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Abstract 

Greenhouse production of crops is problematic in the United Arab Emirates due to the 

harsh arid climate, which produces an unfavourable micro-climate within a greenhouse. 

This ‘micro-climate’ is controlled to create optimal conditions to grow crops. In order to 

determine these conditions, we simulate a two-dimensional micro-climate to study the 

temperature distribution of a ventilated system with different outlet positions. Thus 

creating the symmetric and asymmetric models. These models are compared between 

two cases of fluid properties defined by nondimensional parameters such as the Reynolds 

number. The aim is to understand how to amend the conditions of a micro-climate to 

remove heat by ventilation, as well as to determine which model is ventilated better 

by comparing models across cases. Our objectives are to observe the behaviour of the 

airflow for each model by evaluating heat balances, and then analyse whether the po- 

sitioning of the outlet effects heat transfers in accordance to different fluid properties. 

The finite-difference method is presented for the numerical solution of the Navier-Stokes 

equations of an incompressible Newtonian fluid, in two dimensions, a stream function- 

vorticity formulation. Using a uniform grid of mesh points to discretise these equations, 

we then derive finite difference equations which are then solved to approximate solutions. 

Numerical results show that the symmetric model for the set of parameters (case 2) 

with Reynolds number Re = 1.622 x 10° and Grashof number Gr = 6.770 x 10° as the 

most influential case in the distribution of temperature. Thus, overall there is a better 

ventilated system through the symmetric channel for case 2. This is highlighted by a 

total heat flux of Q = 54.90 with a ratio of averaged gradient between the ground and 

the roof as 6.272 : 1. 

Keywords: Greenhouse, ventilation, heat and mass transfer, Navier-Stokes equations, 

stream function-vorticity formulation, finite difference approximation
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Chapter 1 

Introduction 

In this project we study fluid flow phenomena of a greenhouse. The environment of 

a greenhouse is considered problematic when creating desired conditions to cultivate 

crops, particularly in arid climates. The harsh environment within a greenhouse is 

explored through a two-dimensional analysis by creating a modelled ‘micro-climate’. We 

will explore how to control the temperature conditions within a micro-climate through 

ventilation, by heat and mass transfers with variable boundary conditions. 

1.1 Motivation 

A greenhouse is a building commonly used for the cultivation of crops such as, lettuce, 

pepper and tomatoes. This involves growing crops under a controlled environment by 

creating favourable conditions, thus generating a micro-climate. The main objective is 

to achieve sustainable growth by efficient means of production all year round. We note 

that a successful cultivation of crops is generated through high quality yields. Subse- 

quently this creates many benefits to the economy, such as the capacity to reduce the 

rate of imported food by the creation of a sustainable agriculture sector. Simultane- 

ously, the reduction of environmental externalities would be brought by the sustainable 

development of greenhouse crop production. There are various trends in greenhouse 

systems which reflect upon the climatic conditions of specific regions. It has been high- 

lighted by Zabeltitz (2011) that there are several climatic elements to be considered such 

as: solar radiation, temperature, precipitation, humidity, evaporation, and wind veloc- 
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ity. These elements affect the type of greenhouse system used to determine an optimal 

micro-climate for growing crops. For example, the Mediterranean climate is charac- 

terised as warm to hot, with dry summers and wet winters. Thus, a greenhouse cooling 

system is implemented as Sapounas et al. (2008) stated that the main techniques used 

are based upon ventilation and shading, through fans and pads. However there are many 

limitations and problems incurred by implementing these cooling techniques to create 

an appropriate micro-climate, particularly during hot periods of the year. This yields 

further stipulation across other climates that are mainly hot and dry all year round, 

which is the case in this particular project. Furthermore Sethi and Sharma (2007) 

suggests that unlike the heating system which is well established and straightforward, 

greenhouse cooling systems are considered problematic. Therefore in order to generate 

adequate ventilation to create the desired micro-climate, it is important to understand 

the thermal behaviour of a greenhouse. For that reason, the focal point of this research 

is to understand how changing the properties of the fluid affects heat balances within a 

micro-climate. 

1.2 The Problem 

Davies (2005) highlights that sunlight provides the primary energy for photosynthesis, 

the food chain and all human nutrition. However intense sunlight induces high tem- 

peratures, which can restrict or prevent cultivation of many crops. This is the case in 

arid countries such as the United Arab Emirates (UAE), where temperatures reach well 

over 40°C in the summer. This project is concerned with the problems incurred when 

creating desired conditions of a micro-climate of a greenhouse in the UAE. This type of 

climate is described by Béer (1997) and it is explained that the limited amount of fresh- 

water, combined with extremely high summer temperatures, and high evaporation rates 

produces a harsh environment for vegetation to grow. The significance of greenhouse 

technology in agriculture is also highlighted by a growing population and the heavy de- 

pendence upon importing agricultural commodities. Moreover there is a clear problem 

which is emphasised by Kumar et al. (2009), seeing that the development of a suitable 

cooling system that provides a congenial micro-climate for crop growth is a difficult task, 

12



as the design is closely related to the local environmental conditions. Although there 

have been many developments of greenhouse systems such as, solar-powered systems and 

seawater greenhouse systems. These are predominantly based upon cooling techniques, 

which is usually problematic when seeking to control the thermal conditions of a micro- 

climate because of the harsh climatic conditions. Experimental work is crucial in the 

study of a micro-climate of a greenhouse, however it is costly and very time consuming. 

In addition, experimental work entails many factors that determine a suitable environ- 

ment for a greenhouse, such as the geometry of a greenhouse, climatic conditions, the 

ventilation rate, plant activity, solar radiation, air flow etc. Therefore by considering 

only a few fundamental factors that influences a micro-climate, we are able to take a 

numerical approach to study the phenomena of a greenhouse. Thus we simplify the 

problem by focusing our attention upon the ventilation within a greenhouse. There are 

several different forms ranging between natural and forced ventilation, this research has 

adopted forced ventilation by mathematically modelling a wind-driven system through 

the parameters within our calculations. 

This type of approach has become an innovation of many research endeavours, in which 

the field of fluid dynamics is used to create mathematical models aimed to simulate the 

micro-climate of a greenhouse. Despite the limitations of the applicability of these stud- 

ies upon real world solutions, due to the simplification of the problem, computational 

fluid dynamics (CFD) is used as a fundamental numerical approach to create models in 

order to study these types of fluid flow related phenomena. Nevertheless we are able to 

obtain critical information by studying the flow patterns inside the greenhouse through 

the simulated micro-climate. This approach has been utilised to model a micro-climate 

in order to apply a ventilation system, and determine how the variation of parame- 

ters influence the behaviour of the fluid flows, as well as heat and mass transfers in a 

greenhouse. In order to develop a micro-climate with favourable conditions to produce 

a viable greenhouse system in the UAE, it is fundamental to have an understanding of 

the behaviour of this fluid flow phenomena. 
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1.3. Goals and outline 

