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This work introduces a Gaussian variational mean-field approximation for inference in dynamical systems
which can be modeled by ordinary stochastic differential equations. This new approach allows one to express
the variational free energy as a functional of the marginal moments of the approximating Gaussian process.
A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces the
complexity of approximate inference for stochastic differential equation models and makes it comparable to that
of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter estimation for
nonlinear problems with up to 1000 dimensional state vectors and compares the results empirically with various
well-known inference methodologies.
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I. INTRODUCTION

Stochastic differential equations (SDEs) arise naturally
as descriptions of continuous time dynamical systems, such
as geophysical, chemical, and biological systems [1]. The
continuous time interpretation can be important in both the
details of the dynamics and the ability to employ physical
understanding in developing such dynamic models. Such
models are commonly used in a range of applications from
system biology [2] to data assimilation in weather prediction
[3]. Despite the increasing computational power of modern
computers, efficient inference in high-dimensional dynamical
systems still poses as a major challenge with significant
implications in scientific and engineering applications. Exact
inference is computationally hard and often infeasible, and
therefore a range of approximation methods have been
developed over the years [4].

From a Bayesian perspective, inference in dynamical
systems essentially consists of updating ones beliefs about the
distribution of state or parameters within the SDEs, condition-
ing on observations. Inference in dynamical systems is often
considered at two levels: direct inference on the state which is
variously described as data assimilation, filtering, or smooth-
ing; and inference on the parameters within the SDE. Inference
on the state is widely used in applications such as weather and
environmental forecasting, where knowledge of the current
state of the system approximated by the SDEs can be used
to predict future conditions. For longer term predictions, such
as climate modeling or in systems biology applications, it is
the parameters in the SDEs that are often of more interest,
requiring inference to estimate not just the system state, but
also distributions or point estimates of the system parameters.

Existing methods for state and parameter estimation in non-
linear systems have explored a range of approaches including
a variety of Markov chain Monte Carlo (MCMC) methods [5],
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sequential Monte Carlo [6], a range of Kalman smoothers [7],
maximum a posteriori (MAP) approaches based on classical
variational techniques [8], and mean-field conditional analysis
of the SDEs obtained with moment closure methods [9]. These
inference and estimation methods introduce a range of approx-
imations and computational complexities. Monte Carlo-based
methods introduce sampling error, have issues with conver-
gence and assessment of convergence [10–12]. The computa-
tional cost of Monte Carlo means such methods are only really
applicable to relatively low-dimensional systems, but many
physical systems are described using a large number of state
variables, often discretized over some spatial context. How-
ever, recent advances [13], show that the utilization of graphics
processing units GPUs can speed up these methods by several
orders of magnitude. Kalman filters or smoothers on the other
hand are fast but can suffer from numerical instabilities and
have approximation errors due to the linearization or statistical
linearization of the nonlinear differential equations [14,15].

Other hybrid techniques have been proposed, based pri-
marily on the aforementioned methods, by combining the
ensemble and variational approaches [16,17], with the hope to
bring more nonlinearity into the data assimilation problem. All
methods are very challenging to apply to parameter estimation,
mainly due to the inherent coupling of state and parameters,
which in particular makes state augmentation approaches
require very careful tuning.

New techniques of approximate inference, originally
developed in the field of statistical physics, have been
applied to the problem of inference for such models. As
shown in Refs. [18,19], the variational Gaussian process
approximation (VGPA) approximates the posterior process
over states by a nonstationary Gaussian process, which is
induced by a SDE with a time-varying linear drift. The
method minimizes a variational free energy using similar
approximations to path integrals in quantum statistics
[20,21]. The parameters in the drift function, which are the
variational (functional) parameters of the approximation,
are a D-dimensional time-dependent “mean” vector and a
D × D-dimensional time-dependent “covariance” matrix,
where D is the dimensionality of the state vector.
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Although this approximation reduces inference in SDEs
to solving ordinary differential equations (ODEs), rather
than partial differential equations (PDEs) that arise for exact
inference, the matrices contribute a factor of O(D2) to the
overall computational complexity. This makes the algorithm
slow for larger systems. One also has to deal with the
infinite dimensional nature of the variational parameters by
discretizing the ODEs in time which introduces an additional
factor O(N ) into the complexity of the algorithm, N being
the number of time points used in the discretization, which is
typically large for numerical stability.

A. Main ideas and contribution

In this work a framework is presented that extends the
VGPA developed by Ref. [18], allowing for a significant
speed-up of approximate inference for SDEs. It is based on
the great advantage of variational approximations over other ad
hoc approximation schemes; one can tune their computational
complexity to the computational resources available. The three
key ideas of this new approach are as follows:

(1) First, we adopt to a Gaussian mean-field (MF) approx-
imation. This means that we further restrict the approximating
Gaussian measure to be factorizing in the individual com-
ponents of the D-dimensional state vector. This reduces the
complexity from O(D2) to O(D).

(2) Second, within the new MF approximation, we show
that the original variational parameters can be eliminated
analytically and expressed in terms of the marginal moments
of the approximating Gaussian, thus removing the need of
forward-backward integrations.

(3) Finally, since the free energy is now expressed as a
functional of the marginal moments alone (which are the
new functional variational parameters), we can further reduce
the complexity of the approximation by a restriction to the
subclass of functions defined by a finite set of parameters.
We choose piecewise (low-order) polynomials where the
parameters are fixed between two subsequent observations.
This reduces the complexity from O(N )1 to O(K), where K is
the number of observations, with K � N typically. Moreover
this parametrization removes any errors associated with time
discretization.

The overall complexity of the proposed approximate infer-
ence scheme for a continuous time Markov process is now
comparable to inference for a discrete time hidden Markov
model, thus making the new algorithm practically applicable
to higher dimensional systems where the previous variational
algorithm was realistically infeasible.

