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Abstract 

The subject of this dissertation is an analysis of fluid flow stability. Early transitions 

of convection are theoretically modelled when considering an internal heat source and 

asymmetric boundary conditions. The motivation of this study is to analyse the bifurca- 

tion sequence of the specified model. Physical properties of the flow are varied through 

control parameters such as: Reynolds number, Prandtl number and the angle of incli- 

nation. A number of cases are compared and numerically analysed in order to pinpoint 

regions where stability of the basic configuration breaks down. Furthermore, a non-linear 

analysis is done within the found regions in the interest of identifying further structural 

instabilities. 

The model defined in this dissertation is applicable to a number of natural and industrial 

processes; the focus is to define a model that mirrors the cooling process within the shut 

down of a nuclear reactor. In such cases the source of the internal heat is the radioactive 

decay of molten nuclear fuel within the nuclear reactors. By modelling such a system, we 

aim to study the effects of convection with internally heated systems. 

In the present study, we have identified the boundaries between a laminar and convective 

state for varying Prandtl number; so far we can deduce that as the Reynolds number 

is increased slightly, the critical Grashof number becomes more positive, suggesting that 

for small variations in the Reynolds number our fluid is stable in a greater region. The 

angle also has a similar effect for small variations, although we find when both the angle 

and Reynolds number are increased further this behaviour changes and the fluid in fact 

becomes less stable. Through the non-linear analysis performed, we identify the param- 

eter space of the thermal flow patterns and enforce small disturbances to the states to 

determine their stability.
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Chapter 1 

Introduction 

In this dissertation we define and examine the theoretical properties of an internally 

heated fluid in a configuration that has an insulating lower boundary and a conducting 

upper boundary. By varying the free parameters in the system we will explore how this 

effects the fluid stability. Our aim is to numerically analyse the bifurcation sequence that 

occurs as the fluid flow develops from laminar state to turbulent. 

1.1 Motivation 

Internally heated fluids arise in a number of natural and industrial processes. As a result 

they have become an increasingly interesting area of research. Thermal convection can 

be found within the Earth’s core as a result of the radioactive decay. Also when exploring 

the atmospheric properties of a planet, flow influenced by thermal convection can be 

found (Schubert et al., 2001). Biochemical and chemical reactions can also heat the fluid 

internally as the processes involved will give off heat (Takahashi et al., 2010). 

Convection due to internal heating has been studied experimentally in (Takahashi 

et al., 2010), (Tritton and Zarraga, 1967) where electrical currents are used to provide 

the internal heat source. The cell structures within the fluid layers are determined and 

compared while adjusting the free parameters. 

Convection driven by a uniform internal heat source can also be found in corium melt 

pools which are used in the shut down of nuclear reactors that have undergone a severe 

accident (Asfia and Dhir, 1996). Nuclear fuel has been a controversial topic of discussion



for many years. As the worldwide demand for energy increases, current natural resources 

of power (i.e. coal, natural gas) aren’t sustainable, hence the need for alternative means 

of energy production. Nuclear fuel is undoubtedly a strong contender as an alternate 

solution to maintain the high global demands of power. Therefore nuclear safety is a vital 

element when considering such a solution. By analysing the flow structure in a model 

that emulates a corium melt pool, we wish to further understand the behaviour of a fluid 

in such a system. 

1.2 The Problem 

A nuclear reactor can be very basically described having a core that houses the chemical 

reaction that occurs. This core is encased within a thick concrete concrete chamber. 

‘When a nuclear reactor undergoes a severe accident, for example as a result of a nuclear 

chain reaction or heat decay, temperature levels within the core can reach up to 2000°C. 

In such a situation the core of the reactor and its containing material will melt and deposit 

in the bottom of its containing concrete chamber as seen in Figure 1.1. The temperature 

difference between the concrete chamber and the molten corium fluid causes a crust to 

form on top of the fluid resulting in a system that has an insulating lower boundary and 

conducting upper boundary. 

Figure 1.1: A basic sketch of a concrete chamber housing the deposited corium molten 

fluid. The bold black line indicates the crust formed on the molten fluid as a result of the 
temperature difference between the fluid and container.
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cal model of a system shown in Figure 1.1 will be defined in this dissertation. 

The aim is to adjust the free parameters for a finite number of cases in order to change 

the physical properties of the flow. The stability of the flow is known to be dependent 

on these control parameters, therefore the linear stability of the primary flow is explored 

by a comparative analysis of the different cases. The Chebyshev collocation method is 

adopted in this dissertation to approximate the linear and non-linear solutions of our 

specific Navier Stokes equation. 

1.3 Goals and Outlines 

This project focuses on pinpointing the region between stability and instability for dif- 

ferent fluid types. The following section briefly introduces the equations and methods 

explored when defining the system. It explains the origin of the Navier Stokes Equations 

and how through a number of justified assumptions they can be simplified and solved to 

adhere to the study of fluid dynamics. 

Chapter 3 then establishes the problem, defining the properties of the model and de- 

riving the model-specific Navier Stokes Equation. The linear analysis of the model is 

then investigated in Chapter 4 where the basic temperature and flow equations are ana- 

lytically derived. Numerical methods are employed to provide the linear neutral curves 

highlighting the boundary between laminar and convective flow. Chapter 5 investigates 

the non-linear analysis of the model around the neutral curve boundary. The basic non- 

linear solution is numerically derived and the non-linear state parameters are traced with 

respect to the angle of inclination. The behaviour of the strongly non-linear states are 

then analysed to determine their stability; whether further bifurcations occur. In Chapter 

6 we discuss the conclusions of this work and consider possible future developments to 

further the findings of the project.



Chapter 2 

Modelling a fluid 

This chapter reviews the key elements that we encounter when defining the governing 

equations used within this study to model our fluid. A number of assumptions and ap- 

proximations are made in order to best analyse specific conditions of a fluid, these will be 

defined and discussed. 

When studying the behaviour of a dynamical system such as fluid flow, it is necessary to 

apply a small change known as a perturbation to the physical system to see what effect 

this change makes. We look to see if this small change causes instabilities in the flow 

that continue to grow causing chaotic property changes (Zill et al., 2009). The growth 

must always saturate otherwise the system explodes. The saturated state need not be 

turbulence, but it could lead to instabilities in the flow in which turbulent behaviour may 

occur. 

For a multidimensional problem as defined in this dissertation, the Navier Stokes 

Equation is central to the problem. The equation is used to define the fluid properties of 

our problem. By using a collocation method, we can represent our modelled system as a 

set of linear equations. Eigenvalue analysis of the particular matrix corresponding to the 

equations is then performed to determine the stability of the state for the varying param- 

eters. A critical point arises if the real part of the eigenvalue o, = 0. By analysing the 

critical points, we can determine the transitions from stable to unstable and vice versus. 

When all o; < 0, the system is regarded as stable, otherwise it is said to be unstable and 
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therefore implying potential turbulent behaviour. 

2.1 Navier-Stokes 

To begin to mathematically construct the governing Navier-Stokes Equation, the state of 

a fluid must be defined. Once certain properties are characterised, the governing equa- 

tions of the fluid take form. A good starting point for modelling a fluid is to consider 

the general laws of continuum mechanics: conservation of mass, linear momentum and 

energy as fluid motion satisfies these laws. 

Throughout this study, we consider a Eulerian representation of a fluid, where the 

velocity u(x,t) and the density p(x,t) are analysed as functions of the position x at a 

time t (Price, 2006). The model fluid can be described as Newtonian and incompressible. 