A two dimensional study has been taken to observe the behaviour of the airflow within 

a micro-climate of a greenhouse with variable boundary conditions. This entails using 

the Navier-Stokes equations to model this fluid flow, furthermore by a transformation 

of these equations we are able to derive the stream function-vorticity formulation. The 

finite difference method is employed whereby a finite difference mesh has been applied to 

discretise the governing equations to approximate the derivatives on a set of discrete data 

points. Moreover, through the application of CFD we are able to control parameters 

within our calculations to create two different cases. These cases are analysed in regards 

to two distinct models. The configurations of these models have been adapted from the 

greenhouse depicted by Davies and Paton (2005), as well as the design of a Venlo type 

greenhouse. Thus the goal of this project is to compare two models with different outlet 

positions for two different cases. The cases are defined by the following parameters; 

Prandtle number, Reynolds number, Grashof number, mesh size, and time step. The 

evaluation of the behaviour of airflow is fundamental to the goal of this project, such 

that the following variables will be analysed; temperature (T), stream function (2) 

and vorticity (w). The motivation of this project is to understand how to amend the 

conditions of a micro-climate mainly to remove heat by ventilation, which is determined 

by the evaluation of heat balances between the models control parameters. This project 

is presented in the following order to unfold how the research problem has been carried 

out. Chapter 2 describes the research problem in greater detail through the formulation 

of mathematical model. Following this, the numerical method used to solve the problem 

is described in chapter 3. Moreover, the results are then presented and discussed in 

chapter 4. Furthermore conclusions are drawn and potential further work is deemed in 

chapter 5. 
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Chapter 2 

The research problem 

This chapter looks at how the physical problem is mathematically modelled to create a 

simulated micro-climate of a Venlo type greenhouse. The construction of the two models 

will be discussed. Furthermore the mathematical formulation used to model the flow 

field is examined as we derive the governing equations of our problem. 

2.1 Formulation of the problem 

In order to simulate a micro-climate of a greenhouse we have adapted the Seawater 

Greenhouse model which has been constructed in the UAE and applied by Davies and 

Paton (2005). Only the basic dimensions of this particular greenhouse design has been 

applied, since it represents a typical greenhouse in the UAE. Furthermore the green- 

house model considered is concerned with the case of a wind driven ventilation system. 

A fan is positioned at the inlet to ventilate the greenhouse as air flows towards the outlet. 

We explore the phenomena of fluid flows within the micro-climate of this greenhouse de- 

sign through a two-dimensional analysis. Therefore we consider a vertical cross section 

which is positioned in the lengthwise mid-plane, perpendicular to the base of a Venlo 

type greenhouse shown by Figure (2.1). The main parameters that relate to this model 

are summarised in Table (2.1). The Venlo greenhouse is a well known structure used for 

the cultivation of crops. Given that it has a wide range of characteristics that make it 

suitable for growing a vast variety of crops in most climate conditions. The number of



physical factors that characterises this greenhouse is minimised in order to comprehend 

a simpler two-dimensional case. This allows us to manipulate the environment of the 

modelled micro-climate. 

  

  

      
    

  

  

    
    

  
  

  

Figure 2.1: Basic geometric configuration of a Venlo type greenhouse in which the two- 

dimensional models are created from. 

Table 2.1: Basic design parameters 

  

  

Width(m) 18 
Length(m) 42 

Maximum height(m) 5.5 

Air flow(m?/s) 15 
Average air flow (m/s) 0.625 
Dimensions (width x height x thickness): 
Inlet, fan (m) 1222 
Outlet(m) 8x2x4 
  

Through controlling the parameters within our calculations, we are able to observe how 

heat and mass transfers are affected by variable boundary conditions. We vary the po- 

sitioning of the outlet to create two separate models that simulate the micro-climate of 

this greenhouse. The first model is illustrated by Figure (2.2) in which both the inlet 

and outlet channels are connected to the greenhouse with the same height above the 

ground (1.75m). The model is symmetric in the horizontal direction. The second model 

is asymmetric shown in Figure (2.3), which has been created by raising the positioning 

of the outlet by one metre (now 2.75m above the ground), while maintaining the posi- 
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tion of the inlet. The coordinate system is outlined and the orientation axes in relation 

to the physical problem is shown in both the figures below. We take x,y as Cartesian 

coordinates in the horizontal and vertical directions (with unit vectors, i,j respectively). 
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Figure 2.2: Model 1 - Symmetric channel with inlet an d outlet positioning (m) 
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Figure 2.3: Model 2 - Asymmetric channel with inlet and outlet positioning (m) 
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The temperature conditions involved (typical climate for UAE) for both models remain 

constant throughout this study and are defined at the ground (T, = 40°C), roof (T, = 

32°C) and inlet (Tj, = 27°C). In addition the walls of these models along the shaded 

regions are insulated in order to observe the heat flux between the defined physical sys- 

tem. For the purpose of this project, the velocity profile representing the ventilation of 

airflow is modelled by the Poiseuille profile at the inlet as a boundary condition in order 

to simplify the problem. Two different ventilation rates will be explored 0.01 m/s and 

1 m/s though two cases. This is done in order to monitor the differences or similarities 

of temperature balances between these two cases among the two models. 

Our fundamental focus is to observe the emerging patterns of airflow between these 

modelled micro-climates. Torre-Gea et al. (2011) states that a micro-climate is a highly 

complex system in which the airflow and the variables that create the climate behave 

in a temporal and non-linear manner. This is expressed through a system of complex 

second-order differential equations which cannot be solved analytically. We therefore de- 

scribe the greenhouse phenomena through the Navier-Stokes equations and the Energy 

equations. 

2.2 Governing equations 

In this section we provide the mathematical formulation to model our fluid flow. We 

assume an incompressible flow of a Newtonian fluid, where stress is proportional to 

shear rate and the density of the fluid with respect to time and space is constant. It 

is important to note that we observe the motion of fluid (as a function) at time t and 

position # in space, which yields an Eulerian representation of the flow field. Therefore 

we represent the velocity vector field as u(a,t), the fluid density p(a,t), and the pres- 

sure field p(a,t) (Doering and Gibbon, 1995). 

Fluids obey the general laws of continuum mechanics: conservation of mass, momentum, 

and energy (Foias et al., 2001). 
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The conservation of mass is expressed by the following continuity equation, 

ap 
BE +V-(pu) =0. (2.1) 

Given that we are examining incompressible Newtonian fluids, such that density is as- 

sumed constant in space and time p(a,t) = po. Hence the continuity equation is reduced 

to the divergence free condition V - uw = 0, known as the incompressibility condition. 

The conservation of momentum implied by Newton’s law of motion along with the 

continuity equation is used to derive the following general Navier-Stokes equation, 

p fF +(u-V) 4 = —-Vp+puV7u— pg, (2.2) 

for the velocity vector u, pressure p, and density p which is now a parameter. 

