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Abstract 

The UK is home to a dense network of Citizen Weather Stations (CWS) primarily set up by members 

of the public. The majority of these stations record air temperature, relative humidity and 

precipitation, amongst other variables, at sub-hourly intervals. This high resolution network could 

have benefits in many applications, but only if the data quality is well characterised. Here we present 

results from an intercomparison field study, in which popular CWS models were tested against Met 

Office standard equipment. The study identifies some common instrumental biases and their 

dependencies, which will help us to quantify and correct such biases from the CWS network.      
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Introduction 

Currently over 1700 citizen weather stations (CWS) are observing and recording the weather across 

the UK. For comparison, the Met Office runs 250 or so land surface stations in its professional 

Meteorological Monitoring System, abbreviated to ‘MMS’ (Green, 2010). Tapping into this dense 

network of citizen observations could have benefits in many applications.  

A citizen weather station (CWS) is defined as a weather station set up by a member of the public for 

whom the terms weather enthusiast, volunteer, hobbyist and amateur observer are fitting 

descriptions. Crucially, these stations are set up out of personal interest (or, in schools, for 

educational purposes) rather than because it is the owner’s job. Increasingly the weather stations 

being used are consumer automatic weather stations which are low cost and easy to install. Once 

connected to an internet enabled computer they can automatically submit observations to websites 

such the Met Office’s WOW website (wow.metoffice.gov.uk), Weather Underground 

(www.wunderground.com) or the Citizen Weather Observer Program (CWOP - wxqa.com) for 

sharing. Most users submit their observations at sub-hourly intervals, most commonly every 5 

minutes. The majority of CWS are located in the owner’s garden with most stations heavily clustered 

around urban and suburban areas.    

The high temporal and spatial resolution of the freely available CWS data potentially lends itself to 

many applications. The data could be fed into the data assimilation scheme of a high resolution 

weather prediction model, used to post-process model output, analysed for urban heat island 

studies (Steeneveld et al. 2011, Wolters and Brandsma, 2012) or even used to estimate snow depths 

(Muller, 2013). 
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Using CWS data in the aforementioned applications raises concerns about data quality. Can CWS 

really compete with accurate equipment installed by professional organisations at well calibrated 

and exposed sites?  Uncertainty about CWS data can arise from any of the following 5 sources: 

1. Calibration issues - A CWS sensor may not be perfectly calibrated. Perhaps it was biased 

before installation, or it has drifted over time. 

2. Design flaws – Often the design of CWS makes it susceptible to inaccurate readings, 

particularly during certain weather conditions. 

3. Communication and software errors – Can produce gross errors as well as missing data. 

4. Metadata issues – Incomplete or inaccurate metadata makes data interpretation 

difficult. 

5. Representativity error – It’s difficult to assess whether CWS observations represent a 

scale suitable for the application.  

Here we present results from an intercomparison field study, where common models of CWS are 

collocated alongside professional equipment, allowing us to begin quantifying the magnitude of the 

bias and gross errors resulting from the first two sources, which we call instrumental errors. We also 

discuss how this field study has helped us to model the CWS bias. This is vital for quantifying such 

biases, and for structuring the framework of a quality control system which enables us to reduce 

biases and characterise residual uncertainty, allowing principled use of CWS data in scientific 

applications.  

 

The Field Study  

 

Figure 1. The Met Office’s Winterbourne No. 2 weather station. The site includes sensors operated by the Met Office, the 

University of Birmingham, and the 7 CWS being tested as part of this study. 

A year-long intercomparison field study was performed using 7 CWS collocated alongside 

professional Met Office equipment at the University of Birmingham’s ‘Winterbourne No. 2’ site 

(Figure 1). The site, located in Edgbaston (Birmingham, UK), is part of the MMS network submitting 

minute-resolution data. The Met Office instruments installed at the site include a Platinum 

Resistance Thermometer (PRT) and a Rotronic Hydroclip both mounted within a passively ventilated 
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Stevenson Screen, a Munro R100 series 0.2mm tipping bucket rain gauge and a Kipp and Zonen 

CMP11 pyranometer. PRTs offer greater accuracy along with a more stable calibration in comparison 

to thermistors (Burt 2012); all 7 CWS we tested use thermistors. Henceforth these reference Met 