A Newtonian fluid is one that takes into account the stress versus strain forces by assum- 

ing them to be linearly proportional. The incompressibility condition means the density 

of the fluid is constant in space and time (Batchelor, 1967). The Boussinesq approxima- 

tion is also followed throughout this study. These assumptions allow us to simplify the 

conservation equations for mass, momentum and temperature as follows. 

(2 +(a-vyn) =-Vr+pV7u+ of, ee) 

> +(u-V)P =KV7T +4, (2.2) 

V-u=0. (2.3) 

Equations (2.1)-(2.3) represent the general momentum, temperature and incompressibility 

condition respectively. 

2.1.1 Boussinesq Approximation 

The Boussinesq approximation is a realistic simplification that can be used in most nat- 

ural and industrial scenarios. It states that the density will remain constant except for 

the effect of gravity acting on it, therefore accounting for the buoyancy of a given fluid 

11



(Zeytounian, 2003). This approximation follows even if a fluid moves from a region of high 

temperature to a low temperature. This isn’t always the case when working with fluids, 

however with regards to the problem defined for this study, it is a viable assumption. The 

following equations show the relationship between the density and temperature: 

p= po(l—y(T —T)) , (2.4) 

The coefficient of volume expansion is denoted by y. By writing the temperature at a 

time t as a temperature difference T’ = T —Tp, equation (2.4) can be rewritten as follows: 

p= po — poy". (2.5) 

For simplicity, we will write the temperature different T’ as an updated temperature 

T.J. Boussinesq (Zeytounian, 2003) observed that, “The variations of density can be 

ignored except were they are multiplied by the acceleration of gravity in equation of 

motion for the vertical component of the velocity vector”. This allows us to write equation 

(2.5) as follows: 

g(p0 — p) = —gporl. (2.6) 

By updating the momentum equation (2.1) with respect to this Boussinesq approximation, 

we obtain: 

du 
po (F +(u- vu) = -Vit+pV7u— gporT, (2.7) 

we have replaced pf, our external force per unit mass by —gpoyT' which will represent the 

buoyancy term of the Navier Stokes Equation. 

2.1.2 Non-Dimensionalisation 

The governing equations for the model fluid include a number of dimensional parameters. 

In order to solve the equations it is necessary to remove all the measured units. This 

allows us to solve the Navier Stokes Equations for the dimensionless case, but then apply 

the results to a number of scaled cases. It also simplifies the equations to a manageable 

number of parameters while creating control variables for the fluid transition. To nondi- 

12



mensionalise the governing equations, the parameters are rescaled. Each parameter needs 

to be normalised so that each dimensional variable can be substituted for a corresponding 

non-dimensional variable. 

For a general case, if we have a dimensional variable «* which has a measured unit, 

we can normalise this variable by dividing by a reference constant for example X. This 

results in a dimensionless variable x such that: 

i
 

This can be rearranged so we can achieve a consistent system for our dimensional vari- 

ables, x* = Xx. By representing each of our dimensional variables in our governing 

equations in such a form, we can obtain non-dimensional equations. The reference mea- 

surements are: 

Length - d 

Velocity - U 

Time - d?/v 

Temperature - gd?/2kGr. 

Dimensionless variables are introduced where the Grashof number is Gr = gaqd°/2v?, 

this represents the temperature difference from heat transfer. The Prandtl number defines 

the physical property of a fluid and is equated Pr = 4. The Reynolds number is Re = a. 

it characterises different flow regimes by how fast a fluid flows. It is proportional to the 

pressure gradient with respect to the non-dimensional parameters. Each of these variables 

are incorporated into equations (2.1)-(2.3), resulting in the non-dimensional forms of the 

equation. This is completed in Appendix A. 

Non-Dimensional General Momentum Equation 

= + (u-V)u=—2Re + gyT + Vu, (2.8) 

Non-Dimensional General Temperature equation 

or 
art we Pr7) (VP + 2Gr) . (2.9) 
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Non-Dimensional Incompressibility condition 

V-u=0. 

14 

(2.10)



Chapter 3 

Formulating the problem 

This chapter will focus on mathematically defining the problem and will determine the 

specific Navier Stokes equations with respect to the defined model. A description of the 

methods chosen to analyse the model problem will then be discussed. 

3.1 Model Description 

This dissertation considers an internally heated fluid bounded between two parallel plates 

and inclined at an angle y, with an upper isothermal boundary and a lower adiabatic 

boundary. The Cartesian coordinate system is centred in the mid-plane of the layer, 

shown in Figure 3.1. 

  

Figure 3.1: Geometric configuration of the model. The dash-dotted curve (Zp(z) = 

Gr(—z*—2z+3)) and the dashed line (0,7(z) = —(1+2)) indicate the trend in the basic 
temperature profile and its derivative over the layer depth. The solid curve illustrates the 

basic velocity profile. The temperature source originating internally. The whole channel 

is inclined at an angle x degrees. 
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Following the work of (Nagata and Generalis, 2002) and (Generalis and Nagata, 2003), 

our interest is in the study of the flow when the channel is inclined. The buoyancy 

force acting on the system is denoted g(kcos x + isin x) where i,j,k are the unit vectors 

that correspond to the x, y, z cartesian coordinates shown in Figure 3.1. This force 

is determined from the decomposition of the coordinate system. Accounting for this 

buoyancy term results in updating the non-dimensional Navier Stokes Equation (2.8), 

such that: 

a - = 
Gt (u-V)u = -2Re + g(kcos x + isin y)T + Vu, (3.1) 

at +u-VI = Pr! (VT +2Gr) , (3.2) 

V-u=0. (3.3) 

We further constrain the problem modelled by defining conditions that correspond to the 

isothermal and adiabatic behaviour found at the boundaries. 

Boundary Conditions: 

T(z=1) =0, (3.4a) 

8,T(2 = —1) =0, (3.4b) 

u(e— 1) = 0: (3.4c) 

The basic flow (Up) and basic temperature (Tp) can be found by solving equations (3.1) 

and (3.2) respectively. To calculate the basic solutions of these equations, we assume the 

pressure gradient to constant, and the flow is assumed to be laminar. 

3.1.1 Basic Temperature Solutions 

The basic temperature equation is derived first as this temperature term is present in the 

velocity equation. Using equation (3.2) as a starting point, the convective term [(u- V) 7] 

is neglected, this is because we are assuming the flow to be laminar. When determining 

or the basic temperature we assume the flow is steady, therefore the time derivative (4) is 

neglected also. By applying the boundary conditions a solution can be found. 

16



Assume Tp = Ty(z) 

tl 2S
 Pvt +2Gr) 

xr A XP 

V*Ip+2Gr = 0. 

We can expand V?Zp such that: 

ae e ae 
2 — VT = (a +5at x) To(2), 

oe 

= gp lol), 

= Te), 

Therefore we can write, 

1) (2) +2Gr=0. 

Now integrate [7p (z) + 2Gr dz: 

T(z) = —2Gr[2z] + A. 

By substituting boundary condition (3.4b) into the above solution we achieve A = —2Gr. 

Integrate a second time f1}(z) dz = f —2Gr[z] — 2Gr dz: 

To(z) = —Gr[z?] — 2Gr[z] + B. 

Substitute boundary condition (3.4a) into this second solution to solve for the unknown 

constant B = 3Gr. Once simplified the basic temperature equation can be defined as 

follows. 

To(z) = Gr(—2? — 2z +3). (3.5) 

3.1.2 Basic Velocity Solutions 

Once the basic temperature is defined, an expression for the basic flow can be derived. 

Starting with equation (3.1) we can solve for the basic solutions after we simplify the 

Li



equation. As stated we are looking at flow in a steady, laminar state, therefore the accel- 

eration term [3], the convective terms|(u - V) u] are neglected. The pressure gradient as 

previously explained is proportional to the Reynolds number [—2Re], this is also equated 

to zero which results in: 

V7uo + g(kcos x + isin x)Ty = 0. 

