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Interleavers and BCH Codes for Coherent DQPSK

Systems with Laser Phase Noise
Miu Yoong Leong, Knud J. Larsen, Gunnar Jacobsen, Sergei Popov, Darko Zibar, and Sergey Sergeyev

Abstract—The relatively high phase noise of coherent optical
systems poses unique challenges for forward error correction
(FEC). In this letter, we propose a novel semi-analytical method
for selecting combinations of interleaver lengths and binary
Bose-Chaudhuri-Hocquenghem (BCH) codes that meet a target
post-FEC bit error rate (BER). Our method requires only short
pre-FEC simulations, based on which we design interleavers and
codes analytically. It is applicable to pre-FEC BER around 10

−3,
and any post-FEC BER. Additionally, we show that there is a
trade-off between code overhead and interleaver delay. Finally,
for a target of 10−5, numerical simulations show that interleaver-
code combinations selected using our method have post-FEC BER
around 2× target. The target BER is achieved with 0.1 dB extra
signal-to-noise ratio.

Index Terms—Optical fiber communications, error correction
codes, block codes, phase noise, communication systems.

I. INTRODUCTION

FORWARD error correction (FEC) is crucial for coherent

optical systems with multi-level modulation. Tradition-

ally, coding theory focuses on additive white Gaussian noise

(AWGN) channels with independent identically distributed

(i.i.d.) errors [1]–[3]. However, some communication systems

have non-i.i.d. errors. This affects the choice of FEC codes.

For example, wireless systems use codes that correct burst

errors from fading. In the case of coherent optical systems,

transmitter and local oscillator (LO) lasers have relatively high

phase noise (PN). Algorithms for estimating and compensating

PN result in non-zero probability of cycle slips [4], [5].

We consider codes specifically for such systems. Recently,

several approaches have been proposed. In [6]–[8], the authors

consider low-density parity-check (LDPC) codes. In [9], we

consider binary Bose-Chaudhuri-Hocquenghem (BCH) and

Reed-Solomon (RS) codes. In [10], we improve the method

for dimensioning binary BCH codes in [9] by using a bivariate

distribution. However, the codes selected using the method in

[10] have high overhead, which reduces system throughput.

In this letter, we propose to use interleaving to reduce

code overhead, by trading it off with interleaver delay. In

systems that can tolerate the additional processing delay, we
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can achieve higher throughputs compared to [10]. Specifically,

this letter has three significant contributions. First, we propose

a novel method for determining combinations of binary BCH

codes and interleaver lengths that achieve a target post-FEC bit

error rate (BER). Our method includes the method in [10] as

the special case of no interleaving. Second, we establish that a

trade-off exists between code overhead and interleaver delay.

Third, we present numerical simulations to verify the accuracy

of our method. Ours is a straightforward method, based on

a simple model, that enables us to design low-complexity

interleavers and binary BCH codes for any post-FEC BER

with little simulation effort. Compared to our method, the

approaches presented in [6]–[8] achieve better performance

by using soft information. However, those schemes are more

complex to implement, and require extensive simulations for

low post-FEC BERs.

This letter is organized as follows: the system model and

interleaver-and-code selection are described in Sec. II. Sim-

ulation results and discussion are in Sec. III. The trade-off

between code overhead and interleaver delay is discussed in

Sec. III-A. Post-FEC simulations are presented in Sec. III-B.

Finally, the conclusion is in Sec. IV.

II. INTERLEAVER AND CODE SELECTION

We add interleaving to [10], resulting in the baseband-

equivalent system in Fig. 1. A (possibly shortened) binary

BCH code BCH(nB,S , kB,S) corrects up to at least τ bit errors

[3], [10]. The code has block length nB,S bits, of which kB,S

are data bits. In the transmitter, we use a block interleaver of

length L code blocks. The interleaver reorders the L · nB,S

bits within those code blocks using a known input-output

mapping. In the receiver, the deinterleaver applies the opposite

mapping, thereby returning the bits to their original order. The

interleaver mapping is generated by a pseudorandom sequence,

but this may occasionally result in an interleaver with inferior

performance for specific error patterns. By generating the

mapping randomly for each interleaver frame, we approximate

the performance over the ensemble of interleavers and it is

expected that this will be representative of the performance of

a well-chosen interleaver. This is of course not practical for

implementation so some care must be taken in selecting the

interleaver.

