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A recently introduced inference method based on system replication and an on-line message
passing algorithm is employed to complete a previously suggested compression scheme based on a
non-linear perceptron. The algorithm is shown to approach the information theoretical bounds for
compression as the number of replicated systems increases, offering superior performance compared
to basic message passing algorithms. In addition, the suggested method does not require fine-tuning
of parameters or other complementing heuristic techniques, such as the introduction of inertia terms,
to improve convergence rates to non-trivial results.

I. INTRODUCTION

The successful application of techniques developed in
statistical mechanics of disordered systems to a wide
range of problems in information theory has benefitted
both fields by exchanging methods and ideas, providing
new insights and algorithmic tools [1]. The statistical me-
chanics methodology has complemented the mathemati-
cal rigor of traditional information theory techniques by
providing exact analytical results for typical properties in
the limit of very large systems - the thermodynamic limit.
Conversely, the importance of obtaining specific micro-
scopic states in practical information theory problems,
in contrast to the usual goal of characterizing macro-
scopic states in statistical mechanics, has contributed to
a renewed interest in inference methods to obtain ground
state solutions of the corresponding Hamiltonians when
the energy landscape is complex.

In problems related to communication systems, mi-
croscopic states are associated with specific transmitted
messages and one is interested in recovering those mes-
sages rather than analyzing general macroscopic proper-
ties of an ensemble of them. The correct message refers to
the ground state of the corresponding Hamiltonian with
the level of noise in the channel being represented by the
temperature used. Common examples are error correct-
ing codes [2], where one wishes to recover the original
message, after it has been encoded and corrupted upon
transmission through a noisy channel.

The problem of finding a ground state, or equivalently
the global minimum of a Hamiltonian, can only be solved
analytically in very simple situations. For disordered sys-
tems, specially in the spin-glass phase, the energy land-
scape is so complex that the use of approximate com-
putational techniques is unavoidable. The ruggedness of
energy landscapes which characterize such systems poses
a challenge for these techniques. For instance, gradient
descent-based methods get trapped in local minima and
more sophisticated Monte Carlo algorithms, such as Par-
allel Tempering [3, 4], are computationally slow.

An alternative family of algorithms which provide com-
putationally efficient approximations to the exact but
computationally hard full Bayesian inference is that of
message passing (MP) algorithms, a.k.a. belief propa-
gation [5]. These methods have been able to achieve

good performance in many complex problems and are
considered a promising alternative to tackling inference
problems in a range of fields such as information the-
ory [1], hard combinatorial problems [6], statistical me-
chanics models and complex systems in general.

The information theoretical problem we address here is
that of source coding or lossy compression. The problem
is of great importance practically and is highly challeng-
ing theoretically; computationally efficient solutions for
this problem have been sought after for over 50 years.
Shannon was the first to study lossless and lossy [7, 8]
compression and to establish theoretical bounds to the
achievable performance under a given information loss.
However, Shannon’s results are not constructive, leaving
open the challenge of finding a computationally feasible
scheme that saturates the theoretical bounds.

The main difficulty in finding such schemes is the asso-
ciated computational complexity. Some schemes can sat-
urate the theoretical bounds, for instance by an exhaus-
tive search, but are impractical due to the computational
cost involved which scales exponentially with the size of
the message. Other approaches provided good approxi-
mations [9–14] that still fall short of the theoretical limits
for certain loss rates. The search for efficient schemes,
those which are at least polynomial in message size, is
what drives research in the field even today. Notable
among these schemes ane recent approximate Bayesian
methods based on MP algorithms.

A radically different approach based on the non-linear
perceptron has been introduced by Hosaka et al [15]. By
using the replica method it has been shown that a non-
linear perceptron can be used as part of a compression
scheme, which can achieve close to optimal performance,
both in terms of the theoretical compression-distortion
limits [15] and the related error-exponents [16], depend-
ing on the parameters of the message generation and acti-
vation function of the perceptron. The analytical results
are obtained for the typical case and were numerically
verified only by exhaustive search methods, which are
clearly exponentially slow as the size of the message is
increased. In a follow-up work [17] an MP algorithm
has been suggested for the compression of the messages
showing good performance as long as some heuristic mod-
ifications were added; but performance was bounded due
to inherent limitations of the inference method. While
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this compression method is highly promising it still re-
quires an efficient inference technique to bring perfor-
mance closer to the theoretical limits.