‘We can re-write the above equation in terms of its components. 

V?(uo(z),0,0) + g(kcosy +isiny)Ty = 0, 

I = V?uo(z) + g(sin x) To 

Assume uo(z) = Up. Next to simplify, let —g(siny) = Q such that V?uo — QTp = 0. This 

results in the following second order differential equation: 

e2 

pao = Uo = QT, 

now substitute the basic temperature solution 7(z) from equation (3.5) and integrate to 

achieve: 
3 , —z 

Uj= QGr(=- ~2z? +32) +A. 

Integrate a second time to get an expression for Up alone: 

Sh S37 
Up = QGr(Se — 4+) + Az +B. 

Finally using the no-slip boundary condition (3.4c) and solving the defined equation, we 

can find the unknown constants A = 3QGr and B= —aQcr. Once simplified we can 

obtain the basic flow equation: 

Uo(z) = AGr sin(x))(24 +428 — 182? — 42 4.17). (3.6) 

18



When numerically implementing these equations, the Reynolds number becomes one of 

the parameters that is varied. In order to include this in the calculations, we explicitly 

and independently solve the solution for the Reynolds number term. 

| [-2R Oz = Re(1 — 2”) 

Therefore the numerical calculation takes the basic velocity solution Up in the form: 

Up(z) = Ser sin(x))(z4 + 42 — 1822 — 4z +17) + Re(1— 2”). (3.7) 

When finding the parameters that correspond to the described basic state, we simply use 

the parameter Re = 0, this is the case when the pressure is regarded as constant and 

therefore no pressure gradient. The extra Reynolds number term goes and we are left 

finding a solution to (3.6). 

3.2 Poloidal and Toroidal Decomposition 

In order to analyse the stability of our fluid, it is necessary to also look at the deviations 

from the basic flow. We can express the velocity vector u in terms of a basic flow Up and 

a slight deviation & in the following way: 

w= Up ta. (3.8) 

Similarly the temperature can be expressed explicitly as a sum of the basic temperature 

distribution 7p and small deviations 6 such that: 

T=%]+6. (3.9) 

By substituting these expanded terms into equation (3.1) - (3.3), we can then subtract 

all terms that correspond to the basic flow/temperature equations. This results in the 

perturbed governing equations being expressed explicitly in terms of the basic flow and 
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temperature and their deviations: 

S + (uo: V)a+ (&- V)uo + (@- V)G = —2Re + g(k cos x +isiny)6 + V7a, (3.10) 

00 mae r ean 
ay t (uo: V)6-+ (a V)6 = Pr1(V76 +2Gr), (3.11) 

V-a=0. (3.12) 

The velocity deviation @ introduced in equation (3.8) is of the form: 

a=O(z,t)+4a. (3.13) 

The average part of the velocity deviation field in the x,y-directions is denoted U(z,t). 

This over-bar average is calculated by the function ((28/4n?) ie pe dedy) which 

is the average value integral of the velocity function over the 2D region [a, 8] where 

0 < y < 2m/a, and 0 < x < 27/8. The second part of the velocity deviation field a 

accounts for the fluctuation incurred. This fluctuation @ can be expanded using poloidal 

and toroidal components where: 

a= 6b6+ep=V x V x (kd) + V x (ky), (3.14) 

¢ and ¥ are the poloidal and toroidal components respectively (Clever, 1977). Following 

the work of (Chandrasekhar, 1981), the 6,€ operators are introduced to represent the 

solenoidal field of the velocity field. These operators can explicitly be expressed as: 

= dj018) SUA, (3.15) 

Gi = Cijk AKO; (3.16) 

  

each operator component can be found by summing i,j,k = 1,2,3 the full deriva- 

tion is completed in Appendix B. The result of summing over each index implies 6 = 

(Ox0z,0y0z,—Az) and € = (Ay,—Or,0). The benefit of applying these operators is that 

we can remove the pressure gradient allowing us to ultimately represent our equations 

as a linear system. Another benefit is that we can analyse the 2D and 3D perturbations 
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separately. By performing this expansion, we can reduce the number of parameters in the 

system. We end up with three equations and three unknown parameters @ , 7) and 6. In 

Appendix C the 6, € operators are applied to the momentum equation (3.10). This yields 

two distinct equations dependent only on the complex scalar functions @ , and 6. 

ova + U,V? Aod — O20 A2Ond + 6: {(5¢ + ep) -V(50 + ev) } 

= V'Aod + sin x0,020 — cos xAo6 , (3.17) 

avy + Ud; Aw — 0,0 Asdyy + € {(5¢ + ev) - V(5d + ey)} 

= VAoy + sin xdy6. (3.18) 

The same methodology is applied to the temperature, where the 6 deviation in equa- 

tion (3.9) can be represented as: 

6=T(z,t) +6, (3.19) 

the average is again represented by the over bar. Substituting the above deviations for a 

and 6 into equation (3.11) and removing the basic temperature components we can obtain 

the following form: 

= ~2Gr(r-k)Aod + Aod0.T — 00,6 — (66 + eb) -6 + Pr V6. (3.20) 

a
s
 

Each of our equations (3.17), (3.18) and (4.3) are subject to homogeneous boundary 

conditions: 

¢=0¢/62=T0=p~=T=0=0 atz=+1. 

Once we have obtained equations (3.17) - (4.3) we can implement these computationally 

to solve for our unknown scalar functions. These can be defined such that: 

0 
(a,y,2) = D>(1 — 2*)?Tn(2)an exp{i(ax + By) + at}, (3.21) 

n=0 
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V(@,y,2) = $2 (1 — 27)Tn(z)bn exp{i(ax + By) + ot} , (3.22) 
n=0 

(2, y,z a5 1 — 27)Ty(z)en exp{i(ax + By) + ot}, (3.23) 
n=0 

where Gn, bn,C_ are the unknown coefficients. T,,(z) are the nth order Chebyshev poly- 

nomials. In order for the boundary conditions to be satisfied, we use relevant functions; 

(1 — 27)? and (1 — 2?) for each scalar equation. In the above expressions, a and 8 corre- 

spond to the wave numbers, and o are the real or imaginary eigenvalues. 
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Chapter 4 

Linear Stability Analysis 

This chapter provides a stability analysis of the defined model. The boundary between 

laminar flow and convection is determined. An in depth explanation of the method used 

to conclude the linear analysis is provided. 

By looking at the linear stability of the problem, we are able to determine the region 

of parameters where our flow moves from a laminar basic sate to a state of convection. 

In these convective regions it is expected that a number of coherent structures will arise. 

When solving these linear stability equations, we disregard the non-linear terms for this 

first stage of analysis. The following equations are implemented: 

a 7 = - ~ 
= V7Aod + Ud, V7 Aod — 2U Ard = Vi Aod + sin x0;0-0 — cos Aco , (4.1) 
ot 

ovr + UdgAow — 0,0 A2dyh + € = V?Aow + sin x06. (4.2) 

a6 Ste be teas 
By = 2G (e KAnd + Ang0.T — 00.0 + Pr“V76. (4.3) 

In order solve these equations we need to equate the unknown scalar variables ¢, y) and 

6. To solve the system of differential equations for the unknown variables, the Chebyshev 

collocation method is used. 
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4.1 Chebyshev Collocation Method 

The Chebyshev collocation method is a specific case of a spectral method that when 

summed to infinity will produce an exact solution to a partial differential equation. When 

approximating a higher order PDE we recognise the probable case that there are infinitely 

many solutions. By a concept called discretisation we can replace this PDE with a finite 

dimensional problem (Mohanty et al., 2007). 

