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ABSTRACT   

We describe the technique allowing for generation of low-noise wider frequency combs and pulses of shorter duration in 

quantum-dot mode-locked lasers. We compare experimentally noise stabilization techniques in semiconductor mode-

locked lasers. We discuss the benefits of electrical modulation of the laser absorber voltage (hybrid mode-locking), 

combination of hybrid mode-locking with optical injection seeding from the narrow linewidth continues wave master 

source and optical injection seeding of two coherent sidebands separated by the laser repetition rate.  
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1. INTRODUCTION  
Quantum-dot mode-locked lasers (QD-MLLs) are attractive sources of sub-picosecond pulses at high repetition rates and 

generate coherent frequency combs in optical domain [1, 2]. Optical frequency combs emitted by MLLs can be used in 

arbitrary waveform generation and metrology, while short periodic pulses with low jitter are required in fiber optic 

communication systems, optical sampling and all-optical clock recovery [3]. Passive mode-locking is more cost-efficient 

and robust to implement when compared with active or hybrid mode-locking. However, frequency combs generated by 

passively mode-locked lasers (PMLLs) often exhibit large phase noise and jitter, which makes them ineffective in high-

speed applications [4]. Therefore, noise stabilization techniques are required to improve performance of QD-PMLLs.  

In this paper we compare experimentally noise stabilization techniques allowing control of phase noise and frequency 

tuning in monolithic QD-MLLs. In particular, we discuss the benefits of electrical modulation of the laser absorber 

voltage (hybrid mode-locking) [5-7], combination of hybrid mode-locking with optical injection seeding from the narrow 

linewidth continues wave (CW) master source and optical injection seeding of two coherent sidebands separated by the 

laser repetition rate [8]. For this study all measurements were performed on the same device, a 40 GHz InAs/GaAs QD-

MLL, under the same temperature and bias conditions. We use the benefits of coherent sidebands injection to develop 

novel technique for synchronization of QD-MLLs outputs, which allows generation of wider coherent frequency combs 

with reduced phase noise.  

2. MEASUREMENTS  
Monolithic two-section QD lasers emitting at 1.3 μm were used in these studies. The active zone of the devices consisted 

of InAs QDs embedded in InGaAs quantum wells. The comparison of noise stabilization techniques was performed on 

the QD device with 1 mm length (corresponding pulse repetition rate, Frep, was 39.5 GHz) and with 10% absorber 

section. The facet next to the absorber was coated for high reflectivity of 95%; the facet next to the gain section was as 

cleaved (R ~ 30%). All experimental investigations were performed under the same temperature of 21°C and similar bias 

conditions: the absorber section reverse bias was −8.0 V and the gain current was around 50-60 mA. The laser output 

was characterized via optical and electrical spectrum analyzers and an autocorrelator.  

For the hybrid mode-locking, the absorber bias was modulated at the frequency close to 39.5 GHz via a low noise 

Agilent signal generator, similar to Ref. 7. The frequency and the amplitude of the modulation were varied. We used CW 

tunable laser source with a narrow optical linewidth of ~100 kHz for the optical injection. For coherent sidebands 

injection, the light from the tunable laser was modulated by a Mach-Zehnder amplitude modulator. The modulator was 

biased at the transmission minimum and driven via Agilent signal generator at half repetition rate, giving two coherent 
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sidebands separated by Frep with a suppressed carrier frequency. The polarization of the injected light was aligned with 

the TE mode of the QD laser.  

In the passive mode-locked regime, the QD-MLL emitted pulses of 2.8 ps duration. The pulse train demonstrated large 

timing jitter values of 9 ps and significant phase noise with optical modal linewidth values in the range of 100 MHz [9]. 

The jitter was retrieved from single-sideband noise measured via electrical spectrum analyzers and integrated from 10 

kHz to 1 GHz.  

3. NOISE REDUCTION AND REPETITION RATE TUNING  
The noise stabilization techniques have been compared: hybrid mode-locking, All studied stabilization techniques 

resulted in the significant timing jitter reduction compared to passively MLL and allowed tuning of the device repletion 

rate. With hybrid mode-locking we achieved a 14-times jitter reduction and laser repetition rate tuning over the 10 MHz 

range, however, it did not affect device phase noise and pulse chirp [6-7]. Both hybrid mode-locking with optical 

injection and coherent sidebands injection allowed laser repetition rate tuning, jitter reduction, and also resulted in the 

phase noise reduction and red-shifted narrowed optical spectrum.  

The outcomes of combination of hybrid mode-locking with CW optical injection seeding are summarized in Table 1. 

