Γ
(

3
4

)
1F1

(
3
4

;
1
2

;− ξ 2

wZ

)

+ 2
ξ√
wZ

Γ
(

5
4

)
1F1

(
5
4

;
3
2

;− ξ 2

wZ

)]
, (11)
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0.00
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0.43
0.57
0.71
0.86
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I (ξ, Z=0) 

-4 -2 0 2 4
= (r-R  )/w0 0ξ = ρ-ρ
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0.00

I (ξ=ξ , Z) x 10  
0
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2

R

Fig. 2. Normalized CR intensity for a CP Gaussian input beam as given by Eq. (11) along
the radial direction (a) at the focal plane and (b) along the axial direction at the radial
position of the PDR (ξ = ξ0). Blue solid circles represent experimental data with an exper-
imental uncertainty of 5 % along both axis.

where wZ = 1+ iZ.
The solid line in Fig. 2(a) shows the square modulus of Eq. (11) at the focal plane (Z = 0).

f (ξ0,0) = 0, gives the radial position of the Poggendorff dark ring at the focal plane, being
ξ0 =−0.541. In other words, the radius of the PDR is smaller than the geometric approximation
of the CR ring, R0, by approximately half the waist of the input beam. Note that ξ = ρ −ρ0,
with ρ0 ≡ R0/w0. In the radial direction the PDR is confined by two maxima at ξ+ = 0.390 and
ξ− = −1.235, respectively (see Table 1). Along the Z direction, the lowest intensity barrier is
observed also at the radial position of the PDR, i.e., at ξ = ξ0 as shown in Fig. 2(b). At this
radial point the positions of the intensity maxima along Z obtained from Eq. (9) and (11) are
Z± = ±1.519. Therefore, the PDR is confined by walls of light in all directions and forms a
toroidal dark-focus. Table 1 presents the positions of the PDR and of the maxima in the radial
(ξ±) and axial (Z±) directions. As a visualization of the toroidal dark trap provided by the PDR

Table 1. Positions of the Poggendorff dark ring and of the maxima in the radial (ξ±) and
axial (Z±) directions.

Point name ξ Z
Dark Ring: ξ0 -0.541 0

Bright Rings: ξ+ 0.390 0
ξ− -1.235 0

Maxima along Z: Z± -0.541 ±1.519

of CR, Fig. 3(a) shows the three-dimensional distribution of light intensity of the asymptotic
approximation of the BKB solution near the focal plane. Fig. 3(b) is a contour plot near the
PDR, confirming that it is a region of low intensity surrounded in all directions by regions of
higher intensity. Note that the PDR is an exact null intensity region only for input Gaussian
beams under the asymptotic approximation, i.e. for ρ0 � 1, while non-zero intensity radial
minimum points are found out of the paraxial approximation, as reported in Refs. [38, 39]. For
input beams with different transverse profile the CR pattern may change [40, 41].

We have experimentally checked that near the PDR the light intensity increases in all direc-
tions, see blue solid circles in Fig. 2(a) and Fig. 2(b). These experiments on the CR PDR were
carried out using a CP focused input Gaussian beam (w0 = 40 μm, zR = 7.9mm) at λ = 640nm
and a KGd(WO4)2 biaxial crystal (cross-section 6×4mm2, l = 28mm, α = 17mrad) cut per-
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Fig. 3. (a) Normalized light intensity in three dimensions near the PDR. (b) 2D contour
density plot near the PDR of the normalized light intensity calculated from Eqs. (9) and
(11) and for ρ0 = R0/w0 = 20. Color map: black = null intensity, white = high intensity.

pendicular to one of the optic axes (entrance surface parallelism better than 10 arc seconds)
yielding a CR ring of R0 = 476 μm (ρ0 ≈ 12). The transverse light patterns at and around the
focal plane were recorded with a CCD camera.