Chebyshev polynomials are used for the approximation as they are generally fast con- 

verging. Also they provide a good approximation at the boundaries of the configuration as 

this is where the collocation points are most dense. By manipulating the governing equa- 

tions, we obtain a momentum differential equation (3.17) in terms of the poloidal variable 

@ that has many unknowns. To solve this problem, we use the collocation method to 

discretise the continuous sum that characterises our unknown ¢ component. This allows 

us to optimise a number of equations at equal increments between our boundaries using 

Chebyshev Polynomials that can be solved as a linear system of equations. 

The first step is to define our collocation points: 

2j +1)r 
a= cos { CL Deh where z; = 0,2,...,N. 

By expressing equations (3.21) - (3.23) in terms of these collocation points Z; and trun- 

cating the sum to N, we can obtain solutions to the corresponding unknown scalar values. 

For the momentum equation (3.17), we solve for ¢: 

N 

(x,y, 2) = )>(1 — 2?)?Tn(zj)an exp{i(aw + By) + ot}. (4.4) 
n=0 

Once we have N + 1 ¢-equations we then substitute these into equation (3.17) to achieve 

a linear system of equations that can be solved using the following generalised eigenvalue 

problem: 

Ax =0Bx. (4.5) 

We solve this eigenvalue problem numerically. Eigenvalue analysis is performed in order 

  

to deduce specific characte s of the flow. The unknown coefficients correspond to the 
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x component of equation (4.5). A and B are 2(N+1)x2(N+1) complex matrices whose 

elements are determined from equation (3.17). 

The aim is to pinpoint a critical Grashof number (Gr) through Newton Raphson 

iterative method. This critical value is found when the real eigenvalues are zero, 0, = 0. 

It is at this point that the eigenvalue moves from an unstable state (positive value) to 

stable state (negative value) or vice versus. This transition occurs at some combination 

of the critical wave numbers a, or Sc. By varying the wave numbers it is possible to 

produce a neutral curve using a Newton Raphson iterative method, which highlights the 

boundary between stable and unstable behaviour corresponding to the particular cases 

studied. By varying the control parameters, we can summaries the behaviour of the fluid 

flow in changing circumstances. 

4.2 Linear Stability Results 

The first case studied, was the effect of varying the wave vectors alone. The specific wave 

number values that correspond to the coherent structures found in the flow heat patterns 

can be calculated using the following relation: 

Oe = Vo? + B? = 407. (4.6) 

The critical wave vector (a) for this particular system can be equated to 1.315 in accor- 

dance with (Tveitereid and Palm, 1976), (Glover et al., 2013). Using the above relation- 

ship and the critical wave number the following values are found for each structural type 

that can be expected. 

Figure 4.1 shows the linear neutral curves for the varying wave numbers for Air (Pr = 

0.705), Mercury (Pr = 0.025) and Water (Pr = 7) when in their basic state which occurs 

when Reynolds number = 0. The following Gr, results were obtained for the horizontal 

orientation of the system, Air (3932.3), Mercury (110891.0) and Water (396.0). 
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(a) Linear neutral curves for Air (Pr = 0.705) 

Pr = 0,005 

  

(b) Linear neutral curves for Mercury (Pr = 0.025) 
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Table 4.1: Table of structure types found with corresponding critical wave numbers. 

  

  

  

  

  

            

Oe Be 
Transverse | 1.315 0 

roll 

Longitudinal] 0 1.315 

roll 

Type 1 | 0.658 | 1.139 

Hexagon 

Type 2 | 1.139 | 0.658 
hexagon 

Square 0.930 | 0.930 

Pre? 
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(c) Linear neutral curves for Water (Pr 

  

Figure 4.1: The linear neutral curves for different structures with respect to the different 
fluid material when Reynolds number = 0. 

For every case, the structures are reflected in the (a, 8) direction and are perfectly 

symmetrical. This is due to the opposite orientation of transverse/longitudinal structures, 

as shown in Table 4.1. Following this analysis, we look at the effect of varying the Reynolds 

number. When in a basic state (Re = 0) it means there is no added pressure gradient 

in the stream-wise direction. However, by increasing this value we enforce a difference 

the flow regime such that the flow moves faster. We can deduce the effect this has on 
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the critical Grashof number (Gr) and therefore the stability regions. We look solely at 

the effect the varying parameters have on the Grashof number because at higher Grashof 

numbers, the boundary layer is turbulent; at lower Grashof numbers, the boundary layer 

is laminar. We are looking at the first transition from a laminar flow to turbulent hence 

the region where this may occur. 

The effect of varying Reynolds nunber for Transverse Rolls Pr = 0,705 

  

OOOO Oe eo eso ses ee “8-8-0565 ee ee eee 

  

  

      
  

12 1,25 1,3 13 14 145 

Alpha 

Figure 4.2: The effect of varying the Reynolds number for transverse rolls Pr = 0.705 

The effect of increasing the Reynolds number has been demonstrated in Figure 4.2 

for a transverse roll type structure with Pr = 0.705. We can see that as the Reynolds 

number is increased and consequently a larger pressure gradient is added, that the critical 

Grashof increases. Below the neutral curve is the stability region whereas above the curve 

is unstable region for each of the different Reynolds numbers. By comparing the critical 

Grashof values we can see that increasing the Reynolds number, increases the Grashof 

number, therefore a greater region where the fluid is stable. This result is consistent: 

when varying the Reynolds number between 0 and 100 for Air, Mercury and Water for 

all structures. 
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A second case studied is where the angle of the channel in increased. As shown in 

Figure 3.1 we are particularly interested in seeing the effect of changing x (in degrees) 

will have on the stability of the fluid. In order to see the effect of this, we plot the linear 

results when the angle is increasing in increments of 0.005, this is derived at the critical 

wave vector (a, Bc). The results vary depending on the type of structure being looked 

at, therefore an analysis for each structure will be done individually. 

  

  

    
  

file 

Figure 4.3: Transverse roll varying the angle and Reynolds number. 
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We begin with transverse rolls. Figure 4.3 shows the effect. of increasing the angle and 

Reynolds number on the critical Grashof number. The results seem to suggest that at 

the purely basic state (Re = 0), the increased angle vastly increases the critical Grashof 

number value over a very small inclination. Therefore, as our channel moves from the 

horizontal orientation by the small angle indicated, our fluid becomes more stable. How- 

ever as the Reynolds number increases also, we see that a new critical Grashof value 

occurs at varying increasing angles for each case. As the Reynolds number increases, the 

Grashof number falls further away from its critical value when horizontal, looking at the 

case where Re = 20 in Figure 4.3 we can see that as the inclination increases further 

(> Re = 20), the Grashof number never exceeds the Grashof value when horizontal. So 

for higher Reynolds numbers the fluid becomes unstable at much lower range of Grashof 

numbers, as the orientation of the channel moves from horizontal to vertical. 
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The next structure looked at is the longitudinal roll. Figure 4.4 shows very differ- 

ent results in comparison to Figure 4.3, it shows that the angle of inclination needs to 

significantly increased for it to have an effect on the stability. Only a small effect will 

take place where the Grashof number will rise. When the angle exceeds 50° the effect 

becomes more noticeable, with Gr increasing asymptotically as we approach the vertical 

orientation. This result is the same regardless of the Reynolds number when a Reynolds 

number between 0 — 100 is applied. We conclude that for the longitudinal rolls, the sta- 

bility changes are only dependent on the angle. 

Pr = 0,705 
  

  

  

Figure 4.4: Longitudinal roll varying the angle and Reynolds number. 