Office instruments will be referred to simply as ‘MMS’. MMS instruments are calibrated on a regular 

managed cycle and abide by WMO standards (WMO 2008); we assume therefore that they can be 

used as a well characterised reference against which the 7 CWS stations can be verified. However, 

although this site will act as a good reference, MMS stations are not immune to problems. For 

example, passively ventilated Stevenson screens suffer from increased uncertainty at low wind 

speeds (Harrison, 2010), while tipping bucket rain gauges, such as the Munro R100, can display 

biases when verified against standard manual rain gauges (Burt 2012). Fortunately, the Munro R100 

we used read just +1.1% higher than a  Met Office MK II ‘five-inch’ manual rain gauge and +1.6% 

higher than another, newer, Munro tipping-bucket gauge, both collocated at the site. With this 

relatively small bias and a virtually complete annual dataset we can use its readings with reasonable 

confidence. The site is somewhat sheltered, and therefore unsuitable for Met Office wind 

measurements, but fortunately the University of Birmingham maintains a set of instruments at the 

site, including a 7m mast with an anemometer and wind vane manufactured by Vector Instruments. 

The site’s sheltered nature is similar to that of many CWS sites. The study took place from 1 

September 2012 to 31 August 2013. Having envisaged that the type and magnitude of the CWS bias 

would depend on synoptic conditions, which vary through the year, a full year’s field study was 

undertaken.  

 

Figure 2. Citizen stations tested at the Winterbourne No.2 field site. 

The 7 CWS comprised 5 different models of weather station, chosen because they are among the 

most popular automatic stations used by citizen observers (Bell et al., 2013). Details of the stations 

are summarised in Table 1, with images of the sensor suites shown in Figure 2. The two stations of 

each of the Davis Instruments’ Vantage Pro2(VP2) and Vantage Vue, and Oregon Scientific WMR200 

were installed, with the aim of identifying biases and errors common to a particular model. The 

second WMR200 was decommissioned in early November 2012 when its wireless transmission 

began to interfere with that of the first station. We are confident that there was negligible 

interference before this point. Only a single Fine Offset WH1080 and La Crosse WS2350 were 

deployed because of fears of similar interference. With hindsight, the La Crosse instruments could 

have used wired communications and Jenkins (2014) used two Fine Offset devices simultaneously 

without issue. Like most CWS, every station comprised an outdoor sensor suite and an indoor 

electronic console to display and store the data. Observations were downloaded from the console to 

a laptop on a weekly basis. All CWS and MMS temperature and humidity sensors were mounted 

approximately 1.5m above grass. Whilst the rims of the MMS rain gauges were roughly 30cm above 
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grass, the height of the CWS gauges were set as recommended in their manuals, ranging between 

1m for the WS2350 and WMR200 to 1.5-2m for the other CWS.  

 

  

 

Figure 3. Mean temperature bias at different hours of the day (UTC) and months of the year for 3 of the CWS tested. a) 

Davis VP2(1), b) Davis Vue(2), c) La Crosse WS2350. Note the change in the colour scale for the final plot.The values written 

in grey are the mean bias of each cell. 
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Station 
Nickname 

Station 
Manufacturer  

Station 
Model 

Price* 
(Approximate) 

Software used to 
download observations 

Temporal 
resolution 
(minutes) 

Time until memory full at 
this temporal resolution 
(days) 

Rainfall 
increment 
(mm) 

VP2(1) Davis 
Instruments 

Vantage Pro2 
FARS** 

£890 WeatherLink 10 18  0.2 

VP2(2)† Davis 
Instruments 

Vantage Pro2 
FARS 

£890 WeatherLink 10 18  0.2 

Vue(1) Davis 
Instruments 

Vantage Vue £390 WeatherLink 10 18  0.2 

Vue(2) Davis 
Instruments 

Vantage Vue £390 WeatherLink 10 18  0.2 

WMR200 Oregon 
Scientific 

WMR200 £350 Virtual Weather Station 10 291 1.016 

WS2350 La Crosse WS2350 £100 Heavy Weather 60 7 0.518 

WH1080 Fine Offset†† WH1080 £70 EasyWeather 10 30 0.3 

 

Table 1. Summary of the 7 CWS tested as part of this field study. 

* Prices include accompanying software, but not mounting accessories such as tripods. Only the WMR200 comes with a mounting pole as standard. Prices include VAT.   

** FARS stands for Fan Aspirated Radiation Shield.  

†
 The VP2(2) had been in the field for approx. 1 year before installation at Winterbourne No. 2. All other stations were brand new.  