3. Application to atom trapping with blue-detuned light

3.1. Harmonic potential approximation

In the previous sections we have described the intensity distribution near the PDR in the radial
and axial directions, showing that this region is a dark ORP. This makes the PDR a good can-
didate for atom trapping applications with blue-detuned light. For a given light intensity I(�r),
the trapping dipole potential reads U(�r) = Ũ0I(�r), where for alkali atoms for sufficiently large
detuning and linear polarization

Ũ0 = −πc2

2

[
ΓD2

ω3
D2

(
2

ωD2 −ωL

)
+

ΓD1

ω3
D1

(
1

ωD1 −ωL

)]
, (12)

as given e.g. in [42]. Note that in Ũ0 we have applied the rotating-wave approximation. Here,
c is the speed of light in vacuum, ΓDi and ωDi (i = 1,2) are, respectively, the natural line
width and frequency of the Di line of the atomic species, and ωL is the frequency of the input
beam. In our case, I(�r) is given by Eq. (9) and Eq. (11) and Ũ0 > 0 for blue-detuned light. By
using the harmonic oscillator approximation, we have obtained the following expressions for
the corresponding radial (ωr) and axial (ωz) trapping frequencies of the PDR (ξ = ξ0,Z = 0)

ωr,z =

√
Ar,zŨ0P

π2mw4
0ρ0

, (13)

with m being the atomic mass and the numerical constants Ar(Z = 0) = 4.63 and Az = 0.34.
Eq. (13) is obtained by expanding Eq. (11) in Taylor series, introducing it into Eq. (9) and
considering the ξ 2 coefficient.

Note that from Eqs. (9), (11)–(13) for a given biaxial crystal, i.e. for a fixed R0 and w0, the
trapping frequencies and the maxima of the potential barriers can be tuned by modifying the
power P and the frequency ωL of the input beam. We have obtained that at the focal plane the
maxima of the potential barriers are described by

U(ξ±,0) =C±Ũ0
P

4π2w2
0ρ0

, (14)
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where C+ = 2.54 (outer bright ring) and C− = 0.541 (inner bright ring).
There can be other experimental situations however, where it is required to work outside the

focal plane, for instance in experiments where a more symmetric potential is needed, such as
the one shown with a solid line in Fig. 4(a), where the radial intensity distribution close to the
PDR is shown for the focal plane (Z = 0) and the plane Z = 4. In these cases, Eq. (13) can
be utilized to calculate the trapping frequency of the potential at any axial position Z by just
replacing Ar(Z = 0) by

Ar(Z) =−0.051+
8.817

1.873+2.307Z2 . (15)

Figure 4(b) presents the dependence of Ar(Z) on Z. Note that outside the focal plane an offset
to the potential is occurring, since the minimum intensity point is no longer of null intensity as
plotted for Z = 4 as solid line in Fig. 4(a). We have found that this non-zero minimum intensity
point can be taken into account by means of the optical potential along the axial direction,

U(ξ0,Z) = Ũ0
P

4π2w2
0ρ0

Z2. (16)

The confining maxima along Z are not well described by the harmonic approximation and must
be evaluated using Eqs. (9) and (11). They read

U(ξ0,Z±) = 0.17Ũ0
P

4π2w2
0ρ0

. (17)

I (
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Fig. 4. (a) Profile of the trapping potential at Z = 0, i.e. at the focal plane (dashed curve),
and at Z = 4 (solid curve) where the inner and the outer bright rings of CR have equal
maximum intensity. (b) Coefficient Ar as a function of Z. The analytical expression for the
Ar(Z) is given by Eq. (15).

3.2. Numerical simulations of a BEC of 87Rb atoms

To demonstrate the applicability of the PDR for ultra-cold gases, now we discuss the two-
dimensional (2D) evolution of a BEC of 87Rb atoms confined in an annular geometry within
the focal plane by using the PDR of CR and a strong additional confinement along the axial
direction so that ωaxial � ωr [44]. Such confinement can be achieved by using an additional
red-detuned sheet of light (e.g. generated by focusing a Gaussian beam with a cylindrical lens)
to compensate for the weak axial confinement as well as, in case of a horizontal ring plane, the
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effect of gravity as shown in [44]. We use the 2D Gross–Pitaevskii equation (GPE) in order to
study the dynamics of the BEC along the ring potential:

ih̄
∂
∂ t

Ψ(�r, t) =

(
− h̄2

2m
�∇2 +Vext(�r)+g2D |Ψ(�r, t)|2

)
Ψ(�r, t), (18)

where Vext(�r) is the external potential, g2D = 2h̄asN
√

2π h̄ωz
m , as is the scattering length, ωz is

the frequency of the confining potential in the axial direction, m is the mass of the 87Rb atoms
and N is the number of atoms.