The major differences between Figure 4.3 and Figure 4.4 is a result of the structure 

orientation. For the transverse case the effect of the Reynolds number pushes the flow in 

across the roll structure causing differences. Whereas for the longitudinal case the added 

pressure gradient pushes the flow along the roll structure, hence the little disturbance 

regardless of the Reynolds number. 

Following this we next analyse the type 1 hexagonal structures. The result of varying 

the angle and Reynolds number on the critical Grashof value for these structures are very 
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Pr = 0,708 

  

  
  

  

Figure 4.5: Type 1 hexagon varying the angle and Reynolds number. 

similar to the transverse rolls (from Figure 4.3). A small increase in angle increases the 

critical Grashof number value. Although as the Reynolds number is increased simultane- 

ously the Grashof value decreases and so becomes unstable at this lower value, shown in 

Figure 4.5. The Reynolds number needs to be larger for this effect to be seen, Re = 50 in 

Figure 4.5 exhibits a similar pattern to Re = 20 from the transverse roll type structure. 
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finale 

Figure 4.6: Type 2 hexagon varying the angle and Reynolds number. 

The fourth structure we analyse is the type 2 hexagons. In Figure 4.6 we can see that 

the structure demonstrates similar behaviour to the transverse rolls and type 1 hexagons. 

More like the rolls it takes a lower value of the Reynolds number for the Grashof number 

to show decreasing behaviour and therefore lowering the range of Grashof number for 

stable behaviour. The difference between the type 1 and 2 hexagons is their wavelength 

orientation, they are perpendicular. 

The final structural type to consider is the square structure in Figure 4.7. The squares 

behave consistently with Figures 4.3, 4.5 and 4.6. Similar to the type 1 hexagons a higher 

Reynolds number of 50 is used to show the full effect that increasing the angle will have 

on the basic state when a Reynolds number is implied. 
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rate 

Figure 4.7: Square structure varying the angle and Reynolds number. 

Generally these results are consistent for all structures with the exception of longitudi- 

nal rolls. We can conclude that with the exception of the longitudinal rolls, increasing the 

angle of inclination of the channel increases the critical Grashof number value therefore 

meaning the fluid is in a laminar, stable state more for very small Reynolds numbers. 

‘When the Reynolds number increases to a larger values this behaviour changes and acts 

in an opposite manner. The range of Reynolds number where this change in behaviour 

occurs is around Re = 15. Further numerical experiments can be used to pinpoint the 

exact value, however this isn’t necessary for this study. 
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Rey N® Gr NZ Rey N2| Gr N2% 
  

  

  

  

                  

0 3932.349 0 - 

1 3939.590 1 - 

Transverse Rolls 5 4132.190 Transverse Rolls 5 5657.643 

10 4691.722 10 4283.126 

20 6570.713 20 4229.091 

0 3932.349 0 3992.966 

i 3932.349 1 3992.966 

Longitudinal Rolls 5 3932.349 Longitudinal Rolls 5 3992.966 

10 3932.349 10 3992.966 

20 3932.349 20 3992.966 

0 3932.349 0 4549.194 

iL 3934.129 1 4469.993 

5 3983.263 5 4220.383 

Mype dt Herseon io" || 4ia5 184 type Heeger | ig | 4046874 
20 4697.782 20 4065.800 

50 7872.634 50 5589.51 

0 3932.349 0 - 

1 3945.218 1 - 

Type 2 Hexagon 5 4083.180 Type 2 Hexagon 5 5088.518 

10 4513.533 10 4186.839 

20 5982.88 20 4181.482 

0 3932.349 0 5940.944 

1 3935.950 1 5277.570 
Scneves 5 4033.544 i eneres 5 4543.762 

10 4328.418 10 4110.253 

20 5366.173 20 4127.676 
50 11361.293 50 6408.787 

(a) x=0 (b) x =10 

Table 4.2: Analysis of the Gr values corresponding to different structures when Reynolds 

number is increased for a selection of small values. These tables show (in bold) the lowest 

Gr and Reynolds value for Pr = 0.705 when y = 0 and y = 10 respectively. 

There are a number of trends in Table 4.2 worth noting. Firstly we can see that for all 

the longitudinal roll cases included, the Grashof value remains constant regardless of the 

angle or Reynolds number. For all elements labelled ‘-’ the neutral curve was not found 

at the particular angle for the respective Reynolds value. When x = 0 the lowest Grashof 

number is in fact our critical Grashof number at Reynolds = 0. However we can see how 

increasing the Reynolds number effects the Gir value for this horizontal orientation. When 

x = 10, the critical Grashof number appears to be influenced by the Reynolds number, 

the Gr, has a higher value suggesting as the Reynolds number increases the flow becomes 

less stable. 
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Chapter 5 

Non-Linear Stability Analysis 

This chapter describes the motivation of the non-linear analysis with instruction on how 

we produced our results. The results of our analysis are presented with concluding remarks 

on what has been found in the research to date. 

5.1 Non-Linear Solutions 

‘We adopt the same methodology used in the linear stability analysis, to determine the 

stability of the strongly non-linear states found in the secondary flow. We look at the 

unstable region of the fluid just above the neutral curve boundary found in the previous 

chapter, and perform the numerical non-linear analysis. Firstly we need to determine 

the non-linear state parameter space. We do this by referring back to our Navier Stokes 

equations (3.1) - (3.3). For the Non-Linear solutions we neglect the acceleration term 

(F] as we are looking at a steady flow, we include all other terms. Then using the 

poloidal/toroidal decomposition we expand the Navier Stokes equations in terms of the 

basic flow/ temperature and the corresponding perturbations. Following the same method 

as described in Chapter 3.2, the following equations are numerically solved: 

TA,V? Aad — 2UAdrd + 6: {(5¢ + eb) -V(6d + ev)} 

= V1Aod + sin XOr026 — cos x06 », (5-1) 
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UA, Ao — AT A2A,b + €{(6¢6+ ep) -V(6d+ep)} = V7 Ao + sin 0,6 - (5.2) 

2Gr(r-k)Aod = Aodd.T — 00,6 — (66 + ep) -6 + Pr1V76. (5.3) 

In order to find a solution to the unknown scalar variables, we use equations (3.21) - 

(3.23) and again truncate our sum using the chebyshev collocation method. By solving 

the generalised eigenvalue problem, we identify the non-linear state parameters when 

oO; = 0: 

5.2 Non-linear Stability Analysis 

For the non-linear stability analysis we use the solutions to equation (5.1), (5.2) and 

(5.3) and perform a linear stability test on these strongly non linear states. To test the 

stability of these states, we use Floquet Theory to include complex disturbances to the 

scalar derivation (Kuchment, 1982). These Complex disturbances are applied to ¢, y and 

6, which can be expressed fully as: 

G(@,y,2z)= > S01 = 27)? Ta(z)dmn exp{i(ma + d)(x — ct) + iby+ot}, (6.4) 
m=—oon=0 

Ce 
w(x, y,2z) = yy Ya — 27)Tn(z)bnn exp{i(ma + d)(a — ct) + iby + ot}, (5.5) 

m=—oo n=0 

S oo 0 
(x,y,z) = Sf SC — 2") Tn(z)émn exp{i(ma + d)(x — ct) + iby + ot}. (5.6) 

m=—oo n=0 

Where T;,(z) are the n-th order chebyshev polynomials, @nm, kame Cnm are the unknown 

complex coefficients. d and b are the newly introduced complex disturbances, and c is the 

phase velocity. The homogeneous boundary conditions é= 00/dz =~ =Oatz=41 

are satisfied for equations (5.1) - (5.3) and are accounted for in the functions (1 — 27)? 

and (1— 2?) for the unknown @, 1%) and 6. 