Given that this project is concerned with the problem of thermal convection (heat and 

mass transfer) of an incompressible Newtonian fluid. Such that, the influence of the tem- 

perature field on the incompressible fluid’s motion is taken into account by introducing 

a buoyancy force, Doering and Gibbon (1995). Therefore we apply the Boussinesq ap- 

proximation which observes that, the variations of density can be ignored except for 

when they are multiplied by the acceleration of gravity in Equation (2.2) for the vertical 

component of the velocity vector, Zeytounian and Mecanique (2003) cites the work of 

Boussinesq (1903). Subsequently the variation in temperature usually leads to density 

variations, where the Boussinesq approximation gives rise to buoyancy forces through 

the equation of states, 

p= po[l—a(T —T,)), (2.3) 

a is the coefficient of thermal expansion. If we now write (T'—T,,) as T, in the equation 

above we get, 

P= po — po aT. (2.4) 
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We are then able to deduce the following Boussinesq equations for velocity vector wu, 

pressure p, and temperature T(a, t) of the fluid: 

po Ee +(u- vu] =-VptpV?u+ gaTj, (2.5) 

V-u=0, (2.6) 

OT + (ue V)T = KVL. (2.7) 

By introducing the acceleration of gravity as -j9, where 7 is the unit vector in the verti- 

cal direction taken as the y-direction, the reference temperature as T;. and the reference 

density as po; the Navier-Stokes equations are now represented by Equations (2.5) and 

(2.6). We also derive the energy equation in (2.7), which incorporates the conservation 

of energy and is ultimately the convection-diffusion equation for the temperature field; 

where « represents the thermal diffusion coefficient. 

2.2.1 Nondimensional equations 

The nondimensional forms of our governing equations are established for the purpose 

of universal applicability. We are able to normalise every parameter using a reference 

constant so that they are not associated with a physical dimension. Such that a dimen- 

sionless variable can be defined as: 

with a being a variable which has a dimension (unit of measure), A is the reference 

constant, and a* is denoted as the non-dimensional variable. Furthermore the Equa- 

tions (2.8) - (2.10) are obtained by employing the reference constants from Table (2.2) 

in order to reduce the number of variables into fewer manageable parameters. Such 

that we reduce the governing equations to four equations with four unknowns, velocity 

components (u, v), pressure p, and temperature T. 
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Table 2.2: Reference constants 

  

  

  

  

          

  

Characteristic velocity G 

Characteristic length L 

Reference temperature Ty 

Characteristic time scale & 

Temperature scale Tp ir 

ou* 12 Gr 4 
ae yt(u*-V*)u* = —V* pe + he ut + Rep led; (2.8) 

Vie OF (2.9) 

or* ‘ 1 2 
OF + (u®-V*)T* = Pr Re Vi: (2.10) 

Where Gr = wate Re = ch and Pr = %. Equations (2.8-2.10) represent the 

momentum, incompressibility condition and energy equations respectively. Moreover, 

the nondimensionalisation of the Navier-Stokes equations and the energy equation is 

carried out in Appendix A. 

2.2.2 Stream function-vorticity formulation 

The equations of the problem are reduced further by transforming the Navier-Stokes 

equations through the velocity-vorticity formulation. We now deal with the continuity 

equation and the two momentum equations as pressure is eliminated from the govern- 

ing equations through cross differentiation. We then are able to formulate the stream 

function - vorticity formulation by combining the definition of the stream function and 

the velocity-vorticity formulation. Loukopoulos et al. (2013) concludes that for two- 

dimensional problems there is only one vorticity component (w) and the two velocity 

components, u = (u,v) substituted by the stream function, ~)(a, y) defined by 

_ ov __ ob 
“= By’ Cae (2.11) 
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Thus the velocity-vorticity approach is generally known as the stream function-vorticity 

approach. Therefore we are now left with following three equations and three unknowns, 

vorticity w, stream function w, and temperature T 

1. Poisson equation 

w= -V*y, 

2. vorticity transport equation 

Ow Ob dw Apdw _ 1» Gr OT 

at * By Oz On By Re’ “ * Re? dx’ 

3. stream function formulation of the energy equation 

OT . WOT OYOT 1 VO. 

‘Ot | dy dx Ox dy PrRe : 
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Chapter 3 

Numerical method 

Finite difference methods offer a powerful technique for the solution of heat trans- 

fer proulens: (Croft and Lilley, 1977). This chapter will discuss how finite difference 

methods are used to discretise the governing equations to find approximated solutions. 

Furthermore we develop our computational model in efforts to predict heat and mass 

transfers within our modelled micro-climate. The fluid flow is characterised by control 

parameters such as Reynolds number and Grashof number, these will be determined to 

mathematically model the fluid flow. 

3.1 Discretisation by finite difference approximation 

In this project we are concerned with the numerical solution of the governing equations 

(2.12) - (2.14) that models our fluid flow. The finite difference method (FDM) is a 

numerical method used to discretise these equations, and approximate the derivatives 

on a set of discrete data points. Consequently the computational domain is discretised 

in order to use this numerical approach. Since the FDM is applied by first defining a 

mesh size to construct a grid of spatial points at which each unknown variable is to 

be sampled. Such that the x-axis and the y-axis are discretised into finite points 2; 

for i =0,...,n, and yj for 7 = 0,...,m, in which the spacing between the neighbouring 

points are denoted as Ax and Ay. Furthermore, through discretisation a truncation 

error is incorporated by the difference between the approximated and actual solutions. 

The relationship between the derivatives and finite differences are derived by the Taylor 
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expansion such that, 

1@f 
f(z+ Az) = f(z) + Dayar +s dae —5(x)(Ax)? +... (3.1) 

There are three types of approaches to implement the FDM, and for first order approx- 

imations the centered, forward, and backward forms are given below, respectively, 

  

df _ fin - fin . 
Go aaa (32) 

fn iicteerdss, oe et OAR), (3.3) 

af fen 
ie a meare et ) 

where Ax = mesh size and f; = f(x;). Additionally O(Az) is the error proportionality 

of Az. In regards to our system of equations, we implement the centered approach to 

approximate second order derivatives as it is considered to be a better estimate, 

Pf _ fia —2fi t+ fier 4 — = eS + O((Aax)?). 3.5 ae (Ax)? a (( ) ) (3.5) 

Therefore through the discretisation of the Poisson equation (2.12), vorticity transport 

equation (2.13), stream function formulation of the energy equation (2.14) we derive the 

following respectively, 
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— Bing — Wig t+ Ving — Yagi — Wig + Yig-1 

  

  

wig = Ag? Ay? , (3.6) 

WAT OK Wight = Bignt Witty = Wing (3.7) 
At 2Ay 2Aa . 

_ Pitig — Pinry Vij = Wig-1 
2Ar 2Ay 

Pant (fA fam gen Lp see en td 
Re Ka? Ay? 

Ge Gr Tei jae Ig 
(Re)? 2Az : 

Trt — 7 4 Pig = Vig Bisa = Teng (3.8) 
At 2Ay 2Aa i 

_ Pisig — Ving Tigi — Tigi 
2Ar 2Ay 

— 1 (Taig — Ty + Tay + Tijei = 20g + Tj) | 
PrRe Ax? Ay? 

We then solve these finite difference equations (FDEs) for our three unknowns , stream 

function w, vorticity w, and temperature T. To obtain the next states (w*t!, T*+!) from 

the current approximation (w*,y*,T*), we integrate with respect to time. Therefore 

Equation (3.7) is integrated in the following manner, 

wktt = ok 4 AtR(ok, pk T*). (3.9) 

In order to achieve the temperature field, we utilise the procedure in Equation (3.9) for 

Equation (3.8). To solve for the stream function, we apply the successive over-relaxation 

method described in the following subsection for Equation (3.6).