In our simulations, we consider trapping close to the D2 and D1 lines of 87Rb. These lines
possess natural line widths of ΓD2 = 2π ×6.07MHz and ΓD1 = 2π ×5.75MHz and frequen-
cies of ωD2 = 2π × 384.23THz and ωD1 = 2π ×377.11THz, respectively. Thus, to calculate
the trapping frequencies and the maxima of the potential barriers is straightforward by using
Eqs. (12), (13), (14), and (17). Based on the experimental parameters of [44], for a biaxial crys-
tal yielding a CR ring of R0 = 170 μm, an input beam waist w0 = 18 μm, a light frequency
of ωL = 2π × 378.40THz and a laser power P = 27mW, at the focal plane, the maxima of
the potential barriers and trapping frequencies are, respectively, U(ξ−,Z = 0)/kB = 280nK,
U(ξ+,Z = 0)/kB = 1314nK and ωr = 2π ×265Hz, where kB is the Boltzmann constant.

(a)           (b)                  (c)

Gravity

Fig. 5. (a) Plot of the atomic density from the numerical simulation of a trapped 87Rb
BEC after 30ms of expansion in the ring Vr =

1
2 mω2

r (r− (R0 −0.541w0))
2, with the fre-

quency ωr = 2π × 265Hz being calculated using the harmonic approximation. Parameter
values used for the simulation: R0 = 170 μm, w0 = 18 μm, P = 27mW, wz = 2π ×500Hz,
as = 5.45nm and N = 12000 atoms. (b) Experimental density distribution of a trapped 87Rb
BEC in the CR ring potential using the same experimental parameters as for the numerical
simulation, with the exception of the axial confinement, that was made using a red-detuned
Gaussian beam focused with a cylindrical lens, providing a measured trapping frequency
of wexp

z = 2π × (169±2)Hz. The measured radial trapping frequency provided by the CR
PDR was ωexp

r = 2π × (300±20)Hz. (c) Numerical simulation under the same conditions
as in (a) but including the scattering induced by the position spreading during detection.
Each Fig. is 600 μm× 600 μm. Color map: dark blue (red) corresponds to null (high) in-
tensity. White dashed lines in (c) indicate the position of the cross-dipole trap with respect
to the PDR, being both of them orthogonal to the gravity field. The waist radius of each
beam from the cross-dipole trap is 25 μm.

Figure 5(a) shows the numerical simulation for a 87Rb BEC, with scattering length as =
5.45nm , of N = 12000 atoms trapped in a blue-detuned harmonic annular potential Vr =
1
2 mω2

r (r− (R0 −0.541w0))
2 with radial frequency ωr = 2π×265Hz calculated using Eq. (13).

Our numerical simulations are based in the following loading process: the BEC is created in
a cross-dipole trap, see e.g. [45], and loaded into the red-detuned sheet of light. We consider
that both the cross-dipole trap and the red-detuned sheet of light are orthogonal to the gravity
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field. The PDR potential, which also lies orthogonal to the gravity field, is placed tangent to
one of the beams of the cross-dipole trap, see Fig. 5(c). The beam from the cross-dipole trap
that is tangent to the PDR is switched off as the CR PDR potential is switched on, in an adi-
abatic process. Finally, the remaining beam from the cross-dipole trap is switched off and the
BEC expands in the CR PDR potential. We plot the atomic density of the BEC after 30ms of
expansion in the annular potential. In order to reduce the transverse excitations, the loading of
the BEC into the CR ring potential has been performed adiabatically (in our case during 20ms)
as reported in [44]. Fig. 5(b) shows the corresponding experimental density distribution after
30ms expansion of a 87Rb BEC trapped in the real CR PDR. The CR PDR was placed perpen-
dicular to gravity and a sheet of light generated by focusing a Gaussian beam with a cylindrical
lens was used to hold atoms against gravity. The corresponding measured trapping frequencies
are ωexp