B. Outline

The rest of the paper is structured as follows: Section II
introduces inference for stochastic differential equations. The
basic setup is provided along with the appropriate notation.
In addition we briefly review the VGPA scheme, as the new
mean-field framework extends this algorithm. In Sec. III we

1N = |tf − t0|/δt , is the number of discrete time points in a
predefined time interval [t0,tf ], with δt time step.

develop the new mean-field approximation and discuss its
implementation details in Sec. IV. Numerical experiments and
comparisons with other inference approaches are presented in
Sec. V, and we conclude in Sec. VI with a discussion.

II. STATISTICAL INFERENCE FOR DIFFUSIONS

Diffusion processes are a special class of continuous time
Markov processes with continuous sample paths [22]. The
time evolution of a general, D-dimensional, diffusion process
{xt }t∈T can be described by a stochastic differential equation
(here to be interpreted in the Itō sense):

dxt = f(t,xt ; θ )dt + �(t,xt ; θ )
1
2 dwt , (1)

where dwt ∼ N (0,dtI), xt = [x1
t , . . . ,x

D
t ]� is the latent

state vector, f(t,xt ; θ ) ∈ RD is the (typically) nonlinear drift
function, that models the deterministic part of the system,
�(t,xt ; θ ) ∈ RD×D is the diffusion or system noise covariance
matrix, and dwt is the derivative of a D-dimensional Wiener
process {wt }t∈T , which often models the effect of faster dynam-
ical modes not explicitly represented in the drift function but
present in the real system, or “model discrepancy.” T = [t0,tf ]
is a fixed time window of inference, with t0 and tf denoting
the initial and final times, respectively. The vector θ ∈ Rm is
a set of parameters within the drift and diffusion functions.

Equation (1) defines a system with multiplicative (i.e., state-
dependent) system noise. The VGPA framework considers
diffusion processes with additive system noise [23,24]. At
first this might seem restrictive, however reparametrization
makes it possible to map a class of multiplicative noise
models into this additive class [22]. Moreover there are many
examples of models of physical systems (e.g., the atmosphere),
where constant diffusion SDEs are considered as an advanced
representation of the system and reasonable approximations
to “model error” or “discrepancy” component. Hence, the
following SDE is considered:

dxt = f(xt ; θ )dt + �
1
2 dwt , dwt ∼ N (0,dtI), (2)

where the notation is the same as in (1), with the only
exception being the noise covariance matrix � ∈ RD×D , which
for simplicity is assumed state independent and diagonal
(i.e., � = diag{σ 2

i } for i = 1,2, . . . ,D). Also the explicit
dependency of the drift function f(xt ; θ ) on time t has been
suppressed for notational convenience.

A. Observation model

The stochastic process {xt }t∈T is assumed to be observed at
a finite set of discrete times {tk}Kk=1, leading to a set of discrete
time observations {yk ∈ Rd}Kk=1. In addition the observations
are corrupted by i.i.d. Gaussian white noise, as is typically the
case in the applications we consider. Therefore

yk = h
(
xtk

) + εk, εk ∼ N (0,R), (3)

with h(·) : RD → Rd representing the (potentially) nonlinear
observation operator and R ∈ Rd×d being the observation
noise covariance matrix. Moreover, it is further assumed
(unless stated otherwise) that the dimensionality of the obser-
vation vector is equal to the state’s vector (i.e., d = D) and that
the discrete time measurements are “direct observations” of the
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state variables (i.e., yk = xtk + εk). This assumption simplifies
the presentation of the algorithm and is the most common
case in practice. Adding arbitrary observation operators or
incomplete observation to the equations only affects the system
in the observation energy term in (6) and can be readily
included if required.

B. Approximate inference

Inference in our algorithm is performed on the posterior
distribution, i.e., the distribution of the state variables condi-
tioned on the observations. Setting Y = y1:K , for notational
convenience, this posterior measure over paths X ≡ {xt }t∈T ,
is given by

p(X|Y,θ,�) = p(X|θ,�)

p(Y|θ,�)

K∏
k=1

p
(
yk|xtk

)
, (4)

where K denotes the total number of noisy observations,
p(X|θ ,�) represents the prior measure over paths, as defined
by (2) and p(yk|xtk ) is the likelihood for the observation at time
tk from (3). p(Y|θ,�) is the normalizing marginal likelihood
or partition function of the problem, computed as an integral:

p(Y|θ,�) =
∫

dp(X|θ,�)
K∏

k=1

p
(
yk|xtk

)
, (5)

over all paths of the diffusion process. Path integrals of this type
can be explicitly represented in terms of the Wiener measure
and can be reduced (when the drift function is the gradient of
a potential) to expressions well known in quantum statistical
mechanics for which variational approximations have been
successfully applied.

In the variational approximation of statistical physics,
an exact probability measure (e.g., the “true” posterior) is
approximated by another that belongs to a family of tractable
ones, in our case a Gaussian. This is done by minimizing the
so called variational free energy, defined as

F(q(X|�),θ ,�) = −
〈
ln

p(X|Y,θ,�)

q(X|�)

〉
q(X|�)

− ln p(Y|θ,�),

(6)

where q is the approximate posterior measure and 〈.〉q(X|�)
denotes the expectation with respect to q(X|�). The first term,
on the right-hand side, is the relative entropy (or Kullback-
Leibler divergence) between q and the posterior p. This can be
brought into a more standard form, better known in statistical
physics, if we define

p(X|Y,θ ,�) = 1

Z
μ(X)e−H (X), (7)

q(X|�) = 1

Z0
μ(X)e−H0(X), (8)

Z = p(Y|θ,�). (9)

Here μ(X) is a reference measure over paths, which we take
to be the Wiener measure and H (X) is a Hamiltonian which
can be derived from Girsanov’s change of measure theorem
[25,26]. Inserting these definitions into (6), and using the fact

that the relative entropy is non-negative, we get the well-known
variational bound:

− ln Z = − ln p(Y|θ,�) � F(q(X|�),θ ,�) (10)

= − ln Z0 + 〈H (X)〉q − 〈H0(X)〉q , (11)

for the exact free energy of the model. Note, that for this
bound to be finite the system noise covariance (i.e., �), for
both measures p and q must be the same [18].