The aim of the current paper is to do exactly that;
namely, to adapt a recently introduced MP algorithm
[18] to bring the performance of the non-linear perceptron
compression scheme closer to the theoretical limits. This
algorithm, named the replicated on-line message passing
algorithm (rOnMP), is based on improved inference in
hard computational problems by averaging over results
obtained from different solutions of replicated variable
systems. It has been previously applied to solve the bi-
nary Ising perceptron capacity problem as a benchmark
case.

We will employ a similar replicated on-line message
passing algorithm to obtain solutions as part of the com-
pression method and show that it can achieve an in-
creasingly better performance as the number of replica
increases. The rOnMP algorithm exhibits several advan-
tages over basic MP methods: (i) it does not require
any heuristic additions to suppress convergence to non-
trivial solutions due to symmetry properties of the prob-
lem; (ii) it does not depend on training parameters that
may need fine-tuning; (iii) and most importantly, it pro-
vides increasingly improved performance as the number
of replica increases.

The rest of this paper is organised as follows. In section
II we give the theoretical formulation of the compression
method using a non-linear perceptron. We then proceed
to introduce in section III the usual MP equations cor-
responding to this method. The usual MP equations are
online learning equations which use the whole dataset at
once. In section IV we argue in favour of a modification
of these equations which turns them into offline equa-
tions. These modifications improve the performance of
the algorithm, but we still need another step to complete
the proposed scheme. This next step is the replication
of the algorithm and it is explained in section V. Once
the rOnMP has been fully derived in its modified version
for the compression problem, we analyse the issue of its
computational complexity in section VI. The results of
numerical simulations are presented on section VII and
a summary with our conclusions and some final consid-
erations is finally given on section VIII.

II. COMPRESSION BY A NON-LINEAR
PERCEPTRON

The compression problem consists in encoding an N -

dimensional binary message y=(y1, ..., yN )∈{±1}N into

a K-dimensional binary vector b= (b1, ..., bK)∈ {±1}K ,
where K<N , such that the compressed message can be
later recovered by a decompressing algorithm with zero
or minimal loss. The compression rate R = K/N indi-
cates the level of compression; it is desirable to minimize
R while minimizing distortion losses. When zero infor-
mation loss is possible in the recovered message we term

the problem lossless compression, while when allowing for
some deterioration after recovery it is called lossy com-
pression.

Given that we will usually work with finite compression
rates during this work, we will refer to both N and K
interchangeably as the system size. The thermodynamic
limit will then be taken by sending both N and K to
infinity while keeping R fixed to a finite value.

Shannon’s source-code theorem [7] shows that lossless
compression is possible when the rate R is less than the
entropy per bit of the source y in the thermodynamic
limit. Higher compression rates can be achieved if one
allows for information loss, with the precise meaning that
a non-vanishing average error per bit will be expected
in the retrieved message. The error per bit, also called
the distortion rate, is measured by the average Hamming
distance between the original message y and its inferred
version ŷ as

D = lim
N→∞

1

N

N∑
µ=1

δ(yµ, ŷµ), (1)

where δ represents the Kroenecker delta.
Perceptrons represent simple non-linear maps and have

been extensively studied in statistical mechanics [19].
As such, they are promising candidates for compression
schemes; one such specific scheme was proposed in [15].
The perceptron used corresponds to the mapping

yµ = sgn (∆− |ξµ|), (2)

with the so called synaptic field given by

ξµ =
1√
K

K∑
k=1

bksµk, (3)

where the a priori given vectors {sµ} are fixed at each
instance of the problem. The non-linear activation func-
tion used is visualized in Fig. 1, where it can be seen
that the constant threshold ∆ defines the width of the
square bump.

In the suggested compression scheme, a fixed set of
N randomly sampled K-dimensional vectors sµ ∈ RK is
given, playing the role of fixed parameters that character-
ize the compression scheme and facilitate decompression.
The dataset D composed of pairs (yµ, sµ) is used to esti-
mate the parameters of the perceptron, which represent
the compressed codeword corresponding to the original
the data vector y. These parameters are encoded by the
vector b, known in the literature as the synaptic vector.
Decompression consists in presenting the input vectors sµ
to the perceptron to obtain the decompressed message ŷ
using Eq. (2).