3.1.1 Successive over-relaxation method 

The implementation of the FDM has transformed Equation (2.12) into Equation (3.6). 

We then solve approximately for 7;; to find, 

Ws Saar (arash, + (Wits + ¥iag)(OP) (8.10) 

+ (Wagar + Vig-1) (a2). 

This expression tells us that every stream function sample (7¥;,;) is linearly dependent 

on its four nearest neighbouring points, this creates a linear system of equations. The 

solution all over (%,j) can be represented as a matrix-vector equation, Ax = b. This 

would be achieved by defining vector # to contain all the data points sampled within 

the domain (;,;), matrix A would then express the linear relationship between these 

points, and vector b defined by the boundary conditions and vorticity function (w;,j). 

Generally, this direct method is used to solve such problems by inverting matrix A. 

However to reduce computational costs we use the successive over relaxation method 

(SORM). The SORM is a numerical method used to solve linear systems of equations 

through an iterative process. This results in faster convergence due to the iterative 

process entailed from the Gauss-Seidel Method (GSM) and Jacobi Method. SORM 

takes the form of a weighted average between the previous iterate and the computed 

GSM iterate successively for each component. This weighted average is known as the 

relaxation factor (7), and when optimised it leads to the most expedient convergence of 

an approximated solution. Using the concept of approximating the next step (i;"*") by 

incorporating the previous step (7;;") and the approximated solution from the iterative 

scheme (ij"), which is taken from Equation (3.10). Therefore we have 

wynt = 
i (3.11) 

  

Since the SORM is applied, the condition that 1 < 7 < 2 is enforced, and so we have 

set y = 1.05. We calculate Equation (3.11) for all points within the domain until 

convergence. In this current study we repeat this process ten times in order to derive 
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satisfactory solutions, such that the relative error within each iteration should be smaller 

than the value 10~* in order to verify that the solution is acceptable. 

3.2 Control parameters 

The computational model has been created from the research problem itself and the 

numerical method implemented to solve it. We have established two models that were 

presented in Figures (2.2 ) - (2.3), for which two cases have been created to explore the 

behaviour of the airflow. The two cases are shown in Table (3.1), and are distinguished by 

the control parameters used in the governing equations. The values of these parameters 

were chosen to represent different fluid flows in which the two different ventilation rates 

have been implied (0.01 m/s and 1 m/s). 

The Prandtl number (Pr) is defined as the ratio of kinetic viscosity to thermal diffusivity 

of the fluid, 

Pr=“, (3.12) 
K 

in the present study we selected air so that Pr = 0.71341. 

The Reynolds number (Re) characterises different flow regimes by how fast a fluid flows, 

eee (3.13) 
Vv 

In this present project we study the following cases, Re = 1.6224 x 10° for case 1 and 

Re = 1.6224 x 10° for case 2. 

The third nondimensional parameter in our formulation is the Grashof Number (Gr) 

defined as, 

- ga ATL 
Gr 7 (3.14) 

Vy 

The Grashof numbers, Gr = 6.7696 x 10° and Gr = 6.7696 x 10° are used for cases 1 

and 2, respectively. 

We are able to apply this through the two-dimensional flow field determined by our 

discretised governing equations (3.6 - 3.8). The Stream Function 7, is represented by 
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streamlines that show the direction the fluid will travel in at any point in time. The 

vorticity (w), represents the local spin/rotation of a fluid. And temperature (7) incor- 

porates many aspects taken into account surrounding the study of heat transfers. All 

of which influences the physical property of the fluid in question, thus allowing us to 

study the airflow within a micro-climate. 

Table 3.1: Control parameters specified for each case. 

  

Case 1 Case 2 
  

  

Pr || 0.71341 0.71341 
  

Re || 1.6224 x 10% | 1.6224 x 10° 
  

Gr || 6.7696 x 10° | 6.7696 x 10°           
  

3.3 Convergence check 

The mesh size has been set to Ax = Ay for both models, which creates a uniform grid 

of mesh points (data points). Time-intervals have been taken to create the grid of mesh 

points at repeated time-steps (At). There are many concepts to identify At, but since 

we are solving elliptic type equations we use At = (Az)? x c for 0 < c < 1. The general 

concept to obtain the best approximation for a solution is found by using a sufficiently 

small mesh. In order to verify this concept, we have successfully completed a conver- 

gence check in which the mesh size Ax = Tk is compared against the following mesh 

sizes, Ar = $ j % ‘ 5 and a A basic model is created by adjusting the dimensions from 

the symmetric model 1 in Figure (2.2) along with a simpler set of parameters in order 

to find converged solutions. Such that the length of the greenhouse has been modified 

from 42m to 11m, and the outlet channel length has been set from 4m to 6m, however 

the heights and the inlet channel lengths are kept the same. Although tendencies in the 

magnitude of the error would change with respect to higher parameter values, for ob- 

servational purposes we use a lower set of parameters, which is sufficient to evaluate the 
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differences and similarities between the solutions across different mesh sizes. The set of 

parameters used in order to find a converged solution are, Re = 100, Gr = 0, Pr = 0.71. 

Every mesh size creates a different number of data points (2;,y;), such that the smaller 

the mesh size, the more data points created. To enforce consistency within our calcula- 

tions, we sample the number of data points specified by the largest mesh Aw = bs for all 

the mesh sizes trialled. This results in the creation of a new data set for each mesh which 

corresponds to (2;,yj) for Ax = } Thus the index (i,j) is assigned to the x-axis and 

y-axis respectively for each mesh. Equation (3.15) shows how the normalised error E(a) 

is calculated for each variable and mesh size, where a = {w,7,T}. We take the sum of 

the squared difference between the solutions of a variable for the mesh size Ar = Te 

(5.5) from the solutions at a mesh size trialled (;,;(a)), by taking the data points 

sampled (i,j) . We then find the normalised error by dividing by the measured value. 