1. Optimal approximate posterior Gaussian process

Gaussian variational approximations for path integrals of
the form (11) have been extensively studied in statistical
physics and quantum mechanics since Feynman’s celebrated
work on the Polaron problem [20,21]. The Hamiltonian H can
be explicitly computed using Girsanov’s change of measure
theorem for diffusion processes [25], as the sum of an ordinary
integral over time and an Itō integral and is given by

H (X) = 1

2

∫ tf

t0

{f(xt ; θ )��−1f(xt ; θ ) dt − 2f(xt ; θ )��−1 dxt }

−
K∑

k=1

ln p
(
yk|xtk

)
. (12)

If the “trial Hamiltonian” H0 is chosen to be a combination of
a linear and a quadratic functionals in X , q(X|�) becomes a
Gaussian measure over paths. The usual approach would then
be to choose a simple parametric form of the trial “harmonic
oscillator” Hamiltonian H0 and optimize these parameters by
minimizing the variational bound (11).

In Ref. [18] a different, nonparametric approach was
chosen, in order to accommodate the fact that through the
observations the posterior is nonstationary and thus should
be approximated by a nonstationary Gaussian process. This
method also avoids an explicit introduction of Hamiltonians H

and H0. We have thus assumed that the trial Gaussian measure
q is generated from an approximating linear SDE, which is
defined as

dxt = g(xt )dt + �1/2dwt , (13)

where g(xt ) = −Atxt + bt , with At ∈ RD×D and bt ∈ RD

define the time-varying linear drift in the approximating
process, and {wt }t∈T is a D-dimensional Wiener process. Both
of these variational parameters At and bt are time-dependent
functions that need to be optimized as part of the estimation
procedure. We work directly with the expression (6) for the
variational free energy and use the fact that the prior process
and the Gaussian approximation to the posterior are Markov
processes. Using a time discretization of paths and an explicit
representation of path probabilities as products of transition
probabilities (which have a simple Gaussian form for short
times), we have been able to derive the following expression
of the variational free energy as a sum of three cost functions
(which we will also term “energies” in the following):

F(q(X|�),θ ,�) = E0 +
∫ tf

t0

Esde(t) dt +
K∑

k=1

Eobs(tk), (14)
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where t0 and tf again define the initial and final times of the
total time window (i.e., T = [t0,tf ]). These three energies can
be interpreted in the following manner.

(1) Initial state (t = 0) cost:

E0 =
〈
ln

q(x0)

p(x0)

〉
q(x0)

(15)

(2) Prior process (SDE) cost:

Esde(t) = 1
2

〈‖f(xt ; θ ) − g(xt )‖2
�

〉
qt

(16)

(3) Discrete time observations (likelihood) cost:

Eobs(tk) = 1

2

〈∥∥yk − xtk

∥∥2
R

〉
qt

+ D

2
ln(2π ) + 1

2
ln |R|, (17)

where the state of the system at initial time (t = 0) is assumed
to have a prior x0 ∼ N (μ0,τ0I), with I ∈ RD×D being the
identity matrix and the notation ‖u − v‖2

M denotes the squared
distance of vectors u and v, weighted by the inverse of matrix
M. To keep the paper self-contained, we have included the
main arguments of the derivation in the Appendix.

2. Gaussian process posterior moments

The averages in the above cost functions are over the
Gaussian marginal densities of the approximating process at
given times t defined as

q(xt ) = N (xt |mt ,St ),with t ∈ T , (18)

where mt ∈ RD and St ∈ RD×D are, respectively, the marginal
mean and covariance at time t . The time evolution of this
general time-varying linear system in (13) is described by two
well-known ordinary differential equations (ODEs), one for
the marginal means mt and one for the marginal covariances
St [1,22]:

ṁt = −Atmt + bt , (19)

Ṡt = −AtSt − StAt
� + �, (20)

and thus become functionals of At and bt , where ṁt ∈ RD

and Ṡt ∈ RD×D denote the time derivatives. We emphasize
that Eqs. (19) and (20) are hard constraints to be satisfied
ensuring consistency in the variational approximation [18,23].
One way to enforce these constraints, within a predefined
time window [t0,tf ], is to introduce additional Lagrange
multipliers λt ∈ RD , � t ∈ RD×D , one for (19) and one for
(20), respectively. These are also time-dependent functions
that need to be optimized during the estimation process. For
more information on the formulation of this approach and its
algorithmic solution see Ref. [27].

III. MEAN FIELD APPROXIMATION

The computational complexity of this approach caused
by the matrices St and At leads to an impractical algorithm
when the SDEs are high dimensional. Hence, here we make a
mean-field assumption that further restricts the approximating
posterior process q. This approximation is equivalent to
assuming a diagonal matrix At = diag{a1(t), . . . ,aD(t)}. Since
� is also assumed to be diagonal, the marginal covariance
inherits the same property [i.e., St = diag{s1(t), . . . ,sD(t)}].
The corresponding factorization of the approximating measure

q allows the individual processes of the dimensions (xi
t ,∀i =

1, . . . ,D) to be treated independently, although critically
dependencies among the mean and variances of the state
variables are still maintained through the drift function f(xt ; θ ).

Setting mt = [m1(t), . . . ,mD(t)]�, as in the original varia-
tional approach and st = [s1(t), . . . ,sD(t)]�, a vector contain-
ing only the diagonal elements of the covariance matrix St , the
ODEs (19) and (20) simplify to

ṁi(t) = −ai(t)mi(t) + bi(t),
(21)

ṡi(t) = −2ai(t)si(t) + σ 2
i , ∀i = 1, . . . ,D.

Hence, we can expect that the dimensionality enters the
complexity linearly, as O(D). This allows us to express the
initial variational problem in terms of the functions mt and st

alone.