r = 2π × (300±20)Hz and ωexp
z = 2π × (169±2)Hz. The major discrepancy between

experimental and numerical density plots is found in the radial width of the BEC. In the ideal
case (Fig. 5(a)), the effects of broadening due to finite optical resolution and photon scattering
of the detection light have not been considered to obtain the image, which shows a BEC with
a width of 3 μm. In contrast, the experimental image from Fig. 5(b), which shows a BEC with
a width of 25 μm, was obtained by using red-detuned light (λill = 780nm, Pill = 0.25mW) to
illuminate the BEC during a time of till = 200 μs. For this illuminating light we have calculated
a scattering rate Γsc = 3.29×106 s−1 that, together with the recoil velocity of vrec = 5.89mm/s,
increases the width of the atomic cloud in the radial direction by 21.89 μm during the illumina-
tion time. Figure 5(c) shows the same numerical simulation as Fig. 5(a) where we have taken
into account now the increase of the width produced by the detection process included. Now,
numerical simulation and experimental result agree well.
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Fig. 6. Radial sections of the atomic density of the BEC (a) before and (b) after
30ms of azimuthal expansion of the BEC trapped in the harmonic potential Vr =
1
2 mω2

r (r− (R0 −0.541w0))
2 (black-dashed line) and in the Poggendroff dark ring of CR

(red-solid line). Black-dashed and red-dotted lines are the corresponding trapping po-
tentials. Parameter values: R0 = 170 μm, w0 = 18 μm, P = 27mW, wr = 2π × 265Hz,
wz = 2π × 500Hz, as = 5.45nm and N = 12000 atoms. The ground state (a) is obtained
by adding an extra confinement (wazi = 2π ×265Hz) in the azimuthal direction in order to
reproduce the loading of the BEC in the CR ring trap.

In order to further confirm the validity of the harmonic approximation, we also studied
the ground state of the BEC trapped in the toroidal dark-focus (see Fig. 6). The physical
system considered has the following parameters: R0 = 170 μm, w0 = 18 μm, P = 27mW,
wr = 2π × 265Hz, as = 5.45nm and N = 12000 atoms. The toroidal dark trap is placed or-
thogonal to gravity and, therefore, to provide confinement along the axial direction we have
considered a sheet of light analogous to the one discussed in [44] with a trapping frequency
wz = 2π ×500Hz. The plots represent a section of the wave-function in the radial direction at
the peak value of the density. The red-solid line in Fig. 6(a) shows the wave-function ground
state of the BEC trapped in the PDR potential (represented by the red-dashed line), while the
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black-solid line is the ground state of the BEC trapped in the harmonically approximated po-
tential (represented by black-dashed line) equivalent to the PDR. To provide confinement in
the azimuthal direction, an extra beam yielding a trapping frequency of wazi = 2π × 265Hz
is included. We have found a 0.7% of relative difference between the energies of the two
ground states. Figure 6(b) presents the BEC wave-function after 30ms of expansion within
the harmonically approximated ring potential (black-solid line) and within the real PDR poten-
tial (red-solid line). Black- and red-dashed lines represent the harmonic ring potential and the
PDR potential, respectively. In this case, the relative difference between both wave-functions
is negligible. These results confirm the good agreement between the harmonic approximation
derived in Section 3.1 and the original PDR.