Without interleaving, bit errors are correlated so code blocks

with errors tend to have many errors [10]. To correct these

errors, stronger codes with higher overheads are needed. With

interleaving, the deinterleaver redistributes the errors. The

idea is to decorrelate and spread errors more evenly across
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Fig. 1. System model. A random bit sequence is BCH encoded, interleaved,
differentially encoded, and Quadrature Phase Shift Keying (QPSK) modulated.
This yields signal s[k]. Channel impairments are transmitter laser PN θT [k],
AWGN n[k], and LO laser PN θR[k]. Phase estimation on the received signal
r[k] is by Viterbi-Viterbi (VV). Finally, the signal is QPSK demodulated,
differentially decoded, deinterleaved, and BCH decoded.
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Fig. 2. Poor phase estimate (PE), pre-FEC BER. We design interleaver-and-
code combinations for “poor PE pre-FEC” points C (SNR 10 dB) and B (SNR
12 dB). The SNR is for symbols r[k] in Fig. 1.

code blocks. This allows us to use weaker codes with lower

overheads. However, interleaving adds delay as bits must be

collected before remapping in the interleaver and deinterleaver.

The delay is proportional to interleaver length L.

We want to find combinations of interleaver length L and

code error correcting capability τ that achieve a target post-

FEC BER with code block length nB,S . To do so, we first

obtain a statistical model of the system without interleaving

using the method in [10]. Namely, for a given laser linewidth-

symbol time product, we optimize the length of the Viterbi-

Viterbi (VV) moving average filter using pre-FEC simulations.

Then, for the linewidth variations that we want to accommo-

date, we simulate a worst-case “poor phase estimate (PE)”

curve (Fig. 2). As described in [10], for a point on this curve,

we record its error statistics and use them to parameterize

a correlated bivariate binomial probability density function

(PDF) Pr(YG = yG, YC = yC). The random variable YG

represents the number of AWGN error patterns {0110, 1010,

0101, 1001} in a code block of nB,S bits. The random variable

YC represents the number of cycle slips (single bit errors) in

a code block. We neglect 180◦ errors as these have very low

probabilities. The correlation between YG and YC is due to VV

phase estimation [10], and depends on the operating point e.g.

signal-to-noise ratio (SNR), laser linewidths, and filter length.

This bivariate model is specific to coherently-demodulated

Differential Quadrature Phase Shift Keying (DQPSK) systems

using VV phase estimation.

The rest of this section describes our novel method for de-

termining suitable interleaver-code combinations. We collapse

the two-dimensional joint PDF Pr(YG = yG, YC = yC) into

a one-dimensional PDF Pr(YA = yA). The random variable

YA represents the total number of bit errors in a code block,

including both AWGN errors and cycle slips

Pr(YA = yA) =
∑

(yG,yC):2yG+yC=yA

Pr(YG = yG, YC = yC).

(1)

A factor of 2 multiplies yG because AWGN error patterns have

two bit errors.

Let YL be a random variable representing the total number

of bit errors in L code blocks. The PDF of YL is the L-fold

convolution of Pr(YA = yA) with itself

Pr(YL = yL) = Pr(YA = yA)
⋆L

=
∑

(yA,1,yA,2,...,yA,L)∈Ψ

Pr(YA = yA,1)×

Pr(YA = yA,2)× · · · × Pr(YA = yA,L)

(2)

where Ψ is the set of (yA,1, yA,2, . . . , yA,L) such that yA,1 +
yA,2 + · · · + yA,L = yL, and L ∈ {1, 2, 3, . . . }. For L = 1,

Pr(YL = ξ) = Pr(YA = ξ), i.e. in this case yL = yA = ξ.