††
 Fine Offset manufacturer this station but it is frequently sold under many different brand names including Maplin, Watson, and Ambient Weather. 
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 Air Temperature (°C) Relative Humidity (%) Dew Point (°C) MSLP
*
 (hPa) Rainfall 

       Statistic 
 
 
Station 

Mean Bias 
(Day and 

Night) 

Mean Bias 
(Day 

time
**

) 

Mean Bias 
(Night time) 

Mean Bias 
(all conditions) 

Mean Bias 
(Wet conditions, 

>90%)
†
 

Mean Bias 
(Dry conditions, 

<=90%)
†
 

Mean Bias Mean Bias Absolute and percentage 
difference from the MMS 
yearly total of  842.4mm 

VP2(1) +0.2  (0.2) +0.1  (0.2) +0.3  (0.2) +2.7  (2.9) -1.3  (1.2) +3.6  (2.3) +0.7  (0.6) +1.7  (0.3) -83.4mm (-9.9%) 

VP2(2) +0.2  (0.3) +0.1  (0.3) +0.3  (0.3) +0.4  (3.1) -2.2  (3.1) +1.0  (2.7) +0.3  (0.5) +1.2  (0.3) +94.8mm (+11.3%) 

Vue(1) +0.1  (0.3) +0.2  (0.3) +0.1  (0.2) +2.7  (2.1) -0.2  (0.9) +3.4  (1.7) +0.8  (0.7) +1.7  (0.6) -22.6mm (-2.7%) 

Vue(2) -0.1  (0.3) +0.0  (0.3) -0.2  (0.2) +3.9  (2.0) +1.1  (0.9) +4.5  (1.6) +0.8  (0.7) +2.9  (0.8) -28.6mm (-3.4%) 

WMR200 +0.8  (1.3) +1.5  (1.4) +0.1  (0.4) -11.0  (6.3) -2.8  (4.1) -12.8  (5.2) -1.7  (1.4) +2.6  (1.5) -43.8mm (-5.2%) 

WS2350 +0.9  (2.3) +2.1  (2.5) -0.5  (0.5) -1.4  (5.2) -1.3  (2.0) -1.4  (5.7) +0.9  (1.4) +1.9  (1.1) -100.0mm (-11.9%) 

WH1080 +0.5  (0.9) +0.9  (1.0) +0.0  (0.3) +7.5  (3.2) +5.1  (1.9) +8.0  (3.1) +2.3  (1.3) +0.0  (0.7) -203.4mm (-24.1%) 

 

Table 2. Key statistics from the field study over the period 1
 
Sept 2012 through 31 August 2013, except for Relative Humidity and Dew Point whose statistics represent the period 16 May 2013 

– 31 August 2013.  The standard deviation of the difference is shown in brackets next to the values of mean bias. 

* Winterbourne No. 2 site does not have MMS MSLP readings, instead observations from the Coleshill MMS site 16km away were used. CWS pressure readings were set to match the Coleshill 

reading at the start of the period, except for the WMR200 for which the MSLP correction is based upon the elevation the user enters into the electronic console. 

** Here the definition of daylight is when the MMS global radiation sensor reads greater than 0 Wm
-2

, therefore night time is when the reading is less than or equal to 0 Wm
-2

. 

†
 As measured by the MMS humidity sensor. 
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Results 

Table 2 summarises some key statistics from the year-long field study. Below we discuss each 

weather variable in turn, namely: air temperature, humidity and dew point temperature, and 

rainfall. Because pressure variations are well captured by the MMS network, and CWS wind 

measurements will often be too localised for most applications, they are not examined in detail. 

Temperature 

When the air temperature measurements from the 7 CWS were verified against the MMS 

measurements there were significant biases (Table 2), with clear diurnal and seasonal patterns 

(Figure 3). The pattern is dictated by the hours of daylight, with changes in the magnitude, and 

sometimes the sign, of the bias between day and night.  

The Davis VP2 and Vue show the closest agreement with the MMS PRT, all with a relatively small 

mean bias and standard deviation. The two fan aspirated VP2s show very similar results, both 

tending to read too warm with overall average biases of +0.16°C and +0.18°C. Both show an increase 

in this warm bias at night and a decrease during the day. The two Vues, however, do not agree. The 

Vue(1) tends to show a warm bias which is exacerbated in the afternoon, while the Vue(2) 

consistently shows a cool bias, around -0.2°C at night, which only changes to a warm bias in between 

late morning and late afternoon for the warmer months of the year, as shown in Figure 3.     