4. Conclusions

In summary, we have presented a novel approach for generating toroidal optical traps for ultra-
cold neutral atoms by applying the PDR as a blue-detuned toroidal trap for BECs We have
studied the normalized intensity distribution around the annular ring structure of the CR phe-
nomenon in biaxial crystals. For a well developed CR ring, i.e. when R0 � w0, experimental
results of the intensity distribution are compared with the exact paraxial solution and with its
asymptotic approximation. We have found the positions of the bright and dark rings of CR and
the position of the two points with maximum intensity along the beam propagation direction,
both experimentally and analytically. We have shown that the radius of the PDR is smaller than
the optical geometric approximation of the CR ring radius R0, by approximately half the waist
radius of the input beam (−0.541w0 in Table 1). All previous related works [28–32] were per-
formed considering that the radius of the PDR exactly coincided with R0. The reported results
show that the PDR is enclosed by higher intensity walls both in the radial as in the axial direc-
tions, i.e. it is a toroidal dark-focus in all three dimensions, at variance with other light beams
possessing only radial confinement, such as Laguerre–Gaussian modes. We have applied the
harmonic approximation around the PDR and we have derived the expression for the radial and
axial trapping frequencies and the maxima of the potential barriers for blue-detuned light as a
function of common experimental parameters such as beam power, beam waist, detuning and
the parameters of the crystal. The reported results show the suitability of the PDR for trapping
ultra-cold atoms with blue-detuned light, making this technique ideal for experiments where
well-defined potentials and high intensity beams are required [9–11, 19, 44]. Therefore, as a
proof of the usefulness of the derived theory we have performed numerical simulations of the
dynamics of a trapped 87Rb BEC with N = 12000 atoms in the dark ring potential using the
harmonic approximation and have compared the obtained results with the solution of the orig-
inal CR light field. We have also compared the ground states in both cases and we have found
0.7% relative difference in energy between them. The numerical simulations agree well with
the experimental results on the dynamics of a trapped 87Rb BEC in the PDR of CR.

The main advantages of the presented technique are the simple generation and high quality of
the CR toroidal dark trap, since the only requirements are a biaxial crystal and a focused input
Gaussian beam, at variance with the techniques using LG beams that need the interference
of at least two beams [19]. Also, the minimum (and practically null) intensity circle offered
by the toroidal dark trap avoids photon scattering and presents no corrugation of the potential
minimum at the focal plane.

Additionally, and at variance with techniques based on LG beams [22] or amplitude masks
[23–25], the use of a biaxial crystal allows for the full input power to be converted into
the CR dark toroidal trap. which increases the efficiency in ultra-cold atom trapping experi-
ments. Moreover, biaxial crystals can be transparent to an extremely wide spectral range [46]
(0.35 μm-5.5 μm in KGd(WO4)2, for instance), in contrast with spatial light modulators used
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in the generation of LG beams, which only work in a small spectral range of few hundreds of
nm, typically.

A range of applications of this technique can be envisioned: for optimized beam geometries,
i.e. small w0, R0, and zR, the toroidal dark focus of the PDR generated by CR could be used
to built an all-optical trap for BECs using a single beam. Under such conditions, this potential
could be used as a basic element in atomic SQUID experiments [47,48], as well as to study the
dynamics of matter waves with periodic boundary conditions and the generation of persistent
currents [18, 49]. For large R0, the PDR can be used as a dark 2D ring potential by using a 1D
light sheet, along the axial direction, as an additional confining potential. This configuration
would allow to study wave-packet interference in a mesoscopic ring simulating a quasi-one-
dimensional system [44]. By modifying this 1D light sheet to a blue-detuned double layer also
accessible via CR [38, 50] again a fully blue-detuned dark trap geometry with added flexibility
is generated.

As an encouragement for future investigations, other cylindrically symmetric light structures
of interest in atomic trapping experiments such as flat intensity regions or doughnut-like beams
are also accessible via CR [38, 39]. Additionally, a radial optical lattice could be generated by
means of a cascade of biaxial crystals, generating 2N−1 dark rings for a cascade of N biaxial
crystals [35, 36]. This could be also combined with the technique shown in [37] to generate
an azimuthal optical lattice with controllable number of nodes and separation between them,
applicable in quantum-many body systems experiments [51, 52]. Also interesting is the possi-
bility of using the PDR to coherently injecting, extracting, and velocity filtering of particles,
ultra-cold atoms and BECs as reported in [34, 53] by tuning the polarization of the input beam
and opening/closing the ring potential. Finally, we would also like to note that by switching
to red-detuned light, the inner and outer bright rings around the PDR generate an intrinsically
concentric system of a double-ring potential which can be used for the generation of coher-
ent double wave packets for the investigation of wave packet tunneling and coupled persistent
currents of ultra cold atoms [54, 55].
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