For L = 2, Pr(YL = yL) = Pr(YA = yA) ⋆ Pr(YA = yA).
Convolution is denoted by ⋆. We neglect edge effects in the

convolution, as the probability of an AWGN error starting on

the last symbol of a code block is small for pre-FEC BER of

10−3 and typical code block lengths (cf. Table I).

Deinterleaving distributes the yL bit errors over L code

blocks. This is analogous to the balls-and-bins problem where

yL balls (bit errors) are thrown randomly into L bins (code

blocks). Let Zℓ be a random variable representing the number

of bit errors in the ℓ-th code block after deinterleaving. The

probability of Zℓ given yL is binomial distributed

Pr(Zℓ = zℓ|YL = yL)

=











(

yL

zℓ

)

(

1
L

)zℓ (1− 1
L

)yL−zℓ , if zℓ ≤ yL,

0, otherwise.

(3)

Combining (2) and (3), and integrating out yL yields

Pr(Zℓ = zℓ) =
∞
∑

yL=0

Pr(Zℓ = zℓ|YL = yL) Pr(YL = yL).

(4)

For the special case when L = 1 (no interleaving), Pr(Zℓ =
zℓ|YL = yL) (3) is 1 if zℓ = yL, and 0 otherwise. Thus, (4)

reduces to

Pr(Zℓ = ξ) = Pr(YA = ξ). (5)

To make this case consistent with [10], we adopt the same

approximations. The probability of a non-decodable word is

the volume under the tail of Pr(YG = yG, YC = yC). For

a code that corrects up to τ bit errors, we approximate the

tail by its largest terms τ + 1 ≤ 2yG + yC ≤ τ + 3 in [10].

Therefore, in this letter, we use τ +1 ≤ zℓ ≤ τ +3 (from (5)

and (1)).

To derive post-FEC BER for the general case of L ≥ 1, let

Xℓ be a random variable that indicates if τ +1 ≤ Zℓ ≤ τ +3

Xℓ =

{

1, if τ + 1 ≤ Zℓ ≤ τ + 3,

0, otherwise.
(6)
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The expectation of Xℓ is E[Xℓ] = Pr(τ + 1 ≤ Zℓ ≤ τ + 3).
Let X be the sum of Xℓ’s, X =

∑L
ℓ=1 Xℓ. The expected

number of code blocks having between τ +1 and τ +3 errors

is E[X] = E
[

∑L

ℓ=1 Xℓ

]

=
∑L

ℓ=1 E[Xℓ] = L · Pr(τ + 1 ≤

Zℓ ≤ τ +3). The decoding algorithm is assumed to be of the

bounded-distance type correcting up to τ errors and leaving

the received sequence unchanged in the case of more than τ
errors. As discussed in [10], we may neglect the possibility

of decoding to a wrong codeword for sufficiently large τ (cf.

Table I). Assuming that the average number of bit errors in a

code block is ≪ τ , we may approximate post-FEC BER as

Ppost ≈

(

τ + 1

nB,S

)

E[X]

L

=

(

τ + 1

nB,S

)

Pr(τ + 1 ≤ Zℓ ≤ τ + 3).

(7)

Equation (7) is consistent with [10] when L = 1, i.e. [10] is

a special case of (7).

From Pr(YG = yG, YC = yC) [10], (7), (4), and (2), we

calculate the required τ and L to meet a target post-FEC BER

for a chosen block length nB,S . The combination of nB,S and

τ specifies the BCH code, and L specifies the interleaver.

III. RESULTS AND DISCUSSION

For the system in Fig. 1, symbol rate 1/TS = 28 Gbaud and

combined transmitter-and-LO laser linewidths ∆νN < 100
kHz work well with a 41-tap moving average filter for VV.

As an example to illustrate the use of FEC to accommodate

linewidth variations, we assume that the worst-case pre-FEC

performance occurs with a linewidth of ∆νN = 19.6 MHz. We

simulate this numerically as “poor PE pre-FEC” in Fig. 2. Pre-

FEC BER and error statistics (described in [10]) are calculated

using 106 bits. Simulations are modeled in VPI [11].