The temperature bias of the other stations is more significant, each showing a warm bias that 

dramatically increases during the day, and leads to a positively skewed distribution of bias for these 

stations. The pattern of the warm bias shown in Figure 3 for the La Crosse WS2350 station is typical 

for all these 3 stations, with a warm bias that peaks just after midday. During summer months the 

warm bias is even more pronounced, occurring for more hours of the day owing to the extended 

hours of insolation. These warm biases are well over 1°C and can climb over 4°C for the WMR200 

and WS2350. To put these biases into context, the summer average daytime urban heat island 

measured in London rarely exceeds 1°C (Wilby et al., 2011). Without accurate bias correction it 

would be almost impossible to identify such an urban heat island effect using some CWS models. At 

night the performance of these 3 stations is much improved, for example the WMR200 and WH1080 

both display a small mean bias (standard deviation) of 0.05(0.4) and 0.03(0.3)°C respectively.   

 
Figure 4. Time series plot of air temperature recorded by the 7 CWS and the Professional PRT housed within a Stevenson 

screen for 26 May 2013. A time series of MMS global radiation is shown in orange. 
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Figure 4 shows a temperature time series plot for a typical day which highlights many of the 

patterns. For example note the large daytime warm bias exhibited by the WS2350 (and to lesser 

extents by the WMR200 and WH1080) and the warm bias of both Vues later in the day.  

Humidity & Dew Point 

 

Figure 5. Time series of the Vue(1) relative humidity bias, i.e. Vue(1) humidity - MMS humidity. 

 

Figure 6. Relative Humidity time series. Covers the period when the MMS Hydroclip was changed, as indicated by the red 

line. Note the addition of the University of Birmingham (UoB) Vaisala humidity observations. 

All 7 CWS tested exhibit significant relative humidity biases when compared against the MMS 

humidity sensor. It is important to note that there is some uncertainty associated with the MMS 

humidity sensor, the Rotronics Hydroclip. Figure 5 shows a time series of the Vue(1) humidity 

observations minus the MMS observations. The sudden step change in the bias range in mid-May is 

because the Hydroclip was swapped for another as part of the site’s calibration process. The 

Hydroclip that ran over the first 8.5 months tended to read much wetter than the CWS sensors 

during conditions of high humidity, remaining at 100% for several hours if not days (Figure 6). The 

CWS observations would rarely read as high as 100%. This explains the large negative biases shown 

in Figure 5 over this first period. The second Hydroclip showed no such tendency, exhibiting a much 

better agreement with a Vaisala humidity sensor run by the University of Birmingham at the site. In 

a separate field study, Ingleby et al. (2013) found that Hydroclip sensors tend to drift by +1% to +2% 
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per year at Met Office sites (although there is a lot of variability) and can be slow to recover from 

periods stuck at saturation. They estimate that an uncertainty of 2% to 3% for an operational 

Rotronics Hydroclip is achievable under best conditions. As the first Hydroclip was deemed to have 

drifted wet, all following statistics and figures for relative humidity and dew point temperature were 

produced using just the second Hydroclip as the reference sensor. 

 

Figure 7. CWS vs. MMS relative humidity. a) VP2(1), b) WMR200, c)WS2350, d) WH1080. The darker the colour the greater 

the density of points. 

The 7 CWS humidity sensors we tested have very different patterns to their bias. The Davis VP2(1), 

Vue(1) and Vue(2) all show a wet bias over the majority of the humidity range (Figure 7). For all 3 

stations the mean bias is greater than 3% under drier conditions (less than 90%), but when the 

humidity is greater than 90% the VP2(1) and Vue(1) exhibit small dry biases.  These findings agree 

well with those of Burt during his review of the VP2 (Burt 2009) and Vue model (Burt 2013). The 

VP2(2) behaves slightly differently; under drier conditions it does not over-read to the same degree 

as the other Davis stations, but it under-reads more during wet conditions, with a greater residual 

variance across the whole humidity range. 

The WMR200 under-reads across the entire humidity range, and dramatically so in drier situations 

where it exhibits a mean bias of -12.8%. The WS2350 also tends towards a dry bias during drier 

situations, but with a less extreme mean of -1.4%. Between 70-90% (Figure 7) this switches to a wet 

bias. By contrast, the WH1080 has a large wet bias over the entire humidity range, with an overall 

bias of 7.5%.  