  Se ae 

No Dito (5, 
0 (Sia(a) - Ss@). ita 

a)) 

  

E(a) = (3.15) 

  

Table 3.2: Normalised error for vorticity (w), stream function (w) and temperature (7) 
for each mesh size compared with mesh Ar = aoe 

  

Ag E(w) E(v) E(T) 
  

  

1/8 | 5.884063 x 10-3 | 2.820250 x 10-5 | 5.378164 x 10-4 
  

1/16 | 1.599494 x 10-3 | 6.139506 x 10-6 | 1.108979 x 10-4 
  

1/32 | 3.455702 x 10-4 | 1.160588 x 10~® | 2.131512 x 10-® 
            1/64 | 4.736526 x 10~° | 1.393439 x 1077 | 2.450646 x 10~° 
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These values represent the error with respect to the approximated solutions from mesh 

size Ar = ae and so it appears that the difference in error is decaying for all variables 

as the mesh size is reduced. We can conclude that the finer the mesh the smaller the 

error for an approximated solution for each variable. In addition this convergence check 

highlights that there is a very small difference between the finest mesh Aa = he and 

Ag = a Despite the general concept that Ar = is should have been applied, these 

calculations take a very long time, and so to achieve the best and most computationally 

efficient result we apply Az = ae It is important to clarify that we cannot reduce 

the error in the numerical analysis at such large Reynolds number flow. Furthermore, 

it would be ideal to take a smaller mesh size along with an appropriate time step, 

however this entails a great deal of time and memory usage. Therefore we accept the 

error produced by Ax = a and deem that it is adequate enough to apply throughout 

this project, and so Ar = Ay = a has been implemented. A larger time-step of 

(a) x 0.75 has been allocated to case 1 (lower Re) where c = 0.75, and a smaller time- 

step of Gre x 0.25 has been used in case 2 (higher Re) where c = 0.25, this enforces 

some stability within our calculations. These simulations have been conducted using 

Fortran programming language. 
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Chapter 4 

Results 

We compare the symmetric (model 1) and asymmetric (model 2) channels with different 

fluid properties specified within each case shown in Table (4.1). Two main approaches 

have been taken to study the behaviour of the flow field of each model for each case. 

Firstly we compare models by examining the temperature field, stream function and 

vorticity for each case of control parameters, in order to build a greater understanding 

of the behaviour of the fluid. Secondly we then focus on heat balances through the tem- 

perature distributions for each model with each case to conclude whether the positioning 

of the outlet influences heat transfers in accordance to the different fluid properties. 

Table 4.1: Specification of each case. 

  

  

  

  

  

  

            

Case 1 Case 2 

Pr 0.71341 0.71341 

Re 1.6224 x 10% | 1.6224 x 10° 

Gr 6.7696 x 10° | 6.7696 x 10° 

Ag = Ay a a 

At (&)° x 0.75 | (4)? x 0.25 
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4.1 Comparing models 

We started by comparing models by examining the temperature field 7 = T(z, t), stream 

function ~(x,y) and vorticity (w). This was to build a greater understanding of the 

behaviour of the fluid, as our objective is to study the fluid flow of a micro-climate 

within a greenhouse. We observed the state of the fluid at a moment with respect 

to non-dimensional time, such that we are able to monitor the variables (7’,y,w) at 

a time frame. In addition the average and variance of the field for each variable were 

observed using one hundred frames, given that an observation at one instantaneous time 

frame is not a strong enough criterion to fully understand the behaviour of the fluid flow. 

However, it is important we examine the fluid at a moment in order to monitor emerging 

patterns. 

4.1.1 Temperature (T) 

ae, 

4 

3 

2 

1 

° 
ES re ae Ra ae Pa a 

(a) (b) 

  

Figure 4.1: Instantaneous temperature field. (a) case 1, (b) case 2. Symmetric channel 

(model 1). 

The temperature fields for both models indicate that flows moving upstream carry cooler 

temperatures (darker level of blue) as ventilation is exerted from the inlet. This is fur- 

ther along the channel for the second case of parameters across models in Figure 4.1 (b) 

and Figure 4.2 (b), with respect to the horizontal direction x. In fact the furthest along 

is shown by the symmetric channel (model 1) at approximately 7 = 27, whereas 2 = 25 

in the asymmetric channel. However it is difficult to state which model has a greater 

distribution of temperature. We cannot conclude whether the outlet positioning affects 

this upstream movement of the fluid flow, since we are looking at simply one frame at a 
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Figure 4.2: Instantaneous temperature field. (a) case 1, (b) case 2. Asymmetric channel 

(model 2). 

moment in non-dimensional time. Nevertheless, case 2 is evidently more effective in the 

distribution of temperature across models. In addition, in case 1 the symmetric channel 

(model 1) shows a better distribution of temperature to that of the asymmetric model. 

This may be a result of the different outlet positions, since a cooler temperature is being 

carried to the outlet positioning of model 1, case 1. 

Moreover, the convective flows travelling from the ground to the roof occurs at irregular 

time intervals across cases, but similar between models respectively. For case 1, thermal 

convection occurs where higher levels (red) represent a hot less dense lower boundary 

layer that sends plumes of warm fluid upwards. The fluid rises upwards from the ground 

at particular positions for each model, for Figure 4.1 (a) 2 = 3, 14, 17, 23, 30 and 40, 

for Figure 4.2 (a) « = 5, 15, 19, 31, 38 and 42. Likewise the cooler fluid then moves 

downwards from the roof to the ground, midway between the approximated positions. 

The scale of the temperature near the ground for case 2 is smaller than case 1 for both 

models. This tells us that the properties outlined by the control parameters of case 2 

are more influential in the distribution of temperature to that of case 1. Despite this 

observation we cannot fully understand the behaviour of the fluid flow by the tempera- 

ture field at a moment, since it is irregular and changes in time. Therefore the averaged 

temperature field and the fluctuations from the average (variance) are observed. 
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Figure 4.3: Averaged temperature field. (a) case 1, (b) case 2. Symmetric channel 

(model 1). 
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Figure 4.4: Averaged temperature field. (a) case 1, (b) case 2. Asymmetric channel 

(model 2). 
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Figure 4.5: Variance of temperature field. (a) Symmetric channel (model 1), 
(b) Asymmetric channel (model 2). Case 2 
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Tn all cases in Figure (4.3) and Figure (4.4), temperature distributions are monotonically 

fluctuating and decreasing in the vertical direction. When comparing cases, we can see 

that case 2 illustrates a higher averaged distribution of cooler temperatures, shown 

in Figures 4.3(b) and 4.4(b). Furthermore the symmetric channel represents a better 

distribution above all. On the other hand if we take the variance of the temperature field 

for case 2, shown in Figure (4.5), there is no distinct difference between the amplitudes 

of the temperature distribution. Therefore we are constricted when concluding whether 

the outlet position is a deciding factor. Nevertheless the comparison between cases for 

each model indicated that the heat in the greenhouse is indeed being swept out by 

ventilation and more effectively by case 2. The variance of the temperature field for the 

symmetric and asymmetric models for case 1 are shown in Appendix B. 

4.1.1.1 Temperature profile 
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Figure 4.6: Instantaneous temperature profile. « = 3(near inlet), 12.5, 23(middle posi- 
tion), 33.5, 43(near outlet). (a) Symmetric channel (model 1) , (b) Asymmetric channel 

(model 2). Case 1 

In order to grasp a better understanding of the instantaneous temperature field, tem- 

perature profile graphs have been produced in absolute values for each case and model. 

As a result we are able to study the change in temperature from the inlet to the outlet. 

The temperature profiles are plotted with respect to the vertical direction at certain 

levels, « = 3 (near the inlet(x=2)), 12.5, 23 (the middle of the micro-climate), 33.5 and 

43 (near the outlet (x=42)) in Figure (4.6) and Figure (4.7). For symmetric channel 

and asymmetric channel are (a) and (b) respectively. The variation between case 1 

and case 2 is largely due to the great difference in the Grashof numbers (Gr) defined 
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Figure 4.7: Instantaneous temperature profile. z = 3(near inlet), 12.5, 23(middle posi- 

tion), 33.5, 43(near outlet). (a) Symmetric channel (model 1), (b) Asymmetric channel 
(model 2). Case 2 

for each case, this makes it difficult to compare the different outlet positionings across 

cases. Therefore in order to evaluate whether the positioning of the outlet effects the 

distribution of temperature, we compare the symmetric channel (a) to the asymmetric 

channel (b) for each case. 