Typical case analysis of the achievable compression
rate for a given distortion (error rate) D was carried out
using the replica method, with replica symmetry being
sufficient in this case [15]. The data bits yµ ∈ {±1} of
the original message were randomly sampled from a bi-
ased distribution p = P(yµ = 1) = 1 − P(yµ = −1); the
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FIG. 1. Activation function for the non-linear perceptron used
in the present compression scheme.

parameter vectors sµk were sampled from a Gaussian dis-
tribution of zero mean and unit variance. Theoretically,
the compression scheme saturates Shannon’s limit, with
a compression rate R(D)

R = H2(p)−H2(D) (4)

and erf

(
∆√

2

)
=

p−D
1− 2D

, (5)

where H2(x) = −x log2x− (1− x)log2(1− x).
Equation (4) represents the optimal compression rates

for a given fixed D for any message bias, while Eq. (5)
gives the optimal value of ∆ in terms of the bias and
either D or R. We will use these results to determine
∆ in our scheme and compare the performance of our
algorithm with optimal compression.

III. MESSAGE PASSING

In [15], the validity of the replica solution for the sug-
gested compression scheme was tested using an exhaus-
tive search, which is very slow and practically infeasible
as it scales exponentially with the size of the system. A
MP version of the proposed algorithm to implement the
compression scheme was then suggested by two of the
same authors of that study in [17]. Our objective in this
paper is to suggest an alternative efficient compression
algorithm, where ‘efficient’ is applied with that meaning
that the algorithm’s complexity should scale polynomi-
ally with the system size.

The algorithm we propose here is based on a modified
version introduced in [18] of the usual MP algorithm.
The introduced modifications had the objective of cir-
cumventing one particularly serious recurring problem in
optimization tasks for perceptron learning in general -
the complexity of the energy landscape.

Two key modifications of usual MP algorithms were
fundamental to improve the obtained solutions:

1. Making MP an online algorithm. The usual
MP algorithm, which aims to provide a good ap-
proximation to the maximum a posteriori solution
for all available data simultaneously, are offline
equations. We modified them and created an on-
line algorithm where data points (patterns and cor-
responding classifications) are introduced one at a
time. This allows one to explore a new degree of
freedom which does not exist in the off-line version,
namely the order of data presentation.

2. Replicating the algorithm. We introduced a se-
ries of real replicated systems exposed to the same
set of data/constraints, but setting a different path
through example space for each of them. Final es-
timates are obtained by averaging over the inferred
solutions calculated by each one of the replicated
systems.

The method proved to be extremely good in tackling
the binary Ising perceptron capacity problem, which is
computationally hard in both worst and typical cases.
One of the strengths of this method is in its general-
ity; in principle, it can be easily applied to any non-
pathological densely connected inference problem with
minimal modifications. The basis of the method, which
we called rOnMP (Replicated Online MP), is of course
the usual MP equations. Because we are dealing with
a densely connected system, we however need to derive
an approximation for these equations. This is done by
means of an expansion which is valid in the limit of large
systems. The details of this approximation were given
in [18] and we therefore provide below only a brief de-
scription of its derivation.

The ordinary MP equations are given as pairs of cou-
pled equations for each cavity magnetization mµ. These
equations are

m̂t
µk =

∑
bk
bkPt+1(yµ|bk, {yν 6=µ})∑

bk
Pt+1(yµ|bk, {yν 6=µ})

, (6)

mt
µk = tanh

∑
ν 6=µ

atanh m̂t
νk

 ≈ tanh

∑
ν 6=µ

m̂t
νk

. (7)

The temporal index t in the variables indicates the up-
date order as the equations should be solved by iteration
until they converge. The variables m̂ are auxiliary vari-
ables used to calculate the actual cavity magnetizations
m and are sometimes called conjugate magnetizations.