A. Mean-field free energy

To make this more clear consider the ODEs (19 and 20),
for At diagonal:

ṁt = −Atmt + bt , (22)

Ṡt = −2AtSt + �. (23)

Solving (23) for At and replacing the result in (22) leads to

At = 1
2 (� − Ṡt )S−1

t , (24)

bt = 1
2 (� − Ṡt )S−1

t mt + ṁt . (25)

Substituting (24) and (25) into the linear drift of (13)
provides a new form of the drift function that depends only on
the marginal values of the means mt and variances St , at each
time t :

g(xt ) = ṁt − 1
2 (� − Ṡt )S−1

t (xt − mt ), (26)

where � and St are now both diagonal matrices. This
expression of the linear approximation gives rise to a new
formulation of the Esde(t) function (16), hence the variational
free energy (14). This is given by

Esde(t) = 1

2

D∑
i=1

1

σ 2
i

{
〈(fi(xt ) − ṁi(t))2〉qt

+
(
ṡi(t) − σ 2

i

)2

4s2
i (t)

+ (
σ 2

i − ṡi(t)
) 〈∂fi(xt )

∂xi
t

〉
qt

}
.

(27)

It is clear from the above that since the constraints [Eqs. (22)
and (23)] are eliminated in the optimization problem there is no
need to introduce additional Lagrange parameters. Hence the
problem reduces to estimating the optimal mean and variance
functions mi(t) and si(t), ∀i = 1, . . . ,D.

A direct functional minimization of the free energy with
respect to mt and St would lead to Euler-Lagrange equations,
which are ODEs of second order. These would be of mixed
boundary type: while mi(t) and si(t) are given at initial
time t = t0 (assuming that the density q0 of the initial state
is optimized later in an outer loop), their first derivatives
are not. On the other hand, stationarity of the functional
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imposes conditions on mi(t) and si(t) at the final time t = tf .
We will not pursue this route here, but introduce a further
approximation which entirely avoids ODEs and the need to
deal with ODEs and their time discretization.

IV. POLYNOMIAL APPROXIMATION OF
THE MARGINAL MOMENTS

Instead of using direct discretization of the mean and
variance functions over time, which would prohibit the use
of the algorithm in very high-dimensional systems, we take an
important step to speed up the variational approximation by
suggesting a further restriction of the variational parameters.
We minimize the free energy functional in the subspace
of functions mi(t) and si(t) defined by a finite number of
parameters. Note that this approach strongly relies on the
remarkable fact that the ODEs (21) are hard-coded in our new
approach: a finite parametrization of the original variational
functions At and bt alone would not have led to a finite
parametrization of the resulting mt and st [19]. Since mi(t)
and si(t) must be continuous [18], but their time derivatives
jump at the observations, we will use piecewise low-order (in
time t) local polynomial approximations.

Here, we assume third order polynomials for the mean
functions and second order polynomials for the variance
functions, i.e.:

mi(t) = mi,0 + mi,1t + mi,2t
2 + mi,3t

3,

si(t) = si,0 + si,1t + si,2t
2.

There is no theoretical constraint on the order of the polyno-
mials, for each function. However, if we restrict the solution
to families of low orders, then the desired integrals of the new
cost function (27) are easier to compute analytically. When
drift functions f(xt ; θ ) are polynomials in xt , expectations
over Gaussian marginals can be performed in closed form,
and finally all time integrals can be computed analytically.

A. Practical implementation

The aforementioned polynomial approach has two obvious
constraints that need to be satisfied for all times t . These are (a)
the functions mi(t) and si(t), must be continuous (even though
they may not be differentiable at observation times tk) and (b)
the variance functions must stay positive over the whole time
window of inference [i.e. si(t) > 0,∀ t ∈ [t0,tf ]].

To fulfill these constraints simultaneously, avoiding the use
of additional parameters that would increase the complexity of
our algorithm, we followed the approach of representing the
piecewise polynomials by their Lagrange formula analog (i.e.,
using four points for the third order mean and three points
for the second order variance functions, per time interval).
Lagrange’s interpolation formula [28] provides us with an
explicit expression of the polynomials in terms of the function
values at given points. In numerical analysis this is also known
as the polynomial of the least degree; that means given a finite
set of C points there exists a unique polynomial of least degree
(C − 1), that interpolates exactly these C points. Therefore, the
optimization now consists of estimating the optimal positions
of these points rather than the coefficients of the functions.

(a) Mean polynomial illustration.

(b) Variance polynomial illustration.

FIG. 1. (Color online) Construction of the mean (a) and variance
(b) functions using local polynomials. Notice how the end point of
the first polynomial coincides with the start point of the subsequent
polynomial (pointed dashed red arrows), ensuring continuity over the
whole time domain.

B. Lagrange polynomial form of the mean functions

For the mean function m
j

i (t) which is defined on the
j th interval [tj ,tj+1], since we have chosen a third order
polynomial, we need at least four points to represent this
polynomial uniquely. These are

M
j

i = {
m

j

i (tj ),mj

i (tj + h),mj

i (tj + 2h),mj

i (tj+1)
}
,

where h = tj+1−tj
3 is the spacing between the points. Here,

without loss of generality, we assume that the points are evenly
spread within the time interval [tj ,tj+1], although this is only
to simplify the presentation of the algorithm.
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TABLE I. Experimental setup that generated the data (trajectories and observations). System dimension is denoted by D and observation
dimension by d . The time windows are defined by the initial times (t0) and final times (tf ), while δt is the time discretization step that was
used by the other algorithms with which we compare our new method. The vector θ contains the parameters related to the drift function, and
σ 2

i and ρ2
i represent the noise variances of the driving noise and the observations accordingly, per ith dimension. In this example the variances

are identical for all dimensions. No defines the number of available i.i.d. observations per time unit (i.e., observation density), which without
loss of generality is measured at equidistant time instants.

System D d t0 tf δt θ σ 2
i ρ2

i No

Lorenz ’63 3 3 0 20 0.01 [10, 28, 2.666 67] 10 2 5(�τ = 0.2)
Lorenz ’96 1000 350 0 4 N/A 8 4 1 8(�τ = 0.125)

FIG. 2. (Color online) The mean (solid line) and marginal variance (shaded region, plotted at ±2 × std) for state estimation of xt variable
for an example of the L3D system for the methods HMC, MF, VGPA, 4DVar, UnKS, and EnKS (from top left to bottom right). Observations
are plotted as black crosses.
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The Lagrange polynomial formula that exactly interpolates
the above points is given by

m
j

i (t) =
3∑

k=0

⎧⎪⎨
⎪⎩m

j

i (tj + kh)

⎡
⎢⎣ ∏

0 � l � 3
l �= k

t − (tj + lh)

tj − (tj + lh)

⎤
⎥⎦
⎫⎪⎬
⎪⎭ , (28)

where tj+1 has been replaced with (tj + 3h).