Figure (4.6) shows that for both models the temperature change for case 1 ranges 

from approximately 31.9965 to 32.0055, this corresponds to the Grashof number, Gr = 

6.7696 x 10° of this particular case. Furthermore, from the derivation of the Grashof 

number in Equation (3.14), we were able to identify the temperature difference to be 

AT = 5.5427 x 107%. This factor is represented by the temperature profile plots, how- 

ever these profiles examine the temperature at a moment and so the profiles here are 

very similar and there is not a distinguishing factor which differentiates the two models. 

Figure (4.7) compares the models for case 2, these profiles shows that the temperature 

ranges from —2.6419 to 87.4270, as AT = 55.427 since Gr = 6.7696 x 10°. For case 2 the 

temperature difference is significantly bigger because of the higher Grashof number, this 

represents a buoyancy dominating effect, hence there is a bigger temperature difference. 

It is difficult to highlight any significance between the two models, despite this, the 

temperature profiles have given us some insight into the change in temperature from the 

inlet to the outlet. These profiles also represent the impact the control parameters have 

amongst cases and clearly affects how the temperature changes within the greenhouse. 
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Moreover, we have seen from previous observations of the temperature field that there 

was some indication that case 2 may have a better temperature distribution. In addi- 

tion there were signs which suggested that the symmetric channel (model 1) of case 2 

showed the better distribution overall. Thus, in order to increase our understanding of 

the temperature field to determine which case and model is best, further analysis of the 

temperature field is examined later through a heat balance evaluation. 

4.1.2 Stream function (1) 
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Figure 4.8: Instantaneous flow pattern described by stream function. (a) case 1, (b) 

case 2. Symmetric channel (model 1). 
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Figure 4.9: Instantaneous flow pattern described by stream function. (a) case 1, (b) 

case 2, Asymmetric channel (model 2). 

The Figures (4.8 - 4.9 ), display the stream functions at a moment. The streamlines 

are structured in a complex manner and is expressed by various re-circulating zones 

near the boundaries. Furthermore, between these re-circulating zones there are oscillat- 

ing streamlined structures which separates the different zones. The symmetric channel 

shows a higher number of recirculation for case 2 seen in Figure 4.8 (b), in which the 
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highest volume rate of the stream function is positioned near the outlet at « = 41. How- 

ever it is difficult to compare the fluctuations of the stream function at a moment, and 

so the variance is examined for a simpler aspect. The averages of the stream function 

for each model and case can be viewed in Appendix B. 

   
(a) (b) 

Figure 4.10: Variance of stream function. (a) case 1, (b) case 2. Symmetric channel 

(model 1). 
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Figure 4.11: Variance of stream function. (a) case 1, (b) case 2. Symmetric channel 

(model 2). 

The fluctuations depicted by the variance shown in Figures (4.10 - 4.11), display several 

local maximums which signifies where the spread of the fluctuations are more dense. 

There are two distinct patterns between cases, since the magnitude of the stream func- 

tion appears the strongest at the outlet positions for case 2 for both models, Figure 

4.8 (b) and Figure 4.9 (b). In contrast, case 1 depicts the image of the stream func- 

tion spread out through the channel. There are local maximums that occur in each 

model for each case. We deduce that for Figure 4.8 (b) there is a strong amplitude of 

the stream function near the outlet, but by comparing with Figure 4.9 (b), it appears 
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there is a higher volume rate through the outlet itself. This factor indicated that the 

numbers of frames taken are not enough to fully depict the behaviour of this fluid. In 

order to understand the thermal properties of a greenhouse we need to inspect the flow 

characteristics, particularly at the boundaries to comprehend these observations. 

4.1.3 Vorticity(w) 

Vorticity is a measure of the local ‘rotation’ of the fluid particle, for which we observe 

the vorticity at a moment represented by Figures (4.12-4.13). Amongst all cases we can 

see that the concentration of vorticity is greater at the boundaries. However, we can- 

not derive much information from observing the overall domain, such that we focus on 

rotation locally around the vertical direction 0 < y < 1, with respect to the horizontal 

direction near the ground level. 
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Figure 4.12: Instantaneous vorticity profile. (a) case 1, (b) case 2. Symmetric channel 
(model 1). i 
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Figure 4.13: Instantaneous vorticity profile . (a) case 1, (b) case 2. Asymmetric channel 
(model 2). 
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Figure 4.14: Instantaneous vorticity profile at ground level. (a) case 1, (b) case 2. 

Symmetric channel (model 1). 
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Figure 4.15: Instantaneous vorticity profile at ground level. (a) case 1, (b) case 2. 

Asymmetric channel (model 2). 
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Clearly there is a larger magnitude of vorticity localised near the ground, which can 

seen in Figures (4.14 - 4.15). Through analysing these plots we can see that there is an 

alternating sign in vorticity near the ground, illustrated by the different vorticity levels. 

The difference in signs are represented as positive (red) and negative (blue) values. The 

greater level of vorticity near the ground may well be the effect from the temperature 

condition defined at the ground. Although we may not be able to evaluate the differ- 

ences between models here, we can again see the distinction between cases. As case 2 

represents a higher level of vorticity near the ground, for which we highlighted that the 

symmetric model shown by Figure 4.14 (b) has the most frequent measures of rotation 

around local vertical direction. The average and variance of vorticity are given in Ap- 

pendix B. 

The approach taken to understand the behaviour of the fluid flow by observing the 

three variables have shown us that there is a clear difference between cases. The out- 

come of applying a higher Reynolds number and Grashof number has shown distinctive 

results for each variable considered. In regards to the differentiation between models, it 

was apparent that the symmetric model for many instances had shown more potential 

in the distribution of temperature, particularly with case 2. It is important to reiterate 

the motivation at this stage, which is ultimately to examine the heat and mass transfer 

for each case to conclude which model and case is more effective. Therefore it is fair 

to say that these results are not sufficient to form a conclusive observation, and so we 

move our focus onto heat balances between models. 
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4.2 Heat Balance 

4.2.1 Temperature distribution 

In order to understand heat balances inside the greenhouse, here our focus moves to the 

temperature distribution. The temperature distributions are plotted with respect to the 

horizontal direction at certain levels y = 0.125 (near the ground), 1.75, 2.75 (the middle 

height of the greenhouse), 3.75 and 5.375 (near the roof) in Figures 4.16 and 4.17 (a) 

and (b). For case 1 and case 2 are (a) and (b), respectively. By selecting N = 100 

frames of temperature fields from time series randomly an ensemble averages 

1& 

(P(t,,y)) (ey) = 5 LT ty), (4.1) 
gat 

are evaluated instead of the ordinal time average in a period At: 

a 1 plot At 
Tie,ysAt) = 5 i T(t,2,y)dt. (4.2) 

; 

At middle positions y = 1.75, 2.75 and 3.75, the temperature increases monotonically 
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Figure 4.16: Temperature distribution averaged in time. y = 0.125, 1.75, 2.75(middle 

position), 3.75, 5.375. (a) case 1, (b) case 2. Asymmetric channel (model 2). 