The method proposed in [18] can then be easily
adapted to the present compression scheme. Using the
non-linear activation function for the current perceptron,
one can calculate analytically both the numerator and
denominator of the equation for the conjugate magneti-
zations as a power series in K. This is accomplished by
uncoupling the synaptic vectors by means of Hubbard-
Stratonovich fields, which can then be exactly integrated
at the end. By expanding the solution to leading order
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in K we finally obtain

m̂µk =
2sµkyµ√

K

N
(

∆| − uµk, σ2
µk

)
−N

(
∆|uµk, σ2

µk

)
1 + yµ

[
erf

(
∆+uµk√

2σ2
µk

)
+ erf

(
∆−uµk√

2σ2
µk

)
− 1

] ,
(8)

where N
(
x|u, σ2

)
=

1√
2πσ2

exp

[
− (x− u)

2

2σ2

]
, (9)

σ2
µk =

1

K

∑
l 6=k

(1−m2
µl)s

2
µl, (10)

uµk =
1√
K

∑
l 6=k

mµlsµl, (11)

and erf(x) is the error function given by

erf(x) =
2√
π

∫ x

0

dτ e−τ
2

. (12)

The new pair of equations to be iterated until conver-
gence is now (7) and (8). By dropping the index t to in-
dicate fixed point values once convergence is attained, we
can write for the inferred value of the perceptron synaptic
vector bk the equation

bk = sgn mk, mk = tanh

(∑
µ

m̂µk

)
. (13)

IV. OFFLINE × ONLINE

The equations derived in the previous section are the
offline version of the MP algorithm, which means that the
dataset used during the learning phase is presented in full
as a batch to the algorithm. The algorithm them has the
freedom to use the whole dataset at once to extract the
necessary information for the inference task. In this case,
it is obvious that the order in which each data point is
presented is irrelevant as the algorithm has the freedom
to go back and forth within the dataset as needed to
extract the maximum possible amount of information.

Equations (6), (7) and (13) are fairly general offline
equations for binary systems and the (non-replicated)
MP approach of [17] is, in practice, equivalent to them.
This set of equations, however, have an inconvenient sym-
metry which gives rise to an ambiguity in deciding on
the sign of the inferred variables. The reason is that,
due to this symmetry, the equations always give the re-
sult mk = 0. In the same way as we did above, their
approach also considers the first significant term in m̂µk.
To solve the symmetry problem, a heuristic inertia term
was introduced [20] which depends on a parameter that
has to be adjusted by trial and error.

Given the success we obtained by turning the offline
MP algorithm into its online version in the perceptron ca-
pacity problem, we were led to introduce the same mod-
ification here. The online version of the MP equations

is obtained via an additional expansion for large system
sizes, this time using the second of equations (13).

Because in this equation each term of the summation
inside the hyperbolic tangent is of order 1/

√
K, we can

single out one of these terms and expand the tanh around
the remaining terms for large K. By singling out the ν-th
term, the general formula becomes

mk =

∞∑
n=0

m̂n
νk

n!
Fn(mνk), (14)

where

mνk = tanh

∑
µ6=ν

m̂µk

, (15)

and

Fn(mνk) =
d

dx
tanhx

∣∣∣∣
x=

∑
µ m̂µk

. (16)

The fact that each Fn depends only on mνk is a conse-
quence of the derivative of the hyperbolic tangent being
a function of the hyperbolic tangent itself.

We now re-interpret the term which was singled out
as a new example, introduced after the previous patterns
have already been learned. Alternatively, one may inter-
pret the index ν in the MP equations as a time step t
and substitute mt

νk by mk(t − 1) and mt
k by mk(t). We

run an extensive series of tests that led to the conclu-
sion that by doing this expansion up to the third term
in equation (14) one can avoid the problematic symme-
try effects of the off-line MP and also provide extremely
good compression performance. Explicitly, the expansion
gives the following update rule

mk(t) = mk(t− 1) +
[
1−m2

k(t− 1)
]
m̂tk

− mk(t− 1)
[
1−m2

k(t− 1)
]
m̂2
tk . (17)

At first sight, it would seem that the second order term
would contribute to further stabilization of the zero so-
lution as it works as a shrinking factor multiplying the
previous value of mk. However, due to the fact that the
first order term makes the solution identically zero, this
term actually works as a perturbation away from zero
and, although small, it breaks the symmetry enough to
allow the algorithm to pick a sign for the magnetization.