To derive the disturbance field (6, aw, 6), we substitute ¢+¢, ¥ +a and 0+ @ into 

equations (5.1) - (5.3). We numerically solve the updated equations again by means of a 

generalised eigenvalue problem: 

Az = o Be. (5.7)



We solve this to find the real and imaginary eigenvalues for each perturbed flow state. A 

and B are 3(N+1)(2M+1) complex matrices that correspond to equations (5.1) - (5.3). It 

is worth noting that we make the assumption that no factors contribute to the mean flow 

or mean temperature such that d? + b? have non zero values. By solving the eigenvalue 

problem we can analyse the behaviour of the flow with respect to the eigenvalues. We 

expect for all a, < 0 the state to exhibit stable behaviour and therefore unstable for 

o, > 0, the real part of our eigenvalue determines the rate of damping in the case of 

negative values and amplification in the case of the positive values for the disturbances. 

5.3 Non-linear Stability Results 

To briefly recap, in the linear analysis, we look at the effect that changing the angle has on 

the critical Grashof number for different fluid materials. The boundaries between a stable 

laminar state and convection are identified at different wave numbers where we expect 

to find different structures. We find the non-linear state parameter space just above this 

boundary and trace the parameters with respect to the angle. In order to identify the the 

properties of the identified non-linear states, a further stability analysis is performed. 

We add small perturbations to our configuration matrix and try to identify any 2D 

or 3D states at the specific wave numbers, angles and Prandtl. We can adjust these 

control parameters in any combination and so there may be more than one state at any 

wavenumber or angle. We do further linear analysis on the states to determine whether 

they are stable or unstable. 

As an extension of the work done in the linear analysis we focus on the case where 

the Re = 0. This gives a completely isotropic convective flow, by inclining the channel 

we induce velocity vis the basic profile which introduces anisotropy. When analysing the 

results, firstly we look at how the poloidal ¢ : ¢j-norms differ depending on the structures 

and by changing ‘the angle, where the heat applied is just above the criticality. 
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Figure 5.1: The behaviour of the @ : €:-norms for two different Prandtl numbers when a 

small angle is applied. 
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There are clear major differences between Figures 5.1(a) and (b). By looking first at 

Figure 5.1(b), we can deduce from our results that for very small Prandtl number such 

as Mercury (Pr = 0.025), all structures do not exist beyond the angle x = 1.13 with 

the exception of the longitudinal rolls. The longitudinal rolls appear to maintain their 

strength under this small angular difference. From this diagram the longitudinal rolls are 

most excited and could be the cause of maximum heat transfer, therefore suggesting the 

most economical way to transfer heat is via roll structures. The type 1 down hexagons 

appear to align with the transverse rolls around the angle y ~ 0.3. 

Comparing this analysis with Figure 5.1(a) we can see similar behaviours. Most of 

the structures appear to decrease in value and so show tendencies to disappear over a 

larger increase in angle. In the case of Air(Pr = 0.705) an interesting result is that the 

down type 2 hexagon appears to overcome the transverse roll to eventually completely 

align with the longitudinal rolls around the angle y = 1. 

When looking at the the behaviour of the 7 : ¢g-norms in Figure 5.2, we can see for 

the case of very small Prandtl number the only structure that exists beyond the boundary 

of y © 1.4 is the longitudinal rolls. For the case of Air, the result are not as conclusive. 

There is no y-norm for the transverse rolls due to their 2D structure. For the down 

hexagons in this small range of angle, the curve appears to be increasing in strength. 

However increasing the analysis to a larger range of angle could show this trend to curve 

and begin to decrease in the same manner as with the @ : f2-norms. 

Analysis of the @ : f)-norms confirms our assumptions that longitudinal rolls appear 

to dominate the heat transfer for the two cases where we increase the angle of the channel 

for Air and Mercury when Re = 0. When looking at the Mercury case, the type one down 

hexagons and and transverse rolls align, this is due to the transverse rolls being a more 

stable structure and therefore the down hexagons loose their structure and so it is likely 

the numerical calculation tracked the rolls at this point. Further analysis at a greater 

range of angles can be done to determine the angular value where the structures decease 

for the case of Air, for Mercury this value is y + 1.14. 
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Figure 5.2: The behaviour of the 7 : @j-norms for two different Prandtl numbers when a 

small angle is applied. 
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Figure 5.3: The behaviour of the @ : £3-norms for two different Prandt] numbers when a 

small angle is applied. 
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Table 5.1: The changing values of the matrix size chosen for analysis and the 2 - norms 

found corresponding to the different coherent structures found where (a, 8) are the re- 

spective wave numbers such that : Transverse roll (0,1.315); Longitudinal Roll (1.315,0); 

Type 1 Hex (0.66,1.14); Type 2 Hex (1.14,0.66). Values are consistent to the case where 

Pr = 0.705, Rey = 0, y = 1°. 

  

@: €o-norm | 7): fa-norm | @: fg-norm 
  

Transverse Roll 17 5 0.14354356 - 1.74952734 
  

Longitudinal Roll | 17] 0 0.16500109 | 0.03778987 | 2.00516547 
  

a
l
a
l
o
|
z
a
 

Type 1 Up Hex 21 | 10 0.10385051 | 0.01316288 | 1.28764875 
  

Type 2 Up Hex 21 | 6 | 10 | 0,.09487824 | 0.01550656 | 1.17936815 
  

Type 1 Down Hex | 21 | 10 | 6 | 0.13028698 | 0.01929889 | 1.54905022 
  

Type 2 Down Hex | 21 | 6 | 10 | 0.16339347 | 0.03715104 | 1.98286988                   

Table 5.2: The changing values of the matrix size chosen for analysis and the £2 - norms 

found corresponding to the different coherent structures found where (a, ) are the re- 

spective wave numbers such that : Transverse roll (0,1.315); Longitudinal Roll (1.315,0); 

Type 1 Hex (0.66,1.14); Type 2 Hex (1.14,0.66). Values are consistent to the case where 

Pr = 0.025, Rey = 0, x = 1°. 

  

L | MN | ¢: norm | ~: -norm | @: €9-norm 
  

Transverse Roll 21/16] 0 - - 2 
  

Longitudinal Roll | 21} 0 | 16 | 1.33321132 | 4.62879339 | 16.20999646 
  

Type 1 Up Hex 21 | 10] 6 | 0.24388119 | 0.89027460 | 3.04306479 

Type 2 Up Hex 21] 6 | 10 - - - 

Type 1 Down Hex | 21 | 10 | 6 | 0.31471826 | 0.00003195 | 3.78666816 

  

  

  

Type 2 Down Hex | 21] 6 | 10 - - -                   

We summarise the f9-norm values with details of the number of modes used in the 

calculations in Tables 5.1 and 5.2. For all zero values in the table, we do not numerically 

find a solution for the corresponding structure at the angle x = 1°. 
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We want to explore the trends in stability for our non-linear results when a distur- 

bance is added to our states. To deduce any information about the stability of the states 

we need to take a closer look at the eigenvalue components. There are specific trends that 

we are looking for with this eigenvalue analysis. When looking at the real eigenvalues o,. 

we analyse whether our results are > 0. For all the cases where we do have a positive real 

eigenvalue the structures are unstable. Our main goal is to determine if these non-linear 

state parameters exhibit stable or unstable behaviour. 