We examine our method in two ways. In Sec. III-A, we

investigate the trade-off between L and τ . In Sec. III-B, we

evaluate post-FEC BER using Monte-Carlo simulations.

A. Trade-off Between Code Overhead and Interleaver Length

This section is organized as follows: First, we derive (4) for

the case when bit errors are i.i.d.. Second, we calculate (4) at

“poor PE pre-FEC” point B in Fig. 2, for different interleaver

lengths L. We compare this to the i.i.d. case. Third, for points

B and C in Fig. 2, we plot the trade-off between code overhead

and L. Lastly, we summarize this section.

When bit errors are i.i.d., they remain so after deinterleav-

ing. As such, the number of bit errors in the ℓ-th block is

binomial distributed

Pr(Zℓ = zℓ) =

(

nB,S

zℓ

)

pzℓpre(1− ppre)
nB,S−zℓ . (8)

We now consider “poor PE” point B in Fig. 2. In Fig. 3, we

plot (4) for different L, and compare them to the i.i.d. case.

When L = 1, at low zℓ, the PDF is higher for even zℓ than

for odd. This is because Pr(YG = yG, YC = yC) (shown in

[10]) descends more steeply in the direction of yC than yG
for point B. Also, Pr(Zℓ = zℓ) has a fatter tail than (8), so a

stronger code with higher overhead is needed. As L increases,
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Fig. 3. Pr(Zℓ = zℓ) (4) at point B in Fig. 2, for code block length nB,S =
8190 bits and different interleaver lengths L. “Bino.” means (8).
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Fig. 4. Trade-off between code overhead and interleaver length L for pre-FEC
points (a) B and (b) C in Fig. 2. Code block length nB,S = 8190 bits, and
overhead is µτ/(nB,S − µτ), where µ = ⌈log2 (nB,S + 1)⌉, and ⌈x⌉ is
the smallest integer greater than or equal to x. Interleaver-code combinations
that give post-FEC BER 10−5 are marked with a star (∗). The combinations
B1, B2, C1, and C2 are listed in Table I, and used for simulations in Fig. 5.

Pr(Zℓ = zℓ) approaches (8), the tail becomes thinner, and a

weaker code with lower overhead would suffice. This is the

trade-off between code overhead and interleaver length.

Next, for “poor PE pre-FEC” points B and C in Fig. 2, we

find combinations of τ and L that achieve a post-FEC BER

target of 10−5 using the method in Sec. II. Code overhead vs.

L is shown in Fig. 4. The greatest drop in overhead occurs

when going from L = 1 (no interleaving) to L = 2. Beyond

that, increasing L yields diminishing returns. Interleaving is

also useful when there are only AWGN errors but no cycle

slips, as AWGN error patterns have two bit errors (100%

correlation). In this case, the trade-off should have the same

trend as Fig. 4. However, when there are only i.i.d. cycle slips

but no AWGN errors, the number of bit errors in a block is

already binomial distributed, so interleaving has no effect.

To summarize, in systems with AWGN and PN, Pr(Zℓ =
zℓ) (4) has a fatter tail than (8) when L = 1. As L increases,

Pr(Zℓ = zℓ) tends to (8), i.e. its tail becomes thinner. This

allows us to trade-off interleaver length with code overhead.

Our method identifies the interleaver-code combinations of this

trade-off (e.g. Fig. 4), thus facilitating system design based

on requirements such as linewidth tolerance, implementation

complexity, and processing delay.

B. Post-FEC Simulations

As an example, we aim for a target post-FEC BER of

10−5 using block length nB,S = 8190 bits. We apply the



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 4

9 10 11 12 13
10

−5

10
−4

10
−3

10
−2

B

C

SNR (dB)

B
E

R

Poor PE, pre−FEC

B1, post−FEC

B2, post−FEC

C1, post−FEC

C2, post−FEC

Bivariate B, post−FEC

Bivariate C, post−FEC

Fig. 5. BER performance. “Poor PE pre-FEC” is the same as Fig. 2.
The interleaver-code combinations B1, B2, C1, and C2 used for post-FEC
simulations are listed in Table I. Codes for “Bivariate B/C” are listed in [10].