With injection seed the integrated jitter was reduced to 240 fs and the repetition rate tuning range was increased to 167 

MHz [9]. Both, optical injection power and modulation power influenced the results.  

Table 1.  Characteristics of the QD-MLL with hybrid mode-locking and optical injection.  

Pinj, μW λinj, nm Pmod, dBm Tuning range, 

MHz 

Integrated 

jitter, fs 

770 1288.44 14 167 240 

770 1288.44 9 40 365 

440 1285.33 5 18 793 

440 1285.33 3 8.9 885 

440 1285.33 0 8.1 1658 

 

Remarkably, injection locking could result in the shift of the pulse repetition rate to the both higher and smaller 

frequencies, subject to the parameters, such as injected power, gain current and modulation amplitude. This opens 

possibilities for the cleaving errors compensation in either side as well as widens the summarized locking range to 327 

MHz, as shown in Figure 1.  

 

Figure 1. RF spectra of the QD-MLL in passive mode-locked regime (black), with hybrid mode-locking and optical 

injection seeding for 8 dBm (blue) and 14 dBm (red) modulation power. Gain current: 60 ma, absorber bias: -8.0 V.  
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We achieved the lowest integrated jitter of 121 fs and the widest frequency tuning range of 342 MHz with coherent 

sidebands injection seeding of the QD-PMLLs [9]. The sidebands injection also resulted in all-modal linewidth 

reduction, optical spectrum narrowing and its red shift from the injection seed [10-12].  The outcomes of the sidebands 

injection seeding are summarized in Table 2. The lowest integrated jitter and the widest frequency tuning range were 

achieved for higher injection power, due to optical spectrum narrowing and fewer modes in the optical spectrum. 

However, spectral width reduction leaded to the pulse width broadening from 3 to 5.2 ps. 

Table 2.  Characteristics of the QD-MLL with sidebands injection locking.  

Pinj, μW λinj, nm Tuning range, 

MHz 

Integrated 

jitter, fs 

570 1278.9 342 121 

433 1278.9 198 177 

385 1278.9 3.0 1596 

304 1278.9 1.8 1656 

240 1278.9 1.2 1850 

 

 

4. COMBINATION OF QD-MLL OUTPUTS  
When QD-MLL was locked to the tunable master source, its optical spectrum was narrowed with a major power red 

shifted from the injection wavelength [11, 12]. We used this optical spectrum red shift to generate highly coherent wider 

frequency combs. We used two 10 GHz QD-MLLs made from the same wafer and cleaved together for the 

synchronization [11]. When the first QD-MLL was injection-locked to the coherent sidebands, it resulted in the laser 

optical spectrum narrowing and red-shift from the injection as shown in Figure 2 (a, blue). The injection wavelength is 

shown with a black arrow. The sideband injection locking also resulted in reduction of jitter and optical linewidth, as 

previously discussed [12]. Then, two modes apart from the injection wavelength were filtered from the first laser and 

coupled into the second QD-MLL. The filtered modes are shown in black in (a, b). When the second laser was locked to 

the filtered modes, its noise was also reduced and optical spectrum (b, red) shifted to the longer wavelength from the 

injected modes (b, black). The outputs from the both lasers were recombined resulting in a wider optical spectrum due to 

the consequent spectral red-shifts of the devices Figure 2 (c).     

 

 
Figure 2. (a) Optical spectra of sidebands injection-locked laser 1 (blue), filtered modes (black), and injection seed (an 

arrow). (b) Optical spectra of the filtered modes (black) and laser 2 (red), locked to the modes. (c) Combined optical spectra 

of the lasers 1 and 2 (green). Laser 1 gain current: 216 mA; absorber bias: -2 V. Laser 2 gain current: 211 mA, absorber 

bias: -2 V. 
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5. CONCLUSION  
We compared experimentally noise stabilization techniques in the monolithic QD-MLL. We discussed the benefits of 

hybrid mode-locking, combination of hybrid mode-locking with optical injection seeding and optical injection seeding of 

two coherent sidebands separated by the laser repetition rate. For this study, all measurements were performed on the 

same device, a 40 GHz InAs/GaAs QD-MLL, under the same temperature and bias conditions.  

We used the benefits of coherent sidebands injection-locking to develop technique for producing wider coherent 

frequency combs. We demonstrated the generation of highly coherent wider frequency comb from two synchronized 10 

GHz QD-MLLs. The combined frequency comb has the benefits of the sideband injected laser in terms of jitter and 

phase noise reduction. 
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