 

Figure 8. CWS vs. MMS dew point temperature. a) WMR200, b) WH1080. The darker the colour the greater the density of 

points. 
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Since we anticipated some interaction of temperature and relative humidity biases, we also 

considered dew point temperature. The mean dew point biases for all Davis stations were within 1°C 

of the MMS. In agreement with other studies that found VP2 monthly means mostly within 1°C of 

the reference sensor (Burt, 2009) and Vue readings that were approximately 1°C too high (Burt, 

2013), both Vues in this study had a mean bias of +0.8°C. The WS2350, with a mean bias of 0.9°C was 

also within 1°C of the MMS sensor, but with a larger residual variance. The mean bias of the 

WMR200 and WH1080 was more significant, at -1.8°C and 2.3°C respectively (Figure 8). 

The CWS dew point values were derived by the station’s electronic console, however the difference 

due to their use of potentially different algorithms was virtually negligible, never exceeding 0.02°C. 

Rainfall 

 

Figure 9. Cumulative rainfall totals of the 7 CWS throughout the yearlong study period. Professional Met Office gauge is 

shown as the black line. The final totals are displayed in the legend. 

Figure 9 shows a plot of cumulative rainfall throughout the yearlong study period. All but the VP2(2) 

measured totals less than the MMS gauge. It is interesting that one VP2 over-read whereas the other 

under-read, particularly as the VP2 model allows for calibration of the tipping buckets using a screw 

under each bucket. Before installing the VP2 stations they were calibrated in the lab so that on 

average both read within 2% of the truth. It is curious that, once in the field, they should deviate 

from the professional gauge by approximately 10%, and in different directions. When Burt (2009) 

tested a different VP2 against a standard ‘five-inch’ gauge he found the annual total was just 1.8% 

higher, but the agreement was not consistent with monthly differences ranging from -10% to +19%.  

The Davis Vues show a very good agreement with the MMS gauge and with each other, both 

undercatching by less than 4%. However, results by Burt (2013) show this slight undercatch is not 

consistent throughout all Vue stations; as compared to standard ‘five-inch’ gauge the annual total of 

their Vue was 9% too high. The WMR200 showed a reasonable agreement, undercatching by just 

5.2% at the end of the period. The WS2350 and the WH1080 undercatch by greater amounts, with a 

yearly total of just 88% and 76% of the Met Office total respectively.  
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Parameterising station bias 

Thus far we have seen that all 7 CWS tested display some substantial biases. In this section we 

attempt to identify the factors determining these biases, with the aim of parameterising them.  

Temperature  

 

Figure 10. Temperature bias as a function of global radiation levels for the 7 CWS tested. 

The most obvious pattern to the temperature bias is the difference between day and night, a result 

of changes in the radiative balance. For the WMR200, WS2350 and WH1080 the main driver of their 

daytime warm bias is the strength of incoming solar radiation. Figure 10 shows how these 3 CWS 

exhibit a greater warm bias with increasing levels of solar radiation. This relationship is largely linear, 

with some evidence of bias plateauing as global (direct + diffuse) radiation levels reach their highest 

levels.  

 
Figure 11.  WMR200 temperature bias as function of wind speed and global radiation. The mean bias for a given radiation 

(wind speed) bin for all wind speeds(radiation levels) is shown along the bottom(right side). Here the number within each 

cell signifies the sample size. 
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Wind speed also appears to influence this relationship. Note that in Figure 11 the warm temperature 

bias of the WMR200 during high solar radiation conditions is exacerbated when the wind speed is 

low. 

 

Figure 12. Thermal images taken from the South-West by a Flir i5 thermal imaging camera on a sunny summer afternoon. 

a) Stevenson Screen, b) VP2, c) Vue, d) WMR200, e)WS2350, f) WH1080. The colour-scale is consistent. The white (hot) 

part of the VP2 evident in panel b is its black rain gauge. For help identifying the parts of each station cross reference with 

Figure 2, but be aware of the change in perspective. 

All of the stations tested have some form of shielding to guard their thermistor from direct sunlight. 

Such shielding should also allow surrounding air to ventilate through, but it is apparent that some 

shields are more effective than others. Thermal imaging (Figure 12) shows that the WMR200 and 

WS2350, which exhibit the largest biases under increased global radiation, exhibit the warmest 

colours on their shields. This illustrates that their thermistor shielding is prone to overheating under 

sunny conditions, which heats the air inside the thermistor housing increasing the sensed 

temperature. This overheating is also a function of ventilation; the design of WMR200 and WS2350 

shields (Figure 2) make sufficient ventilation difficult, so that the air within the shield warms, rather 

than being refreshed with ambient air from outside the shield. The upturned-plate design of the 

WH1080 allows for better ventilation and is noticeably cooler than the WMR200 and WS2350. 