The imaginary eigenvalues o; are also analysed to determine the behaviour of the struc- 

tures. For our analysis, if the imaginary eigenvalues show no significant trends, we assume 

the structures are stationary waves. If the two eigenvalues have the same magnitude but 

opposite sign, it suggests they are oscillating. Oscillatory waves are roll or knots states 

that oscillate with time. If one of the eigenvalues is constant and the second shows a 

significant declining trend, then it is assumed to be a travelling wave. Travelling waves 

are states that have a phase velocity, they move in space and time. 
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5.3.1 Stability Analysis Air (Pr = 0.705) 

comparative eigenvalue analysis of different structures 
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Prale 

16 

Tranevoree Roll 
Longitudinal Roll 

Type 1 Up Hex 
Type 2 Up Hex 

Type 4 Down Hex 
Type 2 Dour Hex 

Figure 5.4: Real Eigenvalues against a small angle variation for Air (Pr = 0.705). For 
each structural type a disturbance (d,b) is applied such that: Transverse roll (0, 1.315); 
Longitudinal roll (1.315,0); Type 1 Up/Down Hex (1.14,0.66); Type 2 Up/Down Hex 

(0.66,1.14). 

45



  

  

    

    
  

Figure 5.5: Imaginary Eigenvalues against a small angle variation for Air (Pr = 0.705). 

A disturbance (d,b) is applied to the structures such that: Transverse roll (0, 1.315); 

Longitudinal roll (1.315, 0). 

Figure 5.4 shows that both the roll structures are stable at a horizontal configuration. 

As the channel begins to incline slightly in the transverse direction, the transverse rolls 

become unstable whereas the longitudinal rolls maintain their stability appearing to be- 

come slightly more stable as the angle increases. For the Up Hexagons, both type 1 and 

type 2 are unstable initially, around x + 1° the eigenvalues begin to decrease until they 

become stable at approximately y = 1.1° and x ~ 1.2° respectively. The down hexagons 

for both type 1 and type 2 are stable and remain stable for the small increase in angle. 
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Figure 5.6: Imaginary Eigenvalues against a small angle variation for Air (Pr = 0.705). 

A disturbance (d,b) is applied to the structures such that: Type 1 Up Hex (1.14, 0.66); 
Type 2 Up Hex (0.66,1.14). 

For the imaginary eigenvalue analysis we split the structures into groups. Figure 5.5 

illustrates a significant trend for the transverse rolls, the first imaginary eigenvalue oj 

remains constant whereas the second o; shows a significant declining trend, this suggests 

the transverse roll is a travelling wave. On the other hand the longitudinal rolls show no 

significant trend perhaps suggesting they are stationary waves. 
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Figure 5.7: Imaginary Eigenvalues against a small angle variation for Air (Pr = 0.705). 

A disturbance (d,b) is applied to the structures such that: Type 1 Down Hex (1.14, 0.66); 

Type 2 Down Hex (0.66,1.14). 

In Figure 5.6 it is difficult to deduce a significant trend for the type 1 up hexagons. 

However for the type 2 up hexagons, the two imaginary eigenvalues has the same magni- 

tude but opposite signs such that |o1;| = —|o2;| this suggests this structure is oscillating. 

This result is also the case for the type 1 and type 2 down hexagonal structures, shown 

in Figure 5.7. 
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5.3.2 Stability Analysis Mercury (Pr = 0.025) 

A comparative eigenvalue analysis of different. structures 
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Angle 

Figure 5.8: Real Eigenvalues against a small angle variation for Mercury (Pr = 0.025). For 

each structural type a disturbance (d,b) is applied such that: Transverse roll (0, 1.315); 

Longitudinal roll (1.315,0); Type 1 Up/Down Hex (1.14, 0.66); Type 2 Up/Down Hex 

(0.66,1.14). 

When analysing the stability of Mercury, our first observation is that the different: 

structures are more unpredictable in comparison to the case for Air. Nonetheless, we can 

deduce that the roll structures are both stable when y = 0° but then the transverse roll 

becomes unstable with an extremely small angle whereas the longitudinal rolls remain 

stable. The up hexagons remain stable regardless of the structure type. The down 

hexagons however are both unstable where the type one hexagon becomes stable after an 

angular increase of y © 0.05°. For a very small Prandtl number such as Mercury, a very 

small change in incline can have significant effects on the stability, suggesting this fluid is 

notably more unstable than the case for Air. 
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Figure 5.9: Imaginary Eigenvalues against a small angle variation for Mercury (Pr = 

0.025). A disturbance (d,b) is applied to the structures such that: 

(0, 1.315); Longitudinal roll (1.315, 0). 
Transverse roll 

For the roll structures shown in Figure 5.9, the transverse rolls for Mercury behave in a 

similar manner to those for Air, as one a; is constant and one is significantly decreasing we 

suggest they are travelling waves. The longitudinal rolls appear to behave in an oscillatory 

manner up until y ~ 0.5 however after this point we assume they are just moving waves 

as the eigenvalue trend is not conclusive. 

The nature of the imaginary eigenvalues for the up hexagons in Figure 5.10 does not 

yield conclusive results for us to predict the nature of the structures. This is not necessarily 

a disappointment as we can see from Figure 5.8 that the up hexagons are in fact stable 

for the small angular variations and so they are not the most interesting of states. Down 

hexagons on the other hand appear to be unstable when the channel is horizontal. If we 

look at Figure 5.11 we can conclude the type 2 hexagons exhibit oscillatory behaviour 

and so we can assume that when y ~ 0.05° the unstable down hexagon is oscillating. 
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Figure 5.10: Imaginary Eigenvalues against a small angle variation for Mercury (Pr = 

0.025). A disturbance (d,b) is applied to the structures such that: Type 1 Up Hex 
(1.14, 0.66); Type 2 Up Hex (0.66,1.14). 

A camparative exsenvalve analusie oF afferent structures 
  

      

      

Figure 5.11: Imaginary Eigenvalues against a small angle variation for Mercury (Pr = 

0.025). A disturbance (d,b) is applied to the structures such that: Type 1 Down Hex 

(1.14, 0.66); Type 2 Down Hex (0.66,1.14). 
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5.4 Stability Analysis Concluding Remarks 

In the non-linear stability analysis, all of the results obtained were a conclusion of tracing 

the angle in our analysis. The figures, in particular the imaginary eigenvalue figures 

appear to have a number of jumps and overlapping of lines. We can summarise this result 

by assuming the overlap of the lines occur when two structures have overlapped and the 

dominating structure overshadows the less dominant structure. The jumps in the line 

segments suggest that when tracing the angle of inclination for this particular section of 

analysis, numerically we find solutions for different structures occurring within the same 

parameter space. The figures do however show some symmetry and suggested behaviour. 

It is evident however that the angle is not a distinguishing factor of the analysis. It may 

have been more productive to trace the eigenvalues for example, we could then determine 

the subcritical and supercritical regions of the non-linear state space. 
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Chapter 6 

Conclusion 

In this dissertation the methods and simulations described aid our analysis of modelling 

an internally heated fluid. The motivation of the study is to analyse a system that arises 

in current industrial processes. A system that emulates a corium melt pool was chosen in 

order to explore the convective behaviour of the fluid under the extreme conditions found 

within a nuclear reactor. 

The understanding required in order to define and study the problem, entailed in-depth 

learning of fluid dynamics and more specifically the Navier Stokes equation. During this 

process the work of (Glover et al., 2013) and (Generalis and Nagata, 2003) inspired the 

direction of the research as the model studied shares similar concepts these papers. We 

study an internally heated system with an isothermal upper boundary and an adiabatic 

lower boundary. This system is then analysed when the angle of the channel is increased 

and when varying the control parameters. 

By narrowing our analysis to three fluid materials (Air, Mercury, Water), we firstly 

obtained linear neutral curves showing the boundary between laminar and convection for 

the corresponding Prandtl values of our fluids. It was found that by changing the control 

parameters we find regions where the fluid exhibits different convective behaviour. When 

the Reynolds number is increased the critical Grashof number also increases, therefore the 

boundary between laminar flow and convection is found at higher Grashof values. This 

suggests the state of the fluid is stable for a larger range of values. 