C. Lagrange polynomial form of the variance functions

In a similar manner the assumption of the second order
for the variance function s

j

i (t), implies that we need at least
three points to represent this polynomial uniquely within the
predefined time interval [tj ,tj+1]. These are

S
j

i = {
s
j

i (tj ),sj

i (tj + c),sj

i (tj+1)
}
,

where c = tj+1−tj
2 is the spacing between the points (in this case

the midpoint). The Lagrange polynomial formula that exactly
interpolates the above points is given by

s
j

i (t) =
2∑

k=0

⎧⎪⎨
⎪⎩s

j

i (tj + kc)

⎡
⎢⎣ ∏

0 � l � 2
l �= k

t − (tj + lc)

tj − (tj + lc)

⎤
⎥⎦
⎫⎪⎬
⎪⎭ , (29)

where tj+1 has been replaced with (tj + 2c).

D. The algorithm

For these parametrizations the infinite dimensional infer-
ence problem reduces to optimizing the positions of 4 × D ×
J points for the mean functions, together with 3 × D × J

points for the variance functions (with J = K + 1, the total
number of time intervals defined by the K observations). For
real problems where the true underlying process {xt }t∈T is
sparsely observed we anticipate that the number of optimized
variables (7 × D × J ) � N . The minimization is performed
using a scaled conjugate gradient algorithm, although a
Newton-type minimization could also be applied taking
advantage of the sparsity of the Hessian matrix. Hence, the
optimization becomes fast and efficient exploiting the fact
that the integrals on each dimension i can be computed in
parallel.

The benefits of our approach are twofold. First, as shown
in Fig. 1, the continuity constraint is satisfied by requiring
that the last point of each function on the j th time interval
will be identical with the first point of the function of the
following (j + 1)-th time interval [e.g. m

j

i (tk) = m
j+1
i (tk),

where i represents the spatial dimension, j the time interval,
in which the function exists and tk is an observation time].

Second, the positivity constraint is satisfied by optimizing
the logarithm of the variance points {e.g., log[sj

i (tk)] instead
of s

j

i (tk)}, making the appropriate adjustments to the gradient
functions. Since the variance functions are parabolas if the
three points that define the function are positive, then all other
points within the time interval will also be positive.

V. SIMULATION RESULTS

This section explores experimentally the properties of the
new MF approximation in comparison with a range of other
approximate inference techniques used in stochastic processes.
The new approach is validated on two nonlinear dynamical
systems. The first system considered is a stochastic version
of the three-dimensional chaotic Lorenz ’63 (hereafter L3D)
system [29], described by the following SDE:

dxt =
⎡
⎣ σ (yt − xt )

ρxt − yt − xtzt

xtyt − βzt

⎤
⎦ dt + �

1
2 dwt , (30)

where xt = [xt , yt , zt ]� ∈ R3 is the state vector representing
all three dimensions, θ = [σ, ρ, β]� ∈ R3, is the drift param-
eter vector, � ∈ R3×3 is a (diagonal) covariance matrix, and

(a) RMSE

(b) RRSE

FIG. 3. (Color online) A comparison of the root mean square
error (a) and the root residual square error (b) of the smoothing
methods on 50 realizations of the L63 system. Note the box plots
describe the statistics of the 50 different error estimates.
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wt ∈ R3 is an uncorrelated multivariate Wiener process. The
parameters used in the simulations are the standard settings
that produce the chaotic behavior.2 Additional noise is added
to the original deterministic equations with noise coefficient
� = diag{σ 2

i = 10|i = 1,2,3}, and the process is observed
fully every �τ = 0.2 time units, with error covariance R =
diag{ρ2

i = 2|i = 1,2,3}. The simulation time used was T =
[0,20]. This system was chosen since it is both challenging in
terms of nonlinearity and exhibits chaotic behavior often seen
in real physical systems, but has sufficiently low dimension
that a range of methods including MCMC approaches can be
contrasted on it.

The second system considered is a stochastic version of the
Lorenz ’96 system, with drift function:

f(xt ; θ ) = [f1(xt ; θ ), . . . ,fD(xt ; θ )]�, (31)

where

fi(xt ; θ ) = (
xi+1

t − xi−2
t

)
xi−1

t − xi
t + θ,

2The values are θ = [10, 28, 2.6667]�.

with cyclic index i ∈ {1,2, . . . ,D} and θ ∈ R, as the forcing
(drift) parameter. The diffusion is again an uncorrelated
multivariate Wiener process, with � = diag{σ 2

i = 10|i =
1, . . . ,D} and R = diag{ρ2

i = 2|i = 1, . . . ,D}.
These equations simulate advection, damping and forcing

of some atmospheric variable xi
t , therefore it can be seen

as a simplistic, yet manageable “weather forecasting like”
model [30]. When the forcing parameter θ < 0.895, solutions
decay to a steady state solution, i.e., x1

t = · · · = xD
t = θ ; when

0.895 � θ < 4.0, solutions are periodic, and when θ � 4.0,
solutions are chaotic [31]. Finally, to test the efficiency of
the new MF approach on a higher dimensional system, where
sampling approaches such as the MCMC are not efficient, the
model (31) is extended to D = 1000 (or L1000D). Table I sum-
marizes the setup for the systems considered in the simulations.

A. State estimation

In the first set of experiments we focus on state inference.
We compare the results to hybrid Monte Carlo (HMC) path
sampling [5], the variational Gaussian process approximation
(VGPA) [18], an unscented Kalman smoother (UnKS) [7], an
ensemble version of the forward-backward Kalman smoother

(a) 8’th dimension (b) 20’th dimension

(c) 22’nd dimension (d) 23’rd dimension

FIG. 4. (Color online) The marginal mean (solid red line) and variance (shaded region, plotted at ±2 × std) for state estimation of the
8th, 20th, 22nd, and 23rd dimension of the L1000D system. Dashed lines show the true trajectory {xt ,t ∈ T } that generated the observations
(crosses). Note that only (b) includes observations.
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(with very large number of ensemble members Mens = 1000),
and a weak constraint 4DVar method [8], which is a popular
variational approach to MAP estimation in diffusion processes,
widely used in weather forecasting.