However, the bias still displays a relationship with global radiation levels, perhaps due to its small 

size and off-white colour. Jenkins (2014) also identified a relationship with solar radiation for the two 

WH1080s in their study. 

The two Davis models, the VP2 and Vue, show the coolest colours in the thermal images, and their 

relationship with radiation is somewhat different. The VP2s were the only model of station we 

tested that included a Fan Aspirated Radiation Shield (FARS).The fan is solar powered, and it is 

evident in Figure 3 that the VP2 has the lowest bias during the day when this fan is active. Under 

sunny and calm conditions the aspirated VP2s probably give a better estimate of the air temperature 

than the passively aspirated Stevenson screens, which are prone to increased uncertainty at low 

wind speeds (Harrison, 2010). During the night, when the fan is inactive, ventilation can only occur 

passively, leading to a warm bias. The altered shield design which incorporates active ventilation has 
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compromised the effectiveness of the passive ventilation at night. It is reassuring to see the similar 

performance of the two VP2s, providing confidence that the parameterisation would be similar for 

all stations of this type.  

The Davis Vues appear to have a stronger relationship with outgoing longwave radiation than 

shortwave radiation. As the Vue’s radiation shield is mounted underneath the station’s main body it 

is well shielded from incoming solar radiation, although its effectiveness may be compromised when 

the solar angle is low. It is when the land surface has warmed and outgoing radiation peaks, around 

mid-afternoon, that the station shows the greatest warm bias (Figure 3). Unfortunately, longwave 

radiation is not commonly measured at MMS stations, so a proxy variable may have to be used to 

parameterise Vue temperature bias. The bias in the Vue temperatures demonstrated a stronger 

correlation with grass temperature than with global radiation.   

So far we have only looked at the correlation between simultaneous CWS temperature bias and 

global radiation measurements. This assumes that the impact of changes in radiation on the 

temperature bias is instantaneous. When a lagged impact is considered this correlation often 

improves. For example, for the WMR200, WS2350 and WH1080, a better correlation is found when 

we weight a selection of previous global radiation measurements exponentially, with radiation 

observations nearer in time to the temperature observation weighted more heavily. The strength of 

the correlation varies little between using radiation observations stretching back just 30 minutes or 

120 mins – the key is to consider at least some previous observations.  

Humidity & Dew Point 

 

Figure 13. Plots of the relationship between temperature, humidity and dew point, and their biases for the La Crosse 

WS2350. The darker the colour the higher the density of points. 

Parameterising biases in relative humidity is a challenging task. In general there are two main 

sources of bias. Firstly there is the capacitive sensor itself. Figure 7 (1:1 plots) demonstrated that in 

comparison to the MMS sensor CWS have potentially large calibration errors. The magnitude and 

even the sign of the bias will often change depending on the humidity. Bias may also be induced 

from hysteresis, when the sensor’s response to a change in humidity varies depending on whether 

the humidity is rising or falling. As with the MMS Hydroclip, these CWS sensors may drift over time, 

potentially becoming more biased the longer they are in the field.  The second source of bias comes 

from the inadequate shielding or housing of the sensor, and is closely related to the shielding 

problems that lead to temperature biases. For example if the shielding overheats, the air within the 

shield will also warm reducing its relative humidity, thus causing an apparent dry bias. Alternatively, 

if humidity is falling after a period of saturated conditions, a poorly ventilated shield may prolong 

the time a sensor reads saturated. Trying to tease apart the two sources of error so that they can be 

parameterised is very difficult. 
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Figure 13 shows a series of plots for the WS2350 which can help us decipher the source of its 

humidity and dew point bias. It is apparent that the relationship between the humidity bias and 

MMS humidity is somewhat unclear. Figure 13b plots the humidity bias against temperature bias. 