The modification from an offline algorithm to an online
one is a very important one as it opens up the possibil-
ity of using a degree of freedom which was not available
before - the order of data presentation. As we have seen
in the beginning of this section, an offline algorithm like
MP has access to the whole dataset and can use it in any
order and how many times it is necessary to extract in-
formation. Online algorithms, however, can have access
only to the information available before some point in
time. Inference is then updated for each time step using
new data in the order it arrives.
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Although online algorithms seem restrictive in compar-
ison to offline ones, they have some advantages in chang-
ing environments. The characteristic that is useful for us,
however, is the element of disorder introduced by the pos-
sible random orders of the data points. Randomness can
help the system to avoid getting trapped in dynamical lo-
cal minima, something that is a fundamental limitation
of the offline MP.

V. REPLICATION

The final and most important step of the rOnMP algo-
rithm is the system replication. Replication, in the sense
of this algorithm, means to introduce real replicas of the
same system which carry on parallel inference tasks and
interact at very specific points.

This replication is done by generating randomly n dif-
ferent paths in the example space. Each path is composed
by the same example pairs (yµ, sµ), but in a different or-
der. The idea, as we have already discussed briefly, is
to use the new degree of freedom encoded by the or-
der of example presentation to facilitate a better search
in solution space and avoid being trapped in subopti-
mal minima. For N examples, there are N ! possible or-
ders of presentation, but we will choose only a number n
of these sequences, with n being of polynomial order in
N . In previous applications [18] we observed that this is
enough to considerably improve the performance of the
non-replicated algorithm.

Once n different paths through the example space have
been generated, parallelization takes place. For each ex-
ample path, a different replicon of the system is created.
Each replicon works as an independent system perform-
ing the online MP learning after each corresponding ex-
ample is presented to it and inferring a new ba, where a is
a replica index ranging from 1 to n, and the components
of each vector are given by equation (13) applied to each
replicon.

After each one of these learning steps, an averaged in-
ferred vector is calculated by taking a weighted average
of all replica as

b̄k = sgn

(
n∑
a=1

wabak

)
, (18)

and this is used as the initial point for the next learning
step for each replicon.

The crucial point in the rOnMP algorithm is clearly
how to decide on the weights for the averaging. Although
white averages, with all weights equal to 1, are usually
faster to calculate, they exhibit very poor performance
in the present compression case. One can alternatively
adopt a procedure based on a Boltzmann weight

wa ∝ e−βE(ba), (19)

with the energies E(ba) being a measure of performance,
which here we define as the number of misclassified exam-
ples. The parameter β works as an inverse temperature

and we recover the white average for β = 0 (infinite tem-
perature).

For the compressor, we observed that a much better
performance is attained when the average is highly bi-
ased, which is equivalent to choosing a very low tem-
perature to select lower energy states. We adopted then
the rather simplified criteria of choosing the best replicon
as the inferred vector for the next learning step, which
amounts to choosing the zero temperature weights.

VI. COMPUTATIONAL COMPLEXITY

There is of course a trade off between performance
and computational complexity which cannot be avoided
in the present situations. The complexity of the energy
landscape for the present problem suggests that exact
algorithms are invariably computationally hard. The
more sophistication we add to the search algorithm then,
the more we expect the computational complexity to
increase. However, given the difficulty of the task, as
long as the complexity of the resulting algorithm remains
polynomial in the system size with a small exponent, we
can accept this trade off.

As we are assuming that the system size K scales with
the size of the dataset N , the naive MP algorithm, sum-
marized in equations (6) and (7), requires the calculation
of 2K2 terms as each equation depends on two indices.
In order to calculated the hatted variables, equation (8)
requires two loops, each one of order K. The magneti-
zations have also one internal loop of order K, making
the total number of operations scale with K3. The final
piece of inference does not increase the complexity as it
requires only K2 operations.

Although replication increases the computational com-
plexity of the original MP equations, because we work
with order N replicas, the replicated algorithm scales
with K4, which is still polynomial in the system size
with an exponent which has increased only one order in
K. The replica averaging operation does not change this
result as it scales only with K.

Therefore, the computational complexity of the
rOnMP algorithm remains polynomial in the number of
examples N as we aimed from the beginning.