(~ 0.008 per unit length) with respect to the « coordinate, except the inlet region where 

x < 10 in case 1, shown in Figure 4.16 (a). It is thought that the fluid is warmed from 

both top and bottom walls. Near the roof y = 5.375 the temperature distributes with 

—0.1, while at the outlet the temperature has positive slope. On the other hand near 
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the ground (y = 0.125) fluctuations with large amplitudes are found. Particularly near 

the inlet (a < 10) where we observed a sudden decrease of temperature. The temper- 

ature near the ground also increases as x increases, however the increased temperature 

leads to large fluctuations. The temperature profiles in horizontal direction for case 2 

are different from case 1. Unlike case 1 the profiles are not monotonically similar, not 

only the ground but also the roof. In addition the distribution near the roof is also 

contrasting to case 1 as the fluctuations are greater, which indicated a higher level of 

heat transfer. 

  

re)
            0.8 “0.2   

(a) (b) 

Figure 4.17: Temperature distribution averaged in time. y = 0.125, 1.75, 2.75(middle 

position), 3.75, 5.375. (a) case 1 , (b) case 2. Symmetric channel (model 1). 

Figure 4.17 (a) illustrates similarly to Figure 4.16 (a) that at the middle positions 

y = 1.75, 2.75 and 3.75, the temperature increases monotonically. Furthermore by com- 

paring these two models for case 1, it is shown that there is an almost identical level 

of temperature fluctuation. We examined this near the roof y = 5.375, as the tempera- 

ture fluctuates with a similar amplitude for the symmetric channel and the asymmetric 

channel. In order to conclude which model brings about the greatest heat balance for 

each case, we examined the temperature fluctuation (variance from averaged value), and 

the temperature gradient at the ground and roof and arrived at the following results in 

Table 4.2 
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Figure 4.18: Temperature fluctuation (from averaged value). (a) case 1, (b) case 2. 

Symmetric channel (model 1). 
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Figure 4.19: Temperature fluctuation (from averaged value). (a) case 1, (b) case 2. 

Asymmetric channel (model 2). 
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Figure 4.20: Temperature gradient at ground and roof. (a) case 1, (b) case 2. Symmetric 

channel (model 1). 
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Figure 4.21: Temperature gradient at ground and roof. (a) case 1, (b) case 2. Asym- 

metric channel (model 2). 

Table 4.2: Temperature gradient at for average of time dependent flow field and the 

temperature fluctuation of the flow field (22) 

  

Model Ground Roof 
  

Symmetric channel (model 1). Case 1. | 10.36 (0.333) | 1.20 (0.0183) 

Symmetric channel (model 1). Case 2. | 47.35 (7.560) | 7.55 (0.387) 

Asymmetric channel (model 2). Case 1. | 10.49 (0.363) | 1.24 (0.0203) 

Asymmetric channel (model 2). Case 2. | 46.67 (7.366) | 8.31 (0.316)         
  

4.2.2 Evaluation of heat balance 

Heat flux is defined as the amount of heat transferred per unit area per unit time through 

a given surface. Fourier’s law states the following, 

Heat transfer « (temperature difference) 

«x (area normal to direction of heat flow) 
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giving the relationship 

or : 
=a (4.3) 

where q is the heat flux, or is the temperature gradient with n a unit vector normal to 

the wall (surface), \ is a thermal conductivity constant. We have derived the following 

temperature gradient, ae for the average of time dependent flow field which represents 

the heat flux for each wall. We use this to evaluate the heat balances within each model 

for each case. 

Suppose a simple case where there is no buoyancy effect and no convection on the 

flow field, there then exists a ratio of the averaged temperature gradient with respect 

to time and space between the ground and roof (qg:qr), a8 (2.6 : 1). This ratio refers 

to how effective ventilation is in removing the heat with respect to the ground. We 

evaluated heat balances for each model by calculating this ratio for the cases we have 

defined through the different sets of parameters. Additionally, the total heat flux from 

both walls, ground (qg) and roof (qr) is considered to identify the magnitude of how 

much heat has been swept out by ventilation such that 

Q = (aq) + (4r)- 

Table 4.3: Ratio of the average temperature gradient, (qg:q-) and total heat flux (Q) 

from both walls 

  

  

      

Model Ratio of averaged gradient | Total heat flux 

Symmetric channel (model 1). Case 1. 8.633 : 1 11.56 

Symmetric channel (model 1). Case 2. 6.272: 1 54.90 

Asymmetric channel (model 2). Case 1. 8.460: 1 11.73 

Asymmetric channel (model 2). Case 2. 5.616 : 1 54.98   
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These results are shown in Table (4.3) and it appears that the ratio of the averaged 

gradient was larger in case 1 where the properties of the fluid are defined by a lower 

Reynolds number (Re = 1.6224 x 103) and lower Grashof number (Gr = 6.7696 x 10°). 

Moreover this ratio refers to the removal of heat at the ground, effectively more than 

the roof in case 1 across the symmetric channel (model 1) and asymmetric channel 

(model 2), rather than case 2. However this does not necessarily represent greater levels 

of ventilation, therefore the magnitude of the heat being swept out by ventilation was 

considered through the evaluation of the total heat flux (Q.) 

We can see clearly from Table (4.3) that the largest total heat flux is far greater in 

case 2 across models, where the properties of the fluid are defined by a higher Reynolds 

number (Re = 1.6224 x 10°) and higher Grashof number (Gr = 6.7696 x 10°). This 

suggests that case 2 was evidently a better set of control parameters to sweep out greater 

amounts of heat by ventilation. We determined from all forms of the evaluation of heat 

balances that the symmetric channel for the set of parameters defined by case 2 is best 

for the ventilation of our modelled micro-climate. With a total heat flux of Q = 54.90 

and a ratio of averaged gradient between the ground and the roof is 6.272 : 1. 
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Chapter 5 

Conclusions and future work 

5.1 Conclusions 

The aim of this research project was to amend the conditions of a micro-climate to 

remove heat by ventilation, as well as to determine which model is ventilated better by 

comparing models across cases. This was achieved by comparing models for each case 

through evaluating heat balances, which built a better understanding of the behaviour 

of the fluid flow. Additionally by observing the temperature field, stream function and 

vorticity of the fluid flow, we have come to the conclusion that the symmetric channel 

(model 1) achieved the best distribution of temperature for both cases, for which case 

2 became the better set of fluid properties. 

It became apparent during our investigation that the difference between the cases were 

greatly influenced by the values of the control parameters and was ultimately the decid- 

ing factor in the study of heat balances. The second case was highlighted as the more 

effective case in the study of ventilation, given that the higher Reynolds and Grashof 

numbers were Re = 1.6224 x 10°, and Gr = 6.7696 x 10°, respectively, compared to 

the lower parameter values of case 1, Re = 1.6224 x 10%, and Gr = 6.7696 x 10°. It is 

important to highlight the significance of these control parameters, the Reynolds num- 

ber is derived from the ratio between inertial forces to viscous forces, and so a higher 

Reynolds number would in effect represent a fluid in which inertial forces are dominant 
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(lower viscosity) and a faster flowing fluid. Additionally the buoyancy effect of the 

higher Grashof number enhances heat transfer, as the derivation of the Grashof number 

signifies the ratio between buoyancy forces to viscous forces. 