The majority of points display a slight cold and wet bias, however there is a long tail where warm 

temperature biases are associated with a dry humidity bias. This may be caused by increased 

temperatures within the sensor housing, relative to the surrounding air. Bias in the dew point 

temperature will be inherited from both the humidity bias and the temperature bias. Unsurprisingly 

Figure 13 shows that a warm temperature bias will lead to a subsequent warm dew point bias; 

however, the relationship is not perfectly linear. As expected the dew point is too high when the 

humidity is wet biased. However, it is also too high when humidity is dry biased, perhaps because a 

warm temperature bias has not only caused a subsequent high dew point bias but also a dry 

humidity bias when the sensor housing overheated. It’s worth noting that we have chosen to plot 

just one station here; the plots for the other stations can look very different, further indicating that 

the parameterisations must be learnt for each individual CWS separately.   

Rainfall 

6 of the 7 CWS tested displayed yearly rainfall totals lower than the MMS rain gauge. One 

explanation for this could have been that, at 1-2 metres above the ground, the CWS rain gauges are 

mounted higher than the 30cm MMS gauge, as such they experience higher wind speeds which can 

lead to undercatch (Guo et al., 2001). In this study we looked for a relationship between wind speed 

and the daily CWS rainfall totals as a proportion of daily MMS total. However, no obvious 

relationship was found, either for average wind speed taken at times of measured rainfall, or for 

daily average wind speed. Measurements from both the CWS anemometer and the Vector 

Instruments anemometer, mounted at 7m, were used separately. Possible explanations for this lack 

of relationship is that the Winterbourne No. 2 site is relatively sheltered, with a mean 7m wind 

speed of 1.6ms-1 and a max of 10.2ms-1. The anemometers of the 4 Davis instruments never read any 

higher than 5ms-1. It is possible that these relatively low wind speeds did not cause noticeable 

undercatch and that the biases seen had a different source. The MMS gauge is deep with steep sides 

to prevent heavy rain from bouncing out, while all CWS tested bar the VP2s are much shallower, 

particularly the WS2350 and WH1080. Such a design makes them prone to undercatch due to rain 

drops bouncing out, an effect that potentially outweighs any influence of wind speeds.  

Even before deploying the CWS rain gauges outdoors, the tipping buckets within may be poorly 

calibrated producing a bias straight out of the box. To test this, 500ml of water was slowly dripped 

through each rain gauge indoors. By dividing the volume of water by the area of the gauge it’s 

possible to calculate the depth of rain in mm the station’s console should display (Overton, 2007). 

Differences between expected and measured depth were as large as 13%, with most stations under-

reading. A corresponding correction was then applied to the yearly cumulative rainfall totals. For 

some stations this led to a small improvement, but for others their yearly total was made much 

worse. Clearly other factors are at work outdoors that outweigh errors due to poor calibration, 

proven by the poor performance of the VP2s in the field despite being calibrated to less than 2% 

error indoors.  

Some CWS rainfall bias, particularly when dealing with daily totals, can result from cold and snowy 

synoptic conditions. The gauges of the CWS tested were prone to filling with snow when the MMS 
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gauge did not. This resulted in delayed tips when the snow finally melted. The funnel exit hole of the 

CWS gauges was also prone to freezing over, again causing a delay in rainfall readings. 

Using the results for modelling biases 

This experiment was not designed as a stand-alone project; the aim was to aid the construction of 

models that will estimate the bias and uncertainty associated with CWS observations. Here we 

discuss how key findings from the field study influence these models of instrumental bias. 

Every CWS we tested exhibited a relationship between temperature bias and the levels of global 

solar radiation. The relationship varied depending on the model of station, so we’d ideally like to 

learn this relationship for each individual station type over time. In order to do this we would require 

an estimate of the solar radiation at the location of every CWS in the country.  

 

Figure 14. Demonstration of correcting CWS temperature bias using a multiple linear regression model. The figure shows a 

histogram of the WS2350 temperature bias before and after the correction along with a scatter plot of a sample of its 

observations overlaid with a grid of the learnt model. The data was randomly split in half to form the training and test 

datasets. 

Figure 14 demonstrates that with a reliable estimate of the global solar radiation level, as is available 

at the test site, it is relatively simple to correct the temperature observations. Here we used a simple 

multiple linear regression model in which radiation, wind speed, and an interaction term were used 

as predictors of the temperature bias, with radiation providing most predictive power. When the 

temperature bias prediction was used to correct the observations there was a reduction in the mean 

bias and residual variance for every CWS. Sometimes this improvement was marginal, e.g. for the 

Davis stations, but for stations which exhibited large radiation biases, such as the WS2350, the 

improvement was large. As previously mentioned, the influence of radiation on temperature bias is 

often lagged, so incorporating previous radiation observations using an exponential weighting would 

improve our correction further.  