‘When we simultaneously increase the angle of the channel and the Reynolds number, 
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we see that the critical Grashof number again increases. However this is only the case 

for small Reynolds values and inclination. As these values increase the fluids generally 

become unstable for all structures with the exception of the longitudinal rolls. 

The most interesting part of the research was delving into the non-linear analysis of our 

problem. This proved to be the more challenging area of the research as the computational 

programs took a long time to understand and adapt for the constraints applied for this 

model. The execution of the programs for each parameter variation proved to be very 

time consuming. However the non-linear results of our study produce some interesting 

results for our analysis. In particular, when the angle of inclination is increased such 

that y = 1° for Air and y ~ 0.005° for Mercury, there is a region where both the up 

and down hexagons are in a stable state. This behaviour of the up and down hexagonal 

structures have rarely been found (Groh et al., 2007). This warrants the motivation to 

further the non-linear study of this system to perhaps see if this behaviour occurs for 

different Prandtl or Reynolds values. 
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Appendices



Appendix A 

Non-dimensionalisation 

This appendix is an extension of section 2.1.2. In order to simplify our calculations 

corresponding to the modelled problem, we non-dimensionalise our governing equations 

to remove all dimensional units. This allows our problem to be more widely used as we 

can rescale our problem and results with respect to specific parameters. A method on how 

we can normalise our parameters to substitute into our governing equations is explained 

in section 2.1.2. We begin by introducing the dimensional governing equations. Note the 

asterisk represents the dimensional variables. 

ou 4ut- Vout = aaa +u°V*u" — 9(T —T,), (A.1) 

as +ut-V°T* = KV*T" +4, (A.2) 

  

(A.3) 

We now need to define our variables and spatial derivatives in terms of the reference 

constant and substitute into equations (A.1) - (A.3). 

1 Tee dls ve ave 5 3 a ug Ee 
or Lory) au oF wet 

4 A 
te Te 4 get 
Vo AV. we = ar 

By substituting all of the r-h.s terms into (A.1) - (A.3) we can simplify each term to 

achieve the non-dimensionalised equations in section 2.1.2. 
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Appendix B 

Derivation of 6, « and V-u=0 

Delta-Epsilon Operators 

We begin by defining e. 

e = Vxk, 

fige ib 

= 10, dy a} 

OsneONgert 

= 1 (A —9.(0)) — j (On — A-(0)) + & (Ax(0) — Ay(0)) , 

= Odyi— 825 + (O)k. 

€ = (dy, —O,, 0) - 

Following this we define 6 

6 = Vx(V xh), 

= Vxe, 

a ae 

= 18; 0d) @|> 

ea OraD 

= i(0y(0) — 0:0) — j (x(0) — 820) + k (—03 + 82) , 

= 0,0ri — O05 + (—Ao)k.



6 = (0:0, 0y0:,—Az) . 

Now we show that 6-€ = 0. 

ay nd. 

b-e = |-a,|-| a0, | > 

0 —A» 
yIx02 — yOr0z + (0)Av, 

= 0. 

Incompressibility condition 

The next step is to show V-u=0. 

V-u Ogi; fors —1,273, 

I Ont + Oyua + Ozu3, 

where uj, U2, ug are the 2, y, z-components of u. We can define u as u = dd + ey. From 

this definition we can define each component as: 

uj = di + Ex). 

Such that, 

uy = 616 + ext) = 02079 + Oy, 

tug = d29 + €2%) = OyO2b — Ox), 

uz = 636 + e3 = —Ad. 
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Therefore, 

V-u = Apu + Oyu2 + O23, 

= 9,(9:0r6 + Oy'p) + Ay(Oy026 — Oxi) + O:(—A¢), 

= 8.6 + IrOyh + 82026 — d20yi) — I2A20, 

= 07026 + 05026 — 0-A26, 

= 0:(026 + Fo — Ard), 

= 0,(A2p — Ao), 

= 90,(0), 

= 0. 

So we can conclude V -u = 0V u given 6 and e. 
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Appendix C 

Derivation of computable 

equations 

This appendix is an extension of section 3.2 where we explain the process of preparing 

the governing equations so that they can be implemented computationally. As explained 

for this to occur it is necessary to apply the 6, € operators to equation (3.10). The most 

simple way to do this is to apply the operators term by term. In this appendix we will 

demonstrate the result of applying the operators on a number of terms, when these results 

are applied to all terms and then put together, we obtain the computable equations. 

€ - operator 

m sg
 

I «(B) = « Zsrew), 

= Fel66+ev), 
= 2, 

= Zr ay, 
a = 5A. 
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e- Vi 

Oy Ont 

e-Vr = |-0,]- | dn], 
0 Om 

= OyOew — OpOyn + (0)O27, 

= (0j02 — On8y)m, 

= (0) 

= 0. 

€-(kcosx +isin x)0 

€-(kcosy+isiny)0@ = ¢30cosy+eOsiny, 

e-((a- V)u) 

e-((a-V)u 

0+ dy@sin x. 

€,- ((@- Vu + €2- ((@- V)ue + €3 - ((@- V)us, 

e(@-V)u, 

€1(uj0;)Uo(z) 

€1(u1p + U20y + u30z)U0(2), 

€1(ug0:Uo(z)), 

Oy ((63@ + €3h)0z)Uo(2), 

8, ((630)92)Uo(2), 

0y((—A2)2)U0(2), 

—03Up(z)A2d2¢. 
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e-((u- V) = 
e-((u-V)G) = e(Uo(z)-V)ui, 

= (Uo(z)Ox)ui, 

= €1(Uo(z)Ox)ur + €2(Vo(z)Ox)u2 + €3(Uo(z)Ox)us, 

= 1 (Uo(z)Ox)ur + €2(Uo(2)Ox)u2 + €3(Uo(2)dx)us, 

= €1(Uo(z) Ox) (519 + er) + €2(Uo(2)Ox) (520 + en) + €3(Uo(z)Ax) (53d + es), 

= 1(Uo(z)Ox) [9:42 + Ay] + €2(Uo(z) x) [8,926 — Axt)] + €3(Uo(z)Ax) [Ard] , 

= Uo(z)Ax) dy [2026 + Oyih] — (Vo(2) Oz) Ix [ByO:4 — Inxth] , 

= (o(2)0x) [(Oz + O5)¥] , 

= U,(z)0rAo. 

e-(V?u) 

e-V7u = Ve-u, 

= Ve(dd+ ev), 

= Wc), 

= V°(Oi + Oz)¥, 

= V*Aoyp. 
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6 - operator 

du 5: 

0-Vr 

6 - (cos x + isin x)0 

du (7 

6-Vr = 

0 = 5-5 (65 +66), 
a = (666+), 

= ay = 2% 
= ioe? + 0fo? + atid, 

a 
= ~[Acd? + ArAg]¢, 

Ot 

= Fldol0? + Aa), 
2 F(aov?)6. 

0,02 Onm 

8,0. || dyx | > 

—Ag On 

8,0200% + 0y0.0yn — Moder, 

(020202 + OyOz0y — Ao)r, 

(02(Or0x2 + yO, — Ae), 

(0.(62 + 0; — Aa)r), 

(0:(A2 — Ae)r), 

8.(0)r, 

0. 

5-(kcosy+isiny)@ = 630cosy +6,0sin x, 

= —AoOcos x + 02020 sin x. 

63



LV 2a 

V6 - a, 

V?5(5¢ + €8), 

V(65i)? 

V? [8202 + 0302 — A3] 4, 

V? [Avd? + ArAd] 4, 

V? [A2(82 + A2)] 

V?(A2V?)9. 
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