Despite comparing the models for each case separately, there has been no a distin- 

guishing factor between the symmetric and asymmetric channels for each case specific. 

The models have exhibited very similar characteristics in the behaviour of fluid flows 

when observing the different channels within the same case, although there has been 

some indication that the symmetric channel is better ventilated. Moreover, by the exam- 

ining heat balances, there has been more evidence of this, and we were able to conclude 

that the best efficiency could be achieved by the symmetric model for case 2. This has 

been validated by the evaluation of heat balances and determined by a total heat flux 

of Q = 54.90 with a ratio of nondimensional heat flux averaged in time between the 

ground and the roof as 6.272 : 1. The outcome of this research suggests that the values 

of the control parameters are the most effective factors in this study of heat balances 

within a greenhouse. 

5.2 Future work 

The work of this project could be further investigated in the following ways. 

e Exploring different values of control parameters to create additional cases to dis- 

tinguish which of the two models (symmetric and asymmetric channels) is more 

effective in the ventilation of a micro-climate. 

e Application of different models created by re-positioning the outlet near the ground, 

furthermore the introduction of multiple outlets may be a viable option to improve 

the ventilation of a micro-climate. 

e The basis of the research conducted has been upon the temperature distribution 

and ventilation rate, this could be expanded by considering another factor, such 

as the change in humidity between models for each case. 
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¢ The progression to a three-dimensional analysis of the micro-climate of the green- 

house to investigate how temperature conditions are to be maintained through 

ventilation. This study would be of great interest to identify how to provide bet- 

ter conditions to cultivate crops within a greenhouse in the UAE. 
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Appendices



Appendix A 

Nondimensionalisation of 

Navier-Stokes equation 

The following are basic equations used in this project, 

General Navier Stokes momentum equation 

Ou E 
0 [FE + uv] = —-Vp + 1'V?u — pg. 

Dimensional Navier-Stokes momentum equation 

Po [= +(u-V) 4 =-Vp+pV?ut 977i. 

Nondimensional Navier-Stokes momentum equation 

  

  

Ou* e rer % Dee : =-V ar ae + (u V*)u pe + Be ue + 

Dimensional incompressibility condition 

V-u=0, 
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(A.2) 

(A.3) 

(A.A)



Nondimensional incompressibility condition 

Veeu = 0, 

Dimensional energy equation 

or =e op t (uV)T =KV Ei 

Nondimensional energy equation 

or* So 

ge ee VE ) PrRe 
  

A.1 Normalisation of parameters 

Vere 

(A.5) 

(A.6) 

(A.7) 

We normalise every parameter by substituting for every dimensional parameter to nondi- 

mensionalise. 

Table A.1: Normalised parameters. 

  

  

  

  

  

  

  

        

Parameter Nondimensional Dimensional 

ner +_U L Time Scale (t) = Tt t= yt 

Time Derivation (2) || 2 = $2 Z=0% 

Pressure (p) p= ak p=p*pU2 

Nabla (V) V*=LV v= 7vV* 

Velocity Vector (w) u=7 a= UU" 

Temperature (T —Tr) || T* = Tae and AT=Tg9—-Tr | T-Tr=T*AT     
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A.1.1 Nondimensional momentum equation 

We begin by taking the dimensional momentum equation from Equation (A.2) and using 

the normalised parameters in Table (A.1) 

a 
o(Uu*) ve z vp va 
ac aa ok ~) uu = P + ga(T — Tr)j tye (Uu*), 

3 
U?\ du* U? at eV wU veut 4 (5) Se + (F) cw ww = SP Bow) bolt -TH3. 

    
  

Multiplying Equation (A.9) by Sa hence: 

Ou* bel ceo, Aye UTA T)LG 
ae tt Vou =v met + 5 

Rae CULE eee) 
(a) (2) @) 

Now solving each term on the R.H.S 

e Label (1). 

Substituting for p* as given in Table (A.1). Therefore Label (1) becomes 

Va -V"p*. 

e Label (2). 

Given that Re = a Therefore Label (2) becomes 

1 2 Woah ee ore Re’ ters 

e Label (3). 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

Given that Gr = mere and Re = WE “mm, therefore by substituting for T* as # 

given in Table (A.1), Label (3) becomes, 

  gL —Tr)Lj _ [gyATL) 4+ 
cagea tame Tama 

Gr 
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(A.13) 
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Thus putting Equations (A.11) (A.12) (A.14) into (A.10) the Navier Stokes nondimen- 

sional momentum equation is derived, 

Ou* 2 oe (u*-V*)u* = —V* pe + uve + 
e 

ae eG: (A.15) 
Gr 

(Re)? 

A.1.2Nondimensional incompressibility condition 

Substituting the normalized parameters form the Table (A.1) into Equation (A.4), we 

derive the following nondimensional incompressibility condition: 

(=) .(Uu") =0, (A.16) 

(Vt a") =0, (4.17) 
V*-u* =0. (A.18) 

A.1.3 Nondimensional energy equation 

Given Pr = 4, by substituting the dimensional parameters as given in Table (A.1), 

equation (A.6) becomes 

  
a(ATT*) mvt SERV sae = A. BF + (ou iN (A.19) 

EAT OTS CATON, ean A Tee ae re Seon ee va ee (A.20) 

or* A es et (ut Vr = er. (A.21) 

Multiplying the R.H.S of Equation (A.21) by 2, hence 

Olt 
Sat (ut VT" = Soyer (A.22) 

vUL 

such that we determine the nondimensional energy equation 

or* Re Nes pe ase ras a De ae (A.23) 
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Appendix B 

Temperature, stream function 

and vorticity plots 

In chapter 4 we compared the symmetric channel and the asymmetric channels (models) 

across the two parameter sets, case 1 and case 2 by examining the temperature field (T= 

T(a,t)), stream function (y(x,y)) and vorticity (w). The following are the remaining 

plots for each variable. 
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Figure B.1: Variance of temperature field. (a) Symmetric channel (model 1), (b) Asym- 

metric channel (model 2), case 1 . 
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Figure B.2: Average of stream function. (a) case 1, (b) case 2. Symmetric channel 

(model 1). 
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Figure B.3: Average of stream function. (a) case 1, (b) case 2. Asymmetric channel 
(model 2). 
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Figure B.4: Average of vorticity. (a) case 1, (b) case 2. Symmetric channel (model 1). 
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Figure B.5: Average of vorticity. (a) case 1, (b) case 2, Asymmetric channel (model 2). 
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Figure B.6: Variance of vorticity. (a) case 1, (b) case 2. Symmetric channel (model 1). 
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Figure B.7: Variance of vorticity. (a) case 1, (b) case 2. Asymmetric channel (model 2). 
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