Figure 2 shows an example of smoothing (state inference)
for the xt variable of the L3D system, over a central part of the
time window considered [0,20], applying all the algorithms
to the same set of simulated observations. It is clear that
visually the results appear rather similar. There are subtle
differences, but qualitatively the differences are minor, the
main issue being that the 4DVar does not provide an estimate
of posterior uncertainty as it is a MAP estimate. Also shown
on the figures is the elapsed CPU time in seconds for each
algorithm to run on the full 20 time unit window. Evidently
HMC (25 000 samples, 5000 burn-in, hand tuned to best
performance), which one might consider a reference solution,
takes orders of magnitude longer to run. The MF algorithm
on this example is three times faster than VGPA, and only
twice as slow as 4DVar, although the results depend on the
available computational resources (for this set of experiments
we used an eight core desktop PC). The UnKS is significantly
faster than all methods on this low-dimensional system, since
a very small number of particles (Ens = 2 × D + 1 = 7) are
needed in the low-dimensional system, while the EnKS took
a little longer but we should emphasize the unusually high

number of ensemble members that is used here (Mens = 1000)
for the forward filtering pass. A coarse time discretization of
δt = 0.01 was used, for all but the MF algorithm, to permit
HMC to run in reasonable time.

To quantify the differences in the methods we generate 50
random trajectories of the L3D system, with simulated noisy
observations. The time window is [0,20], with observation
density No = 5 per time unit, which is representative of the
observation frequency in realistic settings. This observation
frequency was chosen to be similar to that expected in
operational weather forecasting applications. We apply the
smoothing algorithms (UnKS, EnKS, MF, 4DVar, VGPA, and
HMC) and compare the root mean square errors (RMSE) and
the root residual square errors (RRSE) in Figure 3(a) and 3(b)
respectively, averaged over all the system dimensions. The
errors are defined as follows:

RMSE = 1

D

D∑
j=1

√√√√ 1

K

K∑
k=1

[yj (tk) − mj (tk)]2, (32)

RRSE = 1

D

D∑
j=1

√√√√ 1

K

K∑
k=1

[xj (tk) − mj (tk)]2

sj (tk)
, (33)

(a) σ profile (b) ρ profile

(c) β profile (d) timings (seconds)

FIG. 5. (Color online) Panels (a) to (c) are the marginal profiles of the drift parameters. The vertical dashed line indicates the true parameter
value, and the star symbol (�) denotes the minimum found by each algorithm. Panel (d) summarizes the timings (in seconds) for each algorithm
to generate the profiles.
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where D is the system dimension, K is the total number
of observations, yj (tk) is the noisy observation on the j th
dimension at time tk , and xj (tk), mj (tk), and sj (tk) are the
true signal, the marginal mean, and variance at the same time
instant.

We note that we are comparing the estimated mean (mode
for 4DVar) state with noisy observations to compute the
RMSE, so with observation variance set at 2, we would expect
a value of around 1.4 for the RMSE. The plot shows that
both the UnKS and EnKS systematically overfit to the noisy
observations. The other methods also show some overfitting
but are in essence very similar, although the MF method did
show a rather poor fit in one simulation. The MF method is
both robust and fast, producing an uncertainty estimate that
is not available from 4DVar. One issue we have observed,
and requires further investigation, is that the MF approach
appears to underestimate the marginal variances with respect
to HMC, as shown in the left plot of Fig. 3(b), where for the
RRSE we would expect a value close to one. Nevertheless, this
underestimation does not seem to affect the mean estimates
significantly.

Since one of the goals of this new MF approach is
the application of the proposed variational framework to
high-dimensional systems as a first step we applied the new
method on the Lorenz ’96 system with D = 1000. To make
the simulation more challenging, but at the same time more
realistic, unlike the previous experiments where for simplicity
we assumed that the observed vector has the same dimensions
as the state vector (i.e.. D = d), here we assume that we
measure only d = 350 from the total D = 1000 with the
locations picked at random. The partial observation in addition
to the discrete time nature of the observation process makes
inference for such systems a very difficult task. In this case we
apply a linear operator H with number of rows and columns
[350 × 1000] such as yk = Hxtk + εk . This matrix has zero
elements everywhere except from the predefined observed
locations, in the diagonal, which are set to one. This way the
expression for the energy term from the observations Eobs(tk)
[Eq. (17)] remains unchanged. In the case of an arbitrary
(nonlinear) operator, the expectation 〈‖yk − h(xtk )‖2

R〉qt
would

have to be approximated (e.g., with unscented transformation
methods [32]).

Figures 4(a)–4(d) show the variational marginal mean and
variance, of the MF algorithm, applied on a typical example
of the L1000D system. As expected, when the MF algorithm
“observes” a dimension it provides a good match between
the posterior mean with the observations and the path that
generated them and the variance is tighter than in dimensions
where we do not have observations. When the algorithm does
not have observations then it can either fail to track the true
trajectory, as shown in Fig. 4(a), or it can successfully track
the true trajectory, as in Figs. 4(c) and 4(d). Because of
the couplings of the Lorenz ’96 model that occur in space
domain (i.e. (xi+1

t − xi−2
t )xi−1

t − xi
t ), when many subsequent

dimensions are not observed the MF algorithm can fail to
follow the true signal. In this example, the closest observed
state variable to the eighth dimension was the 17th, which
within the given time window it was not close enough to
recover the “truth.” However, close to measured dimensions
the algorithm recovers the “reality” quickly, with quite broad

(a) σ parameter

(b) ρ parameter

(c) β parameter

FIG. 6. (Color online) Histograms of posterior samples for the σ ,
ρ, and β (from top to bottom) drift parameters of the L3D system
obtained with the HMC algorithm.

error bars, and a better initialization can improve tracking of
unobserved dimensions.