It is not difficult to see that the complexity that should
have appeared from the improvement in the performance
of the algorithm might be hiding in the procedure for de-
ciding on the order of example presentation. The most
efficient way of choosing this order is indeed a difficult
problem and needs to be considered with much more de-
tail. During our tests, we have used a random order for
the examples. Although this is far from optimal, even
this very naive approach resulted in a considerable im-
provement of the algorithm’s performance. This gives
grounds for us to suggest that by modifying this proce-
dure, one can achieve even better results.
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FIG. 2. Performance of the rOnMP-based compression
scheme for different levels of bias. Dashed lines in this and
the following figures represent the theoretical bounds;the top
line for bias p = 0.5 and the lower one for p = 0.2, 0.8. Solid
lines with full symbols are averages over 100 instances using
n = 104 replica while those with hollow symbols represent
results presented in [15] for comparison.

VII. RESULTS

We tested the performance of the rOnMP algorithm
against results published in the literature for different
bias values of the pattern components. Trials with dif-
ferent weighting options for the averaging of the replicas
indicate that, contrary to results with the binary Ising
perceptron, there is a considerable difference between re-
sults obtained using white and weighted averages. For
the suggested compression scheme, choosing the best per-
forming replicon at each step turns out to be much more
efficient than any other choice; it has therefore been used
in all the experiments reported below.

Figure 2 shows the performance of the compression
scheme in terms of the average bit error or distortion
D versus the compression rate R for three different bias
values p = 0.2, 0.5, 0.8 and system size K = 101. The
dashed curves show the theoretical bounds, while the
solid lines with full symbols show averages over 100 dif-
ferent sets of Gaussian distributed randomly generated
patterns with zero mean and unit variance. Each exper-
iment was run with a total of n = 10000 replica.

The performance shown in Fig. 2 is better than the re-
sults presented in [17] (hollow symbols) for high R values
and deteriorates in the lower R regime for p = 0.5, 0.8.
For p = 0.2 our results are better for all R values. As
with previous uses of the rOnMP algorithm, performance
improves as the number of replica increases. Such an
improvement is exemplified in Fig. 3, where we present
results for n= 10, 100, 1000, 10000 replica for the case of
K=101 and p=0.5.

This shows that the main limit for further improve-
ment is computing time. Another notable feature of 2 is
that our results for p = 0.2 and p = 0.8 are much closer

FIG. 3. Performance dependence on the number of replica n
for bias p = 0.5 and K = 101.

FIG. 4. Performance dependence on the system size K for
p = 0.5 and n = 100.

to each other than in previous works. Further experi-
ments indicate that the smaller the size of the system,
the closer the curves become using the same algorithm.

Finally, Fig. 4 shows how results change with increas-
ing system size. The graph shows results obtained for
K = 21, 51, 101, 201 with a bias p = 0.5 and n = 100
replica. We can see an effect common to most systems
with a complex energy landscape. The larger the system,
the larger the number of local minima with a higher prob-
ability for the algorithm to get trapped; the number of
replica needed to attain the same performance increases.

VIII. CONCLUSIONS

We applied the recently introduced replicated online
message passing algorithm (rOnMP) [18] to the promis-
ing compression method based on a non-linear perceptron
suggested in [15].

The rOnMP algorithm is based on insights from statis-
tical physics and uses a parallel replication of the approx-
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imate Bayesian inference procedure known as message
passing (MP) to explore the complex energy landscape
that characterizes the parameter estimation problem of
the non-linear perceptrons. In addition, the algorithm
explores a new way of effecting message passing by chang-
ing the usual offline MP equations to an online version
and by using an expansion for a large system size K.

We showed that our algorithm offers superior perfor-
mance with respect to conventional MP methods with
several additional advantages: (i) The performance of the
algorithm is only limited by the available running time as
our tests indicate that the larger the number n of replica,
the closer to the theoretical performance limits the algo-
rithm gets. (ii) The particular compression scheme we
employ suffers from inherent symmetries which prevent
the algorithm from converging to the correct value of the
binary variables; this usually requires the introduction of

a heuristic inertia term [20] in the MP equations. This
term is characterized by a constant that has to be fine-
tuned. On the other hand, our online replicated version
of MP does not require any adjustable parameters.

We believe that there are still room for further im-
provement of the results presented. The natural step is
to judiciously choose the path in the example space in a
way that maximizes the extraction of information from
the set of examples. However, given the complexity of
the solution space this requires new tools and approaches
that are currently investigated.
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