TABLE I
INTERLEAVER-CODE COMBINATIONS USED FOR POST-FEC SIMULATIONS

IN FIG. 5. CODE OVERHEADS ARE IN FIG. 4.

Post-FEC curve Code τ Overhead Interleaver
in Fig. 5 (%) length L

B1 BCH(8190,7969) 17 2.8 2
B2 BCH(8190,7995) 15 2.4 8
C1 BCH(8190,7384) 62 10.9 2
C2 BCH(8190,7423) 59 10.3 6

method in Sec. II to “poor PE pre-FEC” points B and C

in Fig. 2. Possible interleaver-code combinations are shown

in Fig. 4. Combinations B1 and C1 have short L = 2.

Beyond B2 and C2, increasing L gives little improvement. We

therefore simulate B1, B2, C1, and C2, as specified in Table

I. Combinations B1/B2 have lower overheads than C1/C2

because B has lower pre-FEC BER than C in Fig. 2.

Post-FEC BER in Fig. 5 is calculated using 107 post-FEC

bits, except at SNR 10 dB for C1/C2/“Bivariate C” and SNR

12 dB for B1/B2/“Bivariate B”. At those points, we simu-

late 108 post-FEC bits for better accuracy. The interleaver-

code combinations designed using our method give post-FEC

BERs around 2× target. This performance is similar to that

of codes selected using the bivariate model in [10] (Fig.

5). Furthermore, our interleaver-code combinations meet the

BER target with around 0.1 dB additional SNR, which is a

negligible difference in practical systems. All combinations

have similar performance, i.e. our method gives consistent

results. In other words, our method enables us to accurately

identify combinations of binary BCH codes and interleaver

lengths that achieve performance close to target.

At lower post-FEC BERs, the leading-order approximation

in Sec. II and [10]—where the probability tail is approximated

by its three largest terms—becomes more accurate, i.e. approx-

imation error is less at practical post-FEC BERs of 10−15 than

in our example with 10−5. On the other hand, any inaccuracies

in fitting the bivariate model Pr(YG = yG, YC = yC) based on

pre-FEC simulations become more apparent at lower post-FEC

BERs. The possibility of decoding to a wrong codeword may

continue to be neglected, as this can be approximated as 1/τ !
[10], and τ is larger for low post-FEC BERs. As we simulate

at most 108 post-FEC bits due to simulation limitations, the

accuracy of the bivariate model has not been verified down to

post-FEC BERs of 10−15. While the accuracy of our results

shows that the model captures the main behavior of the system,

it is possible that secondary effects involving rare events could

affect accuracy at very low post-FEC BERs when interleaver

length L is small. When L is large, YL tends to a Gaussian by

the central limit theorem, so minor inaccuracies in the PDF of

YA have little effect.

IV. CONCLUSION

In this letter, we present a semi-analytical method for

designing interleavers and binary BCH codes for coherent

DQPSK systems with laser PN. Our method extends [10]

to systems with interleaving, and is consistent with [10]. As

such, we retain the benefits of [10], including only needing

short pre-FEC simulations, based on which interleaver-code

combinations are designed analytically. As an example, we

evaluate our approach for a 28 Gbaud system with linewidths

ranging from < 100 kHz to 19.6 MHz. For a target post-FEC

BER of 10−5, the interleaver-code combinations identified

with our method give BER around 2× target, and achieve

the target with around 0.1 dB extra SNR.

Future research includes assessing different interleaver

implementations (e.g. pseudo-/S-random interleavers), de-

signing specifically-optimized interleavers, and investigating

code/interleaver ensembles. Further refinements to improve

accuracy at low post-FEC BERs may involve modeling rare

events, such as more complex error patterns from VV.
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