B. Parameter estimation

The main benefit of our MF approach is not in the state
estimation, but in the stability of the hyperparameter estima-
tion. By hyperparameters we mean the set of parameters that
exist in the model equations (drift), the diffusion coefficient
matrix (or function) and also in the observation process
model. In real world problems we might have prior beliefs
over their values, but ideally we would like to estimate, or
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update our beliefs about, them, using information from the
available observations. This section presents results displayed
as marginal profiles, although a gradient-based estimation has
also been implemented. We compute the free energy, from
both MF and VGPA algorithms, at convergence of the (state
inference) smoothing procedure, varying only one parameter
at a time to plot the bound on the marginal likelihood. In this
work we do not provide a comparison with other estimation
techniques because this has already been presented in Ref. [19]
for the original VGPA algorithm.

1. Drift parameters

Most of the results presented here are from simulations of
the L3D system, mainly because of its low dimensionality,
which allows the application of other techniques such as
the HMC sampling algorithm. Figures 5(a)–5(c) contrast
the profiles from both MF and VGPA when estimating the
drift parameters of the L3D system. It is obvious that both
approaches provide smooth results, and there are subtle
differences in their final minimum found (indicated with
�), which we ascribe to the the different nature of the MF
approximation compared to VGPA. However, as Fig. 10 shows,
MF was on average three times faster than VGPA, for the given
settings and available computational resources.

To illustrate the difficulty of estimating parameters in
stochastic chaotic models, even in low-dimensional systems
such as the L3D, we include here results of posterior estimates
obtained by the HMC algorithm which can be assumed to
provide a reference solution. The approach we followed here
augments the state vector with the parameter that is estimated
and then the sampling is performed jointly. Figure 6 (from top
to bottom) shows the histograms of the posterior samples of
σ , ρ, and β parameters of the L3D drift function. It is apparent
that even though the parameters are sampled marginally (i.e.,
the other parameters that are not sampled are fixed to their true
values) there are still biases that shift the distributions away
from the correct values.

2. Diffusion parameters

Unlike the previous section where the estimation for the
drift parameters was achieved, within reasonable uncertainty,
by both algorithms, when estimating the diffusion coefficients
the message is not so clear. As Figs. 7(a)–7(c) show, there
are cases where both VGPA and MF fail to provide a clear
minimum (inside the test range) and other cases where one
algorithm or the other does provide a minimum close to the
true value. One reason for this behavior can be the relative low
observation density that we used in this example (No = 5, per

(a) σx profile (b) σy profile

(c) σz profile (d) timings (seconds)

FIG. 7. (Color online) Panels (a) to (c) are the marginal profiles of the diffusion coefficients in each dimension. The vertical dashed line
indicates the true parameter value, and the star symbol (�) denotes the minimum found by each algorithm. Panel (d) summarizes the timings
(in seconds) for each algorithm to generate the profiles.
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(a) ρ2
x profile

(b) ρ2
y profile

FIG. 8. (Color online) With No = 5, (a) presents the marginal
profile of the noise estimation (variance component) on xt dimension.
The vertical dashed line shows the true value of the parameter that
generated the observations. The star symbol (�) denotes the minimum
found by each algorithm. (a) The same as (b) but for the yt dimension.

time unit). As shown in Ref. [19], to estimate this crucial
parameter one needs very dense observations (No > 10)
regardless of the inference method used. Another explanation
is that these profiles were generated by a single realization,
therefore we cannot generalize any conclusions definitively,
that is, the results are only illustrative. Nevertheless, one
thing we can argue is that the MF is consistently faster
than VGPA, as shown in Fig. 7(d). However, the problem
of estimating diffusion coefficients is far from easy, as even
MCMC sampling approaches fail to estimate these noise
parameters for the settings used in this paper.

3. Observation process

Even though estimation of the parameters related to the
observation process is a natural extension of any parameter
estimation framework, these results are the first time that
both MF and VGPA are put to the test. For this example we
use a relatively low, but realistic, observation noise variance
(ρ2 = 1) and test the performance of both algorithms with two
different observation densities, keeping all the other model
parameters to their “correct” values. Figures 8(a) and 8(a)

(a) ρ2
x profile

(b) ρ2
y profile

FIG. 9. (Color online) Same as 8(a) and 8(b), but with increased
observation density (No = 10).

present the marginal profiles with No = 5, for the xt and
yt dimensions, respectively, of the L3D, whereas Figs. 9(a)
and 9(b) illustrate the same experiment with No = 10.

Both algorithms are able to identify the correct minimum
quite accurately, although MF seems to be a bit more confident
(narrower profile around the minimum) especially when the
observation density increases to 10 per time unit. Observation
noise estimation on zt dimension had similar behavior and
was not included here. What is more impressive here is
that the speed-up of the MF approximation, in obtaining
these profiles, was much higher than the other estimation
simulations. Figure 10 shows that MF was seven times faster
than VGPA with No = 5 and roughly four times faster with
No = 10. This can be explained by the fact that by increasing
the observation density we actually increase the number of
iterations in the parallel loop that the MF uses to compute the
free energy (when the parallelization of the algorithm is on the
time domain). Therefore we do expect the algorithm to slow
down slightly (given fixed computational resource).

VI. DISCUSSION

The MF algorithm presented herein provides robust approx-
imate inference for the state and parameters in SDE models.
We show how the variational framework enables us to control
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(a) Timings with No = 5 (b) Timings with No = 10

FIG. 10. (Color online) Panels (a) and (b) summarize the timing results for both algorithms to attain the profiles, with different observation
densities. All results are presented in seconds.

the computational complexity of the algorithm. The inclusion
of a mean-field approximation is critical in allowing us to
completely recast the algorithm without a forward-backward
approach, producing a significantly different algorithm com-
pared to the original VGPA algorithm [18], which is both
more scalable and more robust. This introduces the potential to
undertake approximate likelihood-based parameter inference
in SDEs using very large (long time window) data sets in high-
dimensional systems. The ability to work in continuous time
removes the need for time discretization and thus eliminates
any associated discretization errors. The mean-field method
is inherently parallelizable and scales linearly with respect to
state vector dimension, opening a way for treating very large
systems, which have previously not been amenable to Bayesian
approaches.