We also saw that temperature bias can result from poorly calibrated sensors, as with the Vue(2) 

which displayed a night time cool bias of around -0.2°C. We can quantify this calibration bias under 

conditions when the bias produced by factors such as radiation and wind speed is minimal, for 

example at night under cloudy, breezy conditions.   

The field study has reinforced that relative humidity is a difficult variable to measure, for both CWS 

and MMS stations. As the MMS network has its own bias that can slowly drift or suddenly jump, it is 
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clear that this network may have to undergo its own quality control procedures. A network of more 

accurate sensors such as chilled mirror hygrometers which measure dew point temperature directly 

could help anchor the MMS network and in turn the CWS network, although such a network may 

prove difficult to keep in good operational condition. Incorporating relative humidity into our 

predictive model will also be difficult. With an upper limit capped at 100%, it can produce non-

Gaussian errors. Converting relative humidity into other variables that represent air moisture, such 

as dew point temperature, may provide a solution to this.  We have shown examples where relative 

humidity and dew point biases are dependent on temperature bias, so it is important that we model 

the moisture variable jointly with temperature and its bias. 

 

Figure 15. Plot of cumulative rainfall totals from the MMS and 7 CWS gauges. The cumulative rainfall values (available 

every 10 minutes) for each CWS were corrected using the relationship between their cumulative rainfall and that of the 

MMS gauge; learnt from preceding data only. 

CWS are usually good at capturing the intensity and timing of rainfall events, but their long term 

cumulative total can differ from professional gauge measurements significantly. Using the MMS 

gauge as our best estimate of the truth, Figure 15 shows that by identifying the relationship between 

the MMS and CWS cumulative rainfall time series we can correct the CWS time series to fall in line 

with that of the MMS. This works well because, for the CWS tested here, the proportion of 

undercatch or overcatch tended to remain relatively constant through time; allowing for a correction 

to be learnt from preceding data. In reality, a MMS gauge will not be collocated alongside every 

CWS, in which case observations must be carefully interpolated from nearby professional gauges, 

e.g. from the MMS or Environmental Agency networks. Effectively merging radar accumulation data 

with this gauge data could improve the interpolation (DeGaetano and Wilks, 2009). This should 

improve CWS long term totals, whilst still keeping the detail of individual and isolated rainfall events 

captured by the CWS.  

We’ve seen examples where two stations of a particular model exhibit very similar biases, for 

example the temperature measurements of the two VP2s, although ideally we would have tested at 

least 3 of each model to give higher confidence in the consistency. Station metadata becomes very 

valuable when it contains details such as station type, providing prior information about the bias 

we’d expect to see. However, as noticed by Jenkins (2014), this study also showed examples when 

stations of the same model actually displayed very different biases (for example the VP2s rainfall or 

the Vue(2)’s night time cold bias not evident in the Vue(1)). Within the full CWS network every CWS 
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will have a different siting, exposure and level of calibration and maintenance. Each can introduce 

biases unique to a particular site. For these reasons our study is only representative of the biases in 

the network up to a point.  

This study has shown examples of how we can correct the bias in one variable by evaluating its 

relationship with other variables. It is important that these relationships remain smooth through 

time while still being able to adapt and update. If, for example, we learn that a station has a 

significant warm bias under sunny conditions, we can use this to correct the temperature 

observations on future sunny days. However the radiation shielding may deteriorate with time, 

gradually exacerbating the warm radiation biases (Lopardo et al., 2013). This new relationship will 

need to be learnt. The presence of missing data and gross errors must also be accounted for in any 

future work. 

Conclusion 

The spatial and temporal density of data from the CWS network is appealing, and may identify 

weather phenomena that sparser professional networks cannot. However, as this field study has 

shown CWS data can contain significant instrument biases. Any application of CWS data will require 

a quality control system capable of not only removing gross errors but also correcting instrument 

bias, while also providing an uncertainty estimate. Much of the bias can be parameterised and thus 

learnt and corrected for, but as biases are often unique to an individual station they should primarily 

be learnt using the CWS data while potentially varying in time. Quantifying a station’s bias will rely 

on obtaining a reliable estimate of the weather at CWS locations against which we can begin to 

verify the CWS observations and this is the subject of our future work. This will attempt to 

disentangle instrument biases from the natural spatial variations which we wish to capture.  
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