Experimental results show the method to be both robust and
comparable to the computationally more expensive MCMC
methods in terms of the accuracy of state inference given
sufficient observations. In particular compared to the original
VGPA algorithm [18], the results are more robust and can be
computed at lower computational expense. We are able to run
the MF approximation on very long time windows, which is
important if the aim is estimation of the parameters in the
SDE. The profiles of free energy, which bound the marginal
likelihood for the parameters in the SDE, are very smooth and
can be obtained without any algorithm tuning, something that
is not true for the other methods employed in this paper, which
required careful tuning to produce reliable results.

The MF approximation suffers from the same limitations
as the original VGPA and is most suitable for inference in
systems where there are sufficient observations to uniquely
identify the state of the system, since the approximation will
break down for multimodal posterior distributions. In the case
of multimodal posteriors over paths in very large systems we
expect that no methods would work practically, although recent
developments in particle filtering claim some success [15].
Also the fact that the new MF was not able to consistently
estimate diffusion parameters requires further investigation.
One possibility to improve on the MF assumption could be the
so-called linear response corrections [33,34], which can yield
a useful approximation to the neglected correlations. Such
correction would be computed after convergence of the MF

algorithm and would require an extra linearization of the MF
equations.

In the experiments described in this paper the observation
density was rather low, compared to the time scales in the
system, and thus it is not surprising that the MF approx-
imation is unable to estimate the variance of the driving
noise process. All inference methods find this challenging in
practice. Implementing the algorithm is also quite complex3

but can be largely automated using symbolic manipulation
tools.

There are several interesting directions for further research.
Parallelization is only partially exploited using eight cores on
a desktop machine and is possible in several places. Which
to use depends on the dimension of the state vector, the
frequency of the observations, and the order of polynomials
used in the approximation. For very long time windows
it might be possible to further approximate the marginal
likelihood using a factorizing assumption on the free energy,
splitting the long time window into subtime intervals. Given
sufficiently long-time subintervals the approximation will not
be significantly affected. It is also interesting to consider the
practical application of the method, and the degree to which
it can be applied to really high-dimensional systems such as
those used in weather forecasting, where the state vector is of
the order of 107 dimensions. In these applications the ability
to use parallel computation is essential, and the flexibility of
the variational framework we put forward, which allows us to
match computational complexity to available computational
resource, makes the method particularly attractive.
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APPENDIX: DERIVATION OF THE VARIATIONAL
GAUSSIAN APPROXIMATION

We aim at approximating the posterior measure over paths
X = {xt }t∈T , for the posterior process, with another process
which is governed by an SDE:

dxt = g(xt )dt + �1/2dwt ,

with different drift function g(xt ) and with measure q, which
belongs to a family of tractable ones. The “goodness” of fit
between the true posterior p and the approximating one q is
given by the variational free energy

F(q(X|�),θ ,�) = −
〈
ln

p(X|Y,θ ,�)

q(X|�)

〉
q

− ln p(Y|θ,�)

=
〈

ln
q(X)

p(X)

〉
q

− 〈ln p(Y|X)〉q, (A1)

where q is a shorthand notation for q(X|�) and the
dependence on the drift and diffusion parameters θ and � has
been suppressed for brevity. p(Y|X) is the probability density
of the discrete time observations, and p(X) denotes the prior
measure over paths generated from the SDE (1). We will
compute the variational free energy by a discretization of the
sample paths in time (i.e., X = {xk}k=0,...,N ) and then taking
appropriate limits.

Using an Euler-Maruyama discretization of the prior SDE
and the posterior approximation we get

δxk+1 = f(xk; θ )δt +
√

�δtεk,
(A2)

δxk+1 = g(xk)δt +
√

�δtεk,

where δxk+1 = xk+1 − xk , δt is a small time step and εk ∼
N (0,I). Since both processes are Markovian, the joint prob-
ability densities of the discretized paths can be written as
products of their transition densities:

p(x0:N ) = p(x0)
N−1∏
k=0

p(xk+1|xk),

(A3)

q(x0:N ) = q(x0)
N−1∏
k=0

q(xk+1|xk),

where x0:N is shorthand notation for (x0,x1, . . . ,xN ).

Using the factorization of Eq. (A3), we get

〈
ln

q(x0:N )

p(x0:N )

〉
q

=
〈
ln

q(x0)

p(x0)

〉
q

+
〈

N−1∑
k=0

ln
q(xk+1|xk)

p(xk+1|xk)

〉
q

.

(A4)

For short times δt the transitions densities for both processes
can be approximated by Gaussian densities:

p(xk+1|xk) � Z−1
p exp

{
− 1

2δt
‖δxk+1 − f(xk; θ )δt‖2

�

}
,

(A5)

q(xk+1|xk) � Z−1
q exp

{
− 1

2δt
‖δxk+1 − g(xk)δt‖2

�

}
.

Because the noise covariances � are identical for both
processes the normalization constants are equivalent, Zp =
Zq . Note that the same is true even if the noises were time
dependent. Therefore, using Eq. (A5) and taking the limit of
δt → 0, Eq. (A4) reduces to〈

ln
q(x0:N )

p(x0:N )

〉
q

=
〈
ln

q(x0)

p(x0)

〉
q

+ 1

2

∫ tf

t0

〈‖f(xt ; θ ) − g(xt )‖2
�

〉
qt

dt.

(A6)

The last term in Eq. (A1), assuming that the discrete
time observations have a Gaussian error distribution, i.e.,
p(yk|xtk ) = N (yk|xtk ,R), becomes

−〈ln p(Y|X)〉q = −
〈

ln
K∏

k=1

p
(
yk|xtk

)〉
q

= −
〈

K∑
k=1

lnN
(
yk|xtk ,R

)〉
q

= 1

2

K∑
k=1

〈∥∥yk − xtk

∥∥2
R

〉
qt

+ const. (A7)
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